
              

City, University of London Institutional Repository

Citation: Aminof, B., De Giacomo, G., Di Stasio, A., Francon, H., Rubin, S. & Zhu, S. 

(2025). ltl Synthesis Under Environment Specifications for Reachability and Safety 
Properties. Information and Computation, 303, 105255. doi: 10.1016/j.ic.2024.105255 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/34217/

Link to published version: https://doi.org/10.1016/j.ic.2024.105255

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Information and Computation 303 (2025) 105255
Contents lists available at ScienceDirect

Information and Computation

journal homepage: www.elsevier.com/locate/yinco

ltl f synthesis under environment specifications for 

reachability and safety properties

Benjamin Aminof a, Giuseppe De Giacomo a,b, Antonio Di Stasio e,∗, 
Hugo Francon d, Sasha Rubin c, Shufang Zhu f

a Sapienza University of Rome, Rome, Italy
b University of Oxford, Oxford, UK
c University of Sydney, Sydney, Australia
d ENS Rennes, France
e City St George’s, University of London, London, UK
f University of Liverpool, Liverpool, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 February 2024
Received in revised form 30 October 2024
Accepted 22 November 2024
Available online 28 November 2024

In this paper, we study ltl f synthesis under environment specifications for arbitrary reach-
ability and safety properties. We consider both kinds of properties for both agent tasks 
and environment specifications, providing a complete landscape of synthesis algorithms. 
For each case, we devise a specific algorithm (optimal wrt complexity of the problem) and 
prove its correctness. The algorithms combine common building blocks in different ways. 
While some cases are already studied in literature others are studied here for the first time.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Synthesis under environment specifications consists of synthesizing an agent strategy (aka plan or program) that realizes 
a given task against all possible environment responses (i.e., environment strategies). The agent has some indirect knowledge 
of the possible environment strategies through an environment specification, and it will use such knowledge to its advan-
tage when synthesizing its strategy [4,2,10,28]. This problem is tightly related to planning in adversarial nondeterministic 
domains [22], as discussed, e.g., in [11,17].

In this paper, we study synthesis under environment specifications, considering both agent task specifications and envi-
ronment specifications expressed in Linear Temporal Logic on finite traces (ltl f ). These are logics that look at finite traces 
or finite prefixes of infinite traces. For concreteness, we focus on ltl f [18,19], but the techniques presented here extend 
immediately to other temporal logics on finite traces, such as Linear Dynamic Logics on finite traces, which is more expres-
sive than ltl f [18], and Pure-Past ltl, which has the same expressiveness as ltl but evaluates a trace backward from the 
current instant [13].

Linear temporal logics on finite traces provide a nice embodiment of the notable triangle among Logics, Automata, and 
Games [23]. These logics are full-fledged logics with high expressiveness over finite traces, and they can be translated into 
classical regular finite state automata; moreover, they can be further converted into deterministic finite state automata 
(dfas). This transformation yields a game represented on a graph. In this game, one can analyze scenarios where the ob-
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jective is to reach certain final states. Finally, despite the fact that producing a dfa corresponding to an ltl f formula can 
require double-exponential time, the algorithms involved — generating alternating automata (linear), getting the nondeter-
ministic one (exponential), determinizing it (exponential), solving reachability games (poly) — are particularly well-behaved 
from the practical computational point of view [30,32,36].

In this paper, however, we consider two kind of ltl f specifications:

∃ϕ and ∀ϕ, with ϕ an arbitrary ltl f formula.

The first kind of specifications denote a reachability property: there exists a finite prefix π<k of an infinite trace π such 
that π<k |= ϕ . This is the classical use of ltl f to specify synthesis tasks [19]. The second one specifies a safety property: 
every finite prefix π<k of an infinite trace π is such that π<k |= ϕ . This is the classical use of ltl f to specify environment 
behaviours [1,15]. The formulas ∀ϕ and ∃ϕ with ϕ in ltl f capture exactly two well-known classes of ltl properties in 
Manna and Pnueli’s Safety-Progress ltl Hierarchy [12]. Specifically, ∃ϕ captures the guarantee properties and ∀ϕ captures the 
safety properties (in [25], expressed respectively as �ψ and �ψ with ψ an arbitrary Pure-Past ltl formulas, which consider 
only past operators.)

We let Env and Task denote an environment specification and a task specification, respectively, consisting of a safety 
(∀ϕ) and/or reachability property (∃ϕ). This gives rise to 12 possible cases: 3 without any environment specifications, 3 
with safety environment specifications (∀ϕ), 3 with reachability environment specifications (∃ϕ), and 3 with both safety 
and reachability environment specifications (∃ϕ ∧ ∀ϕ). For each of these, we provide an algorithm, which is optimal wrt 
the complexity of the problem, and prove its correctness. When the problem was already solved in literature, we give ap-
propriate references (e.g., Task = ∃ϕ and Env = true is classical ltl f synthesis, solved in [19]). In fact, we handle all the 
cases involving reachability in the environment specifications by providing a novel algorithm that solves the most general 
case of Env = ∃ϕ1 ∧ ∀ϕ2 and Task = ∃ϕ3 ∧ ∀ϕ4.1 These algorithms use the common building blocks (combining them in 
different ways): the construction of the dfas of the ltl f formulas, Cartesian products of such dfas, considering these dfas 
as the game arena and solving games for reachability/safety objectives. Also, all these problems have a 2EXPTIME-complete 
complexity. The hardness comes from ltl f synthesis [19], and the membership comes from the ltl f -to-dfa construction, 
which dominates the complexity since computing the Cartesian products and solving reachability/safety games is polyno-
mial.2 Towards the actual application of our algorithms, we observe that although the dfas of ltl f formulas are worst-case 
double-exponential, there is empirical evidence showing that the determinization of nfa, which causes one of the two expo-
nential blow-ups, is often polynomial in the nfa [31,32,36]. Moreover, in several notable cases, e.g., in all DECLARE patterns 
[33], the dfas are polynomial in the ltl f formulas, and so are our algorithms.

2. Preliminaries

Traces. For a finite set �, let �ω (resp. �+, �∗) denote the set of infinite strings (resp. non-empty finite strings, finite 
strings) over �. We may write concatenation of sets using ·, e.g., � · � denotes the set of strings over � of length 2. The 
length of a string is denoted |π |, and may be infinite. Strings are indexed starting at 0. For a string π and k ∈ IN with 
k < |π |, let π<k denote the finite prefix of π of length k. For example, if π = π0π1 . . .πn , then |π | = n + 1 and π<2 = π0π1. 
Typically, � will be the set of interpretations (i.e., assignments) over a set Prop of atomic propositions, i.e., � = 2Prop . 
Non-empty strings will also be called traces.

Linear-time Temporal Logic (LTL). ltl is one of the most popular logics for temporal properties [27]. Given a set of propo-
sitions Prop, the formulas of ltl are generated as follows:

ϕ ::= a | (ϕ ∧ ϕ) | (¬ϕ) | (◦ϕ) | (ϕ U ϕ)

where a ∈ Prop, ◦ (next) and U (until) are temporal operators. We use common abbreviations, so we have eventually as �ϕ ≡ trueU ϕ and always as �ϕ ≡ ¬�¬ϕ .
ltl formulas are interpreted over infinite traces π ∈ (2Prop)ω . A trace π = π0, π1, . . . is a sequence of propositional 

interpretations (sets), where for every i ≥ 0, πi ∈ 2Prop is the i-th interpretation of π . Intuitively, πi is interpreted as the set 
of propositions that are true at instant i. Given π , we define when an ltl formula ϕ holds at position i, written as π, i |= ϕ , 
inductively on the structure of ϕ , as:

• π, i |= a iff a ∈ πi (for a ∈ Prop);
• π, i |= ¬ϕ iff π, i 
|= ϕ;
• π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2;
• π, i |= ◦ϕ iff π, i + 1 |= ϕ;
• π, i |= ϕ1 U ϕ2 iff there exists j ≥ i such that π, j |= ϕ2, and for all k, i ≤ k < j we have that π, k |= ϕ1.

