
              

City, University of London Institutional Repository

Citation: Abdullah, N. (1988). Augmented integrated system optimisation and parameter 

estimation techniques for on-line hierarchical control of large scale industrial process. 
(Unpublished Doctoral thesis, City University London) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/34269/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


AUGMENTED INTEGRATED SYSTEM OPTIMISATION AND PARAMETER ESTIMATION

TECHNIQUES FOR ON-LINE HIERARCHICAL CONTROL OF LARGE 

INDUSTRIAL PROCESSES

BY

NORMAH ABDULLAH

A THESIS SUBMITTED FOR THE

DEGREE OF

DOCTOR OF PHILOSOPHY

IN

CONTROL ENGINEERING

CITY UNIVERSITY

LONDON

CONTROL ENGINEERING CENTRE

SCHOOL OF ELECTRICAL ENGINEERING

ANO APPLIED PHYSICS

SCALE

MARCH 1986



TABLE OF CONTENTS

Page No.

TABLE OF CONTENTS 2

LIST OF TABLES 8

LIST OF FIGURES 11

ACKNOWLEDGEMENTS 13

DECLARATION 15

PUBLICATIONS 15

ABSTRACT 16

LIST OF SYMBOLS 17

CHAPTER 1 INTRODUCTION

1.1 Control System 22

1.2 Optimising Control 23

1.3 Scope and Aim of the Thesis 25

1.4 The Outline of the Thesis 27

2



CHAPTER 2 DECOMPOSITION AND COORDINATION OF HIERARCHICAL CONTROL

2.1 Introduction

2.2 Control of Process

29

30

2.3 Decomposition of the Control Problem 34

2.3.1 Multilevel Approach

2.3.2 Stratum Approach

35

36

2.3.3 Multilayer Approach 37

2.4 Coordinator 38

2.4.1 The Model Coordination Method 40

2.4.2 The Goal Coordination Method 40

2.5 Summary 42

CHAPTER 3 ON-LINE INTEGRATED SYSTEM OPTIMISATION ANO PARAMETER

ESTIMATION (ISOPE)

3 . 1 Introduction 50

3.2 The ISOPE Technique for a Single Process 51

3.2.1 The Two Step Technique 53

3.2.2 The Modified Two Step Technique 54

3.2.3 Two level Type Method 57

3



3.3 The ISOPE for Large Scale Industrial 58

Process

3.3.1 Preliminaries 58

3.3.2 Structure with Output Feedback 62

3.3.3 Structure with Input-Output 65

Feedback

3.4 Summary 67

CHAPTER 4 AUGMENTED ISOPE WITH OUTPUT FEEDBACK

4.1 Introduction 73

4.2 Statement of the Problem 73

4.3 Variable Augmentation 76

4.3.1 Single Loop Technique 81

4.3.2 System Based Double Loop 84

Technique

4.3.3 Model Based Double Loop 86

Technique

4.4 Constraint Augmentation 90

4.5 Summary 92

4



CHAPTER 5 OPTIMALITY AND CONVERGENCE ANALYSIS FOR AUGMENTED 

ISOPE WITH OUTPUT FEEDBACK

5. 1 Introduction 94

5.2 Optimality Properties of the 94

Variable Augmented algorithms

5.3 Convergence of Variable Augmented 101

Algorithm

5.3.1 System Based Double Loop 101

Technique

5.3.2 Single Loop Technique 113

5.3.3 Model Based Double Technique 127

5.4 Optimality and Convergence Analysis 136

of Constraint Augmentation

5.5 Summary 143

CHAPTER 6 THE AUGMENTED ISOPE WITH INPUT-OUTPUT FEEDBACK

6.1 Introduction 144

6.2 Problem Statement and Formulation 144

6.2.1 Variable Augmentation 147

6.2.2 Constraint Augmentation 153

5



6.3 Optimality and Convergence Analysis 154

6.3.1 Optimality 154

6.3.2 Convergence of the Model 159

Based Double Loop Technique

6.3.3 Convergence of the Approximation 163

Loop of Constraint Augmented 

Algorithms

6.4 Summary 165

CHAPTER 7 DISCUSSION OF THE SIMULATION RESULTS

7.1 Introduction 167

7.2 Discussion 168

7.2.1 Examples 168

7.2.2 AISOPE Algorithms with 171

Input-Output Feedback

7.2.3 AISOPE Algorithms with Output 176

Feedback

7.2.4 Comparison 177

7.2.5 Effect of Noise on the AISOPE 178

Algorithms

6



CHAPTER 8 CONCLUSIONS 202

REFERENCES 205

213APPENDIX A Mathematical Preliminaries for

Chapter 5

APPENDIX B Convergence Proof of Theorem 5.5

(Chapter 5)

