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ABSTRACT

This thesis examines the problem of software reliability growth: 
how to measure it and how to know that the measures (predictions) are 
accurate.

Models in continuous time (i.e. complete inter-event time data) and 
discrete time (i.e. counts of numbers of events in successive 
observation periods) are considered. Several of these models are new, 
or are new versions of existing models.

Several statistical tools are presented which will allow a user of 
the models to analyse their respective merits (predictive accuracy) on a 
particular data set. Examples of the use of these tools on the 
predictions from several models on several real data sets are 
presented. The models perform with variable accuracy, which
suggests that no model can be trusted to be of universal usefulness. 
The techniques presented here, then, form the beginnings of a tool-set 
which will enable a user to obtain reliability predictions for a 
particular context, and know that they are accurate.
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CHAPTER I

INTRODUCTION

1.1. Background

Software reliability is defined as the probability of failure-free 

operation (of a software component or system) in a specified 

environment for a specified time. A failure is defined as an

unacceptable departure of program operation from requirements. A 

fault is the software defect that causes a failure. The foregoing 

definition of software reliability is an operational one, it has been 

adopted because it offers the greatest utility to software engineers and 

managers, since it directly measures the impact on the user of failure 

of a system [Musa, 1980al.

Some of the models described here involve estimation of the 

number of residual faults in the software. Although the reliability is 

dependent upon this number, we shall show that the dependence is a 

complicated one and that no simple conclusions can be drawn about 

reliability from estimates of the number of remaining faults. We shall 

emphasise that it is the reliability itself, rather than such intermediate 

measures as fault-count, which are of importance.



The concern in this thesis will be exclusively with the 

measurement of software reliability. Although problems associated with 

the achievement of reliability are of immense importance, they will not 

be addressed here.

There is now a wide, and growing, acceptance of the importance of 

software reliability measurement. There are three main areas in which 

these techniques will be useful [Musa, 1980a, and 1980b].

Firstly, software reliability measures can be used to evaluate 

software engineering methodology. The difficulty of distinguishing 

between good and bad new methodology has led to a general resistance 

to change on the part of software managers and software engineers. 

Software reliability measures offer the promise of establishing at least 

one criterion for evaluating this new technology.

Secondly, a software reliability metric which can be established 

from actual test data on a single software product offers the possibility 

of evaluating status during the test phases of a project, and when the 

final product is shipped to a customer.

Finally, software reliability can be used as a means of monitoring 

the operational performance of software and controlling changes to 

software. Since a change usually involves a degradation of reliability, 

a reliability performance objective can be used as a means for 

determining when software changes will be allowed and perhaps even 

how large they can be.

- 10



Software reliability will often be achieved at the expense of some 

other characteristic of the product (program size, run time or response 

time, maintainability,....etc.) or the process of producing the product 

(cost, resource requirements, schedule,....etc.). A measurement

technology is a vital prerequisite for making intelligent trade-offs in 

these areas.

The particular software reliability measurement problem to be 

considered in this thesis is the following. A system contains a certain 

number of faults, each of which eventually manifests itself at some time 

by causing a system failure. The system has to be redesigned in 

order to remove the cause of failure, i.e. to fix the fault which caused 

the failure. The system reliability will probably improve and the 

system should show reliability growth, at least in the long term.

Littlewood (1979a) treats the software failure process as a renewal 

process in continuous time, the successive renewals representing 

successive failures of the software. He assumes, for simplicity, that 

repairs are instantaneous. Such a process can be characterised either 

in terms of its successive inter-event times, tx, t2,....tj_1, or via the 

number of events in fixed time intervals n1(T1), n2 (t 2 ),....nj_1 (Tj-j. )*.  

Reliability growth would show itself in such data set by, for example, a 

tendency for the {tj} sequence to be stochastically increasing. A user 

would be interested in using such a data set to predict future failure 

behaviour of the system being studied. These predictions will be 

statements about future (unobserved) random variables.

* t will be used instead of t  later in Chapter III.

- 11



Notice that the problem is difficult from a statistical point of view 

because of its intrinsic non-stationarity. It is precisely the structure 

of the reliability change which is of interest.

A user may express his predictions in various forms, depending 

upon his particular application. Examples are the reliability function 

Rj(t) ■ p(Tj>t), mean time to failure (MTTF) and rate of occurrence of 

failures (ROCOF), all of which may be calculated for the current or a 

future time. However, in all cases the problem is one of describing 

future (Tj,T|+1,....) from the past (tx,t2,.. ••tj_1) or future (Nj(Tp, 

Ni+1(Ti+1),...) from the past (n1(T1), n2(T2),....nj_1(Ti_1)). A prediction 

system to carry out this task comprises [Abdel-Ghaly, Chan and 

Littlewood, 1985a and 1985b]:

1. the probabilistic model which specifies the distribution of the Tj’s 

(Nj(Tj)’s) conditional on a (unknown) parameter 6;

2. a statistical inference procedure for e involving the use of 

available data (realisation of Tj’s (Nj(Tj)’s));

3. a prediction procedure combining (1) and (2) to allow the user to 

make probability statements about future Tj’s (Nj(Tj)’s)).

Of course, the model is an important part of this triad and it 

seems unlikely that good predictions can be obtained if the model is 

not in some sense close to reality However, a good model is not

sufficient. stages (2) and (3) are vital components of the prediction 

system. In fact, disaster can strike at any of the three stages 

(Abdel-Ghaly, Chan and Littlewood, 1985b].
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Analysing each of these three components separately is not 

possible for several reasons. In the first place, even the simplest 

models are too complicated for a conventional "goodness of fit" 

analysis of the model (stage 1 of the triad). The properties of the 

estimators of unknown parameters (stage 2) cannot be obtained exactly. 

Even the usual asymptotic theory of maximum likelihood breaks down in 

many models because the number of faults in the software (assumed 

finite) gives an upper bound to the sample size. For these reasons, a 

major part of the thesis concerns methods by which the accuracy of 

the predictions can be analysed directly.

1.2. Outline of the thesis

As stated earlier, this thesis will be concerned only with the 

software reliability growth_problem. Other issues, such as structural 

problems, explanatory variables, costs, etc., will not be considered here.

The first aim of this study is to investigate the predictive ability 

of software reliability models. Thus in chapter II we describe some 

reliability growth models which can be used to analyse the inter-failure 

time data. These models are: Jelinski-Moranda model [Jelinski and 

Moranda, 19721, Bayesian versions of this model [Langberg and 

Singpurwalla, 1981; and Littlewood and Sofer, 1981], Littlewood model 

[Littlewood, 19811, its Bayesian version [new work], Littlewood-Verrall 

model [Littlewood and Verrail, 1973], Keiller-Littlewood model [Keiller, 

Littlewood, Miller and Sofer, 1983a], Duane model [Duane, 1964 and 

13 -



Crow, 1977] the non-homogeneous Poisson process model for both 

Jelinski-Moranda and Littlewood models [Goel, 1980; Goel and Okumoto, 

1979 and Littlewood, 1984] and finally the Weibull order statistic model 

[new workl.

The second objective is to generalize these models (the Bayesian 

versions of Jelinski-Moranda and Littlewood models apart) to cope with 

discrete and summarized software data. This work, most of which is 

new, forms chapter III of the thesis.

Thirdly, in chapter IV we describe some statistical tools for the 

analysis of the accuracy of predictive quality. Although a

considerable number of models have been developed during the past 

two decades, comparisons have tended to concentrate merely on 

analyses of the underlying assumptions. The intention in this thesis 

is to compare the predictive accuracy of the complete prediction 

systems.

Finally, the performance of all software reliability growth models 

considered in this research, as well as the statistical tools, will be 

examined for several sets of real failure data.

The final chapter contains conclusions and a summary of the 

current usefulness of these techniques together with a discussion of 

future research directions.
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CHAPTER II

INTER-FAILURE TIME MODELS

2.1. Introduction

In this Chapter we shall discuss reliability growth models in which 

operating time between successive failures is a continuous random 

variable. When a fault manifests itself, by causing system failure, it 

is assumed that a repair attempt is made. The system is assumed to 

be returned to its operating environment immediately, i.e. we shall 

ignore repair times. Some of the models described here are well 

known and have been fairly widely used [Jelinski and Moranda, 1972; 

Littlewood and Sofer, 1981; Littlewood, 1981; Littlewood and Verrail, 

1973; Keiller et at, 1983a; Duane, 1964; and Crow, 1977]; others are new.

In sections 2.2. and 2.3 we shall consider the early model 

proposed by Jelinski and Moranda (1972) and the Bayesian versions of 

this model due to Littlewood and Sofer (1981) and Langberg and 

Singpurwalla (1981).

In sections 2.4 2.5, 2.6 and 2.7, Bayesian models will be 

considered for which the program is assumed to have faults of

different size (i.e. rates). A distribution is assumed for the failure 

rate, corresponding to the ith inter-failure time random variable T|. 

Details of this work can be found in Littlewood and Verrail (1973), 

Littlewood (1981), and Keiller, Littlewood, Miller and Sofer (1983a).
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Non-homogeneous Poisson process models are considered in 

sections 2.8, 2.9 and 2.10. The earliest of these comes from an

empirical observation of Duane (1964), which has been developed by 

Crow (1977). The others derive their rate functions by analogy with 

the models considered in previous sections.

Finally, in section 2.11 a new model is proposed based upon order 

statistics of Weibull random variables.

2.2. Jelinski-Moranda Model (JM)

This model seems to be the earliest one developed specifically for 

software reliability growth, although Shooman (1972) introduced a 

similar model almost contemporaneously. Jelinski and Moranda (1972) 

assumed that a program begins life with N faults, each having the same 

rate <t>. If we label the faults arbitrarily, it is assumed that fault i 

will show itself (by causing a failure), and be removed, after a time Xj, 

independently of other faults. The observed stochastic point process 

of failures is thus characterised by the order statistics of the random 

variables, , X2>«*.«X^.  That is, the first failure of the system will 

occur at time Tj = X^jj, and in general the inter—failure time random 

variables (T|) are given by:

Ti = x(i) - x(i-i) <i=1»2......n) (2.2.1)

- 16 -



(2.2.2)

Alternatively, it is easy to see that when (i-1) failures have 

occurred, and hence this number of faults have been removed, the rate 

of occurrence of failures (ROCOF) of the system is (N-i+i)4>. It follows 

that the probability density function of Tj is:

fj(q) = \e _Xiti

where Xj = (N-i+i)<t>

The likelihood function is:

L(ti,t2,..........tn/N,0)

if the realisation terminates with a failure.

In order to get the maximum likelihood estimate (MLE) of (N,<t>), the 

natural logarithm will be taken for equation (2.2.3) which gives:

P(t1,t2,....,tn/N,4>) = log(L(t1, t2,... tn/N,<t>)]

(2.2.3)

n n
= Tilog(N-i+i)+ n log$ - 4> E^N-i+lHi (2.2.4)

Littlewood and Verrall (1981) showed that this likelihood function

will have a unique maximum at finite N and non-zero <t> if and only if:

(2.2.5)

- 17



Otherwise the likelihood has its maximum at finite X = N<t> for 

infinite N. Intuitively this means that the model can only be sensibly 

used when reliability growth is present in the data (Condition (2.2.5) 

states that the least squares regression line of tj on i has positive 

slope, i.e. that the inter-failure times are tending to increase). If 

there is evidence of reliability decay, the best the model can do is 

suggest fault-fixes have no effect, i.e. that the inter-event times are

i.i.d  random variables. Littlewood and Verrall (1981) recommend that 

this test be carried out first, and only if the data set passes should 

the MLE for (<t>,N) be found in the usual way by differentiating (2.2.4) 

with respect to 0 and N giving:

0 n

E (N-i4-l)ti 
i=i

and

n 1£ ----- £--------
1=1 (N-i+1)

(2.2.6)

(2.2.7)

n
n .E tj

1=1 1
0n

TjN-i-ilti

- 18 -



The solution of the last equation can be found numerically, and <t> 

calculated from (2.2.6). Alternatively (2.2.4) could be maximized

numerically using an optimization routine to find the value of N, <t>.

The MLE of (N,<t>) will be used to predict future failure behaviour 

of the system. For example, if we were interested in the time to next 

failure, Tn+1, after having seen (and removed) n faults, we could find 

the cdf, pdf, rate function, mean, median, etc.

The predictive pdf of Tn+1 is:

= (N - n)i exp{-(N-n)4>tn+1} (2.2.8)

and the predictive cdf is given by:

F(tn+i) - 1 - exp{-(N-n)itn+1} (2.2.9)

From the last two equations we can get the rate function using its 

definition I Barlow and Proschan, 19751:

(2.2.10)
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The MTTF is:

_L___  (2.2.11)
(N-n) 0

The median of the predictive distribution is:

log.?- (2.2.12) 

(N-n) 0

This model has been criticised for two related reasons: that the 

sequence of successive rates for the system is deterministic, and that 

fault rates are assumed to be equal. We shall discuss this issue in 

more detail in Chapter V.

2.3. Bayesian Jelinski-Moranda Model (BJM)

Two ways have been suggested of doing Bayesian analysis of the 

JM model. The direct method assumed a prior for N or 0 singly, or 

for (N,0) jointly, and was proposed by Langberg and Singpurwalla 

(1981). The other method involves a reparameterisation to (X,0), where 

> = N0. This approach by Littlewood and Sofer (1981) involves a 

slight modelling change. Both approaches will be described here, but 

our data analysis in later sections will only use the second.

2.3.1. Langberg-Singpurwalla Method

Langberg and Singpurwalla assume N,0 are a priori independent 

and suggest three different cases.

- 20 -



Case 1: 

parameter p:

It is assumed that N has a Poisson distribution with

(2.3.1)

and <t> is degenerate at known 0.

For the data vector tx ,t2,....tn, the likelihood function,

L(tt ,t2,....tn/N,<t>) is given by (2.2.3), so using Bayes theorem the

posterior probability function of N is given by:

p*(N/t 1$...tn,0) = cL(t1,t2,....tn/N,0)p(N)

where

C-1 =^n L(t1,t2,....tn/N,<t>)p(N)

n
n

= (0M)n exp{-/J-0Ti (n-i+i)t£ + pe 1 }

It follows that the posterior distribution of the number of

remaining faults is Poisson:

tn,^)p*(N-n/tx,

n

exp{-p e (2.3.2)}

- 21 -



The conditional reliability function is:

R(t/N,<t>) = 1 - F(t/N,<t>) = exp(-(N-n)0t)

The posterior reliability function is:

R*(t/t n..........tn<t>) = P(Tn+1> t/t1,....tn,0)

=N5nR(t/N,0)p*(N-n/t 1,...........tn,<t>)

= exp{-p e"0Tn(l - e~0t)} (2.3.3)

n
where t _ = ,E t-;n 1=1 1

We shall return to this case in section (2.8) where we consider the

non-homogeneous Poisson process analogue of the JM model.

Case 2: It is assumed that N is a known value and 0 has a gamma

distribution with scale parameter fl and shape parameter a, i.e.:

f (<t>)
l& .a-l ~/30= zr- 0 efa (2.3.4)

It follows that 0 has a gamma posterior density:

f/3 +.E

..tn,N) =
t (N-i+l)til (n+a)

^n+a-1 --------- 0

.exp{-0('/3 (N-i+i)t^)} (2.3.5)

- 22 -



The posterior reliability function is:

R*(t/t 1,....tn,N)

JB + Ji(N-i+l)ti

+^£1(N-i+i)ti +(N-n)t

(n+a)
(2.3.6)

Case 3: It is assumed that N has any specified prior distribution,

p(N), and <t> has a gamma distribution as above, with N,<t>, independent:

p(N,0)
a-1 -/30 

e p(N) (2.3.7)r«

It follows that the posterior joint distributionof (N,0) is given by:

[0 +iE1(N-i+i)ti]n+a

f (n+a)
n+a-1

0

.exp{-0(/3 + (N-i+1 ) t-[)}

(2.3.8)

The problems with this method are two-fold. In the first place, 

Cases 1 and 2 unrealistically assume that the user knows the true 

value of one of the parameters. Secondly, the complete version, Case 

3, results in an intractable joint posterior distribution (2.3.8). A 

quasi-Bayesian approach to the first problem might be to use the 

"maximum likelihood" estimate of the unknown parameter based on the 

marginal posterior distribution. It may also be possible to approximate 

to the infinite sum in the denominator of (2.3.8). We shall, instead, 

use the following approach.
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2.3.2. Littlewood Sofer_Method

Littlewood and Sofer (1981) suggested a reparameterisation of the 

JM model, to (X,4>). Here X is taken to be the initial rate of

occurrence of failures. At the first repair the rate becomes X~<t>, and 

subsequently drops to X-2<t>, X-3<t>,  This involves a slight modelling 

change, since it is not assumed that X is an integer multiple of <t>: the 

last repair removes a rate which may be smaller than <t>. The

likelihood is:

L(t1,t2, . . . .tn/X,<t>) =ini(^~(i~i)<t>)exp{-Ti(X-(i-i)0)ti}

(2.3.9)

It is assumed that X and <t> are independent and each has a gamma

prior distribution:

and

f(X)
Cb>b-1 

rb

f(<t>)
gW"1

rf

(2.3.10)

(2.3.11)

The parameters c, b, g and f, which are positive, are chosen by 

the user. For reasons of mathematical tractability, b is restricted to 

integer values. Littlewood and Sofer (1981) use the improper,

non-informative prior for X and P, by letting c,g->0 and f=b=l:

f(X,$) = 1 (2.3.12)
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If we define*.

n n n+i
.IT (X-i) = .E a; n x 1=1 i=o J-’11

(2.3.13)

where:

aJ,n n aj-i,n-i + aj,n-i

1 i» ai,1 ’ ao, n (2.3.14)1 ¥ n

then from (2.3.9) and (2.3.12) we can get the posterior joint

density function of X,<t>:

n n

f*(X,0/t lt....tn)

Ya.
J=O J,n-1 
rFI-----------
Ta. , j—o j,n-i

expf-V^ti + 4>i51(i“1)ti}

(n-j)!
n-j+1

(2.3.15)

for X > (n-1 )<t>.

and zero otherwise.

If we are interested in the current reliability immediately after 

the occurrence of the n*-h  failure (and removal of n^h fault) we proceed 

as follows:

R(tn+1/X,0) = P(Tn+1>tn+1/X, 0)

= exp(-(X-n<t>)tn+1} if X > n<D

=1 if (n-1) < X < n$ (2.3.16)
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The posterior reliability function is then, using (2.3.15) and

(2.3.16):

i.e. R(tn+1/t1,....tn) (n-j:H J!

Ml I"1
n-i

+ ,E a .,]=o j,n-i
( n-j)! J!

[A-.iMl |J+1

(2.3.17)

(2.3.18)

At each stage there is a finite probability that the program is

"perfect", i.e. that the last fix removed the only remaining fault.

After the n^h fix this probability is:

(2.3.19)

where c_1 is given by (2.3.18).

The posterior cdf of Tn+1 can be obtained from (2.3.17), and so by 

differentiation we obtain the posterior pdf:
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Then from (2.3.20) and (2.3.17), by division, we get the posterior

rate function:

t n+i' 1
n

= .E a . -J=o j,n
(n-j+i) ! j! 

n-j+2

n
.E a. • J=o j,n

(n-j)! j!
n-j+if* n+1+i?ifi]

n-i
- .E a.j=i j,n-i

________ (n-j)! j!

[A'.] n-j+i

(n-j)! j! (2.3.21)

and if we let tn+1-»0 in (2.3.21), we get the posterior ROCOF evaluated 

at the epoch immediately following the n^h fix:

ROCOF

n
.E a ..1=0 j,n

rFI
•E a. , J-o j,n-i

IA-.1
(n-j+i)! j! 

n-j+2

(n-j)! j! (2.3.22)
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It is easy to see that the MTTF does not exist because the 

posterior pdf of Tn+1 is a linear combination of Pareto densities, one of 

which has a parameter equal to one. However, we can define the

"instantaneous mean time between failure" (IMTBF) as the reciprocal of 

current ROCOF.

Although some of the expressions for reliability metrics are 

complicated, all are available in finite closed forms. This results in a 

more efficient algorithm than the search techniques required for ML 

estimators in some other models.

2.4.__ Littlewood Model (L)

A major criticism of the JM model (and its Bayesian variants) is 

that it assumes all faults to be of equal "size" (rate). This seems 

extremely implausible. Littlewood (1981) has suggested that if the 

fault rates are unequal there will be a tendency for earlier fixes to 

have greater effect than later ones. He proposed a model in which it 

is assumed that the program starts life with N faults, each of them 

with a different failure rate Thus at stage i, when (i-1) faults

have been removed, the pdf of Tj is:

) = expl-^jt-J (2.4.1)
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where

are the (non-identical) rates

of the remaining faults.

The novelty of this approach is that the <t>’s are regarded as 

realisations of random variables. The occurrence rates of the N faults 

with which the program begins life can be regarded as i.i.d. random 

variables, $■, from a gamma distribution:

f(<t>) = 1 exp{-3<t>} (2.4.2)

Faults which show themselves earlier in the debugging will tend 

to be the larger ones, thus at later stages of the debugging the 

remaining faults will tend to be smaller. This can be formalised by 

considering the distribution of the magnitude of a fault remaining when 

time t  has elapsed. Using Bayes theorem, this can be shown to be:

f(<t>/fault has survived for time t )

(2.4.3)

i.e. a gamma (a,/?+T) distribution. The average size (occurrence 

rate) is now oc /(/3+t ), smaller, as expected, than the a//3 at time zero.
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Considering now the rate of occurrence of failures for the 

program, it is clear that \ is the sum of (N-i+1) independent random 

variables, each with gamma density (2.4.3). Thus the posterior density 

of \ is gamma ((N-i+1 )a,/3+T):

(2.4.4)

Then mixing (2.4.4) and (2.4.1), and integrating for we get the

pdf of Tj as:

f(ti/Ti_i,/3,a) (N-i+i )oc[/3+

[/*+  Ti_1 +

, (N-i+i)oc
Ti — 1J____________

(N-i+i)a+i
(2.4.5)

which is a Pareto distribution.

This result can be obtained from the order statistic formulation of 

the model. If the times to detection (and removal) of the faults are 

the conditionally independent exponential random variables, Xj, where Xj 

has a rate <J>j, with gamma (a,£) and independent of the other rates, it 

is easy to see that the unconditional distribution of Xj is Pareto

(/S+Xi)^1’ independently for different XT.
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The observed inter-event times are then, again, the spacings 

between the order statistics It is interesting how this parallels

the exponential case: the spacings between o.s of i.i.d. Pareto are

themselves Pareto, (2.4.5), but not independent (because the term

in (2.4.5) is the sum of previous tj’s).

The likelihood function, assuming the realisation terminates in a 

failure is:

Lft1,t2,.. . .tn/N,a,£) =ifi1f(ti/Ti_1,N,a,^3)

n (N-i+i)a(/3 +t .
R-------------------------

(13+ THHj)

(N-i+i)a

(N-i+i)a+i (2.4.6)

with log likelihood:

5(t1,t2,..........tn/N,a,£) = log[L(t1,t2. . . .tn/N,a,/3)]

n
= iE1log(N-i+i) + nloga + Na log/3

-(a+i )Ti log(^+Ti_1+ti)-(N-n)a log(^-Tn_1+tn) (2.4.7)

The MLE of a can be found analytically as a function N, /3:

n--------- X------------------ ~-------------------------------------z------r- (2.4.8)
i51log( +Ti_1+tj) + (N-n)log( /3+Tn_1+tn)-Nlog/3

This can be substituted into (2.4.7), so that the numerical 

optimisation of the likelihood occurs in 2-space. Then these MLE N, £, 

a of N, 13, a can be used to predict the pdf and cdf for the next 

failure time by substitution in (2.4.5):
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and

(2.4.9)

' /3 -<- Tn __1 (N-n) a
J2 + Tn +tn+J

Then, using the last two forms, we can get the rate

tn+i
(N-n) oc

£ + Tn+tn+i

and tn+1 = 0 we get the current ROCOF:

ROCOF
(N-n)a

/*  + Tn

(2.4.10)

function at

(2.4.11)

(2.4.12)

The MTTF, E(Tn+1) is:

MTTF =
(N-n)a-1

Also the median is given by:

Median =
(2.4.13)
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Longer term prediction can be conducted by substitution into 

suitable conditional expressions.

2.5. Semi-Bayesian Jjittlewood Model (BL}

It is very hard to do a full Bayesian analysis for L model because 

of the role played by 3 in the density (and hence likelihood). For 

simplicity we assume /3 to be known in the following analysis and a MLE 

method will be used later to estimate it. The analysis will follow the 

similar one for the BJM model.

2.5.1. Lang ber g-S ingpurwallaMethod

Case 1: Let N have a Poisson distribution with parameter U (2.3.1) and 

« a known value. Then to find the posterior distribution of N, we have 

from (2.3.1) and (2.4.6):

[ju exp{-a log|---D^1+tn 

——j(N_n);

. exp{-/u exp^-a log

p*(N-n/t  . . . • tn,a, £) -

N-n

(2.5.1)

From (2.4.10) the reliability function R(tn+1) is:

x f £ + Tn l(N-n)a
R(tn+1/N,a,^,Tn) U + Tn + tn+i J (2.5.2)
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So the unconditional reliability function is, from (2.5.1) and (2.5.2):

R(tn+1/«,/3,Tn) = exp[-K {^“[l - ) (2’5‘3)

A full analysis related to this case will be given later in section 

(2.10) under the non-homogeneous Poisson process for L model.