1 In fact, this algorithm can solve all cases, but it’s much more involved compared to the direct algorithms we provide for each case.
2 For pure-past ltl, obtaining the dfa from a pure-past ltl formula is single exponential [13], and indeed the problems and all our algorithms become 

EXPTIME-complete.
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We say π satisfies ϕ , written as π |= ϕ , if π, 0 |= ϕ .
Linear-time Temporal Logic on finite traces (ltl f ). ltl f is a variant of Linear-time temporal logic (ltl) interpreted over finite, 

instead of infinite traces [18]. The syntax of ltl f is exactly the same as for ltl. For a finite trace π ∈ (2Prop)+ , an ltl f
formula ϕ , and a position i (0 ≤ i < |π |), define π, i |= ϕ (read “ϕ holds at position i”) by induction as for ltl expect that 
for the temporal operators we have:

• π, i |= ◦ϕ iff i < |π | − 1 and π, i + 1 |= ϕ;
• π, i |= ϕ1 U ϕ2 iff for some j (i ≤ j < |π |), π, j |= ϕ2, and for all k (i ≤ k < j), π, k |= ϕ1.

We write π |= ϕ , if π, 0 |= ϕ and say that π satisfies ϕ . Write L(ϕ) for the set of finite traces over � = 2Prop that satisfy ϕ . 
In addition, we define the weak next operator •ϕ ≡ ¬◦¬ϕ . Note that: ¬◦ϕ is not, in general, logically equivalent to ◦¬ϕ , 
but we have that ¬◦ϕ ≡•¬ϕ .

Domains. A domain (aka transition system, aka arena) is a tuple D = (�, Q , ι, δ), where � is a finite alphabet, Q is a finite 
set of states, ι ∈ Q is the initial state, δ : Q × � → Q is a transition function. For an infinite string w = w0 w1 w2 . . . ∈ �ω

a run of D on w is a sequence r = q0q1q2 . . . ∈ Q ω that q0 = ι and qi+1 ∈ δ(qi, wi) for every i with 0 ≤ i. A run of D on 
a finite string w = w0 w1 . . . wn over � is a sequence q0q1 · · ·qn+1 such that q0 = ι and qi+1 ∈ δ(qi, wi) for every i with 
0 ≤ i < n + 1. Note that every string has exactly one run of D.

Deterministic finite automaton (DFA). A DFA is a tuple M = (D, F ) where D is a domain and F ⊆ Q is a set of final states. 
A finite word w over � is accepted by M if the run of M on w ends in a state of F . The set of all such finite strings is 
denoted L(M), and is called the language of M.

Theorem 1. [19] Every ltl f formula ϕ over atoms Prop can be translated into a dfa Mϕ over alphabet � = 2Prop such that for every 
finite string π we have that π ∈L(M) iff π |= ϕ . This translation takes time double-exponential in the size of ϕ .

Properties of infinite strings. A property is a set P of infinite strings over �, i.e., P ⊆ �ω . We say that P is a reachability, 
(also called guarantee [25] or co-safety [24]), property if there exists a set T ⊆ �+ of finite traces such that if w ∈ P then 
some finite prefix of w is in T . We say that P is a safety property if there exists a set T ⊆ �+ of finite traces such that if 
w ∈ P , then every finite prefix of w is in T . It is worth noting that the complement of a reachability property is a safety 
property, and vice versa.

An ltl f formula can be used to denote a reachability, (resp., safety) property over � = 2Prop as follows.

Definition 1. For an ltl f formula ϕ , let ∃ϕ denote set of traces π such that some finite prefix of π satisfies ϕ , and let ∀ϕ
denote the set of traces π such that every finite (non-empty) prefix of π satisfies ϕ .

Note that ∃ϕ denotes a reachability property, and ∀ϕ denotes a safety property. From now on, “prefix” will mean “finite 
non-empty prefix”. Note also that for an ltl f formula, L(ϕ) is a set of finite traces. On the other hand, L(∃ϕ) (and similarly 
L(ψ) where ψ is a Boolean combination of formulas of the form ∃ϕ for ltl f formulas ϕ) is a set of infinite traces. In this 
paper, we consider ∃ϕ , ∀ϕ , and ∃ϕ ∧ ∀ϕ to specify both agent tasks and environment behaviours.

Deterministic automata on infinite strings (da). Following the automata-theoretic approach in formal methods, we will 
compile formulas to automata. We have already seen that we can compile ltl f formulas to dfas. We now introduce au-
tomata over infinite words to handle certain properties of infinite words. A deterministic automaton (da, for short) is a tuple 
A = (D, α) where D is a transition system, say with the state set Q , and α ⊆ Q ω is called an acceptance condition. An 
infinite string w is accepted by A if its run is in α. The set of all such infinite strings is denoted L(A), and is called the 
language of A.

We consider reachability (reach) and safety (safe) acceptance conditions, parameterized by a set of target states T ⊆ Q :

• reach(T ) = {q0q1q2 . . . ∈ Q ω | ∃k ≥ 0 : qk ∈ T }. In this case, we call A a reachability automaton.
• safe(T ) = {q0q1q2 . . . ∈ Q ω | ∀k ≥ 0 : qk ∈ T }. In this case, we call A a safety automaton.

Remark 1. Every reachability (resp. safety) property expressible in ltl is the language of a reachability automaton (resp. 
safety automaton) [18,24,29].

3. Problem description

Reactive Synthesis. Reactive Synthesis (aka Church’s Synthesis) is the problem of turning a specification of an agent’s task 
and of its environment into a strategy (aka policy). This strategy can be employed by the agent to achieve its task, regardless 
of how the environment behaves. In this framework, the agent and the environment are considered players in a turn-based 
game, in which players move by picking an evaluation of the propositions they control. Thus, we partition the set Prop of 
propositions into two disjoint sets of propositions X and Y , and with a little abuse of notation, we denote such a partition 
as Prop = Y ∪ X . Intuitively, the propositions in X are controlled by the environment, and those in Y are controlled by 
3
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the agent. In this work (in contrast to the usual setting of reactive synthesis), the agent moves first. The agent moves by 
selecting an element of 2Y , and the environment responds by selecting an element of 2X . This is repeated forever, and 
results in an infinite trace (aka play). From now on, unless specified otherwise, we let � = 2Prop and Prop = Y ∪ X . We 
remark that the games considered in this paper are games of perfect information with deterministic strategies.

An agent strategy is a function σag : (2X )∗ → 2Y . An environment strategy is a function σenv : (2Y )+ → 2X . A strategy 
σ is finite-state (aka finite-memory) if it can be represented as a finite-state input/output automaton that, on reading an 
element h of the domain of σ , outputs the action σ(h). A trace π = (Y0 ∪ X0)(Y1 ∪ X1) · · · ∈ (2Y∪X )ω follows an agent 
strategy σag : (2X )∗ → 2Y if Y0 = σag(ε) and Yi+1 = σag(X0 X1 . . . Xi) for every i ≥ 0, and it follows an environment strat-
egy σenv if Xi = σenv(Y0Y1 . . . Yi) for all i ≥ 0. We denote the unique infinite sequence (play) that follows σag and σenv as 
play(σag, σenv). Let P be a property over the alphabet � = 2Prop , specified by formula or da. An agent strategy σag (resp., 
environment strategy σenv) enforces P if for every environment strategy σenv (resp., agent strategy σag), we have that 
play(σag, σenv) is in P . In this case, we write σag � P (resp. σenv � P ). We say that P is agent (resp., environment) realiz-
able if there is an agent (resp. environment) strategy that enforces P .

Synthesis under Environment Specifications. Typically, an agent has some knowledge of how the environment works, rep-
resented as a fully observable model of the environment, which it can exploit to enforce its task [2]. Formally, let Env and 
Task be properties over alphabet � = 2Prop , denoting the environment specification and the agent task, respectively.

Note that while the agent task Task denotes the set of desirable traces from the agent’s perspective, the environment 
specification Env denotes the set of environment strategies that describe how the environment reacts to the agent’s actions 
(no matter what the agent does) in order to enforce Env. Specifically, Env is treated as a set of traces when we reduce the 
problem of synthesis under environment specification to standard reactive synthesis.

We require a consistency condition of Env, i.e., there must exist at least one environment strategy σenv � Env. An agent 
strategy σag enforces Task under the environment specification Env, written σag �Env Task, if for all σenv �Env we have that 
play(σag, σenv) |= Task. Note that if Env = true then this just says that σag enforces Task (i.e., the environment specification 
is missing).

Definition 2 (Synthesis under environment specifications). Let Env and Task be properties over alphabet � = 2Prop , denoting 
the environment specification and the agent task, respectively. (i) The realizability under environment specifications problem
asks, given Task and Env, to decide if there exists an agent strategy enforcing Task under the environment specification Env. 
(ii) The synthesis under environment specifications problem asks, given Task and Env, to return a finite-state agent strategy 
enforcing Task under the environment specification Env, or say that none exists.