218

APPENDIX C Convergence Proof of Theorem 5.6

(Chapter 5)

220

APPENDIX D Convergence Proof of Theorem 5.7

(Chapter 5)

221

APPENDIX E Convergence Proof of Theorem 6.1

(Chapter 6)

222

APPENDIX F Convergence Proof of Theorem 6.2

(Chapter 6)

228

APPENDIX G Convergence Proof of Theorem 6.3

(Chapter 6)

233

7



LIST OF TABLES

Table No. Page No.

7.1 Different versions of the augmented ISOPE 181

algorithms.

7.2 Sensitivity of the variable augmented single 182

loop technique (VA-SL1) of AISOPE1 (Example 1).

7.3 Sensitivity of the variable augmented single 183

loop (VA-SL1) of AISOPE (Example 1).

7.4 Variable augmented single loop technique (VA-SL1) 184 

results of AISOPE1 (Example 1).

7.5 Constraint augmented single loop technique (CA-SL1) 184 

results of AISOPE1 (Example 1).

7.6 Variable and constraint augmented single loop 185

technique (VCA-SL1) results of ISOPE1 (Example 1).

7.7 Variable augmented model based double loop 185

technique (VA-M80L1) results of AISOPE1

algorithm (Example 1).

7.8 Constraint augmented model based double loop 186

technique (CA-MBDL1) results of AISOPE1 for

Example 1 (r=20).

7.9 Variable and constraint augmented model based 186

double loop technique (VCA-MB0L1 ) result s of

8



AIS0PE1 for Example 1 (r=20).

7.10 Variable augmented single loop (VA-SL1) 187

technique results for Example 2

7.11 Constraint augmented single loop technique 188

(CA- SL1) results for Example 2.

7.12 Variable augmented model based based double 189

loop technique (VA-MBDL1) results for Example 2.

7.13 Constraint augmented model based double loop 190

technique (CA-MBDL1) results for Example 2.

7.14 Variable augmented system based double 191

loop technique (VA-SBDL1) results for Example 2.

7.15 Constraint augmented system based double loop 192

technique (CA-SBDL1) results for Example 2.

7.16 Variable augmented single loop technique 193

(VA-SL2) of AISOPE2 results for Example 1.

7.17 Variable augmented model based double loop 193

technique (VA-MBDL2) of AISOPE2 for Example 1.

7.18 Constraint augmented model based double 193

loop technique (CA-MBDL2) of AISOPE2 for

Example 2.

7.19 Variable augmented single loop (VA-SL2) 194

technique results of AISOPE2 for Example 2.

9



7.20 Variable augmented system based double loop

(VA-S8DL2) results of AISOPE2 for Example 2.

195

algorithms.

7.21 Comparison of best results of AISOPE1 196

algorithms.

7.22 Comparison of best results of AISOPE2 196

10



LIST OF FIGURES

Figure No. Page No.

2.1 The large scale system with an ordering matrix H. 43

2.2 The control system. 43

2.3 A two level system. 44

2.4 Multilevel control. 44

2.5 The multi-level multi-objective control 45

structure.

2.6 The decomposition of control system on the basis 46

of strata.

2.7 Multilayer. 47

2.8 Multilevel solution using model coordination 48

2.9 Decouple system 48

2.10 Multilevel solution using goal coordination. 49

3.1 Modified two step algorithm. 69

3.2 Two-level type algorithm. 70

1 1



71

197

3.3 A two-level structure with output information 

feedback.

3.4 A two-level structure with input-output 

information feedback.

7.1 Sensitivity to e of model based double loop 

(MBDL1) techniques (Example 1).