Case 2: Let a have a gamma density with parameters y, 6, and N a

known value. Then the pdf of a is:

P(oc/y,e) exp{-©a} (2.5.4)

Then a has a posterior gamma density:

The unconditional reliability function is given by:

R(tn+1/t1,....tn,N,£)

6 ^g/N-i^Dlog ________________________

e +]+(N-n) 1Og{P7:tn±i_J

(2.5.6)
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^ase_3: Let a be gamma distributed (2.5.4), and N have any specified

Prior probability function p(N), and assume N,a to be independent. 

Again we can find the joint posterior for (N,a) in the following form:

p*(N,a/t 1,...tn,£) =
[e ^(H-i+x) 

r(n+y)

n+y

(2.5.7)

N! p(N) [e +.fi(N-i+l)logjr£+r4_i+t4 ll-(n+y) 
t 3 + Ti.JJ

oo , r ll-(n+y)
(N ’q?n (q-n)l p(N~q) L J J

Finally, as in section (2.3.1), this method is intractable and for 

that we shall, instead, use the following approach.

Littlewood-Sofer Method

The reparameterisation suggested by Littlewood and Sofer (1981) 

f°r the Bayesian JM model will be used here by letting X=Na and 4>=a. 

(N°te £ is assumed to be known). Then the probability density 

Unction of Tj in (2.4.5) can be rewritten in a convenient exponential 

form as:
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(2.5.8)= 0^*2+^ exp{-(>-0(i-1))log{^T

which produces the likelihood function:

(2.5.9)

Let be independent random variables with density functions

#iven by (2.3.10) and (2.3.11) respectively. For simplicity the

non-informative uniform distribution versions will be used here so the 

posterior probability density function of (>,$) is:

f *(>,  0/t j, . . . tn, /3) = c^Hx

(%-(i-1 )<►)]}

where

-1 =n-1 (n-j)! j!
-J = oaJ,n-i|-log^-|n-

and the a’s are given by (2.3.14).
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Al] the above is conditional on ft. A natural approach to

estimate P would be to find the unconditional joint density function of 

Tlr...Tn> However, the joint density function of (TlfT2) will be

improper because of the improper prior used for Instead, then,

we shall use the posterior joint density of T3,....Tn conditional on 

^i,T2 to find the MLE of /3. We proceed as follows.

Let n faults have been removed in (o,Tn). The probability

density function for Tn+1 will be:

(> -n<t>) 
^Tn+tn+i

f (tn+1/> ,<t> ,/3) expJ-(>-n$)log {^+T^++n^1"]}

(2.5.12)

Multiply (2.5.12) and (2.5.10), then integrate over with the

constraint »n<t>, which is the only condition for to exist.

The posterior density function of js:

(2.5.13)
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Then:

f*(t3,t4,...tn/t1,t2,/B)

n-i (n-j+i)! J*
j=oaj,n-i [10g^n-i+ixi]]n-J+1 [

n t (2-j )’ J-
in3(^Ti_1+ti)jEoaj,i rlog^j

Now, consider thewhich will be used in the following analysis.

reliability function Rn+1 (t/M.P). If the pdf of Tn+1 exists (that is if

but

= {/+;nT;t p~n*

Rn+1 (t/>, <t>,/?) = 1 if n<t>>»(n-i )<t>,

remembering that Tn+1 is not observed if ><n<t>, i.e. that the program is 

now perfect and the last fault has been removed in the n fix.

We can write Rn+i(t/M>0) as follows.

Rn+Ut/X’<t>’/3) = ‘

exp[~(> n<t>)log( 3 ?Tn }} X>n<t

1 (n-1 )0<X<n<t>
(2.5.15)
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Then from (2.5.10) and (2.5.15), the current posterior reliability

function will be:

r 2 (n-j)! j’
c .E a. -jlj=o j,n |

(n-j)! j!

Ht -L
(n-j)! j! 1

riw-ir) (2.5.I61

where c-1 is given by (2.5.11).

Thus we can obtain, for example, the probability that the program

is currently perfect, Po, which is:

(2.5.17)

The predictive cdf of Tn+1 is given by:

f n+i1 ’ * • • • 1 ~ ^n+1 i'/i'1 ’ • • • fn

Finally, to find the ROCOF, we can get first the posterior density 

function of A the rate function after n faults have been
*+Tn

removed. The posterior density function will be obtained by

transformation from (A,<I>) to (A,<I>) and integration over <I>:
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f(A/A>o,t,. . . .tn) =

n
.E a .J=o j,n

~n
.E a .J=o j,n

Then the ROCOF is given by the posterior mean of A.

Alternatively, it could be obtained from Rn+1 (t/tx,....tn):

ROCOF = - Rn+tiCt/t,..........tn)|t=o

Then the ROCOF is given by:

ROCOF = —
^Tn

n
.E a. r 
J=o '’’"[log

(n-j+1)! ,j!

(2.5.19)

where c-1 is given by (2.5.11).

The MTBF does not exist for this model (intuitively this is

obvious: there is always a finite probability Po that the program 

contains no more faults). We shall resort to use of IMTBF in later 

sections.
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2^6. Littlewood-Verrail Model (LV)

The full details of this early model are given by Littlewood and

Verrail (1973). They assume that T1,T2.... are the successive

inter-failure times and these T’s are independent and conditionally 

exponentially distributed:

f(ti/>i) = >iexp{->£tp (2.6.1)

It is assumed that Aj are independent random variables with

gamma (oc,'-p(i)) distribution:

fOi/a.+Ci)) = (2.6.2)

From (2.6.1),(2.6.2), and integrating over \, the pdf of Tj is:

That is, T1,T2,.... are independent Pareto distributed random 

variables with the same a, but different ^(il’s.

The function 4>(i) determines the form of reliability growth in the 

model. A parametric family is chosen by the user, and here we shall 

use:

4>(i,Z3) = 3i+i/32 (2.6.4)
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However, different functions have been used TKeiller, Littlewood, 

Miller and Sofer, 1983a]. It is easy to see that if *P(i)  is monotonically 

increasing, {AJ are stochastically decreasing and {Tp are stochastically 

increasing (reliability growth). Conversely, if T(i) is decreasing, {AJ 

are stochastically increasing and {Tj} are stochastically decreasing 

(reliability decay).

Now, if tx,....tn are the inter-failure times, terminating in a failure, 

each has a density given by (2.6.3) and so the likelihood function is:

n n r^(i)1aL(t1>...tn/a,«P(i)) = a”ini (2.6.5)

with

P(t1,.... tn/oc,'+'(i)) =logCL(t1,.. .tn/a,4*(i))]

n
= n log a + a logC'+’Ci)3

-(oc+i) E Jog C'k(i)+til (2.6.6)

The MLE of a is:

a = rT7--------7-------“-------------Z--------T (2.6.7)
[logr^i^tiZHiogrTCi)}]

The parameters of Tli,/3) are found by maximising (2.6.6) 

numerically with respect to /31T^2 and these estimates of the parameters 

will be used to predict the pdf and cdf of Tn+1 by substituting in 

(2.6.3):
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f(tn+1/a,^(n+i))
«r^(n+i)JCT

C4'(n+D+tn+1na+1
(2.6.8)

- - PWn+i) 1F(tn+i/a,+(n41) 1 [^(n+1)+tn+1J (2.6.9)

Then from (2.6.8) and (2.6.9), the rate function for Tn+1 is:

X(tn+1/a,4'(n+i))
______&_____
^(n+i)+tn+1

(2.6.10)

By letting tn+1 = 0, we get the current ROCOF, i.e.

ROCOF
a

ty(n+1)
(2.6.11)

The mean time to failure (MTTF) (if it exists) and the median are:

MTTF = ------ iff a > 1a - 1

and
1 /-

Median = <p(n+i)f(.5) a -12

(2.6.12)

(2.6.13)

2.7^ Keiller-Littlewood Model (KL)

This model is described in Keiller, Littlewood, Miller and Sofer 

(1983a). It is similar to the above model, except that the reliability

growth is induced via the shape parameter of the gamma distribution 

for the rate instead of the scale parameter as in LV. Thus the pdf of 

is rewritten as:

f(Xi?P(i),jB) = WT) xi exp(-^>^) (2.7.1)
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which implies that the Tj’s are independently Pareto distributed.

f(ti/^(i),^3) (2.7.2)

•'P(i) is a parametric family chosen by the user.

Here we shall use:

W i , a)
1

+ ia2
(2.7.3)

For this model it is easy to see that monotonically decreasing <P(i) 

implies stochastically decreasing (Aj), hence stochastically increasing 

(T|), i.e. reliability growth. Conversely increasing 4>(i) implies

reliability decay.

In order to find the MLE of the parameters, let t1,....tn be the

recorded inter-failure times for the first n failures, then the likelihood

function will be:

L(tx,. . . .tn/£,q>(i)) (2.7.4)

so

2(t1,....tn/M(i)) = logCKtj, . . . . tn/jB,<p(i)2

= i|ilog(4>(i)) + (log(/?) ] T^fi)

- E Mi) + l)log(^ti)
i=i
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We can obtain the MLE fi, ^(i) ' of /3, 4*(i)  by numerically

maximization. Substituting <P(i) into (2.7.3) we obtain the predictive

Pdf Of Tn+1:

f(tn+1/0>Y<n+t))
[mn+13 *(n+1)+1

(2.7.6)

and the predictive cdf:

F(t/jB,^(n+l) = Pr(tn+1<t)

1 _ Wn+i)
I/? + t.l

From (2.7.6) and (2.7.7) the rate function for the next failure time

distribution will be:

>(t) =
fr(n-n)

r/3 + tn
(2.7.8)

Letting t-0 in (2.7.8), we obtain the ROCOF.

The MTTF (if it exists) and Median are given by:

MTTF * frn+ft-r" iff *(n+1) > 1

Median = A C(,5)1/*(n+1'-12
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2.8.__ Duane Model (D)

This model has been discussed widely in the literature: see, for 

example, Duane (1964), Finkelstein (1976), Braun and Paine (1977), Crow 

(1977), Crow (1979), Bruan and Schenker (1980), Littlewood (1984), and 

Ascher and Feingold (1984).

The model originally comes from an observation of Duane, that for 

hardware systems, the cumulative failure number approximates a power 

law in time. Crow (1977) added the non-homogeneous Poisson process 

(NHPP) assumption, taking a rate function of form

Several authors have misleadingly referred to this NHPP as the 

Weibull process because of the similarity of the rate function to the 

hazard rate of the Weibull distribution. This confusion between the 

rate of a stochastic process and the rate of a life-time distribution is 

discussed extensively in Ascher and Feingold (1984).

The intensity function has three possibilities, it is

decreasing when ft < 1, increasing when /3 > 1 and constant when £ = 1, 

corresponding to reliability growth, reliability decay, and constant 

reliability (simple Poisson process), respectively.
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It is easy to show that the pdf of Tj will be given by:

) = y exp(-yC(Ti_1+ti)/3-Tf_1J)

(2.8.1)

Now, if tlf....tn are the observed inter-event times for the n faults 

detected, the likelihood function is:

L(t,..........tn/x,/3) = XnZ3nCi?1('Ti_1+ti)/3-1:]

exp<-y(Tn_1+tn)0> (2.8.2)

where Tj_j is the total elapsed time until the fault (i-1) has been

fixed, i.e. Tj_, = T tj Taking logs:

n
Kt x,... tn/y, = nlogy + nlog£ + (/3-1) E logi (Ti_1+t|)

-y(Tn_1+tn)^ (2.8.3

afid the likelihood equations are:

«(t1,...tn/y,/3) = -(Tn-i+tn)^ = 0 (2.8.4)

Ip »(t,..........tn/y,ffl ® + E logfr^i+tj)

-/(Tn-j-in^ logfTn-j+tn) = 0 (2.8.5)
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It follows that the MLE’s of y,P are:

y = ----------------
<Tn-i+tn>

and

Various predictions about future behaviour can 

substitution of y,/3 into appropriate expressions, 

predictive density for Tn+1 is:

A A A

^(Tn+tn+l)^_1 exP<">^(Tn+tn+i)^ 

with cdf

A A A

F(tn+i/X»fo = 1 -exp<-/C(Tn+tn+1)£- rn^J)

From (2.8.8) and (2.8.9), the rate function >(tn+1)

A

^(tn+i) = X»(Tn+

(2.8.6)

(2.8.7)

now be made by

For example, the

Tn^J) (2.8.8)

(2.8.9)

for Tn+1 is:

(2.8.10)
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and when tn+i-*O,  we obtain the estimated curent ROCOF. Because the 

MTTF cannot be easily obtained in a simple form, we use instead the 

IMTBF (see section (2.11)), defined as the reciprocal of the ROCOF, 

Braun and Paine (1977). The median for Tn+1 is:

Median = T„ [(1 - }°^(^5) )l1 ] (2.8.11)

X Tn

It should be pointed out that the rate function of this NHPP has 

two minor disadvantages as a model of reliability growth: it is infinite 

at t = 0 and zero at t - °°. Clearly real systems will have neither of 

these properties: Littlewood (1984). However, it may be a good model 

for real behaviour for finite times.

2^9. Non-Homogeneous Poisson Process for JM Model (JMNHPP)

Goel (1980) proposed a NHPP variant of the JM model, arguing 

informally that the rate of detection (and removal) of faults should be 

Proportional to the number present. This reasoning suggests a rate 

function of the form /u( 1 - e_<,>t), but does not justify the NHPP 

assumption. A more satisfactory approach is to assume that N, the 

initial number of faults in the JM model, is a Poisson (m ) random 

variable. It then follows that the process is a NHPP with rate:

U(1 - e"* 1) (2.9.1)

- 49 -



The distribution of the i^h inter-event time, Tj, for this process, 

given that the (i-i)th event occurs at epoch, T|_lf is:

ftti/O.Ai) = A*  0 e-*̂ 1 1+tl^exp{-/Je X(1 - e 0tl )} (2.9.2)

Thus, if ti,...^ are the observed inter-failure times for the 1st, 

2nd,...and fault, the likelihood function is:

L(tx,... tn/A/,0) = ^”0° exp{-0 if1(Ti-i+ti)

-M(l - exp[-0(Tn_1+tn)])} (2.9.3)

80

n
2(tx,.... tn/AZ,0) = nlogA*  + nlog0 = 0^(Ti-i+ti.)

-AZ[1 - exp(-0(Tn_1+tn]) ] (2.9.4)

Then by maximizing (2.9.4) numerically with respect to ju,0 we get 

the MLE's AG 0, which can be substituted appropriately to obtain 

various predictions of future behaviour. The predictive pdf of the 

next inter-failure time, Tn+1, is:

^(tn-i/i^) = i 0 exp{-i(Tn+tn+1)

- h e"* Tn (1 - e~* tn+1)} (2.9.5)
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with cdf:

AAA A A .----(t) 4-

F(tn+i/^0) = 1 “ exp{-/J exp(-4>Tn)[l - e n+1]} (2.9.6)

and the rate function (hazard function):

X(t) = iu i exp(-i(Tn+t)}

The current ROCOF is:

M 0 exp{-$Tn)

and

IMTBF - 1/ROCOF

The median of Tn+1 is:

log(.5)]]-Tn
0

Notice that this model is Case 1 in the Langberg and Singpurwalla

(1981) approach to find the Bayesian JM model, section (2.3.1). Here

the Poisson distribution for N is interpreted as a Bayesian prior

distribution. It is also of interest to observe that:

F(«) = 1 - e M
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which means that there is a finite probability that the program is 

currently perfect, which, in turn, imples that the MTTF does not exist 

for this model.

2.10. Non-Homogeneous Poisson Process for L Model (LNHPP)

The L model discussed in section (23.4) is an order statistic model 

where N is the number of faults in the program. Miller (1984)

suggested that any order statistic mixture model mixed over the 

Poisson N will be a non-homogeneous Poisson process (NHPP). For the 

L model the result will be a NHPP with rate function

Ml - (£)“]

which is the rate function of the stochastic point process defined by

Littlewood (1984).

The pdf of Tj given that 
jX lj) is:

the (i-i)th failure occurs at epoch

f(ti/Ti_1 =
oqujB01:

z . \a+1

(/S+T^+ti)
)“

T.;
j3 + 1-^+ t£

(2.10.1)

The log likelihood at the epoch immediately after the nth failure 

is:
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. tn/jtf,a, jB) = nlog^z + nloga + nalog/3

-(«+*)  £ logCP+Ti-j+tj) - - (frH-nfi+t,,* 01] (2.10.2)

Maximizing (2.10.2) numerically will give the MLE’s of a,A< and 3.

Hence, by substituting in (2.10.1) we get the usual predictors of future 

behaviour. Thus the pdf of Tn+i is:

A A A^ A A

* AAA <X LI f * B k OCf(tn+1/W,oc,3,Tn) - eXp{-W(—_)

fj _ (. P + Tn )«nL l0+Tn+tn+1 > jJ (2.10.3)

with cdf

F(tn+1/i,a,jB,Tn) = 1 - exp{-^(^. Tn)0C 

[• - (2.10.4)

and rate function:

* * * oc
w oc+1

(jB+Tn+t>
(2.10.5)

The current ROCOF is obtained by putting t = 0 in this:

end

* * u a B
ROCOF = -—./ 2. \ oc+1

IMTBF = 1/ROCOF
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Finally, it is easy to see that the model considered here is Case 1 

in section (2.5.1), where the mixture is interpreted as a Bayesian prior 

distribution for N.

Again:

f (~) =1 -

which means that there is a finite probability that the program is 

currently perfect, implying that the MTTF does not exist for this model.

2.11, The Weibull Model (W)

Assume, as before, that the program starts life containing N 

faults. When a fault shows itself by causing a system failure, this 

fault will be removed and the system will immediately return to its 

operating environment. Let Xi t°tal time on test until the fault

i is removed. The X^s are assumed to be i.i.d. random variables with 

common Weibull density function, i.e.:

f(x) = a jB 1 exp(-a x^) (2.11.1)

Then are order statistics of the time of

occurrence of the 1st, 2nd,....failures and Tj,T2,...are the inter-failure 

times so:



(2.11.2)

T1 = X(D

T1 = X(1) “ X(i-1)

It is easy to show that the random variables T|(i=l,2,...n) are 

conditionally Weibull distributed with the pdf of Tj given by:

= (N-i+l)oqS(Ti_1+ti)3“1 

.exp{-(N-i+i)a[(ri_1-ti)^ - ] (2.11.3)

where Tj_1 is the total elapsed time at the point (i-1), i.e.:

ti-i ~j?i

The rate function (hazard rate) associated with r.v. Tj is:

X(ti) = (N-i+i)a0(Ti_1+ti)/J~1 (2.11.4)

and the current ROCOF:

(N-i+i)a£ (2.11.5)

It is clear that for P = 1 the model becomes the JM model. When 

P < 1 the individual times to detection, Xp have a distribution with 

decreasing rate function. When P > 1 these rates are increasing, so 

the reliability growth of the programs happends solely through the 

fault removal term (N-i+i). The model reduces to the Duane model as 

N-+00 and a-»0 with Na fixed at, say, y.
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To obtain predictions for the Weibull model we substitute MLE

likelihoodestimates of the parameters into suitable expressions. The

function is:

L(t1,...tn/a,jB,N)
n 

= .TT 
1=1 1N)

exp{-aiJ1(Ti_i+ti)^ - (N-n)a(Tn_,+tn)P}

So taking logs:

2(t1,... .tn/a, jB,N) = nlogoc + nlogjS log(N-i+i)

+ (J3-l)ig1log(Ti_1+ti)«i|1(Ti-1+ti)^ 

-(N-n)a(Tn_1+tn)^

Hence the likelihood equations are:

— P(tx,...tn/a,N,£) ■ — y£xTi ~(N-n)rn = 0 

t(tl,....tn/«,N,/3) ■ l+Jjlog Tj - ajji3 

-(N-n)a Tn^logTn = 0

and

If «(t1,...tn/«,N,3) TijlI77y - « t/ = 0

(2.11.6)

(2.11.7)

logTi
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The first equation can be solved in closed form:

* B n B(N-njTZ+.Cji

This can be substituted into the previous equations which can be 

solved by a version of Newton’s method. Alternatively, it can be 

substituted into (2.11.7) which can be maximised in (j3,N) space.

The predictive pdf of Tn+1 is:

f(tn+i/Tn,a,£,N) = (N-n)oc £(rn+tn+1)/*~ 1

A A

,exp{-(N-n)i[(rn-tn+1)^ - r/]} (2.11.8)

the predictive cdf is:

A A

F(tn+1/Tn,i,£,N) = 1 - exp{-(N-n)i[(Tn+tn+1)^ -t /]J
(2.11.9)

The rate function (hazard rate) for Tn+1 is, from (2.11.8) and 

(2.11,9):

X(tn+1) = l-Ftt^) '1

and by letting tn+1 -» 0, we obtain the current ROCOF:

ROCOF = (N-n))a P T^1
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The current MTTF is:

(N-n)ocTn£J

f (tn+N) d ^n+i

1

= -------------- ----- 1- Tn t^L^/P)!------------- 1------- --- (2.11.10)
(N-n)orrn^_1 1 (V£-i)! [(N-n)^/]1

We note that the first term is the reciprocal of the ROCOF, which

18 the IMTBF. For simplicity this term will be used instead of the 

MTTF in much of the later data analysis.

The median is given by:

Median
(N-n)a Tnp J (2.11.11)



CHAPTER III

DISCRETE SOFTWARE RELIABILITY MODELS

3.1. _ Introduction

The models considered in the previous chapter depend on the 

availability of data in the form of successive times between failure. 

Such extensive data may not be available in practice, so it is important 

to be able to analyse data in the form of a counting process. Such 

data will be in the form of pairs (nj(tp,tp where nj(tf) represents the 

number of failures during the time interval tj.

The main objective of this chapter is to present some models, 

related to the others mentioned in the previous chapter, which treat 

this kind of discrete data.

There has been little work in this area over the past five years. 

Goel (1980) has proposed a model based on the NHPP; Brooks and 

Motley (1980) have considered variants of the Jelinski-Moranda using 

Binomial and Poisson distributions; Misra (1983) has used the Goel 

model to analyse software failure data for different projects.

In section (3.2) the discrete JM model will be considered. The 

discrete Littlewood model will be considered in section (3.3) and 

discrete LV and KL models will be discussed in sections (3.4) and (3.5) 

respectively.
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Sections (3.6), (3.7) and (3.8) will treat the non-homogeneous

Poisson Process (NHPP) models, and finally, the discrete Weibull model 

will be presented in section (3.9).

3*2._Discrete  Jelinski-Moranda Model (DJM)

Let us assume that the program will start its life containing N 

faults, each of which has a time to occurrence which is exponentially 

distributed with rate 4>. Let nlt n2,... be the numbers of failures 

observed during the successive test periods of lengths t1,t2,...

respectively. We assume that perfect fixing takes place at the end of 

each interval, which means that the program failure rate will improve 

by the amount nj<t>. So during period i the system failure rate will be

where C-;_< = .E n-; is the total number of faults fixed
1 1 J=1 1

(N-Ci-i)*,

Consider the random variable Nj(tj), representing the number of 

failures in the i^h time interval of length tp It is easy to show that 

Nj(tj) has a Poisson distribution with mean value function M(t ^_x  ,Tj_1+tj) 

= (N-Cj-jL )<X>tj. That is:

P(ni/N,<t>)
[(N-Ci-iWi^i 

ni! exp(-(N-Ci_1)0ti) (3.2.1)
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The two parameters N and 0 will be estimated by the MLE method.

Let (nittj, ),(n2,t2)...(nk,tk) be the observations for the first k test

periods. The likelihood function of the observations is:

L(nx ..nk/N,0)
k IKN-Cj-jOtjlFi 

i=i njj

. exp{ - i£i (N-C i_i ) 0t i ) (3.2.2)

and by taking the natural logarithm we get:

k k
2(nx, . . .nk/N,<t>) = ( 151ni )lo^ +i51nilo^ti

k k
+ T^logCN-Ci-i) (N-Ci-i)0ti

nijS1log j (3.2.3)

The condition given by Littlewood and Verrall (1981) for the 

likelihood function, in the continuous case, to have a unique maximum 

of finite N and non-zero 0 has an equivalent form here. The function 

(3.2.2) or (3.2.3) will have a unique maximum at finite N and non-zero 0 

if and only if:

k
i

T--------------------
ni^i~t

(3.2.4)

otherwise the likelihood function has its maximum at finite > = N0 for

infinite N (see Appendix A).

>
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The condition (3.2.4) should be tested for each data set, and if 

satisfied, the MLEs can be obtained by maximizing (3.2.3) numerically. 

Then the MLE 4>, N of <t>,N will be used to predict the expected number 

of failures (the mean function) in the next test period, which will be 

given by:

M<Tk’Tk+tk+i) = (N - Ck)itk+1 (3.2.5)

Also, the predictive probability function for the number of failures 

during this period could be obtained in the following form:

P(nk+1/(N,i)
E(N-Ck)itk+ijnk+1

<nk+l>!

. exp(-(N-Ck)4>tk+1) (3.2.6)

and the predictive distribution function (cdf) could be obtained

by summing for nk+1 from zero to some specified number, say, n, i.e.:

F(n) = Pr(nk+1< n)

(3.2.7)

The ROCOF is:

>(tk+1) = (N - Ck)4> (3.2.8)

It can be shown that the reliability function, which is the 

probability that no failure will occur during the next t time units, is:

R (t) = exp(-(N - Ck)it) (3.2.9)
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This form is similar to the reliability function obtained for JM

model in section (2.2). Other reliability growth measures such as

MTTF and median can be used here with little change, i.e.

