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ABSTRACT

This thesis examines the integrated control of a steel hot plate 

system consisting of a reheat furnace and a controlled reversing plate 

mill. Alternative multilevel techniques are proposed for the 
optimal control of the system where the objective is to minimise 
fuel consumption in the reheat furnace and minimise power consumption 

in the rolling mill. The alternative schemes are analysed, paying 

particular attention to their practical utility, resulting in a 

recommended feasible scheme based on the interaction prediction 
principle in which intermediate results from the iterative optimisa
tion can be applied directly to the plant. In this scheme the tempera

ture of the slab leaving the furnace is considered as an interaction 
variable and is under the direct control of the supremal coordinator. 
Infimal unit problems, which comprise the optimisation of the reheat 
furnace and rolling mill, respectively, are investigated in detail 

and simulation results are presented to illustrate the proposed 

control schemes.

The task of the reheat furnace subsystem is, with minimum fuel 

consumption, to heat the moving slabs to a defined exit temperature 
which is specified by the supremal coordinator. Control is performed 

in pre-heat, heat and soaking zones, taking account of interaction 

effects between the latter two zones. At a given push rate, steady 

state optimisation is performed using orthogonal search taking account 
of soaking zone entry gradient constraints.

The reversing plate mill subproblem of providing final plates of 

steel of given thickness, within a desired temperature range, at 

maximum throughput and minimum utilisation of energy is solved by 

dynamic programming with the constraint that there must be an odd 
number of passes during slab reduction.

In this thesis, emphasis is given to the practical on-line considera
tions of applying the multilevel optimisation scheme, including the 

effects of quantization. As well as presenting simulated results, the 
thesis describes a semi-pilot-scale plant investigation where the re

heat furnace is represented by an electrically-heated travelling load 

oven and the rolling mill is simulated within a process control 
computer.
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1.0 INTRODUCTION

Modern technology and economic reasons, in a world increasingly 

aware of its limited resources, have led to more and more integrated 

complex industrial systems, e.g. steelworks, petrochemical complexes, 

etc. These large-scale systems become very difficult and sometimes 

even impossible to control in a satisfactory way. This situation has 
led to ideas concerning the concept of "work—sharing" in management 
and control systems. The management and control problems can be 

solved in this way, and small improvements in productivity can lead 

to significant economic and social effects in the environment of large 

industrial complexes (Mesarovic et al, 1970).

The traditional concept of control, in application to industrial 
process sytems, concerns the problem of how to vary certain inputs to 

the system so that (a) designated output variables are held at fixed 

values or made to follow predetermined time trajectories, or (b) the 
state vector of the system is transferred (optimally) from some 

initial value to a specified final value. However, there has been an 
increasing tendency to consider control from a broader and more general 

perspective. Strong contributing factors to this trend are

(i) the increasing application of computers in process 
control, providing the hardware and software means 

for implementing more sophisticated control concepts, 
and

(ii) the growing awareness and acceptance of a "systems 

approach" in the design and control of industrial 
process systems.

The objective of integrated systems control, in a very general 

sense, is to achieve the most efficient utilization of resources (e.g. 
materials, energy, the environment, labour, capital, etc.) in the 

production of goods. These goods must satisfy quality specifications 

and be consistent with goals and constraints that may be imposed by 
society. Thus, integrated systems control is concerned with the broad 

spectrum of decision-making and control functions (e.g. process control, 
operations control, scheduling, planning, etc.) that play a role in the 

effective operation of the system with respect to its production goals.

The performance of the processing system depends upon a variety 
of factors including (Lefkowitz et al, 1976):
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(a) production specification and process design

(b) the nature of resources available and environmental

constraints

(c) the choice of processing conditions, allocation of
resources, scheduling of operating sequences, etc.

Thus, two phases of system evolution with respect to information pro
cessing and decision-making functions can be distinguished, i.e. the 

design phase and the operating phase.

The Design Phase

This phase concerns implementation of overall system objectives 

through the design of the production means. There is a variety of dis

turbances that affect the design process and hence can stimulate con

sideration of a design modification or even re-initiation of the design 
process. Some of these disturbances include major changes in product 
specifications or quality requirements, technological developments with 

respect to a new product or a new method of production, etc.

Decisions at the design phase tend to be strongly conditioned by 

subjective and, sometimes, non-quantifiable factors. Traditionally, 
the human designer plays a dominant role. However, methods and tech
niques of computer-aided design are becoming increasingly important 

in coupling the capabilities of the computer (i.e. rapid communication, 

handling of large data bases, fast-time simulation of the consequences 

of alternative policies, etc.) with the judgement, experience and 
intuitive aspects of the human designer.

The Operating Phase

Here, the decisions and control actions are chosen to determine 

operating conditions, throughput rates, sequencing of operations, etc., 

so that product specifications are satisfied along with the constraints 

imposed by environmental interactions, technological factors, etc. 

Further considerations may then include the optimization of performance 
with respect to utilization of resources, production efficiency, etc.

The decision-making and control actions are carried out in a 

system that is evolving in real time and, hence, must respond to the 
effects of:

(a) variations in input conditions (e.g. changes in product 

demand, order sequence, raw material composition)

2



(b) time-varying characteristics of processing units

(c) changes in objective function owing to economic factors,

environmental constraints, etc.

(d) errors and inadequacies in the models used in deter

mining the decisions and control actions.

Furthermore, the decision-making processes cover time-scales 

ranging from very short span control operations to long-range planning 

processes.

In general, the boundary separating the design and operating 

phases, in the evolution of a system, may not be sharp and it is quite 

feasible that aspects of the long-range planning associated with the 

operation of the system may well include aspects of the design phase, 

i.e. replacement of a production unit or modification of a process 

design.

The Hierarchical Control Approach

Due to the fact that industrial systems are characteristically 

large, complex and, in most cases, time-varying, the solution of the 
overall problem, considered above, is extremely difficult, if not 
unfeasible, with existing analytical and computational capabilities. 

Consequently, current practice tends towards empirical and suboptimal 

solutions to locally defined problems. Due to rising energy costs, 

labour costs, etc., attempts are being made, albeit in an ad hoc pro
cedure, for the integration and coordination of the locally defined 
subproblems.

The multilevel and multilayer hierarchical structuring of the 
decision-making and control system (Mesarovic et al, 1970) is con

sidered as the basic approach to handling the overall problem. The 
approach embodies the following features, viz:

(1) Based on local criteria and on local information sets, the 

complex system is decomposed into a number of coupled sub

systems. Each of the subsystems has its own set of decision
making and control functions. Due to subsystem interactions 

and because of overall system objectives and constraints, it 

is necessary to coordinate the objectives (i.e. goals) of the 
local controllers.

- 3 -



(2) The overall system decision-making and control problem is de
composed into various subproblems, each of which has its own 

objective function, model, constraint set, etc. Integration 

of the subproblems is necessary to ensure satisfaction of the 

objectives and constraints associated with the overall 

system, since the subproblems essentially interact, e.g. the 

solution of a planning problem can affect the scheduling 

problem.

(3) In consideration of the costs associated with model develop
ment, on-line computations, etc., the complex system relation

ships are approximated by simplified and aggregated models 

which correspond to each stage and level of decision-making. 
The incorporation of means for on-line updating of the models 

through feedback of relevant data is an essential feature 

of the information system. This is necessary since industrial 
systems are characteristically time-varying (i.e.ageing of 

components, etc.), subject to a wide range of continually 
varying inputs, and are also subject to equipment breakdowns, 
etc.

Most of the above underlying concepts and terminology have their 
origins in the pioneering work of Mesarovic and his group (Mesarovic 

et al, 1970; Mesarovic, 1970) who developed a conceptual and analytical 

foundation for hierarchical structures and multilevel coordination 

theory. Some workers (Lefkowitz et al, 1976; Singh and Titli, 1978b; 

Findeisen et al, 1978) have made modifications to the basic theory. 

For example, more explicit concern for on-line implementation and the 

effects of disturbance inputs, and the focussing on achieving feasible, 

suboptimal performance objectives as opposed to a "mathematical" 
optimum, etc.

The bulk of literature in the field, with the possible exception 

of Findeisen et al, 1980, is oriented to decomposition and multilevel 

coordination theory and its application to optimization and mathematical 

programming problems of various kinds. Lefkowitz (1966) first described 

the essential features of the functional multilayer hierarchy. Recent 
technological advances in microprocessors and the increased involve

ment of control engineers have given rise to issues concerning de
centralized decision-making, distributed data bases and computing power 

and hierarchical control. There is a powerful trend towards on-line 
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optimization, non-linear dynamic optimization, periodic optimization 

and decentralized-coordinated control, and many workers have been 

involved in these fields, viz: Mesarovic et al (1970); Chong et al 

(1975); Findeisen (1978), (1979); Singh et al (1978a), (1978b). 
Aside from these theoretical issues, there is a trend, from the 

computer scientist’s side, to study and build large hierarchical 

computer structures (Oshima et al, 1972; Guran et al, 1978).

In spite of these "remarkable" issues, there is still a lack of 
a general theory and there are few integrated methodological approaches 
in the basic problem "how to build hierarchical control systems using 

the available technology?". Also, there is a relative shortage in 

reporting hierarchical control philosophy (not hierarchical computer 

systems) implemented in actual industrial complexes, although a few 

papers can be noted on this subject, viz: Findeisen et al (1970); 

Tazaki et al (1972).

Lefkowitz et al (1976) have carried out an excellent review of 

Integrated Industrial Systems Control, as applied to the steel 

industry. The steel-making industry was selected as the first system 

for a case study.of the integrated systems approach. There were several 
reasons for this choice, viz:

(i) steel is a basic industry

(ii) it is a very complex industry with a wide variety of 

different types of processing and manufacturing facili

ties and, hence, rich in the broad spectrum of systems 

problems likely to be countered in industrial applica
tions

(iii) the steel industry represents, at the present time, the 

most advanced area of technology with respect to the 

application of an integrated systems approach and also 

in the application of computers for real time information 

processing and decision-making.

Besides describing the results of the state-of-the-art survey, the 
review presents a formalization of the multilevel-multilayer hierarchical 

control approach oriented to the problem of complex industrial systems. 

The approach reflects a number of modifications of the hierarchical 

structuring of the decision-making and control system. These modifi

cations are motivated by some of the experiences gained from the steel 
industry study.

- 5 -



Following a review of hierarchical control techniques, the objec

tive of this thesis is to interpret and relate the theory of multi

level coordination to the problems of control design for complex pro

cesses. The hot-strip mill of the steel industry is used to serve 

as the vehicle for the attainment of the objectives. The optimal 
control problem treated is one of minimizing the overall cost involved 

in heating slabs to a given output temperature from the reheat furnace 

and reducing the thickness of these slabs to some desired final thick

ness using a reversing mill. The hot-strip mill process is analyzed 

from the multilevel viewpoint and the responsibilities of the first 
three levels of the coordination hierarchy are given relative to the 

portion of the coordination problem chosen for analysis. The develop

ment proceeds in essentially nine steps, viz:

(a) the development of the mathematical models for the re

heating furnace and the heating process

(b) the development of the mathematical model for the re

versing mill

(c) combining the mathematical models into a form which is

suitable for the application of control theory

(d) defining an optimization criterion which incorporates

the main objective of minimizing the reheat furnace 
fuel consumption

(e) defining an optimization criterion which incorporates the

main objectives of minimizing the reversing mill energy 
utilization and the time taken to reduce a slab to its 
final thickness

(f) choosing the optimization techniques most suitable for the
problems

(g) solving the steady-state optimization problem for the re
heat furnace

(h) solving the dynamic optimization problem for the reversing

mill and also incorporating the odd pass constraint

(i) solving the combined optimization problem using a hierarchical

control structure.

In Chapter 2 hierarchical control is reviewed, together with alter
native methods of decomposition and coordination. Chapter 3 outlines 
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a typical steel works and how its major components are decomposed, 

and the relationship between a reheating furnace and reversing mill 
is highlighted. Chapter 4 is concerned with the mathematical modelling 

and optimization of the reheat furnace subproblem, whilst Chapter 5 

looks at the reversing mill subproblem with special emphasis placed 

on meeting an odd multi-pass criterion. In Chapter 6 the coordination 
and optimization of the combined subsystems are examined and results 
presented. Chapter 7 looks at the on-line considerations which need 

to be considered in a large-scale hierarchically-controlled system, 

and reviews some later developments in the field of hierarchical 
control.

- 7 -



2.0 HIERARCHICAL CONTROL

A theory (Mesarovic et al, 1970) of hierarchical, multilevel 

systems has been developed to handle large-scale complex systems con 

sisting of several subsystems, each having its own objectives and 

operating constraints.

The most natural way to view a large-scale system, which is often 

too complicated to comprehend in its entirety, is to consider it as a 

collection of interconnected subsystems. An understanding of the pro

perties of each individual subsystem, together with an understanding 

of the interconnections between the subsystems, including interconnec

tions with the environment, then defines the properties of the inte

grated system.

In a large dynamic system, each subsystem has its own state, 

control and output vectors. In addition, there will be a vector of 
inputs to each subsystem composed of some of the outputs from other 

subsystems. This vector will thus define the interconnection between 

the subsystems. Each subsystem will also contain its own equality 

and inequality constraints. The integrated system is formed by 

adjoining the subsystems so that the overall state and control vectors 
are defined as combinations of all the subsystems' state and control 

vectors. Such a structure is quite general and can be used to describe 
many industrial processes.

By exploiting the structure of a large-scale system as an inter
connected assembly of subsystems, it is possible to decompose the 

problem of controlling a complex system into interlinked subproblems 

of manageable size. Each subproblem can be solved independently of 

the other subproblems by taking into account the interconnections by 

some form of coordination procedure. Such an approach leads naturally 

to decentralized, distributed and hierarchical control methods.

Decentralized control systems are structured in such a manner that 

the subsystems have available only strict subsets of the overall system 
information. Centralized control systems, however, are such that all 

the system information is available centrally and all the system vari

ables are manipulated directly from the centre. A distributed control 

system is a decentralized control system whereby the individual sub

system control units are distributed among the physical subsystems of 
the overall process. Microprocessors are playing an important role in 

distributed industrial control systems. Due to their relatively low 
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cost and increasing power, microcomputers are now replacing centralized 

control systems and, hence, permit systems which have the benefits of 

improved control, reliability, flexibility and reduced cabling costs.

Hierarchical control systems consist of decision-making units 

arranged in a priority structure where, at each level, a number of 

units may operate in parallel, thus giving rise to a pyramid structure.

2.1 Basic Types of Hierarchies

In this section, three types of hierarchical systems are intro

duced which, in a sense, represent a classification of hierarchical 

systems. These three types of hierarchical structures are

(i) stratified

(ii) multilayer
(iii) multilevel

although it is important to note that this classification does not 
exclude the possibility of a system belonging to more than one class.

2.1.1 Stratified systems

In a stratified system, the system is defined as a family of 
models, each of which is concerned with the behaviour of the system 

as viewed from a different level of abstraction. Mesarovic et al 

(1970) refer to these levels of abstraction as strata, and for each 

level there is a set of relevant features, variables, laws and prin

ciples in terms of which the system behaviour is described. For such 

a hierarchical description to be effective, it is necessary that the 

functioning on any level be as independent of the functioning on other 
levels as possible.

Consider, for example, an integrated steelworks as shown in Figure 
2.1. The total task of running the plant is specified on three strata, 
i.e. the total system is a stratified system. The complete system has 

a large number of units and tasks to perform, but only the main functions 
will be described here.

From the total systems’ viewpoint, three main functions to be per
formed by the system are:

(i) production planning
(ii) scheduling and coordination of operation

- 9 -
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(iii) process control.

The above three functions provide the framework for a hierarchical 

arrangement of the subsystems.

The highest level accepts customer orders and then groups and 

arranges them so as to improve profitability of production within the 

constraints imposed by delivery times.

The intermediate level units accept production schedules and 

break them down into local instructions for the individual processes. 

Actual production programs are checked against the master schedule. 

The main function of the intermediate units is coordination. In some 
systems, production is continuous and operates at relatively high speeds, 

and thus on-line coordination is necessary in order to avoid bottle

necks and hence increased production costs. It is precisely these 

types of process which need fairly advanced coordination methods, 

which will be outlined in greater detail in later sections of this 
chapter.

The lowest level units are concerned with the actual control of 
the individual processes themselves. This level includes the optimi

zation of some of the subprocesses, with a view to minimizing the pro

duction costs, as well as supervisory and direct digital control.

Many other examples of stratified systems can easily be given. 

The preceding example is sufficient to illustrate some of the general 

characteristics of a stratified description of a system.

2.1.2 Multilayer Systems

A multilayer description of a hierarchical system is concerned 
with levels of decision complexity. Essentially, one defines a family 
of decision problems whose solution is attempted in a sequential 

manner, in the sense that the solution of any problem in the sequence 

determines and fixes some parameters in the subsequent problem. The 

multilayer concept is best represented as shown diagraromatically in 
Figure 2.2, each block of which represents a decision-making unit.

The output of a unit, e.g. represents a solution, or consequence 
of a solution, of a decision problem which depends upon a parameter 

fixed by input x^, which in turn is the output of a unit on a higher 

level. In this way, the solution of a complex decision problem is 

substituted by the solution of a family of sequentially arranged simpler

10 -
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problems, so that the solution of all subproblems in the family implies 

the solution of the original problem.

Consider the control of a large-scale system. In this situation, 

a multilayer hierarchy emerges naturally in reference to four func

tional aspects of the overall control, viz: (i) the regulation or 
direct control layer, (ii) the supervisory or optimization layer,
(iii) the learning or adaption layer, (iv) the self organization layer.

Figure 2.3 illustrates the above functional four-layer hierarchy. 

These will be described in the following sections.

(i) The regulation or direct control layer
The task of this layer is to maintain, in the face of disturbances, 

the process variables.at prescribed set values. In other words, the 

control task is to determine the strategy necessary to guide the process 

from its present operating condition to the desired optimum condition.

(ii) The supervisory or optimization layer

The task of this layer is to perform calculations in order to 

determine the optimal settings for the control variables. For this 

step, the current values of the disturbance variables, established in 

the next higher layer, are entered into a mathematical model whose 

parameters are uncertain. There are several methods by which this 
layer can achieve its goal:

(a) The problem can be set up on the control computer and 

solved by a mathematical optimization technique to find the 

current optimal settings of the manipulated variables and the 

corresponding optimal values of the performance variables.

(b) For the performance variables, optimum values may be 

known beforehand from off-line optimization studies or sub- 
optimal values may be selected a priori, based on practical 
experience.

(c) A table of solutions to the optimization problem is 

obtained off-line and stored in a look-up table, and the 
optimal control settings are retrieved after the current 
disturbance values have been identified.

(iii) The learning or adaption layer

This layer is concerned with specifying the uncertainties used 
by the optimization layer. The uncertainties are viewed as encompassing

11
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the ignorance about the behaviour of the system, and are typically 

model parameters derived from observations and communications with 

the system. The main aim of this layer is to reduce the uncertainty 

about the process under control in order to simplify the task of the 

supervisory or optimization layer.

(iv) The self organization layer
This layer has the task of selecting the structure, functions 

and strategies employed on the lower layers so that an overall goal 

is being pursued as closely as possible. It can change the objective 
index, or criterion, used on the supervisory layer if the overall goal 

changes, or it can alter the learning strategy used on the adaption 

layer if the estimation of uncertainties proves to be unsatisfactory.

In a typical large-scale industrial situation, it is possible to 

conceive a hierarchy of computers associated with the above functional 
levels. Typically, there will be on-line computers for direct control 

of the plants with the desired regulation levels provided by the super

visory computers. Above the supervisory computers there will be a 

management information computer which is concerned with commercial 

decision-making. The supervisory computers will be concerned with the 

selection of the set points and the adaption of the mathematical models 

employed to determine the optimum selection values. Optimization tech

niques may be employed at all levels in the computer hierarchy but are 

most usually exploited at the supervisory level. In a situation where 

several supervisory computers are used, optimization can be decentralized, 

with the optimization of each process unit, or group of units, being 
carried out in the computer associated with that unit or group.

2.1.3 Multilevel Systems

For this conception of hierarchy, it is necessary that:

(i) the system consists of a family of interconnecting sub

systems which are recognized explicitly

(ii) some of the subsystems be defined as decision-making units

(iii) the decision units be arranged hierarchically in the sense 

that some units are influenced by other decision units.

In general, the various decision units have conflicting goals, and it 
is essential that the units are given some freedom of action, where the 

12



higher level units condition-, but do not completely control, the goal 

seeking activities of the lower level units.

Multilevel systems can be divided into various categories of 

decision-making systems, viz:

(i) single-level, single-goal systems

(ii) single-level, multi-goal systems

(iii) multilevel, multi-goal systems

2.1.3.1 Single-level, single-goal systems

Figure 2.4 represents a single-level, single-goal system. Here, 

a goal is defined for the overall system, and all decision variables 

are selected so as to satisfy this goal. This system treats the 
optimization problem as an integrated whole and, as previously dis

cussed, the implementation in this form is extremely complex for large- 

scale systems. However, the conceptual simplicity of the single-level, 
single-goal system should be noticed, with particular emphasis on the 

absence of conflict within the boundaries of the system.

2.1.3.2 Single-level, multi-goal systems

This system consists of a family of decision units, each with its 
own goal, and is represented diagrammatically in Figure 2.5. The goals 

are not necessarily conflicting, but when they are, solutions to this 

problem may be attempted using game theory.

2.1.3.3 Multilevel, multi-goal systems

Figure 2.6 represents a multilevel, multi-goal system. One 

important characteristic of multilevel, multi-goal systems is the fact 

that the higher level units do not completely control the goal-seeking 

activities of the lower level units. The lower level decision units 

have to be given some freedom of action to select their own decision 

variables. The decision units are arranged in a hierarchy having a 

pyramid structure, and a principal characteristic is the existence of 

a supremal, i.e. top level, unit. At an intermediate level, each 
decision unit receives information from units superior to it in the 

hierarchy and transmits information to units inferior to it. The 

decision units have different objectives which may be in conflict, 

and these conflicts are resolved by higher level units which play the
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role of.coordinators. It is important to note that the higher levels 

in the hierarchy must act so as to obtain the same solution, or an 

approximation to it, as would be obtained if a global, i.e. integrated 

whole, approach was used.

2.1.4 Features common in the Three Types of Hierarchies

It has been seen that the concept of strata is introduced for the 

purpose of modelling, and the concept of layers is introduced in 

reference to the vertical decomposition of a decision problem into 

various subproblems. Also the concept of levels refers to a horizontal 

division of the decision problem and considers mutual relationships 

between the units. In spite of the differences, there are features 
common to all three concepts of hierarchies and these are outlined below, 

viz:

(i) A higher level unit is concerned with a larger portion or broader 
aspects of the overall systems behaviour. In the multilevel hierarchy, 

this is reflected in the fact that a higher level unit is supremal to 

two or more units, and the decision of the supremal coordinates the 

infimals in accordance with an objective. For the layer concept, this 

shows up in the higher level unit’s concern of the systems behaviour 

over a longer period of time. Similarly, for the strata concept, the 

system on any level is constructed from subsystems on the levels below, 

and therefore the higher strata are concerned with a broader aspect 

of the overall systems behaviour.

(ii) The decision period of a higher level unit is longer than that 

of lower units. For the layer and strata concepts, this is quite 

apparent, and also holds for the multilevel concept. Namely, to evaluate 

the effect of coordination, the supremal unit cannot act more often 

than the lower level units whose behaviour is conditioned by the co

ordination.

(iii) A higher level unit is concerned with the slower aspects of 

the overall systems behaviour. This holds for all three systems and 

almost follows from (i) and (ii) above. The higher levels cannot res

pond to fast variations in either the environment or the process itself, 

which are quicker than the variations of concern to the lower levels.

(iv) Descriptions and problems on higher levels are less structured, 

with more uncertainties, and more difficult to formalize quantitively. 

Decision problems on the higher levels can be considered to be more 
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complex than those on the lower levels. Usually, an approximation 

can be used to arrive at the solution of a higher level problem, but 

accuracy is then reduced and care has to be taken in interpreting the 

results. In general, for any level, there is a specific set of tech

niques suitable for the solution of the respective tasks. For example, 

for each layer in the multilayer hierarchy, there is a different set 

of methods and techniques. On the selection layer, feedback control 

and numerical optimization methods are used, whereas on the adaptation 

layer, statistical or pattern recognition techniques can be used.

In a typical industrial situation (Roberts, 1979), the desired 

strategy may be concerned with the maximization of profit or the mini

mization of costs. If the lowest layer achieves stable control, the 
optimization problem may be regarded as a static optimal control prob

lem of selecting the set points of standard two- or three-term-controllers 

which regulate the process at the lower layer. The optimization layer 
then requires a steady-state mathematical model, together with standard 

finite dimensional numerical optimization procedures for solving the 

problem. However, if dynamic considerations are important, the optimi

zation layer would involve the solution of a dynamic control problem. 

Thus, two different views of the behaviour of the system are involved, 

one for the steady-state behaviour and another for the dynamic behaviour, 

giving rise to a stratified decomposition occurring at the optimization 

layer.

When considering the optimization problem at the optimization layer, 

it is often essential in large-scale situations to decompose the problem 

into separate optimization problems, one for each of the process units 

which constitute the overall industrial plant. However, the inter

connections between the individual units must be accounted for and this 

may be achieved by using a higher level unit to coordinate the activities 

of the individual unit problems. Thus, the optimization layer can be 

decomposed into two levels, where the lower level consists of local 

optimization problems and the upper level is designed to coordinate the 

solutions of the lower level problems. This coordination is such that 

the overall global objectives and subsystem interconnections are satisfied, 
thus giving rise to a multilevel decomposition occurring at the optimiza

tion layer.
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2.2 Coordination

In order to introduce the concepts of coordination, consider the 

two-level structure shown in Figure 2.7. Here, a single coordinator 

at the upper level (supremal level) controls two units at the lower 

level (infimal level). Each infimal decision unit has its own local 

system model and local objective. In order that the units arrive at 

solutions coherent with overall system objectives, the supremal unit 

has the task of coordinating the tasks of the infimal level units by 
some means or another. Thus, the supremal unit transmits intervention 

signals, £, to each infimal decision unit and, in turn, receives 
information, f_, concerning the performance of the infimal units.

