

City, University of London Institutional Repository

Citation: Bukhari, A., Miettinen, J. & Rajarajan, M. (2024). Defining Unified Signature API

Library for Mobile Apps to Integrate with Secure Signature Creation Devices (SSCDs). 2024
IEEE International Conference on Blockchain (Blockchain), pp. 619-624. doi:
10.1109/blockchain62396.2024.00091 ISSN 2834-9903 doi:
10.1109/blockchain62396.2024.00091

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/34121/

Link to published version: https://doi.org/10.1109/blockchain62396.2024.00091

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Defining Unified Signature API for mobile apps to
integrate with secure signature creation devices

(SSCDs)
1st Ammar Bukhari

Producht Manager - Identity Technologies
Methics Oy

Espoo, Finland
ammar.bukhari@methics.fi

2nd Jarmo Miettinen
Chief Executive Officer

Methics Oy
Espoo, Finland

jarmo.miettinen@methics.fi

3rd Muttukrishnan Rajarajan
School of Science and Technology

City University of London
London, United Kingdom
r.muttukrishnan@city.ac.uk

Abstract—Secure Signature Creation Devices (SSCDs) are
building blocks for performing a legal value digital signature. As
the world moves more towards digital transactions, it increases
reliance on digital signatures. Interfacing and enabling a SSCD to
work with a mobile phone application allows these applications to
perform digital signatures of legal value (i.e. Qualified Electronic
Signatures - QES, in EU). However, the lack of standardized APIs
for interfacing SSCDs with mobile apps poses significant hurdles
to widespread adoption, and poses many challenges.

This paper introduces a novel approach to address the
challenges of integrating Secure Signature Creation Devices
(SSCDs) with mobile applications by proposing a solution called
MUSAP utilizing Unified Signature API. MUSAP enables secure
communication between mobile apps and SSCDs, ensuring the
protection of private keys and compliance with legal frameworks
such as the eIDAS regulation.

Implementation details and use cases demonstrate the practical
application of the Unified Signature API, showcasing its versa-
tility in supporting both centralized and decentralized identity
technologies. The entity issuing identity assertions (certificate or
verifiable credential) holds the responsibility for verifying both
user’s identity, key material and provide a Level of Assurance
(LoA) selection mechanism. Key material verification can be
achieved by Controlling the key generation process, verifying
device trust and relaying key attestations. MUSAP is released as
open-source solution in Github.

Index Terms—SSCD, eIDAS, Digital Signature, EDIW,
MUSAP

I. INTRODUCTION

In today’s world we are surrounded by digital transactions
which are only going to increase exponentially. Entities in-
volved with these digital transactions do verify authenticity,
integrity and non-repudiation of the digital signatures in or-
der to trust. However these digital transactions have been
regulated with different regulations. In EU, the first formal
Directive 1999/93/EC served as a cornerstone document within
the union member states, which allowed them to implement
national eID schemes, for example Estonia in 2002, Austria in
2005, Finland in 2008 with eID scheme ID cards and Finnish

MUSAP is funded through European Union’s Horizon 2020 research and
innovation program through the NGI TRUSTCHAIN program under cascade
funding agreement No. 101093274.

Mobiilivarmenne (X.509 based Mobile ID) was launched
2011. etc.

After more than a decade, eIDAS (910/2014) also re-
lied on digital signatures, and now today in 2024, eIDAS
2 (2024/1183) to replace eIDAS is published to introduce
European Digital Identity Wallets (EDIW or EUDIW). These
wallets will need to be made available for end-users in
European countries by 2026.

In order to create signatures Digital Identity Wallets need to
interface with a certified Security Signature Creation Device
(SSCD). In this scenario, we assume that an application on
a smartphone lacks the capability to independently serve as a
secure signature creation device. While eIDAS 2 (2024/1183)
directive has been adopted by EU member states, it requires
the Identity Wallets to enable the end-users to create Qualified
Electronic Signatures/Seals (QES), which are of the highest
level of digital signatures.