In [2] is shown that for any linear-time property,3 synthesis under environment specifications can be reduced to synthesis 
without environment specifications. Thus, in order to show that Task is realizable under Env it is sufficient to show that 
Env → Task is realizable. Moreover, to solve the synthesis problem for Task under Env, it is enough to return a strategy that 
enforces Env → Task.

In the rest of the paper, we provide a landscape of algorithms for ltl f synthesis considering reachability and safety prop-
erties for both agent tasks and environment specifications. However, these synthesis problems are complex and challenging 
due to the combination of reachability and safety properties. To tackle this issue, one possible approach is to reduce ltl f
synthesis problems to ltl synthesis problems through suitable translations, e.g., [14,16,35,34]. However, there is currently 
no methodology for performing such translations when considering combinations of reachability and safety properties.4 Ad-
ditionally, synthesis algorithms for ltl specifications are generally more challenging than those for ltl f specifications, both 
theoretically and practically [15,16,34,35]. In this paper, we show that for certain combinations, we can avoid the detour 
to ltl synthesis and keep the simplicity of ltl f synthesis. Specifically, we consider that Task and Env take the following 
forms: ∃ϕ1, ∀ϕ1, ∃ϕ1 ∧ ∀ϕ2 where the ϕi are ltl f formulas, and in addition we consider the case of no environment spec-
ification (formally, Env = true). This results in 12 combinations. Algorithms 1-7, listed in Table 1, optimally solve all the 
combinations. All these algorithms adopt some common building blocks while linking them in different ways.

Theorem 2. Let each of Task and Env be of the forms ∀ϕ , ∃ϕ , or ∃ϕ1 ∧∀ϕ2 . Solving synthesis for an agent Task under environment 
specification Env is 2EXPTIME-complete.

Proof. Upper Bound. The solutions provided in Algorithms 1-7 rely on constructing the corresponding dfas of Task and 
Env , cartesian products of a bounded number of dfas, as well as solving reachability and safety games. The corresponding
dfas of Task and Env can be constructed in 2EXPTIME in the size of Task and Env , and solving reachability and safety 
games can be accomplished in polynomial time in the size of the dfa. In summary, the upper bound for Algorithms 1-7 is 
2EXPTIME.

3 Technically, the properties should be Borel, which all our properties are.
4 In [10] is shown that the case of ltl f synthesis under safety and reachability properties can be solved by reducing to games on infinite-word automata. 

This certain case is covered in our paper, nevertheless, we provide a direct approach that only involves games on finite-word automata.
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Table 1
Task and Env considered. Note that, from 
Algorithm 7 we get the remaining cases in-
volving reachability environment specifica-
tions by suitably setting ϕ1, ϕ2, ϕ4 to true.

Env Task Alg.

true ∃ϕ Algorithm 1
true ∀ϕ Algorithm 2
true ∃ϕ1 ∧ ∀ϕ2 Algorithm 3

∀ϕ2 ∃ϕ1 Algorithm 4
∀ϕ2 ∀ϕ1 Algorithm 5
∀ϕ3 ∃ϕ1 ∧ ∀ϕ2 Algorithm 6

∃ϕ3 ∧ ∀ϕ4 ∃ϕ1 ∧ ∀ϕ2 Algorithm 7

Lower Bound. The following problem is known (see [19]) to be 2EXPTIME-hard (*): given an ltl f formula ϕ decide if there 
exists an agent strategy that enforces ∃ϕ . Thus, e.g., we get hardness for synthesis for Task = ∃ϕ1 ∧ ∀ϕ2 under Env = true
(just let ϕ2 = true). To handle the missing cases, we will show that the following problem is 2EXPTIME-hard (+): given an
ltl f formula ϕ decide if there is an agent strategy that enforces ∀ϕ .

First note that if L is in 2EXPTIME, then so is Lc , the complement of L (this is because 2EXPTIME is a deterministic 
complexity class). Thus, if L is 2EXPTIME-hard, then so is Lc (indeed, if X is in 2EXPTIME, then so is Xc , which reduces 
to L by assumption, and thus X reduces to Lc). Thus, by (*), we have that the following problem is 2EXPTIME-hard: given 
an ltl f formula ϕ decide if there does not exist an agent strategy that enforces ∃ϕ . By determinacy of the corresponding 
game [26], there does not exist an agent strategy that enforces ∃ϕ if and only if there exists an environment strategy 
that enforces ∀¬ϕ . Thus, we have that the following problem is 2EXPTIME-hard (**): given an ltl f formula ϕ , decide if 
there is an environment strategy that enforces ∀ϕ . To finish the proof, we reduce (**) to (+). Take an instance ϕ of (∗∗); 
suppose A P = X ∪ Y where the agent controls the variables in Y and the environment controls the variables in X . Define 
A P ′ = X ∪ Y ∪ Y ′ where Y ′ = {y′ : y ∈ Y } (i.e., Y ′ is a copy of Y , call its elements ‘primed’), and let the agent control the 
variables in X and the environment control the variables in Y . Define

ϕ′ = (•false) ∨ ((�∧y∈Y (y′ →•y)) → (◦ϕ))

It is not hard to see that the environment can enforce ∀ϕ iff the agent can enforce ∀ϕ′ . Intuitively, this is because the new 
objective ϕ′ checks if ϕ holds from the second step onwards as long as the environment correctly copies and unprimes its 
moves from each previous time-step. �
4. Building blocks for the algorithms

In this section, we describe the building blocks we will use to devise the algorithms for the problem described in the 
previous section.

DAs for ∃ϕ and ∀ϕ . Here, we show how to build the da whose language is exactly the infinite traces satisfying ∃ϕ (resp. 
∀ϕ). The first step is to convert the ltl f formula ϕ into a dfa Mϕ = (�, Q , ι, δ, F ) that accepts exactly the finite traces that 
satisfy ϕ as in Theorem 1. Then, to obtain a da A∃ϕ for ∃ϕ define A∃ϕ = (2X∪Y , Q , ι, δ, reach(F )). It is immediate that 
L(∃ϕ) =L(A∃ϕ). To obtain a da A∀ϕ for ∀ϕ define A∀ϕ = (2X∪Y , Q , ι, δ, safe(F ∪ {ι})).

The reason ι is considered a part of the safe set is that the dfa Mϕ does not accept the empty string since the semantics 
of ltl f precludes this. It is immediate that L(∀ϕ) = L(A∀ϕ). For ψ ∈ {∃ϕ, ∀ϕ}, we let ConvertDA(ψ) denote the resulting
da.

Lemma 1. Let ϕ be an ltl f formula, and let ψ ∈ {∃ϕ, ∀ϕ}. Then the languages L(ψ) and L(ConvertDA(ψ)) are equal.

For formulas of the form ∀ϕ we will suppress the initial state in the objective and so ConvertDA(∀ϕ) will be written 
(D∀ϕ, safe(T )), i.e., T contains ι.

Games over da. The synthesis problems we consider in this paper are solved by reducing them to two-player games. We 
will represent games by das A = (D, α) where D is a transition system, sometimes called an ‘arena’, and α is an acceptance 
condition, sometimes called a ‘winning condition’. The game is played between an agent (controlling Y) and environment
(controlling X ). Intuitively, a position in the game is a state q ∈ Q . The initial position is ι. From each position, first the 
agent moves by setting Y ∈ 2Y , then the environment moves by setting X ∈ 2X , and the next position is updated to the 
state δ(q, Y ∪ X). This interaction results in an infinite run in D, and the agent is declared the winner if the run is in α
(otherwise, the environment is declared the winner).
5
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Definition 3. An agent strategy σag is said to win the game (D, α) if for every trace π that follows σag , the run in D of π is 
in α.

In other words, σag wins the game if every trace π that follows σag is in L(D, α). For q ∈ Q , let Dq denote the transition 
system D with initial state q, i.e., Dq = (�, Q , q, δ). We say that q is a winning state for the agent if there is an agent strategy 
that wins the game (Dq, α); in this case, the strategy is said to win starting from q.

In the simplest settings, we represent agent strategies as functions of the form fag : Q → 2Y , called positional strategies. 
An agent positional strategy fag induces an agent strategy, σag = Strategy(Dq, fag), as follows: define σag(ε) = fag(q), and 
for every finite trace π let ρ be the run of Dq on π (i.e., starting in state q), and define σag(π) = fag(q′) where q′ is 
the last state in ρ (i.e., q′ = ρ|π |). In more complex settings, e.g., in the Algorithm 7, we will construct functions of the 
form fag : Q · (2Y · 2X · Q )∗ → 2Y , which similarly induce agent strategies Strategy(Dq, fag) where for every finite trace 
π = Y0 ∪ X0, · · · , Yk ∪ Xk , and run q0, · · · , qk+1 of π in Dq , define σag(π) = fag(q0, Y0 ∪ X0, q1, Y1 ∪ X1, · · · , qk+1). Below 
the agent strategy σag = Strategy(Dq, fag) returned by the various algorithms will be finite state, in the sense that it is 
representable as a transducer. For simplicity, with a little abuse of notation, we will return directly σag , instead of its finite 
representation as a transducer.