The above system is of special interest for a theory of multi

level systems since (i) it is the simplest type of system that 

exhibits the most essential characteristic of a multilevel system, 

and (ii) more complex multilevel systems can be built using the two- 

level system as a building block.

The relationship between the supremal unit and one of the infimal 

units is such that the action (success) of one depends upon that of 

the other. Since both are decision-making units, this means that, in 

general, the decision problem of the infimal unit depends upon the 

action of the supremal unit. Conversely, the decision problem of the 

supremal unit depends upon the action or response of the infimal unit. 

This gives rise to an apparent deadlock situation, but the dilemma is 

resolved by the priority of action of the supremal unit. Due to priority 

of action, the supremal unit has the broad responsibilities of, first, 

instructing the infimal units on how to proceed, and, second, influencing 
them to change their actions if needed.

How a given infimal unit will communicate with other infimal units, 

and which aspects of the infimal decision problem are available for 

change in order to improve the overall performance, determines a co

ordination mode. The relationship of a unit with others on the same 

level can be characterized by its action, and the response of the rest 

of the system, as it influences that unit. This influence is referred 

to as the interface input. The main question here is, therefore, how 

the given infimal unit will consider, or take into account, the inter
face input.
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2.3 Decomposition of the Subsystems

Consider a dynamic system consisting of N coupled subsystems 

with its variables defined as follows:

u. = m. - dimensional vector of manipulated inputs to subsystem i

x. = n. - dimensional vector of state variables in subsystem i
—1 1

z. = r. - dimensional vector of inputs to subsystem i which are —li
composed of outputs from other subsystems

y^ = r^ - dimensional vector of outputs from subsystem i.

The state equations describing subsystem i are

x = f.(x., u., z., t) ................................................... (2.1)
— —1 —1 —1 —1

where JL is a n-dimensional vector function of algebraic relationships 

between x. , u., z. and time t.
—1 —1 —i

In general, there will be inequality constraints to be satisfied 
represented by

u.;/ < 0 ................................................... (2.2)

where g^ is a p.-dimensional vector function of algebraic relation

ships. It is noted that it is considered that each constraint equation 

involves only the variables of a single subsystem.

The outputs taken from each subsystem are represented by

y4 = h^x^ u^, t) ................................................... (2.3)

where h. is a r.-dimensional vector function.
—1 1

The input variables _z^ are defined by interconnections with other 

subsystems and are expressed by the interconnection constraints

zi " X fijhj ................................................... <2.4)

. J=1 J J

where are constant matrices whose elements are 0 or 1.

The integrated system is formed by adjoining the subsystems in 

order. Let x> u> £ and y be vectors formed by adjoining their compo

nents x^j and y. in order. Let n, m, r and p be the sums of

n^, riK, r^ and p^. Then, the integrated system is represented by the
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equations

x = f(x, u, z_, t)   (2.5)

g (x, u, z., t) 4 0   (2.6)

y = h(x, u, t)   (2.7)

£ = CG]y   (2.8)

and [c] is a r x r permutation matrix whose ijth partitioned block is

C. . .
ij

The static optimal control problem is to choose the manipulated 

inputs, u^, in order to minimize an objective function F^(x^, tu, z_^, y^) 

in each subsystem. In the static optimal control problem, only steady

state relationships are employed and time does not appear explicitly in 

any equation. Hence, using equations (2.2), (2.3), (2.4), and the 

steady-state version of equation (2.1), the static optimal control 
problem for each subsystem may be summarized as

min F. i(x., u., z., y.
X. , u., z. , y. 1 —i —1 —1 ±1
—1 —1 —1

subject to f.(x. , u., z.) = 0—1 —1 —1 —1

g-(x. , u., z.) < 0—.1 —1 —1 —1

y. = h.(x., u.)—1 —1 —1

N
z. = I [?• Jy-

—1
j=i

(2.9)

The objective function for the integrated system is assumed to be 
of the additively separable form, viz:

N
F(x, u, _z, y) = I F^^^, ui5 y£) ............................ (2.10)

j =1

and the integrated static optimal control problem is
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min F(x, U, £, y)
x, u, z_, y

sub j ect to f_(x, u, z) = 0

g/x, u, z) < 0

y = h(x, u)

z = H y ......................................... (2.11)

2.4 Multilevel Optimization of the Static Optimal Control Problem

To give some idea of the decomposition-coordination aspects, a 

brief description will be given of two fundamental principles. These 

are (i) the interaction prediction principle, and (ii) the interaction 

balance principle. These two ideas were first formulated in a precise 

form by Mesarovic et al (1970).

For the interaction prediction principle, the coordinator at the 
supremal level attempts to predict the values of the interface or 

interconnection inputs and outputs of the subsystems. The global 

optimum is obtained when the real interactions are identical to the 

predicted interactions, as observed when the optimal solution based 

on the predicted interactions is applied. At each iteration at the 

supremal level, the coordinator specifies the interconnection values 

and the infimal units proceed to solve their local decision problems 

on the assumption that the interconnections are exactly as predicted 

by the supremal unit. Based on the solution of the infimal units, 

which is transmitted back to the supremal unit, the coordinator modifies 

its predictions until the global optimum is achieved.

The interaction balance principle involves "cutting" the inter

connection variables in a mathematical model of the process. The 

interconnections are then considered as additional constraints to be 

satisfied, and suitable modifications to the infimal level unit objec

tive functions are chosen in order to take account of the interactions 

between the subsystems. The supremal unit task is to select the 

inputs to the infimal units such that when the final 

overall optimum solution is obtained, all interconnection constraints 

are satisfied. In other words, they are in balance.
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2.4.1 Interaction prediction principle

Alternative names of coordination methods based on this principle, 

which are all essentially the same approach, are:

(i) model coordination

(ii) primal coordination

(iii) method of projection

(iv) parametric decomposition

(v) direct method.

In this approach, the integrated problem is converted into a two- 

level problem by fixing the interconnection variables, y^ and , in 

the infimal level sub-problems. From the output equation, (2.3), 

this process will also fix some of the state variables, x^. Let w^ 

be the component of state vector x^ whose elements are not fixed by 

constraining the interconnection variables. In addition, from the 
interconnection constraints given by equation (2.4), it is necessary 

only to consider the variables z^.

The i^h sub-problem at the infimal level then becomes

min F!(w., u., z)
w., u. 1 “
—1 —1

subject to f.(w., u., z) = 0
—1 —1 —i —

z) x 0 .......................................... (2.12)

It should be noted that the output equation, (2.3) and the interconnec

tion constraints equation, (2.4) have been employed to eliminate the 

components of x^ and y\ , which are fixed by constraining the interconnec

tion variables. Also, the denotes the resulting modified equations.

The task of the supremal unit is to supply the interconnection 

variables z to the infimal units by solving the integrated minimization 
problem

N
min £ P.(z) ..................................................................... (2.13)
£ i=l 1

where P.(z) = min F.(w., u., z) is the solution of the ifc^ sub-
1 w-, u- 1 1 1

—1 ’ —1

problem at the infimal level for a given estimate of the values of z 
supplied by the supremal unit.
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From equation (2.13), gradients can be 

level, from the equation 

obtained, at the supremal

................................... (2.14)Vz [p(z)J v ' * *= Vz L F,- (w- > u,- ’ z> 
L i=l 1 J

where * denotes evaluation at the minimizing values. Depending upon the 

form of F_^(w\, u., z) , equation (2.14) may give an explicit expression 

for the gradient vector, in which case an efficient gradient numerical 

optimization algorithm can be employed at the supremal level. Often, 

though, this is not possible as w and u are functions of z and cannot 
be explicitly solved.

In summary, the interaction prediction approach solves the problem

min P(z)
£

N
subject to P(z) = y min F.(w., u_. , z)

1=1 w., u. 1-1 1 “

!
and f.(w., u., z) = 0

—1 —1 —1 —

£1^1’ Hi’ < 0 ................................................ (2.15)

Figure 2.8 shows the multilevel scheme obtained in the particular case 
of two interacting subsystems.

The interaction prediction principle is an example of a feasible 

coordination strategy in which all intermediate results of the iterative 

optimization can be applied directly to the real process and, hence, 

can be directly applied on-line. This occurs because the intervention 

inputs are the interconnection variables in a model of the real process 

and, hence, the interconnection constraints are always satisfied. There 

is, however, a situation whereby the above principle fails. In this 

case, the number of manipulated inputs is less than the intermediate 

outputs and therefore gives rise to over-determined subsystem problems 

at the infimal level. In order to solve such a problem, it is necessary 

to use some other decomposition technique (e.g. see section 2.7.2), or a 

global technique. The latter is a real possibility since here the 

number of controls is smaller than the number of outputs, and therefore 

all multilevel decomposition methods are less appealing. An alternative 
is the use of a penalty function method.
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2.4.2 Interaction balance principle

This principle is also known by alternative names of coordination 

methods in this category, viz:

(i) goal coordination

(ii) price coordination

(iii) dual coordination.

These methods are examples of non-feasible strategies in that the 

interconnection constraints are not satisfied during the initial stages 

in an iterative optimization procedure, and only the final solution 

can be applied to the real process.

In the interaction balance method, interactions are removed by 

"cutting" all links between the subsystems. This is illustrated in 

Figure 2.9 which shows two coupled subsystems. This means that the 

interconnection constraints need not be satisfied, and independent sub

problems are obtained at the infimal level. The task of the supremal 

unit is to ensure that the interconnection constraints are satisfied 

when the final solution is obtained.

The interconnection constraints, given by equation (2.4) are con

sidered as additional equality constraints on the overall problem and 

may be incorporated with the integrated objective function, equation 

(2.10), using Lagrange multipliers. Then, the integrated Lagrangian 

becomes

L(x, u, z_, y, A_) =

................................... (2.16)

The Lagrangian L(x, _u, z, y, X_) is then decomposed to form individual 

sub-Lagrangians by grouping all terms involving x^5 z^ and y..

This is always possible because of the separability assumptions in 
equations (2.2) and (2.10). Hence, the i^-^1 infimal unit problem is

min

subject to L<£i> 2i> = 0

(2.17)
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Note that the goals of the individual subsystems have been modified, 

in that coordinating variables X enter each subsystem objective function. 

The task of the supremal unit is to choose the coordinating variables to 

force interaction balance which is achieved when the interconnection 

constraints

z = [gJ y .......................................... (2.18)

are satisfied. The multilevel scheme for the particular case of the 

two interacting subsystems, shown in Figure 2.9, is illustrated in 

Figure 2.10.

By approaching the formulation of the optimization problem from 

a Lagrange multiplier point of view, the penalty functions may be 

viewed as a constraint (i.e. that the interactions must balance) and 

the conditions under which a X exists, which solves the integrated 

optimization problem, may be determined. Furthermore, the supremal 
unit problem may then be shown to be a well-behaved optimization 

problem in its own right and standard optimization techniques are 

applicable.

It should be emphasized that in the interaction balance method 

there are no requirements on the number of components of u^, z^ and y^ 

as in the case of the interaction prediction method.

2.4.3 Comparison of the two methods

From section 2.7.2, it can be seen that the interaction balance 

or non-feasible method is always applicable, but the price to pay for 

this general applicability is having to solve more complex sub-problems. 

The interaction prediction or feasible method, which is only applicable 

under certain conditions, leads to simplifications and an easier implemen

tation.

In both of the two methods, it has been assumed that there already 

is a division of the system into the various subsystems. However, there 

does not exist, at the present time, any 'well-established rule for 

dividing systems into subsystems, although several researchers (Sage, 

1977; Evans et al, 1980) have investigated the use of graph theory 

methods for the division of systems into subsystems. In view of this 

it should be noted that the above results could perhaps be used as 

general guidelines for this purpose. Thus, if a feasible method is to 

be used, so as to satisfy the interconnection constraints at each
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instant, then a decomposition is needed such that the manipulated 

inputs are greater than or equal to the number of intermediate outputs . 

On the other hand, the non-feasible method allows a bigger choice for 

the decomposition and any physical peculiarities of the system could 

be taken into account. In general, it should be noted that the decom

position of the system and the multilevel optimization should not be 

done completely independently, but rather they should complement each 

other in taking into account any special features of the system under 

study.

2.5 The Dynamic Optimization Problem

In dynamic optimal control, the aim is to select the manipulated 

inputs, u(t), as a function of time, such that each subsystem behaves 

in a defined optimal manner. Several aspects of dynamic optimization 

and control have been investigated by various researchers, namely: 
Chong et al (1975); Hakkala et al (1976); Sandell et al (1976); 

Siljak et al (1976); Singh et al (1975), (1976), (1978); Tamura 

(1975), although these deal mostly with linear systems.

The performance of each subsystem is defined by a functional 
which is a scalar quantity whose value depends upon x^Ct), vn(t) and 

_z^(t), as the independent variable t varies in a given time interval 

0 < t < T. A general cost function for each subsystem can be given

Essentially, the control problem is to choose the control trajectories, 

^(t), where T, the final time, may be fixed or free, so as to ensure 

that the system has a desirable dynamical behaviour. For example, if 

the system is operating in the steady state when it receives an unknown 

disturbance which changes its state to some known or measurable state, 

then the desirable dynamical behaviour could be represented by the 

control vector u^ which minimizes the cost function in equation (2.19). 

In this cost function, and are, in general, scalar non-linear 
functions. The term <|>^(x^(t)), in the cost function, ensures that at 

the final time T, the state vector x^ will approach some target state. 

The integral ensures that over the optimizations interval, excessive 
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control effort is not being expended and also it does not allow signi

ficant deviations from any given desired trajectories that the control 

system is required to follow.

Minimization of should take account of any given inequality con

straints, defined by equation (2.2), and any given boundary condition 

on x^’ For simplicity, assume that all initial conditions on x^ are 

known, viz:

x^(0) = x^O, i = 1, 2, ...., N .......................... (2.20)

Hence, the dynamic optimization problem for each subsystem 

be summarized as

may

u. , z.min
x., u., z., y. —1 ’ —1 ’ —1 ’ 2_i

lb. (x. , u. , z. , t)dt 
J i-i -i -i
o

subj ect to x. f . (x. , u. , z . )—1. —1 —1 —1

u.

Zi

u^, z.) < 0

h.(x., u.) —1 —1 —1

N

J,
J=1 ij

(2.21)

for the integrated system is considered to be 

the sum of the individual subsystem cost functions,giving 

T -J
The cost function

V(x, U, z, t) ib. (x. , u. , z . , t)dt 1 —1 —1 —1
o

z.
—1

N
u. , z.

............................ (2.22)

Both the interaction prediction and interaction balance techniques can 

be employed to decompose the dynamic optimal control problem. The appli
cation of multilevel optimization theory will be illustrated here by 
employing the interaction balance principle.

In a similar manner as employed in the static optimal control 

situation, the interconnection constraints are incorporated with the 

integrated performance functional to give
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j(x, u, z_, t) = £

i=l
Vk (Xp Up )

T N -I
+ xT(z. - I [c-Gy.) —1. p L ijJ rJ=1 J -3-1

(2.23)

where, in the dynamic case, the Lagrange multipliers X_£ are functions 
of time.

7

The modified integrated performance functional can then be decomposed 

into modified subsystem performance functionals by grouping together 

all terms involving 
problem as:

y^. This gives the ith infimal unitx., u., z. and —1 —1 —1

u. , z .min
*i> Hp £p Xi

^i -i’ -i’ —i*

,T + X.1 k=l
z.

1

subject to x. ^i’

^i’

(2.24)

and Pontryagin's Maximum Principle may be employed to attempt the solution 
of each infimal unit sub-problem.

Under certain conditions, the .solution of equation (2.23) can be 
given by

max D(\(t)} = min J(x, u, z_, X_, t) ................... (2.25)
x, u, £, y

which is commonly known as dual formulation. At the supremal level, the 
X trajectory can be improved in order to maximise D[x_(t)]. This can be 

done by using the steepest descent method, i.e. from iteration k to k + 1

X(t)k+1 = X(t)k + cekdk ............................................ (2.26)

where T
d = VD[x(t)J = f (|.(t) - £ [Ck.] y.(t)]dt .............. (2.27)

J k=lo 
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and the * indicates optimal values obtained by solving the infimal 

level sub-problems for a given X(t).

• 1c • • •At the optimum, d. -> 0 and the appropriate Lagrange multiplier 

trajectory is the optimum one.

In general, equation (2.25) may not be valid, so that maximizing 
D(\(t)}, using a hierarchical structure, may not give the optimal control. 

This situation occurs when the values on the L.H.S. and R.H.S. of 

equation (2.25) are different and this difference is commonly known as 
the "duality gap". An excellent study of duality in non-linear systems 

has been made by Geoffrion (1971). Unfortunately, at the present time, 
it cannot be said a priori for any given problem if there will be a 

duality gap. Nevertheless, the method has an intrinsic simplicity 

which makes it highly attractive. It is worth noting here that the 

above gradient type of approach can also be applied in the static 
optimal control case.

27



3.0 SYSTEM DESCRIPTION

Automatic control of a modern steel plant, whether achieved by a 

computer-based system or by conventional means, involves an extensive 

system for the automatic monitoring of a vast number of different vari

ables operating under a wide range of process dynamics. Figure 3.1 

shows the major processes concerned with the manufacture of steel. 
If under computer control, a normal requirement would be for the develop
ment of a large number of complex, usually non-linear relationships for 

the translation of the plant variable values into the required control 

commands. In addition to the control decisions undertaken by the com

puter, plant personnel, both operating and management, must be kept 

aware of the current status of the plant and of each of its processes.

Whether by conventional or a computer-based control system, the 

operation of a typical steel plant, as shown in Figure 3.1, would 

involve a number of processes as outlined in Table 3.1.

Table 3.1

Processes associated with a typical steel plant

(i) The blast furnace is used for iron ore reduction. It is quite 

possible that a computer control system would accommodate 
varying analyses of blast furnace charging materials.

(ii) The basic oxygen furnace and the electric furnace are used for 

refining pig iron to steel. Online adaptive control would 

be necessary for these processes in order to minimize the 

energy input whilst still maintaining a high quality of 

steel output.

(iii) Conversion of molten steel to slabs for the rolling mills is 

carried out by a continuous casting machine and a combina

tion of ingot casting, ingot storage, soaking pit and 

slabbing mill processes. These are considered to operate 
both alternately and in parallel as two separate processes.

(iv) Forming and related operations normally consist of the fol

lowing processes:

(a) Slab conditioning

(b) Reheat furnace

(c) Reversing mill
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(d) Pickling line

(e) Cold reduction mill
(f) Heat treating

(g) Temper mill

(h) Finishing operations
(i) Product inventory and warehousing

with the end result of producing hot and cold rolled steel 

in a wide variety of gauges and properties normally involved 

in a steel mill operation.

A computer control system could be actively engaged in tasks 

other than direct digital control. These tasks could be broken down 

as follows, viz:
9

Task 1: Process mathematical model development

Task 2: Control of individual processes

Task 3: Sales order processing and its incorporation into

production scheduling

Task 4: Process optimization

Task 5: Supervisory and management control

Task 6: Man-machine interface with the operators, supervisors

and management consoles.

Of the above, it is considered that tasks 2 and 4 would represent the 
greatest real time loads on the central computer.

The main area of concern in this study is the effective decomposition 

and control of. the physical elements of the steel works, as indicated by 
Figure 3.1.

3,1 System Decomposition

Figure 3.2 is a breakdown of the basic steel mill process into 

several different areas of activity. Each of these units would have 
its own local control system which could be a mini- or micro-computer, 

which, in turn, interacts with a central or host machine. In addition, 

should the steel mill have two or more major units in parallel in any 

of the process areas, i.e. three blast furnaces or two hot rolling 

mills, then these units would have their own local control systems. 

Figure 3.3 shows a two-level interpretation of present practice. The 

first level consists of the various steel processes together with their
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associated controllers. These are represented by and CL, i = 1, 6, 
respectively. The second level simply specifies the input and output 

constraints (production sequence, heating, rolling temperatures, etc.) 

which are commands to be followed by the plant subprocess controllers. 

Motivating these decisions are such factors as order specification, 

metallurgical requirements, operating status of other processing portions 

of the plant, etc.

In Figure 3.2, the output from process area 3 will in future be 
referred to as the slab yard. The schedule of slab sequences through 

the steel mill is supplied to the slab yard by a higher level, i.e. 

second level, and the slab yard has the responsibility of delivering 

slabs to the reheat furnaces. The reheat furnaces have the responsibi

lity .for not only heating all slabs to a specified uniform temperature 

suitable for rolling but also for verifying that the proper sequence of 

slabs is pushed out of the furnaces. Practically, the state of measure
ment and control capability within the reheat furnaces makes the task 

of heating adjacent slabs to different temperatures impossible without 

at least significantly sacrificing production rate. A modification to 
current operating practice has been suggested by Matuszewski and 

Lefkowitz (1973) to overcome these difficulties. The strategy suggested 

to be followed is not to require the furnace to heat each slab differently, 

but rather to group together in the furnace those slabs that are almost 

the same thickness and have almost the same heating temperature require

ments, and heat the groups differently. This procedure still has the 

temperature control problem at the transition between groupings, and 

slabs deviating from the desired temperature would be expected at the 
group boundaries.

The roughing mill reduces the slabs to final width, and shapes 

and conditions the hot slabs for easier processing by the finishing mill. 

A delay table is incorporated after the roughing mill to allow slabs 

which are too hot for finishing to be cooled, and also to allow unaccept

able slabs to be removed. In the finishing mill, the roughened slabs 

are transformed into ribbons of steel which are cooled by a water spray 

to a temperature suitable for coiling. When the strips are completely 

coiled, they are removed from the coiler, weighed, bundled to prevent 

uncoiling and tagged with identifying characteristics before being put 
on a conveyor for storage or further processing.
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Matuszewski (1970) has made a study of the multilevel model of 

present practice and has outlined the input and output interactions 

between sub-processes, together with their constraints. Figure 3.4 

is a block diagram showing the interaction constraint specifications. 

The next stage is to identify the input/output constraints for each 
sub-process in turn.

3.1.1 Slab yard sub-process -

The interaction input has two components, viz:

u^ = sequence of slabs into steel mill

u^z = delivery schedule of slabs to the slab yard.

These are given specified values by the second-level schedulers, viz:

= specified sequence of slabs into steel mill

a12 = sPecifi-ed delivery schedule of slabs.

The interaction from the slab yard to the reheat furnaces is expressed 

as two components: 
t

f

= output sequence of slabs from slab yard

= production rate or pacing of slabs from slab yard 

which are also given specified values by the second-level unit

= specified output sequence of slabs from slab yard

= specified production rate or pacing of slabs from slab yard.

The slab yard cost can be broken into three areas, viz:

(i)
(ii)

(iii)

the cost of handling the slabs upon receipt 
the manipulation and conditioning of slabs 

handling them for output sequencing and pacing

It is assumed that the slab yard is capable of meeting the specifica

tions (a2i’ a22^ and that fhere are various ways that slabs can be 
handled by the control, m . The local decision problem is to minimize 

slab handling costs, subject to the above specifications.

Thus,

Gl(mr Zl’ -1? = GlCml’ ^-2’ yl' ’ ^-1)
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and the constraints are represented by

Ml - Qi - (an, c-ip

2L1 = —2 “ -2 " (“21’ “22'

3.1.2 Furnace area sub-process -

The sequence and production rate of slabs into the reheat furnace , 

u^j is also given as 
variables to the next

eq? to the furnace 
sub-process, i.e.

decision

roughing

unit, C^. Interaction

mill, are:

y21'

y22

y23*

output

output

sequence of slabs from the furnace sub-process

pacing of slabs from the furnace sub-process

temperature of a slab upon exit from furnace sub-process.

These are also specified at given values by the second-level unit as

a31 = specified y2 ’

a32 specified y^'

a33 specified y23*

Now,
T !

12 = outputs which are not interactions to other sub-processes

where
t f

y21 = slab temperature at exit of zone 1

f T
y22 = slab temperature at exit of zone 2.

In current practice these are specified as '

The furnace decision problem is to use the vector, m^, of fuel 

rates and slab handling controls (i.e. pushers, conveyor, crane, etc.) 

the specified constraintsto minimize fuel cost, G^, subject to

= -2 (“21’ °t22')
f

—2 = ^3 = (a31’ a32’ “33)
T f

—2 =
! !

—3 (0131 , a32 )

In addition, there is a constraint on maximum slab surface temperature 

which is dealt with by the specifications a^, “33/* > a32''' The

- 32



maximum surface temperature is defined by

slab surface melting temperature.

3.1.3 Roughing mill sub-process - D

Input sequence, pacing and slab temperature, u^, are the inputs 
to the roughing mill sub-process. These are specified to be by the 
second-level unit. The roughing mill decision unit, C^, has to minimize 

the power cost, G^, and manipulate m^, the vector of reversing mill roll 

settings for gauge and width reductions and table roller speeds.

Interaction variables to the next sub-process are

y31' = sequence of slabs from roughing mill

y^2* = pacing of slabs from roughing mill

y^2* = slab temperature upon exit from roughing mill

y^^’ = slab gauge after roughing mill reduction.

The mill is also responsible for achieving the final width required

for the coiled product, 

interactions with other

These are components of y ’' 

subsystems.

which are not

Hence,

= width of slab at exit from roughing mill.

The roughing mill roll speed is fixed and is not a degree of

freedom. Also, the mill cannot influence the sequence of slabs. Hence, 

the specification constraints are:

a41 specified sequence of

a =
42 specified pacing

a =
43 specified lower limit

a =
44 specified gauge to be

t t
'41 specified width to be

slabs from roughing mill =

on slab temperature upon exit 

achieved 

achieved.

The constraint relationships are:

y31 = a41

y32’ e a42
f

y33 a43

y34' = a44
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3.1.4

(11)

The inputs, u^, to the finishing mill are the incoming slab speed, 
sequence, temperature and gauge constraints, a^. The decision unit, , 

is responsible for affecting m^, the finishing mill roll opening 
settings and roll speed, delay table roller speeds and pusher controls.

