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Abstract
Evolutionary game theory examines how strategies spread and persist in populations through
reproduction and imitation based on their fitness. Traditionally, models assume instantaneous
dynamics where fitness depends on the current population state. However, some real-world
processes unfold over time, with outcomes emerging from history. This motivates incorporating
time delays into evolutionary game models, where fitness relies on the past. We study the
impact of time delays on mutant fixation in a Moran Birth-death process with two strategies
in a well-mixed population. At each time step of the process, an individual reproduces
proportionally to fitness coming from the past. We model this as an absorbing Markov chain,
allowing computational calculation of the fixation probability and time. We focus on three
important games: the Stag-Hunt, Snowdrift, and Prisoner’s Dilemma. We will show time
delays reduce the fixation probability in the Stag-Hunt and the Prisoner’s Dilemma but
increase it in the Snowdrift. For the Stag-Hunt and the Prisoner’s Dilemma, time delays
lengthen the fixation time until a critical point, then reduce it. The Snowdrift exhibits the
opposite trend.

1 Introduction
Evolutionary Game Theory (EGT) provides a framework for understanding how effective
strategies spread through imitation or reproduction and persist in systems ranging from biology
to economics [1–6]. The theory gives insights into phenomena like cooperation, competition,
and diversity in populations [7–13]. It examines how strategies or types of individuals
change in frequency in a population based on their fitness from interactions. Strategies
that produce higher fitnesses will tend to spread and become more common as individuals
reproduce or copy them. Traditional EGT models have primarily focused on well-mixed,
infinitely large populations, where individuals interact at random and strategy frequencies
evolve deterministically according to replicator dynamics or other differential equation
models [2–4, 14]. However, real-world populations are typically finite and structured. To
address these limitations, recent work has incorporated stochastic processes, such as the Moran
process, into EGT models to study evolutionary dynamics in finite populations. [4, 15,15–25].

The classical concept of an Evolutionarily Stable Strategy (ESS) does not fully capture
evolutionary dynamics in finite populations. A true ESS must now satisfy two criteria,
it must resist invasion by rare mutant strategies, and its probability of replacement by a
rare mutant must be lower than under neutral drift [15, 16, 19, 20]. The first requirement
provides an equilibrium condition, while the second provides a stability condition. Selection
opposes invasion when mutants cannot attain higher fitness than resident individuals in a
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pure population. It also opposes fixation when mutants have no better chance of reaching
fixation than neutral mutations. Satisfying both criteria helps ensure a strategy is robust
and maintains equilibrium [6]. Therefore the study of fixation probabilities became a crucial
component of comprehending EGT.

The Moran process is a classic model for studying evolution in finite populations [26]. In
this stochastic process, a population of N individuals with different types undergoes birth and
death events over discrete time steps. At each step, one individual is selected to reproduce
and its offspring replaces another chosen individual [27]. The individual’s fitness can influence
birth and death events in this process. In general, individuals reproduce with a probability
proportional to their fitness and replace another individual at random (Bd). We note that
this process can also happen in other ways, and there are a number of different dynamics
used. Fitness can be constant or frequency-dependent based on game interactions between
individuals [15,16]. Typically the population is assumed well-mixed so that all individuals
have the chance to be replaced by others. In this process, we track the fate of any emergent
mutant, assessing the probability and the time that this single novel mutant ultimately fixes
in the population (fixation probability and time). Also monitoring the trajectory of the
mutant through the population provides insight into the dynamics of how novel mutations
establish and propagate themselves in populations.

The fixation probability and time have been extensively studied across various models [28–
37]. Previous work has focused on how factors like population size [28, 34–36], environmental
fluctuations [38–41], and population structure [42–51] influence mutant fixation. However,
most of these studies assumed that fitness is determined instantaneously based on the current
population state and payoffs. This assumption may not always be realistic, as biological and
social processes often involve temporal delays. [52,53]. It is therefore natural for EGT models
to incorporate time delays, where fitness depends on history. The effects of time delays
have been explored in the context of replicator dynamics for games with an interior stable
equilibrium [54–64]. In [54], the authors studied a model where individuals at time t imitate
strategies that had higher average payoffs at time t− τ for some delay τ . They showed the
interior fixed point is locally asymptotically stable for small τ , but becomes unstable for large
τ , leading to oscillations. In [55], individuals are born after their parents play and receive
payoffs. Two coupled equations governed strategy frequency and population size. Analysis
showed oscillations are not possible, with the original fixed point globally asymptotically
stable regardless of the time delay. In [56], the authors modified the above model by allowing
time delays to vary based on the strategies used by individuals. Under this framework, they
observe novel behaviour where the equilibrium states become dependent on the delays. Most
previous work only considered replicator dynamics and the impact of delays on equilibrium
stability. Less attention has been given to finite populations and the effect of delays on the
fixation process.

Our study looks into the influence of time delays on the fixation process in evolutionary
games. We explore the impact of time delays on the fixation probability and fixation time in a
well-mixed population comprising two strategies, examining a generalized Moran Birth-death
process, where the fitness of both strategies at time step t hinges on the fitness values from τ
steps previously. By constructing an absorbing Markov chain, whose states are defined by
τ + 1 indices, τ indices representing the history, and one the current mutant abundance, we
determine the transition matrix, enabling us to analyze the fixation probability and fixation
time for various game types.

The paper is structured as follows. Section 2 reviews the Moran process definition and
basic properties for two-strategy games. Section 3 introduces a general framework to calculate
absorption probabilities and times in Markov chains related to the process. Section 4 presents
our model incorporating time delays into the Bd Moran process and defines a new associated
Markov chain. Section 5 details the results of our model and the effects of time delays on the
fixation probability and time across different games. The paper finishes with a discussion of
the key findings and a summary of the main results.
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2 Moran Process
We consider the evolutionary dynamics of individuals adopting two distinct strategies, A
and B within a well-mixed population, the game being played characterized by the payoff
matrix [16]:

A B
A a b
B c d

.

When a player with strategy A interacts with an A player (a B player), they receive a payoff
of a (b). On the other hand, a B player receives a payoff of c (d) from an A (B) player.
Consequently, the average payoffs when there are i individuals with strategy A reads as
follows:

πA(i) =
(i− 1)a+ (N − i)b

(N − 1)
,

πB(i) =
ic+ (N − i− 1)d

(N − 1)
,

(1)

where self-interactions are excluded. The corresponding average fitnesses are proportional to:

fi = 1− w + wπA(i),

gi = 1− w + wπB(i).
(2)

The variable w represents the intensity of selection, indicating how much the payoff of
individuals affects fitness [15]. When w approaches zero, each individual’s payoff makes a
minimal contribution to overall fitness, leading to what is known as weak selection. When
w = 0, all individuals possess the same level of the fitness, resulting in neutral drift. Conversely,
as w increases, the influence of payoffs on fitness grows and we have strong selection.