MTTF = 1/(N - Ck)4> (3.2.10)

Median = -log(.5)/(N - Ck)$ (3.2.11)

3.3.__ Discrete Littlewood- Mod el (DL)

The model described in (3.2) assumed that each fault contributed 

the same amount to the overall failure rate. This assumption has been 

challenged and an alternative one was proposed by Littlewood (1981) 

(see Section (2.4)). In this model each fault has a different failure 

rate represented by random variables <>-£, while the other assumptions 

remain unchanged. After (i-i) test intervals, the program failure rate 

for the i^h interval is:

(3.3.1)

where Cj_x is the total fixes in the past intervals. The

probability function for the number of failures during the test period 

i, again assuming that fixes are introduced only at the end of 

intervals, is:

(3.3.2)
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If the probability density function of the 4>’s is known, the 

unconditional probability funtion of Nj is obtainable in principle. We 

assume, as before, that the <t>’s are independent and identically gamma 

distributed, i.e.:

fiP*  a— i — /3Op(*/a,/3)  = rF $ e (3.3.3)

Using Bayes theorem, the posterior probability density function of 

each <t> can be obtained in the following form:

P(<t>/this fault has not been fixed in the first (i-i) intervals)

Pr(no failure is caused by this fault
in the first ( i-i) interval/0)p(4>)

co

J* Pr(no failure is caused by this fault
o in the first (i-1) interval/<t>)p(<t>)d<t>

It is easy to show that this is:

f (0/Data) fa
<t> a 1 exp(-<t>(^Ti_1) ) (3.3.4)

where is the total elapsed time of the (i-1) test intervals.



From (3.3.1), it is clear that is the sum of independent random 

variables each with pdf given by (3.3.4). It follows that Aj has a 

gamma density, i.e.

f (A-j/DatajN, a,/3)
(£+Tj_1)(N Ci-Pa

TUN-Ci-joG
xCN-C^pa-i

.exp(-Xi(/3+Ti_1)) (3.3.5)

By mixing (3.3.2) and (3.3.5), the unconditional probability function

of Nj can be obtained:

P(n^/N,a,^B, Data)
co

■I P(ni/Ai)p(>i/N,a,/3,Data)dX^

(«i+ni
- 1

(3.3.6)

where

Pi = and Mi = <N - Ci-i)a

It is clear that the last form is the negative binomal probability

function, and the likelihood function for the observations will be: 

k
L(nx, . . . .nk/N,a,/3) =iH1P(ni/N,a,^,Data)

=ini(M^+ni PiMi(l - Pi) ni (3.3.7)
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By taking the natural logarithm, we get:

(3.3.8)

In order to get the MLE of the parameters N, oc and the last 
A A A

form should be maximized numerically to get such estimates, N, a and /3. 

These estimates can be used to predict, for example, the reliability 

function which is the probability of no failure in the next t test time 

units. This is:

. . . P + Tn (N-Ck)oc
= (3’3’9)

The last form is identical to the reliability function obtained for 

the L model in section (2.4). It is easy to obtain the other reliability 

growth measures such as the rate function, ROCOF, MTTF and the 

median:

(N - Ck)a
X(t/a,N,^) £ + Tr + T (3.3.10)

(N - Ck)a
ROCOF = ‘--------- (3.3.11)+ Tk

& Tk .
MTTF = (N _ (N - Ck)« > 1 (3.3.12)

Median = (P + Tk) [ (. 5) 1/(N“C><)a -13 (3.3.13)
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The predictive probability function of the number of failures 

during the next test period is obtained by substituting <x, N, and £ in 

(3.3.6) which gives:

P(nk+1/a,N,js) = Pk+ik+1d " pk+i)nk+1 (3.3.14)

where
£ + Tk

pk+i = <g+Tk+tk4i) and Mk+1 = (N - Ck)i

and the expected number of failures in this interval is given by:

(N — Ck)a
M(Tk,Tn + tk+1) = ------- ------------------- (3.3.15)

3.4. Discrete Littlewood-Verrall Model (DLV)

The probability function of Nj given by (3.3.2) depends only on

the rate of occurrence of failures. If the prior density function of 

\ is known, the unconditional probability function of can be

obtained. Littlewood and Verrail (1973) assumed that Xj is a random 

variable with a gamma density function (see (2.6.2)), with shape 

parameter a and scale parameter 4>(i). We shall assume for this

discrete time version of the model that <Hi) is linear:

<p(i) = + (Ci-i + 1)£2 (3.4.1)

where Cj_x is the total observed number of failures up to the 

stage (i-1). Again it is assumed that fixes are introduced only at the 

ends of intervals.
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It is easy to shown that Nj will have a negative binomal 

distribution with probability function given by:

P(ni/Xi)P(Xi/a,*(i))dX i

n.a+n.:-l , z. s
= ( ) ( ft1? )tt(—tj____ )Di

v a-i 7 k'P(i)+ti7 k*(i)  +t£ (3.4.2)

Let n1,....nk be the numbers of failures in the first k test periods 

with lengths tt,... t^ respectively. The likelihood function of these 

observations is:

L(nx
k a+n-j-i

• njt/a.'Ki)) ) , t(i) '«/ ts ,nj 
^(D+tj '•<p(i)+ti; (3.4.3)

Taking natural logarithms gives:

«(nl,....nk/«,*(i))  =.|1 jljlog ( 1 )

k+ oTilog (_*W __)

k+i5i n^log ^(i)+t| (3.4.4)

Then the MLE a, £lt and P2 the parameters a, and &2

be obtained by maximizing the form (3.3.4) numerically. These

estimates will be used to predict, for example, the reliability function, 

which is the probability of no failure in the next interval of length t 

time units.



R(t/oc,4»(k-n)) •»(k+l) l"
,4>(k+i)+t J (3.4.5)

Clearly this is the same function as obtained for LV model in the

continuous case in section (2.6). The rate function which is given by

(2.6.11) can be written in the form:

X(ti+1) = *(k+l)+t k+1 (3.4.6)

with ROCOF
ROC OF = a/^k+l) (3.4.7)

MTTF = oc > 1oc-i

Median = 4’(k+i) [ (.5) 1]

(3.4.8)

(3.4.9)

The cdf can be predicted by substituting a, ^(k+i) in (3.4.2) and 

summing over N^+1. More importantly, the expected number of

failures in the present test interval is given by the following form:

« *k+lM(Tk,Tk+tk+i) = - -----t(k+i) (3.4.10)

where, of course, tfc+1 is assumed known.
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3.5. Discrete Keiller-Littlewood Model (DKL)

This model is similar to 

distribution of is assumed to 

and scale j3: see (2.7.1). Fixes 

intervals.

the previous model. Here the

be gamma, with shape parameter 4>(i) 

are carried out only at the ends of

The probability function for Nj, the number of failures in tj, is:

P(ni/Xi)P(Xi//3,^(i))d>i

^(il+nj-i . ( ti .^(i), ti .n-j
4>(i)-i 2 2 k/3+ t£ 2 (3.5.1)

Again, there is flexibility in the choice of 4>(i), we shall assume a

reciprocal linear form:

(3.5.2)

i-1
where Cj_t = E nj

J=i

Let nlt....n^ be the observed numbers of failures during the test

intervals t1,....tjc respectively. The likelihood function can be written

as:
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(3.5.3)

Taking natural logarithms we obtain:

S(n1,...nk/P,'P(i)) X*  log (*LU±J±1)

+il *<*> lo* (/rh>

+i?i "i loff (3.5.4)

It is clearly not easy to find the MLE of <xx, , and £ analytically

from the above form, and numerical maximization must be used. After 

obtaining the MLE ax, and /3 for the parameters a1, and /3

respectively, it can be shown that the reliability function, which is the 

probability that no failure will occur during the next period of length t 

is given by:

(3.5.5)

Again this form is identical to the reliability function obtained for

the KL model in section (2.7). Other software reliability growth

measures, such as the rate function, ROCOF, MTTF and the Median time 

to failure, which were given in section (2.7) can be used here without 

any change. It is important to note that the T functions in both 

continuous and discrete cases depend on the number of failures.
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The predictive cdf can be obtained by summation of the 

probability mass function, and the expected number of failures during 

the next test phase is:

*(k+i)tk+1
M(Tk,Tk+ tk+1) = ---------£-------- (3.5.6)

where

*(k+i) = 1/(04 + (Ck+1)oc2)

3.6. Discrete Duane Model (DP)

In section (2.8), the Duane model is considered as a

non-homogeneous Poisson process (NHPP) with intensity function at r 

given by:

X(t ) = yjB T^_1 (3.6.1)

It is well known that the mean function for a process is the 

integral of this, i.e:

M(t ) = y (3.6.2)

is the expected number of failures during the interval (0,t ).

Suppose that (i-1) test phases have been observed. The system 

will run for the next test phase (the i^h period) of length t. The 

expected number of failures during this period can be easily seen as 

the difference between Mfr^j+tj) and M(t ^_1), where

= E t; is the total elapsed time at the start of the interval. 
J=1 J
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That is:

3 R
M(Ti-i»Ti-i+ti) = X C(Ti-i + ti) " n-iJ (3.6.3)

The probability function of the number of failures during this 

current test interval is Poisson distributed:

P(n£) exp.(-M(Ti_1,Ti-i+ti))

(3.6.4)I

The likelihood function is therefore:

.exp.(-y(Tk_1+tk)^) (3.6.5)

Taking natural logarithms:

2(nx,.. .nk/y,^) = (i£1ni)logy +i51nilogC(Ti_1+ti)^-rf_1 J

k k
-/(Tk-j+tk)*  jEj 108 J (3.6.6)

Again by differentiating with respect to y and equating to zero:

y
(Tk-i+tk)^

(3.6.7)
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Then y can be substituted into (3.6.6) which can then be solved 

numerically for p.

The MLE y and P of y and P are substituted in (3.6.4) to obtain 

the predictive probability function of N^+1 (the number of failures 

during the (k+i)^ test phase). Also the probability that no failure 

will occur during an interval t will be given by:

R(t) = exp. <-y C(Tk+t)^ - 3) (3.6.8)

This is the reliability function for Duane model in the continuous 

case, hence the other software reliability growth measures, such as the 

rate function, ROCOF, IMTBF and the Median time to failure can be used 

from section (2.8).

Finally, the expected number of failures is given by the mean 

value function +t^+1), and the predictive distribution function

(cdf) is obtainable by summing the probability function.

3.7. Discrete Non-Homogeneous Poisson Process for JM Model (DJMNHPP)

Goel (1980) proposed this model to deal with the situation where 

inter-failure time data is not available. He assumed that the number 

of undetected faults at any time is finite, and the initial number of 

faults to be detected is finite and equal p.
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Goel argued informally and deterministically that the number of 

faults detected in (t,t+At) should be proportional to the number of 

undetected faults, essentially the JM assumption that all faults 

contribute equally to the ROCOF of the system. Specifically, if M(t) is 

the mean function, E(N(t)), Goel assumes that:

M'(t) = (ju - M(t)).<t> (3.7.1)

so that:

M(t) = - e"^1) (3.7.2)

Goel then goes on to assume that the observed stochastic process 

is a NHPP with mean function (3.7.2). This extra assumption is not 

justified in Goel’s work, but does not seem unreasonable as an 

approximation to the exact JM model. A more formal justification comes 

from observing that if, in the JM model, we assume that N is a random 

variable with Poisson (ju) distribution, the unconditional process is 

exactly the above NHPP.

The expected number of failures in Tj-i+tp will be:

.Tj-i+tj) = M(Ti_1+ti) - MCTj.j )

= U e^i-1 (1 - e'^i ) (3.7.3)

The probability mass function of Nj, the number of failures in the 

phase i with length t is:
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P(ni) t

exp.<- U e ^"‘(l - e ^i)) (3.7.4)

Now, let (n2,t2),.... (nk,tk) be the data points for the first

k test intervals, where nj is the number of failures in the interval i 

with length tp The likelihood function is:

L(ni, nk/A/,4>)
k CM e WH(l-e 

i=i n^!

. exp(- U (1 - (3.7.5)

Taking the natural logarithms we get:

^(ni,.. .nk/ju,4>) = (i^ini)log/2 - 4>iginiTi_1

k —<t>+ •
+ .£^1 log (1 - e

-U ci - e^k o Jj logj (3.7.6)

The MLE id is obtained by successively differentiating (3.7.6) with

respect to Id and <t> and equating to zero. This gives:

(3.7.7)
1 - e^k

Substituting (3.7.7) into (3.7.6) and solving numerically for 4> we 

get the MLE of 0.
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The predictive probability function of N^+1 is obtained by
A A

substituting U and <t> in (3.7.4). Also the reliability function R(t) is 

given by:

R(t) = exp(- U e ^"^(1 - e ^)} (3.7.8)

This is the reliability function of the JMNHPP model in section 

(2.9); the other software reliability growth mesures described in that 

section, such as Rate Function, ROCOF, IMTBF and the Median time to 

failure can be used here.

Finally, the expected number of failures in the phase k+1 is given 

by M(T|t,Tjc+tjc+1) which is:

M(Tk»Tk+tk+i) ~ expC-ir^Xl - exp(-itk+1)) (3.7.9)

and the predictive cdf is obtained by summing the probability mass 

function.

2.8. Discrete Non-Homogeneous Poisson Process for L Model (DNHPPL)

Littlewood (1984) assumes that the program starts life containing N 

faults, each of which will manifest itself in a failure after 

(independently) Pareto distributed time. Assuming that N has a 

Poisson distribution with mean Ut then by mixing over N, we get a 

NHPP with mean value function:
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M(t) = u Cl - (^-7-j)a3 (3.8.1)

The expected number of events in the interval ,7-^+tj) is given

by:

Cl (3.8.2)

The model assumes each fix to be perfect whenever a failure 

occurs. The number of events in the interval is Poisson

distributed with probability mass function:

Hence for the data vector (nx tx ),(n2>t2 )>..««(nk,tk) the likelihood

function is:

.exP{-i£l - (^k+1+tk)“3)

k
L(nt, . . .nk/p,a,Z?) =iJ1 L Bi! J

(3.8.4)

Taking the natural logarithms we get:

n K /?
2(nn ... .nk/ju,a,/B) = ( log^+Tinialog(^——)

+£"i10*ci - m
(3.8.5)
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and by successively differentiating with respect to a and P and

equating to zero, we get:

(3.8.6)

The MLEs of a and P are obtained by maximizing (3.8.5) 

numerically with respect to a and £, after replacing V by its estimate U 

(3.8.6).

A A A

By substituting V, a, and £ in (3.8.3) we can predict the 

probability function of the number of failures N^+1 which will occur 

during the (k+i)th test interval. The probability of zero failures 

during the interval of length t is given by:

(3.8.7)

This is the form of the reliability function for the LNHPP model

(section (2.10)). The same expressions as obtained in (2.10) can be

Used for the rate function, ROCOF, IMTBF and the Median time to 

failure. The predictive cdf is obtained by summing the probability 

mass function. Also the predictive expected number of failures during 

^his interval is given by:

(3.8.8)
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3.9. Discrete Weibull Model (DW)

Assume, as before, that the program starts life containing N faults 

and each of these faults will cause failure after independently Weibull 

distributed time. Let nt,n2,... be the number of failures which

occurred in the test intervals tlft2,... respectively. Assume that the 

fixing will take place at the end of each interval, and the numbers of 

faults removed at the end of each interval are equal to the numbers of 

observed failures during these intervals. As in section (3.2), and 

under the same conditions, it is easy to show that Nj(tp has a Poisson 

distribution with mean value function (N-C£_1)aC(T£_1+ti)p~Ti_1 J 1,e*

P(ni/N,a,j3)
. exp<-(N-C j-i )o£ (Tj_i+t£)#-Tf_13) (3.9.1)

where Cj-i is the total number of faults which have been fixed 

during the previous intervals, is the total time for the previous

intervals.

The probability function in (3.9.1) depends on three parameters, N, 

oc and P which can be estimated by using the ML method. The 

likelihood function for the data set (n1,t1),....(njc,tjc) is:

k
L(nx..........n^/N.a,^) =iJ1

C ( i-j )«( ( Ti-j+t £ J ) Jni

.exp<- (N-Cj_i)«C(Ti_1+ti)^-T3i_1]]) (3.9.2)



with natural logarithms:

P(nx,.. .nk/N,a,£) = ( Tini)loga log(N-Ci_1)

k P q  k n-j
+ig1ni logCCr^+ti) -rpi_1 J logj

- «i?1(N-Ci_1)[(Ti_1+ti)fl- rVil (3.9.3)

This form can be maximized numerically to get the MLE N, a, and P 

for the parameters N, a, and P respectively. By substituting for N» <x 

and P in (3.9.1) we can predict the probability function for the number 

of failures Nk+1 which will occur during the next test interval. The 

predicted mean value of Nk+1 is:

M<Tk-Tk+tk+i) = (N - Ck)«C(Tk+tk+1)P - t /] (3.9.4)

Also the probability of zero failure during the interval of length t 

can be predicted by:

R(t) = exp<-(N - Ci_1)aC(Tk +t)^ - Tk^2) (3.9.5)

which is the reliability function for the Weibull order statistic

model (section (2.11)) evaluated at t = tk+1. The rate function ROCOF,

IMTBF and the Median time to failure are:

Mtk+1) - (N Ck)oc ^Tk + ^k+i)
ROCOF = (N - Ck) a P TkP 1

IMTBF = 1/ROCOF

Median = TkC
1/P
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Finally, the predictive cdf can be obtained by summation

n
Pr(nk+1< n) E 

nk+i =
P(nk+i)

Note that, if P - 1, this model becomes the DJM model. If N -» * 

and a -» 0, keeping y=Na, a non-zero constant, the form (3.9.1) becomes 

the Discrete Duane model.
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CHAPTER IV

THE ANALYSIS OF PREDICTIVE QUALITY

4J.. Introduction

In the previous two chapters, several prediction systems have 

been considered. A potential user might reasonably ask which of the 

many available prediction systems is best for his data source, and 

which, if any, is close to reality. One way to answer these questions 

would be for the user to try more than one prediction system for a 

Particular data source and compare the results with one another and, 

m some way, with reality.

In this chapter, some methods will be described to help the users 

of software reliability models to carry out such comparisons.

In section (4.2) the u-plot will be described, which is a method of 

detecting what might be informally termed "bias" in prediction. In 

section (4.3) the y-plot is introduced, which is a tool for detecting 

lnadequacies of the prediction system in capturing the "trend" in the 

data.
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In section (4.4) two informal measures of "noisiness" of predictions 

will be introducted. Also, in section (4.5) the Braun statistic will be 

introduced which measures the variation between each observation and 

its predicted mean value (MTTF or IMTBF).

Section (4.6) describes a Chi-square procedure for the discrete 

prediction problem.

Finally, in section (4.7) the prequential likelihood is introduced, 

which is a general procedure for the examination of prediction quality 

which embraces all of the above.

4.2. u-Plot

It is well known, Kendall and Stuart (1977), that if X is a random 

variable with cdf, F(X), then the transformation u = F(X) will follow the 

uniform distribution U(0,l). In software reliability prediction, the 

predictive cdf’s involve certain parameters which must be estimated 

from the field data. It does not seem possible, for the software 

reliability models, to eliminate the effect of this estimation procedure in 

order to test the goodness of fit of the model alone. Accordingly, in 

the spirit of Braun and Paine (1977), Littlewood and Sofer (1981), 

Keiller et al (1983a), Keiller et al (1983b) and Keiller and Littlewood 

(1984), we shall deal with the predictive distribution directly.
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Having observed tt , the user wants to predict the

random variable Tp More precisely, he wants a good estimate of:

Fi(ti) ■ P(T£< t£) (4.2.1)

From one of the prediction systems described before, a predictor 

of F-j(tj) can be calculated, say Fj(tj[).

The user is interested in the closeness of Fiftp to the true Fj(ti). 

In fact the user may be only interested in summary statistics such as 

MTTF, the median time to failure, the ROCOF, etc. However, the

quality of prediction of these statistics will depend upon the quality of
A *

Fj(t^). Clearly, the difficulty of analysing the closeness of F}(tp to 

Fj(ti) arises from our never knowing, even at later stages of analysis, 

the true F|(tp. The only information which can be obtained is a 

single realisation of the random variable Tj when the software next 

fails.

After making the prediction Fj(tj) based upon the

realisation tj of Tj will be observed. This is a sample of size one from 

the true distribution Fj(tj), and all the analysis of the prediction 

quality will be based upon these pairs (Fj(tj),tj) only.
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Consider the following sequence of transformations:

j = i,i+i....n (4.2.2)

Each of these is a probability integral transform of the observed 

tj, and if each Fj(t) were identical to the true Fj(t), it is easy to see 

that uj’s would be realisations of independent uniform U(0,l) random 

variables. Thus the problem is transformed, from examining the 

closeness of Fj(tj) to the true Fj(tj), to examining whether the 

sequence (uj) looks like a random sample from U(0.1). There are 

various aspects of this we can examine in detail. We shall consider 

first the uniformity. This can be done by comparing the empirical 

distribution function of (uj, j=l,i+l,...n) with the cdf of the uniform 

distribution which is the line of unit slope through the origin.

The Kolmogorov distance (the maximum vertical difference between 

the two plots) can be used to examine the closeness between (Fj) and 

the true (Fj).

Similarly, this procedure can be applied for the discrete software 

reliability prediction, since all the prediction systems in this case have 

the Poisson and negative binomial distributions. The cdf for both are 

given approximately by the incomplete gamma and beta function 

respectively [Kendall and Stuart,1977].

- 86



Using this procedure on the data given in Table 4.1 we find that

Kolmogorov distances for JM and LV models are 0.1896 and 0.1437 

respectively. The first figure is significant at level 1%, while the 

other figure is significant at 5%. The detailed plots, however, tell us 

more than this. The JM plots are everywhere above the line of unit 

slope (Figure 4.1), the LV plots almost everywhere below that line 

(Figure 4.3). This means that the uj’s from JM tend to be too small 

and those from LV too large. Now uj represents the predicted 

probability that Tj will be less than tj, so consistently too small Uj’s 

suggest that the predictions are underestimating the chance of small 

t’s. In other words the predictions are overestimating the reliability 

function, which means that the user will expect the system to continue 

in operation for longer time than is probable. Contrarily, too large 

Uj’s suggest that the model is underestimating the reliability function, 

which implies that the system will fail in shorter time than is the case.

Thus, the JM plot tells us that the user will face the first 

situation and LV the second. That is, the JM predictions are too 

optimistic, the LV predictions are too pessimistic. So the truth, as 

evidenced from this simple analysis, might be expected to lie somewhere 

between the predictions of JM and LV, but perhaps closer to LV.

This discussion will be continued later on in Chapter V. At this 

stage we shall merely note that a conservative position would be to use 

LV for the next prediction, in the reasonable belief that this will not 

overestimate the reliability of the product.



r

TEST SYSTEM : SYS 1

INTER FAILURE TIME

3. 30. 113. 81 . 1 1 5
9. 2. 91 . 112. 1 5

1 38. 50. 77. 24 . 108
38. 670. 120. 26. 1 1 4

325. 55. 242. 68. 422
130. 10. 1 146. 600. . 1 5
36. 4 . 0. 8. 227
65. 1 76. 58. 4 57 . 30 0
97. 263. 4 52 . 2 5 5 . 1 9 7

193. 6. 79. 81 6. 1351
1 43. 21 . 233 . 134. 357
193. 236 . 31 . 369. 748

0. 2 32 . 330. 365. 1222
5 4 3 . 10. 16. 529. 379

4 4 . 129. 810. 290. 300
529 . 281 . 1 60. 828. 101 1
4 4 5 . 296. 1 75 5 . 1 064 . 1 78 3
860. 933. 707 . 33. 368
7 24 . 2323 . 2930. 1461. 84 3

12. 261 . 1 800. 865 . 1435
30. 143. 1 08. 0. 3110

1 247 . 94 3. 700. 37 5 . 245
729. 1 897. 44 7. 386. 446
122. 990. 948. 1 082. 22

75. 482 . 5 509. 100. 1 0
1071. 371 . 790. 61 50. 332 1
1 04 5 . 648. 5485 . 1 1 60. 1 864
4116.

TABLE 4.1. Execution times in seconds between successive failures, Musa (1981). 
Read left to right in rows.
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4.3. y-Plot

The u-plot treats only one type of departure of the predictions 

from reality (a form of "bias"), but there are other departures which 

it cannot detect. As an example, if we plot the uj against j for JM 

predictions of the data given in Table 4.1 (Figure 4.5), we will find 

that for j = 35 to 90 there are 24 out of 55 uj’s greater than 0.5, but 

for j > 90 there are only 10 out of 46 uj’s greater than 0.5, which 

means that JM is particularly optimistic for later predictions. Such a 

pattern or trend among the predictions cannot be detected by the 

u-plot. More interestingly, if a particular prediction system has, say, 

the property of optimism in the early stages of predictions and 

pessimism in the later predictions, these deviations will be averaged 

out in the u-plot. It is necessary, therefore, to examine the uj’s for 

trend. One way of doing that is as follows.

If the <Uj) sequence are really a realisation of i.i.d. U(0,l) random

variables, the transformation: 

xj = - 2n(l - uj) j = i, i+1,...n (4.3.1)

will be a realisation of i.i.d. unit exponential random variables which 

should look like a realisation of a homogeneous Poisson process. This 

realisation can be normalised into (0,1), [Durbin, 1975; Cox and Lewis, 

1966; and Littlewood and Sofer, 1981], by using the following form:
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FIG.4.5. Scatter plot of aoainst i for JM predictions from Table 4.1 data.



(4.3.2)Yj =rt1xr/^=?r J = i. i+i,...n

The (yj) sequence should be compared with the cdf of the uniforn 

U(0,l) distribution, and this is carried out by comparing the empirical 

cumulant distribution function of those numbers with the cdf of the 

uniform U(0,l). Again, the Kolmogorov distance can be used as a 

measure of the distance between these two cdf’s.

Figures 4.2. and 4.4. show the y-plot for the data given in Table 

4.1 of JM and LV predictions respectively. The Komogorov distances 

are 0.1198 for JM and 0.1099 for LV, both of which are non significant 

at the level of 10%. Also the JM y-plot is very close to linearity at 

the early stages where j < 90, but for j > 90 the slope changes, which 

confirms the earlier analysis of the scatter plot of uj against j. Such 

a pattern does not appear on the LV y-plot and the model is more 

capable than JM of capturing the trend in the data.