In Europe, in order to comply with the requirements for
the Qualified Electronic Signature i.e. QES, signature creation
devices need to have compliance with the Common Criteria
3.1 standards, more specifically with the EAL 4 level or higher.
[1], [2] These standards rely on different Protection Profiles
(PP), which are documents created by groups of security
professionals referring to different international standards, and
contains set of requirements for related products. One SSCD
needs to rely on a PP which has been jointly approved by
SOG-IS, and this SSCD when certified at the highest level in
Europe allows these products to act as a Qualified signature
creation device (QSCD). Though, SSCD is a broader term that
can encompass various types of signature creation devices,
whereas ”QSCD” specifically refers to a subset of SSCDs
that adhere to the highest security standards defined by the
European eIDAS Regulation for creating qualified electronic
signatures within the EU.

Despite the maturity of digital signatures, the operational
challenges of interfacing signature creation device of the user’s
choice, remain a hurdle for widespread adoption.

Interfacing SSCDs with mobile device (mobile application)
is a challenge. Absence of standardized APIs for integrating

SSCDs into smartphone applications further increases these
challenges, limiting the development of comprehensive and
user-friendly MUSAPs. Similarly, end users who wants to cre-
ate digital signatures to secure their transactions from mobile
device face a series of challenges, mostly in the incompatibility
issues with mobile devices [3] which do not offer interfacing
support.

The main motivation to develop a MUSAP based on inter-
facing different SSCDs with the mobile phone is to develop
a standardized way to abstract the complexities of different
signature creation device technologies, paving a way to in-
terface one or more creation device. It is noted that eIDAS-
based cross-border authentication first needs to be made more
user-friendly on mobile device for any digital identity wallet
to succeed. [4]. Interfacing multiple SSCDs which are on
different security level of assurance, will allow mobile device
to create signatures with multiple assurance levels.

The main contributions of this paper are:

• introducing a way to interface different SSCDs to a
smartphone application by developing a unified signature
interface API.

• an open-source component released in Github at TRL 8.
It uses two components, MUSAP Library, which is pack-
aged natively with Android or iOS apps, and MUSAP
Link service docker which is placed on back-end of the
app

• extending the existing state-of-the-art identity systems.
MUSAP Libraries will be used to implement a use-case
driven identity management system deployment.

ENISA, European cybersecurity agency released Digital
Identity Standards in 2023 where they highlighted a need to
develop a API from mobile phone to be able to call secure
elements (SSCDs). [3]. Such API is crucial for establishing
interoperable identity systems.

The rest of this paper is structured as follows. Section
II provides an overview of a related work dealing with the
problem of digital signatures and signatures creation devices
i.e. SSCDs or QSCDs. Section III proposes our approach and
describes method used for building a unified signature API.
Section IV provides implementation details of our MUSAP in
different environments. Section V provides discussion of our
method, and finally section VI concludes this paper.

II. OVERVIEW OF DIGITAL SIGNATURES AND SSCDS

A. Background

Secure Signature creation devices are usually a standardized
devices relying on a combination of hardware and security
controls, necessary to store the private key of the user and
maintain it under user’s sole control. SSCD securely stores the
private key locally or remotely the private key which cannot
be exported. When a user wants to sign a digital document,
SSCD generates a digital signature using the private key and
the document digest. Annex 2 of eIDAS [5] regulation lay
conditions for signature creation with use of SSCDs.

In EU, an eIDAS dashboard maintains a list of SSCD/QSCD
in EU. These devices are usually complying to certain stan-
dards such as CEN 419 241-2 CEN 419 221-5 for remote
signature creation devices, CEN 419211-1 and CEN 419211-2
for SIM based local signatures, CEN 419211-3, CEN 419211-
4, CEN 419211-5 etc. for ID card based devices. In addition,
each member state has different SSCDs or QSCDs in play
with their national eID schemes, which allows end-user to to
use them for secure authentication and creating signature.

Since eIDAS 2 regulation is published, European Digital
Identity Wallet security is based on asymmetric keys and
qualified signatures, making wallet act as a QSCD [6].

ENISA mentions the need for a harmonied interface that al-
lows direct access to the internal and external mobile device’s
cryptographic security which will allow wallets to perform
cryptographic operations [3]. Such harmonised interface could
be a unified signature API which streamlines the need for
interfacing SSCDs with mobile apps.