7.2 Sensitivity to c of model based double loop
P

(MB0L1) technique (Example 1).

7.3 Convergence behaviour of the constraint augmented 

model based double loop (CA-M8DL1) technique of 

AISOPE1 (Example 2).

7.4 Convergence behaviour of the variable augmented 

model based double Loop (VA-MBDL2) technique 

of AISOPE2 (Example 2).

7.5 Behaviour of the constraint augmented model based 

double loop (CA-MBDL1) technique of AISOPE1 in 

the presence of noise (Example 2).

72

197

198

199

200

7.6 Behaviour of the variable augmented model based 

double loop (VA-MBDL2) of AISOPE2 in the presence 

of noise (Example 2).

201

12



ACKNOWLEDGEMENT

research has been suggested by him.

I wish to express my sincere appreciation and gratitude to

Professor P . 0 Roberts for his supervision, encouragement and

interest throughout the research work. But abo ve all, I wish to

thank him for his caring attitude and sympathetic nature at all

times.

I also wish to express my gratitude and thank to Dr. M. Brdys of

the Technical University of Warsaw, who was a senior visiting

fellow in the Control Engineering Centre, for his patience in

advising me in the research work. The majority of the work in this

Thanks are also due to Dr. Tatjewski of the Technical University of 

Warsaw, who was also a visiting research fellow in the Control 

Engineering Centre, for his advice and contribution in this 

research.

I would like to thank a number of people who assisted me while 

working on this project. Firstly, I would like to thank 

D. S Wadhwani and Dr. I. A Stevenson for their help in the 

computer laboratory and also to Dr. Chakravorty for his assistance 

with using The Prime minicomputer. Secondly, I would also like to 

thank the following people for their assistance and encouragement : 

Balkis, Ismail, Chen, Zeinab, Nabila, Nahla, Mohsen, Nor Hafizah, 

Amal, Zahra, Imam, Chaffei, Ihab, Salim, Soheil, Panos, Dina, 

Chandra, Mahdi, Fauziah, Nor Azizan and all my friends in 

The City University.

13



I am also indebted to  the secretary of the

Control Engineering Centre and other members of the department.

Finally, I would like to express my gratitude to my parents 

their consistent support and also to The National University 

Malaysia for supporting this research.

for

of

14



DECLARATION

The author grants powers of discretion to the University Librarian

to allow this thesis to be copied in whole or part without further

reference to her. This permission covers only single copies made

for study purposes, subject to normal conditions of

acknowledgement.

PUBLICATIONS

The following papers, based on the work described in this thesis,

have been published :

(1) Extended hierarchical augmented lagrangian adaptive technique 

for optimising control of large scale systems [1].

(2) An augmented model based double loop iterative technique for 

integrated system optimisation and parameter estimation of 

large scale industrial processes [13].

(3) Comparison of some algorithms for hierarchical steady-state 

optimising control of interconnected industrial processes 

C 49 ] .

15



ABSTRACT

optimisation 
function. The 

hierarchical 
Estimation (ISOPE) 

employs model 
In order

steady-stateon-line
augmented Lagrangian

This research investigates 
techniques 
augmented Lagrange function is applied to a class of 
Integrated 
algorithms. 
information 
model uncertainty, the algorithm needs to perform both optimisation 
and identification tasks. The identification task is to 
update 
modified optimisation

based on the

Optimisation and Parameter 
ISOPE algorithm

Sys tern
The
feedback from the process.

equations 
to overcome

and 
the

the model parameter value which will be used to 
problem.

iteratively 
improve the

augmentingof augmentation are developed for
the variable and constraint augmentation. The 

of these new versions of augmented 
non-convex problems. The constraint

are

Two different methods 
the ISOPE algorithm : 
applicability 
extended to
algorithms with double iterative coordination strategies 
to be the most efficient algorithms in reducing 
required set-point adjustments compared to the 
which have been proposed.

The 
algorithms 
simulation 
algorithms

optimality
are 

results,
are performed.