4.4. Measures of Variability

It will be valuable here to digress slightly in order to consider 

the conventional problem of point estimation. In the standard

statistical estimation problem, it is usual to seek an estimate of the 

population parameter which has small mean square error (mse). 

Suppose the population has one unknown parameter 0 which has an 

estimator 0, then:

mse(0) = E((0 - 0)2} = var(0) + Cbias(6)22 (4.4.1)

- 93 -



Now, suppose there are two estimators, say, e2, both having

the same mse, but not the same variance. There is clearly a trade-off 

between the bias of the estimator and its variance. It is not obvious 

how to choose among two such estimators.

In the software prediction problem the situation is more 

complicated. The user wishes at each stage to estimate a function, 

Fj(tj), rather than a scalar (the true value of e). Howver, the u-plot 

analysis can be taken as analogous to an investigation of the "bias".

From this point of view we can see the y-plot analysis as a crude 

attempt to detect changes in the bias as the reliability grows. It 

would only be reasonable to expect this procedure to detect quite slow 

changes.

The u-plot and y-plot, then, give us information which is similar 

to bias in the conventional context. This leaves the question of 

variability.

In Figure 4.6. the medians plots are shown for JM and LV on the 

data of Table 4.1. These reveal the (relative) optimism of JM and the 

(relative) pessimism of LV. More importantly, they show that the 

predictions emanating from JM are more variable than those from LV.
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We shall first of all consider procedures which allow us to 

measure and compare variability of this kind. These measures will not, 

however, answer the question as to whether this variability is genuine 

(i.e. real local fluctuations in the reliability of the product) or spurious 

(perhaps as an artifact of the statistical procedures used). We shall 

return to this theme when we consider the prequential likelihood in 

section 4.7.

4.4.1. Median variability

This informal measure is proposed by Abdel-Ghaly, Chan and 

Littlewood (1985b). It depends on the predicted median of Tj, which 

we think is a more reasonable measure than the mean. In fact the 

expected value of T| is not available for all models or it is not easy to 

calculate and IMTBF must be used instead.

The measure takes the following form:

(4.4.2)

where mj is the predicted median of Tj.
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We expect the system of prediction with most variable predictions 

will give a greater value for the above form. For example, the values 

for JM and LV models are 9.5725 and 2.9610 (Table 4.2) for the data in 

Table 4.1.

No formal test can be carried out for this statistic. Thus only 

comparisons will be carried out between the value of the measure for 

different models on the same data set (Table 4.2).

4.4.2. Rate variability

Abdel-Ghaly, Chan and Littlewood (1985b) proposed this statistic

as a different criterion to help the user in comparing between different

prediction systems. The statistic has the following form:

~ri-i
ri-i

where rj is the predicted ROCOF

(4.4.3)

of T| evaluated at tj= 0

Again, this statistic will only be used to compare different 

prediction systems on the same data set. We believe that the better 

prediction systems will give smaller values of the statistic. For 

example, the value of JM and LV models are 8.3659 and 3.1844 

respectively (Table 4.2). The values of the statistic will be ranked 

where the smaller values will get the lower ranks.
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Test Continuous Data System 1

No.of Observations! = 136
Starting Sample Size : = 35

TABLE 4.2. The Analysis of data in Table 4.1

MODEL
n m-j
r 1 1 T i RANK

n r.
RANK

BRAUN
RANK u-PLOT RANK y-PLOT RANK -Log PL RANK1-2 nii-i L l |

i=2 ri-i TEST

JM 9.5725 10 8.3659 10 1.3118 10 .1896
IX

10 .1198
20%

9 5.9914
770.2707 9

BJM 8.6087 8 7.2078 8 1.1122 9 .1702 
2%

9 .1161
20%

8 3.9588
770.6942 10

L 4.1417 4 3.8293 4 0.8216 2 .0805 
N.S.

2 .0642 
N.S.

1 5.95499
761.3816 1

BL 4.3043 6 3.9653 6 0.8361 3 .1361
5*

5 .0751 
N.S.

4 6.1570
763.9245 4

LV 2.9610 2 3.1844 3 0.8957 7 .1437
5%

6 .1099
20%

6 5.6750
764.8684 6

KL 2.7293 1 3.0126 2 0.8881 5 .1336
5%

4 .1128
20%

7 5.6735
764.7652 5

D 3.1084 3 2.9219 1 0.8910 6 .1590
20%

8 .0931 
N.S.

5 5.7480
765.2992 7

JMNHPP• 8.6235 9 7.3428 9 1.1093 8 .1525
2%

7 .1245
20-t

10 5.9016
768.5679 8

LNHPP 4.1557 5 3.8445 5 0.8193 1 .0805 
N.S.

2 .0642 
N.S.

1 5.9664
761.3930 2

W 7.3796 7 6.6088 7 0.8621 4 .0747 
N.S.

1 .0750 
N.S.

3 5.8059
763.0100 3



4.5. Braun Statistic

In the previous section 4.4., the median and rate variabilities are 

considered. These two measures are detecting the local variation 

between adjacent predictions, rather than the variation between 

predictions and observations.

The measure considered here is a global statistic to examine the 

closeness of the predictive mean value (MTTF or IMTBF) of Tj to the 

observation tj. Braun and Paine (1977) proposed this simple statistic 

to measure the quality of predictions of reliability growth and to 

compare between models. The statistic takes the following form:

(n-i).E,(tj - E(T±))2
---------V---------- Z----------- (4.5.1)

where E(Tj) is the estimated mean of Tj, i.e. the expectation of the 

predictive distribution Fj(tj), and n is the number of predictions.

Braun and Paine claimed that this statistic will be small (certainly 

less than one) if the model is of any use. In fact, the normalising 

denominater is not strictly necessary here, since it will be the same for 

all prediction systems on a particular data set. The values of this 
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statistic are compared and the prediction system with smaller value is 

preferred. For example, Table 4.2 shows the value of the statistic for 

the different systems of predictions on the data set given in Table 4.1. 

The values for JM and LV models are 1.3118 and 0.8957, which suggests 

that LV is performing better for this data set than JM.

The form (4.5.1) can be modified as follows:

k * 2
.E (ni - E(Ni)) tt
—----------------------------  (4.5.2)
k _ 2

" n)

to be used for the discrete software data, where E(Nj) is the estimated 

mean of Nj(tj) and k is the number of intervals to be predicted.

The data of Table 4.3. were obtained by "discretising" the data of 

Table 4.1. in an obvious way. The Braun statistic (4.5.2) is calculated 

for the predictions of the various discrete models for this data, giving 

the values shown in Table 4.4. Those values for DJM and DLV models 

are 1.3231 and 1.2911 respectively.

There is no obvious way of carrying out a formal test to see 

whether a particular realisation of the statistic is "too large", so this 

should be seen as a comparative procedure.
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TABLE 4,3.

I NR ( I) TN< I) TP( I)

1 15 0. 1000.00
2 5 15.00 1000.00
3 4 20.00 1000.00
4 3 24.00 1000.00
5 1 27.00 1000.00
6 10 28.00 1000.00
7 4 38.00 1000.00
8 6 42.00 1000.00
9 1 48.00 1000.00

10 0 49.00 1000.00
1 1 6 49.00 1000.00
12 • 4 55.00 1000.00
1 3 3 59.00 1000.00
1 4 2 62.00 1000.00
1 5 1 64.00 1000.00
16 4 65.00 1000.00
1 7 3 69.00 1000.00
1 8 3 72.00 1000.00
1 9 3 75.00 1000.00
20 1 78.00 1 COO.00
21 1 79.00 1000.00
22 2 80.00 2000.00
23 2 82.00 2000.00
24 2 84.00 2000.00
25 3 86.00 2000.00
26 2 89.00 2000.00
27 1 91.00 2000.00
28 0 92.00 2000.00
29 2 92.00 2000.00
30 3 94.00 2000.00
31 2 97.00 2000.00
32 5 99.00 2000.00
33 0 104.00 2000.00
34 2 104.00 2000.00
35 2 106.00 2000.00
36 3 108.00 2000.00
37 3 111.00 2000.00
38 3 114.00 2000.00
39 4 117.00 2000.00
40 1 121.00 2000.00
41 0 122.00 2000.00
42 3 122.00 2000.00
43 3 125.00 2000.00
44 0 128.00 2000.00
45 0 128.00 2000.00
46 0 128.00 2000.00
47 1 128.00 2000.00
43 1 129.00 2000.00
49 2 130.00 2000.CO
50 0 132.00 2000.00
51 0 132.00 2000.00
52 2 132.00 2000.00
53 1 134.00 2000.00
54 0 135.00 2000.00
55 1 135.00 2000.00

Discretized data of the data set in Table 4.1. 
Read from left to rinht in rows.
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Test Discrete Data System: AD-D18

No.of Observations: = 55
Starting Sample Size: = 13

MODEL .L
1=2

mi
11 ’

mi-i

n r£
RANK .E|l-------— |

1=2 ri x
RANK BRAUN

TEST
RANK CHI-SQUARE TEST u-PLOT RANK -Log PL RANK

ORDINARY GROUPED

DJM 4.9273 8 4.3498 8 1.3231 8 109.101
.1%

43.505
.1S(8)

.4467
1%

8 1.3097
79.6583 8

DL 1.8329 4 1.7110 4 .9736 2 42.800 
N.S.

.2263
5%

4 1.3473
67.4904 2

DLV 1.1151 2 1.0804 2 1.2911 6 35.877 
N.S.

.1006 
N.S.

2 1.4867
71.7529 5

DKL 1.0693 1 1.0137 1 1.3139 7 36.199 
N.S.

.1166
N.S.

3 1.5732
71.9156 6

DD 1.5875 3 1.5001 3 1.2160 4 35.492 
N.S.

.0886
N.S.

1 1.4414
70.2690 4

DJMNHPP 4.3993 7 3.8239 7 1.2186 5 87.188
.1%

25.971
.5*(9)

.3934
1%

7 1.3233
75.3720 7

DLNHPP 1.8738 5 1.7482 5 .9700 1 42.678 
N.S.

.2288
5%

5 1.3295
67.3376 1

DW 4.1581 6 3.7995 6 1.0836 3 46.737 
N.S.

.2599
1%

6 1.4414
69.4048 3

TABLE 4.4. The analysis of Table 4.3 data (The discretized data for the data in Table 4.1)



4.6. Chi-Square Test

This test is intended to be used in comparing the performance 

solely of the discrete software prediction systems. In the standard 

application of this test, the n observations in a random sample from a

population are classified into k mutually exclusive classes. The test

statistic is:

- Ei)2

Ei
(4.6.1)

where

Oj =the observed number in the class i

Ej =the expected number in the class i under the null

hypothesis.

In the conventional context, the Ej depend on some unknown 

parameters which have to be estimated from the sample itself. The 

distribution of the statistic under the null hypothesis is then 

chi-square with degrees of freedom dependent on the number of 

unknown parameters. Here the estimation of parameters is carried out 

once using the full data set.
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In the software reliability prediction problem the situation is 

different since we based our expectation for the number of failures 

during phase i on n^tj), n2(t2),....nj_1(tj_1). The form (4.6.1)

becomes:

(4.6.2)

where nj(tj) is the observed number during the phase j and 

E(Nj(tj) is the estimated expected number of failure for this phase, i.e. 

the expected value of the predictive probability distribution of the 

random variable Nj(tj). The form (4.6.2) will follow the chi-square 

distribution with (k-i+1) degrees of freedom if the predictive 

distributions are the true distribution. Thus the statistic measures 

the closeness of prediction to reality.

Applying this test on the data in Table 4.3. gives the results 

shown in Table 4.4. For example, the values of the test for DJM and 

DLV models are 109.101 and 35.877 respectively. For 42 degrees of 

freedom, the first figure is significant at 0.1% while the second figure 

is non-significant even at large levels (Table 4.4). There is thus very 

strong evidence against the DJM predictions.
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4.7. The Prequential Likelihood Ratio

The predictive cdf, Fj(tj), for Tj based on tx >t2,...tj_1 will be

assumed to have a predictive probability density function:

(4.7.1)

Then for the sequence Tj, Ti+iv»Tn the predictive joint density 

function is given by:

^(n-i+l) “ ^ (, t-j-i-i , ... tn) (4.7.2)

This function is called the prequential likelihood [PLJ. Dawid

(1982, 1984a, 1984b, 1985) has treated theoretical issues concerned with 

the validity of forecasting systems using this notion. Dawid’s

discussion of calibration, in partiular, is relevant to the software 

reliability prediction problem CAbdel-Ghaly, Chan and Littlewood, 

1985b3. We shall use the prequential_ lik^l^00^ ratio (PLR) in our

analysis of the prediction system performance. If there are two 

prediction systems A with PL:1

PL(n-i+l) (4.7.3)

and B with PL:

PL(n=i+i) (4.7.4)
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the prequential likelihood ratio will be:

PL(n-i+1)

PL(n-i+1)
PLR(n-i+i) (4.7.5)

Dawid (1984a) shows that if the realised sequence of {PLR(n_j+1)) 

prequential likelihood ratios tends to infinity as n -> «, then the 

prediction system B will be discredited in favour of prediction system 

A. Conversely, if PLR(n_|+1) tends to zero as n -♦ «, B discredits A.

To get an intuitive feel for the behaviour of the prequential 

likelihood, let us consider, for simplicity, the problem of predicting a 

sequence of identically distributed random variables, i.e. Fj(t) = F(t) 

and fj(t) = f(t) for all i. Suppose, we have two sequences of

predictor densities. The first sequence is "biased" to the left of the 

true distribution (Figure 4.7), but is not excessively noisy. The 

observations, which tend to fall in the body of the true distribution, 

will tend to be in the right hand tails of the predictor densities. It 

follows that the prequential likelihood will tend to be small.

The second sequence of predictions (Figure 4.8) are very "noisy" 

but have an expectation close to the true distribution (low "bias"). 

Again, the observations will tend to lie in the body of the true 

distribution and so have a tendency to appear in (right or left) tails of 

the predictor distributions. The prequential likelihood will again tend 

to be small.
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FIG.4.7. The predictions have low "noise" and high "bias".

FIG.4.8. The predictions have hinh "noise" and low "bias".
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These arguments extend to our non-stationary case. Consider

the case where the true^ distributions fluctuate for different i’s, i.e. are 

genuinely "noisy", perhaps corresponding to occasional bad fixes, for 

example. If the predictor sequence is too smooth, this will be

detected since the observations will tend to appear in the bodies of the 

noisy, true distributions and so in the tails of the (smoothly changing) 

predictors, giving a small prequential likelihood.

Thus the prequential likelihood can, in principle, detect predictors 

which are too noisy (when the true distributions are not variable) and 

predictors which are too smooth (when the true distributions are 

variable). This is a significant improvement over our previous noise 

statistics, which could detect noisy predictors but not tell whether 

they reflected actual noise in reliability.

In summary, then, the PLR will allow us to detect both consistent 

deviations between prediction and reality ("bias") and also large 

variability in the deviation between prediction and reality (noisy 

predictor/smooth reality, or smooth predictor/noisy reality).

It is worth emphasising that, although our informal discussion of 

bias only treated shifts between prediction and reality, it can detect 

consistent differences of a more complicated nature. Elimination of 

these generally biased predictors is the subject of recent research on 

adaptive procedures: Keiller and Littlewood (1984).
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As an example of the power of the PLR consider Table 4.5. To 

emphasise the inadequacy of the u-plot and y-plot procedures when 

used on their own, Miller (1983) proposed an unbiased predictor based 

only upon the previous one or two observations. He assumed that the 

sequence (Tj) was of exponential random variables and estimated the 

mean of Tj by using tj_x or (t + t|_2)/2, from which can be obtained 

approximately unbiased predictors Fj(t) for T-j. In fact, his intention 

was to produce an estimator which had a good u-plot ("unbiased"). 

For the data of Table 4.1 this procedure gives u-plot and y-plot 

distances of 0.078 and 0.069 respectively which are not significant at 

the 10% level. Both distances are much better than those for JM and 

LV (Table 4.2), although the predictions are clearly worthless.

Applying the PLR procedure in comparing JM and LV predictions

with Miller’s second predictor gives the results shown in Table 4.5.

TABLE 4.5. The PLR of JM versus Miller predictor and 
LV versus Miller predictor using the data 
in Table 4.1. The starting sample size 
i = 35.

n JM PLR^u-i+i) LV PLR(n_i+i)

45 4.00 3.26

55 30.8 82.1

65 158.0 517.0

75 8.92 x 104 7.18 x 10s

85 9.32 x 10s 1.01 x 106

95 4.91 x 106 5.72 x 10s

105 2.48 x 106 2.53 x 107

115 6.01 x 10s 2.63 x 10®

125 3.67 x 106 3.37 x IO10

• 135 6.34 x 106 3.90 x 1011
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In both cases the Miller predictions are clearly being discredited, 

even in favour of JM, which is known to be a biased prediction system

for this data from the previous analysis.

Table 4.6. gives the PLR of JM against LV for the same data set. 

There is no evidence, for n up to about 90, that one prediction system

is preferable to the other. Thereafter, however, there is strong

evidence that LV is outperforming JM.

TABLE 4.6. The PLR of JM versus LV for the data in
Table 4.1. The starting sample size
i = 35.

n pLR(n-i+i)

45 1.1935

55 0.3176

65 0.2518

75 0.0962

85 0.7452

95 6.5021

105 0.0884

115 0.001773

125 0.000814

135 0.001196
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CHAPTER V

DATA ANALYSIS AND RESULTS

5.1. Introduction

In this chapter several real data sets will be analysed using the 

models and tools mentioned in the previous chapters.

The main computational problem in all cases is the successive 

re-estimation of the ML estimates of the parameters in those models 

(non-Bayesian) for which this technique is used. In all cases the 

Nelder-Mead (1965) simplex algorithm is used for the optimisation. 

This algorithm was chosen, rather than more recent methods for 

unconstrained optimisation, because of its well-known robustness. 

This robustness is, however, purchased at the price of less efficiency, 

and it is probably worth considering the use of Nelder-Mead in 

association with other techniques for possible commercial application of 

these models.

All calculations for the thesis are conducted in the same manner.

If the data file contains n inter-failure times , m(<n-i) is chosen as a 

starting sample size. The MLE’s are obtained for that sample and

then used to predict log pdf, cdf, rate, ROCOF, MTTF, IMTBF and 

median for the next failure-time, Tm+1. The sample is then increased 

by the observed tm+i the process repeated for Tm+2, and so on. A 

similar procedure is used for sequential prediction in the discrete case.
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The analysis has been carried out for many sets of inter-failure 

time data and of discrete type. The data were obtained from different 

sources such as Musa (1979), Braun and Paine (1977), Moek (1984), Ohba 

(1984), Misra, (1983), and through private communication.

5.2. The Analysis of the inter-failure time data

It is not possible to present the complete output of all the 

prediction systems on all data sets. Indeed, this is not desirable: 

one of the objectives of this thesis is to give guidelines to a user as 

to how he might use summaries of the information to arrive at choices 

among models. The majority of the results, then, will use a particular 

summary table. The more extensive analysis of the first three data 

sets will show how this can be augmented as a result of the questions 

which arise from the summaries. The important point is that the 

summary tables steer us through the large number of results available 

on predictive performance.

The first three data sets were chosen from those which clearly 

exhibited reliability growth and were of a reasonable size.

5.2.1. Musa System l Data

This data set is shown in Table 4.1 which gives the execution time

in seconds between successive failures (read from left to right in
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The set contains 136 points of data. The analysis beginsrows).

with a sample size of 35 observations to estimate the model’s

parameters and then make predictions about the 36th failure;

successive one-step-ahead predictions are then made.

Table 4.2. summarises the results concerning the quality of

performance of the various prediction systems on this data.

Considering the JM model, Table 5.1 gives the parameter estimates 

at different sample size. It is clear that N is close to n (the sample 

size) at all times and $ is decreasing as n increases. This implies 

that the fault rates are not equal as assumed in this model [Littlewood, 

1981]. It is noticeable that for n equal 90 or more, the JM predictions 

for the reliability function are mostly greater than .5 (Figure 4.5). 

This evidence of over-optimistic prediction is supported by the u-plot 

(Figure 4.1) where most points lie above the line of unit

Table 5.1. The MLE’s of JM model at different
sample size for the data in Table 4.1.

Sample size N <*>
n

40 55 .000199
60 77 .000118
80 99 .000079
90 100 .000077

100 106 .000067
110 119 .000057
120 133 .000040
130 138 .000037



slope, with Kolmogorov distance of 0.1896 which is significant at 1% 

level. This means that the uj’s from JM tend to be too small, 

suggesting that the predictions are under-estimating the change of 

small t’s.

The median prediction plot (Figure 5.1) shows that JM, BJM and 

JMNHPP predict larger medians than the remaining predictions systems. 

The u-plots for the latter two are similar to the u-plot of JM (Figure 

5.2 and 5.4) with Kolmogorov distances significant at the 2% level. 

These models have the largest ranks on all the statistics shown in 

Table 4.2.

In particular, these three prediction systems give the worst 

results on the PL ranks: there is a significant difference between the 

7th ranking model, D, and the 8^^, JMNHPP.

The y-plots in Figures 4.2, 5.3 and 5.5 for JM, BJM and JMNHPP 

are very close to linearity in the early stages. This suggests that 

the too optimistic predictions from these models are occurring mainly at 

the later stages. This is apparent from the median plots (Figure 5.1).

LV, KL and D models were the least variable prediction systems, 

since these three models have the smallest median and rate variabilities 

(Table 4.2). This result is confirmed by visual inspection of the 

median plots (Figure 5.1) which show also that the predictions of these
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the data in Table 4.1
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FIG. 5.2. BJM u-plots, data in Table 4.1, the ]*>lots 
based on the line printer output.

FIG.5.3. BJM y-plots, data in Table '1.1, the plots
based on the line printer output.
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FIG. 5.5. JMNHPP y-plots, data in Table 4,1,, the plots 
based on the line printer output.

FIG, 5,4, JMNHPP u-plots, data in Table 4,1, the plots 
based on the line printer output.



models seem less optimistic than the previous three. The Kolmogorov 

distances of the u-plots of these models are, however, significant at 

the 5% level. Further exmination of these plots shows that they are 

mainly below the line of the unit slope, suggesting that these models 

gave too pessimistic predictions. Their non-significant y-plot

distances reflect their abilities to capture the trend in the data. The 

y-plots themselves are above the line of unity slope but with shape 

close to linearity (Figure 4.3 for LV, 5.6 for KL and 5.8 for D). 

Although these models have the first three ranks for the median and 

rate measures (Table 4.2) they follow the first group on the other 

ranks. They are thus discredited in favour of the remaining models.

The last group of prediction systems contains L, BL, LNHPP and W 

which exhibit the lowest ranks of PL, u-plots, y-plots and Braun 

statistics. The Kolmogorov distances are non-significant for both 

u-plots (BL apart) and y-plots (Table 4.2), the plots being very close 

to the line of the unit slope in all cases (see Figures 5.10 to 5.17, two 

for each model). These models in addition to giving unbiased 

predictions (non-significant u-plot distances), have greater ability to 

capture the trend in the data than the models in first and second 

groups. They can thus be thought of as being better calibrated for 

this data set.

The median prediction plots (Figure 5.1) show that the predictions 

out of these models are not as much optimistic as the first three 

models nor as pessimistic as the second group of models, but they are

- 118 -



1.............. 1.................... 1.................... 1.................... 1.................... 1
0. 0.2 0.4 0.6 0.8 1.0

y + 1.

X*

*J**  •
*4 e

•
+ 0.8
•
•

/ft *
•
•

X * + 0.6
* * •

X * •
X * •

* * •
* * + 0.4
* •

/ * * e
/ * * •

/*  * •
★ * / * * + 0.2

•
* * / •

* * / •
•
+ 0.0

KL y-plots, data in Table 4.1, the plots
based on line printer output.

FIG.5.6. KL u-plots, data in Table 4.1, the plots
based on line printer output.



+ 1A A A A' + 7

FIG.5.9 D y-plots, data in Table 4.1, the plots, 
based on the line printer output.

A *

* * / 
A A / 

A /

A A/

1
0.

* *

✓ * 
/ A A

A A
4 A

.1 .
0.2

* *

★

. 1 .
0.4

yA *

A *

yA * 

a/a  *

*

+ 0.8

/*

y< *

y^ A 
/ A A A

A A

A A

A

*

. 1.
0.6

. 1 .
0.8 1

+ 0.6

+ 0.4

+ 0.2

+ 0.0
1
.0

FIG.5.8. D u-plots, data in Table 4.1, the plots
based on the line printer output.



* *> + 1•

FIG.5.11. L y-plots, data in Table 4.1, the plots 
based on the line printer output.
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FIG.5.13 BL y-plot, data in Table 4.1, the plots 
based on the line printer output.

FIG.5.12. BL u-plots, data in Table 4.1., the plots
based on the line printer output.
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FIG.5.15. LNHPP y-plots, data in Table 4.1, the plots 
based on the line printer output.
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W y-plots, data in Table 4.1., the plots 
based on the line printer output.

*X+1.

FIG.5.16. W u-plots, data in Table 4.1., the plots
based on the line printer output.



closer to the latter. It is clear from Table 4.2 and Figure 5.1 that W 

and BL models exhibit larger median and rate variability than L and 

LNHPP.

L and LNHPP have the same median plots (Figure 5.1) and 

identical u-plots and y-plots (Figure 5.10 with 5.14 for u-plots and 

Figure 5.11 with 5.15 for y-plots). All other statistics in Table 4.2 are 

virtually identical, suggesting that there is little to choose between 

these models on this data. The reason for these predictions being 

almost identical is the large estimate of N (the number of faults in the 

program) obtained for the L model.