Dual definitions can be given for the environment, with the only notable difference being that fenv : Q × 2X → 2Y since 
the moves of the environment depend also on the last move of the agent (since the agent moves first).

In this paper, besides the terms ‘environment’ and ‘agent’, we also consider the terms ‘protagonist’ and ‘antagonist’. If 
the da (D, α) is a specification for the agent, then the agent is called the protagonist and the environment is called the 
antagonist. On the other hand, if the da (D, α) is a specification for the environment, then the environment is called the 
protagonist, and the agent is called the antagonist. Intuitively, the protagonist is trying to make sure that the generated 
traces are in L(D, α), and the antagonist to make sure that the generated traces are not in L(D, α). Define Winp (resp. 
Wina) as the set of states q ∈ Q such that q is a protagonist (resp. antagonist) winning state. This set is called protagonist’s 
(resp. antagonist) winning region. In this paper, all our games (including reachability and safety games) are determined. 
Therefore:

Lemma 2. For every state q ∈ Q , it holds that q ∈ Winp iff q /∈ Wina.

The problem of solving a game (D, α) for the protagonist is to compute the winning region Winp and a function f p such 
that Strategy(D, f p) wins from every state in Winp .5 To do this, we will also sometimes compute a winning strategy for 
the antagonist (that wins starting in its winning region). We now show how to solve reachability and safety games.

Preimage. In order to compute the set of states from which the agent can force a visit to a given set S in one step, 
we need to define the controllable/uncontrollable preimage, which is the main step for solving reachability and safety games. 
We define the controllable preimage Preag(E) of a set E ⊆ Q as the set of states, from which there exists an agent action 
Y ∈ 2Y such that for all environment response X ∈ 2X , the corresponding successor state δ(q, X ∪ Y ) is in E . Analogously, 
Prea(E) denotes the set of states, from which for all Y ∈ 2Y , there exists X ∈ 2X such that δ(q, X ∪ Y ) is in E . Formally,

Preag(E) ={q ∈ Q |∃Y ∀X .δ(q, X ∪ Y ) ∈ E}
Preenv(E) ={q ∈ Q |∀Y ∃X .δ(q, X ∪ Y ) ∈ E}

Reachability Games. Given a game arena D = (�, Q , ι, δ) and a reachability condition (reach, T ), Solveag(D, reach, T )

solves the reachability game over D for the agent by computing the least fixed-point as follows.

Z0(D) = T

Zi+1(D) = Zi(D) ∪ Preag(Zi(D))

The computation reaches a fixed point when Zi = Zi+1, hence Z = Zi+1 collects all the winning states for the protago-
nist. If ι ∈ Z , we compute a positional strategy as follows. Define fag : Q → 2Y such that for every q ∈Z \Z0, if q is added 
for the first time in the (i + 1)-th iteration of the fixpoint computation (i.e., q ∈Zi+1\Zi ), define fag(q) = Y , where Y is any 
element such that ∀X ∈ 2X .δ(q, Y ∪ X) ∈ Zi (If there is more than one such Y , arbitrarily choose one); if q ∈ Z0 or q 
∈ Z , 
define fag(q) arbitrarily.

Solving the reachability game considering the environment as the protagonist can be defined analogously, in particular 
replacing Preag(Zi(D)) by Preenv(Zi(D)). In this case, the positional strategy fenv : Q × 2Y → 2X is such that for every 
q ∈ Zi+1\Zi and Y ∈ 2Y , fenv(q, Y ) = X , where X holds that δ(q, Y ∪ X) ∈ Zi (Similarly, if there is more than one such X , 
arbitrarily choose one). Moreover, if q ∈Z0 or q 
∈Z , fenv(q, Y ) = X , for Y ∈ 2Y and X ∈ 2X .

Safety Games. Given a game arena D = (�, Q , ι, δ) and a safety condition (safe, T ), Solveag(D, safe, T ) solves the safety 
game over D, considering the agent as the protagonist, by computing the greatest fixed point as follows:

5 Since strategies can depend on the history, and thus on the starting state in particular, there is always a strategy that wins from every state in Winp .
6
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Z0(D) = T

Zi+1(D) = Zi(D) ∩ Preag(Zi(D))

Solving the safety game considering the environment as the protagonist Solveenv can be defined analogously by replacing 
Preag(Zi(A)) with Preenv(Zi(A)).

The computation reaches fixpoint when Zi = Zi+1, hence Z = Zi+1 collects all the winning states for the protagonist. 
If ι ∈ Z , we compute a positional strategy as follows. Considering the agent as the protagonist, we have fag : Q → 2Y such 
that for every q ∈Z , fag(q) = Y , where Y holds that ∀X ∈ 2X .δ(q, Y ∪ X) ∈Z (If there are more than one such Y , arbitrarily 
choose one). For the case of the environment being the protagonist, the positional strategy fenv : Q × 2Y → 2X is such 
that for every q ∈ Z and Y ∈ 2Y , fenv(q, Y ) = X , where X holds that δ(q, Y ∪ X) ∈ Z (If there are more than one such X , 
arbitrarily choose one).

Lemma 3. [21] The procedure Solvep(D, α), where α is a reachability/safety winning condition, returns the winning region W p and 
a function f p such that the protagonist strategy Strategy( f p) wins the game (D, α).

Remark 2. Given a transition system D with state set Q , and a set T ⊆ Q , consider the safety da A = (D, safe(T )). Let 
Winp be the winning region of the protagonist. Consider the restricted transition system D′ := Restrict(D, Winp). Note that 
A′ = (D′, safe(T )) is a well-defined da (i.e., reaching the sink violates the safety condition). A strategy for the protagonist 
is winning in A iff it is winning in A′ . Intuitively, this is because winning strategies for a safety condition cannot leave the 
winning region, and this is the only requirement for them to be winning. Thus, intuitively, the restriction D′ represents all 
the strategies that enforce L(D, safe, T ) [8].

Product of Transition Systems. Let Di (1 ≤ i ≤ k) be transition systems over alphabet �. Their product, denoted 
Product(D1, · · · , Dk), is the transition system D = (�, Q , ι, δ) defined as follows: (i) The alphabet is �. (ii) The state 
set is Q = Q 1 × · · · × Q k . (iii) The initial state is ι = (ι1, · · · , ιk). (iv) The transition function δ maps a state (q1, · · · , qk)

on input z ∈ � to the state (q′
1, · · · , q′

k) where q′
i = δi(qi, z) (1 ≤ i ≤ k). Also, the lift of a set Fi ⊆ Q i to D is the set 

{(q1, · · · , qk) : qi ∈ Fi} ⊆ Q .

Lemma 4. A trace in D = Product(D1, · · · , Dk) follows the lift of a strategy fag/ fenv on Di to D if and only if the trace follows the 
strategy fag/ fenv on D, for some i ∈ {1, . . . , k}.

Restriction of a transition system. The restriction of a transition system, defined as the procedure Restriction(D, S), re-
stricts D = (�, Q , ι, δ) to S ⊆ Q is the transition system D′ = (�, S ∪ {sink}, ι, δ′, α′) where for all z ∈ �, δ′(sink, z) = sink, 
δ′(q, z) = δ(q, z) if δ(q, z) ∈ S , and δ′(q, z) = sink otherwise. Intuitively, D′ redirect all transitions from S that leave S to a 
fresh sink state. We may denote the sink by ⊥.6

5. Reachability Tasks, No Env Spec

Algorithm 1 solves the realizability and synthesis for the case of reachability tasks and no environment specification. 
Formally, Task is of the form ∃ϕ where ϕ is an ltl f formula, and Env = true. This problem is equivalent to solving syn-
thesis for ltl f specifications solved in [18]. We rephrase the problem using our notation, integrating it into our solution 
framework.

Algorithm 1 Env = true, Task = ∃ϕ .
Input: ltl f formula ϕ
Output: agent strategy σag that enforces ∃ϕ

1: A = ConvertDA(∃ϕ), say A = (D∃ϕ, reach(T ))

2: (W , fag) = Solveag (A)

3: if ι 
∈ W return “Unrealisable" endif
4: return σag = Strategy (D∃ϕ, fag)

Theorem 3. Algorithm 1 solves the synthesis under environment specifications problem with Env = true, Task = ∃ϕ , where ϕ is an
ltl f formula.

