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ABSTRACT

In this work some asymptotic and other approximate methods for 
obtaining interval estimates for system reliability from binomial 
and/or exponential subsystem test data have been developed. The 
accuracy of these approximations has been assessed by comparison with 
exact values (sometimes obtained by simulation). Also, other 
applications of asymptotic techniques are made to the Weibull 
distribution and to tolerance limits.

In Chapter 2 and Chapter 5, we develop Edgeworth expansions, 
Cornish and Fisher expansions for percentage points and Saddlepoint 
expansions for application to the system reliability problem and 
to tolerance limits.

In Chapter 3, two simple approximate methods have been derived. 
The first method forms the basis of the Maximus report (1980) and 
depends on reducing the component test data to equivalent system 
test data. The second method depends on equating the system 
posterior mean and variance with the mean and variance of a single 
beta distribution. The parameters of this beta distribution, so 
determined, are used in the construction of interval estimates for 
system reliabi1ity.

In addition, in Chapter 4, approximations for the reliability 
function and for the hazard rate, posterior to censored Weibull life 
data, are obtained using an asymptotic expansion due to Lindley.
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CHAPTER 1

INTRODUCTION

The purpose of this work is to develop and investigate the 

accuracy of some asymptotic and other approximate methods for 

obtaining lower confidence limits for the reliability of systems from 

binomial, and/or exponential subsystem test data. Other applications 

of asymptotic techniques are made to the Wei bull distribution and to 

tolerance limits. We first discuss the system reliability problem.

The determination of confidence limits on series, parallel, or 

complex system reliability from time-to-fai1, or pass-fail subsystem/ 

component data is one of considerable interest and much practical 

importance. The computation of confidence limits by exact methods is 

intractable for all, but very specialised models, and for these there 

are problems such as the use of large amounts of computer time and loss 

of precision.

Various authors in recent years have investigated approximate 

techniques for estimating lower (and upper) confidence limits for some 

systems.

1.1 System Reliability Interval Estimates: A Review

There are many approximate methods for obtaining interval 

estimates on system reliability using complete or censored test data, 

where the independent subsystems form a series, parallel, or complex 

system.

- 7 -



For the case in which only pass-fail data are collected for each 

subsystem, many methods involving large or small sample approximations, 

or Bayesian techniques, have been derived for obtaining confidence 

limits on the probability of a successful operation of an independent 

series or parallel system. For example, Buehler (1957) considers exact 

solutions to the problem of determining upper confidence limits for 

series and parallel systems as a product of two binomial parameters , 

using Poisson subsystem test data only. The method of Madansky (1965), 

which is based on the asymptotic chi-squared distribution of -2 log 

likelihood ratio, can be used to construct confidence limits for series 

or parallel system reliability. Subsequently, Myhre and Saunders 

(1968a) derived a generalisation of Madansky's method. Myhre and 

Saunders(1968b) also yielded a method of the asymptotic normality of 

the maximum likelihood estimates to find confidence limits for the 

reliability of general systems for the binomial models. They 

concluded that the likelihood ratio gave better approximations than 

maximum likelihood.

Easterling (1972) gave a method for obtaining system confidence 

limits from component test data. The technique consists of estimating 

the asymptotic variance of the maximum likelihood estimate of system 

reliability and equating this to the estimate of the variance of a 

binomial proportion, thus obtaining pseudo numbers of trials and 

successes. Substituting these into the incomplete beta function yields 

the desired confidence limits.

Mann (1974a Adapted an approach similar to that of Mann and Grubbs 

(1972) for exponential-subsystem failure data to approximate 

confidence limits on both series and parallel system reliability in 

the case of the binomial model. In (1974b) Mann derived a method for

- 8 -



obtaining approximately optimum lower confidence limits on system 

reliability for any independent series or parallel system with 

binomially distributed pass-fail subsystem data. It is assumed that 

failure data have been collected from life tests of the original of the 

subsystems making up the system using censored test data. Also 

Mann and Grubbs (1974) obtained confidence limits for'a paral1 el-system 

in the case of type II censored test data, in some special cases.

In the case of the Bayesian approach Zimmer, et al (1965) derive 

confidence limits which are exact in the Bayesian sense using a 

uniform prior for each subsystem on the binomial model. Springer and 

Thompson (1966) use a Mellin transform technique for obtaining, in 

closed form, the distribution of series system reliability given 

binomial subsystem data. Also Parker (1972) uses a Bayesian approach 

to calculate confidence limits by assigning a prior to a system rather 

than to each of its subsystems in the case of the series system on 

binomial model. Again, for the Bayesian approach, Mann et al (1974) 

show that -log reliability function for series systems is well 

approximated by a non central chi-squared distribution. The 

correspond!'ng central chi-squared variate with non integer degrees of 

freedom is transformed to normality yielding the lower confidence 

1i mits.

On the other hand for the case of exponential test data, there are 

also several approximate methods for obtaining confidence limits on 

system reliability. For example the method by Kraemer (1963) obtains 

confidence limits for series system reliability with exponential time- 

to-fail subsystems, using type II censored test data. This method is 

based upon the smallest of the observed times to failure and gives 

inaccurate confidence limits when subsystem times to failure are 

- 9 -



disparate. Lieberman and Ross (1971) derived a method for determining 

an exact lower confidence limit for series system reliability with two 

independent exponential subsystems using complete or type II 

censored test data. Their method depends on a combination of failure 

times selected from the various subsystems, rather than on the 

separate sufficient statistics. A similar method has been developed 

independently by Sarkar (1971) and is exact for equal numbers of 

failures for all subsystems. The method of Lieberman and Ross has 

been extended to complex systems by Saunders (1972). El-Mawaziny and 

Buehler (1967) derive confidence limits for the exponential model 

depending on the asymptotic normality of system failure rate for more 

than two subsystems, which depends upon large-sample theory and 

the fact that a function of the estimator for subsystem mean-time-to- 

failure has an approximate chi-squared distribution. Grubbs (1971) 

suggests a procedure for approximating the fiducial probability bounds 

on the true system reliability, which can be used to approximate 

confidence limits for the reliability of a series system for which 

each component has an exponential time-to-fail distribution. He uses 

the first two moments of the fiducial distribution of the system 

failure rate to fit a weighted chi-squared distribution. The method 

of Mann and Grubbs (1972) is a chi-squared technique, involving an 

extension and combination of the approximate fiducial approach 

suggested by Grubbs (1971) and the contributions of El-Mawaziny and 

Buehler (1967). After computations of the first two moments of system 

failure rate based on certain conditional variates, one constructs 

approximate chi-squared variates and, by using the WiIson-Hi 1ferty 

transformation of chi-squared to an approximate standard normal 

variate, lower confidence limits on series system reliability for the 

exponential model can be obtained using standard normal 

percentiles. Mann and Grubbs (1974) made use of Patnaik's chi-squared 

10 -



approximation to the non central chi-squared distribution, and the

Wi1son-Hi1ferfytransformation of chi-squared to approximate normality 

for censored test data. They obtain confidence limits for series and 

parallel system from time-to-fai1 , pass-fail subsystems or mixed 

systems- Myhre and Saunders (1971) extended Madansky's method to 

calculate approximate confidence limits for the reliability function of 

any coherent system of the exponential distribution using the 

asymptotic distribution of the log likelihood ratio.

In the case of Bayesian technique, Fertig (1972) investigated 

different prior functions to find confidence limits on the 

reliability of a series system composed of exponential subsystems. 

He showed that it is not possible to find prior distributions on 

subsystem failure rates so that the resulting confidence limits for 

system reliability are the same as exact limits. Springer and 

Thompson (1967) obtain Bayesian confidence intervals for the 

reliability of series system when all of the failure probability 

density functions are exponential. In (1968) they derived 

confidence limits for system reliability under the exponential- 

failure-time models using Bayesian approach for a parallel system with 

a single failure for each subsystem. In (1971) Springer and Byers obtain 

confidence intervals for the reliability of a mixed series system whose 

failure probability distributions’ ' are exponential for some 

subsystems and binomial for the rest. Springer and Thompson use the 

Mellin transform, together with test data obtained from the 

subsystems, to derive the posterior density function and cumulative 

distribution function for the system reliability, and to calculate 

confidence limits in their methods.

11



1.2 An Outline Of Methods Used In This Thesis

With the increasing importance of statistical inference, 

interest in approximations has appeared because of the increasing 

number and complexity of theoretical distributions, particularly for 

small sample sizes.

In subsequent Chapters, we are going to develop Edgeworth 

expansions, Cornish and Fisher expansions for percentage points and 

Saddlepoint expansions, for application to the system reliability 

problem and to tolerance limits. In addition an asymptotic 

approximation, due to Lindley, is applied to the Weibull reliability 

function and hazard rate.

(a) Edgeworth Expansion

Problems with distribution functions such as bias and 

skewness means that the crude approximation by a normal distribution is 

unsatisfactory. Then the Edgeworth asymptotic expansions enable 

successive adjustments to be made to the fit of a normal distribution.

Let T be an estimator of parameter 6 based on a sample of size n. 

Define

x = /n(T-e)/o ,

where

a2 = 1im var(/nT) ,
n-*»

and suppose that x is asymptotically standard normal (n-*»).

Then the Edgeworth approximation for F(x)zthe distribution function of Xj is

F(x) = $(x) - 4)(x){ ( + <32H2 )/»/n + L(ki ^ +k22)H1/2 +

K11K32H3/6 + k«*3H3/24 + K32H5/72]/n + ... } (1.2.1)

Where <f>(x) and <x>(x) are the standard normal probability density 

function and distribution function respectively ,K re the cumulants^
12 -



and
HQ = 1, Hx = x, H2 = x2 - 1, ... , and

= *’H “ for r 2, are Hermite polynomials.

The Edgeworth expansion is valid to r+1 terms if * exists and the 

distribution has an absolutely continuous part. (1.2.1) has been 

written explicitly in terms of the cumulants because, for some systems, 

the asymptotic variable n may be the number of components. In other 

cases it has an interpretation as the smallest sample size over 

component tests. Our interest is for the case when n is a sample size.

In practice, the Edgeworth approximation is simple to use, but on 

the other hand the approximation is often unsatisfactory in the tails 

and it can take on negative values or values greater than unity. See , 

for example,Kendal 1 and Stuart (1958).

(b) Cornish and Fisher Expansions for Percentage Points

Let $ be the standard normal distribution function and

C be such that $(c) = 1 - a.

Then the 100(1-a)% point of the distribution of T is given by

T? = 6 + (K21/n)he + (^n+^32 (C2-1 )/6)//n + U22£/2 +

^3U3-3d/24 - £32(2e3-5?)/36)/n + ... } (1.2.2)

Where = ^s/<2ir//2 are the standardised cumulants. See Fisher and 

Cornish (1960) and Kendall and Stuart (1958).

(c) Saddlepoint Approximations

Saddlepoint methods can give especially good 

approximations in the tails of distribution functions; see, for 

example, Daniels (1954), Barndorff-Nei1 son and Cox (1979) and 

Robinson (1982).
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Let F (x) be the distribution function to be approximated.

exponentially shifted distribution function PR(x) by
x

Pn(x) = | euyd Fn(y/)/Mn(u) ,

Define the

(1.2.3)

where

euy d F (y) n J

From (1.2.3) we can show that
00

1 - Fn(x) = Mn(u)j e‘uydPn(y) . (1.2.4)

X

Approximating PR(x) by an Edgeworth series, and using (1.2.4),

1 - F (x) can then be approximated indirectly. For this reason 

saddlepoint approximations are sometimes called indirect Edgeworth 

approximations. A judicious choice for u enables good approximations 

to be obtained for 1 - F (x).

The moment generating function of P is
00

Mp(e) = Mp T(u) e0yd{j eUxdF(x)}
oo —co

00

= M/^u) je(0+u)ydF(y) 

= Mp(e+u)/Mp(u).

Then the cumulant generating function of P is 

Kp(e) = Kp(e+u) - Kp(u) .

and

o2(u) = a2K (o+u)/9e2
r

be the mean and variance of the
0 = 0

distribution function Pp .