There are various update rules when individuals update their strategies during each time
step of a process [15,16,29,42,65,66]. We use the Birth-death (Bd) process, where the fitness
of individuals is considered in the Birth event which is a type of frequency-dependent Moran
process [15, 16]. During each time step, an individual is chosen for reproduction based on
their fitness. The newly born individual then replaces a randomly selected member of the
population, ensuring that the total population size, N , remains constant. At each time step,
i can change by a maximum of one based on the following transition probabilities:

pi−→i+1 =
ifi

ifi + (N − i)gi

N − i

N − 1
,

pi−→i−1 =
(N − i)gi

ifi + (N − i)gi

i

N − 1
.

(3)

Here the objective is to examine the Bd process involving a population of residents with
strategy B when introduced to a single mutant with strategy A. This process ultimately
results in one of two possible outcomes: the complete replacement of the population by the
mutant, known as fixation, or the eradication of the mutant, referred to as extinction. Two
quantities hold significant importance in this process, the fixation probability, which indicates
the probability of the mutant becoming fixed in the population, and the fixation time, which
represents the number of time steps required for the fixation [34, 49, 67]. There are three
main approaches used to analyze the fixation process: direct analytical solutions, numerical
methods using transition matrices of Markov chains, and Monte Carlo simulations. Analytical
solutions can be found for simple Moran processes without population structure or with
regular structure, providing formulae for fixation times and probabilities. However, as models
become more complex, researchers must study the dynamics using numerical techniques and
Monte Carlo simulations.
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In general, we can consider an absorbing Markov chain associated with the process to
investigate and compute the probability and time of fixation. Fig. 1 provides a visual
representation of the Markov chain. The state is determined by the number of mutants
present in the population (i). Essentially, the Markov chain represents a random walk on
sites ranging from 0 to N . Starting from state i, the walk eventually reaches either the
absorbing states of 0 (mutant extinction), or N (mutant fixation). The transition matrix is
defined as follows:

Pi,j = pi−→i+1δi+1,j + pi−→i−1δi−1,j + (1− pi−→i+1 − pi−→i−1)δi,j . (4)

The fixation probability Φi,N from state with i initial mutants with strategy A under a
Birth-death process can be calculated using the recursive equations:

Φi,N = pi−→i−1Φi−1,N + (1− pi−→i−1 − pi−→i+1)Φi,N + pi−→i+1Φi+1,N (5)

Using this recursive relationship and the boundary conditions that Φ0,N = 0 and ΦN,N = 1,
the fixation probability for a single mutant is [34,67]

Φ1,N =
1

1 +
N−1∑
k=1

k∏
j=1

gi
fi

. (6)

The same recursive equation applies for the absorption time ai and fixation time ti,N as
follows:

ai = pi−→i−1ai−1 + (1− pi−→i−1 − pi−→i+1)ai + pi−→i+1ai+1,

Φi,N ti,N = pi−→i−1Φi−1,N (ti−1,N + 1) + (1− pi−→i−1 − pi−→i+1)Φi,N (ti,N + 1)

+pi−→i+1Φi+1,N (ti+1,N + 1).

(7)

With the initial conditions a0 = t0,N = 0 and aN = tN,N = 0 we have [34,67]:


a1 = Φ1,N

N−1∑
k=1

k∑
l=1

1
Pl→l+1

k∏
j=l+1

gj
fj

,

t1,N =
N−1∑
k=1

k∑
l=1

Φl,N

Pl→l+1

k∏
j=l+1

gj
fj

.

(8)

Figure 1. Absorbing Markov chain with N +1 states associated with the Bd Moran process
on population with size N . Each state is determined by the number of mutants in the
population (i). States 0 and N are the absorbing states related to the extinction and fixation
of mutants respectively.

3 General Framework to calculate the absorbing proba-
bility and time for Markov chains

To evaluate the absorption probabilities and time for Markov chains with n = t+ a states (t
transition state and a absorbing states), a widely employed technique in numerical analysis,
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as outlined in [49, 68], can be employed. The transition matrix Pn∗n can be reexpressed in a
canonical form as follows:

P =

(
Q R
0 I

)
, (9)

where Qt∗t denotes the probabilities of transitions between the transient states, Rt∗a signifies
the probabilities of transitions from the transient states to the absorbing states and Ia∗a
represents an identity matrix. The Moran process in a well-mixed population is related to a
Markov chain with N + 1 states, including two absorbing states at 0 and N . Based on the
canonical transition matrix, we can construct a new matrix denoted by F =

∑∞
n=0 Q

n =
(I−Q)−1 and called a Fundamental matrix. The element Fi,j represents the expected number
of steps that the process which started in state i spends in state j before eventually reaching
one of the absorbing states (the expected sojourn time) [49,68]. Based on this matrix, we
can derive another matrix:

Φ = FR, (10)

where Φi,j represents the probability that the process becomes absorbed in absorbing state j,
given that it starts in state i. For a Moran process in a well-mixed population, the matrix Φ
is composed of two columns, representing extinction and fixation probabilities.

The absorption time starting from state i can be obtained by summing the ith row of the
fundamental matrix F and is given by the following expression:

ai =

N−1∑
j=1

Fi,j (11)

To determine the fixation time, we employ a method described in previous studies
[49, 69, 70]. If Φj,N represents the fixation probability starting from j mutants, then the
fixation time starting from state i can be calculated as follows:

ti,N =

N−1∑
j=1

Φj,N

Φi,N
Fi,j (12)

By identifying the Markov chain and associated transition matrix for various models, we can
utilize this numerical method to determine fixation probability and times.

4 Model and methods
A random process should have a starting point. In our model, this is the time that a single
mutant appears in the population, labelled time t = 0. In the above we assume that the
process is homogeneous, so that transition probabilities depend only upon the current state
and not on the specific time that the state is reached. Thus for example in equation 5 the
transition and fixation probabilities are independent of the specific time point, and so are
not functions of time t. In the model developed below we will similarly consider the process
homogeneous, but develop the concept of the state of the process to include not only the
population size at present, but also at the most recent times, to incorporate time delays.
This still leaves the question of how to deal with times too close to the start of the process
for the full required history to exist. We explain how we do this, by selecting a specific initial
state, in Section 5.1.