6 We remark that (i) when we restrict the transition system of a da (D, α) we may need to revise the winning-condition α to express whether reaching 
sink is good for the protagonist or not (although many times it is not, e.g., when restricting to the winning-region for a safety condition); (ii) in one case, 
in Algorithm 7, we will add two sink states.
7
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Proof. By Lemma 1, we have (*): L(D, reach(T )) = L(∃ϕ).
Suppose ι ∈ W . We must show that the agent strategy σag = Strategy( fag) returned by the algorithm enforces ∃ϕ . So, let 

π be a trace that follows σag (we will show that π |= ∃ϕ). By Lemma 3, σag wins the game (D, reach(T )). By Definition 3, 
this means that π ∈ L(D, reach(T )). By (*), π ∈ L(∃ϕ).

Conversely, suppose ι 
∈ W . The algorithm returns “unrealisable”, and we must show that there is no agent strategy that 
enforces ∃ϕ . Suppose towards a contradiction that there were, call it σ . By determinacy (Lemma 2), there is an environment 
strategy σenv that wins the game (D, reach(T )) for the antagonist. By definition this means that for every trace π that 
follows σenv , the run of π on D satisfies that πi 
∈ T for every i, and thus π 
∈ L(D, reach(T )), and so by (*) π 
|= ∃ϕ . But if 
σ enforces ∃ϕ then π = play(σ , σenv) |= ∃ϕ , a contradiction. �
6. Safety Tasks, No Env Spec

Algorithm 2 handles the case Task is of the form ∀ϕ where ϕ is an ltl f formula, and Env = true. This problem can be 
approached using the result from [19] solving the reachability game over the corresponding dfa of ¬ϕ for the environment. 
We present a direct solution to the problem using our framework.

Algorithm 2 Env = true, Task = ∀ϕ .
Input: ltl f formula ϕ
Output: agent strategy σag that enforces ∀ϕ

1: A = ConvertDA(∀ϕ), say A = (D∀ϕ, safe(T ))

2: (S, fag) = Solveag(A)

3: if ι 
∈ S return “Unrealisable" endif
4: return σag = Strategy(D∀ϕ, fag)

Theorem 4. Algorithm 2 solves the synthesis under environment specifications problem with Env = true, Task = ∀ϕ , where ϕ is an
ltl f formula.

Proof. By Lemma 1, we have (*): L(D, safe(T )) = L(∀ϕ).
Suppose ι ∈ W . We must show that the agent strategy σag = Strategy( fag) returned by the algorithm enforces ∀ϕ . So, 

let π be a trace that follows σag (we will show that π |= ∀ϕ). By Lemma 3, σag wins the game (D, safe(T )). By Definition 3, 
this means that π ∈ L(D, reach(T )). By (*), π ∈ L(∃ϕ).

Conversely, suppose ι 
∈ W . The algorithm returns “unrealisable”, and we must show that there is no agent strategy that 
enforces ∀ϕ . Suppose towards a contradiction that there were, call it σ . By determinacy (Lemma 2), there is an environment 
strategy σenv that wins the game (D, reach(T )) for the antagonist. By definition this means that for every trace π that 
follows σenv , the run of π on D satisfies that πi 
∈ T for some i, and thus π 
∈ L(D, safe(T )), and so by (*) π 
|= ∀ϕ . But if σ
enforces ∀ϕ then π = play(σ , σenv) |= ∀ϕ , a contradiction. �
7. Reachability and Safety Tasks, No Env Spec

Algorithm 3 handles the case that Task is of the form ∃ϕ1 ∧ ∀ϕ2 where ϕ1 and ϕ2 are ltl f formulas, and Env = true. 
Intuitively, the algorithm proceeds as follows. First, it computes the corresponding da for ∀ϕ2 and solves the safety game 
over it. The resulting winning area represents the set of states from which the agent has a strategy to realize its safety task. 
Then, it restricts the game area to the agent’s winning area. Finally, it solves the reachability game over the game product 
of the corresponding da of ∃ϕ1 and the remaining part of the da for ∀ϕ2.

Algorithm 3 Env = true, Task = ∃ϕ1 ∧ ∀ϕ2.
Input: ltl f formulas ϕ1 and ϕ2

Output: agent strategy σag that realizes ∃ϕ1 and ∀ϕ2

1: A1 = ConvertDA(∃ϕ1), say A1 = (D∃ϕ1 , reach(T1))

2: A2 = ConvertDA(∀ϕ2), say A2 = (D∀ϕ2 , safe(T2))

3: (S2, fag) = Solveag(A2)

4: D′∀ϕ2
= Restrict(D∀ϕ2 , S2), say the sink state is ⊥2

5: D = Product(D∃ϕ1 , D′∀ϕ2
)

6: (R, gag) = Solveag (D, reach(T1 × S2))

7: if ι 
∈ R return “Unrealisable" endif
8: hag = Combine(D, R, gag, fag)

9: return σag = Strategy(D, hag)

Lemma 5. [7] Let A = (D, safe(T )) be a safety game and S the set of winning states for the agent in A. Let B = Restricted(A, S) be 
the restriction of A on S. Then, every winning strategy in A is a winning strategy in B, and viceversa.
8
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In order to obtain the final strategy for the agent we need to refine the strategy fag to deal with the sink state, call it 
⊥2, and combine it with gag . Given fag computed in Line 3, define f ′′

ag : Q 1 × (S2 ∪{⊥2}) → 2Y over D by f ′′
ag(q, s) = fag(s)

if s ∈ S2, and f ′′
ag(q, s) = Y (for some arbitrary Y ) otherwise. In words, f ′′

ag ensures the second component stays in S2 (and 
thus in T2). Recall that gag over D ensures that T1 is reached in the first co-ordinate, while at the same time maintaining 
the second co-ordinate is in S2. Finally, let Combine(D, R, gag, fag) denote the final strategy hag : Q 1 × (S2 ∪ {⊥2}) → 2Y

defined as follows: hag((q, s)) = gag((q, s)) if (q, s) ∈ R , and hag((q, s)) = f ′′
ag((q, s)) otherwise. Intuitively, the agent following 

hag will achieve the reachability goal while staying safe, whenever this is possible, and stays safe otherwise.

Theorem 5. Algorithm 3 solves synthesis under environment specifications problem with Env = true, Task = ∃ϕ1 ∧∀ϕ2 , where the ϕi

are ltl f formulas.

Proof. By Lemma 1, we have: L(D, reach(T1)) = L(∃ϕ1) and L(D, safe(T2)) = L(∀ϕ2).
We must show that the agent strategy σag = Strategy(D, hag) returned by the algorithm enforces ∃ϕ1 ∧ ∀ϕ2. Then, 

let a trace π that follows σag . We must show that π satisfies ∃ϕ1 ∧ ∃ϕ2. First, we have that, by (*), π |= ∃ϕ1 iff π ∈
L(D∃ϕ1 , reach(T1)) iff, by Lemma 4, π ∈ L(D∃ϕ1 × D′∀ϕ2

, reach(T1 × S2)). Note that, by construction, π follows gag until 
a state q ∈ T1 × S2 is reached. Moreover, no sink state is visited. We need to show that π |= ∀ϕ2. Since σag is winning 
in (D∃ϕ1 × D∀ϕ2 , reach(T1 × S2)), we have that, after reaching q ∈ T1 × S2, π follows f ′′

ag and the projection of q on the 
components from Q 2 is in S2. Therefore, π ∈L(D∃ϕ1 ×D∀ϕ2 , safe(T1 × S2)). We know that π |= ∀ϕ2 by Lemma 1, π |= ∀ϕ2
iff π ∈ L(D∀ϕ2 , safe, T2) iff, by Lemma 5, π ∈ L(D′∀ϕ2

, safe(S2)) iff, by Lemma 4, π ∈ L(D∃ϕ1 × D′∀ϕ2
, safe(T1 × S2)). This 

concludes the proof. �
8. Reachability Tasks, Safety Env Specs

Algorithm 4 handles the case that Task is of the form ∃ϕ1 and Env = ∀ϕ2, where ϕ1, ϕ2 are ltl f formulas. A problem 
encompassing this case was solved in [15], which, more specifically, considers only finite safety of the agent, i.e., the agent 
is required to stay safe until some point (the bound is related to an additional agent reachability task), and thus can actually 
be considered as reachability. Here, we give the direct solution to this problem.