In summary, then, L and LNHPP are performing best on this data 

set, with little to distinguish between them. However, their

superiority owes a great deal to their "unbiasedness" as revealed by 

the u-plots. They are more noisy than, say, LV and KL, both of 

which are significantly biassed. This suggests that a better model 

than any of the ones considered here might be obtained by 

recalibrating LV or KL using the adaptive approach of Keiller and 

Littlewood (1984).

5.2.2. System BIO Data

This data set contains 86 execution times (in hundredths of 

seconds) between failures (Table 5.2). The sample size at the 

beginning of the analysis was 30 observations.
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TEST B DATA 1+2 + 3 FNS MIXED DATA (D-910)

IN TER-FAILURE TIMES

479. 266. 277. 5 54 . 1034
949. 693. 597. 117. 1 70i 117. 1 274 . 469. 1174. 693

r\5 1 908. 135. 277. 596. 757
cr> 4 37 . 2230. 4 3 7. 340. 405i 5 75 . 277. 363. 5 22. 618

277. 1 300. 821 . 213. 1 620
1 601 . 298. 874. 618. 2 64 3

5. 1 49. 1 034. 244 1 . 460
565 . 1119. 4 3 7 . 927. 4462
714. 181 . 1 485 . 757. 3154

2115. 884 . 2037. 1481 . 559
490. 593. 1 769. 85. 2 836
213. 1 866. 490. 1 487. 4322

1418. 1 023. 5490. 1 520. 32 8 1
2716. 21 75. 3505. 725 . 1 963
3979.
3902 .

1 090. 24 5 . 1194. 994

TABLE 5.2. Execution time in hundredths of seconds between successive failures. 
Read left to riqht in rows.



Table 5.3. shows the summarised results of the various prediction 

systems on this data set.

Apart from JMNHPP, it is noticeable that all prediction systems 

give similar PL. All give non-significant y-plot distances. However, 

closer inspection suggest that there are differences in noise and bias.

Thus LV and KL have good PL performance but quite poor u-plot 

distances. The detailed plots, Figures 5.18 and 5.20, are below the 

line of unit slope, suggesting that these predictions tend to be too 

pessimistic. Thus, the median plots for LV and KL in Figure 5.22 are 

too low.

The median plots for JMNHPP and D are even more pessimistic 

than those of LV and KL. That they are too pessimistic is confirmed 

by examined of their u-plots (Figures 5.23 and 5.25). Each of these 

is, however, giving low noise values.

There is strong evidence, then, that the lowest five median plots 

(LV, KL, D, JMNHPP and LNHPP), Figure 5.22, are too low. The 

remaining median plots, however, show more noise.

It therefore seems to be the case that there is clear trade-off 

operating between noise and bias. This suggests that the more noisy 

predictions (JM, BJM, L, BL and W) are in fact too noisy.
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Test Continuous Data System DATA BIO
No.of Observations: ~ 86
Starting Sample Size : - 30

TABLE 5.3. The analysis results of data in Table 5.2.
The ML routine did not terminate normally for L, LV, and KI 

The BL routine shows overflo.

MODEL .E
1-2

n'iII 1 HANK
n r;r I 1 1 i BANK

BRAUN
RANK u- PLOT RANK y-PLOT RANK -Lok  PL RANK1 1 m 1

mi-i
t I 1

i -- 2 r i -1 TEST

JM 4.2304 8 3.805 J 8 ‘1.1104 8 . 1206 
N.S.

4 . 1147
N.S.

10 6.9029
466.2226 6

BJM 3.7347 7 3.2738 7 1.0392 6 . 1096
N.S.

o .0771
N.S.

5 7.0444
466.6472 7

L 5.2873 9 4.6731 9 1.0374 5 . 1298 
N.S.

5 . 0897
N.S.

8 6.8807
465.3674 1

BL 3.1012 6 2.7750 6 0.9768 4 . 1197 
N.S.

3 . 0621 
N.S.

4 7.0444
465.8074 4

LV 2.3276 4 2.1809 3 0.9675 2 . 1677
103

6 . 05 J 0 
N.S.

o 6.9114
465.5275 2

KI. 2.3052 3 9 9 1r'9 4 0.9660 1 . 1690
103

7 . 0507
N.S.

1 6.9087
465.6919 3

D 1.9589 2 1.8458 2 1.0422 7 . 2089
23

9 . 0520
N.S.

3 6.8819
467.7761 9

JMNHPP 1.0631 1 1.0284 1 1.2129 10 .2710
13

10 .0846 
N.S.

7 6.8807
473.8700 10

LNHPP 3.0507 5 2.7602 5 0.9692 3 . 1692
103

8 .0817
N.S.

6 6.8807
465.8452 5

W 6. K-07 10 5.4777 JO 1.1748 9 . 1002
N.S.

1 .1107
N.S.

9 6.9128
466.8940 8



FIG.5.19. LV y-plots, data in Table 5.2, the plots 
based on the line printer output.

FIG.5.18. LV u-plots, data in Table 5.2, the plots 
based on the line printer output.
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FIG.5.21. KL y-plots, data in Table 5.2, the plots
based on the line printer output.
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FIG.5.22. The plots oF predictive medians For

the data in Table 5.2
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FIG.5.23. JMNHPP u-plots, data in Table 5.2, the plots
based on the line printer output.

FIG.5.24. JMNHPP y-plots, data in Table 5.2, the plots
based on tlfe line printer output.



FIG.5.26. D y-plots, data in Table 5.2, the plots
based on the line printer output. FIG,5.25. D u-plots, data in Table 5.2, the plots

based on the line printer output.
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FIG.5.28. LNHPP y-plots, data in Table 5.2, the plots
based on the line printer output.

FIG.5.27. LNHPP u-plots, data in Table 5.2, the plots
based on the line printer output.
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FIG. 5.29. JM u-plots, data in Table
based on the line printer

FIG,5.30 JM y-plots, data in Table 5.2, the plots
based on the line printer output.
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FIG.5.32. BJM y-plots, data in Tabic 5.2, the plots 
based on the line printer output.
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FIG. 5.31. BJM u-plots, data in Table 5.2, the plots
based on the line printer output.
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FIG.5.34. L y-plots, data in Table 5.2, the plots
based on the line printer output.

FIG.5.33. L u-plots, data in Table 5.2, the plots
based on the line printer output.
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FIG.5.36. BL y-plots, data in Table 5.2, the plots 
based on the line printer output.

FIG.5.35. BL u-plots, data in Table 5.2, the plots
based on the line printer output.
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It is possible that biased (but less noisy) predictors could be 

improved by applying an adaptive procedure [Keiller and Littlewood, 

19841. It may also be the case that the more noisy predictors could 

be improved by a smoothing technique. This has not been attempted 

but may be a suitable subject for further study.

Now, the user is faced with an interesting choice between these 

two groups of predictors. Let us make the situation a little easier by 

selecting the best three prediction systems on PL (L, LV and KL). If 

LV or KL is used predictions will be too pessimistic; if L is used, they 

will be objectively too noisy, (Figure 5.22). But, since L is slightly 

better in PL performance, the user may prefer to use that model in 

order to be closer to the true reliability on average (but with 

fluctuating errors).

5.2.3. British Aerospace Data JD-^BADA)

This data set contains 207 inter-failure times (Table 5.4). The 

data related to a system experiencing failures due to software faults 

and hardware design faults. The analysis is started using a sample of 

size 80 observations. It is surprising that nearly all models perform 

well on this data set (Table 5.5).

Apart from D, there is remarkable agreement on PL and median 

plots (Figure 5.39). All y-plot distances are non-significant, all
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I fj TER” FAILURE TIMES

BRITISH AEROSPACE DATA

39. 10.. 4. 3 6. 4
5. 4 . 91 . 49. 1

25. 1 . 4. 30. 42
9. 49. 44. 32. 3

78. 1 . 30. 205 . 5
1 29. 103. 224 . 1 86. 53
U. 9. 2. 10. 1
34. 1 70. 1 29. 4 . 4
35. 5. 5. 22. 36
35. 121. 23. 33. 48
32. 21 . 4 . 23. 9
13. 165. 14. 22. 41
12. 133. 95. 49. 62
2. 35. 39. 90. 69

22. 15. 19. 42. 1 4
11 . 41 . 210. 16. 30
37. 6 6. 9. 16. 1 4
24. 12. 1 59. 39. 1 1 8
29. 21 . 1 3. 2. 1 1 4
37. 46. 17. 1 . 1 50

332. 160. o 6. 236. 9
26. 62. 2 39. 13. 4

35. 35. 240. 1 73. 34
132. 9. 146. 59. 48
25. 25. 111. 5. 31
51 . 6 • 1 93. 27. 25
96. 26. . 30. 30. 1 7

320. 73. 39. 13. 1 3
19. 1 28. 34 . 84. 40

177. 349. 274 . 32. 58
31 . 114. 39. 88. 84

232. 1 33. 3 8. 36 . 7
22. ij 0. 239. 3. 39
63 . 152. 6 3. 30. 245

19o . 46. 152. 132. 9
223. 220 . 2 08. 73. 3

33. o • 212. 91 . 3
10. 1 72. 21 . 1 73. 371
Vj. 43. 1 2o. 90. 1 4 9
30. 317. 5 00. 673. 432
06 . 163. 6 6. 6 6. 123
49. 332 .

TABLE 5.4. Operating time between successive failures. This data relates
to a system experienceing failures due to software and hardware
design faults. Read left to right in rows
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Tost Continuous Data System D-BADA
No.of Observations: = 207
Starting Sample Size : - 80

TABLE 5.5. Analysis of data in Table 5.4. 
ML terminated abnormally for many L predictions.

BJ?4 and BL calculations involved ovcrflo and undcrflo on some predictions.

MODEL .i
n m;r ; [---------- 1

2
BANK

n is
Ell- ----I

1-2 ‘ 1 1
RANK

BRAUN
RANK u -PLOT RANK y PLOT RANK -Lok  PL RANKTEST

JM 4.77464 10 4.51571 10 .94099 6 . 0833
N.S.

6 .0723
N.S.

8 4.68239
711.03607 6

BJM 4.20910 6 3.92470 6 .91588 1 .0835
N.S.

rr 
I .0712 

N.S.
7 4.71441

710.90424 3

I, 4.68990 9 4.47386 9 .92432 2 .0703
N.S.

2 . 0648
N.S.

4 4.68096
710.944 4

BL 3.4 1 688 5 3.13034 4 .93298 3 .0741
N.S.

4 .0547
N.S.

I 4.7144 I
710.43318 I

LV 2.64 1.11 •) 2.74784 o .94939 8 . 0874
N.S.

8 . 0652
N.S.

5 4.76011
711.83459 8

KL 2.75691 3 2.88578 3 .95333 9 .1020
20%

9 . 0664
N.S.

6 4.76750
712.58476 9

1) 1.98090 1 1.92384 1 .99347 10 . 1168
10%

10 . 0736
N.S.

9 4.67301
714.49132 10

JMNHPP 4.58110 7 4.29811 7 .93700 4 . 0752
N.S.

5 . 0750
N.S.

10 4.67015
711.02128 5

LNiirp 3.29779 4 3.14030 5 .93897 5 .0717
N.S.

3 . 0583
N.S.

3 4.67625
710.89510 2

W 4.67634 8 4.43484 8 .94514 7 .0636
N.S.

1 . 0564
N.S.

2 4.67301
411.25569 7
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the data in Table 5.4
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u-plot distances (D apart) are non-significant at the 10% level.

On the median plots, LV, KL and D are more pessimistic than the 

other systems. Their u-plots ranks are the worst, and these u-plot 

maximum distances are below the line of unit slope (Figures 5.40, 5.42, 

and 5.44) suggesting that they are too pessimistic.

It is striking that the three systems with worst PL, are the three 

with best noise ranks. Again this might suggest that LV, KL and D 

would be suitable candidates for an adaptive procedure [Keiller and 

Littlewood, 1984].

On the evidence available, there is little to choose between the 

prediction systems in the first (say) four ranks of PL. The median 

plots (Figure 4.39) show how close these are.

Notice, incidentally, that JM gives quite plausible estimates of N 

(Table 5.6), as well as good prediction of reliablity. We cannot be 

sure that N is close to the true N, but at least these results do not 

show the consistent increase of N with n which is revealed in Table 

5.1.

Of the prediction systems with the eight best PL values, it is 

hard to recommend a best one for future predictions.
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FIG.5.40. LV u-plots, data in Table
based on the line printer

FIG. 5.41. LV y-plots, data in Table 5.4., the plots
based on the line printer output.



FIG.5.43. KL y-plots, data in Table 5,4, the plots 
based on the line printer output.

FIG. 5.42. KL u-plots, data in Table 5.4, the plots
based on the line printer output.
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FIG, 5.44, D u-plots, data in Table 5.4, the plots
based on the line printer output.

FIG, 5.45. D y-plots, data in Table 5.4, the plots
based on the line printer output.
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FIG. 5.47. JM y-plots, data in Table 5.4, the plots 
based on the line printer output.

FIG. 5.46. JM u-plots, data in Table 5.4, the plots
based on the line printer output.
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FIG. 5.49. BJM y-plots, data in Table 5.4, the plots
based on the line printer output.

FIG. 5,48. BJM u-plots, data in Table 5.4, the plots
based on the line printer output.
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FIG.5.50. L u-plots, data in Table 5.4, the plots 
based on the line printer output.

FIG.5.51. L y-plots, data in Table 5.4, the plots
based on the line printer output.
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BL u-plots, data in Table 5.4, the plots
based on the line printer output.

FIG.5.53. BL y-plots, data in Table 5.4., the plots
based on the line printer output.



FIG. 5.55 JMNHPP y-plots, data in Table 5.4, the plots 
based on the line printer output. FIG. 5.54. JMNHPP u-plots? data in Table 5.4, the plots 

based on the line printer output.



FIG. 5.56. LNHPP u-plots, data in Table 5.4, the plots 
based on the line printer output.

FIG.5.57. LNHPP y-plots, data in Table 5.4, the plots
based on the line printer output.
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W u-plots, data in Table 5.4, the plots 
based on the line printer output.

FIG.5.59 W y-plots, data in Table 5.4, the plots 
based on the line printer output.



Table 5.6. The parameter estimates of JM model 
at different sample size for the date in Table 5.4.

Sample size
n

N i

80 257 0.000102

100 359 0.000070

120 183 0.000156

140 254 0.000101

160 245 0.000105

180 255 0.000099

200 244 0.000108

206 257 0.000099

5.2.4._ Summarised analysis for the remaining continuous data

In the previous three subsections, we considered the detailed 

analysis of three different data sets out of several data sets available. 

Here, a short analysis is given for each of the remaining data sets.

5.2.4.1._ Musa System 14C Data

Table 5.7 shows the summarised results of Musa’s (1979) system 

14C. This data set is quite small (only 36 observations) and most of 

these observations are very large.

According to PL ranks, the last four prediction systems (LV, KL, D 

and W) will be discounted. Incidentally, these four predictions have
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Test Continuous Data System: Musa System 14C

No.of Observnl.ions: - 36
Starting Sample Siz<‘ : = 20

MODEL .E1
in;

JI------ —| I
2 i"i l

?ANK
n r;
Ell- ——1 

i - 2 1 i -1

BRAUN
u - PLOT WANK y-PLOT RANK Log PL RANKWANK

TEST
WANK

.JM . 9847 2 . 86(50 2 1.2219 3 . 2682 4 . 1947 6 12.7J 49
20% N.S. 233.1722 3

B.JM 1.9263 4 ] .4431 4 1.1790 1 . 2083 1 . 1519 3 12.7766
N.S. N.S. 230.9583 1

I. 2.0003 6 1.7221 r-y? 1.2542 4 .2644 3 . 2015 7 12.7232
20% N.S. 233.9658 4

BL 1.9263 4 1.4431 4 1.1790 1 . 2083 1 . 1519 3 12.7766
N.S. N.S. 230.9583 1

LV* 1) 4.6890 9 3.839] 9 *** 8 .4413 10 . 1241 2 12.8808
1% N.S. 236.8394 7

KL* 1) 3.4647 8 2.3503 8 8 .4115 9 .1610 5 12.2645
1% N.S. 237.9225 8

D 2.0768 7 1.6939 6 1.3776 7 .3753 8 . 1225 1 12. 1569
2% N.S. 241.8710 9

JMNHPP .8183 1 . 7556 1 1.2730 5 . 2682 4 .2135 9 12.7150
20% N.S. 234.3348 5

LN DPP 1.8826 3 1.2104 3 1.3343 6 . 2682 4 .2118 8 12.7154
20% N.S. 234.8436 6

w *1) * 10 ** 10 8 .3124 7 .3123 10 12.1569
5% 5% 10

TABLE 5.7. The summarised results of Musa’s system 14C data.

(1) The model predicts; * infinite median, ♦ t ze ro ROCOF and *♦*  infinite or non-existent Ml ’TF (or IMTBF).
Sarno notations will be used in other 'Pablos.



the highest ranks in all statistics (y-plot apart). The poor 

performance of these models seems mainly due to the large bias shown 

in their predictions (significant u-plot distances, Table 5.7). No value 

is assigned for Braun statistic in case of LV, KL and W because of the 

non-existence of MTTF. W predicts that the last fault has been 

removed for a range of values of n.

The remaining prediction systems (JM, BJM, L, BL, JMNHPP, and 

LNHPP) which are the best in PL ranks, are close in median plots 

(Figure 5.60). These plots are identical upto the last five predictions 

for JM, L, JMNHPP and LNHPP. JM performance is misleading on this 

data set because the data points did not satisfy Littlewood-Ver rail 

condition (1981) except for the last five predictions.

BJM and BL are significantly better than the others on PL 

performance. These predictions are completely identical as a result of 

large (nearly infinite) £ estimates in BL. These two models have the 

best u-plot distance, and are the only models for which this distance is 

non-significant. It is clear that BJM and BL should be preferred for 

future predictions.

5.2.4.2. Musa System 17 Data

Again, this data set is a short one and contains a very large 

observation at the end which affects the performance of most 

prediction systems (Figure 5.61).
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The prequential likelihood suggests that BJM and BL perform 

significantly better than the rest (Table 5.8). The u-plot distances 

are non-significant for all prediction systems at 10% except W. Also, 

apart from JMNHPP, all y-plot distances are non-significant at the same 

level. The poor performance of W is due to the system predicting 

frequently that the last fault has been removed. D and JMNHPP reflect 

the lowest noise, implying that both are too smooth.

Once again, BL and BJM are preferable for a future prediction on 

such data.

5.2.4.3. Musa System 2 Data

It is clear that LNHPP is the best performing prediction system 

for this data (Table 5.9). It is significantly better than the next best 

on PL, also it is assigned the lowest value for Braun statistic as well 

as non-significant u-plot and y-plot distances.

The median plots (Figure 5.62) show the effect of large 

observations followed by small ones on all prediction systems except 

the lowest three (D, LV and KL). The performance of LV and KL (2nd 

and 3rd best in PL) seems to be poor because of their biased 

predictions implying that they are too pessimistic. Both reflect the 

lowest noise of any and it is possible that each could be improved by 

applying an adaptive procedure TKeiller and Littlewood, 19841.
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Test Continuous Data System Musa System 17

Mo.of Observations: - 38
Starting Sample Size : - 13

TABLE 5.8. The summarised results of Musa’s system 17 data.

n m; n r;
E 1J------— 1
i■2 1 i- 1

RANK
BRAUN

MODEL .£ | 1------- — |
nLi i

RANK TEST RANK u PLOT RANK y PLOT RANK -Lotf PL RANK

JM 9.0333 9 3.9885 7 1.2158 9 . 1884 
N.S.

5 . 2359
N.S.

7 8.2076
25L.3175 7

BJM 7.9803 8 3.3716 6 1. 1276 6 .2152
N.S.

6 . 1826
N.S.

3 8.4309
215.3614 1

L 6.6834 4 3.2285 4 J . 1443 8 . 1828
N.S.

4 . 2368
N.S.

8 8.2076
250.7667 6

BL 7.6366 7 3.2583 5 1.1199 5 .2152
N.S.

6 . 1873
N.S.

4 8.4309
245.5081 2

LV 7.3109 5 8.3326 9 1.0769 9 . 2735
20^

9 . 1032
N.S.

1 8. 1308
249.770t 4

KL 4.7902 3 4.0958 8 1.0709 1 .2236
N.S.

8 . 1143 
N.S.

o 8.1174
249.5152 3

D 3.8820 2 2.7078 2 1.1050 3 . 1629
N.S.

1 . 2258
N.S.

6 7.8825
261.3061 9

JMNIIPP 1.7315 1 1.4530 1 1.1091 4 .1691
N.S.

*) .3106
IOS

10 8.2076
257.7631 8

LNHPP 7.3532 6 33.0801 3 1.1339 7 . 1682 
N.S.

n . 2123
N.S.

5 8.2077
250.1423 5

W ♦ 10 ** 10 t** 10 . 3975
oozrfw O

10 . 2577
N.S.

9 48.5240
10



Test Continuous Data System Musa System 2
No.of Observations: = 54Starting Sample Size : = 13

TABLE 5.9. The summarised results of Musa’s system 2 data. ML routine does not terminate normally for L, LV and KL.

MODEL
n m;
r 11 x i RANK

n ri
r 11 x i RANK

BRAUN
RANK u-PLOT RANK y-PLOT RANK -Log PL RANK1=2 mi-! 1=2 rl-l TEST

JM 12.2038 9 8.9883 8 2.6003 9 .1940
10%

9 .1627 
N.S.

9 8.3129
363.3807 8

BJM 11.3677 7 6.8918 6 1.4564 7 .1557 
N.S.

6 .1585 
N.S.

7 8.5189
353.6922 9

L 11.9306 8 9.2025
c

9 1.6379 8 .1256 
N.S.

2 .1335 
N.S.

5 8.3385
359.9345 5

BL 4.9462 5 3.9656 5 .9579 5 .1364 
N.S.

4 .1093 
N.S.

3 8.3780
358.7478 4

LV 2.2742 1 2.0427 1 .9270 3 .1768
20%

7 .1277 
N.S.

4 8.3923
358.2312 2

KL 2.3713 2 2.1393 2 .8990 2 .1786
20%

8 .1069 
N.S.

2 8.4094
358.3392 3

D 3.6725 3 3.0947 3 .9425 4 .2063
10%

10 .1055 
N.S.

1 8.8652
360.5915 6

JMNHPP 11.3411 6 7.2885 7 1.4301 6 .1332 
N.S.

3 .1876
10%

10 8.6414
361.6410 7

LNHPP 4.7710 4 3.8646 4 .8752 1 .1212 
N.S.

1 .1485 
N.S.

6 8.6344
356.9698 1

W * 10 *♦ 10 10 .1540 
N.S.

5 .1622 
N.S.

8 8.1486
10



m
e
d
i
a
n
 
p
r
e
d
i
c
t
i
o
n
s

no; oF points

FIG.5.62. The plots oF predictive medians For
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5.2.4.4. Musa System 27 Data

The plots of the predictive medians (Figure 5.63) show great 

disagreement between models. The model with best PL (BL) is very 

noisy. Only two models have non-significant u-plots (BL and LNHPP). 

All y-plot distances are significant. There is no evidence that any of 

the models could be trusted for future prediction.

5.2.4.5. Musa System 3 Data

Several prediction systems can be discounted here because of 

their poor performance in most measures, namely, JM, BJM, JMNHPP, 

LNHPP and W (Table 5.11). The poor performance of JM and W results 

from their predictions that the last fault has been removed (for a 

range of n), while the poor performance of BJM, JMNHPP and LNHPP is 

due to too much noise of these predictions (infinite medians are 

predicted for several points (Figure 5.64)).

LV, KL and D are reflecting the lowest noise but are too 

pessimistic as shown by u-plots which have highly significant 

distances.

Finally, L is the second best in PL performance but it reflects a 

very noisy prediction (Figure 5.64). So it is discredited in favour of 

BL. The later is significantly best on the prequential likelihood 

performance as well as u-plot and y-plot distances of the model being
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Tost Continuous Data System Musa System 27

No.of Observations: - 4 7
St.nrl.inf' Sample Size : - 22

BRAUN
MOBEL . i EJ 1 ——

! 2 n,i-i
RANK Ell- |

1-2 r 1 - 1
RANK

TEST
RANK u-PLOT RANK y-PLOT RANK - Log PL RANK

JM 19.GG27 9 6.3003 9 2.9302 9 .3922
]%

9 . 6886
1%

9 13.5445
278.8008 7

BJM 17.1634 8 3.7156 7 1.4968 7 . 3029
5%

5 .4866
1%

5 13.1800
26.0.8400 o

L 12.159) 6 5.7920 8 2. 1446 8 . 2759
10%

3 . 6566
1%

8 13.5445
275.9653 6

BL 15.4028 7 2.4494 5 1.2549 5 .2112 
N.S.

2 .4217
I°o

4 13.1800
258.1462 1

LV 3.2780 9 2.6400 6 1.2252 2 .3707
1%

7 .2776
10%

1 15.0349
261.6959 3

KL 3.3695 3 2.4097 4 1.2545 4 .3589
OOz4- O

6 .3391
90/•So

2 15.3349
261.8679 4

D 3.9004 4 1.8311 2 1.2383 3 . 2809
10%

4 . 5264
1%

6 14.6021
281.4611 8

JMNHPP 1.7181 1 1.1636 1 1.3232 6 . 3951
1%

10 .3379
2%

o 13.5444
282.3312 9

LNHPP 4.6358 5 1.8526 3 1.1830 1 . 1553
N.S.