Among 
double 
and 
behaviour 
will
ISOPE algorithms.

algorithms 
augmented 

are found 
number of 
algorithms

the 
other

augmented 
convergence studies 

a comparative study on the applicability

and convergence 
derived. Based

properties of 
on the

these
and 

of the

proposed augmented ISOPE algorithms, the model basedthe
loop algorithm is the most suitable for on-line application 

futher investigate the on-line 
The author also hopes that this 

valuable information for futher development of

work can be performed to 
of the algorithm.

provide
work 
the

16



LIST OF SYMBOLS

algorithm mapping for system based double 

loop technique 

A lipschitz constant 

reality lipschitz constant 

reality manotonic constant

a monotonic constant

Arg argument

b( . ) positive real-valued upper semicontinuous

B(.) positive real-valued function

c, c.
1 control (set-point)

h, .Cl . ) control solution mapping of optimisation

c, C.
1 feasible set of control

CUY, CUY.
1 feasible set of control

01. ) Dual function

dl .) manipulated input mapping

fl . ) output mapping

F(.). model input-output mapping

1 7



constraint mappingg(-). gj.)

V' \Z»
gt(.). gti(.)

G ( . ) , G. .( . )

g(.), g±(-). g^l •)

g,(.). gtij(.

hl.)

reality constraint mapping

constraint mapping

reality constraint mapping

model interaction imbalance

reality interaction imbalance

set-point mapping

H, H., H. 
i 13

interconnection matrices

inf infimum

I identity matrix

k
v,w gain matrix for set-point and input

reality control-output mapping

lim limit

lagrange function

L*(-) reality lagrange function

manipulated input

m number of output

number of control input

1 8



N

p. pr p£j

q( . ) , qJ.)

0(.), Q.(.)
1

number of subsystem

price vector

performance index

reality performance index

performance index

lipschitz constant

a-dimensional real space eg., a=m,n, or t

R
x gain matrix for set-point and input

R
P

gain matrix for price

sup supremum

lagrange multiplier

u , u. , u . . 
i 13

interaction input

<$
 

C
>

(.) interaction input solution mapping

optimisation

observation

of

control vector (applied to process) 

input vector (applied to process) 

state variable vector 

output vector (interaction)

19



reality output vector

P>
 P N

S

disturbance vector 

a.
1 model parameter vector 

( . ) solution mapping of parameter estimation

component mapping of system based double

loop technique 

6 lipschitz constant 

d partial derivative 

e gain coefficient

e 
V gain coefficient for set-point

gain coefficient for lagrange multiplier

e
P

gain coefficient for price

e 
a gain coefficient for approximation loop

<*[to,t](‘ } output mapping

n lagrange multiplier

A, A.
1 modifier vector (lagrange multiplier)

A . , A 
min max minimal eigenvalue of

P lagrange multiplier 

lagrange multiplier

20



E(.) lagrange multiplier associated with 

optimisation solution 

n projection operator from RnxRm to R° 

Q penalty multiplier 

T positive scalar 

iterative strategy for set-point 

iterative strategy for input

( . ) iterative strategy for lagrange

multiplier

component mapping of system based double

loop algorithm

state variable mapping

Q solution set

21



CHAPTER 1 INTRODUCTION

1.1 Control Systems

In recent years significant progress has been made in control

systems. These control systems have, played an important role in

meeting increasing demands for greater output, lower cost and

improved quality of product. The advances made in digital computers

and more recently in microcomputers have also contributed to the

popularity and importance of control systems in all industries.

Digital computers are employed entensively for simulation and

computation of control systems. Digital computer simulations are

used to conduct the analysis and design of complex systems which

cannot be solved by any of the established analytical methods.

Another important application of digital computers is their use

as controllers. The use of digital computers in control systems has

become increasingly important because of their computing speed, 

storage, capacity and flexibility. Digital computers are also used 

in direct on-line control systems.

Most large scale industrial processes consist of interconnected

subsystems and the number of variables involved is large Designing

a centralised control system for such a complex process may be very

difficult or almost impossible. For instance there may be some

difficulties for a single computer to handle such a large amount of

computations due to the limited storage and the solution process

may be time consuming However, this problem can be overcome by
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decomposition techniques and hierarchical structures. Employing 

static optimisation algorithms to determine the optimal process 

variable can also lead to substantial economic saving.