Intuitively, the algorithm first computes all the environment strategies that can enforce Env = ∀ϕ2 [8], represented as a 
restriction of the da for ∀ϕ2, as in the previous section. Then, based on restricting the game arena on these environment 
strategies, the algorithm solves the reachability game over the product of the corresponding da of ∃ϕ1 and the restricted 
part of the da for ∀ϕ2.

Algorithm 4 Env = ∀ϕ2, Task = ∃ϕ1.
Input: ltl f formulas ϕ1, ϕ2

Output: agent strategy σag that enforces ∃ϕ1 under ∀ϕ2

1: A1 = ConvertDA(∃ϕ1), say A1 = (D∃ϕ1 , reach(T1))

2: A2 = ConvertDA(∀ϕ2), say A2 = (D∀ϕ2 , safe(T2))

3: (S2, fenv) = Solveenv(A2)

4: D′
2 = Restrict(D2, S2), say the sink state is ⊥2

5: D = Product(D1, D′
2)

6: (R, fag) = Solveag(D, reach((T1 × S2) ∪ (Q 1 × {⊥2}))
7: if ι 
∈ R return “Unrealisable" endif
8: return σag = Strategy(D, fag)

Theorem 6. Algorithm 4 solves the synthesis under environment specifications problem with Env = ∀ϕ2, Task = ∃ϕ1 , where the ϕi

are ltl f formulas.

Proof. We show that σag returned by Algorithm 4 is winning in (D, reach(T1 × S2) ∪ (Q 1 × {⊥})) iff σag �Env Task.
We need to show that for every σenv � Env, π = play(σag, σenv) |= Task. By Lemma 1, the language of the da A1 =

(D1, reach(T1)) in Line 1 is L(∃ϕ1) and the language of the da A2 = (D2, safe(T2)) in Line 2 is L(∀ϕ2).
Take an environment strategy σenv � Env. We have that, by Lemma 1, π |= Env iff π ∈ L(D2, safe(T2)), by Lemma 5, iff 

π ∈L(D′
2, safe(S2)), by Lemma 4, iff π ∈L(D1 ×D′

2, safe(T1 × S2)).
Now, we need to show that π |= Task. σag is winning in (D, reach(T1 × S2) ∪ (Q 1 × {⊥})) then, by Lemma 2, π ∈

L(D, reach(T1 × S2) ∪ (Q 1 × {⊥})). However, π |= Env, then we need to show that π ∈ L(D, reach(T1 × S2)) and π 
∈
L(D, reach(Q 1 × {⊥})). We have that, π |= Task iff π ∈ L(D1, reach(T1)), by Lemma 1, iff π ∈L(D1 ×D′

2, reach(T1 × S2)), 
by Lemma 4. Then, π |= Task. Moreover, we have that if π ∈L(D′

2, safe(S2)) then π 
∈L(D′
2, reach({⊥})), and by Lemma 4, 

π 
∈L(D1 × D ′ , reach(Q 1 × {⊥})). This concludes the proof. �
2
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9. Safety Tasks, Safety Env Specs

Algorithm 5 handles the case that Task is of the form ∀ϕ1 and Env = ∀ϕ2, where ϕ1, ϕ2 are ltl f formulas. Intuitively, 
the algorithm proceeds as follows. First, it computes the corresponding da for ∀ϕ2 and solves the safety game for the 
environment over it. The resulting winning area represents the set of states, from which the environment has a strategy to 
enforce the environment specification L(∀ϕ2). It is worth noting that restricting the da to considering only such winning 
area, in fact, captures all the environment strategies that enforce L(∀ϕ2) [8]. Based on the restriction, the algorithm solves 
the safety game over the product of the corresponding da of ∀ϕ1 and the remaining part of the da for ∀ϕ2.

Algorithm 5 Env = ∀ϕ2, Task = ∀ϕ1.
Input: ltl f formulas ϕ1, ϕ2

Output: agent strategy σag that enforces ∀ϕ1 under ∀ϕ2

1: A1 = ConvertDA(∀ϕ1), say A1 = (D1, safe(T1))

2: A2 = ConvertDA(∀ϕ2), say A2 = (D2, safe(T2))

3: (S2, fenv) = Solveenv(A2)

4: D′
2 = Restrict(D2, S2), call the sink ⊥2

5: D = Product(D1, D′
2)

6: (S, fag) = Solveag(D, safe((T1 × S2) ∪ (Q 1 × {⊥2})))
7: if ι 
∈ S return “Unrealisable" endif
8: return σag = Strategy(D, fag)

Theorem 7. Algorithm 5 solves the synthesis under environment specifications problem with Env = ∀ϕ2, Task = ∀ϕ1 , where the ϕi
are ltl f formulas.

Proof. By Lemma 1, the language of the da A1 = (D1, safe(T1)) in Line 1 is L(∀ϕ1) and the language of the da

A2 = (D2, safe(T2)) in Line 2 is L(∀ϕ2). Finding all the environment strategies that enforce L(A2) through safety games 
considering the environment as the protagonist is done in Lines 3&4 Remark 2. Restricting all the environment strategies to 
considering only those that enforce L(A2) is done in Line 5 using Lemma 4. By Lemma 3 it is enough to find check ι is a 
winning state, and in this case to compute a winning strategy fag and return Strategy( fag). But finding the winning region 
and a winning strategy (for every state in the winning region) for safety games is done in Line 6. �
10. Reachability and Safety Tasks, Safety Env Specs

Algorithm 6 handles the case that Task is of the form ∃ϕ1 ∧ ∀ϕ2 and Env = ∀ϕ3, where ϕ1, ϕ2, ϕ3 are ltl f formulas. As 
mentioned in the previous section, a similar problem of this case that considers only finite safety of the agent was solved 
in [15] by reducing Task to reachability properties only. Instead, we provide here an approach to the synthesis problem 
considering infinite agent safety.

Intuitively, the algorithm proceeds as follows. Following the algorithms presented in the previous sections, it first com-
putes all the environment strategies that can enforce Env = ϕ3, represented as a restriction of the da for ∀ϕ3. Then, based 
on restricting the game arena on these environment strategies, the algorithm solves the safety game for the agent over 
the product of the corresponding da of ∀ϕ2 and the restricted part of the da for ∀ϕ3. This step is able to capture all the 
agent strategies that can realize ∀ϕ2 under environment specification ∀ϕ3. Next, we represent all these agent strategies by 
restricting the product automaton to considering only the computed agent winning states, thus obtaining D′ . Finally, the 
algorithm solves the reachability game over the product of the corresponding da of ∃ϕ1 and D′ . In order to abstract the 
final strategy for the agent, it is necessary to combine the two agent strategies: one is from the safety game for enforcing 
∀ϕ2 under ∀ϕ3, the other one is from the final reachability game for enforcing ∃ϕ1 while not violating ∀ϕ2 under ∀ϕ3.

Theorem 8. Algorithm 6 solves synthesis under environment specifications problem with Env = ∀ϕ3, Task = ∃ϕ1 ∧∀ϕ2 , where the ϕi
are ltl f formulas.

Proof. By Lemma 1, the language of the da A1 = (D1, reach(T1)) in Line 1 is L(∃ϕ1), the language of the da A2 =
(D2, safe, T2) in Line 2 is L(∀ϕ2), and the language of the da A3 = (D3, safe(T3)) in Line 1 is L(∀ϕ3). Finding all the 
environment strategies that enforce L(A3) through safety games considering the environment as the protagonist is done 
in Lines 4&5 using Remark 2. Restricting all the environment strategies to considering only those that enforce L(A3) is 
done in Line 6 using Lemma 4. Finding all the agent strategies that realize A2 under environment specification A3 through 
safety games is done in Lines 7&8 using Remark 2. Note that this step also returns one agent strategy f s

ag . Restricting all 
the environment strategies to considering only those that enforce L(A3) and agent strategies to considering only those that 
realize A2 under environment specification A3 is done in Line 9 using Lemma 4. Finding the winning region and a winning 
strategy f r

ag (for every state in the winning region) for reachability games is done in Line 10. By Lemma 3 it is enough to 
check ι is a winning state, and in this case to compute a winning strategy fag by combining strategies f s

ag and f r
ag and 
10
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Algorithm 6 Env = ∀ϕ3, Task = ∃ϕ1 ∧ ∀ϕ2.
Input: ltl f formulas ϕ1, ϕ2, ϕ3

Output: agent strategy σag that enforces ∃ϕ1 ∧ ∀ϕ2 under ∀ϕ3

1: A1 = ConvertDA(∃ϕ1), say A1 = (D1, reach(T1))