The interaction variables to the next sub-process are:

y41 * == sequence of strips from finishing mill

y42* ’= pacing of strips to be coiled

y43* != exit temperature from finishing mill

y44* := strip speed as it leaves finishing mill

The outputs which are not interactions are:

' = gauge of strip after finishing mill reduction.

The specification constraints, as determined by the supremal unit, are:

= specified sequence of strip from the mill - the same 

as cx41, a31

0I52 = specified pacing

a53 = sPecified lower limit on strip exit temperature

a^4 = specified maximum last roll speed until strip has been

coiled

a55 = specified upper limit on slab temperature in order for
reduction to be performed on that slab

a^’’ = specified gauge to be achieved by the finishing mill.

Hence, the constraints are given by

y41* = a51

y42 = a52

y43* > a53

y43 a55
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y44 = a54

IT If

y41 = a51

The decision unit problem is to minimize power cost subject to 

the indicated constraints.

3.1.5 Cooling and coiling sub-process -

The inputs to this sub-process are the constraints, a^, acting on 

the interactive inputs, u^_ .

Outputs, y^'j interacting with the next sub-process, are: 

y51' = secluence of coils

y^2* = pacing of coils.

Non-interacting outputs, y^'T, are:

= strip temperature immediately prior to coiling, i.e. 
coiling temperature.

Specified constraints from the supremal unit are:

otgi = specified sequence of coils from the sub-process 

(the same as a41’ a31^

a62 = specified pacing

a'61* * = specified coiling temperature.

Hence, the constraints to be satisfied are:

y51 = a61

t
y52 = a62

1 I

y51 = a61

The components of control, m , include cooling water flow, spray con

figuration, coiler thread opening and coiler speed. The cost, G , 

includes the power cost and water cost for coiling and cooling. The 

decision unit problem is to minimize the power and water costs.
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3.1.6 Weighing and conveying sub-process - D^.

The interaction outputs y', from this sub-process are:—o
sequence of conditioned coils from hot milly61'

y62 * pacing of coils from the hot mill.

Specifications, from the second-level scheduler, are:

a41 specified sequence of coils to be produced by the 

steel mill (the same as a^, a51’ a41’ 31)

a42 specified pacing

Hence, constraints are:

%
The decision
and the cost

unit problem is to minimize the 
of preparing them for exit from

cost of handling the coils 
the steel mill process.

3.2 Application of Coordination Theory to the Steel Mill Problem

From the work of Matuszewski (1970), interactions and constraints 

of the steel mill process have been identified. In order to test the 

feasibility of applying multilevel optimization to a system of this 

complexity, a starting point is the multilevel control of two of the 

subsystems. In this study, the reheat furnace and rolling sub

processes have been chosen as they contain important conflicts. The 

conflict chosen is that between fuel cost of the furnace subsystem 

and power cost of the roughing mill. For desirable metallurgical pro

perties, the slabs must complete roughing mill reduction at a tempera

ture above what is called the finishing temperature. This places a 

lower bound on the temperature at which the slabs leave the reheat furnace 

in order to allow for cooling losses. There is also an upper bound on 

temperature, above which the steel is too hot for desired reduction as 

its metallurgical properties could be altered.

Reheat furnace fuel costs increase with increasing required slab 

exit temperature, whereas for the roughing mill, power costs increase 

as resistance of slabs to deformation increases, i.e. low roughing mill 

input temperature.
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The supremal unit problem, then, is to specify the exit temperature 

from the reheat furnace such that the combined cost of both sub

processes is at a minimum.

3.2.1 Slab reheating furnace optimization

Pike (1969) describes the optimization of a reheat furnace in 

terms of choosing fuel flow rates to minimise fuel costs subject to 
achieving a desired slab exit temperature. The mathematical model 

derived relates average slab temperature, as each slab passes through 

the furnace, to fuel rates and slab velocity. In addition, an expression 

for the slab surface temperature is given which is used to test against 

a surface melting constraint. Two manipulated variables are given,viz. 

the normalized fuel rates for the preheat and heat zones in the furnace. 

A complete furnace description, outlining the furnace zones, is given 

in chapter 4. Optimization is a dynamic optimal control problem to 

choose the two fuel rates as functions of time in order to minimise a 

time integral which relates normalized fuel rates to the actual heating 

cost. Minimization is subject to the differential and algebraic 

equations of the mathematical model of the reheat furnace, a surface 

melting constraint, the known slab temperature on input to the furnace 

and the desired slab temperature at the furnace exit.

Considerable computation is needed to solve the above dynamic 

optimal control problem, as repeated iterations are needed to solve a 

two-point boundary value problem. However, due to the policy of grouping 

together slabs of the same thickness and heating requirements and to the 

fact that these slabs move through the furnace at a constant velocity, 

the solution of the optimization problem gives constant fuel rates. In 

this situation the problem is simplified and reduces to a steady-state 

optimal control problem.

3.2.2 Rolling mill optimization

Lopresti and Patton (1970) have developed an approach to minimum 

cost steel rolling in a hot strip reversing mill which determines a 

sequence of screw settings to give a specified plate thickness and 

temperature after the final pass. This is achieved at a minimum cost 

without violating physical limits on force and torque. The cost of 

rolling a slab is defined as a weighted sum of the total slab pass

time through the mill and the total energy required. Lopresti and 
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Patton (1970) base their analysis on a reversing mill empirical mathe

matical model developed by Schulz and Smith (1965) 'which describes a 

reversing mill on a pass-by-pass basis as a series of difference 

equations. The state variables are slab thickness and temperature, 

and the output variables are roll force, roll torque, time per pass 
and energy per pass. The control variables are the screw settings for 

each pass. The optimization problem is formulated as the solution of 
a dynamic programming problem which determines the required sequence of 

screw settings.

The dynamic programming solution of the problem is investigated in 
chapter 5 with the further addition, not accounted for by Lopresti and 

Patton, that there must be an odd total number of passes of each slab 

through the reversing mill. This ensures that the slabs exit the rever

sing mill in the correct direction.

3.3 Mathematical Description

In this section brief mathematical descriptions will be given for 

both the sub-processes in question. For ease of understanding, the 

notation in this section will be simplified from that of section 3.1, 

which is a fairly rigorous breakdown of the various sub-processes.

In the mathematical description of the reheat furnace, it is con
sidered that the air temperature spatial distribution along the furnace 

length is regulated by local zone temperature controllers whose set 

points can be manipulated for optimization purposes.

The temperatures of the slabs,in the furnace, are given by:

vf> .......................................................... (3-D

fi’ 
f , the desired 

This is the same as the 
the roughing mill, neglecting cooling.

where 0_^ is a vector of slab temperatures, u^ is a vector of controller 

set points which determines the furnace air temperature, and v^ is the 

slabs’ speed. Equation (3.1) is subject to boundary conditions, 9 

the slab temperature at the input to the furnace, and 9 

slab temperature at exit from the furnace.
input to

The zone fuel consumptions are described by:

Wf = Gf(-f’ -P ................................................................. (3.2)
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which relates fuel flow

temperatures.
rates, w to the slab temperatures and zone

In addition there are algebraic inequality constraints: 

hf f ’ —f ’ vf’ 6fo) « 0 (3.3)

describing, for example, maximum allowable slab surface temperatures, 

maximum and minimum fuel flow rates, maximum slab speeds, maximum 

possible number of slabs in the furnace, etc.

In the above mathematical description, the state variables are
the control variables are 0^ and v^, whilst u^ and w^ are output 

variables which are not connected to any other process in the overall 

hot strip mill. 9^° is an output variable which connects to the 
reversing mill.

A local objective function for optimizing the reheat furnace per
formance in terms of achieving minimum fuel consumption and maximum 

throughput can be defined as: 

t o

Ff(wf)dt - p2 Gf(vf) (3.4)

where F^(w^) relates fuel costs to fuel flow rates and G^(v^) relates 

throughput to slab speed assuming the furnace is loaded to capacity at 

all times. Coefficients p^ and pweigh the relative importance of 
fuel consumption and throughput.

The following mathematical description of the reversing mill is 
based on the empirical model employed by Lopresti and Patton. The 

slab thickness and temperature are described by the following six 
equations, viz:

ei+l = 0(0.. h..r.) ............................................................ .. (3.5)' 1' 1

hi+l — h(e., h. , r.) ............................................................ (3 6)

e.1
= e (0. , h. , r.) ............................................................ (3 7)i’ 1
— h. , r.) ............................................................ (3 811 i i'

f. = f(0., h. , r.) ............................................................ (3 9)1 i’ i

T.1 T (0± , h. , r.) ............................................................ . . . (3 10)1’1

where h. .1 and 0. are1
a.n<L

slab ^temperatures at the end of pass i, and s. is1
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the screw setting during pass i. e. is the energy input during the ith 

pass, the i^h pass time, the roll force and the torque 
experienced during the it^1 pass.

Since expressions (3.5) - (3.10) cannot generally be obtained 

explicitly, an iterative scheme must be employed to find the unknowns 
0.,n and h.,n as functions of 9., h. and r.. The other quantities are 

then obtained by substitution. The essential point to note here is that 

(9., h.) is the state of this process and r. is the current input. The
li 1

other variables, e., £., f. and r., are outputs.
ill 1

In addition, there are constraints, viz:

h (h., 9., r.) 0 ..................................................................... (3.11)r 1 i i

representing, for example, maximum roll force, maximum torque, tempera

ture constraints, etc.

The local optimization problem is to determine a sequence of roll 

settings, which will give an admissible final state of plate thick

ness and temperature at minimum cost. The objective function can be 
defined as

min
r i

r NJ (p3 F (e.) - p4 C (I.)] 
1=1

................................... (3.12)

where ^(e^) relates power consumption to energy and Gr(£.) relates 

throughput to time per pass. The output variables, from the reversing 

mill to the rest of the sub-processes, are the final thickness and 

temperature of the slabs after the Nth (final) pass.

The initial conditions of the slabs on entry to the reversing 

mill are h , the slab thickness, and 9 = 9n , the slab temperature.o o fo
The initial temperature represents an interconnection variable with the 

output of the reheat furnace.

3.4 Decomposition using the Interaction Balance Principle

Figure 3.5 shows the decomposition of the two sub-processes, where 

the first consists of the reheat furnace and the second the reversing 

mill. The interconnection between the two sub-processes is

The slab temperature from the reheat furnace to the 

reversing mill.
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In general, the input slab temperature to the furnace from the reversing 

mill is also an interconnection variable, but in this application the 

furnace slab input temperature is specified.

Constraints on the system are

0C = 0. ....................................................... (3.13)fo 1

where 0^° is the slab temperature on exit from the furnace and 0^ is 

the slab temperature on input to the reversing mill.

Let

Gl<vf> Hf) Ff(wf)dt - p2 Gf(vf)

to

(3.14)

Equation (3.14) represents the furnace fuel and throughput cost 
function.

Let

c2(r., e.) -
N
y (p F (e.) - p. G (£.)} 

. , k 3 r i 4 r 1 ' i=l
(3.15)

Equation (3.15) represents the reversing mill energy and throughput 
cost function.

Incorporation of the constraint, given by equation (3.13), into 
the overall objective function using Lagrange multipliers, and then 

decomposing, gives the following first-level subproblems:

The furnace subproblem becomes

' B1 6fojmin 
Vf ,Uf

................................... (3.16)

subject to the furnace equations but with the slab exit temperature 
unspecified.

The reversing mill subproblem becomes 

min
r. _i’

QG2(r., e£) + S2 ................................. (3.17)

subject to the reversing mill equations but with the final slab 

temperature unspecified.
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As the system constraint is 0,. =9., then The second-

level problem is to update the coordination variable, 6^, until the 

interconnection constraints are satisfied, i.e. when interaction 

balance is obtained. The first-level decision problems, and C^, 
pick not only the controls u^ and r^, but, in general, the interaction 

inputs as well. One method of updating the coordination variable, 

is simply by comparing the difference between the slab temperature the 

furnace is willing to supply, and the temperature demanded by the 

reversing mill. 0 is adjusted until the two decision units match 

supply and demand.

3.5 Decomposition using Model Coordination

Model Coordination employs the same process decomposition as used 

by the Interaction Balance scheme, but in this case the coordination 

variable, i.e. 0_ =9., becomes the interconnection variable itself.fo 1
Modification to the sub-process performance functions is not required.

The furnace subproblem is

min G (v , u ) 
vf, uf

min
vf, uf Di

subject to furnace equations with the 

by the second-level decision unit.
slab exit temperature specified

The reversing mill subproblem is

[ J (C3 Fr(e.) - c4 Gra.))

*—1=1
min G?(s.)
ri

min 
ri

(3.19)

subject to the reversing mill equations with the input slab temperature 

specified by the second-level decision unit.

The task of the supremal unit is to.adjust the specification of 

furnace slab exit temperature, such that the combined sub-process

cost functions are at a minimum, viz:

min
9fo

(Gl(vf, uf) + G2(ri)) ..................................................... (3.20)

Figure 3.6 illustrates the structure for the model coordination 

scheme. The individual first-level problems are similar to those in the
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interaction balance scheme and identical considerations of the sub

process optimization solutions are applicable.

3.6 Conclusion

Two proposals have been shown for solving the integrated steel 

mill control problem. Following the recommendations of Matuszewski 

and Lefkowitz, the first proposal uses the interaction balance prin

ciple to derive modified performance costs for each sub-process. The 
individual costs are manipulated by a second-level unit, which forces 

the system to solve the overall problem whilst allowing for interactions 

between sub-processes. The interaction balance structure has a dis

advantage over the model coordination proposal in that the Lagrange 

multipliers increase the dimensionality of the problem in terms of the 

total number of variables which require manipulation for optimization 
purposes. Another major disadvantage with the interaction balance 

scheme is that there is no direct control over the slab temperatures 
as they leave the furnace, and hence it is possible that, if applied 

on-line, unfeasible temperatures could be demanded of the furnace.

Model coordination does not suffer from the two disadvantages out

lined above. Model coordination is a feasible technique in that 

intermediate results, determined by the supremal level, can be applied 

directly to the plant. Due to the inherent on-line advantages of the 

model coordination approach, the rest of this study will give priority 

to the model coordination scheme, the results of which are outlined in 
chapter 6.
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4.0 THE REHEAT FURNACE

The slab reheating furnace forms an integral part of present-day 

hot strip mill plant. Its function is to heat steel slabs to a tempera
ture sufficient to permit rolling operations without physical damage to 

the internal structure of the material, at a rate dictated by production 

requirements, and using minimum power.

Until recently, control of slab reheating furnaces has been almost 

entirely under manual supervision. As reheating of slabs requires very 

large amounts of heat energy, when related to the large tonnage rolled 

in a hot strip mill over a period such as one year, relatively small 

improvements in the overall consumption of fuel amount to considerable 

financial savings.

This chapter will attempt to apply optimal control theory to 
minimize fuel costs, whilst at the same time meeting system constraints. 

The control study therefore commences with the development of a simpli

fied model of the furnace temperature profile and proceeds to the 

development of a lumped parameter model of the heating process of a 

slab in a furnace. The two models are combined to formulate the control 

problem of a slab reheating furnace and solutions to both the steady

state and dynamic operation of the furnace are presented.

4.1 Modelling the Reheat Furnace

Reheat furnaces have been considered to be distributed parameter 

in nature because T, the temperature distribution within the furnace, 

is a function of space (x) as well as time (t), i.e. T = T(x, t). The 

variables available for controlling this system are the various fuel 

inputs (U(t)), which are a function of time alone. Therefore, it is 

reasonable to search for a model in terms of the fuel rates and certain 

predetermined spatial terms defined by the furnace characteristics 

under normal operating conditions. Such a model would have the advan

tage of being lumped parameter in nature.

The modelling of a system may be done before taking data ("a priori") 

or after ("a posteriori"). The a priori approach has two advantages: it may 

show the easiest way to collect the relevant data, thus eliminating the 

irrelevant, and it may also, if used early enough in the design of a 

system, considerably ease the later control of the system. Modelling a 
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system prior to design may often mean the difference between an unstable 

parameter-sensitive system and a stable, less sensitive one. One has 
only to consider the importance of reliable stable control over fast 

nuclear reactors and jet aircraft to realise the full significance of 

this.

The a posteriori approach is often used on existing plant. Some

times it may consist of simply fitting a three-term controller and 

adjusting it, if the plant is simple. In more complex plants, such 

as a five-zone steel reheat furnace, data logging over a year or more 
may be necessary to obtain sufficient data for a model to be formulated 

and identified (Pike, 1969).

In his study on the control of a slab reheating furnace, Pike (1969) 

chose a typical five-zone furnace and made the following assumptions in 

the derivation of a mathematical model. Figure 4.1 shows a typical five- 
zone reheat furnace.

(1) Little heating is done in the soak zone, so the problem 

may be formulated in terms of delivering slabs to this zone

at some required average temperature, and model only the first 

four zones of the furnace.

(2) The upper and lower preheat zones are slaved as are 

the upper and lower heat zones. In addition, the effect of 

skids is small enough to be neglected so a symmetric heating 

process may be considered.

(3) The furnace is loaded with slabs of a uniform length 

(pushed sideways) so variations across the width of the 

furnace may be ignored.

In Pike’s study, the furnace to be modelled consisted of the pre

heat and heat zones of the furnace shown in Figure 4.1. The tempera

ture profile is determined, for some given pushing rate and loading, by 

the fuel input rates for the various zones. Considering this, it is 

reasonable to seek an expression for T(x, t), the temperature distri
bution in the furnace, of the form

T(x, t) = T(F(x), U(t)) ................................................... (4.1)

where F (x) = [f (x) , ...., f (x)J is

by the physical characteristics of the
a set of functions determined 
furnace, and U(t) = fu^(t), .

5
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is a lumped parameter control vector. Let x be the position along 

the length of the furnace and assume that the temperature variation in 

the other directions is not significant.

Assuming that T(x, t) may be represented by the product of a 

function, then equation (4.1) may be written as

T(x, t) = f(x) u(t) ....................................................... (4.2)

where f(x) is a function of x only, and U(t) is a function of t only.

The furnace considered by Pike is of the counterflow type, where 

the slabs are fed in the opposite direction to the flow of gas. Conse

quently, the preheat zone is heated by both its own burners and by gas 

from the heat zone, whereas the latter is heated by its own burners.

4.1.1 Heat zone temperature profile model

The steady-state furnace temperature profile in the heat zone 
may be given by

T^(x, t) = f^(x)u2(t) for 14 m x 24 m ................... (4.3)

where u^(t) t^ie normalized fuel input rate of the heat zone and

f^(x) accounts for the temperature variation along its length.

Deviations from the steady-state occur when either the pushing rate 

is changed or when slabs of different thicknesses are pushed into the 

furnace. If thicker slabs are introduced into the furnace while the 
other slabs are kept constant, the increased load will absorb more 

heat, thus causing a drop in the temperature profile. Also, if the 

pushing rate is changed while the other parameters are constant, the 

furnace temperature profile will change accordingly.

These effects are included in the model equation by letting the 

load in any zone be directly proportional to the average thickness of 
the slabs in that zone. Define

w = the nominal slab thicknesso

w^ = the average thickness of the slabs in the heat zone

<5 = the normalized deviation from the nominal load in the heat
n

zone.
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6h is then given by

................................................... (4.4)
w o

Parameter tv., which will determine the general effect due to 
loading, is introduced by writing

"h = 1 - bh 6h ........................................ (4-5)

where 6 = the heat zone thickness weighting factor,
ri

Introducing the effect of varying v, the push rate, define

Bv = the push rate weighting factor

vq = the nominal push rate

hence

$ = 1 - Bv 6V ................................................... (4.6)
where v - v

6v = ................................................... ^.7)
o

Including these

for non-steady-state

effects, the temperature profile in the heat zone, 

operation, is given by

Th(x, t) $ f£(x) u^(t) for 14 x 24 m (4.8)"H

Assuming no change in the pushing rate and the fuel rate, and that 

the average thickness is increased in the heat zone, then q will be
H.

less than 1, thus T (x, t) will drop. Similarly, if the average thick- n
ness is reduced, $ will be greater than 1, causing T (x, t) to rise.

With no change in both thickness and pushing rate from their nominal 

values, n = $.= 1. Thus equation (4.8) will be reduced to that of the 

steady-state case, equation (4.3).

4.1.2 The preheat zone temperature profile

As previously stated, being of the counterflow type, the furnace 

temperature in the preheat zone is a function of its own fuel input 

rates, u^, as well as that from the heat zone, u^. In the steady

state operation of the furnace, the temperature profile in the preheat 
zone is given by
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Tp(x, t) = f^(x) u^(t) + f2(x) u2(t) for 0 < x <; 14 m (4.9)

where u^(t) is the normalized fuel input rate in the preheat zone and 

f1 (x) accounts for the temperature variation along the length of the 

zone. The second term is added to include the effects of the heat 
zone thermal energy.

By a similar argument to that given in the previous section, 
define

w - w 
......................................................................................... (4’10)

o

where Sp = the normalized deviation from the nominal load in the pre

heat zone.

Hence,

V ■ 1 - 8P 6P ................................................................................ (4-u)

where ^p = the preheat zone thickness weighting factor.

First, consider the effect of varying the loading on the preheat 
zone temperature-profile. By a similar argument to that given in the 

formulation of equation (4.8), the preheat zone temperature profile 
may be written in the form

Tp(x, t) = (f1(x)u1(t) + f2(x)u2(t)nH)np .......................... (4.12)

This allows for the fact that the loading in the preheat zone not only 

affects this zone but also the temperature profile in the heat zone in 

the non-steady-state operation of the furnace. Similarly, the effect 

of varying v, the push rate, can be introduced by modifying equation 
(4.12) to the form

Tp(x, t) = $[f1(x)u1(t) + f2(x)u2(t)nH]r)p ................... (4.13)

for 0 < x < 14 m

Thus, equation (4.13) gives the temperature profile in the preheat zone 

in the non-steady-state, accounting for changes in thickness and pushing 
rate.

- 48 -



4.1.3 Description of pilot plant furnace

The furnace on which this study is based is shown, diagrammatically, 

in Figure 4.2. The furnace is of the travelling load type and has been 

constructed in the Systems Science Department of The City University 

(London). It comprises a 2.8 m electrically-heated tunnel and is 
designed to heat eight blocks of metal, to temperatures of 500°C, at 

any one time. The heating is achieved using banks of radiators grouped 

into eight distinct zones situated along the length of the furnace. 

Such zones can supply a maximum of 6 kW of radiant energy.

The loads are aluminium blocks of dimension 20.32 cm x 20.32 cm x 10.16 cm 

They are conveyed through the furnace suspended from a conveyor belt which 

is driven by a D.C. motor. The conveyor belt is formed into a loop to 

facilitate the recycling of the loads after suitable cooling. The load 

temperatures are measured using chromel-alumel thermocouples which are 

inserted inside the individual loads. Measurements from the furnace and 
control signals to it are carried out under the supervision of an on-line 
digital computer (Ferranti Argus 500).

The measurement of temperature using thermocouples inserted into the 

loads is clearly not acceptable in practical situations. At the tempera
ture range envisaged (^ 500°C), it is difficult to monitor continuously 

the temperatures cheaply and accurately (+^ 2°C) in a radiation furnace, 

bearing in mind the movement of the loads through the furnace. Detailed 

specifications of the furnace and the interface with the computer may 

be found in Caffin (1972).

In order for the furnace to behave like a typical three-zone reheat 

furnace, it is necessary to couple together some of the individual eight 

zones so that the overall effect is three independently-controlled 

regions. This is achieved by applying the same power input to the first 

three zones, thus simulating a preheat zone. The next three zones are 

also coupled together, simulating a heat zone, whilst the remaining two 

simulate a soak zone. The arrangement is illustrated in Figure 4.3. 

The choice of coupling arrangements is purely arbitrary, but it is felt 

that the preheat and heat zones should dominate the furnace as, in prac

tice, little heating is done in the soak zone (Pike, 1969).

Unlike the typical reheat furnace, discussed by Pike (1969), there is 

a fair amount of interaction between adjacent zones in the pilot rig. 

Heating in the preheat zone affects the temperature profile of the 
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furnace in the heat zone, and vice-versa. Also, there is a fair amount 

of interaction between the heat and soak zones.

For the initial investigations in this study it is assumed that 

the loads are of constant thickness. This being the case, the para

meters, % and n , which determine the effect due to loading, will be 
set to unity. The same, however, cannot be said about the parameter $, 

which determines the effect of push rate changes. As it is difficult 

to measure the effect of push rate changes, due to lack of instrumen

tation for measuring the furnace temperature with the loads moving, 

it is considered that the effects of push rate changes are negligible, 

and hence $ can also be set to unity.

This being the case, equation (4.13), which gives the preheat zone 

temperature profile, reduces to the form as given by equation (4.9), 

i .e.

Tp(x, t) = fT(x) ux(t) + f2(x) u2(t).

The heat zone temperature profile, as given by equation (4.8), reduces 

to the form as in equation (4.3), i.e.

Tr(x, t) = f2(x) u2(t) .

As previously discussed, this equation is valid for furnaces of 

the counterflow type where there is very little effect on the heat zone 

profile from the preheat and soak zones. This, however, is not the case 

with the modified eight-zone electrically-heated furnace. To take 

account of the interaction from the preheat and soak zones, equation 

(4.3) is modified to take account of this interaction. The heat zone 

temperature profile thus becomes,

Tr(x, t) = f1(x) u1(t) + f2(x) u2(t) + f3(x) u3(t) .... (4.14)

for 1.07 m < x 2.13 m

where f3(x) u^(t) i-s the interaction effect of the soak zone in the heat 
zone.

Similarly, the soak zone temperature profile is given by

Tg(x, t) = f2(x) u2(t) + f3(x) u3(t) ................................. (4.15)

for 2.13 m x < 2.84 m
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Due to the distance between the preheat and soak zones, the effects 

of these on one another have been neglected, as it will be shown, experi

mentally, that these effects can be considered negligible. Hence, a 

basic model structure of the electrically-heated furnace, modified to 

simulate a typical three-zone furnace, is given as:

Preheat zone temperature profile

Tp(x, t) = f^x) up(t) + f2(x) u2(t) .............................. (4.16)

for 0 < x 1.07m

Heat zone temperature profile

Th(x, t) = fp(x) u^(t) + f2(x) u2(t) + f3^x) (4-17)

for 1.07 m < x 2.13 m

Soak zone temperature profile

Tg(x, t) = f2(x) u2(t) + fg(x) u3(t) ................................... (4.18)

for 2.13 m .< x < 2.84 m

The above equations will be used to represent the pilot plant 

electrically-heated furnace. The values of r)p, nH, Pg -and $ might be 

determined by a carefully designed experimental program. Such a program 

whilst refining the accuracy of the result, does not affect the validity 

of this study.