1 .5686
1%

7 13.5445
271.2016 5

W * 10 ** 10 *** 10 .3815
1%

8 .7151
1%

10 14.60213
10

TABLE 5.10. The summarised results of Musa’s system 27 data- 
The ML routine does not terminate normally for L.



Test Continuous Data System Musa System 3

No.of Observations: = 38
Starting Sample? Size : = 13

TABLE 5.11. The summarised results of Musa’s system 3 data

MODEL .£
1 =

11 mi 1 RANK
n
E 

i=
11 1 RANK

BRAUN
RANK u-PLOT RANK y-PLOT RANK -Log PL RANK

2 mi-i 2 ri-l TEST

JM ♦ 6 ♦♦ 9 *** 9 .4777 10 .4569 10 5.8706
1% 1% - 9

BJM * 6 8.6794 6 12.0615 7 .2314 6 .2889 7 5.9422
20% 5% 246.3822 8

L 16.6506 5 9.9025 8 15.3056 8 .1514 1 .2360 5 5.6678
N.S. 20% 239.1870 2

BL 7.8191 4 5.9750 4 .9366 2 . 1526 2 .1140 2 6.5143
N.S. N.S. 237.1442 1

LV 6.3929 2 5.2275 2 . 9825 3 .3320 9 .1358 4 5.2509
1% N.S. 243.7027 4

KI, 6.8478 3 5.8724 3 1.2929 4 .2914 7 .0991 1 5.4883
5% N.S. 242.6179 5

D 5.1718 1 3.9850 1 .8737 1 .3001 8 . 1260 3 5.6461
2% N.S. 241.2496 3

JMNHPP * 6 7.7733 5 9.9270 6 .1832 3 . 3597 9 5.5487
N.S. 1% 246.1144 7

LNHPP * 6 8.7511 7 9.9257 5 .2064 4 .3394 8 5.6670
N.S. 1% 245.7035 6

W * 6 ** 9 *** 9 .2194 5 .2771 6 5.8161
20% 5% - 9
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non-significant. This model would be recommended for future

predictions from this data source on the evidence of this analysis.

5.2.4.6. __ Musa System 4 Data

Most models have significant y-plot distances (Table 5.12) on this 

data set. it is noticeable that there are several suspiciously large 

observations in the data, which also shows little evidence of growth. 

Again, the large observations affect different models to different 

degrees. The order statistic models (JM, W and L) (see peaks in

median plots, Figure 5.65) are most affected, while LV, KL and NHPP 

models are least affected.

Leaving aside reservations about the quality of the data, LV and 

KL are clearly best on PL performance. Their u-plot distances are 

non-significant. Incidentally KL predicts that MTTF is not existent for 

the last prediction point, which affects the calculation of Braun 

statistic.

5.2.4.7. Musa System 6 Data

Table 5.13 shows that LV and KL are clearly the best performing 

prediction systems on PL. Their medians disagree with all other 

models (Figure 5.66), yet they have the best u-plot and y-plot 

distances. Indeed all other models have highly significant u- and
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Tost Continuous Data System Musa System 4

No.of Observations: = 53
Starting Sample Size : - 13

MODEL ,E |1------- —
] 2 IPj-j

BANK h H - “1
1-2 1 1 - 1

RANK
TEST

RANK u PLOT RANK y- PLOT RANK -Lotf PL RANK

JM * 6 9 8 . 1688
20?;

7 .2459
t-.'o

5 5.6696
9

11 JM * 6 6.9797 7 15.3460 7 . 1.851
20°;

9 . 1290
N.S.

1 5.77(2)
302.6742 3

L 14.2267 5 8.8457 8 . 9738 2 .1197
N.S.

a . 3072
1%

8 5.6765
313.4945 6

BL * 5 6.4017 6 4.7661 5 . J 722
20°;

8 . 1768
'-*%

3 5.9939
304.1979 4

LV 5.2574 1 5.3402 3 1.0248 4 . 1289
N.S.

3 . 2135
5%

4 5.9705
301.0855 2

KL 5.6576 3 5.8844 5 8 . 1431
N.S.

6 . 1671
20%

’) 5.7362
300.0959 1

I) 5.5204 2 3.6919 2 1.0126 3 . 1188 
N.S.

1 . 3787
1%

9 5.6205
321.8510 7

JMNHPP * 6 3.0736 1 11.5527 6 . 2085
10%

10 .4537
1%

10 5.4662
362.6669 8

LNHPP 8.4 ('>5 6 4 5.3878 4 . 9695 1 . 1350 
N.S.

4 . 2856
1%

7 5.4910
311.5787 5

W * 6 9 8 . 1418
N.S.

5 . 2678
1%

6 5.6205
9

TABLE 5.12. The summarised results of Musa’s system 4 data.
The ML routine does not terminate normally for L.
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Test Continuous Data System Musa System 6

No.of Observations: - 73
Starting Sample Size : - 20

n mi
MODEL .Ell-------— I1-2 RANK

n rjJ H - TT2-! 
1=2 rl-l

RANK
BRAUN

TEST
RANK u-PLOT RANK y-PLOT RANK -Log PL RANK

JM 11.9530 9 7.3860 8 1.4552 8 .2654
1%

9 .2489
1%

8 4.4650
298.0149 10

BJM 9.7962 6 5.6393 5 1.2154 4 .2543
1%

7 . 2356
1%

5 4.4422
289.1597 3

L 13.3744 10 8.3488 9 1.3816 7 .2717
1%

10 .2515
1%

10 4.4606
297.3525 9

BL 6.5967 4 5.0229 3 1.1827 3 .2643
1%

8 .2492
1%

9 4.6371
290.6683 4

LV 8.3735 5 8.6079 10 ♦** 9 . 1554
20%

2 .1176 
N.S.

2 4.0814
276.5956 2

KL 5.9156 2 5.6216 4 *** 9 . 1421
N.S.

1 .0979 
N.S.

1 3.8825
275.6645 1

D 3.4316 1 2.8070 1 1.0585 1 .2191
2%

3 .2130
2%

3 4.1634
290.9713 5

JMNHPP 10.6868 7 6.4742 6 1.2166 5 .2291
1%

5 .2379
1%

6 4.3124
295.4205 7

LNHPP 6.3464 3 4.9263 2 1.1176 2 .2210
1%

4 .2443
1%

7 4.3459
293.3122 6

W 11.4503 8 6.5156 7 1.3167 6 .2436
1%

6 .2321
1%

4 4.3962
295.6072 8

TABLE 5.13. The summarised results of Musa’s system 6 data.
The ML routine does not terminate normally for L.
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y-plot distances and are discredited on this criterion alone.

Although the other prediction systems are in reasonable agreement 

on their predictive median plots, their performance has been seriously 

affected by the large observation at point 14 of prediction (Figure 

5.66). Once again, it seems that KL and LV are more "robust" in their 

response to possible outlier observations. Given the variable quality 

of software failure data, this robustness is an important quality.

5.2.4.8.__ Musa System SS4 Data

Once again, LV and KL disagree with all other prediction systems 

in their predictive medians and yet have best PL (Figure 5.67). The 

u-plot distances are significant for all prediction systems implying that 

their predictions are biased and inspection of plots shows KL and LV 

to be too pessimistic and all others to be too optimistic. Only LV and 

KL have non-significant y-plot distances (Table 5.14).

KL has a better PL than LV, probably because of the noise of the 

latter. However, even KL cannot be recommended for future

predictions because of its excessive bias. There is thus no

trustworthy prediction system here.

It is possible that KL would give good results if the adaptive 

procedure [Keiller and Littlewood, 19841 were used.
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Test Continuous D&ta System Musa System SS4

No.of Observations: - 196
Starting Sample Size : - 150

TABLE 5.14. The summarised results of Musa’s system SS4 data.
Thf' ML routine docs not terminate normally for L.

The calculations of BJM involve overflo and underflo in some predictions.

MODEL .E
1-2

m;
I1 ’ 1 HANK

n r:.Ell - —i-| 
1=2 rl 1

HANK
BHAIJN

HANK v PLOT HANK Lo;{ Pl, HANK
TEST

HANK u PLOT

JM .3713 2 . 3656 2 1.0537 5 . 203 1
5%

3 .2165 
rt%

7 15.0250
6251.8999 7

BJM 1.0898 6 .8170 4 1.0407 1 .2071
5no

6 . 1637
20°o

3 J 1.8776
628.5343 3

L 1.4670 7 1.4085 8 1.0590 8 .2047
5%

4 .2242
2%

9 15.0592
630.2209 10

BI. 1.0648 5 . 8226 5 1.0107 1 . 207 1
5A

6 .1641
20°i

4 14.8776
628.5369 4

LV 9.2754 10 11.1531 10 9 .2912
IS

10 .0821
N.S.

1 16.4371
1’28. 1619 2

KL 1.5015 8 1.2558 7 *** 9 .2275
2%

9 . 0994 
N.S.

o 15.8781
624.7500 J

D . 6326 3 .6172 3 1.0570 7 .2027
5%

2 .2159
5°o

6 15.0835
630.1699 9

J MN Hid’ . 3186 1 .3147 1 1.0562 6 . 2023
5%

1 .2156
5^

5 15.0591
630.0878 8

LNHPP 1.0162 4 .9096 6 1.0497 3 .2047
5%

4 . 2 194
5°i

8 15.0585
629.6334 6

W 1.7808 9 1.6748 9 1.0502 4 .2079
5*

8 .2249
O<*z4*<*  0

10 14.9507
629.6286 5



5.2.4.9 System B7 Data

Apart from D and JMNHPP, all prediction systems give similar PL 

performance (Table 5.15). The poor performance of D and JMNHPP is 

due to their biased predictions as confirmed by their significant u-plot 

distances. Thus both models are too pessimistic. Since both have 

good noise statistics, they could perhaps be improved by adapting. W 

performs quite poorly on PL because it is the most noisy prediction 

system, despite having lowest u-plot and y-plot distances (Figure 5.68).

There is little to choose between the remaining prediction systems 

and their detailed predictions seem very close.

5.2.4.10 System SYSEN Data

This data contains too jnany observations with zero-value which 

affect the u-plot distances of all prediction systems. Apart from 

JMNHPP, all prediction systems have the same u-plot distance which is 

highly significant as is that of JMNHPP (Table 5.16). All predictors 

are capturing the trend in the data as evident by their non-significant 

y-plot distance at 10% level.

Evidence of reliability growth is obtained from the predictive 

median plots (Figure 5.69). It is noticeable that JMNMHPP, D, LV and 

KL are giving more pessimistic predictions. However, the nature of

- 177 -



Test Continuous Data System D-B7

No.of Observations: - 45
Starting Sample Size : - 15

TABLE 5.15. The summarised results of system B7 HH60D 2FNS. 
The ML routine does not terminate normally for L, LV and KL.

The calculations of BL involve overflo in some predictions.

n m; n r-;
E 11 - ——1 

1=2 rl-l

BRAUN
RANK y-PLOT RANK -Log PL RANKMODEL .E l-------—11-2 mi_1 RANK RANK

TEST
RANK u-PLOT

JM 4.8212 8 3.6699 8 1.0581 7 .1220 
N.S.

3 .1402
N.S.

3 7.6806
260.8545 2

BJM 3.8262 7 2.6846 7 1.0166 5 .0920 
N.S.

1 .1467 
N.S.

4 7.7924
261.1539 4

L 5.1404 9 4.1264 9 1.0629 8 . 1320 
N.S.

5 .1318 
N.S.

2 7.6698
260.9169 3

BL 3.3569 6 2.5772 5 .9557 1 . 1235 
N.S.

4 .1665 
N.S.

6 7.8289
260.8446 1

LV 2.3303 3 2.1061 3 .9889 3 . 1738 
N.S.

6 .2098
20%

9 7.6480
261.6604 6

KL 2.6128 4 2.3393 4 .9906 4 .1744 
N.S.

7 .2046
20%

8 7.6436
261.7054 7

D 1.8958 2 1.6500 2 1.0472 6 .2432
5%

9 .2025
20%

7 7.5008
263.4670 9

JMNHPP1 1.1297 1 1.0669 1 1.1397 9 .2859
2%

10 .2460
5%

10 7.5516
267.5985 10

LNHPP 3.1029 5 2.5898 6 .9735 2 .2024
20%

8 .1602 
N.S.

5 7.5524
261.2601 5

W 9.3565 10 6.2689 10 2.2163 10 .1010 
N.S.

2 .1215 
N.S.

1 7.8794
262.1153 8
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No.of Observations: - 159
Starting Sample Size : = 51

Test Continuous Data System D-SYSEN

i

oo o
i

TABLE 5.16. The summarised results of system SYSEN data. 
The ML routine terminate abnormally sometimes for L, BL and LNITPP.

MODEL .
n m;

RANK
n
E

i - ?
11 - r.’ 1

r i-i
RANK

BRAUN

TEST RANK u-PLOT RANK y- PLOT RANK -Log PI. RANK

JM 5.7628 9 5.3549 6 1.0025 7 . 1944
1%

1 . 0805
N.S.

7 4.5114
518.1664 4

B.JM 4.7746 3 6.3633 9 . 9905 5 . 1944
1%

1 . 0669
N.S.

3 4.4772
515.7593 2

L 5.6446 8 5.3227 5 . 9838 3 . 1944
1%

1 .0754
N.S.

6 4.5113
517.6213 o o

BL 4.8670 4 4.4567 3 . 9845 4 . 1944
1%

1 .0640
N.S.

2 4.4772
515.7023 1

LV 5.5386 7 6.1959 8 . 9709 2 . 1944
1%

1 . 0626
N.S.

1 5.3871
518.5931 6

KL 5.2951 6 6.0661 7 . 9694 1 . 1944 1 . 0672
N.S.

4 5.2798
519.2958 7

I) 2.5982 2 2.4913 2 1.0228 8 . 1944
1%

1 . 0689
N.S.

5 4.5594
521.8581 9

JMNIIPP 1.3725 1 1.3420 1 1.0892 10 .2149
1%

10 . 1 109
20%

10 4.5113
530.4926 10

LNHPP 5.1361 5 4.7365 4 .9961 6 . 1944
1%

1 .0840
N.S.

8 4.5114
518.3128 5

W 7.7381 JO 7.0685 10 1.0347 9 . 1944 1 . 087 1 
N.S.

9 4.5594
519.6421 8
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the u-plots in this case suggest that it would be unsafe to assume 

these are too pessimistic.

BL is significantly best on PL. However, the many zeros in the 

data, if real, are not going to be predicted accurately by any of the 

models since all models assign infinitesimally small probability to 

infinitely small times. It is questionable whether the zeros are real: 

they could represent immediate failure on retry of a bad fix. This 

analysis reinforces the need for very careful data collection.

5.2.4.11 Moek .Project 1 Data

BJM and BL give best PL and very similar predictions (see Figure 

5.70 for medians) for this data [Moek, 1984]. The significant u-plot 

distances of JMNHPP and D imply that their predictions are biased, and 

analysis of plots shows them too pessimistic (Figure 5.70). JM and W 

are very noisy, and produce biased and optimistic results as evident 

by their u-plots (Table 5.17).

Although LV and KL have good noise measures, their predictions 

are biased. Their performance can possibly be improved by applying 

an adaptive procedure [Keiller and Littlewood, 1984].
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Test Continuous Data System D-DA1
No.of Observations: = 43
Starting Sample Size : - 13

MODEL .E1=2
mi11 1 1 RANK

n
E 1

1=2
11 ri 1 RANK

BRAUN
RANK u-PLOT RANK y-PLOT RANK -Log PL RANK

mi-l 11 r • 1ri-i TEST

JM 10.3235 9 7.3464 9 0.6233 1 . 2085
20%

6 .1059 
N.S.

2 12.4190
320.5702 3

BJM 7.3377 7 5.0778 7 0.6348 2 . 1596
N.S.

2 .1280 
N.S.

4 12.0288
319.3761 1

L 7.6662 8 6.3033 8 0.7013 3 .1528 
N.S.

1 .1376
N.S.

5 12.3789
322.1217 8

BL 6.2217 5 4.8124 5 0.7527 4 . 1605 
N.S.

3 .1575 
N.S.

7 11.9003
319.5159 2

LV 3.8446 2 3.2812 3 0.9473 8 .2131
20%

7 .1747 
N.S.

9 12.4202
321.8549 4

KL 4.5363 4 4.1251 4 0.9004 7 .2460
5%

8 .1494
N.S.

6 12.4900
321.8883 5

D 3.4484 1 2.9287 1 0.9883 9 .2717
2%

9 .1665
N.S.

8 13.1158
323.1427 9

JMNHPP 4.1204 3 3.1251 2 1.1928 10 .3329
1%

10 .2327
10%

10 13.1907
332.8487 10

LNHPP 6.7113 6 4.9473 6 0.8379 6 .1881 
N.S.

4 .1134 
N.S.

3 13.1616
321.8308 7

W 11.7462 10 8.3883 10 0.7125 5 .2069
20%

5 .1000 
N.S.

1 12.2861
321.3446 6

TABLE 5.17. The summarised results of Moek’s project 1 data.
The ML routine sometimes terminate abnormally for L, LV and KL.



5.2.4.12.__ Moek Project 2 Data

All models have significant u-plot distances; all but four have 

significant y-plot distances. It is these latter four which give the 

best PL.

These poor performances seem to be caused by a discontinuity in 

the data, occurring at about the 20th prediction. The smallest 

observation following that point is three times larger than the previous 

greatest observation.

None of the predictions here can be trusted. If the sudden 

change in the data can be explained, it might be the case that only 

data following the change should be used. No such information was 

available.

5.2.4.13._ Braun-Paine GE 1 Data

This data set is presented by Braun and Paine (1977). The 

analysis of this data set shows little reliability growth as evidenced by 

the predictive median plots (Figure 5.72). All u-plot and y-plot 

distances are non-significant at 10% level (Table 5.19).

PL performance as well as the median plots suggest that all 

predictions are very close to each other. It is not obvious to choose



Test Continuous Data System D-DA2
No.of Observations: = J 59
Starling Sample Size : = 51

MODEL .i
n ni;
r I ] I RANK

n r;
V' 1 1 1 I RANK

BRAUN
RANK u PLOT RANK y-PLOT RANK -Log PL RANK

l"2 n,J_zr_
.L 1 1 i
1“2 r 1: -1 TEST

JM * 8 *♦ 10 *** 10 . 3636
1%

6 . 3939
1%

10 2.1863
10

BJM * 8 5.0335 6 34.7584 9 . 3069
1%

4 .2582
2%

8 2.3983
154.3278 9

L 7.6807 6 5.8542 8 2.3310 7 .2419
5%

1 .1140
N.S.

3 2.1846
138.6310 2

BL 4.0060 4 3.3139 4 1.0139 6 .3105
1%

5 . 1003 
N.S.

2 2.3859
138.7237 3

LV 2.5002 o 2.2542 o 0.9829 5 .5112 8 . 2054
20%

7 2.1592
146.1738 6

KL 2.4777 1 2.2355 I 0.9357
t.

4 .5130
1%

9 . 1870
20%

5 2.1617
146.2094 7

D 3.7535 3 3.1079 3 0.6141 2 .5615
1%

10 . 0983
N.S.

1 2.1960
141.4016 4

JMNHPP * 8 5.1079 7 29.5559 8 .2830
1%

3 . 2765
•?Ozx-.o

9 2.2008
151.1262 8

LNHPP 4.3329 5 3.5339 5 0.5815 1 . 3976
1%

rr7 . 1179
N.S.

4 2.1891
136.6748 1

W 11.3707 7 8.196G 9 0.8003 3 .2745
2%

2 . 1895
20%

6 2.1959
141.8954 5

TABLE 5.18. The summarised results of Moek’s project 2 data.
The ML routine sometimes terminate abnormally for L, LV and KL.
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Test Continuous Data System D-GE1
No.of Observations: = 52
Starting Sample Size : = 15

TABLE 5.19. The summarised resudlts of Braun and Paine GE1 data, 
The ML routine sometimes terminates abnormally for L and KL. 

The calculation of BL involve overflo in some predictions

MODEL
n mi
r I i 1 i RANK

n r;
r I i I RANK

BRAUN
RANK u-PLOT RANK y-PLOT RANK -Lok  PL RANK1=2 mi.., 1=2 ri-i TEST

JM 5.4155 8 4.8472 8 1.3735 8 .0778 
N.S.

1 .1347 
N.S.

4 6.5115
203.1776 6

BJM 3.7177 7 3.1521 6 1.2326 6 .1046
N.S.

3 .1116 
N.S.

1 6.1790
203.3556 7

L 5.6235 9 4.9198 9 1.3751 9 .0899
N.S.

2 .1304 
N.S.

3 6.5115
203.6417 9

BL 3.5408 5 3.1062 5 1.2726 7 .1046 
N.S.

3 .1119
N.S.

2 6.1790
203.4518 8

LV 2.7201 3 2.6438 3 1.1501 3 .1053 
N.S.

5 .1380 
N.S.

6 6.5378
202.3496 1

KL 2.9279 4 2.9285 4 1.1382 1 .1071 
N.S.

6 .1480
N.S.

7 6.6211
202.6167 2

D 2.2671 2 2.0766 2 1.1499 2 .1651 
N.S.

9 .1615 
N.S.

9 6.7823
202.7873 4

JMNHPP 1.1534 1 1.1025 1 1.1595 4 .1894
20%

10 .1354 
N.S.

5 6.5115
202.9216 5

LNHPP 3.5453 6 3.1946 7 1.1874 5 .1164 
N.S.

7 .1533 
N.S.

8 6.5115
202.6596 3

W 9.2897 10 8.2933 10 2.2530 10 .1215 
N.S.

8 .1662 
N.S.

10 5.9601
204.8924 10



among the prediction systems in such situations, however, LV is

slightly better in PL than all others. LV and KL predictions are very

close.

5.2.4.14.__System MDSIM Data

Table 5.20a and Figure 5.73a show the summarised results and

predictive median plots of this data. In fact this data set contains a

very large observation which affects the performance of all prediction

systems. A comparison of Tables 5.20a and 5.20b and Figures 5.73a

and 5.73b, which show the summarised results and the predictive 

median plots of this data with and without this particular observation, 

show the great effect it has on some models. These results show, 

again, the importance of careful data collection.

It is noticeable, however, that the effect varies greatly from one 

model to another. There is no clear effect in LV and KL performances 

while there is slight effect in D and LNHPP models. The performance 

of the remaining prediction systems was improved greatly by omitting 

this observation.

According to PL performance, LNHPP and BL are best performing 

models in both situations. But their y-plot distances are the best 

when the large observation is omitted. The poor performance of LV 

and KL is due to their biased and pessimistic predictions.
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Test Continuous Data System D-MDSIM
No.of Observations: - 110
Starting Sample Size - 45

TABLE 5.20a. The summarised results of system MDSIM data. 
The ML routine does not terminate normally for L, LV, KL and LNHPP.

MODEL /
1

n mis,l 1 - =^-i
"2_______ mi-l

RANK
n r-j

,E 11 - TT2-!
1=2 rl-l

RANK
BRAUN BRAUN

TEST RANK u-PLOT RANK y-PLOT RANK -Log PL RANK

.TM 7.1756 8 5.3797 8 1.9691 9 . 1503
10%

5 .2399
1%

10 9.3332
595.5835 9

BJM 6.0766 6 4.3367 6 1.5290 8 .1525
10%

6 .2217
1%

8 9.3741
593.8734 5

L 7.4257 9 6.3917 9 1.3711 6 .1285 
N.S.

4 .2024
1%

6 9.4489
591.6977 4

BL 5.8597 5 4.0167 5 1.1722 5 .0977 
N.S.

1 .1637
10%

5 9.3723
589.6879 2

LV 1.6368 2 1.5684 2 1.0121 3 . 1955
2%

8 .1297 
N.S.

3 9.6304
594.4594 7

KL 1.5550 1 1.5277 1 1.0008 2 .2003
1%

9 .1000 
N.S.

1 9.6424
589.7729 3

D 2.1267 3 1.9034 3 1.0215 4 .2054
1%

10 .1127 
N.S.

2 9.7737
596.5922 10

JMNHPP 6.1374 7 4.4904 7 1.5267 7 .1272 
N.S.

3 .2310
1%

9 9.4228
593.2627 6

LNHPP 2.8897 4 2.5514 4 0.9916 1 .1256 
N.S.

2 .1457
20%

4 9.4242
589.5902 1

W 10.7693 10 7.3094 10 2.2872 10 .1618
10%

7 .2045
1%

7 9.1428
594.5641 8



Test Continuous Data System D-MDSIM 
No.of Observations: - J09
Starting Sample Size : - 4 5

TABLE 5.20b. The summarised results of system MDSIM data. 
The ML routine docs not terminate normally for L, LV, KL and LNHPP. 

Omits one large observation = 33340.

MODEL .1
n nr,
r 1 1 I RANK

n r;
Ell- -—1 

i-2 1 i- 1
RANK

BRAUN
RANK u-PLOT RANK y-PLOT RANK -Log PL RANK2 in;..! TEST

JM 4.9083 8 4.4961 8 1.1827 10 . 0909
N.S.

4 .1149 
N.S.

9 9.3332
57 1.9626 5

BJM 4.3409 6 3.8254 6 1.0698 8 . 1002 
N.S.

6 .1115
N.S.

7 9.3741
572.9803 7

L 5.2572 9 4.9475 9 1.0353 6 .0743 
N.S.

1 .0952
N.S.

5 9.4489
571.0885 3

BL 3.7165 5 3.3272 5 . 9282 2 . 0904
N.S.

3 .0591
N.S.

1 9.3723
570.9162 <7

I.V 1.5302 1 1.4961 1 . 9805 4 . 1888
2%

8 .1139 
N.S.

8 9.6303
574.1616 9

KL 1.5701 2 1.7617 3 .9638 3 . 1936
2%

9 .0933
N.S.

4 9.6424
573.0126 8

D 1.8118 3 1.7246 2 1.0038 5 .2208
1%

10 . 1003
N.S.