2: A2 = ConvertDA(∀ϕ2), say A2 = (D2, safe(T2))

3: A3 = ConvertDA(∀ϕ3), say A3 = (D3, safe(T3))

4: (S3, fenv) = Solveenv(A3)

5: D′
3 = Restrict(D3, S3), call the sink ⊥3

6: D = Product(D2, D′
3)

7: (S2, f s
ag) = Solveag(D, safe((T2 × S3) ∪ (Q 2 × {⊥3})))

8: D′ = Restrict(D, S2), call the sink ⊥2

9: C = Product(D1, D′)
10: Let f s′

ag : Q 1 × (S2 ∪ {⊥2}) → 2Y map (q1, q2) to f s
ag(q2) if q2 ∈ S2, and is arbitrary otherwise. { f s′

ag lifts f s
ag to C}

11: (R, f r
ag) = Solveag(C, reach((T1 × S2 × S3) ∪ (Q 1 × (η(S2) ∪ {⊥2}) × {⊥3}))

{ η : Q 2 × Q 3 → Q 2 is the projection onto Q 2, i.e., (q2, q3) �→ q2}
12: if ι 
∈ R return “Unrealisable" endif
13: Let fag : Q 1 × (S2 ∪ {⊥2}) → 2Y on C map q to f r

ag(q) if q ∈ R , and to f s′
ag(q) otherwise. { fag does f r

ag on R , and f s′
ag otherwise.}

14: return σag = Strategy(C, fag)

return Strategy(C, fag). The correctness of Combine(C, S, f s
ag, R, f r

ag) is shown by construction: let π be a trace that starts 
at ι and follows fag . Since ι ∈ R, π ∈ L(A3) holds. Moreover, note that for q ∈ R , the projection of q on the components 
from Q 2 is in S , hence π ∈L(A2). �
11. Reachability and Safety Tasks and Env Specs

Algorithm 7 handles the case that Env = ∀ϕ1 ∧ ∃ϕ2 and Task = ∃ϕ3 ∧ ∀ϕ4 by solving synthesis for the formula Env →
Task [2], i.e., for (∃¬ϕ1 ∨ ∀¬ϕ2) ∨ (∃ϕ3 ∧ ∀ϕ4). Note that, from the general case, we get all cases involving reachability 
environment specifications by suitably setting ϕ1, ϕ2 or ϕ4 to true. We remark that for the case ϕ4 = true in which the 
safety and reachability specifications are presented in the safety-fragment and co-safety fragment of ltl is solved in [11].

We first define two constructions that will be used in the algorithm. Given a transition system D = (�, Q , ι, δ) and 
a set of states T ⊆ Q , define Flagged(D, T ) to be the transition system that, intuitively, records whether a state in T
has been seen so far. Formally, Flagged(D, T ) returns the transition system D f = (�, Q f , ι f , δ f ) defined as follows: 1. 
Q f = Q ×{yes, no}. 2. ι f = (ι, b), where b = no if ι 
∈ T , and b = yes if ι ∈ T . 3. δ f ((q, b), z) = (q′, b′) if δ(q, z) = q′ and one of 
the following conditions holds: (i) b = b′ = yes, (ii) b = b′ = no, q′ 
∈ T , (iii) b = no, b′ = yes, q′ ∈ T . Given a transition system 
D = (�, Q , ι, δ) and disjoint subsets V 0, V 1 of Q , define RestrictionWithSinks(D, V 0, V 1) to be the transition system on 
state set V 0 that, intuitively, behaves like D on V 0, transitions from V 0 to V 1 are redirected to a new sink state ⊥, and 
transitions from V 0 to Q \ (V 0 ∪ V 1) are redirected to a new sink state �. Formally, RestrictionWithSinks(D, V 0, V 1) is the 
transition system (�, Q̂ , ̂ι, ̂δ) defined as follows: 1. Q̂ = V 0 ∪ {�, ⊥}. 2. ι̂ = ι. 3. δ̂(q, z) = δ(q, z) if δ(q, z) ∈ V 0. Otherwise, 
define δ̂(q, z) = ⊥ if δ(q, z) ∈ V 1, and δ̂(q, z) = � if δ(q, z) ∈ Q \ (V 0 ∪ V 1).

Algorithm 7 Env = ∀ϕ1 ∧ ∃ϕ2, Task = ∃ϕ3 ∧ ∀ϕ4.
Input: ltl f formulas ϕ1, ϕ2, ϕ3, ϕ4

Output: agent strategy σag that enforces ∃ϕ3 ∧ ∀ϕ4 under ∀ϕ1 ∧ ∃ϕ2

1: A1 = ConvertDA(∃¬ϕ1), say A1 = (D1, reach(B1))

2: A2 = ConvertDA(∀¬ϕ2), say A2 = (D2, safe(B2))

3: A3 = ConvertDA(∃ϕ3), say A3 = (D3, reach(B3))

4: A4 = ConvertDA(∀ϕ4), say A4 = (D4, safe(B4))

5: Dp = Product(D1, D2, D3, D4)

6: Let Q p be the state set of Dp , and Ti the lift of Bi to Q p (for i ≤ 4)
7: (R1, f 1

ag) = Solveag(Dp, reach(T1))

8: D′
p = Restrict(Dp, Q \ R1)

9: D f = Flagged(D′
p, T3)

10: (S2, f 2
ag) = Solveag(D f , safe(T2))

11: (S4, f 4
ag) = Solveag(D f , safe(T4))

12: (R3, f 3
ag) = Solveag(Restrict(D f , S4), reach(T3))

13: V 0 = (Q f \ (S2 ∪ S4)) ∪ ((S4 ∩ T2) \ (R3 ∪ S2))

14: V 1 is all states in (S4 \ T2) \ (R3 ∪ S2) whose flag is set to no
15: D̂ = RestrictionWithSinks(D f , V 0, V 1)

16: (E, f e
ag) = Solveag(D̂, safe((T2 ∩ T4) ∪ {�}))

17: Wag = S2 ∪ R3 ∪ E {Note that Wag ⊆ Q f ∪ {�}}
18: if ι 
∈ Wag return “Unrealisable" endif
19: fag = Combine(D f , f 1

ag, f 2
ag, f 3

ag, f 4
ag, R1, S2, R3, E) {See the definition below.}

20: return σag = Strategy(D f , fag)
11
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Intuitively, at Line 10, S2 will form part of the agent’s winning region since from here safe(T2) can be ensured. At Line 
12, R3 will also form part of the agent’s winning region since from R3 in D′ reach(T3) ∩ safe(T4) can be ensured. In the 
following steps, we identify remaining ways that the agent can win, intuitively by maintaining T2 ∩ T4 either forever (in 
which case safe(T2) is ensured), or before the state leaves T2 ∩ T4 either (i) it is in S2 or R3 (in which case we proceed as 
before), or otherwise (ii) it is in S4 (but not in S2 nor in R3) and has already seen T3 (in which case reach(T3) ∩ safe(T4)

can be ensured).
At the end of the algorithm, we combine the four strategies f 1

ag, f 2
ag, f 3

ag and f 4
ag through procedure Combine(D f , 

f 1
ag, f 2

ag, f 3
ag, f 4

ag, R1, S2, R3, E) to obtain the final strategy fag : (Q f )+ → 2Y as follows. For every history h ∈ (Q f )+ , if 
the history ever enters R1 then follow f 1

ag , ensuring reach(T1), otherwise, writing q for the start state of h: 1. if q ∈ S2

then use f 2
ag , which ensures safe(T2); 2. if q ∈ R3 then use f 3

ag until T3 is reached and thereafter use f 4
ag , which ensures 

safe(T4) ∩ reach(T3); 3. if q ∈ E then use f e
ag while the states are in E , ensuring safe(T2) if play stays in E; if ever, let q′

be the first state in the history that is not in E; by construction, this corresponds to � in D f and thus is (i) in S2 or (ii) 
in R3, and so proceed as before, or else (iii) in (S4 \ T2) \ (R3 ∪ S2) (which can be simplified to S4 \ (R3 ∪ T2)) with flag 
value yes in which case switch to strategy f 4

ag . Intuitively, case (i) ensures safe(T2), and cases (ii) and (iii) each ensure 
safe(T4) ∩ reach(T3); 4. and if none of these, then make an arbitrary move. Note that in spite of being a function of the 
whole history, fag can be represented by a finite-state transducer. So in the Algorithm 7, as before, with a little abuse of 
notation we write directly σag = Strategy(D f , fag), to mean that we return its representation as a transducer.