Now we introduce a time delay in the Bd process for a well-mixed population. In the
standard Bd process, the fitness of strategies at the current (discrete) time t is important for
the birth of new offspring. However, an individual’s fitness can depend on conditions in the
past. Thus, we incorporate a time delay τ , so that the fitness of strategies comes from time
t − τ , considering the same time delay for all strategies. Thus, both mutant and resident
strategies receive payoffs from τ steps before. Since the Bd process proceeds in discrete time
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steps, τ takes integer values in the [0,∞) range. The case τ = 0 corresponds to the standard
Bd process described previously.

To study this process, we model it as a Markov chain and use the previous numerical
approach. To fully characterize each Markov chain state we need to know both the number
of mutants at the current time t and the historical ones from time t− τ to the present. This
allows us to define the state space describing the full process dynamics. Specifically, each
state has τ + 1 indices, with τ indices representing the number of mutants at each of the τ
previous time steps, and one index for the current number at time t. When τ = 0, the state
reduces to a single index, as originally discussed. With the general state form {iτ , ..., i1, i0},
the number of mutants can only change by one per time step. This imposes |in − in−1| ≤ 1
between adjacent indices. As an example, for τ = 1 each state is characterized by {i1, i0},
with i0 = i1 − 1, i1, i1 + 1. Within this Markov chain, states characterized by i0 = 0, N serve
as absorbing states, signifying mutant extinction and fixation.

Deriving the whole state space of the Markov chain Sτ
N = si for a time delay of τ in

a population of size N as shown in Fig.2, can be accomplished through the subsequent
procedure.

S0
N =

{
{i0}

}
, i0 ∈ {0, 1, 2, ..., N},

S1
N =

{
{i1, i0}

}
, i1 ∈ S0

N , i1 ̸= {0, N}, i0 ∈ {i1 + 1, i1, i1 − 1},
S2
N =

{
{i2, i1, i0}

}
, {i2, i1} ∈ S1

N , {i2, i1} ≠
{
{1, 0}, {N − 1, N}

}
, i0 ∈ {i1 + 1, i1, i1 − 1},

...

...

Sτ
N =

{
{iτ , iτ−1, ..., i1, i0}

}
, {iτ , iτ−1, ..., i1} ∈ Sτ−1

N , {iτ , iτ−1, ..., i1} ≠
{
Absorbing States

}
,

i0 ∈ {i1 + 1, i1, i1 − 1}.
(13)

The previous procedure allows us to find the state space of Sτ
N based on Sτ−1

N . As shown
in Fig.2, state space Sτ

N can be represented as a τ + 1 dimensional Markov chain. Simply
we can obtain states of Sτ

N from Sτ−1
N . We identify and delete the absorbing states of Sτ−1

N

where i0 = 0 or N , representing extinction or fixation. The remaining states of Sτ−1
N become

the historical component of each state in Sτ
N (ij in Sτ−1

N corresponding to ij+1 in Sτ
N ). Since

the number of mutants can change by at most one, i0 in Sτ
N takes values i1 − 1, i1, or i1 + 1

(i1 in Sτ
N is i0 in Sτ−1

N ). The process excludes the absorbing states corresponding to Sτ−1
N

and adds one more dimension (one more index to each state satisfying previous conditions)
to find the Markov chain of Sτ

N . Algorithm 1 (described at the end of this section) can be
used to find the state space for a given population size and time delay.
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Figure 2. Three Markov chains for τ = 0, 1, 2 with population size N = 4. The
Markov chain with time delays τ has τ + 1 dimensions. To generate state spaces for
a Markov chain with τ + 1 dimensions, we must erase the absorbing states from the τ -
dimensional Markov chain and add three possible new indexes for each state {iτ , ...., i0}
like {iτ , ...., i0, inew} including inew = i0 − 1, i0, i0 + 1(See Algorithm 1). For in-
stance, a population with size N = 4 have (a):S0

4 =
{
{0}, {1}, {2}, {3}, {4}

}
; (b):

S1
4 =

{
{1, 0}, {1, 1}, {1, 2}, {2, 1}, {2, 2}, {2, 3}, {3, 2}, {3, 3}, {3, 4}

}
; and (c): S2

4 =
{
s1 =

{1, 1, 1}, s2 = {1, 1, 0}, s3 = {1, 1, 2}, s4 = {1, 2, 2}, s5 = {1, 2, 1}, s6 = {1, 2, 3}, s7 =
{2, 1, 1}, s8 = {2, 1, 0}, s9 = {2, 1, 2}, s10 = {2, 2, 2}, s11 = {2, 2, 1}, s12 = {2, 2, 3}, s13 =
{2, 3, 3}, s14 = {2, 3, 2}, s15 = {2, 3, 4}, s16 = {3, 2, 2}, s17 = {3, 2, 1}, s18 = {3, 2, 3}, s19 =
{3, 3, 3}, s20 = {3, 3, 2}, s21 = {3, 3, 4}

}
. The transition and absorbing states are represented

by blue and red circles, respectively. When τ > 1, there are more absorbing states with
i0 = N, 0 indicating mutant fixation and extinction respectively.

The next step is to find the transition matrix for the Markov chain with state space Sτ
N .

Since we are considering the Bd process, time delays can affect the Birth part where fitness
for reproduction comes from the past. If we denote the state as {iτ , iτ−1, ..., i1, i0}, there are
three possible transitions as shown in Fig. 3. In each generation of the process the number
of mutants i0 can either increase by one, decrease by one, or remain unchanged. In each
transition, the history changes such that the new ij becomes ij−1 from the previous state. To
find the transition probability, the fitness for the birth part comes from iτ which shows the
number of mutants τ steps ago. However, for the death part, the number of current mutants
i0 is important. Considering these details, the transition probabilities are:

p+ = p{iτ ,iτ−1,...,i1,i0}−→{iτ−1,iτ−2,...,i0,i0+1} =
i0fiτ

i0fiτ + (N − i0)giτ

N − io
N − 1

p− = p{iτ ,iτ−1,...,i1,i0}−→{iτ−1,iτ−2,...,i0,i0−1} =
(N − i0)giτ

i0fiτ + (N − i0)giτ

io
N − 1

p{iτ ,iτ−1,...,i1,i0}−→{iτ−1,iτ−2,...,i0,i0} = 1− p+ − p−

(14)

where fiτ and giτ are given in (2). Algorithm 2 provides a useful way to determine the
transition matrix P τ for the time delay τ . Once P τ is obtained, we can identify all absorbing
states where i0 = 0, N and put the matrix into canonical form F τ by finding Qτ and Rτ .
This then allows the numerical approach from the previous section to be applied to calculate
the fixation probability and time. As mentioned before, there can be additional fixation
states (depending on τ) with i0 = N . Since the sum of each row of the absorbing probability
matrix, Φτ = F τRτ is 1 (the sum of absorption probabilities starting from one state), we can
find the fixation probability by summing the probabilities leading to fixation with i0 = N .
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Figure 3. There are three possible transitions from state {iτ , iτ−1, ..., i1, i0} in which
the number of mutants in the population represented by i0 can rise by one, drop by one,
or remain unchanged. in each transition, the history will transform in such a way that
{iτ , iτ−1, ..., i1, i0} −→ {iτ−1, iτ−2, ..., i1, i0, inew}, inew = i0 + 1, i0, i0 − 1.