B. Basic Requirements

With the maturity of eID MUSAPs or digital signatures,
there is a consensus (add reference) on security requirements
of creating signatures and agreed algorithms. Universally for a
digital signature to be legally recognized and enforceable, sev-
eral components and requirements must be met. Most common
requirements listed in [7]–[9]. These typically include:

1) Signer’s Identity: The Signer’s Identity must be a valid
identifier within the X.509 PKI certificate’s subject field,
providing sufficient information about the individual to
ensure their uniqueness and recognition.

2) Digital Signature Algorithm: The digital signature must
be generated using a cryptographic algorithm that pro-
vides integrity, authenticity, and non-repudiation. Com-
mon algorithms include RSA, DSA, and ECDSA, etc.

3) Digital Certificate: The signer must possess a valid dig-
ital certificate issued by a trusted Certificate Authority
(CA) or Qualified Trust Service Provider (QTSP). The
certificate binds the signer’s identity to their public key
and is used to verify the authenticity of the digital
signature.

4) Private Key: The signer must have the private key that
matches the public key in their digital certificate and
the private key must be under Signer’s sole control.
Possession of the private key is no longer required. The
private key is used to generate the digital signature and
the control of the key must be secure enough to prevent
unauthorized use.

5) Hash Function: A secure hash function is used to gener-
ate a unique fixed-size digest of the data being signed.
The hash function must be recognized by the legislation.
The digital signature is created by encrypting the hash
value and optional extra information with the Signer’s
private key.

6) Timestamp: Optionally, a timestamp from a trusted
Timestamp Authority (TSA) can be added to the digital
signature to prove the time at which the signature was

created. This helps establish the temporal validity of the
signature.

7) Secure Signing Environment: The signing process
should be performed in a secure environment to protect
the private key from theft or tampering. This may
involve using tamper-proof devices which provides a
secure environment for key generation and storage. This
may include hardware backed, secure elements (SE),
hardware security modules (HSMs), etc. Such function-
alities are provided by SSCD.

8) Legal Framework: Finally, the digital signature must
be used in accordance with applicable laws, regula-
tions, and standards governing electronic signatures and
digital transactions in the relevant jurisdiction. This
may include compliance with eIDAS regulations in the
European Union or the Uniform Electronic Transactions
Act (UETA) and Electronic Signatures in Global and
National Commerce Act (ESIGN) in the United States
to name a few.

By meeting these requirements, a digital signature can
provide a legally binding mechanism for signing electronic
documents, authentication and transactions. However, the spe-
cific legal validity of digital signatures may vary depending on
the jurisdiction and the nature of the document or transaction.
It’s essential to consult legal experts familiar with electronic
signature laws in particular jurisdiction to ensure compliance
and enforce-ability.

C. Related Work

As SSCD is used with a mobile app, it provides protection
and resistance to attacks, and maintains users key materials
secure under their control. In this article we focus only those
technologies which can be used for public services with
existing open standards and commonly available smart phone
devices. Hence, we have omitted Oma/ETSI Smart Card Web
Services or GlobalPlatform Trusted Execution Environment,
primarily utilized in enterprise applications.

Many APIs to interface keystores and SSCDs were studied.
Typically, mobile apps that have an SSCD interfaced are either
Hardware Security Module (HSM) like eIDAS remote signing,
secure tokens or bank specific tools. These are usually pro-
vided only as a binary software. There are different individual
APIs to interface one SSCD with mobile app, they are like:

• GlobalPlatform (GP) has published Open Mobile API
(OMAPI), which enables mobile apps to access GP
secure-elements in mobile devices [10].

• Cloud Signature Consortium (CSC) has published API to
request Remote Signatures, but interfacing with mobile
apps is not feasible [11].

• Github hosts various FIDO2 libraries and several signing
workstations libraries, which relies either on keystore,
USB token. These were at a lower technology readiness
level

Current status is that there are no public implementations to
interface multiple SSCDs with one device.

TABLE I
STATE-OF-THE-ART MAPPED TO GAPS ADDRESSED BY MUSAP

State-of-the-art What MUSAP provides
1. Identifying key is dependent Universal key identification
2. Key is platform dependent Universal key selection
3. Verifying eligibility of the
SSCD

Key attestation for SSCD keys

4. Mobile provides one LoA LoA selection mechanism
5. DID not signed with SSCD Defined DID signing mechanism

The Table 1 describes the current state of art of identity
system APIs and how MUSAP provides a fix for these.