4.2 Parameter Estimation of Pilot Plant Reheat Furnace Model

The problem now is to select the functions f^(x), f2(x) an<^ f3(x>. 
which will yield a realistic model of the furnace in order that its 

properties may be examined. In order to keep the model as simple as 

possible, the functions are selected to be of the form

N
f . (x) = J a xJ ............................................ (4.19)

j=0 J

the coefficients, a., and the order, to be determined by taking tempera

ture profile data and then using Least Squares polynomial fitting tech

niques. In order to do this, accurate temperature profile data have 

to be obtained.
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boundary

d0 
dt

where

4.2.1 Gathering of furnace temperature profile data

As there is no direct way of measuring the furnace temperature 

along the length of the furnace, in this particular pilot plant it was 

decided to use the loads themselves in order to obtain the required 
data.

If the temperature distribution through the loads is considered 
to be uniform, and the specific heat and thermal conductivity are 

assumed to be constant, the one dimensional heat conduction equation may 

be integrated over its spatial variable and combined with the radiation 

condition to yield

4 4= K(T - e )

6 = slab temperature
T = furnace temperature
K = constant

which may be used to describe the dynamics of the heating process. (No 

attempt at this stage will be made in deriving the above equation as 

this is fully outlined in section 4.3.)

With the slabs at a steady-state temperature, then 

thus 0 = T, i.e. the load temperatures are at the temperature of the 

furnace.

As previously discussed, all the loads have thermocouples imbedded 

in them thus enabling, via computer software, the load temperatures to 

be measured. It has been determined that the accuracy of the thermo
couple temperature measurements is to within ^°C, experimental evidence 

of this to be found in Caffin (1972). In order to determine the tempera

ture profile of the furnace, for given power input set points, eight 

loads are placed centrally in each sub-zone, as shown diagrammatically 

in Figure 4.4. The next step in the process is to determine the effect 

each of the zones has on the temperature profile along the length of 

the furnace, for various power input set points.

The effect of the preheat zone on the furnace temperature profile 

is determined in the following manner. A power input set point of 0.1 

(set point of 1.0 = maximum power) is applied to the preheat zone (i.e. 
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first three sub-zones), via computer software, and the system allowed 

to settle down. The temperature of all eight loads is measured at ten- 

minute intervals, and the response of the loads, for a power input set 

point of 0.1, is shown in Figure 4.5. The plots in Figure 4.5 show 

that approximately 3| hours elapsed before the loads reached their 
final steady-state values, these values giving an indication of the 

furnace temperature at the points of measurement. This exercise is 

repeated a number of times in order to obtain the average of the 
steady-state slab temperatures . In each case, the ambient temperature 

is recorded and subtracted from the final temperature measurement 

so as to give the actual steady-state slab temperatures. After the 

deduction of the ambient temperature, for each run, a high degree of 
repeatability of the steady-state results is observed to within approxi
mately _+ 5°C, or roughly 10%, thus indicating that the system had not 

been affected by any undue disturbances.

The preheat zone power input set point is increased in steps of

0.1 and the average of the steady-state temperature measurements is 

taken for each set point setting. Figure 4.6 shows the average tempera

ture profile along the furnace for the various set point changes in the 

preheat zone. Figures 4.7 and 4.8 show the furnace temperature profiles 

for various power input set points applied to the heat and soak zones, 

respectively.

4.2.2 Determining the form of the temperature profile equations

The next step in the process is to determine the form, from the 

available data, of the temperature profile equations, as given in 

equations (4.16), (4.17) and (4.18). Before this is done it is neces

sary to determine how the temperatures of the eight sub-zones vary with 

the power applied to each of the three main zones separately. This 

information is obtained from the same data shown in Figures 4.6, 4.7 and 

4.8. Figure 4.9 shows the preheat sub-zone temperatures versus the 

power input set point, applied to the preheat zone only. As can be seen, 

the curves are non-linear. Figure 4.10 shows the heat sub-zone tempera

tures versus the power input set point applied to the preheat zone only. 

As before, these curves are non-linear. Figures 4.11 - 4.13 provide 

similar information for sub-zone temperatures versus power input applied 

to the heat zone only. Figures 4.14 and 4.15 are for power input applied 

to the soak zone only. Generally, in most cases the sub-zone temperatures
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are not linear functions of u., the power input set points applied to 

the three main zones, although in some cases the curves appear close 
to linearity.

Having examined the curves shown in Figures 4.6 - 4.15, the 
functions f^(x), f2(x) and f^(x) can be rewritten in a slightly different 

form by making the coefficients of x functions of U. Referring back to 

equation (4.19), we have

N
f. (x) = 7 a. x*'

1 j=0 J

which, in its new form, becomes

N
f.(x, u.(t)) = £ a.(u.(t))xJ ................................. (4.20)

1 1 j=0 J 1

This form is chosen so as to obtain a better fit over the surfaces 

shown in Figures 4.6 - 4.8. Equations (4.16) - (4.18) then become

Tp(x, u, t) = fT(x, u1(t)) + f2(x, u2(t)) .......................... (4.21)

for 0 < x < 1.07 m

Tr(x, u, t) = f1[x, u1(t)} + f2(x, u2(t)] + f3(x, u3(t)} (4.22)

for 1.07 m ..< x< 2.13 m

Tg(x, u, t) = f2(x, u2(t)} + f3(x, u3(t)J (4.23)

for 2.13 m < x 2.84 m

Examining Figures 4.11 - 4.15 shows that in most cases there is 

a sudden change in slope when a power input set point of 0.3 is 

approached. The reason for this is not very apparent, but does not 

detract from the validity of obtaining a reasonable model of the fur

nace. With the view that calculations are to be performed using an 

on-line digital computer, which does not have a floating point hardware 

unit, it is necessary to keep the furnace equations in as simple a form 

as possible. Due to the change of slope, shown in Figures 4.11 - 4.15, 

it is decided to divide the modelling into two halves so as to keep 

equation (4.20) in as simple a form as possible. A model is obtained 

for power input set points of 0.3 and above, and a model for power input 

set points of 0.3 and below. For power input set points of 0.3 and 

above, the curves are fairly linear in u^ with the result that equation
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(4.20) takes on the form

f.[x, u.(t)]
N

(4.24)

For power input set points of 0.3 and below, equation (4.20) takes on 

the form

f.(x, u.(t))
N

(4.25)

cl, B being determined by a least squares fit over the appropriate 

surfaces.

4.2.3 Evaluation of general form of model equations using Least 
Squares analysis

Rather than fit an equation, describing the surfaces shown in 

Figures 4.6 - 4.8, over the entire length of the furnace with the 

result of obtaining a high order polynomial in x, a piecewise approach 

is adopted. This is achieved by a least squares fit to each zone 

rather than over the length of the furnace temperature profile surface. 

Take, for example, the surface shown in Figure 4.6. This indicates the 

temperature profile along the length of the furnace, for various power 

input set points, with power applied to the preheat zone only. The 

effect in the soak zone is ignored as the contribution of the preheat 

zone in the soak zone is considered small enough as to be negligible. 

A least squares fit is made over the surface in the preheat zone, together 

with sub-zone 3 in the heat zone so as to ensure continuity, for power 
input set points of 0.3 and above. The resulting polynomial is of second 

order in x and first order in u^ as already predefined by equation (4.24). 

Similarly, a least squares fit is made over the surface in the heat zone, 

together with a sub-zone on either side in order to obtain a reasonable 

degree of continuity. Once again, a second order polynomial in x is 

obtained. The same approach is adopted in deriving equations to fit the 

surfaces shown in Figures 4.7 and 4.8.

From the least squares fitting program, the equations are of the 
general form

T(x, u^ t)

i = 1, 2, 3 (4.26)
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where T is the temperature along the furnace
u^ is the power input set point to the appropriate zones

x is the distance along the length of the furnace.

For further details on the coefficients, A - F, the reader is referred 

to Appendix A.

Figures 4.16 - 4.22 show the curves generated by equation (4.26), 
together with the actual data points taken from the furnace. The curves 

are for power input set points of 0.3 and above, and in the majority of 

cases a good fit is obtained. Due to scaling, it is difficult to plot 

the 95% tolerance band on the estimated outputs, but the reader is 

again referred to Appendix A for a statistical analysis of the derived 

equations. Also shown are the equations derived for power input set 
points of 0.3 and below.

So far, the temperature at any point in the furnace is estimated 

due to the action of only one zone being switched on at any one time. 

In practice, of course, all the zones are operating at the same time 

and therefore a temperature profile model is needed which includes the 

effect of power operating in all zones. With all three zones activated 

at various power settings, steady-state temperature data are gathered. 

Due to heat losses and other thermal phenomena, there are discrepancies 

between the combining of the equations and the actual gathered data 

when all zones are switched on. In order to minimize the differences 
between the actual and empirical model, weighting factors are intro

duced into the combined model equations. In order to simplify matters, 

the weighting factors are derived in a piecewise manner and hence vary 

when going from one zone to another. The reader is referred to 

Appendix A for a full description of the weighting factors.

is thus defined by

................................................................(4.27)

3 < x < 1.07 m

.......................................................... (4.28)

1.07 m < x < 2.13 m

•...........................  (4.29)

2.13 m^ x < 2.84 m

in any one zonetemperature
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where T^

th =

temperature in Preheat zone

temperature in Heat zone

Ts = temperature in Soak zone

TPP
= temperature in Preheat zone with preheat zone on only

TPH
= temperature in Heat zone with preheat zone on only

THP = temperature in Preheat zone with heat zone on only

THH = temperature in Heat zone with heat zone on only

THS
= temperature in Soak zone with heat zone on only

T SH
= temperature in Heat zone with soak zone on only

T SS
= temperature in Soak zone with soak zone on only

Subscript 1 denotes which zone has power on
Subscript 2 denotes zone where temperature is measured

x is distance along length of furnace

Wp W^, W3 are weighting factors.

Having determined a static empirical model of the furnace, the next 

step in the overall modelling exercise is to determine a model for the 

loads.

4.3 Determination of Mathematical Model of the Loads

Heat is released in a furnace by burning fuel in the case of fuel- 

fired furnaces. In theoretical classification, heat is transmitted by 

three means:- conduction, convection, and radiation, all of which depend 

upon a difference in temperature. Although, generally, the three kinds 

of heat transmission occur simultaneously, fortunately one often domi

nates the others in practical cases. The heat transferred by convection 

and conduction to the slabs in a reheating furnace is relatively small 

compared with that transferred by radiation. This is apparent because 

convective and conductive rates are directly proportional to the 

temperature difference, whereas radiation rate obeys a fourth power 
law.

The heat transfer in a conventional reheating furnace is mainly 

due to the luminous flame radiation and the non-luminous gas radiation.
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The hot gas passing through the furnace gives up heat to the direct 

heating surface as well as to the surrounding walls. These walls lose 

part of the heat by conduction to the outside, but the greater part is 

re-radiated through the gas to the heating surface.

Luminous radiation follows more nearly theStefan-Boltzmann law 

of radiation that applies to solids. A luminous flame is different 

from a solid, in that it is partly transparent, and therefore the 

radiation from it is dependent on the concentration of the particles 

in the flame as well as the fourth power of the absolute temperature.
the 1 iTtm*nnsity is affected due to solid particles caused by the 

combustion, i.e. soot, then the equation for net radiation exchange 

between a flame and the charge is given by (Brown et al, 1958):

q = oA(T? - 6 4)er e ............................................ (4.30)
f s f s

where A = area of the flame envelope

Tf = absolute temperature of the flame, furnace temperature

0g = absolute temperature of the slab surface

e^ = emissivity of the flame

e = emissivity of the slabs

The values of e^ and e^ change with temperature, for which graphs 

are available in the literature (Brown et al, 1958). However, in prac

tice, an overall emissivity factor is employed. This overall emissivity 
varies from one furnace to another.

Radiation from non-luminous flames and clear gases does not follow 

the fourth power law, nor does it follow any other exponential law. 

The reason is that non-luminous flames and gases are selective radiators 

i.e. they emit radiation in only certain bands of the spectrum and not 

at all wavelengths.

As previously discussed, the furnace under consideration is 

electrically-heated and the heating process is governed solely by 

radiation. The heat transfer in a furnace can be represented by two 

simultaneous equations. One describes the heat conduction within the 

slab, and the other describes the heat transfer from the furnace atmos

phere to the slab surface. The latter is the boundary condition for the 

partial differential equation describing the transient conduction 
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within the slab. The solution of the two equations gives the tempera

ture of the slab.

4.3.1 Mathematical model assumptions

(a) Slabs are assumed to enter the furnace with uniform temperature

distribution.

(b) Slabs are subjected to symmetrical heating from both sides.

(c) In the soaking zone, no heat is exchanged between the slab
and the refractory hearth

(d) Heat is transferred to the top and bottom surfaces of the

slab by radiation. Other means of heat transfer are 

neglected.

(e) The furnace temperature over its width is uniform.

(f) Slabs are assumed to be moving with a velocity depending on

the pushing rate, although they may be stationary at times, 

during their passage through the furnace.

4.3.2 The model

The equations for heat transfer within a large flat slab in a 

reheating furnace, together with initial and boundary conditions, 
are shown below.

The heat conduction equation is given by:

pc||(Xs,t) - [k ............................ (4.31)

with the initial condition given by

e(xs,O) = 6o(jQ, 0 < x5<$ s ..................................... (4.32)

3 where p = density (g/cm )

c = specific heat (cal/g °C)

k = thermal conductivity (cal/cm.sec. °C)

9 = slab temperature (°K)

0Q - initial temperature (°K)

s = slab thickness
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t = time

x^ = coordinate in the direction of slab thickness

(see Figure 4.23)

According to assumptions (b) and (d), the boundary conditions on 

the surface of the slab in the preheat and heat zones are expressed by

1 30 z . s- kSs(x!’t) xjO
Xf=S

(4.33)

where e effective emissivity of the furnace
2

Stefan-Boltzmann constant (cal/cm .sec. °K4)

furnace temperature (°K)

According to assumption (c) , in the 
condition on the heating surfaces of the 
cally as

soaking zone the boundary 

slab is expressed mathemati-

■k n(xs’ (4.34)
x=s

e a

a

T

0

where 0(xs,t) is the slab temperature as 

and time. The furnace temperature, T(y,

a function of its thickness

t), varies along its length 
and also varies with time, but for steady-state operation of the furnace 

(i.e. slabs of the same thickness pushed at a constant rate), it is 
only a function of the furnace length.

It is necessary 

ture, 0 , should not s

to point out here that the slab surface tempera- 
exceed a specified limit, i.e.

0(0; s, t) = 0 (t) < 0s s max (4.35)

Table 4.1 gives the properties of the aluminium slabs.

Table 4.1; Aluminium Slab Properties

Melting point = 66O°C

Density, p = 2707.1265 Kg/m^

Specific heat, c = 895.975 J/Kg °C

Thermal conductivity, k = 228.36 Wm/m °C

- 60 -



4-
23

 StrtQ
 Me

-ft
T/

K
G

 ft P<ARN
R

C
.£

 fH
W

lU
&

 tOO
H

D
M

lT
SS

 rSO
TT

fr
tO

i\Z



(4.36)

The full derivation of the average temperature is given within 

Appendix B. By substituting the values given in Table 4.1, the average 

slab temperature is given by the solution of the differential equation:

d5 7.95 x 10“8 ,„4 -4, r, , ,, ,„-8 s
at -p 'c(e)— (T " 6 Mi - 2-64 x 10 0 J ..

The slab surface temperature is given by

2A = A + P c s de
s 720 k(e) dt

The constituents of the aluminium extrusions are as follows:

(4.37)

Cu = 3.5 - 5.0%

Mg = 0.4 - 1.2%

Si = 0.77.

Fe = 0.77.
Mn = 0.4 - 1.2%
Ni = 0.27.

Zn = 0.27.

Sn) ■■
Pb) = 0.05% each
Sb)

is foundFrom the above constituents, and from available tables, it 
that the thermal conductivity and specific heat do not undergo 

excursions with temperature changes. The average specific heat and 

thermal conductivity are thus taken as shown in Table 4.1, and assumed 

to be constant over the temperature ranges envisaged. The k and c are 

relatively constant for aluminium; it is proposed to keep the slab 

equations in their final form in the event that should another material 

be used, i.e. steel, a rederivation of the slab equations does not have 

to take place.

4.4 Furnace/Slab Model Evaluation

Having determined a static empirical model of the furnace and a 

dynamic model of the slabs, the next step is to evaluate how well the 

models behave compared to the real existing plant. In order to test 

the model of the slabs, slab trajectories are required as they pass 

from one end of the furnace to the other at a constant velocity. The 
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velocity set point is related to the actual slab velocity by the 

relationship:

v = SPx 5.588 x 10“3 m/s ............................................................ (4.38)

where SP = velocity set point in the range 0.0 - 1.0

v = actual slab velocity in m/s.

This relationship is determined by measuring the actual slab velocities 

for various set point settings and is found to be linear. Figure 4.24 
shows the relationship between velocity and velocity set point.

With a chosen set of power input set points and at a constant 

velocity, slab temperature readings are taken and compared with those 

produced by the model for the same input and velocity conditions. 

Initial conditions such as ambient temperature and initial slab tempera

ture are also taken into account. Due to model inadequacies and other 
physical phenomena, the integrated model equation is not a faithful 

representation of the physical system. Various reasons are possible 

contributors to this model inadequacy problem, and are outlined as 
follows:

(i) In the slab model derivation, the derivation works on the 

fact that the equation for heat transfer is for a large 

flat plate, whereas in the pilot plant the slabs are not 
large flat plates.

(ii) The emissivity of the slabs is taken as 0.7, but in fact 

could be higher or lower due to surface finish deterioration.

(iii) Thermal conductivity and specific heat of the actual slabs

may not be the same as those given in the model.

(iv) The furnace temperature over its width may not necessarily

be uniform.

(v) Heat transfer between adjacent slabs may not be insignificant.

To compensate for the model inadequacy, a weighting factor, Wx, 

is introduced which modifies the slab model equation so that the model 

and plant trajectories are as close as possible. W^ is chosen to modify 

the slab model equation rather than the actual furnace profile equations 

as, due to lack of instrumentation, it is virtually impossible to measure
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the effects of furnace temperature with moving slabs. Thus, equation 

(4.36) becomes

. w X 7--^ (I4 - e4)(l - 2.64 x io’8 | e3) (4.39)
dt 1 pcs k k J

A complete set of actual slab temperature data is obtained for various 

power input set points and velocity settings, and from these, W , is 

chosen so as to give minimum deviation from the slab temperature profiles. 

Analysis of the results puts at 1.86. Figures 4.25 - 4.28 show the 

various responses obtained for a small selection of power input and 

velocity set point changes.

4.5 Optimization of Reheat Furnace Sub-Problem

In general, the problem of optimal heating of slabs in a reheat 

furnace may be stated as follows: Given the dynamic system described 

by equations (4.26), (4.36) and (4.37), it is required to find the 

furnace temperature profile which transfers the system from a specified 
initial state to a final desired state in a fixed time. As well as 

transferring the system from an initial to a final state, some heating 

systems require that the objects to be heated undergo a specified 

heating trajectory. In this case, the optimal control is to ensure a 

minimum deviation of the temperature distribution from the specified 

distribution.

The furnace temperature profile, T(x, u, t), which controls the 

heating of the slabs is further controlled by the fuel rates U(t). In 

other words, U(t) is the control function of the system. The optimal 

control problem may now be specified as that of finding the control 

law, U(t), which minimizes a given cost function whilst transferring 

the system from its given initial state to a final state in a fixed 
time.

In the present work, emphasis is put on minimizing fuel cost 

although there is the possibility of including throughput in the cost 

function. As far as minimizing cost is concerned, the preheat and 

heat zone fuel cost play the most important part as the soak zone will 

manipulate its fuel rate controls to maintain a constant temperature. 

The constant temperature to which the soak zone is regulated is the same 

as the slab temperature to be achieved at the end of the second zone.
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The temperature to be achieved at the end of the heat zone is that as 

sent down from the supremal level.

4.5.1 General formulation of an optimal control problem

Consider physical processes whose behaviour is governed by a system 

of ODE's:

£i(xl> ■X ux........... .. up , i = 1, 2, ..........n (4.40)

The x^, i = 1, ...., n, define the state of the process, and the 

Uj , j =1, .............  define the state of the control. If the vector

(x^......... .... x^) is denoted by X, and the vector (u^, ...., ip by U,

and the vector (f^, ...., f ) by F, equation (4.39) can be written as

X(t) F(x(t), U(t)J (4.41)

where X(t) is termed the state vector and U(t) the control vector.

In practice, the magnitude of each of the control functions 

u^) may be limited, and for this reason U is constrained,(up ....,
such that

ru j (t) u . , j = 1, max j J (4.42)

where umax is a constant.
j

Similarly, the state vector may also be constrained by some 
physical reasons, such that

g.(x(t)} < 0 (4.43)

In general, it is assumed that a fixed initial time, t , an initial o 
state X(t°), and a desired terminal state, X(t^), tf > t , are given. 

It is also assumed that the terminal time, tf, is either fixed or free.

By manipulation of the control signals U(t) in an appropriate 

manner, the purpose of the control system is to force the process from 
an initial state, X(t ),

o
manner that

to a final desired state, X(tf), in such a

F Gf[x(tf), tf) (4.44)
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is a minimum. F is called the cost function or performance criterion 

and is a measure of system performance.

The control, U(t), which minimizes F is called an optimal control.

The corresponding transition from initial state, X(t ), to final state, o
X(tp, is called an optimal trajectory. Hence, the main problem is in 

finding the optimal control and optimal trajectory.

4.5.2 Formulation of slab heating as an optimal control problem

In order to formulate the slab reheating as an optimal control 
problem, it is first necessary to describe the variables that define 

the overall process.

(1) Input variables

These are a set of slabs of various thicknesses defined as 
follows:

S = (s^, S2> ...., s), an n-dimensional vector representing
the thickness of slabs travelling through the furnace. s^ e S, where S 

is a set of allowable thicknesses.

v e V, where V is the allowable set of slab pushing rates.

0 = (01, ©2» ...., 0n) , an n-dimensional vector representing the 
temperature of slabs entering the furnace. 0. EQ.,whereo is a set of -------------- 1
allowable input temperatures.

(2) Control variables

The power input set points, u^, u^, u^, are the control variables 

for the furnace. Hence, U = (u^, u^, u ), where U e 2;, Z being a set 
of allowable control variables.

(3) Output variables

0^ e where $ is an allowable set of temperatures of slabs 
leaving the furnace and is an n-dimensional vector.

Having defined the system variables, consider a group of n slabs 
passing through the furnace with a pushing rate, v(t). The average 

temperature of the jslab, at any time during its passage through 

the furnace, is given by equation (4.36), i.e.

d0.
__ J
dt

3 ((h)

4 q
3 k(^j) (4.45)0
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where T. is the furnace temperature which the j slab sees on its journey 

through the furnace. T. is determined by solving equations (4.21) - 

(4.23). The position of the j slab at any time t, is given by

......................................... (4.46)

The optimal control problem may now be stated as: given the 
system described above, it is required to transfer the system from its 

initial state, X(t ), to a final desired state, X(t_), whilst minimizing o t
a cost function of a form given by equation (4.44). As with most 

physical systems, the system is governed by a set of constraints, namely:

(a) The slab surface temperature (equation (4.37)) should not exceed 

a specified limit, i.e.

e . (t) <: e
sj s max

(b) The control variables must
i . e.

0 u. u.
J J max

(c) The furnace temperature is

T < Tmax

............................................................ (4.47)

lie within their permitted limits,

............................................................ (4.48)

limited by

................................................................... (4.49)

4.5.3 The steady state optimization problem

If slabs of a constant thickness and initial temperature are pushed 

into the furnace at a constant velocity, and the power input set points 

are constant, then the furnace is said to be operating under steady-state 

conditions. As the slabs undergo the same heating process, they will 

leave the furnace with the same temperature.

In order to make the third zone represent, as nearly as possible, 

a true soak zone, a feedback scheme incorporating a proportional plus 

integral controller is employed, as shown in Figure 4.29. The set 

point given to the soak zone is the desired output temperature, as 

sent down by the supremal level, and is the same as the desired exit 

temperature from the second (heat) zone.
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In the steady state, there may exist more than one pair of (u^, 

within the set U that will satisfy the condition 9(t^) = 0^ and equations

(4.47) - (4.49), where 0^ is the desired set of output temperatures.

The chosen cost function for the steady-state case is given by

F / 2 2X<U1 + u2 > (4.50)

Equation (4.50) is a measure of the fuel consumption and the quadratic 
form penalizes more heavily high operating fuel rates when u^ and u? 
are greater than unity.

The optimal control problem is to choose (u^, U£) such as to 

minimize fuel consumption whilst meeting the above constraints.

The above equation is justified for furnaces of the counterflow type 

where there is no interaction between the heat and soak zones and the 

output of the system, during optimization, is the exit temperature from 
the heat zone. In the furnace under consideration, there is a fair 

degree of interaction between the heat and soak zones which causes the 

heat zone temperature to be modified by the soak zone as the soak zone 

tries to keep its slabs at a constant temperature. As a result of this, 

equation (4.50) is modified in order to meet two requirements:

(1) The slab temperature on exit from the heat zone is the same as

that required on exit from the soak zone

(2) In order to minimize deviation from the chosen output temperature,

the slab temperature gradients should be as near as possible to 

zero on exit from the heat zone.

Hence, equation (4.50) is subject to additional equality constraints, 
namely:

soak d

d0

0

(4.51)
dt 0

as well as the equality and inequality constraints of the system.

is the slab temperature gradient on entry to the soak zone.
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The requirement now is to find a (u , u^) from the allowable set U 

that minimizes equation (4.50), subject to the equality and inequality 
constraints.