6 9.7737
576.3963 10

JMNIIPP 4.4392 7 3.9760 7 1.0674 7 . 0764
N.S.

9 .1160
N.S.

10 9.4228
571.6527 4

LNHPP 2.5529 4 2.3957 4 .9161 1 .1345
20%

7 .0726 
N.S.

2 9.4242
570.5298 I

W 6.0733 10 5.6574 10 1. 1409 9 .0954
N.S.

5 .0914 
N.S.

3 9. 1428
572.226! 6
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FIG.5.73a. The plots oF predictive medians For

system NDSIM data
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Particularly striking is the improvement of JM resulting from omitting 

the large observations. This shows again that this model is likely to 

be very sensitive to outliers.

5.2.4.15. Project B Data

Table 5.21 shows the summarised results of this data set. PL 

suggests that BL is the best performing prediction system. However, 

all u-plot distances are significant implying that all predictions are 

biased. Apart from LV and KL, the y-plot distances are significant as 

well. The pessimistic predictions of LV and KL affect their PL 

performance.

All models here are discredited on u-plot or y-plot or both. BL 

is closest to having acceptable performance on these measures (both 

10%), but still cannot be recommended.

LV and KL may be acceptable when adapted: they have the only 

acceptable y-plots, indicating that they are capturing trend. However, 

they are fairly noisy.

5.3. The Analysis of Discrete Software Reliability Data

As in the continuous case, we shall analyse three date sets in 

some detail and then give summaries of the analyses of the remainder.



Test Continuous Data System D-PB
No.of Observations: - 168
Starting Sample Size : - 50

TABLE 5.21. Trie summarised results of Project B data. 
The ML routine doos not terminate normally for L.

MODEL .1
n m;El j------±_| HANK

n ri
Ell - ---!
12 rl- 1

RANK
BRAUN

RANK u PLOT RANK y PLOT RANK -I.otf PL RANKTEST
JM 6.5528 5 5.0640 5 1.2061 9 . 1373 4 . 1836 8 3.2673

5% 1% 624.4777 4

BJM 6.3755 4 4.8656 4 1.0969 7 . 1410 5 . 1471 4 3.3554
2% OOz o 615.4024 2

L 25.90L1 10 24.0092 10 1.0715 5 . 1239 o . 1554 5 3.2573
5% 1% 624.9961 5

BI, 6.8022 6 5.2499 6 0.9368 2 . 1185 1 . 1274 3 3.3554
10% 10% 613.4539 1

I,V 10.1568 8 9.7484 8 0.9941 4 .2817 10 .0925 1 2.3351
1% N.S. 639.7976 8

KL 8.7539 7 7.7941 7 0.9346 1 . 2538 9 . 0953 a 2.5742
1% N.S. 639.1233 7

D 3.4886 o 3.1237 2 0.9673 3 . 1674 6 . 1610 6 3.0997
1% 1% 642.8100 9

JMNHPP 1.8398 1 1.7375 1 1.0765 6 . 2394 8 .2430 9 3.2673
1% 1% 669.8266 10

LNHPP 6.2536 3 4.7274 3 1.0971 8 . 1292 3 . 1752 7 3.2673
5% 1% 623.2801 3

W 18.8375 9 10.4845 9 2.0592 10 .1734 7 .2491 10 3.0997
1% 1% 633.4722 6
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5.3.1. Discretized Musa System 1 data

Musa’s (1979) System 1 data has been discretized in the following 

way. The accumulated execution time was used to construct intervals 

of length 1000 seconds, and the numbers of failures in each such 

interval counted. Since this results in sparsely populated intervals at 

later stages, the interval sizes were increased to 2000 seconds after 

the 80th failure. This procedure gives a discrete data set with 55 

intervals (Table 4.3).

The summarized results of this data set are given in Table 4.4. 

The detailed analysis of the computer output shows good agreement 

between the results in this case and the earlier continuous version, 

which will be shown in the following analysis.

DJM is giving similar performance to JM on the continuous data. 

Even the estimates of the parameters are very close in both cases 

(similar values for N»4>), which is clear from the following Table (5.22). 

Again the estimates of N (total number of faults in the program at the 

beginning) are close to the total of observed failures up to the point 

of prediction, and the estimates of (the fault failure rate) are 

decreasing as the sample size increases. Thus these estimates cannot 

be trusted.



JM at (approximately) the same points.

DJM JM

Sample 
size

N 0 Sample 
size

N i

13 80 0.000105 62 84 0.000102
20 99 0.000076 79 102 0.000076
30 102 0.000069 97 104 0.000070
40 134 0.000039 122 138 0.000038
50 139 0.000036 132 141 0.000036
54 141 0.000035 135 142 0.000035

Table 5.22. The estimates of DJM parameters and those of

The u-plot distance is significant at 1% level, and a detailed study 

shows that the plots are everywhere below the line of unit slope 

(Figures 5.76),i.e. the model is overestimating the cdf. This means it 

is overestimating the reliability. (Note: large cdf of inter-event time 

implies small reliability in continuous case, large cdf of failure count in 

discrete case implies large reliability). The noise statistics based on 

medians and rates show great noiseness in DJM predictions compared 

with other prediction systems. Also the Chi-square value is very

large and significant at 1% level. All this results in the model being 

discredited in PL, where it has the worst performance among the 

prediction systems.

The u-plot distance of DJMNHPP is also highly significant and the

u-plot is everywhere below the line of the unit slope (Figure 5.78) 

implying that the predictions of DJMNHPP are also too optimistic. The 

predictions of both JM and DJM models are close as evidenced by
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FIG.5.75. The plots oF predictive median time to
1st Failure in each prediction interval
For the data in Table 4,3
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based on the line printer output.

FIG.5.77. DL u-plots, data in Table 4.3., the plots
based on the line printer output.
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median plots (Figure 5.75). DJMNHPP performs badly in PL and its

Chi-square value is significant at 1% level (even the grouped

Chi-square value is significant at .5% level with 9 degrees of freedom

(Table 4.4)).

In Table 4.4., it can be seen that DL comes in second place in PL 

ranks (after DLNHPP), its u-plot distance is significant at 5% and the 

plot is almost everywhere below the line of unit slope (Figure 5.77), 

but the predictions are less noisy and less optimistic than the previous 

models. The predictive medians of the model are very close to the 

equivalents for DLNHPP (Figure 5.75); even the u-plots of both look 

similar and both have a significant Kolmogorov distance. The

Chi-square values are non-significant for both and their Braun statistic 

values are the best (the only models giving values less than one). In 

fact there is generally good agreement here between the Braun and PL 

ranks.

The estimates of DW parameters are very close to their estimates 

in continuous case, as can be seen from the following table.

Table 5.23. The estimate of DW and W parameters at approximately 
the same points.

DW W

Sample 
size

N a £ Sample 
size

N a JB

20 893 0.000222 0.609025 79 320 0.000357 0.675454
30 119 0.000549 0.756255 97 120 0.000548 0.758828
40 244 0.000841 0.610086 122 238 0.000671 0.636723
50 166 0.000693 0.682125 132 182 0.000684 0.670819
54 168 0.000701 0.679217 135 171 0.000662 0.683607



DW predictions show a lot of noise (more than DL and DLNHPP but 

less than DJM and DJMNHPP), as is clear from the median plot (Figure 

5.75). The u-plot distance is significant at 5% and the plots are 

mainly below the line of the unit slope (Figure 5.81), i.e. optimistic 

predictions. Its Chi-square value is non-significant.

The remaining prediction systems - DD, DLV and DKL - are least 

noisy. Their u-plot distances and Chi-square values are

non-significant but their u-plots are mainly above the line of the unit 

slope (Figures 5.80, 5.82 and 5.83) indicating that their predictions are 

too pessimistic.

The picture so far, then, is that we can eliminate DJM, DJMNHPP, 

and DW because these models exhibit significant "bias" as evidenced by 

their u-plots, as well as being too ..noisy. Comparison between the 

remaining models shows some apparent contradictions. DL and DLNHPP 

are best in PL and Braun statistic but they exhibit "biased"

predictions. On the other hand DLV, DKL and DD seem to be

unbiased, and are best on the Chi-square criterion, but are

significantly inferior in their PL performance.

The observed numbers of failures per unit time, as well as the 

predictions of the expected numbers of failures per unit time for DL, 

DLV, DKL and DLNHPP are plotted in Figures 5.84.
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FIG.5.81. DW u-plots, data in Table 4.3., the plots 
based on the line printer output.

FIG. 5.80. DD u-plots, data in Table 4.3, the plots 
based on the line printer output.
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Probability DL DLV

intervals 1st half 2nd half Total 1st half 2nd half Total

0 - .25 2 0 2 3 7 10
.25 - .5 7 7 14 8 4 12
.5 - .75 3 4 7 4 4 8
.75-1 9 10 19 6 6 12

Total 21 21 42 21 21 42

Table 5.24. The distribution of u’s for DL and DLV in both halves 
of the prediction intervals.

The several zero observations later in the data vector are given 

greater weight by DL and DLNHPP, and it seems to be this which 

causes these two models to give the best PL.

We need to explain why DLV, DKL, and DD, which have the best 

performance in u-plot and Chi-square criteria, have such poor PL 

performance. Table 5.24 shows that the reason is non-stationarity. 

In the table we consider the numbers of Uj’s which fall into the 

intervals (0, .25), (.25, .5), (.5, .75), (.75, 1). We do this for the first 

half and second half of the predictions separately. The table for DL 

shows similar behaviour for the two halves: counts (2,7,3,9) and

(0,7,4,10) for the two halves with the overall (2,14,7,19) giving the 

biased result we can see in the detailed u-plot. The table for DLV is 

different. The two halves, (3,8,4,6), (7,4,4,6) are biased but in

complementary ways so that the overall (10,12,8,12) reflects the 

unbiased overall u-plot. The u-plot distance for DLV is thus

misleading: it "averages" deviations in different directions and

misleadingly suggests the model to be unbiased. In fact the model 

has a varying bias; it is not capturing the trend accurately.



It i8 notable that this changing bias is operating only for the 

left-hand portion of the predictive distributions. The median

predictions, for example, seem consistently good. This iB reflected in 

the very good Chi-square performance which is based solely on means.

The above comments also apply to DKL and DD.

To summarise, then, we again have a trade-off between different 

criteria. If we are only interested in predicting the expected number 

of failures in a future interval, we would prefer DD, DLV, DKL. If we 

are interested in a prediction of the distribution of the number of 

failures we might prefer DL, DLNHPP even though these show some 

bias. The possibility of developing a discrete adaptive procedure for 

cases like this could be an interesting topic for investigation.

5.3.2. System P8751 Data (AD-P758)

The original data set was in the form of continuous data. The 

same procedure used to discretize Musa’s System 1 data (section 5.3.1.) 

was followed, giving a discrete data set containing 50 points (Table 

5.25).

The estimated values of N obtained by DJM increased, and the 

estimates of <t> decreased, as the sample size increased. DJM and

DJMNHPP are very close in their parameter estimates (Table 5.26).
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the interval, and the interval length in time unit.

I HR ( I ) T N (I) TP ( I)

1 1 2 0. 1000.00
2 1 1 12.00 1000.00
3 1 2 23.00 1000.00
4 Q 35.00 1000.00
5 1 1 44.00 1000.00
6 7 55.00 1000.00
7 5 62.00 1000.00
8 1 4 67.00 100G.00
9 10 81 .00 1000.00

10 4 91 .00 1000.00
1 1 2 95.00 1000.00
1 2 5 97.00 1000.00
1 3 4 102.00 1000.00
1 4 5 106.00 10CC.C0
1 5 2 111.00 1000.GO
16 2 115.0C 1000.00
1 7 3 115.00 1000.00
18 4 118.00 1600.00
1 9 2 122.00 1000.00
20 3 124.00 1000.00
21 2 127.00 1000.00
22 5 129.00 1000.00
23 J 134.00 1000.00
24 1 137.00 1000.00
25 5 133.00 1000.00
26 3 143.00 20CC.00
27 3 151.00 2000.00

28 7 154.00 2000.00
29 7 161.00 2000.GO
30 4 168.00 2000.00

31 2 172.00 2000.00

32 4 174.00 2000.00

33 5 178.00 2CC0.00

3 4 4 1 8 o • 00 2000.00
35 1 1 137.03 2000.0C
3 o o 198.00 2000.00
3 7 6 204.00 2000.00
0 o 3 210.00 2080.00
39 0 213.00 LOGO.00
40 7 213.00 2000.00
4 1 3 220.00 2000.CO
4 2 5 223.00 2080.80
4 3 o 228.0C 2008.00
4 4 *> c 234.00 2CCC.CC
4 5 1 2 3 o . 0 0 2008.00
4 6 J 237.00 2000.00
4 7 J 240.00 2008.00
4 d 1 243.00 2000.GC
49 O 244.00 2300.00
50 3 252.00 2080.00

TABLE 5,25, System P8751 data (AD-P758), read left to right
test interval, numbers of failures insi de the interval
total observed numbers of failures at the beginning of
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This closeness is reflected in their predictions (Figure 5.85). The 

u-plot distance is significant at 1% level for both. The plots

themselves are faraway below the line of the unit slope (Figures 5.86 

and 5.88) implying that their predictions are too optimistic. This 

optimism affects the calculation of noise, Chi-square and Braun statistic 

and their PL performance as well (Table 5.27).

Sample DJM DJMNHPP
A

size N 0 0

Table 5.26. MLE’s for DJM and DJMNHPP obtained by using 
the data shown in Table 5.25.

20 150 0.000089 151.241 0.000092
25 168 0.000073 169.578 0.000074
30 200 0.000054 203.689 0.000053
35 232 0.000041 238.471 0.000039
40 256 0.000034 261.690 0.000033
45 271 0.000031 274.453 0.000031
49 288 0.000028 292.517 0.000027

DL and DLNHPP exhibit "bias” in their predictions as manifested 

by their significant u-plot distances. The u-plots are everywhere 

below the line of the unit slope (Figures 5.87 and 5.89) indicating that 

their predictions are optimistic.

DW is the noisiest prediction system on this data set (Table 5.27). 

The model exhibits a significant Chi-square value and u-plot distance 

and its predictions are too optimistic (Figure 5.90).
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Test Discrete Data System: AD-P758

No.of Observations: = 50
Starting Sample Size: = 20

TABLE 5.27. The summarized results ofthe data shwon in Table 5.25. 
The ML routine does not always terminate normally for DL.

MODEL .E1 2
m;

11 " “1
mi-i

HANK
n r-;

■ EJ 1 - ——1v-2 rf-i HANK BHAIJN
TEST

HANK CHI SOUAHE TEST u PLOT HANK -Log PL HANK
OHDINAHY GROUPED

DJM 2.0782 6 1.9829 6 1.6149 8 135.363
. I°u

94.772
.1%(12)

.4709
13

8 1.3075
91.1080 8

DL 1.8972 5 1.8121 5 1.2180 5 76.966
.1%

44.389
.1%(14)

.3453
1%

5 1.3196
77. 1474 5

DLV .7391 2 . 7035 2 .9866 1 41.049 
N.S.

. 1221
N.S.

3 1.8821
70.0116 2

DEL .7328 1 . 6945 1 . 9885 •) 40.582
N.S.

. 1069
N.S.

94- 1.8741
69.1755 1

DD . 9077 3 .8727 3 1.0509 3 4 1.690
N.S.

. 1005
N.S.

1 2.0229
71.5934 3

DJMNHPP 2.2255 7 2.1115 7 1.5268 7 120.674
.1%

62.644
.1-6(13)

.4475
13

7 1.3104
87.7770 7

DLNHPP 1.6351 4 1.5859 4 1.1758 4 73.021
.1%

42.860
.13(14)

. 3253
13

4 1.3107
76.4439 4

DW 2.G027 8 2.5720 8 1.3433 6 92.549
.1%

54.234
. 13(14)

.3821
13

6 1.3191
81.8563 6



m
e
d
i
a
n
 
p
r
e
d
i
c
t
i
o
n
s

no; oF points

FIG.5.85. The plots oF predictive median time to

1st Failure in each prediction interval
For the data in Table 4.25
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FIG.5.87. DL u-plots, data in Table 5.25, the plots 
based on the line printer output.

0. 0.2 0.4 0.6 0.3 1.0

FIG, 5.86. DJM u-plots, data in Table 5.25, the plots
based on the line printer output.
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DJMNHPP u-plots, data in Table 
based on the line printer output.

DLNHPP u-plots, data in Table 5,25, the 
based on the line printer output.



FIG.5.91. DD u-plots, data in Table 5,25, the plots 
based on the line printer output.

FIG,5,90. DW u-plots, data in Table 5.25, the plots
based on the line printer output.
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The best performance is given by the remaining prediction 

systems (DD, DLV and DKL). PL suggests that DD is discredited in 

favour of the other two. That is mainly because it exhibits more noise 

than DLV and DKL (Table 5.27 an Figure 5.85). There is evidence that 

the predictions of DLV and DKL are very close (see Figure 5.85 for 

their predictive median plots). PL, noise statistics, Chi-square and the 

u-plot distance suggest that DKL is slightly better than DLV, so we 

could recommend that future predictions be made using this system.

5.3.3.__ Misra Total errors data (AD-MT)

Misra (1983) presented a set of data which is classified into 

critical, major and minor errors of a particular system. The data of 

Table 5.28 gives total numbers of failures, due to all types of error, 

for the observed time intervals.

Table 5.29 shows the summarised results of this data set. All 

prediction systems seem to be performing extremely well. The PLR 

even between the first and last ranked models is between .638 and 

1.879. The extra noise and the peak of the plotted medians (Figure 

5.94) of DLNHPP is due to the non-convergence of the ML optimisation 

algorithm. The Chi-square values and the u-plot distances are non-

significant for all prediction systems implying that the predictions are 

"unbiased” for all models. The Braun statistics are extremely good: 

less than .4 for all cases.
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TABLE 5.28.

I N R ( I ) T N ( I ) TP ( I )

1 1 5 0. 62.50
2 6 15.00 44.00
3 8 21.00 40.00
4 8 29.GO 68.00
5 8 37.00 62.00
6 4 4 5.00 66.00
7 4 49.00 73.00
8 8 5 3.00 73.50
9 6 61.00 92.00

10 2 6 7.00 71.40
1 1 7 69.00 64.50
12 8 76.00 64.70
1 3 7 84.00 36.00
1 4 5 87.00 54.00
1 5 5 92.00 39.50
1 6 8 97.00 68.00
1 7 8 105.00 61.00
1 8 6 113.00 62.60
1 9 1 2 119.00 98.70
20 5 131.00 25.00
21 2 136.00 12.00
22 5 133.GO 55.00
23 6 143.00 49.00
24 9 149.00 64.00
25 1 158.00 26.00
26 4 159.00 66.00
27 2 163.00 49.00
28 4 165.00 52.00
29 4 169.00 70.00

30 0 173.00 84.50

3 1 6 182.CO 83.00
32 1 188.00 60.00
33 3 139.00 72.50
34 6 192.00 90.00
35 6 198.00 58.CO
36 7 204.00 60.00
37 1 4 207.00 168.00
3 8 10 2 2 1 . C 0 111.50

Misra total errors data, read left to right, 
test interval, numbers of failures inside the interval, 
observed numbers of failures at the beninnina of the 
interval, and the interval lenath in time unit.
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I

Test Discrete Data System: AD-MT

No.of Observations: - 38
Starting Sample Size: = 20

TABLE 5.29. The summarised results of Misra’s total errors data (Table 5.28). 
The ML routine docs not terminate normally for DL,DKL and DLNHPP.

MODEL .E1
m;

JI-------“Iz mi... RANK .E I
1 2

1 - —-|
ri-1

RANK BRAUN
TEST

RANK CHI-SQUARE TEST
ORDINARY GROUPED

u-PLOT RANK - Log PI. RANK

DJM . 8270 7 . 7923 7 .3695 8 15.280
N.S.

. 2060
N.S.

7 1.5707
38.3281 7

DL . 7578 5 .7272 5 .3495 6 14.885
N.S.

. 2035
N.S.

5 1.5841
38.1320 4

DLV .6712 3 .6716 3 . 3065 3 14.590
N.S.

. 2252
N.S.

8 1.6788
38.0529 3

DEL . 6936 4 . 6823 4 . 3066 4 14.629
N.S.

.2046 
N.S.

6 1.6795
38.1847 5

DD .3772 1 . 3698 1 . 2585 1 13.704 
N.S.

. 1406
N.S.

1 1.6253
37.7755 1

DJMNHPP .8144 6 .7777 6 . 3692 7 15.177
N.S.

. 1986
N.S.

4 1.5460
38.4062 8

DLNHPP 2.5163 8 .8079 8 . 3354 5 14.843 
N.S.

. 1 962
N.S.

3 1.5629
38.2865 6

DW .3772 I . 3698 1 . 2585 1 13.704 
N.S.

. 1406
N.S.

1 1.6253
37.7755 1
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FIG.5.94. The plots oF predictive median time to

1st Failure in each prediction interval

For the data in Taole 4.28
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Knowing that DD is a special case of DW, it is to be expected that 

both will give similar results as the MLE’s of DW give very large N and 

very small a. Both models give exactly the same estimates of Z? (Table 

5.30). Therefore they give essentially identical predictions and the 

same values for all measures in Table 5.29.

Sample

size

DD DW

Beta Gamma Beta N Alpha

20 .8070 •4374 .8070 .2364xl013 .1851X10-12
23 .8231 .3967 .8231 .1549xl014 .2561xl0-13
26 .8218 .4004 .8218 .1664xl014 .2406xl0-13
29 .7971 .4671 .7971 .1245xl014 .3751X10-13
32 .7852 .5042 .7852 .6521xl013 .7732xl0-13
35 .7776 .5290 .7776 .4358xl013 .1214xl0-12

Table 5.30. The parameter estimates of
sample sizes for the data

DD and DW at 
in Table 5.28.

different

5.3.4.__ Su mmar ized analysis for the remaining discrete data

5.3.4.1. System LI data (AD-L1)

Table 5.31 shows the summarised results of System LI. This data 

set and the following three are obtained from the same source and each 

of them contains 31 observations.

According to PL ranks, the last three prediction systems (DW, DJM 

and DJMNHPP) will be discounted. These predictors also have the 

highest ranks in all other statistics, as well as giving the worst (and 

significant) Chi-square values.
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Test Discrete Data System AD-LI

No.of Observations: - 31
Starting Sample Size: = 18

TABLE 5.31. The summarized results of system LI data. The ML routine does riot always l/'rminalo normally for DL

MODEL .E1-2
m;

11-------- -1
mi-l

RANK .Ll 1 - —1
1-2 rj-i RANK BRAUN

TEST
RANK Oil [-SQUARE TEST u-PLOT RANK -Lok  PL RANK

ORDINARY GROUPED

DJM 2.1076 7 1.8433 7 1.6378 7 36.409
. 1%

35.407
.1%(11)

.4993
. 1%

7 3.1221
39.2401 7

DL 1.5275 5 1.3306 5 1.3291 5 28.268
1%

28.032
1%U2)

.4042
9»Z

5 3.4694
36.6533 5

DLV . 8975 3 . 8090 3 1.0161 2 21.620
10%

. 3076
20%

3 2.9624
34.4375 2

DKL . 8838 2 .7608 2 . 9631 1 20.072
10

.2440 
N.S.

1 2.9184
34.4360 1

DD . 8464 1 . 7592 1 1.1828 3 20.354
10%

. 2989
20%

2 4.3119
36.0872 3

DJMNHPP 1.8724 6 1.6189 6 1.4767 6 31.1748
1%

31.025
.5%(12)

.4555
1%

6 .3.5696
37.9247 6

DLNHPP 1.3665 4 1.2112 4 1.2460 4 26.219
5%

. 3869
5%

4 3.5696
36.4031 4

DW 3.3512 8 3.2228 8 2.6982 8 100.862
. 1%

68.730
.J%(7)

. 6767
1%

8 1.4120
54.6116 8



The remaining predictors (DL, DLNHPP, DD, DLV and DKL) which 

are the best in PL ranks, are close to each other in median plots 

(Figure 5.95). However, DL and DLNHPP exhibit more noise than the 

other three, and both have singificant Chi-square values and u-plots. 

Among the other three DKL is best in PL, u-plot, Chi-square and it is 

the only one with a value for the Braun statistic less than one. This 

is the system which would be preferred for future predictions.

5.3.4.2. System L2 data (AD-L2)

PL ranks suggest that DD, DJMNHPP and DLNHPP are best 

performing prediction systems for this data set (Table 5.32). Although 

DL, DLV and DKL have non-significant Chi-square, their PL 

performances have been affected by their bias.

DJM and DW have significant Chi-square at 5% and 10% level 

respectively, but the Chi-square value of DJM is improved by grouping 

(Table 5.32). Both models reflect "bias" in their predictions, which 

contributes to their poor PL performance.

It is difficult finally to choose between the three with best PL 

performance. DD is slightly better in PL and u-plot but it is noisier 

than DJMNHPP. More importantly, it has a very poor Braun statistic. 

This may be due to non-stationarity (as in section 5.3.1), but there is 

not sufficient data to judge with confidence. It might be safer to 

reject DD because of this problem and use either DJMNHPP or DLNHPP.
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FIG.5.95. The plots oF predictive median time to
1st Failure in each prediction interval

For system LI data<AD~L1 )
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Test Discrete Data System: AD-L2

No.of Observations: = 31
Starting Sample Size: = 18

TABLE 5.32. The summarised results of system L2 data.