By dividing the state space Sτ
N into two parts Sτ

T ⊂ Sτ
N , i0 ̸= 0, N for transient states and

Sτ
A ⊂ Sτ

N , i0 = 0, N for absorbing states, we can define the fixation probability Φτ
sm,N and

time tτsm,N starting from state sm as:

Φτ = F τRτ , Φτ
sm,N =

Sτ
A∑

sj={iτ ,...,i0},i0=N

Φτ
sm,sj , (15)

tτsm,N =

Sτ
T∑

sj={iτ ,...,i0}

Φτ
sj ,N

Φτ
sm,N

F τ
sm,sj , (16)

Algorithm 1. Find the state space
1: Input: Size N and time delay τ
2: state-space ← empty-array(N+1)
3: for l in [0, 1, 2, ..., N ] do
4: state-space(l) ← l
5: end for
6: for t in [0, 1, 2, ..., τ − 1] do
7: for state in state-space do
8: if i0=0 or i0=N then
9: remove state from sample-state
10: end if
11: end for
12: new-state-space ← empty-array(size(state-space)× 3,t+1)
13: for state in state-space do
14: add {state,i0-1} and {state,i0} and {state,i0+1}

to new-state-space
15: end for
16: state-space← new-state-space
17: end for
17: return state-space

Algorithm 2. Find the transition matrix
1: Input: state-space
2: transition-matrix ← zero-array(size(state-space) × size(state-space))
3: for state in state-space do
4: if state=absorbing-state then
5: transition-matrix(state, state)=1
6: else:
7: for second-state in state-space do
8: if {iτ , iτ−1, ..., i1} ∈ second-state= {iτ−1, ..., i1, i0} ∈ state then
9: if (i0 ∈ second-state - i0 ∈ state)=1 then
10: transition-matrix(state, second-state)=p+

11: else if (i0 ∈ second-state - i0 ∈ state)=-1 then
12: transition-matrix(state, second-state)=p−

13: else
14: transition-matrix(state, second-state)=1− p− − p+

15: end if
16: end if
17: end for
18: end if
18: end for
19: return transition-matrix

5 Results
In this section, we examine how time delays impact the fixation of mutants. Before presenting
the main results, it is instructive to demonstrate some limitations of our numerical method.
As Fig. 4 shows, the state space size grows with both N and τ . For large τ and N values,
the number of states becomes enormous, necessitating more memory to store the data.
Furthermore, calculating the inverse matrix has higher computational complexity as the
matrix size increases. For instance, with N = 5 and τ = 6, there are 1,398 states, yielding
a matrix with size of 1, 954, 404. This matrix would require approximately 15.6 MB of
memory (1, 954, 404× 8 bytes). However, when N grows to 12 and τ to 9, the state space
has 160, 875 states, requiring around 207 GB of memory—a prohibitive amount. Clearly, for
larger populations and time delays, our numerical method has limitations, and computer
simulations become preferable.
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Figure 4. The number of states as a function of N and τ .

5.1 Fixation probability and time
In the following, we investigate the effect of time delays on the fixation probability and
time in some well-known games; the Stag-Hunt, Snowdrift, and Prisoner’s Dilemma. When
studying the fixation of one mutant in a population of residents, there may be multiple
states with i0 = 1 that differ in their historical components for a given time delay τ . For
consistency, we will use the initial state si = {1, 1, ..., 1} for all our results; this is consistent
with starting with a single mutant and that for times within τ of the start of our process, the
payoffs used to calculate the fitness are assumed to take the value at this starting point. We
compare the results of our numerical method (as much as possible) to those from computer
simulations. For the simulations, we conduct 107 different Monte Carlo simulations for
each set of fixed parameters. The fixation probability is calculated as the ratio of fixed
processes to total simulations. We determine the average fixation time only using processes
that eventually undergo fixation. We constrained the payoff matrix by setting a = 2.1 and
d = 0.1. By varying the remaining two parameters, we can generate a range of distinct games.
This approach reduces the total number of parameters while still allowing for diverse game
scenarios

5.1.1 Stag-Hunt game

The Stag-Hunt game is one of the earliest and most analyzed coordination games [9]. This
game is defined by a payoff matrix where the payoffs satisfy the relation a > c ≥ d > b.
The key feature of the Stag-Hunt is that players are incentivized to coordinate on the same
strategy, represented by the payoffs a and d along the leading diagonal of the payoff matrix.
However, there is also a risk, captured by the off-diagonal payoffs b and c, if the players fail
to match strategies.Given that a is fixed at 2.1 and d at 0.1, the value of c must fall within
the range [0.1, 2.1), while b should be less than 0.1

We first analyze how time delays impact the fixation probability when there is one mutant
with strategy A (the “stag” strategy) in a population of residents using strategy B. Fig.
5 shows how varying the payoff matrix elements, population size, and selection intensity
affects the fixation probability in the presence of time delays. The lines represent numerical
solutions while the dots show computer simulations. As noted previously, our numerical
method is limited computationally, restricting the population size and time delay values we
could examine. Thus for larger N and τ , only simulation results are presented. Regardless
of the network size and payoff element values, longer time delays consistently yield lower
fixation probabilities. The results demonstrate that time delays reduce the ability of a mutant
to take over a population compared to the undelayed cases.

Fig. 5 (a) and (b) demonstrate that as τ increases, the fixation probabilities appear to
converge to a constant value. Our model indicates that as τ approaches infinity, fitness
remains unchanged throughout the fixation process. This is because fitness originates from
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Figure 5. The effect of time delays on fixation probabilities in the Stag-Hunt game (a = 2.1
and d = 0.1) according to numerical solutions (lines) and computer simulations(dots). Panel
(a) shows the influence of time delays for various network sizes with b = 0.05, c = 1.5, and
w = 1. Panel (b) illustrates the effect of time delays for different payoff matrix parameters
with N = 4 and w = 1. Panel (c) depicts how selection intensity affects outcomes for N = 4, 5
and τ = 0, 1, 2 with b = 0.05, c = 1.5. Lastly, panel (d) demonstrates the impact of network
size for τ = 0, 1, 2 with b = 0.05, c = 1.5 and w = 1.