4.5.4 Including throughput in the static optimization problem

The previous section dealt with the static optimization problem 

and dealt with the minimizing of fuel input at a constant velocity. 

This section will proceed to show one possible method of incorporating 

throughput into the optimization scheme, i.e. minimize fuel and maximize 
throughput.

Consider the following objective function

F(U, v) = c^2 + u22) - c2v ................................... (4.52) 

where v 0.

It is required here to minimize F with respect to u^, u2 and v, 

to the equality and inequality constraints of the system, where 
c2 are weighting factors.

C2’

subj ect 

c^ and 
c^ can be normalized and incorporated with 

thus equation (4.52) becomes

F(U, v) 2 2
ui + u2 " c v (4.53)

9F
9u^

v = f(u

In order to

for use
Su2

p u2) in

minimize the objective function it is required to obtain 

in a gradient optimization routine. Also needed is

order to evaluate F(U, v).

w 3FNow -r— dU^ = 2u^ - 8v c —3u

9F = 2u2 - 8v
3u_ C

(4.54)

v = f(up u2) is the velocity set point 

of power input set points, will bring a 

temperature.

required which, for a given set 

load to its final desired output

For a known U, (U = u^, u^ , guess 

to its desired temperature.

v^l) which will bring the load

Hence,

6f f(U, v(1))
(4.55)

where 0 = final slab temperature.
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If the initial choice of velocity is incorrect, then a new velocity 

is determined by the relationship

v<2) ’ v<1) (ea - e£> • 0 < e « 1

9v

..................... (4.56)

This gives v = f(u , u ). 

required to determine
In order to evaluate 

9v
9u2-

equation (4.54), it is

Consider the equation

36 90
<56^ = -— . <5v + v-i- . 6u. = 0, i = 1, 2 f 9v 9u. 1

From this is obtained

3v
3u.

1

90,. / 9u.__f __ 1
90f / 9v (4.57)

An approximate model of the slab equation is given by

|| = K[T4(t) - 04(t)) .............................................................. (4.58)

where T(t) is the furnace temperature as "seen" by a 

in time, 0(t) is the average slab
K is a constant.

temperature at any

slab at any 

instant in

instant

time,

Therefore,

9 <90
9t l-9uJ

1

from which ——9u.
1

can be evaluated. Similarly,

4KT3(t) -e3(c<)

(4.59)

= 1,2

(4.60)

«]?(£) (’S-)

*— 1

i

9 0from which — can be evaluated.9v .

as the value calculated is for fixed time.

calculated in equation (4.60),
9 0What is needed is — at a 9v x
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fixed distance, i.e. furnace length, which is independent of slab 

velocity.

aeCorrection to ——---------------------- 9v

Consider

0(x, u) (4.61)

The gradient required 90
9v at where X is the final distance

Now

<50 90
9x 6x + 90

9v <Sv (4.62)

hence

90
9v

X

90 9x +30 90
t ’ 9X 9vV t ” X 9x t + 9vV x

(4.63)

Also

90
9x

90
9t

hence

90
9v

90
9v

_ t_ 90 
t v

(4.64)

The gradient required, 90
9v in the optimization scheme is reduced by

t 90a term — —v 9t

known, t^,

which
V, 90 

and Tt

is

is

clearly positive. At the final time, t is

9 0just — of the model differential equation.

0

v

x = X
x

v

x

V V

v

v

Procedure

(1) Guess an initial value of U and v.

(2) Integrate equation (4.58) with the given values of U and v,

storing values of T(t) and 0(t) at every integration step.

(3) Integrate equations (4.59) and (4.60), substituting in the

stored values of T(t) and 0 (t), from (2) above, to obtain 

-y— , 1 = 1, 2 and f. Add correction term to -r—f. 
dU. dV dV
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(4) Estimate the next value of v, which will bring the slab to its 

required final temperature, by using 

v<2) = v<1) * E7 (h ’

9vf

(5)

(6)

Repeat steps (2) and (4) until correct value of v is obtained.

Store final values of " ' ' « • 1
9v .yj , 1=1, 2 can be

i

-f , i = 1, 2 and —f, from which 9u£ ’ 9v
obtained.

(7) Having obtained , i oU .
1

3F= 1, 2, can be evaluated.9u.
1

repeated until the optimal values of u^,The above procedure is
u^ and v, which minimize the objective function F(U, v) are found.

4.5.5 Dynamic optimization

Consider a process whose behaviour is given by

where X(t) is the state vector and U(t)

X = F(x(t), U(t)] .......................................................... (4.65)

the control vector.

It is required to force the system 

a final desired state, X(t^) , in such a 

otf
G|_X(t), U(t)]dtGf(x(tf), tf) +

to

from an initial state X(0) 

manner that

to

(4.66)F

is a minimum, where F is a measure of system performance.

One of the most popular methods of solution of the optimal control 
problem is the Hamiltonian method, as originated by Pontryagin, and is 

known as "Pontryagin’s Principle" (L. S. Pontryagin et al, 1962). 

Using Pontryagin's Principle, a scalar function, known as the Hamiltonian, 

is defined as follows:

H[x(t), X(t), U(t)} = G[x(t), U(t)] + X(t)F[x(t), U(t)J (4.67)

The vector X(t) is known as the costate or adjoint of the process 

defined by equation (4.65). This vector must satisfy the following 

set of differential equations:
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X.(t) 3H
a7. > 1 ‘ U ........... ”

1

>
or

(4.68)

X(t) 3H
3x

where the
It can be

partial derivatives are evaluated along an optimal trajectory, 

seen from equation (4.66) that

x(t) 9H .
ax.’ 1 1.........   n

1
(4.69)

or X(t) 3H
8X

7

of equations (4.68) and (4.69) is called the HamiltonianThe system

system. The main result of Pontryagin's Principle is stated as 

follows: The optimum control, U(t), which minimizes the performance 

criterion, equation (4.66), must minimize the Hamiltonian H, given by 

equation (4.67). This is a necessary condition on the control function 
U(t).

Therefore, 

is optimal if H

3H
3U

according to Pontryagin's Principle, the control U(t) 
is minimized. Hence

0 (4.70)

Equation (4.70)

respect to U(t), and U(t) is unconstrained, 

solution lies outside the constraint boundaries, 
tiable with

is valid only if H is partial differentiable with

It is not valid if the

minimize H.

If H is not differen- 
respect to U(t), then U(t) should be chosen which will 

Differentiating equation (4.67), with respect to U,
yields

3H
au (4.71)

Twhere F is the transpose of F.

0

U(t) may be expressed in the form

U(t) f[x(t), X(t)J (4.72)
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There are cases where U is not an explicit function of X and equation 

(4.72) may be written in a simplified form as:

U(t) = ffx(t)} ..................................................... (4.73)

Substituting equation (4.72) into equation (4.65) yields

X = F'[x(t), X(t)} ..................................................... (4.74) 

and since H can now be expressed as a function of X(t) and X (t), then 

from equation (4.69),

X = L[x(t), X(t)} ................................................................................ (4.75)

Equations (4.74) and (4.75) are known as Pontryagin’s equations. In 

this form, U has been eliminated by the minimization of H, subject to 

any constraints.

Before equation (4.75) can be solved, its boundary conditions 

must be specified. In general, these boundary conditions are not 

known, but some terminal conditions can be drawn from the transversality 

condition. For the Hamiltonian formulation of the problem, the trans

versality condition can be shown to be (Pontryagin et al, 1962):

.............................................................. (4.76)

The two terms in equation (4.75) must be zero independent of one 
another.

There are a number of things that the transversality condition 
tells about the boundary conditions and these are depicted below.

(1) Fixed end point

If X(tf) is known, the transversality condition requires X(t^)

This means that X(t^) is unknown. If the final 

specified, the value of H is unspecified. Also, if the final 

to be completely free, 

time is

time is unspecified, the value of H is zero. H is constant along an 
optimal path.

(2) Free end point

In this case the final time is fixed and the transversality 
condition requires that X(t^) = 0.
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(3) Partially free end point
The transversality condition shows that the final values of the 

X^(tf) corresponding to the fixed x^(t^) are free, whilst the corres

ponding A^(tf), for the free x^(t^), will be zero.

The above results can be summarized in the following manner:

For the fixed end point problem,

X(tf) known, X(t^) unknown,

and for the free end point problem,

X(tp free, X(t^) = 0.

In all cases, the initial conditions of the state variables, X(0), are 

assumed to be known. The above set of boundary conditions forms a two- 

point boundary problem and the conditions are mixed due to the fact 

that, although solved simultaneously, X is specified at the beginning 
of the interval and X at the end. In general, the solution of the two 

point boundary value problem is an extremely difficult task and has 

attracted many researchers.

4.5.6 Computational procedure - steady state

In the steady state, it is required to minimize a cost function 

of the form

, 2 x 2.(ul + u2 > ........................................................................ (4.77)

de soak
dt

e < es s max ............................................... (4.78)

T $ Tmax

0 < u. 4 u. , j = 1, 2 J J max

It is only necessary to consider the behaviour of a single slab, 

in the steady state, since all the slabs undergo a similar heating pro

cess. Recapitulating, the average slab temperature is given by the 

solution of the differential equation (4.36) and the slab surface 

temperature given by equation (4.37). The furnace temperature experienced 

by the slab is given by equations (4.27) - (4.29) where, assuming that
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the slab enters the furnace at time t = 0,

x = v t.

In order to minimize the function given in equation (4.77), the 

computation is initiated by choosing a set of (u^, u^) points. The 
slab model equation is then integrated using a fourth order Runge Kutta 

routine, although in an on-line situation a modified Euler routine 

would be more appropriate due to the less computational overheads. The 

integration is stopped when t = t , where t^ (= 2.84/V secs) is the 

duration of the heating process including the time spent in the soak 

zone. The computations are repeated to find the optimum values of 

(up up, by using a direct search optimization routine, that satisfy 

the conditions as given by equation (4.78).

In practice, however, there is a trade-off in terms of required 
accuracy and the amount of computational effort needed to achieve the 

desired accuracy. In order to keep computation time down to a minimum, 

it is not necessary to adhere rigidly to the equality constraints given 

in equation (4.78). Also, in a practical situation it is very unlikely 

that these constraints would be met exactly and at the same time keep 

the process cost dorm to a minimum. In view of this the equality con

straints are converted into inequality constraints of the form 

..................................................... (4.79)

where e^, e^ are some small positive scalar quantities and are a measure 
of the allowable tolerance in the equality constraints.

For simulation purposes, the following set of data is used, unless 

otherwise specified. (These data, although a lot lower than those found 

in typical reheat furnaces, are representative of the pilot plant 
furnace.)

9(0) = 20°C, initial slab temperature

9(tf) = 200°C, final slab temperature

9 = 500°C, maximum slab surface temperature
s m2.x

0 < UT 1.0

0 < u2 < 1.0

slab thickness = 20 cm.
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The results of simulation studies, at various velocities, are 

shown in Table 4.2. The simulation studies showed that the slab sur

face temperature laid closely to the average slab temperature, due to 

the high thermal conductivity of aluminium. In view of this fact,

only the average slab temperature is observed in order to reduce

computation time.

Table 4.2
Velocity 
Set Point

%oak <°« d0 . /dtsoak U1 U2
2 2

U1 + U2

0.2 204.0 0.009 0.6432 0.8341 1.109

0.3 205.0 0.0095 0.7939 0.7394 1.171

0.4 205.0 0.01 0.9722 0.7386 1.49

0.5 203.0 0.02 1.0 0.8827 1.78

As is expected, the increase in throughput results in an increas

in the power input and hence in the cost of transferring the slab from 

an initial condition to a final steady state condition, although this 

would depend on how the throughput cost is weighted against heating 

contributions to the cost.

4,5.7 Computational procedure - dynamic optimization

As described in section 4.5.3, the system is said to be operating 

under steady state conditions when slabs of constant thickness are 

pushed into the furnace at a constant velocity from the same initial 
conditions.

In the dynamic state, all these conditions will remain constant 

except for the fact that the desired output temperature is changed 

after each n-group of slabs. The changing of desired output tempera

ture is a result of the decision made by the supremal level which 

seeks to find the global optimal operating point. The performance 
criterion to be minimized is of the form

min F
ul,u2

T
(u 2(t) + u 2(t) + u 2(t)]dt

J
o

(4.80)

s.t. constraints given by equation (4.78).

As before, the equality constraints are modified and changed to inequality 
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constraints, as given by equations (4.79).

With the view that the optimization is to be carried out on-line, 

it is necessary to keep the amount of computational work down to a 

minimum. Due to the difficulty in solving the two-point boundary 

problem, and the amount of time required, Pontryagin's Maximum Principle 

is not used as a method of solution. Instead, the system is continually 

simulated whilst u^ and u^ are adjusted at the beginning of each simu

lation period and a check made to determine whether any of the constants 

are violated and/or met. As this process is basically a steady state 

simulation applied to a dynamic system, u^ and u^ are not time-varying 
over the simulation period. Hence equation (4.80) takes on the form

min F
ul’u2

u32(t)dt ................................. (4.81)

Ug, however, remains time-varying due to the 

maintain their desired temperature whilst in

fact that the slabs must 

the soak zone.

Unlike the steady state case, where only one slab is simulated, 

as all slabs follow the same heating profile, the same cannot be said 

about the dynamic case. Due to the fact that the desired output 

temperature is redefined after each group of slabs reaches its steady 
state temperature, there is a transient effect on entry into the soak 

zone as the slabs try to readjust to their new steady state operating 

conditions. In this case, a group of slabs is considered to be eight 

slabs, as the furnace is full when eight slabs occupy its interior. 

In view of this, it is necessary to determine how well the system 

behaves as regards the changing of desired output temperature every . 

N-group. This is carried out in the following manner.

The plant is started up optimally using steady state optimization, 

as described in section 4.5.6. Having allowed the plant to settle down 

at its steady state operating conditions, the desired output temperature 

is incremented to a new value. Optimization is performed over the N-group 
in order to transfer the N-group of slabs from its previous steady state 

condition to the new steady state condition. The results of this optimi

zation, i.e. a new u^ and u^, are applied to the system and the N-group 

of slabs allowed to transfer through the furnace, arriving at the soak 

zone at the new designated final temperature. By updating the new final 

output temperature, up to a predetermined maximum level, a curve can be 

built up showing function cost versus final output temperature. A 
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typical curve is shown in Figure 4.30 for a velocity set point of 0.2. 
The starting temperature is 25O°C, in steps of 20°C, up to 500°C.

Figure 4.31 shows the temperatures of eight slabs as they enter the 

soak zone, the dotted lines indicating the desired entry temperature 

into the soak zone.

From the plots, it can be seen that there is a fair amount of under

shoot and overshoot in the first two slabs, respectively. This can best 
be explained by referring to the following diagram which shows the 

position of the slabs in the furnace at the time the final temperature 

set point is to be updated.

Consider the shaded slab, which is the last of an N-group, which 

is leaving the furnace at a specified exit temperature, 0^ out. The 

slabs shown in the diagram are a new N-group and have to obtain a new 
desired exit temperature, namely 0^ out. The power input, u^, to the 

soak zone is increased in order to enable slab number 1 to rise to the 

new desired exit temperature. As slab 1 has only a short distance to 

travel to the exit of the furnace, it does not reach 8^ out. Due to 

the fact that control, at the present time, is centred around slab 1, 

slab 2 overshoots the desired exit temperature because of the increase 

in power needed for slab 1 to obtain ©2 out. As slab 2 is above its 

desired exit temperature, the power into the soak zone is reduced, 

when slab 1 leaves the furnace, in order to compensate for the overshoot
of slab 2. By continually simulating the process, selected
so as to give the best, overall response in transferring the system from
0^ out to ©2 out.
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4.6 Conclusions

It has been shown that static optimization techniques can be 

applied to a dynamic system such as a reheat furnace. The optimization 
problem has been shown to be numerically soluble. Thus the initial 

goals of the study have been successfully fulfilled. The control 

scheme proposed would be implemented with a process computer control 

system. The limiting factor in placing this system under computer 

control, in the manner which has been suggested, is the difficulty of 

measuring the ambient furnace temperature reliably and the slab 

temperature (while it is in the furnace) at all. Significant improve

ments in these areas are necessary both to complete the model validation 

and implement the proposed control scheme.

- 79 -



5.0 THE REVERSING MILL

This chapter is concerned with the rolling mill optimization 

problem and its implementation on a process control computer for 

possible on-line application. Over the years a large amount of 

interest has been shown in computer applications for rolling mill 

control (Avitzar, 1972; Wallace, 1969; Fapiano, 1963; Krummel, 

1961; Smith and Gripp, 1962). These schemes vary from semi-automated 

controllers to full computer control. More recently, Eaglen et al 

(1973) have successfully applied a computer for on-line control of a 

simulated six-stand rolling mill, by breaking down the work carried 

out by the computer into a number of independent sub-problems.

Lopresti and Patton (1970) have examined a metal rolling mill 

and shown it to be an implicit, discrete, multi-state control process, 
with an admissible control set dependent only upon the system state. 

Dynamic programming (Bellman, 1957) is applied to the rolling mill 

problem in order to generate a roll setting policy, which is optimal 

in the sense that it achieves a specified final state, at minimum cost. 

This approach has also been used by White (1961), the difference being 
here that Lopresti and Patton have looked at two state variables, 

namely, thickness and temperature, whereas White concentrates on slab 

thickness only, which greatly simplifies the overall process (Bellman’s 
"Curse of Dimensionality").

In this investigation, the work of Lopresti and Patton is examined 

and implemented on an Argus 500 process control computer. Time cost 

and energy cost per slab are considered to be the major costs involved 

and, on this basis, the determination of an optimal strategy for roll 
settings is described. Particular emphasis is placed on the practical 

problems encountered during the computer implementation of using 

dynamic programming to determine the optimal control policy.
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Parameters of System Model

!
p 1 = 6.757

!
p 2

= 14.4 x 10~3

1
P 3 = 0.52 (1/m)

p,4 = 253 x 10"3 (1/°K3. s .m2)

P’5 = 0.1217 (l/°K^.s.m3)

p’6 = 4.32 x 10“10 (°K/J)

p'7 = 617.76 x 106 (N/m2)

p*8 = 1.8 x IO-3 (1/°K)

p,9 = 50 x 10"3

P’1O = 92.664 x 106 (N/m2)

P.’.ll = 27.8 x 103 (N/m2.°K)

P’12 = 491 x 10“3 3
(m ) - slab volume

P’13 = 1.27 (m) - slab width

p'14 = 8.333 (r/sec) - roll angular velocity

P'15 = 1.27 x IO-10 (m/N) - mill deflection constant

p 16 = 4 (s) - mill reversal time

p’17 = 0.508 (m) - roll radius

P’18 = 7.473 x 106 (N) - Fmax

p 19
= 22.78 x 103 (Nm) - tmax

P 20 = 0.05 ($/s)

P’21 = 0.0028 ($/MJ)

5.1 System Description

The plant to be simulated is a reversing mill which is hot rolling 

steel plate. The plant is modelled using equations developed by Schulz 

and Smith (1965) which represent the system on a per pass basis. It is 

assumed throughout the process that the slab width remains constant, 
i.e. no turning of the slab during rolling.

81 -



5.1.1 Mathematical model

The equations developed by Schulz and Smith are as follows:

Roll force

f.
1 7

8®i + p 9P 17/hi r i ' )
+ IP 10 ’ P 11 9 J

f
p 13(»w-5 (5.1)

where

f.
1

Ah.
1

6.
1

h. 
A.

roll

slab

slab

slab

force during the i^ pass

ifch pass

temperature before the ifch pass

reduction or the

thickness before the ifch pass

empirically determined8’ p 9’ P io’ p 11’ P 13’ P 17 

constants of the simulation model (Lopresti and Patton).

P

Torque

Ep'2 + p’3(\ - Ah.)J (p’17 Ah.)0’5T .
1

where

= roll torque during the ith pass

(5.2)

Slab thickness

f.
1

(5.3)

where

h^+^ = slab thickness after the ifch pass

Time per pass
T

2" pi3pi4p17(hi ■ Ah.)
1

(5.4)

where

total time required on the i1-^1 pass
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Energy per pass

(5.5)

where

energy required for the iL pass

Slab temperature

ei+l 0.
1 pn P4 P5 <1000/ (h. - Ah.)

1 1

Ai
K-A + p6ei

(5.6)

e.
1

e.
1

where

6i+l slab temperature after the i1-^1 pass.

dependent(5.1) indicates that the roll separating force isEquation

upon the following process variables: temperature, reduction, entry 

thickness, width and chemical composition. This equation gives the 

actual force of deformation needed to transfer the slab from one thick

ness to another, although there is also an equal and opposite force 

acting on the mill housing. As a result of this, the actual roll setting 

used is dependent upon the ability to position the screws to the setting 

that will compensate for the stretch in the mill housing and for the 

deflection of the rolls. The reaction force on the mill housing can 

be presented by

fi = (hi " Ahi " rJ/p15 ................................... (5'7)

where

r^ = roll setting

p^5 = empirically derived constant, i.e. mill deflection constant.

Equation (5.6) represents the temperature change per pass and has 

been derived from the equation developed by Schulz and Smith (1965) . 

Schulz and Smith decided that since radiation heat transfer is the most 

dominant mode, then a semi-empirical relationship, based on the radiation 

law, should be developed to describe the temperature decay. As can be 

seen, the temperature drop is heavily dependent upon the pass time, £. , 

and the emissivity and surface area vary during an actual reduction in 

thickness. Another effect that has to be considered is the temperature 

rise caused by the energy added whilst the slab is being reduced by the 
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rollers. This accounts for the extra term added on in equation (5.6).

5.1.2 Computer simulation

Since equations (5.1) -

usediterative scheme may be 

functions of 0., h. and1 1 
to compute Ah^ in order

lated by equating equations (5.1) and (5.7) and 
equating (5.1) and

AAh*
1

(5.6) cannot be solved explicitly, 

to find the unknowns 0.., and h1+1 1+1
Before progress can be made, it is

an

as

s. .
1

to solve equations (5.1) - (5.6). Alu 
solving for Atu. 

of the form(5.7) results in an equation

which is a

where

?2
+ CAh. + D

1

cubic in (Ah^)

71 x 10 3 1,8 x

x max

—-- x 10
1

io’3 6. + 25.4
1

x 10 3 h.
1 J

necessary 

is calcu-

Thus,

(5.8)+ BAh.
1

0

A

B 1

C 1.15 x 10 10 (92.664 x 106 - 27.8 x 103 0i)

D r. - h.
1 1

after substituting the values of the constant, p\ ’

Using Newton’s method to solve equation (5.8), convergence to the 

required solution is obtained within three iterations. Once found, 

Ah^ may then be substituted into equation (5.1) to determine the force 

needed for deformation. Substituting the force into equation (5.2) 

calculates the corresponding torque needed during a pass. Similarly, 

by substitution, the other equations may be solved, thus resulting in 
the thickness and temperature of the slab after the ifch pass.

The constraints on the system are summarised as:

F max (5.9)

(5.10)
where F and r are the max max
tively, and are constraints

maximum allowable force and torque, 

due to the system structure.
respec-

The constraints on the states of the slab are as follows

0 . 0. 0mm r max (5.11)
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where 0 . and 0 are the minimum and mm max
tures. The terminal condition requires

^N+l ^min

0 . < 0Va, < 0mm N+l max

maximum allowable slab tempera-

that

................................................. (5.12)

................................................ (5.13)

Equation (5.12) requires that the slab thickness after its final pass, 

i.e. pass N+l, where N is the number of passes, be equal to 

(hmin being; the minimum slab thickness). Equation (5.13) states that 

the slab temperature after its final pass, i.e. 9-^+1’ must within 
the region between 0 and 0 . , and is a metallurgical constraint max mm
rather than a system constraint.

5.2 System Optimization

The problem concerned is: for a given initial state, find the 

sequence of roll settings r^, ...., r^, which will give an admissible 
output state, after the Nfcb pass, at the minimum possible cost without 

violating the system constraints on force and torque.

Being a non-linear discrete system, Lopresti and Patton chose 

Dynamic Programming as the method for achieving final output at minimum 

cost. The object of most current control strategies is to minimize 

the number of passes while at the same time maintaining gauge accuracy. 

The approach taken by Lopresti and Patton, in achieving an optimal 

policy, is to take directly into acoount the major costs subject to 

control. Time costs per slab and energy costs per slab are considered 

to be the major costs involved.

5.2.1 Dynamic Programming formulation

The cost of rolling a slab to final thickness in N passes is

N
JN^hl’ 91’ rl’ rN^ = J. ^P20^i + p21eJ (5.14)

1=1

where p2Q and p are the per unit costs of time and energy in dollars 

per second and dollars per Mega Joule, respectively.
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±f the minimum cost function is defined as

ZN(hl’ 91) = min ....
rl

mmJ^, 0X, r1, . .. ., rN) ... (5.15)

then, from the "Principle of Optimality" (Bellman, 1957),

w 61> = min <(p'ol4 + + 1^ (hj, ep (5.16)

being chosen from a set of roll settings which do not violate any 

of the system constraints.

The two state variables, thickness and temperature, are quantized 

into (P + 1) and (M + 1) points, respectively, 
and 0 values to

by constraining the h

and

the sets

h . min

rh - h . > [ max mm] 
P = 0, 1, (5.17)

This discrete set

e .mm

(0 - e . )k max mmJ
M = 0, 1, (5.18)

is called Q.
its final pass must 

the inequality

of points

be in Q , where Q is o o

The state

the final

of the slab after

state defined by

H

T

+

+

K

I

, K

, J.

..., P

..., M

^+1 hmiJ <
h - h . max mm

2P (5.19)

together with equation (5.13).

By evaluating the system equations for each value of (6, h) in 

fl, and testing against constraints, the set of points in Q which may 

be transferred to in one pass (referred to as fi^) may be evaluated. 