Consider the Edgeworth approximation Qp(x) of PR(x) given by

14 -



Pn(x) = Qn(x) = o(z) - (J)(z ){k1/2 + (z2-1)k3/6 +...},

where 4) and $ are the standard normal probability density and 

distribution functions respectively and z = (x-m(u))/o(u) .

We may express (1.2.4) in the form
co co

1 - Fn(x) = Mn(u)fe_uydQn(y) + Mn(u)[e_uyd(Pn(y)-Qp(y)).(1.2.5)

X X
n n n ' 'n

If we choose m(u) = x, then the first integral yields

Mn(u) exp (-um+u2o?/2)[1-<i>(u0)][1-<iWi(ua)/2 + k3W2(uc)/6] ,

where Wjua) = - ua , W3(ua) = —---------uV ,

, <3 are standardised cumulants of P^, and in many applications 

Ky = 0 . The second integral of (1.2.5) is of order n-1 and becomes

very small for large values of x.

It is possible to develop further terms in the saddlepoint 

approximation but the above gives more than adequate approximations
X

for practical purposes. Also, the theory of saddlepoint method can 

be developed using complex variable theory, as was the approach of 

Daniels, but using real variable method gives a clearer insight of 

the attendant statistical theory. Comparing the saddlepoint 

approximation with the Edgeworth series, we find the saddlepoint 

method does not suffer from the drawbacks of the Edgeworth 

approximation in the tail area.

(d) Lindley's Method

This method depends on evaluation of the ratio of

(1.2.6)

t he posterior expectation of 7 where
o = (e1S e2, ..., 9m) is the parameter, L(e) is the 
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logarithm of the likelihood function for n observations and w(e) and

v(o) are arbitrary, see Lindley (1980).w(0> and 2J((?)are 0(i) -

The Taylor series expansion for L(o) about the maximum likelihood 

value 0 may be written

L(9) = L(e) + I Li(e)(oi-e .) +11 XLij(e)(oi-eiXe^-Oj)

i 1 J

~ I (a )
where L.(e) =--------- and so on, and L and its derivatives are 0(n),

i

whereas (e_j-£jjso(nfor all i.

For simplicity we put w(e) = w, L(e) = L and (0^.) = 0. . Then

the numerator of (1.2.6) becomes 
w(e)eL(e)de = +(w.+ I«iei 

i

exp(L + £L.0 • + A I [L. .0.0. + i y y £l
j 1 1 21 I j 1J 1 J 3! i J k

+ - y y y yL. .0.e, + ...)d© .
4! i ' k 1 ljk 1 J k 1

= we"[ (1 + IW-je-j + "2 +

*

(1.2.7)

where W.. = w^/w = etc, = 0, since the expansion is about the 
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maximum likelihood value, and all functions are evaluated at e.

Collecting terms of like order together, the integral is

w^L(exp4nL..ei9.)[1 + p. + lmLijke.ejek

+ lyyw..o.0. + (yW,.0.)(JvyyL. •
IJ 1 J i 1 1 Ijk iDj°k-

*1up to 0(n)?and ft ultimately disappears because it

o,-0,-0iJ + RJde (1.2.8)

does not involve

w or its derivatives.

The integrations all involve the moments of the multivariate

normal distribution with density proportional to exp(-^L. .e.0 .). 
2nj ij i J

Then the result of the integration is that

+ 2^j^LijkWlaijakl + R •

where |£| is the determinant of variance-covariance matrix,

In the same way we can calculate the integral of the 

denominator, so that finally we have
w(e)eL^0^d0/[\)(0)eL^e^de ~

-[1 +

for v / 0 .

R* and the terms with order higher than (n_1) are cancelled. 

Indeed the first term to be cancelled is of order (n~2) not (n"^2), 

because the odd moments for the normal distribution are zero*

17 -



CHAPTER 2

SYSTEM RELIABILITY

2.1 Introduction

Large sample normality is often invoked when exact 

distributions are intractable. However, if sample sizes are not large 

enough to justify normality, then approximations to exact results for 

tests, intervals, etc. may be poor. Asymptotic expansions can improve 

approximations by correcting for bias, skewness and higher cumulants 

all of which are zero for normal, random variables. They can be 

regarded as extensions of the Central Limit Theorem. Successive 

corrections are of increasing powers, inverse in the sample size, or 

in a variable related to the sample size.

In this Chapter we investigate the use of asymptotic expansions 

to approximate system reliability posterior distributions with general 

structures* Winterbottom (1980) obtained the system reliability 

approximation in classical case . In some systems we assume that 

component posteriors are beta distributed and in other cases, they 

have negative log gamma distributions. We can allow the test data 

to be mixed, i.e. for some components, the test data is pass/fail and 

for others exponential times to failure are recorded**

Lampkin and Winterbottom (1983) investigate the case of mixed 

components in series systems . In the special case when the posterior 

distribution of a component is gamma with integer index we establish 

an equivalence with series systems and beta distributions. However, 

for non integer index,we can develop asymptotic expansions for the 

case of gamma posteriors for failure rate or, equivalently, negative 

18 -



log gamma distributions for reliability function.

Several approximate methods are described and their effectiveness 

compared. In particular, we introduce asymptotic expansions for 

percentage points, (Cornish and Fisher), and distribution function 

approximations, (Edgeworth series and Saddlepoint approximation). 

These methods are described and their effectiveness compared.

2.2 Cumulants of Systems

To explain the expansions consider a parameter e and an 

estimator T of e, based on a sample of size n. Suppose that the 

moments of (T-o) have expansions in inverse powers of n, given to 

appropriate orders for two corrections, with <9 fixed^ as follows •

Ej/T-e) = + 0(n~2) ,

E(T-e)2 = k + 4 + •
(9 n rr

.0)3 = JjL + 0(n-’) ,

n ' (2.2.1)

E(T-e)u = — + — + 0(n*U) ,
n2 n3

^(T-e)5 = (10vw-15vu2)/n3 + 0(n u) ,

^(T-e)6 = 15v3/n3 + 0(n u) .

These expansions are typical of random variables with asymptotically 

normal distributions, u, v, v*, w and z are usually functions of the 

parameter 0. in Bayesian applications T is the posterior random variable and 0 is 

afunction of the prior parameters and the data,

Let 0^ be the parameter of component i, i = 1, 2, ..., m and letTbe

based on asample of size nj with £(!<)= • >(> is the system reliability
function.

Consider the Taylor series expansion

T - 0 + I. (T^ e^ip.

19 -



where

(2.2.2)

T - ip(Tls T2,

9ip
997

90.99.
1 J

, etc. Taking the expectations of

the expansion (2.2.2), the moments EjT-e) , r = 1, 2, ... can be 

obtained and take the same form as for the component expectations. 

For example, E(T-0) = — + 0(n ), where n = min n. and u is a
cr I I I

function of &, 09, ..., 0m and of X, , x9, ..., X. where X. = n./n.
x z hi  x z in ii

Once the moment expansions are available they can be converted to 

cumulant expansions using the well known relationships between 

moments and cumulants, (see appendix 1)«We get the cumulant 

coefficients for subsequent use in obtaining up to two corrections 

as:

= Ev??/xi ,

= £W.^/X| + 3^Viv.*i*j*ij/XiXJ. ,

+ ^WiVjWjVijiAxyk
ijk

- 20 -



(2.2.3)

In the above all summations are unrestricted over the range J through m.

Note that in (2.2.3) we have taken E(T.j) = e. so that u^ = 0,

i = 1, 2, ..., m. Then we can represent the corresponding cumulant 

expansions for n^(T-e) by the following scheme.

I
. -1 -41 n n I n 2 n
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - - - - - - - -

Ki ,i 1 K1 2

1

K2 K2,2
1
1
1

*2,3

K3,2 I K 3 , 3
j

, 3
1
1
1
1 Ks,^
1
1
1

K6 } 5

For example, S = S 1 + K2»2/n +
9

k /n2 + ...2 5 3

The vertical dotted line shows the extent of the corrections for

the reliability problem with general system structures.

It is convenient to consider the partially standardised 

form n^(T-e)/<^ where the scheme holds with k replaced by unity
2 j 1 ’

and all other cumulant coefficients < replaced byI 5 S 
r ■ |

* = Kr,s/K?,i ’ The first order correction of n ^^/^inasymptotic

expansions reduces T and £3j2 , both of order n s to zero.
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This correction is for the leading terms in the expansions for bias 

and skewness.

Moving progress!vely from left to right through the scheme the 

corrections provide successive approximations, in increasing powers 

of n"^, to standard normal variate. Improved tests and intervals for 

0 can then be obtained. For certain systems there will be 

considerable simplification when some partial derivatives of the 

reliability function vanish.

(i) Beta Distributions
thSuppose that for the i component the posterior

reliability function IL is beta distributed with probability density

function

ftrp = r.ai"1 (2.2.4)

0 < ri < 1 > 0 , ^ > 0.a .
17

We may write + s. and
1

8. = B.o + rr - Si> where

are prior parameters and s^ the reliable components obtained out

of nq. tested.Taking expectations oxer the posterior distribution.

Define p. = £( »<ft) = ~~ and n; = «; +P- ■

Then we have u^ = 0, v^ = p^ (1-p^ ), vt = -P^d-pp, 

wi = 2pi(1-pi)(1-2p.) and z. = 6p.(1-p.) (1-6 p.4-6 p?).

(ii) Gamma Distributions

When component lives are exponentially distributed, we

consider gamma posteriors for the failure rate. For the i component, 

- 22 -



let the failure rate-A^ have the probability density function

g(xi) = Ti(Tixi)rii"1e’liAi/r(rii) , (2.2.5)

X.j > 0, 0, rij > 0 .

We may write t . = t  . + t and n.io i i n. + r. where t . and n- are
10 1 io io

prior parameters and r. failures were observed in a total time on 

test tj.. Then we take and p. = e Aitms where t is the mission 

time which, without loss of generality, may be set at unity. Noting 

that E^.) = n1-/Ti = (say) we can replace (R^r .) by (x^.-</>.) in 

the Taylor series expansions, suitably modifying the partial derivatives 

of the system reliability function.

For the moments of (x.-<f>.) we have u. = 0, v. = <j). , v* = 0, li i iii

= 2*. and z. = 6^.
M 1 i

2.3 Asymptotic Expansions for Percentage Points

Asymptotic expansions for percentage points provide 

successive corrections to large sample normal approximations which 

consist of a point estimate plus an appropriate multiple of its 

standard error. The expansions are due to Cornish and Fisher (1937) 

and can be considered as extensions of the Central Limit Theorem. 

In the reliability context the expansions take different forms 

depending on the asymptotic variable.

For series systems the asymptotic variable can be taken as the 

number of components and this case has been investigated by
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Lampkin and Winterbottom (1983). In general, it is necessary for the 

asymptotic variable to be a quantity related to the smallest sample 

size over component tests. An analogous treatment for the 

correspond!ng classical problem was given by Winterbottom (1980).

For a system of m components, specialising the notations, the 

system reliability is given by R = <p(R1} R2, ... R ), where R^ is

ththe reliability of the i component and is the system reliability 

function. Quantities n., p. (i = 1, 2, ..., m) can be constructed 

from the component reliability distributions, so that the cumulants of 

(R^-pp are ~ 0(n^ ) and k ~ 0(n. ), s 2 . In fact we can

take to be the mean of R^, whence k x = 0 . The n^ will be quantities

involving the test sample sizes combined with corresponding prior 

quantities. The above cumulant properties enable Cornish and Fisher 

expansions to be obtained for percentage points of the component 

reliability distributions separately. However, using a result due 

to James and Mayne (1962), if we define p = ip (pT, p2, ..., p ) and 

n = min n^, then the cumulants of (R-p) are ~ 0(n-1) and

*] _ c
«s ~ 0(n ) , s 2 . Thus Cornish and Fisher expansions can be

applied directly to the posterior distribution of system reliability.

More explicitly, we can write
00

- n ZKi,i+i/n 
i=o

00

s 2 .

For the standardised random variable n^R-p)/^ x
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the corresponding cumulants are
oo

c = n y •/n i 11 L ■ 1#1+1'11 »
i=o

, Soo

cs n .hs>s-1+i/n
1=0 ’

, s 2

where £ . =s,J

s/2
K • / K „ ,
S,J 2,1 '

The cumulant coefficients k .will s,j

series expansion (2.2.2) after replacing

respectively.