In EU, as eIDAS 2 is now officially in force, all mobile
identity wallets need to provide capability for mobile app to
create qualified electronic signature (QES), which possesses
legal equivalence to a handwritten signature and is often con-
sidered even more robust in terms of security. These standards
for QES rely on dedicated hardware-based security modules
to store and generate keys [5], [6], [8], which is responsible
for both generating and safeguarding digital signatures. All
EDIWs needs to be interfaced with SSCDs for a ’substantial’
security assurance level and QSCDs for the ’high’ security
assurance level [6].

Each MS will decide upon the authentication and on-
boarding phase – prior to the issuance, both for proximity and
remote enrolment. Each MS will have liberty to define their
SSCDs for Wallets and end-users to have liberty to choose
them.

Moreover, ARF for European digital identity wallets dis-
cusses about two different type of configurations for end-user
[12] i.e with Level of assurance (LoA) High as Type 1 and
LoA Substantial as Type 2. Though in latest versions of ARF
from 1.3 onwards, different configuration of wallet was taken
out of scope [13], and mentioned in [6] that users having
identity with SSCD at LoA Substantial can onboard to the
wallet with some additional security mechanism.

III. PROPOSED SOLUTION

Proposed MUSAP design will allow developers to build
applications that can easily integrate with multiple systems
without having to learn the details of each individual SSCD
interface. MUSAP simplifies the development process, reduces
costs, and accelerates time-to-market for new applications
utilizing digital signatures with mobile apps. Making it partic-
ularly useful in the context of citizen’s digital services, where
multiple independent services need to interact with each other
seamlessly.

As each member state of EU needs to provide wallet to
their residents, MUSAP addresses the complexities of SSCD
technologies, offering a unified API Library for developers to
use MUSAP library in their Android or iOS applications.

In order to address the challenges we need to specify and
develop a robust and unified API from the mobile signature
app to the security anchor provided by SSCDs. Using the
MUSAP with mobile app, allows end-user to have multiple
options to choose where they store their private keys.

MUSAP addresses security and convenience, offering a
resilient and adaptable implementation for mobile app(s) re-
quiring high level of trust. MUSAP offers end-users methods
to diversify their key storage and use existing SSCD (from
already deployed Digital ID system). Eventually avoiding the
concentration of all keys in a single basket.

Moreover, MUSAP never shares actual cryptographic keys
of the SSCD with mobile app. With user’s consent, only SSCD
metadata is shared to the app.

A. Architecture and APIs

While writing MUSAP specification and designing the
architecture, team took guidelines from Framework for De-
signing Cryptographic Key Management Systems (CKMS)
outlined in NIST Special Publication 800-130 [14], and eI-
DAS (910/2014). MUSAP specifications, alongwith APIs and
source code is already published in Github with Apache
license 2.0.

MUSAP is composed of two components:

1) MUSAP Library → Client-side library for Android and
iOS to be packages with end-user app (mobile app)

2) MUSAP Link service → A docker component deployed
on server side of end-user app or seperately

Detailed architecture and components of MUSAP is pre-
sented in Figure 1.

Fig. 1. MUSAP architecture, APIs and components

MUSAP is designed in a way that allows easy integra-
tion with mobile apps and offloads key management op-
erations. App can call MUSAP API to call the library in
the phone. Later app using the MUSAP Library is linked
(initialized/enrolled) with Link through Coupling API. APIs
in detail are listed in Specification and API repository.

MUSAP is utilizing 3 APIs, they are:

• Native API (MUSAP API for Android or iOS) which can
be used by mobile app to call the library

• JSON API (Coupling API between MUSAP Library
(Android/iOS) and Link service)

• REST API (LINK API between Server/WebApp and
service) which can be used by web services to request
signature.

Native API in mobile apps is used to request key operations
and interact with the MUSAP library is core API which links
mobile device and library. Native API is further divided into
multiple APIs such as Sign, Key lifecycle, Key binding, Key
Discovery and import/export. All these APIs can be called by
mobile app for required function.