Lemma 6. To solve any game with objective (� T ) ∨ β (for β ⊆ Q ω) proceed as follows:

1. Let (M, mag) = Solve(D, reach(T )).
2. Let D′ be the restriction of D to Q \ M (this introduces a new sink state).
3. Let (N, nag) = Solve(D′, β).
4. Let W = M ∪ N.
5. Define fag as follows: if the history ever enters M follow mag; if the starting state is in N, follow nag; otherwise make an arbitrary 

move.

Proof. To see that this is correct, let ρ be a path in D that starts in q ∈ W and is consistent with fag . Note that if ρi ∈ M
for some i, then ρ≥i is consistent with mag and thus is in (reach, T ), and thus ρ ∈ reach(T ). In particular, if q ∈ M then 
ρ ∈ reach(T ). If q ∈ N then ρi ∈ Q \ M for all i, and so it is consistent with nag , and so satisfies β . Thus we have shown that 
fag enforces the objective from W .

We must now show that the opponent enforces the negation of the objective, i.e., (�¬T ) ∧ ¬β , from Q \ W . For this, 
let fenv be the opponent’s strategy that enforces ¬ϕ in D′ , i.e., every play in D′ consistent with fenv that starts in Q \ W
satisfies ¬ϕ . Let ρ be a path in D that starts in q ∈ Q \ W and is consistent with fenv . Note that the play stays in D′ since 
Q \ M is a trap for the player; thus ρ satisfies �¬T (since T ⊆ M) and ¬ϕ , as required. �
Theorem 9. Algorithm 7 solves the synthesis under environment specifications problem with Task = ∃ϕ3 ∧∀ϕ4 and Env = ∀ϕ1 ∧∃ϕ2 .

Proof. By Lemma 6, it is enough to show that the algorithm correctly solves the game produced at the end of Line 8: the 
transition system is D′

p and the winning condition is safe(T2) ∪ (safe(T4) ∩ reach(T3)). First, note that Line 9 only refines 
the state space (by adding the flag component), and so it is enough to show that the rest of the algorithm correctly solves 
the game on D f produced at Line 9.

To do this we will show that fag enforces α = safe(T2) ∪ (safe(T4) ∩ reach(T3)) from Wag , and that the environment has 
a strategy fenv that enforces the complement of α, i.e., safe(T2) ∩ (safe(T4) ∪ reach(T3)), from the rest of the states.

Let ρ be a path in D f consistent with fag .

• If ρ starts in S2 then it satisfies safe(T2) since it uses f 2
ag .

• If ρ starts in R3 then it satisfies reach(R3) ∩ safe(T4) since it uses f 3
ag followed by f 4

ag .
• Suppose ρ starts in E . If it stays in V 0 then it satisfies safe(T2) ∩ safe(T4), and thus safe(T2), since it follows f e

ag . If 
it leaves V 0 then the corresponding path in D f reaches �. Let s ∈ Q f \ V 0 be the target of this last transition in D f . 
Note that every state on the path up to (but not necessarily including s) is in T2 ∩ T4. There are three cases.
– If s ∈ S2 proceed as before and use f 2

ag; since T2 held up till now, ρ ∈ safe(T2).

– If s ∈ R3 proceed as before and use f 3
ag until T3 is visited and then switch to f 4

ag; since T4 held up till now, ρ ∈
safe(T4) ∩ reach(T3).

– If s ∈ (S4 \ T2) \ (R3 ∪ S2) then the value of the flag at s is yes and thus T3 was seen, so switch to f 4
ag to also ensure 

safe(T4).

To define the environment strategy fenv we need some strategies from the construction.
12
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• Let S ′
2 and f 2

env be the winning region and winning strategy in D f , respectively, for the environment in Line 10. So, a 
play that follows f 2

env from S ′
2 violates safe(T2).

• Let S ′
4 and f 4

env be the winning region and winning strategy in D f , respectively, for the environment in Line 11. So, a 
play that follows f 4

env from S ′
4 violates safe(T4).

• Let R ′
3 and f 3

env be the winning region and winning strategy in D f , respectively, for the environment in Line 12. So, a 
play that follows f 3

env from R ′
3 will never visit T3 if it stays in the restricted arena (Line 12), and if it leaves S4 then it 

is in S ′
4, a previous case in which the environment can violate safe(T4).

• Let E ′ be such that E ′ ∪ {⊥} is the winning region for the environment in Line 16, and let f e
env be a winning strategy. 

So, for a play that follows f e
env starting in E ′ , if it stays in this domain then eventually a state is reached that is either 

not in T2 or not in T4, and if it leaves this domain it enters a state in S4 \ (R3 ∪ S2 ∪ T2) = S4 \ (R3 ∪ T2) in which the 
value of the flag is no meaning that T3 has not been visited yet.

Define Wenv := Q f \ Wag = (S4 \ (R3 ∪ S2 ∪ T2)) ∪ E ′ = (S4 \ (R3 ∪ T2)) ∪ E ′ . We now define fenv . Suppose q is the first 
state of the history.

1. If q 
∈ Wenv then define fenv arbitrarily.
2. If q ∈ S4 \ (R3 ∪ T2) then in particular q 
∈ T2 and already safe(T2) is violated so fenv follows f 3

env to ensure that 
reach(R3) is violated (or if play leaves S4 then safe(T4) is violated).

3. If q is in E ′ then fenv follows f e
env . This ensures that eventually a state s is reached such that at least one of the 

following cases hold:
(a) s 
∈ T4 (so in particular safe(T4) is violated). Since S2 is disjoint from V , let fenv switch to f 2

env so that safe(T2) is 
violated.

(b) s 
∈ T2 (so in particular safe(T2) is violated). Since S4 \ T2 is disjoint from V 0, let fenv switch to f 4
env so that safe(T4)

is violated.
(c) s ∈ S4 \ (R3 ∪ T2) and its flag value is no. In this case fenv switches to f e

env and wins as if it started in this state (as 
above). �

Comparison to Algorithms 1-6. Note that Algorithm 7 can solve the other six variants by suitably instantiating some of 
ϕ1, ϕ2, ϕ3, ϕ4 to true. Nevertheless, Algorithm 7 is much more sophisticated than Algorithms 1-6. Hence, in this paper, we 
present the algorithms deductively, starting with simpler variants and moving to the most difficult. Furthermore, instanti-
ating Algorithm 7 does not always give the same algorithms as Algorithms 1-6. For instance, Algorithm 1 for the synthesis 
problem of Task = ∃ϕ (no environment specification) can be obtained from Algorithm 7 by setting ϕ1, ϕ2, ϕ4 to true, but 
we cannot get Algorithm 4 for the synthesis problem of Env = ∀ϕ and Task = ∃ψ in this way. This is because Algorithm 7
solves the synthesis problem by reducing to Env → Task [2], but Algorithm 4 directly disregards all environment strategies 
that cannot enforce Env by first solving a safety game for the environment on Env and removing all the states that do not 
belong to the environment winning region to get a smaller game arena, hence obtaining optimal complexity. Analogously, 
in Algorithm 3 for the synthesis problem of Env = true and Task = ∃ϕ1 ∧∀ϕ2, we also first disregard all the agent strategies 
that are not able to enforce ∀ϕ2, obtaining a smaller game arena for subsequent computations, hence getting an optimal 
complexity in practice compared to constructing the game arena considering the complete state space from the DA of ∀ϕ2.

12. Conclusion

In this paper, we have studied the use of reachability and safety properties based on ltl f for both agent tasks and 
environment specifications. As mentioned in the introduction, though we have specifically focused on ltl f , all algorithms 
presented here can be readily applied to other temporal logics on finite traces, such as Linear Dynamic Logics on finite 
traces (ldl f ), which is more expressive than ltl f [18], and Pure-Past ltl [13], as long as there exists a technique to 
associate formulas to equivalent dfas.

It is worth noting that all the cases studied here are specific Boolean combinations of ∃ϕ . It is of interest to indeed devise 
algorithms to handle arbitrary Boolean combinations. Indeed, considering that ltl f is expressively equivalent to pure-past
ltl, an arbitrary Boolean combination of ∃ϕ would correspond to a precise class of ltl properties in Manna & Pnueli’s 
Temporal Hierarchy [25]: the so-called obligation properties. We leave this interesting research direction for future work.

Another direction is to consider best-effort synthesis under assumptions for Boolean combinations of ∃ϕ , instead of 
(ordinary) synthesis under assumptions, in order to handle ignorance the agent has about the environment [5,3,6,9,20].
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