Figure 6. The effect of time delays on fixation time in the Stag-Hunt game (a = 2.1 and
d = 0.1) according to numerical solutions (lines) and computer simulations(dots). Panel (a)
shows the influence of the time delays for various network sizes with b = 0.05, c = 1.5, and
w = 1. Panel (b) illustrates the effect of time delays for different payoff matrix parameters
with N = 4 and w = 1. Panel (c) depicts how selection intensity affects outcomes for N = 4, 5
and τ = 0, 1, 2 with b = 0.05, c = 1.5. Lastly, panel (d) demonstrates the impact of network
size for τ = 0, 1, 2 with b = 0.05, c = 1.5, and w = 1.
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the starting state with one mutant and persists across all steps until fixation. Thus, we have
a Moran process with constant fitness, where the fixation probability follows Equation (6).
With w = 1 and the constant fitness defined as r:

τ →∞


πA(i) = πA(1) =

(N − 1)b

N − 1
→ fi = b

πB(i) = πB(1) =
c+ (N − 2)d

N − 1
→ gi =

c+ (N − 2)0.1

N − 1

r =
fi
gi

=
b(N − 1)

c+ (N − 2)0.1
.

Therefore the fixation probability with constant fitness r is:

Φ1,N =
1

1 +
N−1∑
k=1

k∏
j=1

1

r

=
1− 1

r

1− (
1

r
)N

=

1− b(N − 1)

c+ (N − 2)0.1

1− (
b(N − 1)

c+ (N − 2)0.1
)
N
. (17)

For sufficiently large values of τ , the fixation probability depends only on the element
of the payoff matrix and N . When b = 0.05 and c = 1.5, the fixation probability is

0.05(N − 1)

1.5 + (N − 2)0.1
. For N = 3, 4, 5, 6, this gives fixation probabilities of 0.0036, 0.0006, 0.0001,

and 0.00003 respectively, matching Fig. 5 panel (a). The same behaviour is observed in
panel (b) for a large time delay for different values of the payoff matrix. The influence of
the intensity of selection w is shown in panels (c) for a fixed payoff matrix with b = 0.05
and c = 1.5. When w = 0, the payoff has no effect on fitness, resulting in neutral selection
with a fixation probability of 1/N . As w increases, the role of the payoff and the time delay
becomes more apparent. Notably, the fixation probability initially rises with increasing w
before later decreasing. Panel (d) demonstrates the effect of the population size for three time
delay values. For sufficiently large populations, the impact of the time delay on the fixation
probability is negligible. However, for small populations, the time delay has a considerable
effect on the fixation probability.

Fig. 6 shows how time delays affect the fixation time in this game. Panel (a) demonstrates
the impact of τ for various population sizes. Initially, increasing the time delay at a constant
population size causes the fixation time to rise. However, after a critical τ value, the time
delay starts to reduce fixation time until it levels off at a fixed value for very large τ . As
discussed previously, a sufficiently long time delay produces a Moran Bd process with fixed
fitness derived from the initial state with 1 mutant. Therefore, for very large τ , the fixation

time can be calculated using Equation (8) when the ratio of r = fi
gi

in (8) is
b(N − 1)

c+ (N − 2)0.1
.

The influence of the time delay on the fixation time in a population with constant size for
different parameters of the payoff matrix is illustrated in panel (b) of Fig.6. As the time delay
increases, the fixation time rises to a maximum before decreasing. Ultimately, all fixation
times converge to a constant value. Panels (c) and (d) show how the intensity of selection w
and population size impact the fixation time for certain time delays. As the game becomes
more influential in determining fitness and selection intensity increases, the fixation time
varies with the time delay. Additionally, for a fixed time delay, increasing the population size
leads to greater fixation times, with network size having a larger effect than the time delay.

5.1.2 Snowdrift game

Generally, a Snowdrift game is characterized by a payoff matrix for which c > a > b > d [6,71].
This setting of the payoff matrix promotes cooperation (playing strategy A) by an individual
when they encounter a defecting opponent (playing strategy B). The game describes two
people who are stuck in a snowdrift and both want to get out of it but are not eager to share
the cost of clearing the snow. To have a Snowdrift game, given that a is fixed at 2.1 and d at
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Figure 7. The effect of time delays on the fixation probabilities in the Snowdrift game
(a = 2.1 and d = 0.1) according to numerical solutions (lines) and computer simulations(dots).
Panel (a) shows the influence of time delays for various network sizes with b = 1.1, c = 3, and
w = 1. Panel (b) illustrates the effect of time delays for different payoff matrix parameters
with N = 4 and w = 1. Panel (c) depicts how selection intensity affects outcomes for N = 4, 5
and τ = 0, 1, 2 with b = 1.1, c = 3. Lastly, panel (d) demonstrates the impact of network size
for τ = 0, 1, 2 with b = 1.1, c = 3, and w = 1.

Figure 8. The effect of time delays on fixation time in the Snowdrift game (a = 2.1 and
d = 0.1) according to numerical solutions (lines) and computer simulations(dots). Panel (a)
shows the influence of a time delay for various network sizes with b = 1.1, c = 3, and w = 1.
Panel (b) illustrates the effect of a time delay for different payoff matrix parameters with
N = 4 and w = 1. Panel (c) depicts how selection intensity affects outcomes for N = 4, 5
and τ = 0, 1, 2 with b = 1.1, c = 3. Lastly, panel (d) demonstrates the impact of network size
for τ = 0, 1, 2 with b = 1.1, c = 3, and w = 1.
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Figure 9. The effect of the time delay on the fixation probability and time in the Prisoner’s
Dilemma game (a = 2.1 and d = 0.1) according to numerical solutions (lines) and computer
simulations (dots) where the initial mutant is a cooperator. Panels (a) and (b) show the
effect of time delays on the fixation probability and panels (c) and (d) show the effect of
time delays on the fixation time for different network sizes and payoff values.

0.1, the value of c must be greater than a (i.e., c > 2.1), while b should fall within the range
(0.1, 2.1).