A common practice in controlling an industrial process is to split 

the control action into parts : the follow-up or direct control and 

the supervisory control. The task of the direct control is to keep 

the chosen process variables at their desired values or set-points 

The supervisory control, which performs steady-state optimising 

control, is responsible for computing optimal values of the 

set-points.

1.2 Optimising Control 

The objective of the optimising control is to optimise a specific

performance criterion for the controlled system subject to changing

external or process conditions, assuming that the optimal operating

condition changes slowly as external factors change.

Generally, the optimising control can be implemented through a

direct on-line optimisation approach using measurements, or the

model approach. In practice, algorithms for the direct on-line

optimisation approach are not easy to implement because of the

nature of process dynamics which are often slow, and in the

presence of noise causing the performace of such algorithms to

deteriorate.

Model methods provide an alternative approach to optimising 

23



control. The model refers to the set of relationships and equality 

constraints which describe the process behaviour. The model 

structure and model parameter values can be obtained using various 

identification techniques. The resulting model based optimisation 

problem can be readily solved on digital computers using 

mathematical programming together with hierarchical decomposition 

techniques.

In practice, the mathematical model used in the model based 

optimisation problem will generally deviate from the actual 

system, resulting a in sub-optimal solution. The approximations in 

the mathematical model can be compensated through model adaptation. 

This technique, sometimes refered to as parameter estimation, 

involves a periodic adjustment of the parameters of the model.

Attempts have been made to couple the optimisation problem with 

parameter estimation problem to form an integrated iterative 

technique (Durbeck, 1965 ; Foord, 1974 ; Youle and Duncanson, 1970 

; Roberts, 1979). Durbeck (1965) and Foord (1974) formulated a 

sufficient condition that at the final converged optimal model 

based solution the derivatives of model outputs with respect to the 

controller set-points should match exactly the corresponding 

derivatives in the real process. An algorithm, known as the 

modified two-step technique, proposed by Roberts (1979), which is 

also applicable to problems with model-reality differences, gives 

the real optimal solution. The modified two-step technique is an 

improved version of the two-step approach.

24



1.3 Scope and Aim of the Thesis

The two-step approach is an iterative technique which involves 

successive solutions of the system optimisation and model parameter

estimation problems. The algorithm computes optimum values of

feedback controller set-points using a steady-state mathematical

model of the process. In practice, accurate mathematical models of

the processes are rarely available, and therefore a model parameter 

estimation problem is used to update the models.

The two-step approach is a sub-optimal technique because the 

derivatives of the model outputs with respect to the controller

set-points do not match exactly the corresponding derivatives in 

the real process at the final converged solution of the model 

optimisation (Durbeck 1965 ; Foord 1974). Roberts (1979) proposed 

the modified two-step approach which is an improved version of the 

two-step approach technique, in that it incorporates a modifier to

compensate for mismatch in derivatives. This method has been

successfully applied to many example problems (Roberts and

Williams, 1981 Ellis and Roberts, 1981 ; Stevenson, Brdys and

Roberts, 1985
/

Brdys , Ellis and Roberts 1987). Since the

technique couples the two problems together, the optimisation and

1

1

the parameter estimation problems, the above algorithms is

sometimes called the integrated system optimisation and parameter 

estimation (ISOPE) algorithm. The modified two-step approach has 

been extended to a class of problems where process inequality 

constraints depend on process outputs (Brdys, Chen and Roberts 

1986) and the global convergence condition for the algorithm,

25



without output dependent inequality constraints has also been

derived i
t

(Brdys and Roberts, 1987).

Michalska, Ellis and Roberts (1985) extended the modified two-step 

approach to large-scale interconnected processes, by combining the 

modified two-step algorithm with the price correction mechanism. 

8rdys and Roberts (1986), using a similar but more systematic 

approach, developed a group of hierarchical adaptive optimal 

algorithms. Three techniques were also proposed to solve the above 

hierarchical adaptive optimal algorithm : the single loop, system 

based double loop and the model based double loop techniques
f 9

(Chen, Brdys and Roberts (1986) ; Brdys, Abdullah and Roberts

( 1 986)) . The model based double loop technique was based on the

previous work of Shao and Roberts (1983), and has the advantage of

reducing the number of set-point changes and consequently the time

for determining the optimal operating condition when applied to 

industrial processes with the usual slow dynamics. All the ISOPE 

algorithms, discussed to date, are based on the normal lagrangian. 