Rather than use one discrete set of allowable roll settings, Lopresti 

and Patton evaluate an allowable set of roll settings which is dependent 

upon the slab thickness. The allowable roll settings are those in the 
discrete set

R = r|r = h - j ; h e H; j = 0, 1, ..., Q ............ (5.20)

The members of this set which force the state into Q are stored in o
memory together with the minimum cost, associated with the final pass, 

for each (0, h). The set of admissible (0^, h^), Q , is
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^1 (e, h) | (9n+1> ^+1) e %> rN e R5 fN < Fmax’ XN Tmax

................................ (5.21)

By working backwards in time, until the initial input state is reached, 

this technique is repeated, each time using partitions of Q and R to 

obtain the set

°i+i - <6’h>l(Wi; rN-ieR ........... <5-22)

together with the minimum costs associated with taking each point in 

Q. , into Q .

The approach to be presented differs from that of Lopresti and 

Patton in a number of ways. First, as with current practice, there can 

only be an odd nunber of rolls during slab reduction due to the fact 
that rolled slabs must continue in the direction with which they entered 
the rolling mill. This is, in fact, an obvious requirement, in order 

to avoid finished slabs piling up with those yet to be rolled. Lopresti 

and Patton appear to ignore this fact and arrive at results which g'ive 

an even number of rolls. Secondly, it is assumed that as slabs leave 
the oven, their actual thickness and temperature are known and appropriate 

action can be taken in setting the rollers for the first pass. Lopresti 

and PattDn assume that no initial state measurement is available for 

selecting the first roll setting, and hence the first pass, and possibly 

the second, results in a non-reduction in slab thickness. This is due 

to the fact that the initial roll setting is, on occasions, greater 

than the actual slab thickness. This explains why the results obtained 

by Lopresti and Patton differ from those to be presented in a later 
section.

5.2.2 Computer implementation

The first step in the Dynamic Programming formulation is to evaluate 

the set of points in Q which may be transferred to in one pass, with

out violating the system constraints. This process is illustrated in 
Figure 5.1.

The procedure is as follows. Sets H and T are formed, using equa

tions (5.17) and (5.18), respectively. Let the elements of the set H
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be h^, h^, , .. ., hp and those of set T be 9^, 0. , ......... 9^, there
being P + 1 and M + 1 elements in each array, respectively, where 

h = h . , h = h ,9=0. ,0=0 . The resulting number ofo mm p max o min m max
states is (P + 1) x (M + 1) although the actual number of practical 

states is P x M. This is due to the fact that using an input thick

ness of h , i.e. h . , results in a non-reduction in slab thicknesso mm
as the slab is already at its required final thickness. In any case, 
it is unlikely that any slab already at its required final thickness 

would ever be passed through the oven. Similarly, 0 , i.e. 9^^^, 

cannot be used, as any work done on the slab would result in 6^+1 
dropping below 9 . . For each (9, h) in Q, the allowable roll settings, 

in the discrete set R, were formed as outlined by equation (5.19).

Let the elements in this set be ro r . The model was tested

for each value of r, each time testing the force and torque against

their constraints. The member of the set R which enabled the current 

state to be transferred to without violating constraints, is stored
in memory together with the corresponding cost. By taking each (9, h) 

is Q, in turn, an array is formed of those values of (9, h), together 

with roll setting and cost, which could be transferred to in one 
pass.

The next stage in this process is to evaluate the members of the 

set S, which transfers the set of points in □ to the next quantization 

state in H in one pass, together with the associated costs.

By repeating the process N times for each h, in the set H, a 

complete array of costs and roll settings is formed, together with the 

(9, h) in Q which can be transferred to another state in one pass. It 

should be noted that the costs associated with each s in S which trans

fers the (9, h) in Q to in one pass, are the absolute minimum costs 

for the relevant states in Although the actual output states from 

the model could take on any value within a given tolerance, the values 

stored by the computer are those members of the sets H and T which are 
close to the actual state after rolling.

5.2.2.1 Minimum cost strategy

Having formed an array of 1-stage roll costs and roll settings, 

the next stage in the process is to evaluate the members of the set Q, 

which could be transferred to in two passes, ignoring those which

transferred in one pass as these are already at their absolute minimum 
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cost. This procedure is illustrated in Figure 5.2 where, for simplicity, 

a two-dimensional diagram is shown. The corresponding set, T, is 

assumed to be going into the page.

It can be seen from Figure 5.2 that, for each (0, h) in Q, at 
stage N, there is more than one value, from the set R, that can transfer 

the state to . An example of this is indicated by the thick set lines. 
The two-stage dynamic programming policy is to find a minimum cost path, 

from a given initial state, to Q . In the example shown in Figure 5.2o
there are three paths from a (0, h) in which lie on The minimum

cost path for a given (0, h) in Q, which could be transferred to in 

two passes, is evaluated by summing the cost for each s in 

together with the costs for the corresponding roll settings in . 
The resulting minimum cost is. then stored in memory together with the 

two corresponding roll settings. This procedure is repeated for each 

(0, h) in fi2, until a complete array of minimum cost roll settings, 
which could transfer the elements of to in two passes, is formed. 

By repeating the process, another array of three-stage, minimum cost 

roll settings is formed, for those values of (0, h) in Q which could 

not be transferred to in less than three passes.

5.2.2.2 Even pass conversion

At this point it can be seen that an array of 1-, 2- and 3-stage 

minimum cost roll settings has been formed, for those values of (0, h) 

in Q which can be transferred to As previously stated, in prac

tice, a 2-stage roll policy is not allowable due to the fact that the 

slabs end up on the wrong side of the reversing mill. To counteract 

this problem, an extra pass is necessary for those values of (0, h) 

in Q which transferred in two passes. Due to the fact that the 

slab width is considered to remain constant during the roll period, 

then the cost of passing a slab through the rollers, with no reduction, 

is cheaper at its initial thickness, than at its final thickness. The 

reason for this is that, for a constant volume, the slab must increase 

in length at lower thickness than at higher thickness and roll cost is 

a function of pass time which is a function of slab length. Also, 

energy cost required per pass is cheaper at higher temperatures. As a 

result of this, a dummy pass is added to the two-stage roll policy 

before any actual reduction in slab thickness takes place. The pro

cedure is as follows.
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A (0, h) in which transfers to in two passes, is passed o
through the mill with no reduction in thickness. Although no work 

has been done on the slab, a reduction in temperature occurs due to 

the finite time taken in passing through the mill. The cost for this 

pass is stored, together with the roll setting, which in this case is 

the same as the slab thickness, and also the output temperature. By 

scanning the array of (0, h) in Q, which transfers to in one pass, 
the cost of a (0, h) which corresponds to the output of the non-reduced 

slab is effectively added to that of the non-reduced slab together 

with the roll settings. By the "Principle of Optimality” (Bellman, 
1957), this new cost represents the optimal cost in converting a two- 

stage (0, h) into a three-stage roll policy. Two problems are found
to arise with this conversion technique. First, it is not always 

possible to find a (0, h) in Q, that transferred to in two passes, 
which matched the output of a slab having passed through the rollers 

with no reduction. Secondly, there may be times when the output of a 
dummy pass slab cannot be transferred to in either one or two passes.

The first problem may be solved by taking the (0, h) in Q, whose 

dummy pass output could not find a two pass match, and scanning the 

array of all the (0, h) in Q, which cannot be transferred to any other 

state in one pass. Having found all the possible output states for the 

(0, h) in question, together with the corresponding costs and roll 

settings, these outputs are then matched to the corresponding two pass 

results and the overall minimum cost process repeated. The above pro

cedure is illustrated by the results given in Table 5.1 which gives the 

minimum cost two pass roll settings.

Consider the input state of 0.053 m at 1533°K, shown in Table 5.1. 

After passing through the rollers with no reduction, the output is 
0.053 m at 1472°K. As can be seen, it is not possible to roll down 

from 0.053 m at 1472°K in two rolls although it can be done, in three, 

which would then make the total number of passes, from 0.053 m at 
1533°K, equal to four which would not be allowable. By scanning the 

array of (0, h) in Q which can be transferred to any other (0, h) in 
one pass, the possible outputs from 0.053 m at 1533°K are:

0.048 m at 1472°K, s = 0.048 m, cost = $ 0.21533
0.043 m at 1472°K, s = 0.043 m, cost = $ 0.21723
0.038 m at 1472°K, s = 0.038 m, cost - $ 0.21985
0.033 m at 1472°K, s = 0.033 m, cost = $ 0.22323
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Each of these outputs can be transferred to , as shown in the 

table of two pass roll settings, with the exception of 0.033 at 1472 K 

which can be transferred in one pass and hence is not picked up as it 

is not included in the two pass table. The cost of transferring the 
above outputs to Q in two passes, except 0.033 m at 1472°K, is as 

follows:

0.048 m at 1472°K

0.043 m at 1472°K
0.038 m at 1472°K

= $ 0.48473
= $ 0.48431

= $ 0.48386

Hence, the total costs of transferring 0.053 m at 1533°K

0.21533 + 0.48473 via 0.048 m at 1472°K = $ O.7OOO6

0.21723 + 0.48431 via 0.043 m at 1472°K = $ 0.70154

0.21985 + 0.48386 via 0.038 m at 1472°K = $ 0.70375

Therefore the cheapest path is via 0.048 m at 1472°K which gives a

total cost of O.7OOO6 with roll settings

r^ = 0.048 m, r^ = 0.033 m, r^ = 0.012 m.

The second problem, being when the output of a dummy pass slab cannot 

be transferred to in any number of passes, is also best explained 

by the use of a similar example using the same table. Consider the 
input state 0.023 m at 1105°K. By passing this through the rollers 

with no reduction, the actual output state becomes 0.023 m at 1044°K 

which cannot be transferred to Q in one, two or three passes due too
the low temperature. Hence, the previous technique fails to apply 

in this case.

By scanning the array of one-pass settings it is found that 0.023 m 
at 1105°K only has one other output, namely 0.018 m at 1O44°K. This 

output state can only be transferred to in one pass (Q throughout = 
0.0127) and hence the only way of transferring 0.023 m at 1105°K to

is as shown in the table of two-pass settings. This is not just an 
optimal policy - it is the only path for this particular case. The only 
way to transfer 0.023 m at 1105°K to in three passes is, effectively, 

to add a dummy pass after the two-pass reduction. The roll settings 
then become

r^ = 0.018 m, r2 = 0.012 m, r^ = 0.012 m,

the final output temperature being 983°K, which is within the limits 

on temperature.
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It should be emphasized that this two-roll conversion policy can 

only be carried out after the optimal three-stage policy has been cal

culated, as the two-stage policy is needed during the implementation. 

By working backwards, using previously calculated results, an N-stage 

rolling policy was computed, each time converting an even roll strategy 

into an odd roll strategy, as previously outlined.

Table 5.1; Minimum cost two-pass roll settings

Hin (m) Tin (°K) rT (m) r2 (m) Total Cost 
($)

0.053 1533 0.0325 0.0122 0.48129
0.048 1533 0.0328 0.0122 0.48080
0.048 1472 0.0275 0.0123 0.48473
0.048 1411 0.0275 0.0123 0.48466
0.043 1533 0.0328 0.0122 0.48054
0.043 1472 0.0276 0.0123 0.48431
0.043 1411 0.0276 0.0123 0.48423
0.0381 1533 0.0331 0.0122 0.48007
0.0381 1472 0.278 0.0122 0.48386
0.0381 1411 0.0275 0.0123 0.48377
0.0381 1350 0.0225 0.0123 0.48960
0.381 1289 0.0225 0.0123 0.48946
0.033 1411 0.0281 0.0123 0.48329
0.033 1350 0.0228 0.0123 0.48889
0.033 1289 0.0228 0.0123 0.48879
0.0281 1289 0.0229 0.0123 0.48834
0.028 1228 0.0176 0.0124 0.49708
0.028 1166 0.0173 0.0124 0.49745
0.028 1105 0.0173 0.0123 0.49782
0.023 1166 0.0178 0.0124 0.49619
0.023 1105 0.0176 0.0123 0.49706

r^ = first roll setting 

r^ = second roll setting
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A simplified program flow diagram for implementing the Dynamic 

Programming procedure is shown in Figure 5.3, with a more detailed 

flow chart shown in Appendix C.

5.3 Discussion of Results

The results obtained by the Argus computer show that a maximum 

of five passes is necessary to take the allowable (0, h) in Q into . 

This differs from the results of Lopresti and Patton where eight 
passes were necessary for a particular (0, h) in Q to be transferred 

to Q . As mentioned in section 5.2.1, Lopresti and Patton have assumed 
that no state measurements are available after the slabs leave the 

oven, and also that initial roll settings are unavoidably, on occasion, 

greater than the incoming slabs.

Lopresti and Patton chose the final thickness tolerance as

|h.m - h . | (h - h . )/2P = 0.0006 m ................... (5.23)

For the parameters used in this study (see Table 5.2) this would have 

resulted in 40 quantized states in the set H, which may be considered 

too large to have been of any practical use on a process control 

computer. Apart from the storage capabilities of the computer, the 

computation time was found to be excessive. However, 0.0006 m was 

still considered to be a reasonable tolerance on final thickness, 

although using the parameters shown in Table 5.2, in conjunction with 

equation (5.23), would have resulted in a final thickness tolerance of 

+ 0.0025 m, which is considered too large. A table of the optimal roll 
settings, together with the minimum cost, for taking the allowable 

(0, h) in Q into , is shown in Table 5.3. The time taken to compute 

the array in this table was of the order of 1 min 17 secs. All compu

tation was undertaken on an Argus 500 process control computer, which 

had a store capability of 24K together with a core cycle time of 2pS. 

Complete program length, not including data array, was 3.8K (Decimal). 

All programming was performed in the assembler language, ASTRAL.
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Table 5.2: Specification of parameters which

specify final and intermediate states

h = 0.0635 mmax

h . = 0.0127 mmin
0 = 1533°K
max

0 . = 922°K
mm

p = m = 10 (thickness and temperature
quantizing levels, respectively)

Q = 100 (reciprocal
setting)

h., , = h . + 0.0006N+l mm —

of minimum roll

m (final thickness 
tolerance)
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Table 5.3: Complete table of allowable (0, h) in fl 

which can be transferred to in ano
odd number of passes

Hin (m) Tin (°K) ri r2 (m) r3 (m) Cost ($)

0.018 1533 0.0128 0.25555

0.018 1472 0.0128 0.25547

0.018 1411 0.0128 0.25537

0.018 1350 0.0126 0.25599
0.018 1289 0.0126 0.25586

0.018 1228 0.0126 0.25570

0.018 1166 0.0124 0.25623

0.018 1105 0.0124 0.25600

0.018 1044 0.0123 0.25641
0.023 1533 0.0126 0.25637

0.023 1472 0.0126 0.25629
0.023 1411 0.0126 0.25620
0.023 1350 0.0126 0.25609
0.023 1289 0.0123 0.25692
0.023 1228 0.0123 ' 0.25676
0.028 1533 0.0123 0.25764
0.028 1472 0.0123 0.25756
0.028 1411 0.0123 0.25748
0.028 1350 0.0123 0.25737
0.033 1533 0.0122 0.25812
0.033 1472 0.0122 0.25805
0.053 1533 0.0480 0.0275 0.0123 0.70006
0.048 1533 0.0483 0.0275 0.0123 0.69979
0.048 1472 0.0483 0.0275 0.0123 0.69972
0.048 1411 0.0376 0.0225 0.0123 0.70933
0.043 1533 0.0432 0.0276 0.0123 0.70115
0.043 1472 0.0432 0.0276 0.0123 0.70107
0.043 1411 0.0380 0.0225 0.0123 0.70887
0.038 1533 0.0381 0.0278 0.0123 0.70294
0.038 1472 0.0381 0.0278 0.0123 0.70285
0.038 1411 0.0381 0.0225 0.0123 0.70868
0.038 1350 0.0381 0.0225 0.0123 0.70853

(Table cont. . .)
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Table 5,3 (continued)

Hin (m) Tin (°K) (m) r2 (m) r3 (m) r4 r5 (m) Cost ($)

0.038 1289 0.0278 0.0176 0.0124 0.72349
0.033 1411 0.0330 0.0228 0.0123 0.71090
0.033 1350 0.0330 0.0228 0.0123 0.71075
0.033 1289 0.0281 0.0176 0.0124 0.72299
0.028 1289 0.0279 0.0176 0.0124 0.72308
0.028 1228 0.0279 0.0173 0.0124 0.72346
0.028 1166 0.0279 0.0173 0.0123 0.72383
0.028 1105 0.0279 0.0173 0.0123 0.72382
0.023 1166 0.0229 0.0176 0.0123 0.72884
0.023 1105 0.0176 0.0123 0.0123 0.75620
0.063 1533 0.0476 0.0275 0.0123 O.7OO7O
0.063 1472 0.0476 0.0275 0.0123 0.70066
0.058 1533 0.0479 0.0275 0.0123 0.70034
0.058 1472 0.0479 0.0275 0.0123 0.70029
0.053 1472 0.0480 0.0275 0.0123 0.69999
0.053 1411 0.0379 0.0225 0.0123 0.70949
0.053 1350 0.0379 0.0225 0.0123 0.70937
0.048 1350 0.0376 0.0225 0.0123 0.70921
0.043 1350 0.0380 0.0225 0.0123 - 0.70874
0.043 1289 0.0276 0.0176 0.0124 0.72397
0.043 1228 0.0276 0.0173 0.0124 0.72437
0.043 1166 0.0276 0.0173 0.0123 0.72476
0.038 1228 0.0278 0.0173 0.0124 0.72387
0.038 1166 0.0278 0.0173 0.0123 0.72425
0.038 1105 0.0274 0.0173 0.0123 0.72464
0.033 1228 0.0281 0.0173 0.0124 0.72336
0.033 1166 0.0281 0.0173 0.0123 0.72373
0.033 1105 0.0277 0.0173 0.0123 0.72404
0.063 1411 0.0584 0.0426 0.0276 0.0176 0.0124 1.15443
0.058 1411 0.0584 0.0426 0.0276 0.0176 0.0124 1.15424
0.058 1350 0.0584 0.0426 0.0276 0.0176 0.0124 1.15424
0.058 1289 0.0584 0.0426 0.0276 0.0173 0.0124 1.15465
0.058 1228 0.0584 0.0426 0.0276 0.0173 0.0124 1.15468
0.058 1166 0.0584 0.0426 0.0276 0.0173 0.0123 1.15511
0.053 1289 0.0533 0.0427 0.0276 0.0173 0.0124 1.15552

(Table cont.. .)
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Table 5.3 (continued)

Hin (m) Tin (°K) rx (m) r2 (m) r3 (m) r4 (m) r5 (m) Cost ($)

0.053 1228 0.0533 0.0427 0.0276 0.0173 0.0124 1.15553
0.053 1166 0.0533 0.0427 0.0276 0.0173 0.0123 1.15594
0.053 1105 0.0533 0.0373 0.0274 0.0173 0.0123 1.15862
0.048 1289 0.0483 0.0430 0.0276 0.0173 0.0124 1.15654
0.048 1228 0.0483 0.0430 0.0276 0.0173 0.0124 1.15656
0.048 . 1166 0.0483 0.0430 0.0276 0.0173 0.0123 1.15695
0.048 1105 0.0483 0.0376 0.0274 0.0173 0.0123 1.15952
0.043 1105 0.0432 0.0380 0.0274 0.0173 0.0123 1.16077
0.063 1350 0.0584 0.0426 0.0276 0.0176 0.0124 1.15443
0.063 1289 0.0584 0.0426 0.0276 0.0173 0.0124 1.15486
0.063 1228 0.0584 0.0426 0.0276 0.0173 0.0124 1.15489
0.063 1166 0.0584 0.0426 0.0276 0.0173 0.0123 1.15533
0.063 1105 0.0527 0.0373 0.0274 0.0173 0.0123 1.15935
0.058 1105 0.0532 0.0373 0.0274 0.0173 0.0123 1.15889
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Figure 5.3;
Simplified flow 
chart of operation 
performed by the 
computer
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5.4 Conclusions—<

This chapter has demonstrated the feasibility of calculating 

the optimal roll settings for reducing a slab of known initial state 

to some final output state, using Dynamic Programming, on an Argus 

500 process control computer.

In the analysis the quantization levels, for both temperature 

and thickness, have been fixed at 10, together with a fixed reciprocal 
of minimum roll setting. Further investigation is needed into the 

effects of increasing the quantization levels, although the results 
of increasing the reciprocal of minimum roll setting will be investi

gated in Chapter 6. In terms of increasing the quantization levels, 
it is considered that the increase in levels would increase the 

accuracy of the results, and would probably give rise to an overall 

decrease in costs, due to a reduction in roll force and pass time.

Throughout the chapter, perfect state measurement has been 

assumed, whereas in practice these state measurements are most likely 

to be corrupted by some form of noise. Further work is envisaged to 

investigate the effects of noise on system performance, together with 
some form of digital filtering technique.
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6.0 APPLICATION OF MODEL COORDINATION TO THE COMBINED SUB-SYSTEMS

The previous two chapters have dealt with the local optimization 

problems of the two independent sub-systems, namely the minimization 

of energy and passtime costs in the rolling mill and power input costs 

for the reheat furnace. This chapter will look at the problems of 
combining these two sub-systems, using Model Coordination theory, in 

the hope of finding the overall optimal operating conditions for the 
combined sub-systems.

6,1 System Optimization

In order to study the practical feasibility of the model coordina

tion proposal, discussed in chapter 3, initial investigations are con

ducted on the simplified sub-systems, as shown in Figure 6.1. In the 

diagram, everything within the dotted line is, in fact, a process 

control computer which, in effect, simulates the rolling mill as well 

as doing the local optimizations for both the rolling mill and furnace 
sub-systems.

Recapitulating, the reheat furnace optimization problem is:

mih Ff = f (uj2 + u^2 + u^jdt ................................. (6.1)
u^,U2 J

o
where

u^ = power input to the preheat zone

u^ = power input to the heat zone
u^ = power input to the soak zone.

The furnace optimization problem is solved subject to the dynamic and 

algebraic equations of the model, and also takes account of the fol

lowing requirements:

(i) that the slab temperature on exit from the heat zone be 

the same as that required on exit from the soak zone;

(ii) that the slab temperature gradients on exit from the heat 
zone should be zero.

The above are satisfied by incorporating appropriate penalty 

functions with the performance index given in equation (6.1) and 

solving using standard optimization techniques.
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The rolling mill performance index is given by

F = c,A + c.e .............................................. (6.2)
m 1 2

where A is the total pass time, e is the total energy input, is 

the pass time cost weighting, and c^ the energy cost weighting.

The model coordination approach to the solution of the combined 
optimization problem uses the temperature of the slabs leaving the 

furnace as an interconnection variable. The supremal level problem 

is:

min {F(T )* + F (T )*} .............................................. (6.3)T f fn m fnxfn

where T^ is the slab exit temperature from the furnace and the inlet 

slab temperature to the rolling mill, Ff(Tf )* is the optimal value 

of the furnace performance index, F^, at a given value of T^ sent 
down from the supremal unit to the soak zone feedback controller, and 

Fm^fn^* iS th"2 °Ptama^ value of the rolling mill performance index, 
F , at the same value of T. .m’ fn

Due to the complexity of the combined system coordination and 

optimization and the amount of low-level language code needed to carry 

out the scheme as shown in Figure 6.1, off-line simulations are per

formed using a large powerful mainframe computer - in this case a CDC 

7600 which is situated at the University of London’s Computer Centre. 

For ease of programming, Fortran is used as the main programming 

language.

Before proceeding with the coordination and optimization of the 

combined sub-systems, it is worthwhile, at this stage, to examine 

some of the properties of both the furnace and rolling mill in order 

to check whether there is a chance of finding a minimum at all for the 

combined sub-systems.

6.1.1 Furnace sub-system

Figure 4.30 shows how the typical optimal values of the furnace 

performance index vary with the temperature of the load leaving the 

furnace, as specified by the set point of the soak zone controller. 

In order to match those temperatures as required by the reversing mill,
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it is necessary to scale up the measured load temperatures produced 

by the furnace simulation. Also, to match the per unit costs of the 

reversing mill, the furnace power input costs are scaled down by a 

factor of two. A factor of 2.52 is necessary to scale up the maximum 

pilot plant furnace temperature to match those of the reversing mill. 

Table 6.1 shows the scaled version of the plot in Figure 4.30.

Table 6.1

Desired exit 
temperature ( C)

Optimal Scaled down

U1 U2
per unit cost 

$

630 0.98 0.300 0.686

655 0.95 0.397 0.664
706 0.916 0.513 0.644
756 0.888 0.613 0.665
806 0.853 0.706 0.705
857 ' 0.818 0.798 0.74
907 0.795 0.869 0.795

958 0.752 0.953 0.85
1008 • 0.749 0.999 0.925
1058 0.79 1.000 0.98

1109 0.826 0.999 1.025

1159 0.858 1.000 1.09
1210 0.891 1.000 1.155
1260 0.927 1.000 1.205

The above results illustrate the expected increase in furnace 
costs with increase in exit temperature.

6.1.2 Rolling mill sub-problems

Chapter 5 gave the basis of the Dynamic Programming formulation 

for the reversing mill optimization together with a prerequisite for 

the slabs to undergo an odd number of passes. It is worthwhile at this 

stage to examine some rolling mill curves and to see the effect that 

some of the mill parameters have on the final result.
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The graph in Figure 6.2 is a plot of roll mill cost versus slab 

input temperature for a slab of height 0.018 m. This plot is taken 

from the figures presented in Table 5.3 using the energy and pass time 

costs as given by Lopresti and Patton (1970). The parameters used 

for the graph in Figure 6.2 are as follows:

Input thickness = 0.018 m

Reciprocal of smallest allowable roll setting = 100

Energy cost per pass = $0.01//'7T

Pass time cost = $0.05/sec.

If one takes the top three temperatures, it can be seen that there is 

a decrease in cost for a decrease in input temperature, which is con

trary to what might normally be expected. This is explained from the 

fact that because of the minimum decrement in the roll settings (i.e. 
reciprocal = 100), then for a particular group of input temperatures, 

the final roll settings are the same. As a result of this, as the 
input temperature is decreased, there is a greater reaction force on 

the mill housing (see chapter 5, equation (5.7)), but because of the 

coarseness of the allowable roll settings, the rollers are not allowed 

to "squeeze" toge'ther any further to compensate for the increase in 

reaction force. Apart from this, the slabs still leave the rolling 

mill within their final thickness bounds.