• Sign API: send to sign challenges and other data (for
example VC, X.509, DID, etc.

• Key lifecycle API: allows the user to generate new
keypairs with specified parameters

• Key discovery API: lists all available keys from SSCDs
which can be reached through MUSAP and app.

• Key binding API: used to bind existing SSCD to library
and app. Has endpoints to enable SSCD and bind keys

• Key import/export API: used to import/export key meta-
data data between apps, and for backing up the keys.

These APIs are well documented and explained in MUSAP
specification in Github. MUSAP project Github contains links
to all API repositories and documentation [15].

B. MUSAP Library for mobile apps

MUSAP library can be called in the mobile app. Developers
can import MUSAP Android library or MUSAP iOS Library in
their Android/iOS app projects. Defines what kind of SSCDs
they want to support and its configurations.

MUSAP library consists of the following main components
(as illustrated in Figure 1):

• Native API (MUSAP APIs)
• SSCD Interface(s)
• Metadata storage
Moreover, one key feature which MUSAP library provides

is to provide validity of SSCD key. In a scenario when
MUSAP is able to interface SSCDs, it also provides key
attestation to verify the key origin. It is trivial to verify public
key origin if they are sourced from mobile operator system
via local signatures though SIM card having java Card applet,
or from a provider of CEN standards based remote signing.
However, if the public key originates from phone’s keystore,
the registrar cannot validate SSCD’s validity without a key
attestation. Hence, a unified API attestation proves validity.

C. Link service for mobile apps

Link service establishes a connection between web applica-
tions and the mobile app using MUSAP library. Link service
URL is configured on the MUSAP library (in mobile apps to
enable the connectivity with the link service). Registering or
linking your mobile app the link service is always optional
and a user’s choice.

Link composes of a straightforward REST API for seam-
less integration with external web services. Along with push

notification support integration for both Apple’s and Google’s
notification service.

Additionally Link service serves as an essential compo-
nent, as it facilitates decentralized identity management by
providing a secure mechanism that eliminates the necessity
for centralized identity management. As decentralized identity
components become more mainstream and part of the identity
ecosystem, interoperability between x509 and decentralized
identity based on Decentralized identifiers (DIDs) and Verifi-
able Credentials (VC)and digital signatures can be mentioned
as factor of utmost importance for its success [6].

Link service flow can be described iteratively as:

1) Link service sends a push notification to smartphone
which awakes the mobile app with MUSAP library.

2) MUSAP Native APIs requests Link service for the
signature request data.

3) Lastly, MUSAP library sends the signature request data
to SSCD interfaced with mobile app.

For additional security there is a transport security layer
between MUSAP library and Link service. When enabled,
all message payloads between them are encrypted with AES-
CBC-PKCS7 Padding cipher with a random IV. Messages also
have a message authentication code to verify message integrity
and authenticity. The message payloads contain a nonce, and
a timestamp. Link service has a configurable duration range
to reject old messages and messages that have an already
used nonce. Such mechanism prevent replay attacks on Link
service, and ensures that each payload is unique. MAC uses
encrypt-then-mac scheme. Library encrypts the payload, and
then calculates a HMACSha256 of the payload, user identifier,
message type, and AES encryption IV. When Link service, or
MUSAP library receives a message, it first checks if MAC is
correct by comparing the calculated and received MACs. They
reject messages with a wrong MAC. The MAC proves the
authenticity of the message. Moreover, the encryption between
two components is established during the enrollment.

D. Use cases

MUSAP is designed in a way to provide unique use cases
for both centralized and decentralized technologies. In cen-
tralized technology, MUSAP eases the interfacing of in-scope
SSCDs with mobile apps, allowing them to sign any data for-
mat. As ARF of EDIW mentions wallet mobile app to support
two configurations. Configurations are sets of specific rules
and methods that define how EDIW will be built and operate.
These configuration are wallets of different types i.e. Type 1
(LoA High) and Type 2 (LoA Substantial) [12]. MUSAP has
been used (explained in Section IV about Implementation) to
demonstrate a use case where different assurance level SSCDs
were interfaced with mobile app. Figure 2 explains high level
overview of MUSAP use with identity wallet apps to provide
interface with multiple SSCD technologies.