The large sample formula for system

be obtained from a Taylor

T and 0 by R and p

reliability posterior

percentage points is

R5 = p + , (2.3.1)

whereas the Cornish and Fisher expansions, giving two corrections to 

(2.3.1), is

= p + (<2, i/n)2 , i-h £3 2 (-1)/6}/n

+ {£3j2?/24£l+j3(C3-3d/24- ^2s2(2e3-5d/36}/n]. (2.3.2)

For the 100a percentage point, £ is the standard normal value such 

that <i>U) = 1 - a and $ is the standard normal distribution function.

(i) Series Systems

Exact results can be obtained for series systems by 

inverting the Mellin integral transform (Springer and Byers, 1971), or 

by inverting the Laplace transform of ¥ = -InR and then transforming
_ Y

to obtain the distribution of R = e (Lampkin and Winterbottom, 1983).

Even so, calculation of exact limits for system reliability becomes
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computationally very difficult as the rr increase.

If it can be demonstrated that good approximations are obtained 

for reasonably small values of the n^ then, by the nature of 

asymptotic expansions, even greater accuracy will be achieved as these 

values increase.

Using the results of the previous section, expressions for the 

cumulant coefficients required for up to two corrections are now 

given. When all component posterior distributions are beta we have,

K i, j ~ 0 ,

<2,1 = '
i

<2,2 =7«h(1-Pi)AiPi)2 - W-PP/MPP >

<3,2 = <f{3Q(1-Pi)/AiP .
i i

s,3 =pWi-‘pi)(i+i+Pi)/Mpi+ 16Q<1-pi)/\pi)3

Pi )/X. Pi )(X(1-P?)/A? P?)} - (2.3.3)
i i

Let m = 2, ax = a2 = 19, g-L = p2 = 1 > so that ^=11=11-20j

Xx = X2 = 1, P2 = P2 = 0.95 and f = Px P2 = 0.9025 .

The exact distribution function of system reliability R in this simple 

case is

G(r) = r19(1-19 1 n r) . (2.3.4) 
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Then, for example, the exact lower 90% limit is the solution for r in 

the equation (T(r) = 0.1 and this is 0.8149 .

The values for the cumulant coefficents k and correspondingr, s

ratios’^ areI j S

k = 0 , k = 0.0857375 , k, , = -0.0848125 ,, ’ 5

<3 2 = -0.13439353 , k ,+ j 3 = 0.2727578 , whence

£isi = 0 , £2j2 = -0.97368421 ,

S,2 = -5.35330685 , = 37.105263 .

Using the Cornish and Fisher expansion (2.3.2), we get the value of 

r = 0.8153, when E, = -1.28159 .

For each of the following series system cases we give lower

90, 95 and 97.5 percentage points. Cornish and Fisher with 

asymptotic variable m, the number of components, is denoted CF(m) 

and uses the formula given by Lampkin and Winterbottom (1983) to 

two corrections. CF(n) uses formula (2.3.2) . Table 1 gives exact 

and approximate CF(n) and CF(m) lower 90, 95 and 97.5 percentage 

points.
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Table (1) Cornish and Fisher Approximations

% C CF(m) CF(n) EXACT

Case (a) m = 2, a = a2 = 19 , B1 = B2 = 1 .

90 -1.28159 0.8148 0.8153 0.8149

95 -1.6449 0.7742 0.7800 0.7791

97.5 -1.95996 0.7448 0.7433 0.7458

Case (b) m = 2, a = a
’ 1 2 = 18, 02 = *2 = 2 •

90 -1.28159 0.6966 0.6970 0.6967

95 -1.6449 0.6571 0.6577 0.6574

97.5 -1.95996 0.6218 0.6223 0.6223

Case (c) m = 4, ax = a2 = a3 = a4 = 20 , Bx = B2 B3 Bu

90 -1.28159 0.7160 0.7163 0.7160

95 -1.6449 0.6784 0.6789 0.6786

97.5 -1.95996 0.6447 0.6451 0.6451

It is easy to extend CF(m)to four corrections enabling 

very good accuracy of approximation to be achieved.

When all component posteriors are gamma distributed then 

there are two cases, the first case being when the index n in the 

posterior density function

g(r) = t (t X)11 1eTA/r(n) (2.3.5)

is an integer. This would be so if the prior index (the prior 

parameter) were chosen to be integer or, alternatively, if the 
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invariant prior tt (AW'1 were to be used for which n - r and t = t.

In formula (2.3.5), if the mission time is one»then the reliability of 

the component is R = e \ The probability density function of R is the 

negative log gamma distribution with p.d.f.

g(r) = Tn(- In r)n 1rl 1/r(n) , 0 < r < 1 . (2.3.5 a)

Let a series system have n components and let the posteri or

densi ty

Laplace

for all components be Beta with parameters a,
n 

transform of Y = £y . ,
i=i1

where Y = - 1 n R and Y.
1

I (s) = E(e~s*) = E n r | 
y i=i*

n en E(Rp 

i=i

)n

6. The

-In R. i

(2.3.6)

Setting gives

Ly(s) = ( (2.3.7)

Inverting this Laplace transform the p.d.f. of Y is

i s

h(y) = I(Ty),|-1Fiy/r(n) ,
-V

and hence the p.d.f. of R = e is 

(2.3.8)

g(r) = Tn(- In r)n xrT 1/r(n) , (2.3.9)

the negative log gamma as formula (2.3.5a). Thus, when is an integer,

we can replace a component which has a r(n,T) posterior for failure

n

rate by n independent series components each having a B(t ,1) posterior,

to each of which the methods of expansions can be applied *

The second case is when the indexnis non integer. In this case 

we can develop asymptotic expansions for the case of gamma 

posteriors for failure rate or, equivalently, negative log gamma 

distributions for reliability.
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Let p= exp (-£f.) , t = min i. and X. = t ./t  
i

(i = 1, 2, ..., m). Then we have from (2.2*3)

Ki,i=2^iAi ’

k2,i = P^i^i •
i

k2,2 = P2<fQ*A>2 - Z^i/Ap ’ (2.3.10)

k3,2 = p’OC^/xp2 - 2^/x?) ,

s 3 = p-teppx? - 24(^i/xi)(I*i/xp + 16(5^/*.)3} .

Let m = 3, n = 1, T = 11 ; n = 1, , = 20 ; n = 2, T = 30 .
1 1 2 2 3 J

Then = n1/Ti = 0.0909 ... , <f>2 = 0.05 ,

f3 = =.066 ... and xT =1, X2 = 1.8181 ... ,

*3 = 2.7272 ... , p = 0.81255168 ,

K2 j 1 = 0.09431765 , = 0.1889799 ,

^2,2 = -1.3957191 , £3>2 = 3.1258327 ,

L, 0 = 13.106379 .
S3

The Cornish and Fisher expansion for percentage points of the 

distribution of R, formula (2.3.2) (replacing n by <),js 

0,7003. The exact 90% lower limit (f = -1.28159) is 0.6992 .

(ii) More Complicated Structures and Mixed Test Data

In this case we consider more complex systems. Also 

we can allow the test data to be mixed, i.e. for some components, the 
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test data is pass/fail and for others exponential times to failure 

are recorded. Specifically we obtain lower limits for three systems:

a) A series-parallei system,

b) A parallel system with standby redundancy,

c) A K-out-of-N Quorum System.

For each system, and a given lower limit, 10,000 values of the

posterior distribution were generated by Monte-Carlo methods and the 

proportion exceeding the lower limit determined. This proportion is 

then compared to the designated

Case (a) A Series-paralle

Consider a series-parallei 

serially with two components in 

parallel are like components in 

independent random values drawn

probabi1ity level.

System

system with one component linked 

parallel. The two components in 

that their times to failure are 

from the same gamma posterior

distribution. For the component linked in series to the parallel 

structure the reliability has probability density function

r01-1 (1-r'1 
g(r) = ------, 0 < r < 1. (2.3.11)

For the two components in parallel,and for unit mission time ,

the corresponding distribution of reliability is
Hr I

g(r) = xn(-Inr)rT’ /r(n), 0 < r < 1 ■ (2.3.12)

System reliability, as a random variable, is

<|>(R,A) = R(e A1 + eA2 - W) • (2.3.13)

Let p= E(R) = and <f> = E(x) = g/t .

Then, by expanding ip(R,x) about <p( p,<f) in a Taylor's series, we have:-
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For (R-p) ,

u = 0 , v = p(1-p), v* = -e(l-p), w = 2 (1-’p)(1-2p) 

and z = 6 p(l-'e') (1-6 (j»-6 p2) .

And for (X-<J>) ,

u = 0, v =<(), v* = 0, w = 2<|) and z = 6<f> .

All other required derivatives are zero.

The structural derivatives required for the asymptotic expansions are

*1 = a* = e-*(2-e*) , 
dp

*11
= 2!* = o ,

3p2

*2 = || = -2pe*(1-e*) ,

*22
=-^ = 2pe*(1-2e*) ,

3<t>2

lb. y 1 2
= aU = -2e_*(1^) ’

*122 = = 2e*(1-2e*)
9p8(j)2

*222
= 1!* = _2e*(l- 45*) ■ 

ap

Let the first component have a beta posterior with a = 19 and b = 1 

and the parallel components have a gamma posterior withr = 20 and n = 2. 

Then

p = — = 0.95 and * = - = 0.1 .
Ta+B

The moment coefficientsand the above derivatives can be evaluated.

For above values where \ = A2 = 1 and from formula (2.2.3), we 

obtain
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K = -0.139198576 = 0.051996749

k2 2 = 0.041161491 , k3>2 = -0.08782922,

kS3 = 0.184948466 .

The corresponding standardised cumulant coefficients are

= -0.610445219 , £2j2 = 0.791616625 ,

^3,2 = -7.40755252 and %j3 = 68.40665453 .

Finally, xp(p,4>) = 0.9413969. Using the Cornish and Fisher formula 

(2.3.2), where n = min((a+B),x) = 20 and ip( p^) instead of pin the 

formula, the distribution function values of R are 0.86845 , 

0.83582 and 0.80358 for the lower 90, 95 and 97.5 percentiles 

respectively .

Case (b) Parallel System with Standby Redundancy

Consider two components with identical gamma failure rate 

distributions and a switch which works with probability 9. We assume 

that pass/fail data is available from tests of the switch so that 

the posterior of the random variable 9 is beta. The system works if 

the component set in operation at t = 0 survives for a time t or, if 

it fails at some time prior to t , the switch works and the second 

component survives for the remaining time to t . The system 

reliability for mission time t , given 9 and X is

P(T > tm ; 9,A) = e

Without loss of generality let t 1.

(2.3.14)
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Thus system reliability is

<p(o,x) = eA(1 + xe) (2.3.15)

Let E(e) = p and E(x) = <|) expanding ip(e,x) about ip(-p,4>) in

a Taylor's series we have

*1

12

*2. = +G-2)p) ,
z z dcp

3 2 <p
9 p9 <t>

= G-2)^
3 ^pd 4>

*222 = — = + U-3.1P) •
34)3

All other required derivatives are zero.

The moment coefficients for 

as given in Case (a).

Let a = 18, B = 2 and t  

Then

k . . = -0.03212728 ,1 9 1 ’

K = -0.01869858 ,2,2 ’

k u 3 = 0.002379256 .

the Beta and Gamma distributions are 

= 20 , n = 2

k 9 . = 0.003692476 ,

k , „ = -0.002376641 ,
3 5 2

The corresponding standardised cumulants are:

?. . = -0.528615702 ,
»x

%j2 = -10.59222172 ,

Also ip(p ,4) = 0.986273

£2j2 = -5.063967917 ,

\ , = 174.5041969 .
4 , J
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Using the Cornish and Fisher expansions (2.3.2), the lower .90, .95 

and .975 limits for system reliability are 0.96392, 0.95317 and

0.94665 respectively.

Case (c) A K-out-of-N Quorum Structure

This system works if at least K of the N components work, (K s N) .