Figure 6.3 is another plot with the same parameters but with an initial 

slab thickness of 0.063 m (2.5"). Unlike the slabs of Figure 6.2, 

which can be reduced to their final thickness in one pass, the slabs 

in Figure 6.3 are required to undergo three or five passes. This is 

because of the odd pass constraint and hence the curve exhibits a dis

continuity in changing from a three- to a five-pass roll. For details 

of the odd pass constraint see chapter 5, section 5.1.

Figure 6.4 has exactly the same parameters as those in Figure 6.2, 

except that the reciprocal of the smallest allowable fractional decrement 

in roll setting is increased from 100 to 500. In other words, the set 

of allowable roll settings for any given pass has been more finely 

quantized. As a result of this, the curve in Figure 6.4 is a lot 

smoother than that of Figure 6.2, as the wider range of roll settings 

can compensate for the increase in the mill housing reaction force for 

decrease in temperature.
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For slabs of initial thickness 0.063 m, the increase in the 

allowable roll set has no noticeable effect on the shape of the curve, 

as shown in Figure 6.3.

Apart from the graph in Figure 6.3, Figures 6.2 and 6.4 show that 

the cost of rolling the slabs from any given input temperature does 

not vary significantly over the temperature. In other words, cost-wise 

the curves are fairly flat. Using either of these curves in the combined 

sub-system problem would result in the rolling mill having negligible 

effect on the final temperature chosen by the coordinator. Simulations 

show that, for the parameters used for energy cost and pass time 

cost, the pass time dominates the energy cost contribution. As a result 

of this, for Figures 6.2 and 6.4, where the slabs are reduced in one 

pass, the actual pass time of the slabs does not change significantly 

over the given temperature range and hence the cost of the reduction 

does not alter significantly. Figure 6.3 has a much wider range in 

costs, as the slabs are rolled in either three or five passes and hence 
the pass times increase accordingly.

In order for the energy part of equation (6.2) to have a more 

notable effect, the energy weighting factor is increased to $5/Mega 

Joule. The pass time weighting cost is also increased to $0.05/sec 

so as to make the ratio of energy cost to pass time cost a round factor 

of 100. The sharp rise in energy cost is not so unlikely in view of 

the sharp increase in the cost of energy over the years and no doubt 

in the coming decade also. Figure 6.5 has the same parameters as those 

in Figure 6.4, except for the increase in energy and pass time cost. 

Unlike Figure 6.4, the curve of Figure 6.5 has a much more extended 

cost range and is a much smoother curve. Figure 6.6 has the samp 

characteristics as Figure 6.5, except that the curve no longer exhibits 
the flat characteristics at the three- and five-roll settings, as the 

effect of the increase in the energy cost is now making itself felt with 

changing inlet temperature. Table 6.2 shows the relative costs versus 

inlet temperature, at the two chosen initial thicknesses, for the five 
cases presented in Figures 6.2 - 6.6.
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Table 6.2

Input
Temperature 

(°C)

Graph
6.2 

Cost($)

Graph
6.3 

Cost($)

Graph
6.4 

Cost($)

Graph
6.5 

Cost($)

Graph
6.6 

Cost($)

1260 0.25555 O.7OO7O 0.25526 0.55537 2.9823

1199 0.25547 0.70066 0.25532 0.57587 3.1015
1138 0.25537 1.15443 0.25537 0.59913 3.592
1077 0.25599 1.15443 0.25541 0.62585 3.596

1016 0.25586 1.15486 0.25543 0.65675 3.6599

955 0.25570 1.15489 0.25557 0.69766 3.7675
893 0.25623 1.15533 0.25566 0.74570 3.934

832 0.2560 1.15935 0.25572 0.80211 3.997

771 0.25641 0.25586 0.87511
710

649

As is expected, all the curves exhibit a general reduction in 

rolling costs with a corresponding increase in inlet temperature.

6.2 System Simulation

In order to minimize program storage requirements, a direct search, 

with quadratic interpolation, technique is employed for the coordination 
algorithm.

During simulation of the combined sub-systems, the following para
meters are set for the system initial conditions:

(i) All loads are at ambient temperature, i.e. 20°C

(ii) All loads are of the same thickness

(iii) Furnace velocity set point is constant.

At the start of the simulation, the above parameters are entered 

together with an initial desired exit temperature, TDES, from the furnace. 

Steady state optimization is then carried out on the furnace model in 

order to determine a u^ and u2 which will transfer the slabs from their 

initial conditions to the initial desired exit temperature. Also, it 

is a requirement that the input temperature to the soak zone should be 
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as close as possible to the desired exit temperature from the soak 

zone, together with a temperature gradient as close to zero as 

possible on entry to the soak zone.

Having determined a u^ and u^ which will transfer the slabs 

to TDES, in an optimal manner, the result is applied to the plant 
and the system allowed to run. The plant is run until the first group 

of eight slabs has left the furnace and entered the rolling mill. 
Equations (6.1) and (6.2) determine the cost for the furnace and 

rolling mill, respectively, for transferring the slabs from a given 

initial temperature to a desired furnace exit temperature and then to 
a final predetermined output thickness. The combined overall cost is 
then sent to the supremal level, or coordinator, which stores this 

overall cost arid chooses a new coordinating temperature. This co

ordinating temperature is determined by the direct search algorithm 

such that the combined system cost, for each coordinating temperature, 
is lower than the cost for the preceding coordinating temperature. 

The system iterates in a fashion such that a coordinating temperature 

is chosen which results in the lowest possible cost for the system 

subject to its operating constraints.

6.2.1 System simulation optimization results

Figures 6.7 to 6.12 show the response of the individual and 

combined sub-systems when the overall system optimization is implemented. 
In all cases, the initial slab temperatures are at 20°C. Two slab 

thicknesses are chosen, namely 6.35 cm, the upper thickness limit, and 

1.778 cm, the lower thickness limit. These two slab thicknesses are 

chosen because of the fact that their rolling mill characteristics 

differ considerably. The mill characteristic for the 6.35 cm slab 
is shown in Figure 6.3, and that for the 1.778 cm slab in Figure 6.5. 

Figure 6.3 contains a discontinuity in its cost due to the slabs 

changing from a three-pass conversion to a five-pass conversion. 

This is as a result of the odd-pass constraint. Figure 6.5 is a 

smoother curve as all slabs at the 1.778 cm thickness are reduced in 

one roll and the odd-pass constraint does not enter. The two slab 

thicknesses used differ from those used in the pilot plant furnace as 

the overall pilot plant simulation is to be scaled up to meet the 

requirements of the reversing mill since this is a more representative 
model of existing reversing mills.
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As the upper bound input temperature to the reversing mill is 
126O°C and the upper bound output temperature for the pilot plant 

furnace is 500°C, then the pilot plant furnace output is scaled up 

by a factor of 2.52 in order that the input/output temperatures lie 

within the same range. Also, the lower bound limit for the reversing 
mill is 771°C, which gives an effective pilot plant lower bound tempera

ture limit of approximately 3O6°C.

Figure 6.7 shows the result of the combined system simulation for 
-3 slabs of 6.35 cm at a velocity set point of 0.2, i.e. 1.12 x 10 m/s. 

An initial desired coordinating temperature of 882°C is chosen arbitrarily 

and steady state optimization is applied to the furnace in order to 

determine the initial preheat and heat zone power input set points.

Table 6.3 shows the results of the optimization for the curves given 

in Figure 6.7.

Table 6.3: Combined system optimization for
6.35 cm slabs at a velocity set point 
of 0.2

Temperature (°C) Furnace cost 
($)

Mill cost 
($)

Total cost 
($)

882 0.669 1.1571 1.8261
912.5 0.7 1.1567 1.8567
858.1 0.653 1.1574 1.81
833.1 0.641 1.1576 1.798
841.4 0.644 1.1577 1.802
832.9 0.640 1.1576 1.797

It should be noted from the above table that the costs incurred 

by the rolling mill remain fairly constant. This is due to the fact 

that the mill is operating on a five-pass basis and the energy contri

bution is fairly small in comparison to the pass time costs which 

change very little. Also, because of the small range of temperatures 

incurred in the optimization procedure, there is, in addition, a fairly 

small change in cost for the furnace. The net result is a fairly 
flatfish overall system cost.
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From Table 6.2, it can be seen that the mill lower bound temperature 
limit, for 6.35 cm slabs, is 832°C. As the mill characteristics are 

fairly flat and the furnace characteristics are a curve (see chapter 4, 

Figure 4.29), with a positive gradient in increasing temperature, then 

it is to be expected that the results of the optimization procedure 

should lie at the lower bound of the mill input characteristics.

Due to the fact that the desired coordination temperature is re

defined after each iteration, and because of the dynamics of the heating 

process, the slabs do not always meet their entry requirements into the 

soak zone. This is explained in chapter 4, section 4.5.7. Table 6.4 

shows the input and output soak zone slab temperatures for the case 

shown by Table 6.3.

Table 6.4: Soak zone input/output temperatures of slabs

Iteration No.

Slab No.
1 2 3 4 5 6

- Desiree input temperature (°C)

882 912.5 858.1 833.1 841.4 832.9

1 878.1 896.4 924.8 871.9 844.4 850.2
2 878.1 931.1 863.3 829 852 848.4
3 878.1 925.6 865.1 844 856.8 847.3
4 878.1 925.8 878.9 848.2 848.2 847.5
5 878.1 9 30.4 864.6 839.2 858.3 847.1
6 878.1 9 30.8 869.6 847 847.2 845.3
7 878.1 930.1 871.7 840.1 853.3 844.7
8 878.1 927.6 868.4 846.5 855 842.4

Slab No.
Desired output temperature (°c)

882 912.5 858.1 833.1 841.4 832.9

1 878.9 910 861.3 825 838.2 835.1
2 880.2 905.4 852.8 829.8 835.9 832.4
3 877,3 906.4 85 3.0 827.1 834.4 832.6
4 877.2 906.3 849.7 826 836.4 832.5
5 877.4 905.2 853 828.3 834 832.5
6 877.5 907.2 852 826.6 836.6 832.7
7 878.1 905.2 851.7 828.3 835.6 832.4
8 878.4 906.2 852.3 826.8 835.1 832.4
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Table 6.5 shows the results of the optimization for the curves 

given in Figure 6.8. These are based on the same system set up as in 

Figure 6.7, i. e. velocity set point = 0.2, initial ambient temperature 
= 1134.0°C.

Table 6.5: Combined system optimization for
6.35 cm slabs at a velocity set
point of 0.2

Temperature (°C) Furnace cost
($)

Mill cost 
($)

Total cost 
($)

1134.0 0.8605 1.154 2.0145

1171.0 0.8818 1.15 3 2.0348

1093.4 0.8243 1.1542 1.9785

1000.0 0.761 1.1553 1.9163

868.9 0.6635 1.157 1.8205

931.6 0.7123 1.1564 1.8687

836.6 0.6413 1.1576 1.7989

832.1 0.6398 1.1578 1.7976

The minimum cost for the system is about the same as that given 

in Table 6.3. This is to be expected as the only difference between 

the two runs is the initial desired coordinating temperature. As, in 

both cases, the rolling mill trajectories remain fairly flat, it is 

only to be expected that the final result is determined by the shape 

of the furnace cost trajectory. Table 6.6 shows the input and output 

soak zone slab temperatures for the case shown by Table 6.5.
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Table 6.6: Soak zone input/output temperatures of slabs

Slab No.

Iteration No.

1 2 3 4 5 6 7 8

Desired input temperature ( °C)
1134 1171 1093.4 1000 868.9 931.6 836.6 832.1

1 1130.3 1159.4 1192.7
4

1113.3 1024.4 879.7 945 849.5

2 1132.5 1202.8 1091 1009.7 932.5 957.6 876.2 842.7

3 1133.1 1196.2 1113.8 1022.4 853.0 940.1 821.2 841.7

4 1133.2 1189.4 1123.6 1035.7 883.5 943.9 856.7 849.5

5 1134.6 1199.0 1112.3 1023 888.3 954.5 849.2 840.2

6 1135.0 1189.2 1116.6 1027.4 873.4 937.0 841.7 844.4

7 1135.2 1198.2 1112.1 1024.9 884.8 952.5 852.8 844.4

8 1135.1 1200.3 1117.6 1026.4 879.2 944.0 842.0 843.7

Slab No.
Desired output temperature (°C)

1134 1171 1093.4 1000 868.9 931.6 836.6 832.1

1 1129.6 1167.0 1089.4 1019.6 945.5 929.8 880.2 827.8

2 1128.5 1164.0 1088.6 1003.9 870.9 922.6 829.1 827.8

3 1125.2 1164.5 1086.8 1002.7 867.4 926.1 835.9 827.1

4 1128.7 1165.7 1086.1 1000.4 862.6 925.6 828.8 824.3

5 1125.9 1163.9 1087.1 1002.5 860.3 922.6 830.3 827.1

6 1127.0 1165.8 1087.1 1002.7 864.4 926.9 832.1 826.1

7 1127.7 1164.7 1087.6 1002.4 862.1 923.6 829.6 826.1

8 1126.9 1163.7 1086.4 1001.7 863.3 925.3 832.4 826.3



Table 6.7 is a table of the individual and combined sub-systems 

for 6.35 cm slabs at a velocity set point of 0.3. The initial desired 
coordinating temperature is at 882°C. This table is plotted in Figure 

6.9.

Table 6.7: Combined system optimization for
6.35 cm slabs at a velocity set 
point of 0.3

Temperature (°C) Furnace cost 
($)

Mill cost 
($)

Total cost 
($)

882 1.43 1.17 2.60
887.1 1.33 1.16 2.49
904.0 1.348 1.15 7 2.505
896.6 1.24 1.157 2.397
896.4 1.27 1.157 2.427
900.1 1.27 1.157 2.427
898.0 1.25 1.15 7 2.407
896.0 1.22 1.157 2.377
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Table 6.8: Soak zone input/output temperatures of slabs

Iteration No.

Slab No.
1 2 3 4 5 6 7 8

Desired input temperature ( °C)
882 887.1 904 896.6 896.4 900.1 898 896

1 878.1 890.82 895.3 910.'7 906.2 904.4 908.9 908.4
2 878.1 909.5 924.8 914.5 913.2 920.3 916.7 916.0

3 878.1 899.1 912.7 902.4 900.4 905.6 902.4 899.4

4 878.1 894.85 912.2 912.5 910.2 912.9 913.2 912.7

5 878.1 908.9 923.8 907.7 907.9 917.1 909.5 907.2

6 878.1 893.1 907.2 902.6 901.9 903.4 903.7 901.66

7 878.1 901.9 919.8 911.9 912.5 917.5 913. 7 912.5

8 878.1 902.1 915.5 903.4 902.9 908.4 903. 7 901.9

De si red output temperature (°C)
b 1 ao Ln 0 .

882 887.1 904 896.6 896.4 900.1 898 896

1 883 888.5 902.4 898.1 897. 4 900.3 899.4 897.6

2 873.2 880.7 895.6 887.5 887.3 891.6 889.3 887.8

3 877.2 880.7 896.6 889.8 890.1 893.6 891.8 890.1

4 877.5 882.7 897.8 888.1 888.5 892.8 890.3 888.1

5 876.2 882 896.6 887.8 887.7 891.8 889.8 887.5

6 876.5 882.3 897.8 890.1 889.8 893.8 892.1 890,1

7 876.4 881.7 896.4 888.3 888.1 892.3 889.8 888.1

8 876.4 880.5 895.8 889.3 889.1 892.3 891.6 889.3



Table 6.9 is a table of the individual sub-system iterations for 

the curves given in Figure 6.10, Table 6.10 gives the slab temperatures, 

for every optimization iteration, as they enter and exit the soak zone.

Tab1e 6.9: Combined system optimization for
0.018 m slabs at a velocity set
point of 0.2

Temperature (°C) Furnace cost
($)

Mill cost 
($)

Total cost 
($)

882 0.776 0.753 1.529
902.16 0.7895 0.735 1.5249
948.5 0.845 0.697 1.542
925.3 0.801 0.717 1.518
922.32 0.8 0.719 1.519
935.17 0.819 0.708 1.527
928.62 0.806 0.714 1.520
926.3 0.8057 0.7157 1.5214
930.88 0.81 0.712 1.522
927.36 0.8042 0.713 1.5172
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Table 6.10: Soak zone input/output temperatures of slabs

I113

l

Iteration No.

Slab No.
1 2 3 4 5 6 7 8 9 10

Desired input temperature (°C)

882.0 902.16 948.5 923.3 922.32 935.17 928.62 926.3 930.88 927. 36

1 878.1 896.4 915.3 962.1 9 39'. 2 934.2 948.3 941.9 939.9 944.2

2 878.1 920.1 974.7 933.6 935.7 956.1 944.0 942.7 949.5 945.7

3 878.1 915.7 961.1 939.7 938.9 950.8 944.2 943.2 946.7 945.7

4 878.1 917.8 961.1 945.3 936.9 950.0 946.0 944.2 946.7 946.1

5 878.1 920.3 955.0 938.0 940.4 957.5 946.3 946.5 952.3 948.7

6 878.1 912.5 956.7 941.5 934.7 944.2 942.5 938.9 941.1 947.1

7 878.1 919.5 969.4 940.2 938.4 954.3 946.8 945.0 950.5 947.0

8 878.1 916.3 965.4 942.2 940.5 952.8 946.3 944.5 948.5 946.7

Slab No.
Desired output temperature (°C)

882.0 902.16 948.5 923.3 922.32 935.17 928.62 926.3 930.88 927.36

1 879.2 900.4 946.3 918.3 917.2 931.6 923.3 921.3 926.4 923.8

2 880.2 896.1 940.0 919.5 915.8 927.4 921.8 919.3 923.1 921.8

3 876.9 896.9 942.5 918.8 915.3 928.4 921.8 919.3 923.8 921.8

4 874.4 896.6 942.5 917.5 915.8 928.6 921.6 919.3 924.1 921.8

5 873,7 895.9 939.7 919.0 914.8 926.6 921.3 918.2 922.1 920.8

6 875.2 897.6 943.5 918.5 916.3 929.6 922.3 920.3 925.1 922.8

7 876.4 896.1 940.7 918.8 916.0 927.8 921.6 919.0 923.3 921.8

8 878.2 896.9 941.2 918.0 915.2 927.9 921.3 918.8 923.4 921.3



Table 6.11; Combined system optimization for
0.018 m slabs at a velocity set 
point of 0.3

Temperature (°C) Furnace cost 
($)

Mill cost 
($)

Total cost 
($)

882.0 1.040 0.765 1.805
902.2 1.048 0.736 1.784
948.5 1.104 0.698 1.802
925.3 1.066 0.717 1.783
922.3 1.061 0.720 1.781
935.2- 1.076 0.709 1.785
928.8 1.067 0.714 1.781
926.9 1.066 0.716 1.782
931.1 1.069 0.711 1.780

Tables 6.11 and 6.13 are the tables of the individual sub
system iterations for the curves given in Figures 6.11 and 6.12, 

respectively.

Tables 6.12 and 6.14 are the slab temperatures, as they enter 
and exit the soak zone, for each of the iterations shown in Tables 
6.11 and 6.13, respectively.
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Table 6.12: Soak zone input/output temperatures of slabs

115

Slab No.

Iteration No.

1 2 3 4 5 6 7 8 9

Desired input temperature (°C)
882.0 902.2 948.5 925.3 922.3 935.2 928.8 926.9 931.1

1 881.3 890.8 904.7 948.0 938.2 933.9 942.2 93 9.7 938.2
2 881.2 925.3 974.0 938.2 938.2 955.3 947.0 944.5 949.5
3 880.9 914.3 957.3 928.9 927.4 941.5 929.9 930.1 936.4
4 880.7 904.4 949.3 945.8 939.5 946.3 947.8 944.8 944.7
5 880. 7 924.3 968.7 933.4 931.9 950.5 937.9 935.9 945.3
6 880.5 906.4 945.5 934.2 931.1 937.7 935.7 934.2 934.9
7 880.6 917.3 963.4 944.0 940.0 957.0 947.5 945.5 947.3

8 880.1 919.3 959.6 929.9 928.1 943.2 931.9 930.1 939.2

Slab No.
Desired output temperature (°C)

882.0 902.2 948.5 925.3 922.3 935.2 928.8 926.9 931.1

1 877.0 899.6 942.2 928.1 924.3 934.2 930.4 928.4 931.6

2 877.1 894.6 939.5 916.3 912.7 925.8 919.3 917.0 921.6

3 877.2 894.3 940.2 919.8 916.0 928.4 923.3 921.1 924.3

4 878.2 897.9 943.7 917.3 913.5 928.1 920.1 918.0 923.3

5 876.3 895.9 939.7 917.0 914.0 926.4 920.3 918.8 922.1

6 875.2 896.4 943.5 918.5 915.3 929.4 922.3 921.3 924.8

7 877.2 895.3 941.2 917.0 913.8 927.1 920.3 918.5 922.6

8 878.3 894.6 940.5 918.5 915.3 927.9 922.3 920.3 923.6



T ab le 6.13; Combined system optimization for
0.018 m slabs at a velocity set 
point of 0.4

Temperature (°C) Furnace cost 
($)

Mill cost 
($)

Total cost 
($)

882.0 1.22 0.76 1.98
892.3 1.24 0.74 1.98
914.0 1.29 0.72 2.01
903.2 1.25 0.73 1.98
89 7.6 1.24 0.74 1.98
899.7 1.25 0.73 1.98
895.6 1.24 0. 74 1.98
892.0 1.23 0.74 1.97
884,0 1.23 0.75 1.98
887,8 1.23 0.74 1.97
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Table 6.14: Soak zone input/output temperatures of slabs

Iteration No.

Slab No.
1 2 3 4 5 6 7 8 9 10

Desired input temperature ( °C)
882.0 892.3 914.0 903.2 897.6 899.7 895.6 892.0 884.0 887.8

1 854.1 856.8 864.6 880.2 872.9 868.9 870.4 867.6 864.6 859.1
2 853.2 868.6 886.8 865.9 867.6 870.9 866.1 862.8 855.3 861.1
3 853.7 871.9 889.3 874.4 871.7 874.9 870.7 867.9 861.1 866.9
4 854.8 865.9 880.7 875.2 871.2 872.2 869.7 867.1 861.8 864.1
5 856.1 865.4 882.3 875.2 870.7 871.9 868.9 865.9 860.1 862.3
6 856.1 866.4 882.3 874.7 870.7 871.9 868.9 865.9 860.1 862.6

7 856.0 867.9 883.8 874.4 870.7 872.7 869.4 866.6 860.6 864.1

8 855.9 868.1 884.8 876.2 871.9 873. 7 870.4 867.4 861.3 864.6

Slab No.
Desired output temperature (°C)

882.0 892.3 914.0 903.2 897.6 899.7 895.6 892.0 884.0 887.8

1 882.5 884.5 904.4 898.4 892.3 893.3 890.1 886.3 879.2 881.2

2 883.1 893.8 913.0 899.9 895.6 898.4 894.1 890.6 883.0 887.8

3 882.4 895.9 914.8 902.9 898.4 900.9 896.9 893.6 886.5 891.3

4 881.5 892.6 911.2 902.4 897.9 899.4 896.1 892.6 886.3 889.3

5 881.7 892.1 910. 7 901.9 897.1 898.6 895.4 891.8 885.3 888.3

6 882.3 892.8 911.2 902.2 89 7.6 899.1 895.9 892.3 885.8 889.1

7 882.3 893.3 912.2 902.2 897.6 899.4 895.9 892.3 885.5 889.1

8 882.5 893.1 911.7 902.2 897.6 899.4 895.9 892.6 886.0 889.3
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Table 6.14 shows that there is drastic undershoot of the desired 

soak zone input temperature. This is due to the fact that at the desig

nated velocity set point, the preheat and heat zone power input set 
points are at their maximum, i.e. 1.0. Therefore, regardless of the 

desired output temperature, the slab input temperature has a maximum 

value, which may or may not be greater than the desired temperature. 

In all cases, the desired output temperatures are achieved, although 

some under- or over-shoot occurs due to the action of the PI controller 

on the soak zone temperature.

The combined system optimization graphs described use an objective 

function for the reheat furnace, as given by equation (6.1). This 

equation applies mainly to gas-fired reheat furnaces and penalizes 

high fuel rates. For an electrically-heated furnace, an objective 

function of the form, u^ + u^ + u^, should be used, as the objective 

is to minimize the fuel input which is measured in kilowatts.
Figure 6.13 shows the combined system response for an electrically- 

heated furnace objective function. This figure is based on the same 

parameters as used in Figure 6.8, and it can be seen that the overall 

result is to increase the combined system cost at each iteration.

This increase in cost is entirely due to the increase in the furnace 

sub-system cost. The effect of altering the furnace objective function 

has not, however, altered to any appreciable extent the final point 
of conversion.

6.3 Conclusion

This chapter has shown how model coordination is applied to a 

reheat furnace and reversing mill system. In the examples given there 

exists only one interconnection variable, namely, the slab temperatures 

on exit from the furnace. The overall objective of the model coordina

tion scheme was to minimize the fuel and energy costs of the combined 

sub-systems. Further investigation is required into the effect of incor

porating the maximization of the overall system throughput into the com

bined system objective function. The result of this would be to increase 

the complexity of the coordination task, due to the introduction of 

another interconnection variable, namely, the slab push rates.
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7.0 CONCLUSIONS

Initial simulation investigations, based on a semi-pilot scale 

plant, have demonstrated a satisfactory performance of the model co

ordination method. The model coordination technique implemented has 

some apparent on-line advantages over the interaction balance scheme, 

in that less computational effort is required to solve the combined 

sub-systems problem, and also the intermediate results obtained can 

be readily applied on-line whilst still producing feasible results. 

In addition, the temperature of the slabs entering the rolling mill 

is under the direct control of the coordinator, thus enabling impor

tant metallurgical constraints to be readily satisfied.

The coordination scheme outlined is open-loop, in that model 

inadequacies arid real plant feedback are not taken into account. 