The time delay impacts the fixation probability in the Snowdrift game, as shown in Fig. 7.
The top panels illustrate how increasing τ affects the fixation probability for various payoff
parameters and population sizes. Unlike the Stag-Hunt game, a longer time delay boosts
fixation probability in the Snowdrift game. Notably in panel (a), a small τ leads to a lower
value in larger populations, but as τ grows, larger populations exhibit a greater value. In both
panels, fixation probabilities plateau at constant values dependent on population size and
game parameters when τ is sufficiently high. For large time delays, the fixation probability
like the Stag-Hunt game approaches a constant value. This value corresponds to the fixation
probability in a scenario where fitness is determined by the initial condition, with a single
mutant in a population of residents. According to equation (17), when 0.1 < b < 2.1 and
2.1 < c, for large enough τ , Φ1,N increases as N increases, as shown in panel (a). In panel
(b), we see that for N = 4, the curves exhibit similar behaviour for a large enough delay.

Panel (c) illustrates how the population size impacts the fixation probability across three
values of the time delay. Initially, increasing the population size reduces the probability of
fixation regardless of the time delay. However, for sufficiently large populations, further
increases in population size increase the probability of fixation. We observe differing patterns
at small versus big population sizes. In small populations, longer time delays correspond
to higher fixation probabilities for mutants. Conversely, in large populations, longer delays
diminish the fixation probability.

In the snowdrift game, the impact of time delays on the fixation time is the reverse of
what we saw in the Stag-Hunt game as shown in Fig. 8. With a constant population size
and payoff matrix values, increasing the time delay first lowers the fixation time, which then
rises as the delay continues increasing. As before, for a large enough delay τ , the fixation
time converges to a constant value that is less than the fixation time when there is no delay.

5.1.3 Prisoner’s Dilemma game

Another interesting case is the Prisoner’s Dilemma. This game is characterized by the payoff
relationship c > a > d > b [7, 8]. In such a setting the defect strategy D is a dominant
strategy, so that for a rational player it is always optimal to play strategy D irrespective
of the other player’s choice. The standard Prisoner’s Dilemma offers players the option of
defecting or cooperating; for mutual cooperation, two interacting players are offered a reward,
a = R, and for mutual defection, d = P . In this scenario, if one player cooperates while the
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Figure 10. The effect of time delays on the fixation probability and time in the Prisoner’s
Dilemma game (a = 2.1 and d = 0.1) according to numerical solutions (lines) and computer
simulations (dots) where the initial mutant is a defector. Panels (a) and (b) show the effect
of time delays on the fixation probability and panels (c) and (d) show the effect of time
delays on fixation time for different network sizes and payoff values.

other defects, then the cooperator would receive the sucker’s payoff b = S, and the defector
would receive the temptation-to-defect payoff c = T . In this game, the value of c should be
greater than a = 2.1, while b should be less than d = 0.1

We examine two scenarios in this game. Fig.9 and Fig.10 depict how the fixation
probability and time vary with changes in the time delay, for different population sizes and
payoff matrices where the initial mutant is cooperator and defector respectively. As expected,
the fixation probability is much higher when the initial mutant is a defector rather than
a cooperator under the same conditions since defectors, on average, obtain higher payoffs
than cooperators when playing against both cooperators and defectors. In both scenarios,
increasing the time delay leads to small changes in the fixation probability and time. However,
larger time delays tend to decrease the fixation probability. We also observe an increase
followed by a decrease in the fixation time as the time delay grows. This observation is
clearer in the case where the initial mutant is a cooperator. For sufficiently large time delays,
where the fitness depends only on the initial state, the constant fitness values (r = f1

g1
) are

b(N − 1)

c+ (N − 2)d
for an initial mutant with the cooperator strategy and

c(N − 1)

b+ (N − 2)a
for an

initial mutant with the defector strategy (when w = 1).

5.2 Comparison between fixation probabilities
In the preceding section, we observed that different games exhibit different patterns when
incorporating a time delay into our model. To gain a more comprehensive understanding, we
now compare all games by examining how changes in two parameters of the payoff matrix
affect patterns influenced by a time delay. We set a = 2.1 and d = 1.1, while varying c from
1.1 to 3.1 and b from 0.1 to 2.1. Our analysis focuses solely on the fixation probability, as it
holds greater significance than the time in the literature. Fig.11 1 and Fig.12 illustrate the
difference between fixation probability with time delay τ and fixation probability without
a time delay for mutants with strategies A and B, respectively. Negative values indicate a
decrease in fixation probability, while positive values signify an increase.

Our figures reveal that different parameter ranges give rise to distinct games. Among
these, we observe a new game, referred to as the Harmony game (H) in the literature, which
is less well-known and studied compared to other games. Across the Stag Hunt (SH) game,
we observe a consistent inverse relationship between time delays and the fixation probability
regardless of the strategy of the initial mutant. In the Snowdrift (SD) game, the fixation
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Figure 11. Fixation probability difference between delayed (τ) and without a delay for an
initial mutant with strategy A. Fixed parameters: a = 2.1, d = 1.1. Varying other parameters
yield different game types: PD (Prisoner’s Dilemma), SD (Snowdrift), SH (Stag Hunt), and
H (Harmony). The time delay is 0, 1, 2, 3 from left to the right.

Figure 12. Fixation probability difference between delayed (τ) and without a delay for an
initial mutant with strategy B. Fixed parameters: a = 2.1, d = 1.1. Varying other parameters
yield different game types: PD (Prisoner’s Dilemma), SD (Snowdrift), SH (Stag Hunt), and
H (Harmony). The time delay is 0, 1, 2, 3 from left to the right.

probability also decreases with a delay in both figures, suggesting that the effect of time
delays is consistent regardless of the initial mutant’s strategy. In the Prisoner’s Dilemma (PD)
game, the relationship between the time delay and the fixation probability is contingent on
the game’s parameters. While there are scenarios where increased time delay leads to a higher
fixation probability, a broad set of parameters results in a decreased fixation probability,
irrespective of the initial mutant’s strategy. Notably, as we vary a single parameter while
keeping others fixed (for instance, changing b from a value below 1.1, corresponding to the
Prisoner’s Dilemma, to a higher value associated with the Snowdrift game for a > 2.1), we
observe a shift in behaviour. This is reflected in the change of fixation probability differences
from negative to positive values, highlighting the profound impact of parameter variation
on game dynamics. Introducing time delays and considering payoffs from past interactions
implies that both strategies receive payoffs by engaging with a higher proportion of resident
strategies. Consequently, this scenario proves unfavourable for mutant strategies in Stag
Hunt games, while being advantageous in the Snowdrift game, regardless of the mutant’s
strategy. This leads to a decrease in fixation probability for the Stag Hunt game and an
increase for Snowdrift game. For Prisoner’s Dilemma game, it is dependent on the value of
the payoff matrix.