For the case K = 2 and N = 3, the system reliability is

3 3
^R1’ R2’ M = • nRi + y n R .(1-R.) 4 (2.3.16)

1 = 1 i=1j/i J

Let R. (i = 1, 2, 3) be independent beta variates.

Then
= P2U-P3) + P3U-P2) and similarly for ip2 and <p3.

= 0
i i 9b?

= 1 - 2p3 and similarly for ip13 and <p23

All other derivatives required are zero.

Then px = p 2 = p 3 = 0.9 and <p( p±, p2, p 3 ) = 0.972 .

Thus ip. = 0.18 ,

Further, for the common beta distribution, we haVe

u. = 0, v. = 0.09, vt = -0.09, w. = -0.144 and z. = 0.297
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Then

= 0 , k 9 . = 0.008748 ,
Z 5 1

= -0.008748 , k3j 2 = -0.00629856

= 0.006173219 , giving

= 0 , 2 ,2 = - 1 , = -7.69800359 ,
3 5 2

= 80.66 .

Using Cornish and Fisher expansions (2.3.2), the lower .90, .95 

and 0.975 limits, for system reliability are 0.9428 , 0.93109 and 

0.91824 respectively.

Table (2) A Monte-Carlo Study

DESIGNATED LEVEL

SYSTEM 0.90 0.95 0.975

Case (a) 
(Series-Parallei)

0.905
(0.888)*

0.953
(0.920)*

0.978
(0.946)*

Case (b)
(Standby Redundancy)

0.907
(0.882)*

0.95
(0.906)*

0.977
(0.934)*

Case (c) 
(2/3 Quorum)

0.902
(0.898)*

0.951
(0.928)*

0.975
(0.946)*

* Cru de two term values

2.4 Distribution Function Approximations

An indirect way to obtain approximate percentage points is 

to approximate the posterior distribution function first. However, 

the distribution function itself may be of some interest. Here, we 

discuss and apply Edgeworth expansions and Saddlepoint approximations.
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(i) Edgeworth Expansions (Section 1.2 (a))

Let the distribution function of system reliability be

F(r) = P(R S r) . Then the Edgeworth expansion to two corrections is 

F(r) s<f(x) -*(x)[^. + «3>2H2/6}/nJ + {*^^^2 +<t.2>2H1/2

+ , i ,03,2^3/6 +€1^,3^13/24 + £ 3 j2H5/72}/n] , (2.4.1)

where x = n2(r-p)/«25i » 1S the r^ Hermite polynomial

defined by

Hq (x ) = 1, Hjx) = x, Hf(x) = xHy,_i(x) - (r-l)Hr_2(x) ,

r 2

$ and f denote the standard normal distribution and probability density 

functions respectively.

In order to illustrate the effectiveness of the Cornish and

Fisher and Edgeworth expansions, let m = 2 ; a = a =19 ;
1 2

B = B = 1 . The asymptotic expansion using Cornish and Fisher
1 2

gives a lower 90% limit of 0*8153 as before compared to the exact 

value 0.8149. The corresponding Edgeworth expansion when r = 0.8149 

is 0.092 compared to the exact value of 0.10 .

(ii) Saddlepoint Approximations (Section 1.2 (c)^

Saddlepoint methods are useful for approximating the 

posterior distribution function of system reliability when, after a 

suitable transformation, it can be represented as a sum of independent, 

though not necessarily identically distributed, random variables. 

This is accomplished for either series or parallel systems by a 

logarithmic transformation of system reliability or unreliability 
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respectively. The moment generating function of the transformed 

random variable is easily obtained in both cases and this facilitates 

the development of Saddlepoint approximations.

Let the distribution function of system reliability be

F(x) = P(x s x). Then Saddlepoint approximation is

1 _ p(x) s Mp(u) exp(-um +a2u2/2){1-$(uo)}{1 j 2w(uo )/6} ,

(2.4.2)

where w(uo) = —D.jd.9.0.). - u3a3 , u js sucp1 _ x ancj
(1 - 4>(uo))

x = n^(r-p)/K^x , see Robinson (1982) and (1.2(c)).

Consider a series system with beta distributed component posteriors.

Then

and x. = - In R.
i i

is
k 8.-

M (e) X

Then

Kx(6)

x = 7x. where x = - In R
v 1
1

The moment generating function of x 

k
) = ii E(Ri) = n n 

i=i i=ij=i

= InM (0)x
k ei

= I Hln(a. + Bi-j) - ln(ai+Bi-6-j)J .
i = ]j=i

.(2.4.

(2.4.4)

dr
Thus

k
= (r-D! I 1 (%■+»•(2.4.5) 

i=ij=i

Let k . - 2 ; ax = a2 = 19 ; bx = B2 = 1

- 38 -



Then ,

Mx(u) = Mf (u ) = ( ^-)2

K
1 , 1 = m(u) ,

k 2 ,1
O2(U) = ---- ?----

(19-u)2

Kr ,s

from which £ r,s
K /K^2

r,s 2,1

Specifically £3j2 /2 .

As we oot before the distribution

r 2 . 

value for r = 0.81488 is 0.10?

then x = -0.20471 •

Setting -x = m(u), since x < 0, and solving gives u =9-13?

M(u) = 3.782033 , a2(u) = 0.02095231 . These values give

G(r) = 1 - F(x) = 0.098 compared to 0.10 .

Table (3) gives comparisons with exact values for a series

system with beta component posteriors, where m = 4 ;

ax = a2 = a3 = = 20 ; = f2 = B3 = 8= 1 so that n = 21 and

p = 0.81451.

We now give expressions for all moments and cumulants required for

use in the approximations.

E(RS) = n E(R?) = ( 20 )m , s a 1 . (2.4.6)
i=i 20 + s

Moment generating function of x (distribution function F ):

Mx(e) = E(eex) = E(e'81nR) = ( . (2.4.7) 
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Cumulant generating function of x :

K (e) = m[ln 20 - ln(20-e)].
X

Cumulants of x :

ks = m(s-1)!/20s , s 2 1 .

Cumulant generating function of the exponentially shifted distribution 

function P„ :rn

Kp(e) = l<F (e+u) - Kr (u)
m m

= -mln [20 -(e+u)] + mln (20-u) . (2.4.8)

Then, the mean m(u) = —and variance a2(u) =---- - ----
20-u (20-u)2

Standardised cumulants of P :m

= o , <s = (s-1)!ml_2 s s > 2 .

The exact posterior probability density function is

g(r) = 204(- In r)3r19/3! (2.4.9)

and the distribution function can be conveniently calculated from

its expansion as the cumulative Poisson sum
3

G(r) = y exp(-M)un/i1 , (2.4.10)
i=o

where p = 20(- 1 n r) .
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Table (3) Distribution Function Approximations

R Edgeworth(m) Edgeworth(n) Saddlepoint Exact

0.5 0.00007 0.00077 0.00052 0.00053

0.6 0.0113 0.00898 0.00881 0.00882

0.7 0.0717 0.0764 0.0742 0.0751

0.8 0.3487 0.3490 0.3470 0.3486

0.85 0.5914 0.5917 0.5939 0.5913

0.9 0.8325 0.8345 0.8394 0.8373

0.95 0.9739 0.9743 0.9797 0.9794

0.975 1.002 0.9995 0.9987 0.9982

0.99 1.009 1.0052 0.999941 0.999942

2.5 Remarks

The Saddlepoint and Edgeworth (m) approximations are only 

available for series (or parallel) system but Edgeworth (n) can be 

used for all coherent systems.

Saddlepoint is the best approximation for the distribution 

function especially in the tails but Edgeworth (m) and Edgeworth (n) 

are also good except in the extreme tails.

The (m) and (n) approximations for percentage points are both 

very good and can be used for general structures.
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CHAPTER 3

SIMPLE APPROXIMATE METHODS

3.1 Introduction

This Chapter presents methods for calculating lower 

confidence bounds on system reliability for systems configured as 

series, parallel or complex arrangements of independent components. 

These methods depend upon the reduction of component test data to 

an equivalent system test data. One of these methods forms the basis 

of the Maximus report (198C). Maximus is based on classical statistics 

whereas we develop and investigate an analogous Bayesian approach. 

The other method depends on equating the system posterior mean and 

variance with the mean and variance of a single beta distribution. 

The parameters of this beta distribution, so determined, are used 

in the construction of interval estimates for system reliability.

The test data will be taken as pass/fail and/or exponential life-times 

and the posterior component reliabilities will be distributed as 

beta and gamma with integer index. We can incorporate exponential 

time to failure data by the device described in Chapter 2 (Section 2.2).

3.2 Series Systems

The product of beta variables has a complicated form which 

causes difficulties in maintaining computational precision. In the 

first method, when the parameters of the component beta distributions 

are specially related, the product distribution is beta. In appendix 

II using independent beta distributions with inter-related parameters, 

we have derived the above result.
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The result is as follows:

Let R.
1

have a beta distribution with probability density function

do + 
r- j

=-— k .2,, 1 = 1. • • 9

k
Then R = n R.

0 1=11
is beta distributed with p.d.f.

(3.2.1)

rlo~1(1-r )l_lo’1
0 0

9 (3.2.2)
k

1 = Z i- • 
j=o J

kFor example, let = 2. Then R = R,ROo 12 and from (3.2.1)

r1io+12'1(i-ri)1i'1
9

f (r )2 2

r20’1(1-r2)'2’1

Let “1 = ]o + 1
2

“2 = ]0

Solving for aT, a2, and f2 in terms of l0, lx and 12 we have

four quantities (a19 a2, 62) in three terms (1 , lx, 12). There

will be one qonstrainton the former. Thus

If this constraint can be obtained then has an exact beta

distribution with p.d.f.

„1 -1,, .1-1 -1ro° U-r ) o 
f (r ) = ---------- 2---------- %2 d

B(<*2,

Ro
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For example, suppose that aT = 18, B1 = 2 ; a2 = 15, B2 = 3 .

Then since = a2 + B2, RQ is exactly beta with p.d.f.

rlu(1-r ro o
B(15,5)

For general k, where a. = a_. + i + Bi+1, i = 1, 2,...., k-1, it

is easily seen that
k

fo(ro’ = r0k 1(l-ro)i='1 •

When the parameters do not follow this pattern we shall show that 

inducing them to do so gives good approximations.

The second method sets the variance of the system equal 
to . the variance of a single beta distribution. For the case of 

beta component posteriors the variance of series system reliability 

is
P2, ) _2

Vs = ;— + 0(n ) , where Pi = a^fa^+B^ ,
i i '

n. = + B^ = X^n and n = min n^ .

Let
vc ~ p-(~—— + 0 (n 2) ,

n

where p = a/(a+B) and n = a + b, be the variance of a single beta 

distribution. Then to obtain the value of n = a + B for the

equivalent component, set

(1 - P3)elk£l + 0(n"2)
n

+ 0(n’2) •
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Thus

n(1-P)n = —----- -
P

(!-«<)

(3.2.4)

B = n(1-p)

and f0(rQ)
B(a,3)

This method can be used for systems with general structurej 

(see Section 3.4),

(i) Series Systems Without Repetitions

If some or all of the constraints a. = a. . + 3 1 i+i

do not obtain, then a beta approximation for the posterior 

distribution of Rq can be obtained by inducing the appropriate 

constraints under certain rules which appear to give the best 

approximations.

+1

The Rules

a) No a. or «. + 3. can be increased but they111 J

can be decreased.

b) If a- is decreased to a value c, say, then

+ 3.j is reduced to the value c(«.+3p/a^

3. becomes c3-/a. .i 1 i

c) If (a^+3^) is decreased to a value d then a

and

is
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decreased to da./(a.+B-) and 3. becomes i 11 1

d3-/(a.+3-) .i i 1

Operations to induce the constraints can be carried out in any

order and will give the same system result.

Some Examples:-

1. Suppose that

<+

ax = 100, = 2, nx = 102 ;

a 2 = 80, b 2 = 2, n2 = 82 ;

a = 70, 3 = 1, n = 71 ;
3 3

a = 60, B = 1, n = 61 .u 4

In this example a^ a •1 +1

In the first method, starting with components 3 and 4, reduce a3 = 70

to the value the new

a3

In the same way with component 2 and the new component, a2 > “3

a2 80 is reduced to the value a' +
3

71 x 61
70

The new

a2 Also using the new component

with component 1, we get ^.4 -
- («,+ %)( <*1+ } 

<*1

a = 60 .4

+

as IP.2. x 82 x_71 * 61 = 64.6866 ,
100 x 80 x 70

+

as 60

3, 4 .

o' - & kS K ?