Open-loop implementation of the coordination methods, viz. inter

action prediction or interaction balance, relies on the availability 

of accurate mathematical models of the steady state behaviour of the 

plant subprocesses. As often occurs in practice, there are usually 

model reality differences, and the inclusion of feedback measurements 

from the real process may often be used with advantage. Findeisen et 

al (1978, 1980) have carried out extensive research in the field of 

closed-loop hierarchical control and two principal methods in tfhich 

feedback information from the real process has been identified. These 
two methods are:

*
(i) global feedback, in which the process measurements are 

sent direct to the coordinator;

(ii) local feedback, in which the measurements are sent 

direct to the local decision units.

The classification produces the following four schemes:

(i) interaction prediction (or model coordination) method 
with global feedback;

(ii) interaction prediction method with local feedback;

(iii) interaction balance method with global feedback;

(iv) interaction balance method with local feedback.

Findeisen et al (1978, 1980) have shown that the methods give near 

optimal solutions of real process performance and are better than the 

open-loop methods.

119



It is felt that better system performance would be obtained if, 

as well as using the techniques described above, some form of para

meter estimation were included. In general, a mathematical model 

contains some unknown parameters whose values require to be estimated. 

The parameter estimation problem can be defined as the evaluation and 

adjustment of the unknown parameters in order that the response of the 

model is in agreement, as closely as possible, with the response of 

the system. This problem of tuning the model is evident in the reheat 

furnace model evaluation which is outlined in chapter 4. Weighting 

factors had to be introduced in order to force the furnace model to 

match the real system. This is adequate in the situation where the 

proposed model is used as part of a computer simulation, but becomes 

quite inadequate for accurate on-line model-based control, particularly 

when the plant parameters are time-varying.

In general, the mathematical model of a system will not be a true 
or faithful representation of the real system; hence, optimal points 

derived from the model may no longer be optimal as far as the real 

system is concerned. In this situation, the parameters whose values 

are to be identified may be dependent upon the control inputs. These 

properties cause interaction between the two problems of optimization 

and parameter estimation. Roberts (1979) has. extended the work of 

Haimes and Wismer (1972) by applying hierarchical systems theory to 

decouple the interaction between the optimization and parameter esti
mation problems.

Apart from the two aspects previously described, viz. feedback 

within a hierarchically-controlled system, and the optimization and 

parameter estimation problem, it is felt that more work is needed 

in the field of applying microcomputers in the control of industrial 

processes. Deshmuk.h et al (1979) have investigated the use of a 

hierarchically-structured multi-microprocessor system and its appli

cation on an industrial system. The industrial system used is a re

heat furnace of the type described in chapter 4. The reheat furnace 

is divided up into three separate zones, each one of which is controlled 

by a microprocessor. The microprocessors are linked together via 

common memory and the control parameters supplied to the microprocessors 

are determined by a master controller which would either be another 

microprocessor or a minicomputer. Due to the fact that, at present, 
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microprocessors, in general, are not as powerful as modem mini
computers, although there are a few fast microprocessors now on the 

market which will find application in the industrial environment, viz 

Intel's 8086 and the iAPX 432, it is felt that more research is 

needed into producing control algorithms which are suitable for micro 

processors.

This thesis has observed that a multi-level hierarchy provides a 

good tool for the analysis of complex systems as applied to existing 

practice. A hot strip mill was described by a two-level coordination 

scheme. While theoretical coordination results apply readily to most 

complex industrial systems, it is felt, particularly in the case of 

the hot strip mill, that the interaction prediction or model coordina 

tion scheme is more suitable for on-line use because of its ability 

to use, on-line, intermediate results.

Finally, it is felt that the development of a more rational and 

analytically-based methodology for systems design would lead to more 

complete and more efficient integration, for example, the solutions 
to questions concerning:

(a) criteria for decomposition;

(b) means for coordination applicable to systems operating
in real time;

(c) criteria for model simplification which are appropriate
to its level in the hierarchy.
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APPENDIX A

A.l Parameter Estimation in Non-Linear Dynamic Mathematical Models

When developing a mathematical model of a system, the analyst is 

often faced with the problem of determining numerical values of para

meters in a model whose structure is non-linear. If responses from the 
real system are available, it is possible to obtain parameter values by 

simulating the system and adjusting the parameters until the response 

from the model agrees with the response from the real system. This 

process is commonly automated within a digital computer which has been 

programmed to simulate the system and to adjust the parameters via a 

numerical optimization procedure. This model-fitting technique is often 

formulated as a weighted least-squares method in which the optimization 

algorithm manipulates the model parameters to minimize the sum of squares 

of weighted errors between the responses of the model and those of the 
real system.

Optimization algorithms have been developed specifically to take 

advantage of the sum-of-squares form. A software package (Roberts, 1977) 

has been developed for estimating values of parameters in mathematical 

models whose structure is non-linear and dynamic.

The results of the optimization algorithm used for model-fitting 

yield numerical values of parameters, which correspond to the minimum 

of the sum of the squares of the weighted errors between the dynamic 

response of the model and that of the real system. However, these results 

should not be considered as the end of the model-fitting exercise and it 

is important to perform sensitivity tests in order to determine the sig

nificance of the parameter estimates, the structure of the mathematical 

model and the data employed as the real system response. For this 

reason, the software package contains a separate subroutine which performs 

the required sensitivity tests and determines confidence tolerance levels 

on the parameter estimates and on the final dynamic response of the model.

Having determined the model parameters which minimize the weighted 

sum of squares of the residual errors between the output of the model 

and the real system, the sensitivity of the optimal weighted residuals 

to changes in the parameter estimates is determined. From this, the 

Jacobean matrix, J, which contains first derivatives, is computed.
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That is

................................................................... (A.l)

where p = vector of optimal parameters, e = vector of weighted residuals, 

and the suffix i or j indicates an element in the associated vector or 

matrix. Using the Jacobian matrix, the gradients of the weighted sum 

of square residuals with respect to the parameters are computed using 

the expression

g ....................................................................................... (A.2)

where g is the gradient vector.

The sensitivity of the final parameters to small changes in any 

of the residuals e_ is performed by computing the sensitivity matrix

Sm = [jTjJ_1 JT ........................................................................ (A. 3)

The sensitivity matrix, S , is then employed to compute the approximate 

errors, <5, in the -optimal parameters using the expression

................................................................................... (A.4)

The covariance matrix, Cqv, of the optimal parameters is then computed 

using

............................................ (A.5)

where S is the weighted sum of squares of the residual errors, N is 
s

the number of samples, and is the number of estimated model parameters.

From this, the 95% confidence levels on the estimated parameters

are determined, assuming that the errors are approximately gaussian.

Finally, the variances of the residuals and 95% confidence intervals 

on the outputs of the model corresponding to the given estimates of the 
model parameters are computed. The variance, V on the kth weighted

K.
residual is computed using the expression

(A.6)

where the required partial derivatives are obtained from the Jacobian
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matrix, J, and the 95% confidence level on the k output is obtained

from

The above confidence levels imply that there is a 95% confidence that 

the true parameter lies in the range p^ _+ A^, and that the true output 

lies in the range y _+ <(> .K. K

A.2 Furnace Model Parameters

For power input set points >0.3

TPP
2

= (A u^ + B)x + (C u^ + D)x + (E u^ + F)

0 $ x 1.07 m

where A = - 212.97 (+ 36.1), B = - 134.5 (+ 20.8), C = 201.26 (+ 52.7),
D == 132.26 (+ 30.4), E = 376.2 (+ 15.7), F = 40.27 (+ 9.0)

TPH
2

= (A u^ + B)x + (C u^ + D)x + (E u^ + F)

1.07 $ x < 2.13 m

where A = 305.66 (+ 17.1), B = 91.45 (+ 10.2), C = - 1277 (+ 51.9),

D = 513.78 (+ 15.7), E = - 317.7 (+ 18.8), F = - 315.7 (+ 11.9)

D ---- - 305.9 (+ 33.1), E = 1399.0 (+ 40.6), F = 238.8 (+ 25.7)

T HP
2

= (A u^ + B)x + (C u^ + D)x + (E u^ + f)

0 •$ x $ 1.07 m

where A == 55.49 (+ 13.0), B = 142.6 (+ 8.2), C = 230.31 (+ 18.9),
D == - 138.86 ( + 11.8), E = 3.51 (+ 2.7), F = 18.1 (+ 3.6)

THH
2

= (A u2 + B)x + (C u2 + D)x + (E u2 + F)

1.07 < x $ 2.13 m

where A == - 275.9 (+ 7.75), B = - 155.0 (+ 4.65), C = 896.4 (+ 25.2)

THS
- (A u2 + B)x2 * <C u2 + W* + (E u2 + F)

2.13.$ x $ 2.84m

where A == - 42.63 (+ 21.7), B = 170.5 (+ 13.7), C = - 145.28 (+ 25.6),
D --= - 896.45 (+ 63.4), E = 840.0 (+ 94.1), F = 1164.0 (+ 72.5)
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Tsh = (A u3 + B)x2 + (C + D)x + (E u3 + F)

1.07 < x < 2.13 m

where A = 338.37 (+ 7.39), B = 86.77 ( + 4.65), C = - 762.6 (+ 23.6), 
D = - 264.3 (+ 15.0), E = 478.3 (+ 18.4), F = 191.0 (+ 11.7)

Tgg = (A Ug + B)x2 + (C Ug + D)x + (E Ug + F)

2.13 < x < 2.84 m

where A = - 313.72 ( + 28.7), B = - 245.68 (+ 18.6), C = 1606.7 (+ 132.9), 

D = 122.17 (+ 84.1), E = - 1649.0 (+ 151.7), F = - 1449.0 (+ 95.9)

For power input set points <0.3
2Tpp = A u^ x + B x + C

0 ■< x < 1.07 m

where A = 26.35 (+ 9.5), B = - 156.69 (+ 14.7), C = 612.7 (+ 40.9)

TPH = A x + B u. x + C u.

1.07 x 2.13m
1 1

where A = 406.7 (+ 87 • 1), B = - 1681.5 (± 303.1), C = 1740 (+ 226.6)

T = A u„ : 2 X + B x + C u„HP 2 2 2
0 < x << 1.07 m

where A = 533.5 (+ 17 .05) , B = -- 231.4 (+ 25.6), C = 65.53 (+ 7.69)

T = A u„ 2 X + B Un x + C u_HH 2 2 2
1.07 < x < 2.13m

where A = - 993.5 ( + 26.3), B = 3174.0 (+ 85.4), C = - 1766.0 (+ 64.1)

T = A u2 2 X + B + C U„HS 2 2
2.13 < x <: 2.84 m

where A = 588.1 (+. 45.8),, B = - 3419.6 (+ 212.5) , C = 5037.1 (+ 242.5)
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u3 + c u3
1.07^ x 2.13m

where A = 402.8 (+6.9), B = - 894.8 (+22.4), C = 504.4 (+ 16.9)

2 Tgg = A x + B x + C

2,13 x < 2.84 m

where A = - 1163.5 (+ 307.5), B = 5818.9 (+ 146.8), C = - 6643.5 (+ 167.7)

TPP = temperature in preheat zone with preheat zone on only
TPH

= temperature in heat zone with preheat zone on only
THP

= temperature in preheat zone with heat zone on only

THH = temperature in heat zone with heat zone on only
THS

= temperature in soak zone with heat zone on only

T SH
= temperature in heat zone with soak zone on only

TSS
= temperature in soak zone with soak zone on only

Figures in brackets denote the 95% confidence tolerance on the parameters.

Weighting polynomials

Wx = 0.522 x3 - 1.14 x2 + 0.889 x + 0.907

0 < x < 1.07

W2 = 0.629 x2 - 1.96 x + 2.728

1.07 < x < 2.13

W3 = - 0.454 x2 + 1.95 x - 0.8477

2.13 < x < 2.84
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APPENDIX B

Slab Model Derivation

The equation for heat transfer within a large flat slab in a re

heating furnace, together with initial and boundary conditions, are 

shown below.

The heat conduction equation is given by:

30 , 
Pc sT (x’ t)

a f, 99(x, t)\
3x J/ 3x J ................................................. (B.l)

with the initial condition given by

0(x, 0) = 0q(x) > 0 < x < s ............................................ (B.2)

3where p = density (g/cm )
c = specific heat (cal/g °C)

k = thermal conductivity (cal/cm sec °C)

0 = slab temperature (°K)
0 = initial condition (°K)

o
s = slab thickness

t = time

x = coordinate in the direction of the slab thickness (see

Figure 4.23).

The

and heat

boundary conditions

zones are expressed

on the surface of the

by:

slab in the preheat

30
3x (x, t) x=0

x=s

cr{T4(y, t) - 04(t)} (B.3)- k e

where e = effective emissivity of the furnace
2 o /[

a = Stefan-Boltzmann constant (cal/cm sec K )
T = furnace temperature (°K)

In the

of the slab
soaking zone the boundary condition on the heating surfaces 

is expressed mathematically as:

t)
x=s

........................................................ (B.4)
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where 0(x, t) is the slab temperature as a function of its thickness 

and time. The furnace temperature, T(y, t), varies along its length 

and also varies with time, but for steady state operation of the fur
nace (i.e. slabs of the same thickness pushed at a constant rate) it 

is only a function of the furnace length.

It is necessary

ture, 0 , should not ’ s’

to point out here that the slab surface tempera- 

exceed a specified limit, i.e.

0(0; s, t) 0s(t) 0 s max (B.5)

To simplify the derivation of the 

are introduced, as shown in Table B.l. 

(B.l) to (B.5) can be re-written as

model, dimensionless variables

Using these variables, equations

ap*c* 30* 
at*

- k* 80*
ax* x*=0

x*=2

.............................................. (B.6)

.............................................. (B.7)

0*(x*, 0) = 0*(x*) for 0 x* 2 ................................. (B.8)

0*(O; 2, t) 0*s max ........................................................ (B.9)

Table B.l

Variables and Constants introduced 
for Normalization

Variables Relations Meaning

0* 0 = 0* Tr Dimensionless slab temperature
T* rp = ’j’j't’j1 

r Dimensionless furnace temperature

P* P = P*Pr Dimensionless density
c* c = c*cr Dimensionless specific heat

k* k = k*kr Dimensionless thermal conductivity
X* x = x* s/2 Dimensionless coordinate

t*
pr cr st* 

t 3
2 T e or

Dimensionless time

a*
s o e T3 

a = r
2 k r

Dimensionless constant
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The last two equations in Table B.l are deduced by substituting 

the other variables and derivatives in equations (B.l) and (B.2).

Since the situation is symmetric in respect of the initial distri

bution and the boundary conditions, the history of one half of the slab 
duplicates that of the other and, hence, only one half need be' considered. 

There is no heat transfer across the centre plane, and so the gradient 

there is zero. The boundary conditions now become: 

- k* 39*
3x*

.......................................... (B.lOa)

- k* 39*
3x* ......................................   (B.lOb)0

where x = 0 represents the top surface of the slab.

From hereon the * will be dropped, but the variables will retain
their dimensionless form unless otherwise stated.

Since it is the average value of the slab temperature which is of 

interest, this can be represented as

1

9(t) = 9(x, t)dx ..................................................................... (B.ll)

o

An ODE for the slab heating process (equations (B.6) to (B.8)) 

will now be derived. If c and k are assumed to be constant over the 

temperature range, and the temperature distribution through the slab is 

uniform, such an equation can readily be found (Carlslaw and Jaeger, 

1959):

pc f = (T4 - 04) .................................................................... (B.12)

In the case of reheating slabs of steel from cold to rolling temperature, 

where large temperature variations are involved, the thermal properties 

of steel suffer considerable changes, and therefore c and k cannot be 

assumed to be constant. This causes equation (B.l) to be insoluble 

analytically. Therefore no treatment of heat transfer in steel which 

does not endeavour to take account of these variations, at least approxi

mately, can be regarded as satisfactory for this particular application.
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Taking this 

of the following
into

form

account, it is again possible to find an equation 

which describes the slab heating process

d0
dt f(0, T) (B.13)

An equation for the surface temperature can also be found to be

9(0, t) g(0, T) (B.14)

over the spatial coordinate, x, gives

u
o

80 a ape — dx3x
k(^)dx

''3x'

k sei1
3x -1 o

- k 30
3x x=l ’

- k-^
3x x=0 (B.15)

substituting equations (B.lOa) and 

f ap<:lldx
o

(B.lOb) into equation (B.15)

at x = x,

(i4 - e4) (B.16)

Expanding 0(x, t) about

then
its average value, 0(t), which is, say,

0(x, t) 0(t) + (x - x)0 (x, t) + y(x - x)20 (x,
X Z. XX

t) + h.o.t. .

(B.17a)

where 0 x 0 xx

ape 90 a3? dX gives

ape 90 a3? dX

k(0) sb n1
3x -x
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hence
1

a

An equation

30ape —

a
kW

F1(9, t)

for 0 xx

30 , pc dx

(x, t) can be derived in the following

(B.17b)

manner:

320 dk(0)
. 2 d0 3x

(—)2

ape dk(0)
30 Wx^3xJx

therefore

/ 2 \
I 8 9 ) 1 r30!
wa k(0) JpCUx ’

= a F (0, t) + a2 F (6, t) .......................... ............ (B.17c)

Substituting equations (B.17b) and (B.17c) into (B.17a) gives

0(x, t) = 0(t) + (x - x)aF1(0, t) + y(x - x)2[aF2(0, t)

+ a2F2(0, t)J + h.o.t.

Hence,

0(x, t) = 0(t) + af^(x, t) + f2(x, t) + h.o.t...................... (B.17d)

Let g(0) = pc(0) (B.18)

Expanding both B and k about their average values,

6(e) - 6(e) + (e - e) + (e - e)2 +
d0 ae2

2
k(0) = k(0) + (0 - 0) ~ + (0 - 0)2 + h.o.t.



Substituting (0 - 0) from equation (B.17d) into the last two equations 

and keeping only those terms with a of second order or less, the 
following results:

B(e) = B(e> + a£i « + a2(f2 « + A fl2 ............ (B.19)

k(0) = k(0) + af + a2(f | f 2 ) ............ (B.20)
1 d0 \ 2 d0 21 dQ2 /

Differentiating equation (B.17d)
respect to x, results in

d0
dt

d0
dt

3f2
at

d0 
dx

2 a

with respect to t, and then with

................................................... (B.21)

............................................................ (B.22)

Substituting equations (B.21) and (B.22) into equation (B.6) gives

a
3x (B.23)

Substituting for (3 and 

last equation results in:

k (i.e. equations (B.19) and (B.20) in the

g (0) + af Ac + a2
1 d0

k(0) + af1 +
1 d0

d0 
dt

3fl 
+ a aT+

a 3x

2 9f2 
a aT

2 9f2 
a ax

a

(B.24)

Evaluating equation (B.24) 

collecting terms of a and
by

2 a
neglecting high order terms of a

, results in
and by

9?fl

ax2

9fi 
JT+

d|3 d0 9 f2 dk 9 fl
1 dt ax2 ' 1 3x2

2 -i
dk
d0 (B.25)

it can be seen from the definition of 

independently from the other terms in
a (Table B.l) that it may vary 

equation (B.25), since a is a

a o -6 dE k + 2 a

0
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function of slab thickness, and when considering one particular slab, 

this thickness is constant. Therefore, the coefficients of each power 

of a must be zero.

fcA
3 2 3x

K 2
ax

d9 
dt

8fl

at

a2f
+ dg d9 _ dk __ 1

1 dQ dt 1 d9 3 2
dk
d9

(B.26)

(B.27)

To find solutions for fj(x, t) and f^(x, t)

B

B

Assume the solution for equation (B.26) to be

f1(x, t) F1(x)G1(t) (B.28)

Differentiating equation (B.28) twice with respect to x gives

ax2

a2r

ax
(B.29)

Comparing this equation with equation (B.26) yields

92fi
ax2

(B.30)1

G1
8(9) d9 
k(9) dt (B.31)

Solution of equation (B.30) is given by

F1(x)
1 2
2 .X + C1 x + C2 (B.32)

where 

boundary 

equation

and C2 are 

conditions

constants. To find and C

(B .30) must be

(B.17d) over the spatial coordinate x

of equation
2» the initial 

specified. Integrating 
gives

and

9(x, t)dx
pl

f1(x, t)dx

,1
f (x, t)dx+ a 2

J
o

(B.33)
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The first term on the right-hand side is

But, by definition (equation (B.ll)), the left-hand side of equation 

(B.33) becomes 0(t). 

integrated to yield

easily

9(t) 9(t)

1
f X(x,

1
f2(x, t)dx,

t)dx (B.34)

t)dx (B.35)

Substituting

J F1(x)G1(t)dx

o

equation (B.28) into equation (B.34),

0,

+ a
J
o

0

0

0i.e. (B.36)

Equation (B.36) states

The boundary conditions are deduced as follows:
the initial conditions for equation (B.30).

- dx x=l 0

because of the symmetry situation at the centre plane of the slab.

Substituting equation (B.22) into the above equation gives

“ 9x x=l 0 . (B.37)

As before, since 

equation (B.37),

a can vary independently from the other variables in

then

3fl
9x

3f2
9x

x=l 0 (B.38)

x=l 0 (B.39)
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Substitution of equation (B.28) into equation (B.38) yields

3F1
3x 0 (B.40)

which is the boundary condition for equation (B.30). 

the assumed solution for F(x) 

and equation (B.40) gives two 

C2 which are solved to give:

(i.e. equation (B.32)) 
simultaneous equations

Substitution of

into equation (B.36) 

in terms of and

C1 1

C2
2
3

Thus,

Ft(x) 12 22 x - x + 3 (B.41)

Returning to equation (B.27) and substituting 
gives:

equation (B•28) into it

a2f2
3x2

dGl
6F1 dE" + FiGi

dB de _ 2
de dt F1G1

dk _ G 2 dk 
de 1 de

(B.42)

Equation (B.30) is also used in 

the terms

of x only
of equation (B.42) so 
are grouped together,

deriving equation (B.42). 

that those functions of time
Re-arranging

and those
gives

±1
3x2

8 dGi + 21
k dt k d0

dk
d6

(B.43)

A solution for f2(x, can also be assumed as

f2(x, t) F2(x)G2(t) + F3(x)G3(t) (B.44)

where
d2F2(x) 

dx2
Fx(x) (B.45)

G2(t)
8 dGi [ Gi dg de 
k dt k jQ dt (B.46)
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d2p3

dx2
Fx(x) +

2
(B.47)

G3(t) Ft(x) + (B.48)

To solve equations (B.45) and (B.47) the initial and boundary con-

ditions must be specified. These are deduced in the same manner previously 

outlined for the solution of F^(x). Hence,

J
F2(x)dx

x=l

dF3
dx x=l

Hence,

F2(x)
4 3 2X _ X X____1

24 6 6 45

F3(x)

(B.49)

(B.50)

(B.51)

= 0
J 
o

= 0

0

To evaluate the left-hand side of equation 

and (B.21) are substituted into it. High order 

neglected from the resulting integral equation, 

and f2(x, t) are substituted to yield

(B.16), equations (B.19) 

terms of a are then

The solution of f^(x, t)

f e<5) dx
8(9)

de 
dt (B.52)
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where
HP 2 —

dg 2_1 1 r 2 d g d0 
1 d0 dt 2 d-2 dt .............................................. (B.53)

In view of equation (B.52), equation (B.16) can be rewritten as 
foilows:

................................. (B.54)

since

o
45'

In order to find an equation for 

slab, x = 0 is put into equation
0 , the surface temperature of the

(B.17d):

0(x, t)
9

= 0(t) + af^x, t) + a f2(x, t)

= 9(t) + aF1(x)G1 (t) + a2 (f2(x) G2(t) + F3(x)G3(t))

Hence,

0(0, t) = = 0(t) + | acpt) + a2 (- G/t) + k G3(t>)

.......................... (B.55)

Since

F1(0) i
3

f2(0) 1
45

F3(0)
2
45

Let e k c,(t) + GQ(t) ........................................................ (B.56)

Hence

0g(t) = 9(t) + | a G1(t) + a2e ...................................... (B.57)
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Using equations (B.46) and (B.48), e may be written as 
^l!dk+ B^l+h 

k de k dt k
1
45

d3 d9 
de dt_

(B.58)

Substituting for G^(t) in equation (B.57), it becomes

0 (t) s
(B.59)

Equation (B.54) may now be written as

(B.60)

Neglecting terms in 2a , equations (B.59) and (B.60) can be written

as

es(t) 6(t) + ag(9)
3k (e)

de 
dt (B.61)

8(9)
de 
dt

T4 (B.62)

Expanding the right-hand side of equation (B.62) results in

3(6) de 
dt

T4 -4 4aB(0) -3 de 2 (aB0 d0 \ 2
( J W 6 dE 3 Vk" dt )

E

e(5) n - -fe
4

4

(B.63)

3k

_ 3 'x
Collecting those terms in and dividing by + 4 J, which 

is approximated by (j - \ and neglecting high order terms in a,

the following equation is obtained for the average slab temperature:

B<e) £ 4 -4i - e (t) . ... (B.64)

Equations (B.61) and (B.64) define the proposed model for the tempera

ture distribution within a slab. It is more convenient to express 

the model equations in dimensional form by substituting for the 

dimensionless quantities as given in Table B.l. Before proceeding 

any further it is necessary to relate the model equations to the 

actual aluminium extrusions used in the model reheat furnace. To 
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do this, the slab properties must be known and these are given below

in Table B.2. Table B.3 shows the reference values.

Table B.2: Aluminium slab properties

Melting point = 66O°C
Density, p = 2707.1265 Kg/m3

Specific heat, c = 895.975 J/Kg°C
228.36 Wm/m2 °CThermal conductivity, k

Table B.3: Reference values

T = 933°K
r

cr = 896 J/Kg °K

k =230 Wm/m2 °K
r

o^_ = 5.67 x 10 8 W/m2 °K^

e = 0.7

Pr = 2700 Kg/m3

Thus, substituting in the reference values gives

de 
dt

7.95 x 10
pc(0)s (B.65)

The average temperature is given by the solution of the above ordinary 
differential equation.

The surface temperature is given by

0 s

2 pcs
720 k(0) dt (B.66)
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Computer programs 
(Appendix C) removed for 

copyright reasons