5.3 Conditional sojourn time
The impact of time delays on the conditional sojourn time will be examined in this section.
Conditional sojourn time refers to the duration a process spends in a particular state before
fixation. The conditional sojourn time j starting from state i refers to the number of times a
process is in a transition state with j mutants before fixation occurs [49, 68]. Understanding
conditional sojourn times is crucial for examining how traits or genotypes evolve within
populations over time. When we introduce a time delay into models, we can analyze how
the sojourn times in each state before fixation change. Specifically, the fixation time starts
from 1 mutant which is the sum of the sojourn times across all states before fixation occurs.
Therefore, by studying how time delays affect sojourn times, we can better comprehend their
impact on overall fixation times.
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Figure 13. Conditional sojourn times for the Stag-Hunt game in a population of size 5
for different values of the time delay. The right panel shows the fixation time as the delay
increases. The payoff matrix we have (a, b, c, d) = (2.1, 0.05, 1.5, 0.1)

For a process without time delays, when the process starts with i mutants, the conditional

sojourn time in the state with j is
Φj,N

Φi,N
Fij . With time delays, each state with i0 = j mutants

may have different historical components. To find the conditional sojourn time associated
with a state having j mutants, we sum over all sm where i0 = j. Using the fundamental
matrix F τ , the conditional sojourn time for a state with i0 = j mutants starting from state
sm is defined as:

Conditional sojourn time (j) =
Sτ
T∑

sl={iτ ,...,i0},i0=j

Φτ
sl,N

Φτ
sm,N

F τ
sm,sl

. (18)

Fig.13 and Fig.14 show the mean conditional sojourn time for the Stag-Hunt and Snowdrift
games, respectively, in a population of size 5. For the Stag-Hunt game, the payoff matrix we
have (a, b, c, d) = (2.1, 0.05, 1.5, 0.1). With no time delay, the smallest conditional sojourn
time is when there are two mutants in the population. As the time delay increases to 10,
which corresponds to the largest fixation time as seen in the right panel, the conditional
sojourn time for two mutants increases. On average, the conditional sojourn time at τ = 12
is higher than for other time delays, matching the highest fixation time. This suggests τ = 10
is a critical value where the process spends more time in transition states for N = 5. For a
sufficiently large delay (here τ = 100), where the fixation time converges to a constant, the
conditional sojourn time decreases as the number of mutants increases, so that the process
spends a small fraction of time in states with more mutants. Compared to the case without
time delays, τ = 100 has a much smaller conditional sojourn time in states with four mutants.
In other states, the conditional sojourn times are almost the same for τ = 0 and τ = 100.
This leads to a lower fixation time for τ = 100 compared to τ = 0.

In the Snowdrift game, the results are the reverse of those for the Stag-Hunt. Using the
payoff matrix (a, b, c, d) = (2.1, 1.1, 3.0, 0.1), the largest conditional sojourn time on average
occurs when there are two mutants. This time decreases as the time delay increases from 0
until the critical delay of 10 and then increases again. On average, τ = 10 has the smallest
conditional sojourn time in all states, matching the lowest fixation time. In contrast to the
Stag-Hunt game, for a sufficiently large delay, the conditional sojourn time increases as the
number of mutants increases.

6 Discussion
Understanding fixation processes is vital for analyzing evolutionary games in finite populations.
Two important metrics - fixation probability and time - have received significant research
attention across various evolutionary game models [28–37]. Most previous models frequently
assume that fitness instantaneously adjusts according to the current population state and
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Figure 14. Conditional sojourn time for the Snowdrift game in a population of size 5 for
different values of the time delay. The right panel shows the fixation time as the delay
increases. The payoff matrix we have (a, b, c, d) = (2.1, 1.1, 3.0, 0.1)

payoffs [28–51]. This assumption of immediate fitness determination may not reflect reality
and most of real phenomena exhibit temporal delays. Therefore we have investigated the
intricate influence of time delays on mutant fixation in evolutionary games.

Previously, researchers have studied the effect of time delays in deterministic replicator
equation models [54–64]. They have been incorporated in two different ways: first, by
considering only the payoffs at time t coming from time t − τ in the past [54, 55]; and
second, by allowing individuals born in the past to replicate now based on past payoffs [56].
These studies have focused on how time delays impact the existence and stability of interior
stationary states. Under the first approach, sufficiently long delays can generate limit
cycle oscillations after a supercritical Hopf bifurcation [54,55]. Under the second approach,
strategy-dependent delays can shift the locations of stationary states to disfavour delayed
strategies [56]. However, the impact of time delays on fixation dynamics has remained an
open question.

Our study extends the investigation of time delay effects from replicator dynamics to
the Moran birth-death process, which represents a shift in perspective. While both models
are used to study evolutionary dynamics, the Moran process operates on finite populations
and captures stochastic effects that are particularly relevant in small populations, which
are common in real-world scenarios. This individual-based approach allows us to examine
phenomena such as fixation probabilities and times, which are not directly accessible in the
deterministic replicator dynamics framework. [28–32]. The Moran process has widespread
applications, particularly in biology, where understanding the fate of mutations (such as in
cancer) is of paramount importance.

This study provides a more realistic model of how historical interactions influence current
fitness and strategy adoption in social dilemmas. By examining how lags affect the spread
and fixation of strategies in populations, the research offers deeper insights into the emergence
and stabilization of cooperative and competitive behaviors. This approach not only enriches
the theoretical framework of evolutionary dynamics but also has potential applications across
various fields, from biology to economics, where time-dependent interactions significantly
impact outcomes.

Here we employed a well-mixed population model where individuals adhere to one of
two strategies, with payoffs contingent upon their strategic choice and the prevalence of
strategies [16]. Initially, a solitary mutant individual with strategy A emerges amidst a
population of residents employing strategy B. At each discrete time step, an individual
reproduces in proportion to its payoff, randomly replacing another individual [15, 16]. In
the absence of a time delay, reproductive fitness is determined solely by the number of
mutants in the current state [15,16,29,42,65,66]. However, when a time delay τ is introduced,
reproductive fitness becomes contingent upon the population state τ steps back in time.