Thus f (r )0 0

r59(, ,3.6866
0 k 0 ______
B(60,4.6866)
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Using the second method, we get

a = 77.549 , s ’
6s = 6.057 ,

and r76.549( ,5.057

f (r ) = -2--------------°----------- .
0 0

B(77.549,6.057)

The lower limits for system reliability are

0.90 0.95 0.975

1st* 0.885 0.8685 0.8536

2nd 0.8895 0.87497 0.8620

Exact 0.889 0.8748 0.8616

* 1st: Using first method ; 2nd: Using the second method .
The approximate values were obtained by interpolation in Table(16)of

Biometrika tables vol. 1

Let a = 4 > = 2

a2 = 3 , B2 = 2

a3 = 2 , B3 = 2 •

In this example < a^+ + Bi+ i = 1, 2, 3 •

In this case, using the first method we reduce n. to a., as in l+iv

rule (c). The equivalent values of a and 6 are

“s = 1.2 . Bs = 4.8 .

And the second method gives values

% = 1.714 , b = 6.856 .
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The lower limits of the system reliability are

0.90 0.95 0.975

1st 0.03565 0.02015 0.01485

2nd 0.0535 0.034602 0.02283

Exact 0.0535 0.0352 0.0237

3. Suppose that

a1 = 11 , = 1

»2 = 6 » 32 = 1

a3 = 6 , B3 = 1 *

In this example a > a + B = a +6 , but

0^ / d2 + B2 and a2 a3 + ^3 •

In the first method, starting with components 2 and 3, reduce

«3 + B3 = 7 to the value a2 = 6. By using rule (c) the new a3 is

a‘ = x-_ = 5.143 and the new Bo is B, = — -X- = 0.857 .
3 7 3 3 7

The equivalent single test result for components 2 and 3 now

a = a' = 5.143 , B = B + B' = 1.857 and n = a + B = 7
5 3 3

The new equivalent component with component 1, reduces aT = 11 to 

the value a + B = 7 then,from rule (b),

n« = ? x. Jj. = 7,636 and B' = ? X = 0.636 .
11 1 11

The equivalent system test result for component 1, 2 and 3 is
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a = a' = 5.143 , Bc = B1 + B + B1 = 2.493 . 
S 3 S 1 2 3

Using the second method we get

as = 6.0343 , Bs = 2.9257 .

Then the lower limits for system reliability are

0.90 0.95 0.975

1 st 0.452 0.385 0.3303

2nd 0.469 0.4021 0.3558

Exact 0.47 0.404 0.351

(ii) Series Systems With Repetitions

Let the k components of a series system have 

independent identical beta distributions with parameters a, B. 

Then the system reliability is RK. If there are k such repetitions 

in series then each component is assigned the parameters a/k, B/k. 

The same rules as before are used to determine system equivalent 

parameters^whence limits for system reliability can be obtained. 

This is best illustrated by an example.

Example

Let a = 30 , B = 2

If * = 2 (the probability limit for R2) 

f = 15 , f = 1 ; |= 16 •

Following the rules of operation for the first method, given before, 

we obtain for the system

cts = 14.0625 , Bs = 1.9375 .
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Using the second method we get

as = 14.53125 , Bs = 2.01415 .

The lower limits for the system reliability are

0.90 0.95 0.975

1st 0.7701 0.72651 0.6866

2nd 0.7704 0.72806 0.6889

Exact 0.775 0.733 0.693

If k = 4 (theprobability limit fof r 4)

- = 7.5 , - = 0.5 ; - = 8 .
4 4'4

When each component has these parameters the equivalent system 

parameters are = 6.1798 , Bs = 1.8202 and when we use the second 

method we qet a = 6.8257 , b = 2.01044 . Then the lower limits forJ s s

system reliability are

0.90 0.95 0.975

1st 0.5769 0.5083 0.4493

2nd 0.5852 0.5201 0.464

Exact 0.60 0.5367 0.4815

Both cases show reasonable accuracy and both are slightly 

conservative. The second method appears to be consistently better 

than the first method.
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(i i i) Series Systems with Repetitions in Some Components and

Without in Others

Suppose that three sets of parameters are

a
1

= 30 ’ 6x = 2

a = 19 , B = 1
2 2

tt3 = 18 ’ 33 = 2 ,

with repetition in the first set. For R? the equivalent parameters 

are as for the case k = 2 with repetitions. The = 14.0625 , 

3s = 4.651 . Using the second method we obtain = 15.0441, 

6s = 4.9756.

The approximate lower limits are

0.90 0.95 0.975

1st 0.625

(0.8968)

0.5842

(0.9498)

0.5488

(0.9741)

2nd 0.6241

(0.9047)

0.5826

(0.9500)

0.54604

(0.9750)

The values within brackets are the achieved probability levels 

obtained by simulating the posterior distribution of system reliability.

(i v) Series Systems With Mixed Test Data

If some components have gamma posteriors, with 

integer indices, we use the relation between gamma and beta variates, 

as in Chapter 2, to transform all the system posteriors into beta 

and use the same rules as before to obtain the equivalent system 
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test result and then determine the lower limits for the system 

reliability. For example, suppose

% = 11 > = 1

«2 = 20 , 3? = 2

= 40 , nx = 2 •

In this example we find the third component has a gamma posterior with 

parameters and n1. From Chapter 2 we can substitute this component 

by two components in series with a beta posterior with a = 40, 6 = 1

for each component. Then we deal with a system of four components,

each one has a beta posterior, as

ai = 11 , 3i = 1

a2 = 20 , B2 = 2

a3 = 40 » B 3 “ 1

a,. = 40 . B, = 1 •

Using the first method to obtain the equivalent system parameters, we 

get a = 11 , 3S = 2.8683 . Also from the second method, we 

obtain ag = 15.503 , 3$ = 4.04241 .

Then the lower limits for system reliability are

0.90 0.95 0.975

1st 0.6491 0.5987 0.5540

2nd 0.6704 0.6288 0.5919

Exact 0.6727 0.6287 0.5887
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3.3 Parallel Systems

We proceed in the same way as for series systems, but we 

deal with unreliability instead of reliability, i.e. we use the 

formula (3.2.1), replacing r. by Qi = 1 - r^ to use the first method 

and p. by Q. =1 - p. to use the second method.
i J 1 i

In parallel structures we first investigate the case when there 

are no repetitions. In the case of repetitions, or mixed test data, 

the new system will be parallel and we use in this case the same idea 

as for series systems but changed into a complex system and this will 

be dealt with later.

In the same way there are some rules to give the best 

approximations when we use the first method, and these rules are:

(a) the equivalent system B^ = min (b.)

(b) if (a.j + Bj) is decreased to a value d then = d - b^-

(c) if (a.j + B.j) is increased to a value c then a^. = c - b^

Examples

1. Let

In this example B^ >

Using the first method, we find

; "i = 8

’ n2 = 6

; n3 = 4

’ nu = 2

a • . . + B- , and B- > B-1 +1 i+i i i+i .

B$ = min (B^) = 1 and from rule (b)
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ns = 3.6572 then = 2.6572 which is the equivalent system test

result. The second method gives the values a = 3.0426, B = 1.1451 s s

The lower limits for system reliability are

0.90 0.95 0.975

1 st 0.41887
(0.909)

0.32267
(0.964)

0.24869
(0.986)

2nd 0.44378
(0.899)

0.35212
(0.951)

0.2797
(0.973)

In all the examples, as above, the values within brackets are 

the achieved probability levels.

Suppose that

B, = 6 , a, = 2 ; n = 8i i i

B2 = 5 , a2 = 2 ; n2 = 7

b3 = 4 , a3 = 2 ; n3 = 6

= 3 , = 2 ; nu = 5

In this example Bi > B. and i+i

As in the first example 8$ = min (b-) = 3 and, from rule (c),

n increases to the value 14 then a = n - B = 11 . For the same s s s

example with the second method we get «s = 9.1321 Bs = 2.4906 .

Then the lower limits for the system reliability are
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0.90 0.95 0.975

1st •0.64022
(0.890)

0.5899
(0.946)

1

0.54553
(0.962)

2nd 0.62582
(0.909)

0.5699
(0.956)

0.52088
(0.976)

3. Let

ns

Bi — 2 ’ ai = 6 5 "x = 8

= 3 » a2 = 4 5 n? = 7

= 4 , a3 = 2 5 n3 = 6

- 4 ’ % = 1 n = 54

In thn’s exampl e Bj <

ei+i ’

Then from the f i rst met hod Bs = min (b

35 then as = ns - B s 33 . Also the value of a , B froms s

.) = 2 and using rule (c)

the second method are »s = 22.2624 , bs = 1.3492

The lower limits for system reliability are

0.90 0.95 0.975

1st 0.88598
(0.876)

0.862777
(0.929)

0.840883
(0.960)

2nd 0.87675
(0.911)

0.84705
(0.953)

0.818748 
(0.973)
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3.4 Some Complex Systems

In this Section we study three cases ,aSeries-Parallei

system , aParallei-Series system and a Quorum Structure.

(i) Series-Parallei System

Consider a series-parallel system with two components 

linked serially to two components of the same kind in parallel. The 

posterior distributions of the reliability of components are beta 

with a = 6, 3 = 1 ; a =4,3 =1 for the serially linked112 2

components and a3 = 3, 33 = 1 ; au = 2, 3U = 1 for the parallel

linked components. Using the first method, the system is divided 

into two subsystems; one is series and the other is parallel. Then 

we follow the same methods as before for series and parallel systems. 

So we get

= 4 3^ = 1.8333 for the series part and

«2 = 11 3z = 1 for the parallel part*

Then we consider them as a series system with two components.

The equivalent system test result is a = 4 , 3 = 2.36364.s

The equivalent system test result using the second method is

as = 4.3435 , 3S = 2.5669 .

The lower limits for system reliability are
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0.90 0.95 0.975

1st 0.38245
(0.909)

0.31351
(0.956)

0.258671
(0.982)

2nd 0.39112
(0.899)

0.32451
(0.951)

0.27107
(0.976)

(i i) Paral leUSeries System

In the same way, suppose a system contains two

components in series connected in parallel with another two components 

in series. The posterior distribution of the reliability of 

components are beta with = 5, ei = 2 ; a2 =3,3=1 for the 

first two in series and a3 = 3, 33 = 1 ; a1+ = 1, 3U = 1 for the other 

two. As before we first get the equivalent single test result for 

the subsystems in series and then we treat them as a parallel system 

with two components.

Using the first method we get ag = 3.975 , = 1.625 ;

from the second method we obtain a = 4.3734 , = 1.7879 .s s

Then the lower limits for system reliability are

0.90 0.95 0.975

1st 0.459514 
(0.912)

0.38039
(0.962)

0.316074 
(0.980)

2nd 0.4712
(0.904)

0.39544
(0.953)

0.3333
(0.978)



(i i i) Quorum Structure

In this system the first method is not' applicable, 

so we use only the second method.

Let = a2 = a3 = 8, 31 = B2 = 63 = 2 be the parameters of a 2/3

Quorum system. As in Chapter 2 the system reliability function is

3 3
<Hp) = ii p. + £ n p.(1-p. ) •

i=i i = ij/i J 1

Then we get ac = 16.9867 , 6 = 1.9717 .s s

The lower limits for system reliability are

0.90 0.95 0.975

0.7993 0.7608 0.7252
(0.910) (0.953) (0.978)

Let ax = a2 = a3 = 9 , = 6 = 1 be a 2/3 Quorum with high

reliability. In this example we obtain the equivalent system test 

result as ag = 30.24 , 6$ = 0.871 , then the lower limits for 

system reliability are

0.90 0.95 0.975

0.934 0.9137 0.8937
(0.907) (0.956) (0.971)
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3.5 Remarks

As we see the second method is preferable to the first method 

for two reasons. The first reason is that results are more accurate 

than the first method and secondly, we can use it with any structure.