Similarly for decentralized technology, MUSAP can be used
to sign DIDs with different assurance levels. As decentralized
identity standards get developed and mature, MUSAP paves

Fig. 2. MUSAP role as a secure component API for identity wallets to
interface different SSCDs

a way for client-secret mode for DIDs and manage crypto-
graphic operations. In this mode of DID operations will ask the
client to perform cryptographic operations such as generating
keypair(s), signatures, etc. [16].

Especially as decentralized identity services become the
main trend of identity services, MUSAP offers an interop-
erable route from centralized identities towards decentralized
model.

IV. IMPLEMENTATION

Main goal of the first implementation version is to define
and demonstrate how MUSAP library constructs the sign
request. Software implementation goals were to develop a
simple and native code (Android/iOS) implementation as an
example, which has limited number of dependencies to 3rd
party components, it has a clear API interface, and it can be
integrated with the client app easily as a native component.
Integrator can replace also included 3rd party libraries with
their preferred tools.

While the implementation is an open source code, the
integrator can see the whole library and its structure, which
make it easy to contribute the implementation, extend it or
write completely own implementation.

Multiple API call versions are needed for various signing
requirements of the client. It is clearly different to just sign
a document, sign PAdES LTA, sign Verifiable Credential etc.
Additionally, we considered that integrator should be able to
add more signing mechanisms when needed.

Complete MUSAP libraries and reference implementation
apps have been released in Github with extensive documen-
tation [15]. Moreover, as described in Figure 2, four different
SSCDs were interfaced with mobile app in reference imple-
mentation. Demo video [17] also demonstrates interfacing 4
different keystores with mobile app.

V. DISCUSSION

Although SSCDs have been around for long, but with emer-
gence of eIDAS2 and the European Digital Identity Wallet has
brought renewed focus to digital wallets and their architecture.
Since all wallets at highest assurance level need to act as a
QSCD and with substantial assurance level as a SSCD [6].
There seems remote SSCD and local SSCD which can be
interfaced for wallets.

To ensure maximum user adoption, extensive user study
needs to be carried out what end-users prefer as their SSCD
technology to ensure their private key stays safe. ENISA
has been releasing recommendations related to a need for
harmonized interface that allows access to different secure
components or SSCDs to allow cryptographic operations for
the identity wallet [15]. Currently, eIDAS expert group with
participation from each member state and team of experts
developing architecture and reference framework for European
digital identity wallet is collaborating for an interoperable
architecture. Indeed it is a big task which will impact user
adoption.

Developed MUSAP library paves a way, which allows
mobile apps like identity wallet apps to call different SSCDs of
different assurance levels, allowing end-user of apps to have a
choice which SSCD technology they feel comfortable to use.
Simply put providing a choice to end-users to choose what
they trust more to ensure safety of their private key.

VI. CONCLUSION

In this paper we presented a novel approach to create a
unified signature API through proposed MUSAP libraries,
allowing mobile apps to easily interface one or more SSCD.
Our MUSAP compliments the with requirements of the eIDAS
2 , eIDAS 1 and legacy directive 1999/93/EC of the European
Parliament.

As Digital identity space evolves, a Unified Signature API,
which interfaces multiple different SSCDs can help with the
mass adoption of users. As success of eIDAS 2 hinges upon its
user- friendliness, security, and convenience. The feasibility of
achieving widespread acceptance is closely tied to the system’s
adoption, ease of use and its seamless operation on a global
scale.

MUSAP provides a standardized and simplified way for
developers to request multiple LoA signatures, regardless of
the programming language, SSCD platform, or technology
(centralized or decentralized) used. This ensure consistency
and interoperability across different systems.

The advancements in building the MUSAP were marked
by tangible demonstrations, active feedback from end users,
constructive business meetings on common principle/goal for
future collaboration, and room for future advancements in the
MUSAP. As MUSAP is released in Github on TRL 8, it
remains open for future work. As EDIW Reference Apps have
recently been released, integrating MUSAP to reference apps,
or adding more SSCDs in scope (like eID card, eSIM based
Mobile ID,etc.) of API will make the service more lucrative
for use with mobile apps.