Generally, both strategies’ fitness depends on the frequencies of the strategies. When a
mutant has relatively higher fitness in the population, it has a greater chance of becoming
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fixed. When we add a time delay to the model, it changes the relative fitness of mutants
and residents because looking at past strategy frequencies can raise or lower fitness based
on the payoff matrix. In the Stag-Hunt game, a mutant adopting strategy A experiences
a greater reward when collaborating with fellow A mutants compared to interacting with
B residents [9]. On the contrary, residents sticking to strategy B receive the same payoff
regardless of whether they play with A or B strategies. As the A mutant population expands,
they reap enhanced benefits by coordinating with each other, boosting their payoff (and
fitness), consequently favouring mutant fixation. However, introducing a time delay disrupts
this advantage by basing mutant reproduction on a past state where A mutants were less
prevalent. This lagged payoff is lower than the real-time payoff, hindering A mutants’ ability
to reproduce and thrive. Notably, this time delay does not affect B residents’ payoff. As a
result, the effective payoff for A mutants diminishes, leading to a reduced fixation probability.

In contrast to the Stag-Hunt game, in the Snowdrift game, both A mutants and B
residents attain higher payoffs from coordinating with A mutants [6, 71]. As the time delay
increases, both strategies interact more with B residents, reducing their payoffs. However, A
mutants maintain a superior effective payoff compared to B residents, enlarging the fitness
ratio ( figi ) beneficial to mutants. Thus, unlike the Stag-Hunt, lengthening the time delay
in the Snowdrift game enhances A mutants’ fixation prospects. In the Prisoner’s Dilemma
game [7, 8], the cooperator and defector strategies obtain higher payoffs when playing with a
cooperator. When the initial mutant is a cooperator, increasing the time delay leads to a
decrease in the effective payoff of both strategies for reproduction. However, the effective
payoff for the cooperator from the past is smaller than for the defector, so the fixation
probability decreases. When the initial mutant is a defector, although both strategies get
more payoff when fitness comes from the past due to playing with more cooperators, the
ratio of fi

gi
can be smaller or bigger based upon the elements of the payoff matrix. Thus, the

time delay can decrease or increase the fixation probability according to how much better it
is to play with more cooperators for mutants and residents.

In general, introducing a time delay alters the effective payoffs that both mutant and
resident obtain for reproduction, impacting the fixation probability. A time delay tends to
reduce the fixation probability if it reduces the relative payoff advantage of the mutant over
the resident ( figi ). It tends to increase the fixation probability if it enhances this comparative
advantage. The key factor is the relative change in payoffs for mutant versus resident resulting
from the delay. In summary, there are three scenarios where the time delay reduces the
fixation probability:

• If it decreases the mutant’s payoff but increases the resident’s payoff

• If it decreases both payoffs but the resident’s proportionately less than the mutant’s

• If it increases both payoffs but the resident’s proportionately more than the mutant’s

Conversely, there are scenarios where the time delay increases the fixation probability:

• If it increases the mutant’s payoff but decreases the resident’s payoff

• If it increases both payoffs but the resident’s proportionately less than the mutant’s

• If it decreases both payoffs but the resident’s proportionately more than the mutant’s

We also have examined the joint effect of a time delay and population size on fixation
probability in stag-hunt and snowdrift games. Previous work showed population size can
increase fixation probability in some games [36]. Here, in stag-hunt games, increased
population size decreases fixation probability regardless of time delays, although time delays
affect smaller populations more. In contrast, in snowdrift games, increased population
size increases fixation probability. However, time delays affect small and large populations
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differently: bigger delays help mutant fixation in small populations, while smaller delays help
in large populations.

Fixation time has been less studied in past literature. This measurement can vary
substantially depending on the model used and the structure of the population [34,49,67]. In
some cases, fascinating behavioural patterns may emerge related to fixation time. The effect
of time delays on fixation times varies across the three studied games. In the Stag-Hunt game,
as time delays initially increase, fixation times grow longer, peaking and then decreasing
after a critical time delay point. Analyzing the conditional sojourn time (the duration the
process stays in each state before fixation), we see the process lingers mostly in states with
few or many mutants in this game. However, the process spends more time in intermediate
states as delays rise until reaching a peak, then declining. In contrast, the Snowdrift game
demonstrates the opposite pattern – fixation times decrease and then increase again after a
critical delay point. Here, conditional sojourn times in intermediate states dramatically fall
with longer delays until the minimum fixation time is reached. Meanwhile, time delays have
little influence on fixation times in the Prisoner’s Dilemma game, though there is a slight
increase then decrease similar to the Stag-Hunt game.

Our findings suggest that incorporating time delays into evolutionary game dynamics
introduces novel and potentially significant effects. While our study focused on scenarios
with uniform time delays for both mutant and resident strategies, further investigations
are needed to explore cases where the time delay is strategy-dependent. Additionally,
our exploration of the Bd update rule, where birth is influenced by fitness and a time
delay, highlights the potential of alternative update rules, such as birth-Death, death-Birth,
Death-birth, and imitation, to unveil distinct time delay effects. Moreover, our analysis
of well-mixed populations without structure provides a foundation for future studies in
structured populations, including line graphs, star graphs, and more complex graphs such as
scale-free and random graphs. Examining strategy-dependent time delays across structured
populations represents a promising direction for future research on time delays in evolutionary
games.
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51. Mohamadichamgavi J, Miȩkisz J. 2023 Effect of the degree of an initial mutant in
Moran processes in structured populations. arXiv preprint arXiv:2306.06407.

52. Wu Q, Tian T. 2016 Stochastic modeling of biochemical systems with multistep
reactions using state-dependent time delay. Scientific Reports 6, 31909.

53. Milton JG. 2015 Time delays and the control of biological systems: An overview.
IFAC-PapersOnLine 48, 87–92.

54. Yi T, Zuwang W. 1997 Effect of time delay and evolutionarily stable strategy. Journal
of theoretical biology 187, 111–116.

55. Alboszta J, Mie J et al.. 2004 Stability of evolutionarily stable strategies in discrete
replicator dynamics with time delay. Journal of theoretical biology 231, 175–179.

56. Miękisz J, Bodnar M. 2021 Evolution of populations with strategy-dependent time
delays. Physical Review E 103, 012414.

57. Iijima R. 2012 On delayed discrete evolutionary dynamics. Journal of theoretical biology
300, 1–6.

58. Ben-Khalifa N, El-Azouzi R, Hayel Y. 2018 Discrete and continuous distributed delays
in replicator dynamics. Dynamic Games and Applications 8, 713–732.

59. Wang Y, Meng X. 2023 Evolutionary game dynamics of cooperation in prisoner’s
dilemma with time delay. Mathematical Biosciences and Engineering 20, 5024–5042.
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