Although no great accuracy can be expected from such a procedure, 

it is quick and potentially useful for series, parallel and complex 

systems. One way of regarding the first procedure is that, by 

inducing the constraints, we are extracting information from the 

component posteriors which is relevant to the system reliability.
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CHAPTER 4

APPROXIMATE BAYESIAN ESTIMATES FOR THE WEIBULL

RELIABILITY FUNCTION AND HAZARD RATE

4.1 Introduction

Suppose that censored life data is available from a Wei bull 

distribution. Using a given prior for the parameters of this 

distribution it is of interest to obtain Bayes' estimates for the 

reliability function and for the hazard rate. Computation of these 

estimates can be difficult and we examine the accuracy of a general 

approximate method due to Lindley (1980). The development of this 

expansion requires the determination of maximum likelihood estimates 

and, in this connection, we considered a widely employed iterative 

procedure for censored Weibull data given by Cohen (1965). However, 

we have chosen to present a new, but equally effective, procedure 

which has the added advantage of reducing the number of terms in 

Lindley's expansion. This is achieved by first transforming to the 

log Weibull (extreme value) distribution and then making use of its 

centre of location.

In Section 2 Lindley's approximate method is described in a 

general context. In Section 3 Cohen's method of maximum likelihood is 

also described. Then, using results from Section 3, we specialise the 

general expansion to obtain approximate Bayes' estimates for the 

Weibull reliability function and for the hazard rate in Section 4.

The accuracy of the expansion is assessed by comparing results
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with exact values obtained using nine point extended Gauss-Laguerre 

quadrature.

4.2 Lindley's Expansion

From Section 1.2 (d) Lindley's expansion, to 0(n 1) is

w(e) exp(L(0))de / v(o) exp(L(e))d0 ~

(4.2.1)

g 3 L A
In the above formula iL. .. = -—------- , evaluated at 0, and

90.90.90.
1 J K

e.
i stands

for (0.-0.) and the element E(0.e'ii 1 .) in the dispersion matrix
V

is

w.
evaluated at 0 and W. = — , V . i w i

v. i
v

Lindley gives an equivalent form for (4.2.1) by writing v(©) as 

exp(p(e)). In (4.2.1) the first term is 0(1) and is the estimate 

obtained on replacing parameters in u(e) by maximum likelihood 

estimates. The second and third terms are both 0(n-1). In our 

applications u(e) will be the reliability function and the hazard rate.

In the next Section we shall calculate the maximum likelihood 

estimates of the parameters of Weibull distribution.
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4.3 Maximum Likelihood Estimation

The iterative procedure given in this Section is an

alternative to Cohen's method and has the virtue that a. .(i/j) is zero, • J

thus reducing the number of terms in Lindley's expansion.

Consider the Weibul1 probability density function in the form

P
f(t) - (p/e) /e , t>O,0>O , P>0. (4.3.1)

The simultaneous variate and parameter transformations to y = £nt,

3 = P 1 , a = P 1£ne yield the log Weibull density

g(y) = B_1exp(z) exp(-exp(z)) , (4.3.2)

where z = (y-a)/3 , -°° < y < °°, -°° < a < °° ,0 > 0 .

Following Fisher (1921a),to solve the problem of finding 

efficient estimators of location and scale parameters, let a,3 

change to a*,3 where a* = a + 3c and c is a value to be 

determined. Then z = (y-a*)/3 + c , —*= — = -3 and
o a o ot

g Z -1
— = -3 (z-c) . when c is the origin which makes the estimators 

3symptotacllyuncorrelated , it is called the "Centre of Location" of 

the distribution. The development will be illustrated for type II 

censored data but the method generalises easily to any data set 

consisting of complete and incomplete lifetimes. Suppose that for 

type II (r-out-of-n) censoring t^p t^p , ... , t^ are the 

ordered complete lives so that there are (n-r) incomplete lives, 

all having the same value t^ . Under the log Weibull model, with
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y. = wt. and z. = (y.-at)/3- + c , the log likelihood is

r r
L(a*,3) = -rw + I z-j " < I e7'1’ + (n-r)eZf} .

i = i i = i

It is convenient to use the simplified notations

r r
S = I z. , Ts = y z?/1 + (n-r)z^eZf , s = 0,1,2,3, . 

i=i i=i

Then

8L
8ct* = (T -r)/B ,8a 0

and

8L
83 (-r(l-c) - SQ + Tx - cTq}/b .

Maximum likelihood estimates of a*, 3(or a,3) are obtained as the

8 L 8 Lsimultaneous solution of — =0 and — = 0. For the iterative 
8a 83

procedure we require the second partial derivatives of the log 

likelihood and, noting that partial differentiation with respect to 

a* and a is the same, we have

= -Vb2>

= tr(1-2c) + 2S0 + c(2-c)T0 J 2(1-c)Tl - T2)/b2 ,

= (r - (1-c )Tq - TJ/B2 .

8a2

82L
832

92L
8 ct 8 3
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Suppose that approximate values «1, 31 for the maximum likelihood 

estimates have been obtained by a graphical or other procedure. Then 

we proceed iteratively as follows:

Determine the value of c = Ci, the origin which makes
Thus,

(4.3.3)

where T and Tx are evaluated using O1, B, . Then, since

a2L
0, we have by Newton-Raphson

a2 = al “ ( AL )/( lit. j

and

(4.3.4)

)/( )
3B " ' 3B 2

1 1
(4.3.5)

In these equations one can conveniently approximate -—r

a2Lthe expected value of —-
3d 21

, 32L .and ------ by
ae 2

-<r(1-c2) + T2}/b|

Equations (4.3.4) and (4.3.5) then become
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and

rtl-cJ+S +cT -Tj
B2 = BJ1------------------------ 2-------2-------} -

r(1-c2) + T.
1 z

Having calculated a2, B2, c is recalculated to give a value of c? 

and the procedure is repeated until the desired accuracy is achieved.

A random sample of size jg, generated from a Weibull 

distribution (4.3.1), with p = 2 and e = 4, gave the ordered failure 

times:

0.2127 , 0.3423 , 0.4240 , 0.6095 , 1.0159 ,

1.1441 , 1.3933 , 1.4006 , 1.6639 , 1.7492 .

The first case studied treats the data as censored at the failure

time 1.0159. Thus r = 5 and n = 10. The second case censors the

data at the failure time 1.3933, i.e. r = 7 and n = 10. For the 

third case we use the complete sample so that r = n = 10. For the 

censored data the maximum likelihood estimates are a = 0.251781 

B = 0.684401, or P = 1.1848201 and e = 1.3475865, for r = 5.

For r = 7, a = 0.22833413 ,B = 0.65612651, or P = 1.5240963 

and e = 1.4162523 .

Also for the complete sample a = 0.115197 and B = 0.51995 , 

or P = 1.9232619 and 0 = 1.2480146. In these cases this accuracy 

was achieved after five iterations using starting values a = 0.15, 

Bx = 0.80, which were obtained from a hazard plot.

Another random sample of size 20 generated from the same
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distribution with the same parameters, gave the first 10 ordered 

failure times:

0.3428 , 0.4495 , 1.2237 1.2386 , 1.2851

1.2898 , 1.3088 , 1.517 5 1.6821 , 1.6824

In this case we study only the censored data when r = 10 and

to see the results when the sample size is increased. Now

a = 0.68367441 and B = 0.38809799, or P = 2.5766688 and

0 = 5.8217594.

In what follows we associate the subscript 1 with a and subscript

2 with B. The third partial derivatives evaluated at a,3 are 

required and these are

L = r/B3 , L = 2r/B3 , L = (T - r?)/B3
111 112 122 2

and

L222 = {2r(l-c)(2+2c-c2) + 3(1-c )T2 + T^/B3 .

4.4 Estimation of the Weibul 1 Reliability Function and Hazard 

Rate

4.4.1 Prior Distribution

Working with formula (4.3.2) the Bayesian uses a 

prior which expresses his beliefs about the parameters a and B but 

here, largely for convenience in illustrating the development of the 

expansion and also for the computation of exact values, we use 

Jeffrey's (1961) prior. This prior is proportional to the square 

root of the determinant of I, the information matrix. Since z has a



distribution which is parameter free we see by inspecting the second 

partial derivatives of the log likelihood, given in the previous 

Section, that

I ( oc, 3 ) I = - E

9?logg(y.) 
3a2

a21ogq(v)
3ot 3 3

s2log g(y)
3a3(3

92iogg(y)
332

1/(32 0

0 (1-C?) + E(TJ
B2

( 1 -C2 ) 4- 1 (2 )

where ^(2) and its derivatives are the values of di-gamma and related 

functions. Then we take v(«,B)« A II = b'2. Sinha (1983) has also

considered this problem, but only for uncensored data, and he did not 

transform from the Weibull (4.3.1) to the log Weibull (4.3.2). He 

also used Jeffreys' prior for which v(e,P) = P 10 \ Because of the 

invariance of Jeffreys' prior his numerical results would be 

exactly the same as ours for the same data sets. The disadvantage of 

using (4.3.1) directly is that there are several more terms in the

resulting expansion due to the fact that i / j .
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4.4.2 The Reliability Function

At time t the reliability function for the Weibull

_ p
distribution, as specified in (4;3.1), is F(t|P,e) = exp(-t /e). The

reliability function of the log Weibull distribution, from (4.3.2), is

G(y|a,B) = exp[-exp((y-a)/B)] and, when y = £nt, B = P_1 , a = P-1£n9,

we have U(y.|a,B) = F(t| P,e) .

If we choose u in (4.2. |) as the reliability function, then from

— 2
(4.3.2) u(cc,B) = exp(-exp(z)) and v(a,B) = B > the prior function.

Then w(a,B) = u(a,B)v(cc,B) = B exp(-exp(z)). To use the formula

(4.2./) to evaluate the Bayes estimator of FYt/p.,0.)^ we require the

derivatives of w(a,B) and v(«,b) as

Wi = e Z/B , w2 = {(z-c)eZ - 2T/B ,

wn = eZ(ez-1)/B2 , w12 = -ez(1 + (z-c))/B2 ,

w22 = {6(1 -(z-c)) + (z-c2)eZ(eZ-1)}/B2

v = v = 0 i ii -2/B and v22 6/B2

In the determination of a ,B the final value of c (the Centre of

Location) is chosen so that

chosen so that E{L12(ci ,b)} = 0. If

. . = 0
a.»B

it is so

It can also be

chosen then

, v2

i 2 (ot»B)

= -Cf-nJ and °22 = -E<L22> • a,, is easily obtained and is ii J
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B2/r, but o22 requires the evaluation of di-gamma and its related

functions. However, since the argument is asymptotic, expectations 

may be replaced by "observed" values in the terms of order n 1 in the

-31 expansion and the order of terms neglected will remain at n .

This means that we can write o ~ o = B2/r and
11 11

°22 ~ a2 2 = B2(r(1-c2) + T,}"1 , where T2 is evaluated at a and B .

For the data given in Section (4.3), for the first case, when

r = 5 and n = 10, we have a = 0.251781 , 6 = 0.684401 and

c = -0.524308. The second case, when r = 7 and n = 10, we get

a = 0.22833413, B = 0.65612651 and c = -0.10809403 . For r = n = 10,

a = 0.115197, B = 0.51995 and c = 0.37729563. Finally, when r = 10

and n = 20, a = 0.68367441 , B = 0.38809799 and c = -0.5613782.

