

City Research Online

City, University of London Institutional Repository

Citation: Bishop, P. G., Povyakalo, A. A. & Strigini, L. (2024). How to reason about Risk, given Inevitable Doubt on Arguments for High Dependability. Paper presented at the SAFECOMP 2024, 17-20 Sep 2024, Florence, Italy.

This is the presentation version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/34211/

Link to published version:

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
 City Research Online:
 http://openaccess.city.ac.uk/
 publications@city.ac.uk

How to reason about Risk,

given Inevitable Doubt on Arguments for High Dependability

Peter Bishop^{1,2}, Andrey Povyakalo¹, Lorenzo Strigini¹

¹Centre for Software Reliability – City St George's, University of London, U.K. ²Adelard , NCC Group, London, U.K.

Background: for engineered systems with potential for unintended serious harm

- sensibly, regulations demand
 - *before* allowing large scale operation, demonstration that harm from operation is unlikely enough
- serious effort is spent on this demonstration
- indeed we have remarkably safe operation in many areas
- although the safety levels required are *hard* to demonstrate in advance
 - e.g. \leq **10**⁻⁹ per flight hour probability of *catastrophic failure conditions*

All this should give everyone peace of mind...

But ...

https://commons.wikimedia.org/wiki/File:The_elephant_in_the_room_ at_Arsenale_(52196585578).jpg license: https://creativecommons.org/licenses/by/2.0/deed.en

The elephant in the room... epistemic uncertainty

https://commons.wikimedia.org/wiki/File:The_elephant_in_the_room_ at_Arsenale_(52196585578).jpg license: https://creativecommons.org/licenses/by/2.0/deed.en

- sometimes, that carefully verified demonstration of acceptable safety is wrong:
 - in operation after approval, dangerous flaws are found & fixed (e.g. "airworthiness directives")
 - or disasters happen (think Boeing 737 MAX)
 - e.g. in airliners, nuclear reactors, a fraction of systems have proved not to be as safe as required and "demonstrated"

the advertised risk figures may be badly wrong

as often pointed out by sociologists, antinuclear protesters, ... and more quietly among specialists

However, usually

- the new system type is gradually deployed
- seeing safe, surprise-free operation rightly reassures us about safety
- surprisingly, this process is not part of formal certification / authorisation processes
- ... how can then regulators, insurers, users take the right decisions?

... how safe **should** we trust a newly approved system to be?

Simple scenario: we have a *good* argument showing that a system is safe enough...

Suppose e.g. for a new aircraft type

- proved probability of mishap per flight ≤10⁻⁶
 - if the argument is correct
- but if it's wrong, this probability is **unknown** might be 1!
- assume 90% confidence that it is correct

what should the airline / regulator / insurer / passenger think of risk?

The upper bound on probability of mishap in the first flight is

$$0.9 \times 10^{-6}$$
 +(1-0.9)×1 , i.e. ~0.1

a lot more than the advertised 10⁻⁶ !

The good news: as we see more and more safe operation, we can show...

- how much less likely this system is to be in the unlucky 10%
- that even if it does, lack of mishaps so far proves they cannot be very likely. Thus:

This more realistic estimate should allow better decisions about licensing, deployment!

So, is the decision process for acceptance broken? What is to be done?

- acknowledge inevitable doubt and the attendant risk
- study history: learn roughly *how much* we should doubt *proved* safety claims, for each kind of system and of claim
- exploit good practices (e.g. strict monitoring in operation) to support *rational* growth in confidence
- improve safety arguments
 - include "backup" sub-arguments (more modest claims with higher confidence)
 - improve confidence in main claim? (hard! Any low-hanging fruits?)
 - change claims? E.g. overall fleet risk (Bishop et al 2022)
 - exploit more historical evidence about risk parameters
- make the improved theory actually help the process: learn from psychology/sociology of decision under uncertainty

Thank you for your attention..

Questions, comments, resonance with situation in **your** area?

Interest in case study projects?

Do Email us:

{*P.Bishop, A.A.Povyakalo, L.Strigini*}@city.ac.uk

Theorems, extensions, references: Arxiv article "scheduled to be announced at Thu, 19 Sep 2024 00 GMT"

Some background:

- Bishop, P., Povyakalo, A. & Strigini, L. (2022). Bootstrapping confidence in future safety based on past safe operation. ISSRE 2022, ISSN 1071-9458 doi: 10.1109/ISSRE55969.2022.00020, https://openaccess.city.ac.uk/28641/
- Bishop, P. G., Bloomfield, R. E., Littlewood, B., Povyakalo, A. A. & Wright, D. (2011). <u>Toward a Formalism for Conservative Claims about the Dependability of Software-</u> <u>Based Systems</u>. IEEE Transactions on Software Engineering, 37(5), pp. 708-717. doi: <u>10.1109/TSE.2010.67</u>, https://openaccess.city.ac.uk/id/eprint/1070/

Littlewood, B. & Strigini, L. (1993). Validation of Ultrahigh Dependability for Software-Based Systems. Communications of the ACM (CACM), 36(11), pp. 69-80. doi: <u>10.1145/163359.163373</u> <u>https://openaccess.city.ac.uk/id/eprint/1251/</u> Bishop,Povyakalo,Strigini SAFECOMP 2024

Additional slides

How did we draw that curve of worst-case *pfd*?

"conservative Bayesian inference"

- which distribution is "worst-case" changes with increasing amounts of past successful operation
- so the evolving worst-case prediction is given by the envelope above

Can you improve... by proving a better q_L ?

your curve will asymptotically approach that lower q_L

it helps – but only in the long run!

How to add "backup" arguments

High prior confidence that if your main argument is wrong, still you know an upper bound on q_H that is <1

This limits initial risk; after a while, it stops helping

Combine both...?

It helps. Still long time to reach desired risk level Mean posterior pfd, given prior confidence).9 in $pfd \le q_t$

We can do better: multiple backup arguments, each claiming less but with more confidence

by studying the actual evidence about the specific system Bishop, Povyakalo, Strigini SAFECOMP 2024

Why the current fiction that a verified claim is true?

- simpler
- inevitably, commercial/political pressures
 - who feels like defending "gambling with people's lives"?
- but importantly also:
 - human minds treat "epistemic uncertainty" differently from "aleatory uncertainty"
 - + people may accept that "safe" means "low probability of accidents" rather than "no accidents"
 - + but are uneasy accepting uncertainty about that probability
 - treating the latter uncertainty by probability goes against the grain
 - + for many lay people and experts alike
 - + (despite widespread use of Bayesian approaches to risk)
 - ... despite the distinction being often an illusion
- maybe the current fictitious separation has societal advantages?
 - + avoids some forms of corruption of the process?
 - + but certainly the myth favours other forms

How do we manage fleet level risk?

Example of "confidence bootstrapping": incremental deployment contains overall risk of mishap for whole fleet [Bishop et al, ISSRE 2022]