MODEL E
1=2

mi11 - Jr1-!
mi-i

n ri
RANK ,E|1------- — |

1-2 ri-i
RANK BRAUN

TEST
RANK CHI-SQUARE TEST u-PLOT RANK -Log PL RANK

ORDINARY GROUPED

DJM 4.7983 8 4.6234 8 1.4222 6 24.359 2.103 .3970 7 3.6426
5% N.S.(3) 5% 28.7623 8

DL 2.2719 5 2.0337 5 1.2470 4 12.648 .3243 4 2.7877
N.S. 10% 23.4876 4

DLV 2.6221 6 2.0997 6 1.2024 2 13.067 .3548 6 2.9259
N.S. 10% 25.4031 5

DKL 4.6462 7 3.2940 7 1.6796 7 11.912 .3287 5 2.6778
i N.S. 10% 25.6845 7

DD 1.6635 3 1.4915 3 1.7420 8 10.053 .1352 1 2.0152
N.S. N.S. 22.0815 1

DJMNHPP .7650 1 .7616 1 1.1815 1 9.836 .1992 2 2.6243
N.S. N.S. 22.6090 2

DLNHPP 1.8302 4 1.6889 4 1.2176 3 10.892 .2365 3 2.6247
N.S. N.S. 22.8810 3

DW 1.6369 2 1.4514 2 1.4143 5 20.050 8.666 .5636 8 3.0884
10% 5%(3) 1% 25.5469 6
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FIG.5.96. The plots oF predictive median time to

1st Failure in each prediction interval

For system L2 data(AD-L2 )
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5.3.4.3. System L3 data (AD-L3)

Once again, DJM, DJMNHPP and DW are the last three in PL ranks 

as well as in other statistics. It is difficult to choose between the 

remaining models since they are very close in PL performance and all 

have non-significant u-plot distance at 10% level. However DLV and 

DKL, the best two in PL ranks, have a smaller value for Braun statistic 

(less than one). Both are very close in their median plots (Figure 

5.97) and seem to give very similar predictions.

Most prediction systems perform badly for System L4 data (see 

Figure 5.98 for their predictive median plots). Table 5.34 shows that 

their Chi-square values are highly significant. Even the grouped 

Chi-square values (apart from DD and DJMNHPP) are significant. 

DJMNHPP is performing best in PL, u-plot distance, Chi-square and 

noise statistics and is the one which would be recommended for future 

predictions.

5.J.4.5. Misra minor errors data (AD—MI)

This data set is a subset of the data analysed in section 5.3.3.

Again, all prediction systems perform extremely well.
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FIG.5.97. The plots oF predictive median time to

1st Failure in each prediction interval

For system L3 data<AD-L3 )
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Test Discrete Data System: AD-L3

No.of Observations: = 31
Starting Sample Size: - 18

MODEL .E
1 2

m;
1 1------- -1

mi-i

n rj
HANK .El 1--------- 1

1-2 Fi-i
HANK BRAUN

TEST
WANK Oil I-SQUARE TEST u-PLOT RANK -Lok  PL RANK

ORDINARY GROUPED

DJM 1.5742 7 1.3801 7 1.4844 7 30.206 .4065 7 2.1044
13 23 38.3579 7

DL 1.0483 5 .9379 5 1.0823 3 21.596 . 2950 4 2.2775
103 203 35.4055 3

DLV .7340 3 .7030 3 . 9566 2 18.943 . 2309 2 2.3252
N.S. N.S. 35.0177 1

DHL .7264 1 .6447 1 .9448 1 17.669 . 2078 1 2.3348
N.S. N.S. 35.2692 2

i)D .7310 2 .6632 2 1.2260 5 19.341 .2448 3 2.8857
N.S. N.S. 36.8023 5

DJMNIIPP 1.4298 6 1.2390 6 1.3579 6 26.669 . 3605 6 2.3378
53 103 37.4262 6

DLNHPP 1.0456 4 .9180 4 1.1112 4 21.778 .3043 5 2.3577
53 203 35.8363 4

DW 2.6422 8 2.6413 8 2.8126 8 87.695 59.465 .7111 8 2.2664
. }% . 13(8) 13 54.9906 8

TABLE 5.33. The summarised results of system L3 data.
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FIG.5.98. The plots oF predictive median time to

1st Failure in each prediction interval

For system L2! dataC AD-L2!-)
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Test Discrete Data System: AD-L4

No.of Observations: - 31
Starting Sample Size: - 18

MODEL .E1 -2
m;

1 I--------1
K'i-1

RANK
n r;
TJ1-------*-iJ 2 RANK BRAUN

TEST
RANK CIIL-SQUARE TEST u PLOT RANK -Log PL RANK

ORDINARY GROUPED

DJM 5.41 10 8 4.5178 8 1.5103 8 65.806
. 1%

16.187
•5%(3)

.4630
1%

8 1.6946
39.2963 8

DL 3.1921 7 2.9931 7 1.3759 7 53.829
. 1%

25.724
. 1%(4)

. 3792
5%

7 1.6946
35.3144 7

DLV 1.9958 4 1.4009 3 1.1598 3 37.28G
. 1%

9.371
10%(4)

. 2865
20%

4 1.8069
29.6641 4

I) KI, 1.9926 3 1.3065 o 1. 1372 2 36.262
.1%

9.084
10%(4)

. 2983
20%

5 1.7693
28.9673 2

DD 1.7248 2 1.5297 4 1.3590 6 30.956
1%

7.741
N.S.(5)

.2031 
N.S.

2 2.5378
29.5933 3

DJMNHPP . 8079 1 . 7704 1 1.1703 4 26.443
5%

5.758
N.S.(5)

.1399
N.S.

1 1.6954
26.5933 1

DLNHPP 2.1374 6 2.0177 6 1.3172 5 39.189
. 1%

10.410
5%(4)

. 2465
N.S.

3 1.6713
3 1.6486 5

DW 2.3034 6 1.9479 5 1.1222 1 76.042
. 1%

11.931
n(3)

.3365
10%

6 1.0022
33.1682 6

TABLE 5.34. The summarised results of system L4 data.



Apart from DJM and DJMNHPP, all predictors have non-significant 

u-plot distances at 20% level (Table 5.35). All models are close in 

their predictive median plots (Figure 5.99). Again, the Braun statistic 

values are remarkably small (less than .7) for all predictors. Clearly, 

it is hard to choose a particular prediction system for future use. 

However DD is giving a slightly better performance in all measures.

5.3.4.6. System 8 data (AD-8)

The prediction systems which have the worst PL ranks (DLV, DKL, 

DD and DW) also have significant Chi-square and u-plot distances 

(Table 5.36). The u-plots of DLV, DKL and DD imply that these models 

are too pessimistic, (they produce too many small u’s). Thus they are 

not able to capture the mean of the data accurately, so they have 

significant Chi-square values. Conversely, DW is too optimistic (too 

many large u’s). Again the model is not accurate in predicting the 

mean. It is this bias in the predictions which probably contributes 

most to their poor PL performance.

The remaining four models (DJM, DL, DJMNHPP and DLNHPP) are 

the best performing models in PL. Their predictions seem very close 

(see, for example, median plots in Figure 5.100). Table 5.37 shows why 

DL and DJM are close: they have similar estimates of N and a, £ are

large with a/£ approximately equal to 0.

233 -



Test Discrete Data System: AD-MI

No.of Observations: - 38
Starting Sample Size: - 20

TABLE 5.35. The summarised results of Misra’s minor errors data.
The ML routine does not always terminate normally for DL, DLV, DKL and DLNHPP.

MODEL ,E
L 2

m;
11------ —1

,ni-l
HANK .Ell------I1 2 ri-i HANK BRAUN

TEST
RANK CHI SQUARE TEST

ORDINARY GROUPED
u- PLOT RANK - Loj{ PI. RANK

DJM 1.1177 7 1.0703 8 .6717 8 23.534
N.S.

. 2679
20%

8 1.0619
35.9744 8

DL . 9849 5 .9402 5 .6178 6 21.672
N.S.

.2466
N.S.

6 1.0688
35.3669 6

DLV .5979 9 .5830 2 . 5350 3 19.626
N.S.

. 2085
N.S.

3 1.1051
34.5518 3

DK L . 6294 3 .6159 3 . 5364 4 19.713 
N.S.

.2109
N.S.

4 1.J J 39
34.5414 9

DI) .4729 1 . 4604 1 .4233 1 16.497
N.S.

. 1715
N.S.

1 1.0599
34.0949 l

DJMNHPP 1.0573 6 1.0069 7 .6464 7 22.352
N.S.

.2492
20%

7 1.0475
35.7834 7

DLNHPP 1.7180 8 . 9485 6 . 5760 5 20.215
N.S.

.2196
N.S.

5 1.0582
35.0473 5

DW . 7697 4 . 7535 4 .4983 2 17.943 
N.S.

.2007 
N.S.

2 1.0599
34.5842 4
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FIG.5.99. The plots oF predictive median time to
1st Failure in each prediction interval

For Misra minor errors dataCAD-MI)
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Test Discrete Data System: AD-8
No.of Observations: = 35 Starting Sample Size: = 9

TABLE 5.36. The summarized results of System 8 data (AD-8) Note that for DLNHPP, the ML routine does not always terminate normally.

MODEL .E
1=2

®i
11 "

mi-l

n rt
RANK .El 1-------—|

1=2 ri-i
RANK BRAUN

TEST
RANK CHI-SQUARE TEST u-PLOT RANK -Log PL RANK

ORDINARY GROUPED

DJM 2.8868 5 2.5406 5 .9374 2 66.121
.1%

33.261
2.5*(17)

.1997 
N.S.

3 4.5104
62.4980 1

DL 2.8984 6 2.5444 6 .9365 1 66.729
.1%

28.520
5*(17)

.2021 
N.S.

4 4.5204
62.5373 2

DLV 1.3475 3 1.1757 2 1.3339 6 55.649
.1%

55.346
.1*(23)

.4299
1%

6 4.8195
65.7492 5

DKL 1.1735 1 1.0918 1 1.4111 7 57.610
.1%

57.346
.1*(24)

.5145
1%

7 4.9338
71.7481 7

DD 1.3431 2 1.2556 3 1.8484 8 66.424
.1%

66.232
.1*(24)

.5672
1*

8 4.7703
78.5236 8

D JMNHPP 2.8548 4 2.5179 4 .9714 3 64.225
.1%

55.917
.1^(18)

.1680 
N.S.

2 4.7703
62.6649 3

DLNHPP 2.9850 7 2.6476 7 .9924 5 63.939
.1%

55.169
.13,(19)

.1210 
N.S.

1 4.8062
62.8533 4

DW 4.0611 8 3.4954 8 .9753 4 104.091 
.1%

55.181
.1^(12)

.2769
5%

5 2.7846
69.1776 6
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FIG.5.100. The plots oF predictive median time to

1st Failure in each prediction interval
For system 8 data<AD-8)
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DJM DLSample

size N 0 N a 3

9 467 0.03679 478 40.4369 1124.62
10 272 0.06879 274 87.4495 1283.56
15 249 0.07573 251 85.1100 1130.57
20 295 0.05925 298 68.2474 1159.33
25 279 0.06527 280 76.4139 1174.86
30 260 0.07434 261 88.4743 1191.47
34 259 0.07513 259 88.8179 1191.85

Table 5.37. ML estimates of DJM and DL parameters at different 
sample sizes.

Although these models have non-significant u-plot distances, their 

Chi-square values are significant. There is some evidence that this 

effect is caused by a non-stationarity of the errors (see section 5.3.1. 

for a similar effect).

There must remain some doubt as to the efficiency of all these 

prediction systems on this data. However, DL is marginally acceptable 

and could be used for future predictions with some reservations.

5.3.4.7. Discretized Musa System SSICdata

The original data set was of continuous type [Musa, 1979]. It is

discretized by the same procedure followed in section 5.3.1 which gives 

a data set containing 41 points.



Table 5.38 shows the summarized results of this data set. It is 

clear that Chi-square values are highly significant for all the 

prediction systems. All predictions seem to produce too small u’s in 

the first half and too large ones in the later half so that overall u’s 

reflect unbiased prediction for all (DJM and DD apart). This

behaviour affects both Chi-square and Braun statistics.

No prediction system can be recommended for future predictions.

5J3.4.8._ Discretized Musa System SS3 data

Apart from DLV and DKL, all prediction systems seem too 

pessimistic as judged by inspection of their u-plots.

Although DLV and DKL have non-significant u-plot distances they 

have significant Chi-square values. There is evidence that they 

predict small u’s in the first half of the data and large u’s in the 

second half. This effect is averaged in the u-plot, but neither is 

accurate in capturing the mean of the data.

A conservative approach here might be to use DL or DLNHPP for 

future predictions. The poor PL performance is probably due to their 

bias: but at least this bias errs on the side of pessimism.



Test Discrete Data System: AD-SS1C

No.of Observations: = 41
Starting Sample Size: = 21

TABLE 5.38. The summarised results of discretized Musa’s data system SS1C

MODEL .E
1=2

mii1 - jr2-' 
mi-i

n r;
RANK .Ell------- — |

1=2 ri-i
RANK BRAUN

TEST
RANK CHI-SQUARE TEST u-PLOT RANK -Log PL RANK

ORDINARY GROUPED

DJM .7863 3 .7546 3 1.1865 4 50.275
. 13

. 2635
203

7 1.8677
63.2704 3

DL 1.1650 5 1.0948 5 1.1656 2 66.099
.13

62.235
.13(19)

. 1914 
N.S.

4 1.8874
63.4469 4

DLV .7514 2 .7417 2 1.1501 1 53.468
.13

. 1645
N.S.

1 2.0923
55.6383 1

DKL .6302 1 .5096 1 1.1938 5 52.298
.1%

. 1850
N.S.

3 2.1290
55.7785 2

DD .8195 4 . 7858 4 1.2521 6 53.623
.13

.2669
103

8 1.9327
64.8102 6

DJMNHPP 1.9760 7 2.0800 7 1.3898 8 117.189 
.13

95.652
.13(17)

.2002 
N.S.

5 2.0116
73.9538 8

DLNHPP 1.1929 6 1.1218 6 1.1786 3 64.861
.13

61.069
.13(17)

.2043 
N.S.

6 1.9736
64.3615 5

DW 2.3800 8 2.3189 8 1.3351 7 94.661
.13

71.195
.13(17)

.1646 
N.S.

2 1.9327
70.2248 7
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For discretized Musa system SS1C data
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Test Discrete Data System: AD-SS3

No.of Observations: - 78
Starting Sample Size: - 38

TABLE 5.39. The summarised results of discretized Musa’s data system SS3

MODEL .E1-2
m;

1 1 ~ m i-1
RANK

n r;
• EJl------—
i-2 n-i

RANK P.RAIIN CHI-SQUARE TEST u- PLOT RANK -Log PL RANK
TEST

RANK
ORD I NARY GROUPED

DJM . 7590 2 .7497 2 1.1972 6 74.348
. ]%

54.862
.5%(30)

. 2224
53

7 2.8468
107.2117 rf

1

DL 1.6980 7 1.6416 7 1.0113 1 69.657
1%

40.777
5%(26)

.2102
10%

3 2.8417
100.9830 3

DLV 1.6846 6 1.6170 6 1.0546 3 70.882
1%

43.083
2.53(26)

. 0886
N.S.

1 2.9334
94.6565 I

DKL 2.6320 8 2.1928 8 1.5259 8 78.239
. 1%

57.008
. 13(28)

. 1567
N.S

9 2.5129
97.3297 2

DI) 1.0131 3 . 9998 3 1.0636 5 73.787
.1%

48.666
13(27)

.2110
53

4 3.2284
103.5810 6

DJMNHPP .5515 1 .5456 1 1.4390 7 79.585
. 1%

71.132
.13(35)

. 2586
13

8 2.6654
113.6486 8

DLNHPP 1.3399 5 1.2898 5 1.0183 2 67.8182
1%

40.256
53(26)

.2191
53

6 2.8761
101.0194 4

DW 1.0200 4 1.0063 4 1.0566 4 73.600
.1%

48.343
13(27)

.2110
53

4 -.3.2284
101.7256 5
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CHAPTER VI

SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

6.1. Summary and Conclusions

There are several conclusions that can be drawn from this study.

First of all, there is no universal "best buy" among the models. 

The prediction systems perform with varying adequacy on different 

data sources, and it is not possible to recommend particular ways of 

predicting because no prediction system can be trusted to be always 

superior to others. Users are therefore advised to try many

prediction systems and to use the reliability metrics, if any, which 

have been shown, by our analytical tools, to give adequate predictions 

for the data under consideration.

The graphical techniques (the predictive median plots, u-plots, 

and y-plots) are useful in giving some general impressions of the 

prediction quality, such as the noisiness of the predictions (which can 

be detected by the median plots), the bias in the predictions (detected 

via u-plots) and the general pattern or "trend" among the errors of 

prediction data (y-plots). These can be seen as explaining the 

performance of a prediction system on the PL criterion, which we view 

as a general tool for comparison.
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The prediction systems considered in this study can be divided, 

by their performance, into two different groups:

(i) the optimistic models consisting of JM, W, JMNHPP, L and 

LNHPP (in discrete and continuous time) as well as BJM and BL 

(continuous time). Although L, LNHPP, BL and W (in large sets 

only) are considered in the group, their performances have been 

very close to reality in most data sets.

(ii) the pessimistic group includes LV, KL and D (in both cases, 

discrete and continuous). The predictions of these models have 

been very close to each other in most cases.

There are strong doubts about the assumption that all faults 

contribute the same amount to the overall failure rate of the program. 

This is clear from the performance of JM model family (JM, BJM, 

JMNHPP, DJM and DJMNHPP) where these models have been discredited 

by all tools in favour of other models for most data sets. This seems 

to be evidence that the deficiency arises from the modelling 

assumptions rather than the inference or prediction procedure. It 

seems much more plausible that the program starts life containing 

faults of different sizes, and this observation is supported by recent 

empirical studies [Nagel and Skrivan, 19811.

The Weibull model (discrete and continuous) seems to perform 

badly on the small data sets, while its performance in the large data 

sets has been one of good predictions. On the other hand, the L
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model tends to perform best of the order statistic models. This seems 

to suggest that the more extreme Pareto density best describes the 

distribution of times to detect faults.

The generalisation of the continuous models to cope with the 

discrete and summarized data will be useful, given the difficulty in 

obtaining full inter-event time data. The performance of these new 

discrete versions have been very close to the original ones in the 

cases when we have discretized a data set which has been analysed in 

its original continuous form.

Finally, it must be admitted that the predictive analysis tools 

which are reported here, are not the complete answer to the problem.

In the first place, PL is a relative tool, rather than an absolute 

one. That is, it allows us to pick the best predictive system, but 

does not (of itself) allow us to decide whether the predictions are 

objectively accurate. On the other hand, the u-plots and y-plots are 

not relative tools. So a poor u-plot tells us that predictions are, in 

some sense, objectively biased.

Secondly, the y-plot is a fairly crude measure of "stationarity of 

prediction error". In order to justify an adaptive procedure (see 

next section) we need to be sure that predictions are "only biased". 

Other tests of stationarity in the {uj} sequence should be investigated.
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We have not succeeded in developing measures which tell, on the 

one hand, when unwarranted noise is present and, on the other, when 

predictions are too smooth compared with reality. Judicious use of 

our noise measures together with PL sometimes allow us to overcome 

this problem, however, and it seems reasonable to assume that nature 

here is usually smooth.

Finally, it is not obvious whether there are other deviations 

between prediction and reality which are not captured by the tools 

reported here. By analogy with conventional statistics, it seems

reasonable that we have captured at least the first order effects.

6.2. Suggestions for future work

There are certain predictions for which the techniques reported 

here are not useful, such as the prediction of the time needed to 

achieve a specified target reliability (e.g. the reliability which must be 

achieved before the product can be shipped). Problems of this kind 

require further study, since it cannot be assumed that good 

predictions of one type (e.g. current reliability) necessarily imply good 

prediction in a different context.

All the analyses reported here have been carried out for real data 

sets. It might be useful to conduct a similar study using simulated 

data. The efficacy of the tools in selecting the best predictions 
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could be evaluated when the true relationship between prediction and 

reality is known. The difficulty would be in selecting "suitable” data 

generating mechanisms.

The u-plot procedure examines the closeness of the distribution of 

the u’s to uniformity. The y-plot procedure examines trend. This 

leaves the independence of the u’s to be examined. It might be useful 

to examine serial correlations of the u’s.

In some situations, it is found that predictors with good y-plots 

have very poor u-plots (which measures "bias”). Such a predictor 

could be a good candidate for an adaptive procedure: essentially

measuring the bias on earlier predictions in order to remove it on the 

current one. Some early work in this area is reported by Keiller and 

Littlewood (1984). This area is one which invites future work, 

particularly on the PL performance of adapted prediction systems.

Along with bias, the main source of error is unwarranted noisiness 

in some prediction systems. A prediction system which is unbiased 

but too noisy might be a good candidate for smoothing techniques. 

However, even if such smoothing techniques can be developed, we need 

to be able to test that the noise in a prediction system really is 

unwarranted (i.e. it is not truly reflecting a noisy "nature”). We do 

not have such a test, although the PL can sometimes be used to make 

this decision.
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In section 4.3., we saw that there are sometimes reversals of 

relative performance between different prediction systems for a given 

data set. For example, for the data in Table 4.1., LV is better overall 

than JM, while JM is slightly superior at the early stages of analysis. 

Such behaviour suggests it might be better to use combinations of two 

or more prediction systems using PL as an objective function.

An attempt was made to generalize BJM and BL model to cope with 

discrete and summarized software reliability data. Although the

mathematical form of the prediction system has been obtained, 

computational difficulties have frustrated attempts to obtain numerical 

results. In view of the wider availability of this type of data, it may 

be worth persevering with this work (particularly in the case of BL).

The adaptive procedure mentioned earlier can be seen as a 

non-parametric method for local prediction. By assuming stationarity of 

errors, the shape of an individual predictive density can be estimated 

from previous predictions. This observation opens up the possibiity 

of a completely non-parametric prediction system. If we had a 

non-parametric method of estimating the trend, we could use the 

adaptive procedure to make complete probability predictions for the 

future. Obviously, this trend estimation problem is harder than the 

density estimation implicit in the adaptive procedure. Miller (1984) 

has suggested one approach, based on generalisations of isotonic 

regression. Another approach might be to fit a sequence of means 

{mjl by minimising the y-plot distance of {t|/mp subject to suitable 

constraints.
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APPENDIX
Condition for finite estimates of

Discrete Jelinski-Moranda Model (DJM)
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APPENDIX A

Condition for finite estimates of DJM Model

Littlewood and Verrall (1981) proved a condition for finite 

estimates of the Jelinski-Moranda Model (JM) in the continuous case. 

This condition has an equivalent form:

k
.EC.
1=1 1-1 x
T

nici-i
A.l.

where C£_t ni» in the discrete case.

Thus the likelihood function of DJM model given by equation 

(3.2.2.) has a unique maximum at finite N and non-zero 0 if and only if 

the condition (A.l) holds. Otherwise the likelihood has its maximum at 

finite > = N<t> for infinite N.

Proof

Let X = l/<t>; (3.2.2) becomes:

L(n1,n2,...nk/X,X)

k
exp.(->T1 *i A.2
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i.e.
2 — log L(n^,n2» • •

nj log (Xx k
•> -

k
i?iCi~iti 

f. + ---------------1 X

So,

32
3X

i>i log t|
k n, -.E .E 1=1 j-1 log j

n-j>Xx-Ci-1
k 

i=ini
X

Clearly 32/3x ■» 0 as

k ki=ini 1^1
~X X2

k k k
1 i-ini i^i

-5^" + 0(x’3> - —

X ■*  0;

approaches zero from above if:
k

> < ------ A.3.

If the above inequality is reversed, 39/8x approaches zero from
below as X We thus obtain the situation depicted in Figure A.l.
The parameter space can be divided into two regions. In Region 1 the
likelihood has its largest value at finite N,X. In Region 2 there will be
a maximum at infinite N,X. Consider the likelihood on this "arc at

k

k
+i?!

k

infinity”, it takes values:

k*£ ti>= *£‘nl [iIr£r]“p<-:
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FIGURE A.l, The parameter space can be divided into two regions

- 253 -



and the maximum of this function will occur at infinity if:

A.4.

with the value:
k

i^ini

= 0 => X =

L

k
J/N-Ci.^ti

So, the maximum of the likelihood at finite X is:

L(N,X(N))
n i

A.6.

• k

From (A.3) and (A.4) the global maximum of the likelihood must

occur at finite N,x» if:

>
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This can be proved as follows. It is sufficient to show that the
value of (A.5) exceeds the values of (A.6) at all finite (N,x) points, i.,e.
to show that:

Now k
Ani

k
i^ini^i-i

£ t. i=i 1
< k,E Ci_xti 1=1

k u$ . E 14 . t1=1 1i=:
k kn -jC -j >.E n^.E < t-.L 1 1 1 1=1 11=1 1 1 1

k k k k
Ni?inii?iti “iSiHiiEiCi-i1!

(i?ini)(iL(N ’ Ci-l’ti)

* J/N- >
~R-------------------- A.9.

But,it is well known
iE1"i<N * ci-i>~k------------
i?i"i

that:
k ________

i -1n i/k”“i ZJ/N - Ci-,)

So (A.9) $
k.^(N - Ci-Pti > (iE1ti)

k i£ini
i=

1 A.8

>

k
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Uniqueness can be shown as follows. It is clear that the

likelihood has a unique maximum at infinite (N,X) when:

= (NO) = (N/X) A.10.

But the maximum of the likelihood at finite (N,x) is given by (A.6) 

which contains four terms. The first term is a polynomial in N with

k
no roots in the parameter space (N > E n^) and the remaining three

i=i
terms form a decreasing function in N.

Thus (A.6) has at most one turning point, in fact the maximum of 
k

(A.6) could occur at N - _E np This proves that there is only one

maximum of likelihood for finite N,x (non-zero 4>), since X is uniquely

determined by N.
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