Tables (4.1) - (4.4) give exact and approximate (Lindley) results for 

several values of t together with the leading term in the expansion 

(M.L.) for the above four cases. Approximate and (M.L.) results are 

obtained from formula (4.2.|) and the exact result is obtained using 

the formula

(B’r_1exp( Iyi/B)/( £exp(y./b) + (n-r)exp(y /b) + exp(t/B))r)dB 
i = i  1 i=io

o

r r
exp( [y-/B)/( £exp(y./B) 

i=i i=i
+ (n-r)exp(yr/B))r)dB

Using nin? Point extended Gauss-LaSuerre quadrature



BAYES' ESTIMATES FOR THE WEIBULL RELIABILITY FUNCTION

Table 4.1 Censored (5,10)

t M. L. Lindley Exact

0.01 0.9992 0.9962 0.9930

0.05 0.9913 0.9798 0.9765

0.10 0.9763 0.9567 0.9570

0.50 0.7777 0.7754 0.7762

1.00 0.5005 0.5310 0.5287

1.50 0.2860 0.3443 0.3386

2.00 0.1487 0.2402 0.2256

2.50 0.0713 0.1842 0.1607

3.00 0.0319 0.1422 0.1214

Table 4.2 Censored (7,10)

t M. L. Lindley Exact

0.01 0.99937 0.99752 0.99647

0.05 0.99268 0.98337 0.98499

0.10 0.9791 0.96327 0.96965

0.50 0.78231 0.79098 0.79351

1.00 0.49357 0.51596 0.56805

1.50 0.26984 0.31049 0.36044

2.00 0.13123 0.18584 0.22318

2.50 0.05765 0.11763 0.14345

3.00 0.02311 0.07612 0.09746
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Table 4.3 Uncensored (10,10)

t M. L. Lindley Exact

0.01 0.9999 0.9995 0.9989

0.05 0.9975 0.9938 0.9927

0.10 0.9905 0.9820 0.9804

0.50 0.8096 0.7940 0.7955

1.00 0.4488 0.4666 0.4655

1.50 0.1749 0.2056 0.2050

2.00 0.0479 0.0782 0.0767

2.50 0.0093 0.0282 0.0316

3.00 0.0013 0.0084 0.0142

Table 4.4 Censored (10,20)

t M. L. Lindley Exact

0.01 0.999999 0.999989 0.999953

0.05 0.999924 0.999649 0.999581

0.10 0.999545 0.998499 0.998745

0.50 0.971617 0.960731 0.973052

1.00 0.842173 0.836033 0.832931

1.50 0.613677 0.622234 0.657098

2.00 0.358901 0.380147 0.394998

2.50 0.161867 0.205521 0.198639

3.00 0.054317 0.114866 0.097522
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4.4.3 The Hazard Rate

The hazard rate for the Weibull distribution (4.3.1) is 

P-1h(t.|p,o) = pt /0 and for the log Weibull distribution (4.3.2) it 

is h(y|a?3) = 6 iexp((y-«)/e). Under the variate and parameter 

transformations given in Section (4.3) the relationship between the 

two functions is

h(t|P,9) = eyh(yjajp) = t_1h(y|c^B) .

We approximate the log Weibull hazard rate and then convert to 

the Weibull hazard rate using the above relationship. As before 

we take the Jeffreys' prior and use v(oc,£) = 3~ . Then w(a.,3) = B~3'eZ 

from which we obtain w.^ = -3 1 , wT1 = 3 2 , w2 = -3_1{3+(z-c)} and 

w22 = 3 2{ 12+8(z-c)+(z-c)2} .

Tables (4.5) - (4.8) give the exact and approximate (Lindley) 

values of the hazard rate for the same values of t used in tables 

(4.1) - (4.5) and for the same data for the type II censored data 

and complete sample. As before we use (4.2.1) to get approximate 

and (M. L.) results and the formula

oo r
r I(e"r"2exp[( ^yi+y)/31/Ar)de

o i=1
______________________________  , y = £nt and

-°° r
t l(e’r-2exp( ^yi/e)/Ar)d0

i=i

A = [exp(y-/3) + (n-r )exp(yf/3) , to get the exact results.
i=i
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BAYES' ESTIMATES FOR THE WEIBULL HAZARD RATE

Table 4.5 Censored (5,10)

t M. L. Lindley Exact

0.01 0.1210 0.4246 0.4936

0.05 0.2541 0.4539 0.4155

0.10 0.3498 0.4632 0.4296

0.50 0.7347 0.6613 0.6682

1.00 1.0114 1.0086 1.0082

1.50 1.2193 1.3805 1.3994

2.00 1.3923 1.7583 1.8537

2.50 1.5432 2.1360 2.3787

3.00 1.6785 2.5116 2.9923

Table 4.6 Censored (7,10)

t M. L. Lindley Exact

0.01 0.09631 0.30121 0.32929

0.05 0.22388 0.39221 0.37929

0.10 0.32194 0.43897 0.41873

0.50 0.74836 0.70005 0.70276

1.00 1.07616 1.02787 1.02947

1.50 1.33096 1.36234 1.36192

2.00 1.54755 1.69865 1.71016

2.50 1.73954 2.. 03467 2.07844

3.00 1.91397 2.36939 2.46692



Table 4.7 Uncensored (10,10)

t M. L. Lindley Exact

0.01 0.0219 0.0776 0.1241

0.05 0.0970 0.1936 0.2041

0.10 0.1839 0.2840 0.2805

0.50 0.8126 0.8001 0.7984

1.00 1.5411 1.4705 1.4733

1.50 2.2408 2.2303 2.2285

2.00 2.9225 3.0710 3.0728

2.50 3.5910 3.9822 4.0106

3.00 4.2494 4.9555 5.0451

Table 4.8 Censored (10,20)

t M. L. Lindley Exact

0.01 0.000311 0.002339 0.012113

0.05 0.003933 0.014896 0.02345

0.10 0.011731 0.031141 0.036251

0.50 0.148382 0.167881 0.164154

1.00 0.442593 0.421436 0.422521

1.50 0.838768 0.822357 0.822465

2.00 1.320167 1.399429 1.40246

2.50 1.876826 2.169305 2.208216

3.00 2.501881 3.14285 3.293772
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4.5 Remarks

The accuracy of approximation, in general, is quite good for 

the reliability function and for the hazard rate. It must be 

remembered that the method is asymptotic and that the sample sizes are 

smal1.

As we see from the results in the above tables, we find that when 

the sample size increases the accuracy of approximation is increased 

too. Also the accuracy of approximation is increased as the level 

of censoring is decreased.
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CHAPTER 5

TOLERANCE LIMITS FOR TRUNCATED NORMAL DISTRIBUTIONS

5.1 Introduction

This Chapter deals with certain aspects of the general 

problem of errors and tolerance in the design and testing of equipment. 

Suppose that components have been assembled in series to made a piece 

of equipment. It is assumed that this piece of equipment is required 

to operate within certain well defined limits (tolerances). Suppose 

that each component error is normally distributed with known tolerance. 

It follows that the distribution for the component errors is a 

truncated normal distribution.

In the following sections we shall describe the general 

procedure for obtaining the Saddlepoint expansion, Edgeworth 

expansion and Cornish and Fisher expansion for percentage point for 

the problem of a series system with truncated normal components.

5.2 Cumulants of the Truncated Normal Distribution

Let x be a truncated normal variate with probability

density function

U-Xo < x < p+Xa, (5.2.1)
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where

A(A ) = 4>(A ) - $(-A) *

Then the moment generating function is

M (e) = x
U-Acr

U+Acj

1 oey -i( ------ e J e a 
/2tto

fy/AW

eM9 + 9 2cr2/2
|J+Aa

f
—1—e
/2ircr

|J-Aa

-Wy-p-9a2
' o )dx/A(A) -

Let
z = X~U~9p2

a >

then

pe+e2a2/2 A-9a 2

M (e)
e r4- e'z /2^X A(X) /2tt

-A_9cr

eU9+92cr2/2A(AS9)/A(A) (5.2.2)
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where

A(x,0) = $(x-0o) - 4(-x-0o) .

The cumulant generating function is

K (e) = po + e2o2/2 + logA(x,e) - log A (a) , X

and the first two derivatives are

(5.2.3)

a^(e)

30
0

A'(x)
A(x)

U

o

and

a2K (0)x
302

2 + A"(x) _ A'2(x)
A(x) A2(x)

(5.2.4)

0=0

As we see from before,

A(x,0) = $(X-0cr) - <H-X-0cr) .

Then

A'(X,0) = -o{(j)(x-0o) - 4>(-X-0o)} ,

A"(X,0) = cr2{<f ’ (x-6a) - (j)' (-X-0a)} ,

A(r)(x,e) - (-1)V{*('’-l)(A_0o) -/r-i){.x_0a)} ;
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and

/r“1\x-eo) = (-1)r_1 Hr_ i (A-Oo )4> (A-Oo) ,

(/r"1\-X-ecr) = (-1 )1 H^_i (-X-0o)(j)(-X-0O) ,

where H (x) is Hermite Polynomial of degree r.

A^r\x,0) = -or[Hr_i(x-0o)f(x-0o)-Hr_i(-X-0o)(j)(-X-0u)] .

When 0 = o, we get

A<r)(A) = -ar[Hr_i (XHU)-Hr i(-Xh(-A)]

-2orHr_1(x)<t.(A)

0

when r is even ,

From (5.2.4) and (5.2.5) we get

<1(0) = p ,

(0) = a2 -
A(X)

= a2(1 - )
A(x)

= a2n(A), say .

(5.2.5)
when r is odd .

(5.2.6)
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Interest is in

n
£x. where x1S x2, ...» x^ are independent truncated normals. 

i=i

Consider the standardised sum

1 = 1X - -----------------— •

/ I0?n(Ai)
i = i

The cumulant generating function of x is

(e+u)2
^(9+U) = ■ ■ „ ■ ■

n
+ J logA (A., 

i =1

oi(e+u)

<Za|n(x.)

n
- y log A(X.) . (5.2.7)
i =i

Let

Ai = A<s
ci-j (o+u)

/ J>-n(x.) 
i = i

s'* K (e+u)
x

and = -------------
ae1'

e = o

Then, the first four derivatives of 
n

(5.2.7) are

1 = 1

+
i = iA.

1
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K2

n

i=l / i=l

n

i =1

A'?
- — ] , 

A.2i

n
s = H

i=i

h i

Ai
+ 5

Ai

and finally

s
n

-.1 [
1 -1

A?4’
1

Ai

4A'.A'.n
1 1

Ai

3A!12
1

A?
1

■¥

A.3
1

6A£3

A.4
1

(5.2.8)

In the above

a- (u+e)
a . = A(xi, -------------  )

/Ea^nfx^

a.(u+e)
= $ (X .j - -------------

/EalnCXj)

a • (u+e)
) - *(-x.- —-----------

/Za?n(x.)
)

A! = ------ ------- G(x'.) - *(-x' )) ,
in ii

/Za%(x.)
i = i1 1

A!' = -----(HjX.Mx’p - Hj-x'-M-/.)) ,
I°2n(x.)

i = i
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where

and

From (5.

(-1)V

Wn(xi))r/2

Hr(A’ = Hr(Ai'^

H.t-x'p = Hr(- Ai

$ (X^) - 4>(X j -

(K-x'P = 4>(-Ai

.8)

K
1

and (5.2.9)
n

= i~

H»(X.) 
i=i

k 2

n
As

i=i

uoi

(H^fx'^fx'J - )*(-/.))

--------------- )
/"a?n(X.)
1=n i

U°i

/£o?n(x.) 
i-i1

uoi
)

)

5

) 5

5

(5.2.9)

we get

G(x<) - ♦(-x'p)n-J
i = i/Za^n(x.j )(il(X-j) - $(-X!)J

o.
1

n
- I

o?
1

i=iEo?n(xi)
{

(H1(x.)(j)(x,i)-H (-X.M-x'p)
*(-X'.j)*(x'.) -

- ( ------------------ )2 } .

- 82 -



n a] H2 (x\ J^tx^.) - H2 (-Xp<j)(-X^ )

K 3 = - I --------------- 37 ’ { ( -------------------------------------- )
i i $ k a .; - * k - x .j)

3(+
(4>(a',) - <t>(-A'.) )(Hx(x'. )*(/. ) - H (-A'. M-A.))

1 I I I x I I )

♦ (x'p - 0(-A'i )
2(

^(a/)
, )3 J

- *(-Ai )

o'!
1

h3(a1 )*(/.) - h3(-a-\)*(-%■.)
{(----1±1M

(*(/.) - *(-a,.))(h (az.)*(/.) - H (-a’.M-a"J) yj I • I I I I

G(A.) - $(AZ. ))2

- 3(
H.(A; )4>(a'.) - H1(-a '.)<|>(-X/. )

1 1______ 1________ 1________ 1 ) 2

♦(x'.) - *(-x')

+ 12
Gt/.) - 4>(-a'\))2(Hi (aG)<f)(Azi) - Hj-ZJ^t-x/))

(4/p - oC-a'.))3

- 6(
*(A'.) - *(-A'.)