ACKNOWLEDGMENT

MUSAP is funded through European Union’s Horizon
2020 research and innovation program through the NGI
TRUSTCHAIN program under cascade funding agreement No.
101093274.

REFERENCES

[1] “Etsi en 419 241-1 trustworthy systems supporting server
signing part 1: General system security requirements,” https:
//www.sis.se/en/produkter/information-technology-office-machines/
it-security/ss-en-419241-12018, 2018.

[2] “Etsi en 419 241-2 trustworthy systems supporting server signing
- part 2: Protection profile for qscd for server signing,” https:
//www.sis.se/en/produkter/information-technology-office-machines/
it-security/ss-en-419241-22019/, 2019.

[3] and European Union Agency for Cybersecurity, I. Alamillo, S. Mouille,
A. Röck, N. Soumelidis, M. Tabor, and S. Gorniak, Digital identity
standards – Analysis of standardisation requirements in support of
cybersecurity policy – July 2023. European Union Agency for
Cybersecurity, 2023.

[4] R. Czerny, C. P. Kollmann, B. Podgorelec, B. Prünster, and T. Zef-
ferer, “Smoothing the ride: Providing a seamless upgrade path from
established cross-border eid workflows towards eid wallet systems,” in
20th International Conference on Security and Cryptography: SECRYPT
2023. SciTePress, 2023, pp. 460–468.

[5] European Commission: eIDAS Regulation, “eidas 910/2014 regu-
lation,” https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation,
Accessed 2024-03-22.

[6] European Commission eIDAS Regulation, “eidas 2 regulation
2024/1183,” https://eur-lex.europa.eu/eli/reg/2024/1183/oj, Accessed
2024-04-25.

[7] T. ETSI, “119 432: Electronic signatures and infrastructures (esi),”
Protocols for remote digital signature creation, 2019.

[8] J. Dumortier, “The european directive 1999/93/ec on a community
framework for electronic signatures,” Edirectives: guide to European
Union law on ecommerce: commentary on the directives on distance
selling, electronic signatures, electronic commerce, copyright in the
information society, and data protection, edited by AR Lodder & HWK
Kaspersen The Hague, 2002.

[9] “Organization for the advancement of structured information stan-
dards(oasis), “digital signature service core protocols, elements, and
bindings version 2.0”,” https://groups.oasis-open.org/higherlogic/ws/
public/document?document id=64707, Accessed on 2024-01-22.

[10] “Open mobile api specification v3.0,” https://globalplatform.org/
wp-content/uploads/2018/04/GPD Open Mobile API Spec v3.2.0.13
PublicReview.pdf, Accessed on 2024-04-30.

[11] “Cloud signature consortium (csc) api v2.0,” https:
//cloudsignatureconsortium.org/wp-content/uploads/2023/04/csc-api-v2.
0.0.2.pdf, Accessed on 2024-05-04.

[12] “European digital identity wallet architecture reference
framework v1.2,” https://github.com/eu-digital-identity-wallet/
eudi-doc-architecture-and-reference-framework/releases/tag/v1.2.0,
Accessed on 2024-02-04.

[13] “European digital identity wallet architecture reference
framework v1.3,” https://github.com/eu-digital-identity-wallet/
eudi-doc-architecture-and-reference-framework/releases/tag/v1.3.0,
Accessed on 2024-03-04.

[14] Elaine Barker (NIST), Miles Smid (Orion Security MUSAPs), Dennis
Branstad, Santosh Chokhani (Cygnacom MUSAPs), “A framework for
designing cryptographic key management systems,” https://nvlpubs.nist.
gov/nistpubs/SpecialPublications/NIST.SP.800-130.pdf, Accessed 2024-
02-14.

[15] “Musap project,” https://github.com/NGI-TRUSTCHAIN/MUSAP
project, Accessed on 2024-05-10.

[16] “Client-secret mode for did registration standard being
developed by dif,” https://identity.foundation/did-registration/
client-managed-secret-mode, Accessed on 2024-03-14.

[17] “Musap demo video with multiple keystores,” https://www.youtube.com/
watch?v=IHl4WDTJY34, Accessed on 2024-05-15.