1 1 )" } . (5.2.10)

Then, the standard cumulants are

4>(A'. ) - {-(-X'p

*( ~ $( - A^.)

£x(x) 0 £ (x) = {
2
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£q(x) = K3/ %

s

\(X) = K1(/<2 '

Suppose that all the sample variates have the same parameters,

i.e. u1 = p2 = ... = p , = u2

Then

a , and x = X2 A .

(H2(x)<|>(x') - H2(-X)*(-x'))

$(a‘) - t'-x')

G(a ) - ♦ (-x'))(Hi (a')<i>(x ) - Hj-xhf-x))

U(x) - *(-x))2

+ 2 ( iXll ! )2 j
$(x) - $(-x)

A + H^Mx1) - Hj-x'M-x) _ ^(/) . */?

$(a)->(-x ) $(x ) - $(-x)

Hg (A)(/)(x’)

*(x )

M-X^t-X*))

$ (- x')

((4>(xz) - 4>(-A'))(H2(x)(j)(x) - H2(-X%(-x))

U(x) - ^-x'))2

- 3(
HjxMx4) - Hj-x’M-x)

<d(x ) - #(-x)
2

UU) - <j)(-x,))2(H1(x‘)(j)(x) - H (-x'M-x')) 
+ 12( -------------------------- i-----------------1--------------- )

U(x') - ^-x'))3
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6( ^A'.Z ~ Pj /[1 +
(A' ) - (-A ’)

Hjx'Mx*) - Hj-x'M-x’)

4>(A*) - <f>(-A' )

( ) 2 J 2

4>(A') - 4>(-A*)
(5.2.11)

We can now substitute into the general results of Section 1.2 (c), 

we can get the approximation values to any degree of accuracy.
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5.3 Numerical Example

Suppose that we have a system of two components connected 

together in series. Without loss of generality, let each component 

have a normal distribution with zero mean and unit variance.

Then x = /n x//n, and for 7 = 0.5, we calculate the Saddlepoint, 

Edgeworth and Cornish-Fisher expansions for some values of A.

Table 5.1 Distribution Function Approximations

A CFI* Edgeworth Saddlepoint Exact**

0.674498

1.2815602

1.6448745

1.9599645

2.5779564

0.02983

0.14714

0.18965

0.21222

0.2331

0.02982

0.14709

0.18962

0.21219

0.23306

0.0014

0.13474

0.18472

0.21136

0.23253

0.00356

0.11648

0.18509

0.20912

0.23216

* The values under CFI have been obtained by inverting the

Cornish and Fisher expansion.

** The exact values have been obtained by generating 10,000 values

of the distribution of x by Monte Carlo methods.

5.4 Remarks

We find from the results in the above table that Saddlepoint 

expansions are more accurate than inverted Cornish and Fisher and 

Edgeworth expansions especially in the tails.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Conclusions

Quite generally, asymptotic expansions provide good 

approximations both for percentage points and for the distribution 

function. It will be noted that, in Chapter 2 and Chapter 5, the 

saddlepoint expansion (m) gives best results for the distribution 

function, especially in the tails, but it is only available for 

series and parallel systems.

Edgeworth (m) and (n) are also good except in the extreme tails 

and Edgeworth (n) can be used for all coherent systems. Also 

Cornish and Fisher (m) and (n) approximations for percentage points 

are very good. CF(n)can be used for general structures.

Although the sample is small and the degree of censoring is 

high, we find in Chapter 4 that the accuracy of Lindley's 

approximation is quite good for the reliability function and for the 

hazard rate. We see that as the sample size is increased and/or the 

degree of censoring is decreased the accuracy of approximation is 

increased.

In Chapter 3, simple approximate methods give better results 

than we expected. As we see the methods are quick and 

potentially useful for many structures, especially the second method 

which gives more accurate results and can be used for general
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structures.

Finally we are testing the accuracy of approximations against the 

exact results and results generated by Monte Carlo simulation when 

the exact are intractable.

6.2 Extended Research

As we see before all approximations, including Lindley's 

expansion, are calculated to 0(n 2) and 0(m T) only. These 

approximations could usefully be extended to inverse powers more than 

0(n T) and 0(m T).

The saddlepoint (n) method can in principle be derived as the 

cumulant generating function can be found. This would be worthwhile 

because saddlepoint (n) is more general than saddlepoint (m). Also 

saddlepoint (m) can be generalised to the multivariate case.

The simplification obtained by using the Centre of Location in 

Chapter 4 is apparent. It would be worthwhile investigating both 

Bayesian and classical uses for other location scale distributions.
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APPENDICES

APPE_NDI_X_I

MOMENTS AND CUMULANTS OF SYSTEM RELIABILITY IN THE GENERAL

CASE

For each component we consider an estimator T. of some parameter

ei which is related to the P osterior distribution of the reiiabi I it y • The 

moments take the following forms where n^ is the asymptotic variable. The 

asymptotic variable has a role akin to a sample size.

^T. - e.) = u./ni + 0(n.'2),

^(Ti - s2)2= v./n. + v.*/n.2 + 0(ni'3),

y^.-ep3 = w./n.2 + 0(n.~3),

^(Ti - ep4 = 3v.2/n.j2 + z./n.3 + Ofn.'1*),

^(T. - ap5 = (lOvp. - 15v.u.2)/n.3 + Otn.’p,

E^Ti - ep6 = 15vp/n.3 + Ofn.'1*).

There are two points here. The first is that, if we can frame our 

parameters and estimators so that u^ = 0, the algebra is much simplified. 

The second is that T. may not be directly the reliability of the i^ 

component. In general, therefore, we write system reliability as

R = ^(Rj, R2j • • •> Rm) - ^(h1(T1), h2(T2), . . ., ^(T^)}.
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Corresponding to this we may write parameters

P ^(Pj»P2»* • • (^2)»• • •’ *

Restricting attention to beta posteriors for component reliabilities and 

to gamma posteriors for component exponential failure rates we have the 

following.

Beta Posteriors

Let the reliability of the i^*1 component have a $(«., 3^) posterior.

Thus the p.d.f. is

f(rp = r/i’1 (1 -

and we may take f(T_.) = = R., f(e_.) = = p .,

where p^ = E(Rp = + 3^). With asymptotic variable n^ = ch + 3.

we then have u^ = 0, v^ = p^(l-p-), v^* = -p^fl-p^), w^ = 2p^ (l-p^ )(1-2P )

and z. = 6pi(l-pi)(l-6pi + 6Pi2).

Exponential Failure Rates

Let T. = A., the exponential failure rate of the component, 

have a r(n.p ij) posterior.

ni_1 "TiAi
ie, f(xp = T^T.xp e /r(ni) .
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Let 0. = ({>.. = n^/Tj be the parameter and let n^ = . Then}as shown in

Chapter 2 ,?We have

ui = 0, v. = <f>i, v.* = 0, w. = 2(f)., z. = 6(f)..

also h.(T.) = h.(A.) = e A_* and h.(e.) = h.(<|).) = e . Note that, 

in this case, the transformation R. = e Ai would lead to the negative log 

gamma distribution for component reliability but, for the moment, we prefer 

to work the general case in terms of the above.

In the following development of moments and cumulants we use the 

general notation (T,0) for systems and (T.,6^), i = 1,2,. . ., m, for 

components, with the appropriate interpretations for beta and gamma 

variates.

Consider the multivariate Taylor's series expansion of T about

0 given by

where 9<p
V

2
9 ip
90.90 f* J

, etc.

Let n = min ni so that n]. = nXp x-> 1 ,i = 1,2,

Then to the required orders in inverse powers of n we have

S = Mx = E(T-e) = + 0(n-2)

= Kxl/n + 0(n"2).
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M3 = E(T-e)3 = n~2[£- w^/x-

+ I <3^ v^^/x- + vivj'Mjj/xiAj

+ 2 1 ] + °(n 3)

= n-2^^’ /x, +|(Ii v.^/x.)^ v^i/xp

+ 3 yj v.Vj^^j/XiXj}

+ 0(n"3),

using the result £ £ (ij) = Ijlj(ij) " Ij(ii)-
i/j

<3 = M3 - 3M2Mt + 2MX3

= n*2{^Wi.^/Xi + 3 ViVj^^ij/XiXj}

+ 0(n~3)

2 _ 3
= <32/n + 0(n ).

The algebra required for the first two terms in the expansions of <2 

and the leading term in the expansion of K(+ is extensive and some of 

the intermediate stages are reported following.
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- £6 -



- V6 -

fu/^f^U/tA+^A) • -U/^f-U/iA + ^A) 2 £ +

•v?'2'V + -vXA -2 £ z.u ■

(0-1)3 = "w
tl

( u)0 + u/zz> + U/IZ> =
' E “ ' Z

(E_u)0+ {^Y/-Wa^ +



+ 4 yy vivjvk*i*j',,ij','kk/Aixjxk

+ s yy vivjvk*i*j'‘,ik,(’jk/AiAjAk}]

+ 0(n U).

On using the results £ £ (i,j) = £-£-(i •□) - L(i,i)
i/j J
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- IiXj O.i.j) ' £iVi’j,i) '

we obtain

\ = n’2 3(I1vi^/xi)2

+ n"’{Iizi^/xi’ + 6(£. v.^/xp^ v^/xp

- 6 £. viV|^/x’

+ 2(^. w^./x-H^ v^/xp + 6(^. v1-ip?/xi)(yi w^^/x-)

* 12 w.v^^j^.j/x^xj

+ 4 £.yk v^v^j^jk/XiXjXk

* 6 (?. v^/xp (ypj vivj*i*ijj/xixj)

+ 3/2 (li Vi/Xi)(£i vi*ii/xi)2

+ 3(ii Vi*i/Ai)(^j vivj*ij/XiAj)

+ 6(Si VjWiA’*?

+ 12 VjMi^ikpWpk’

+ 0(n-1*).
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Finally k , = M, - 3M, - 4M M + 12M M* - 6M"
J 4 *+ 2 31 21 1

= n’3{ Ii z^/x! - 6£. v-vf^/x?

* 4^^ ViVj Vk*i*j*k*ijk/AiAjXk

+ ^UjlkVAMj' *1k*jk/xix?k }

+ 0(n'u)

= K^3/n3 + Otn'11).

We now have the cumulant coefficients k ; <11S k32; k22, 

for use in the asymptotic expansions.
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Appendix II

The Dirichlet distribution and the product of Independent Beta Variates

The probability density function (p.d.f.) of the Dirichlet distribution is

r(£)
r0 .. u

k
where rn + V u. = 1 and 

0 1=1 1

k
- I

i = 1
£ = £g £i ’

The marginal distributions of the ui are beta distributions with p.d.f.'s

W = r(t)
r( ) r( )

V1 
ui

£-£•-1
(1-ui) , (Hu. d.

£i“1
ui

£-£•-1
/B(£i,

The marginal distribution for Rg has p.d.f.

f(/r(p ■

Consider the transformations

U1 = 1-Rp U2 = R1(1-R2), Ui = r ^2 ... R^a-Rih ...

Then Rg =
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The Jacobian for these transformations is

J = (-1)k r/'1 thus the joint distribution of

R = (Rp R2 ...» Rk) has p.d.f.

f(r) =

Since f(r)

the random

rU)
T

r(£_.)
i=0

r(«.)
TTk

(nJ
i=0

k

k

i = 1 ri

k

i=1

r,.

k

£0-! -rrk

rk

J=1+1

r1r2***ri-1
1 " 1(1-rpj 1 I J|

, lk - 0. 
j=k+1 J

vk

ri
£•-1L . £.-1

j=i + 1 J (1-rp 1

B(«n+i »
u j=i+1 J

f i (r.j), where
i=1

5 i 1,2, ..., k,
s.)

variables Rp R^, ..., R^ have independent beta distributions with

inter-related parameters.

The distribution of Ro = R.j, given previously, is beta with p.d.f.
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0 s r s 1 .o

This is the result called upon in Chapter 3.
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