The applicability of the ISOPE algorithm is thought to be wider if 

augmentation is applied to the algorithm.

In this thesis, 

ISOPE algorithm 

Roberts (1986) ; 

of the augmented

convergence conditions 

study of the augmented

research 

based 

Chen, 

ISOPE

will be

on the previous
/

Brdys and Roberts 

algorithm together 

will be derived. A 

algorithm will also

concentrated

works

on the augmented 

(Brdys, Abdullah and

(1986)). The formulation 

with the optimality and 

comprehensive simulation 

be investigated.
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1.4 The Outline of the Thesis

Chapter introduces the basic concepts of the multilevel and

multilayer structures used in control systems. Applying the

multilayer concept, the control action is split into layers

according to the frequency of occurance of disturbances, where each

2

layer has different time horizons. The optimisation and control

problems are divided into coordinated subsystems to form a

multilevel structure. These concepts provide a background for 

developing hierarchical control used in designing complex control 

systems for large scale industrial processes.

The two-step approach of the integrated system optimisation

parameter estimation (ISOPE) algorithm is introduced in chapter 3.

A class of optimal ISOPE algorithms based on the improved version 

of the two-step approach is defined. The algorithms are also 

extended to large scale interconnected processes.

All the ISOPE algorithms are formulated based on a normal

The applicability of the ISOPE algorithms can belagrangian

extended by introducing augmentation to the normal lagrangian

function. Chapter 4 presents a systematic formulation of the

augmented ISOPE algorithms for a large scale interconnected process

using output feedback. Two version of augmentation are introduced : 

the variable and the constraint augmentation.

Chapter 5 provides optimality and global convergence conditions of 

the augmented ISOPE algorithms decribed in Chapter 4. The 

convergence theories in this chapter are based on the following

27



papers (Abdullah, Brdys and Roberts (1986) ; Tatjewski, Abdullah

and Roberts (1986)). It is shown that when augmentation is applied,

the method is not restricted to the situation where

model parameters is equal to the number of measured

the case of the ISOPE algorithms based on the normal

the same time the model performance function does

convex.

In chapter 6 the augmented ISOPE algorithms based

output feedback are derived. The optimality and

conditions are derived, and this chapter is based on

Abdullah and

the number of

outputs as in

lagrangian.. At

ot have to be

on input and

convergence

the works of
/

Brdys, Abdullah and Roberts (1986) , and Tatjewski,

Roberts The algorithms are also applicable to the problem

where the number of model parameters is not equal to the number of

measured outputs and to the case of a non-convex model performance

index.

The augmented ISOPE algorithms presented in Chapters 4 and 6 were

simulated using two sample examples of different nature. The

results of the simulation are discussed in chapter 7. The

applicability, sensitivity and convergence rate of the various 

algorithms are compared. Finally, conclusions of this research and 

suggestions for futher work are presented in chapter 8.
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CHAPTER 2 - DECOMPOSITION AND COORDINATION OF HIERARCHICAL

CONTROL

2.1 Introduction

A large scale industrial process is an example of a complex system 

which consists of interconnected subsystems as shown in Fig. 2.1. 

The subsystems represent unit processes in which outputs of one 

subsystem are connected with inputs of another subsystem. The 

design of a control system for such a process is very complex due 

to the following reasons :

i) It is often impossible for a single computer to solve the 

control and optimisation problems for the entire process due to its 

limited information handling capacities.

ii) The transmission of information between subsystems is expensive 

and subject to distortion.

However these difficulties can be overcome by decomposing the

control and optimising problems into a number of smaller problems

in such a way leading to hierarchical dependence. By using

computers, each one of the subsystems solves the control and the

optimising problems independently. It is important to solve these

individual problems in such a manner that the overall goal will be

achieved. If they are in conflict, a coordinating agent is

necessary.

The popularity of hierarchical control in industrial control

29



applications is due to the computer control technology. The advent 

of microprocessors has made control computers so cheap and handy 

that they are now being widely used in all levels of industrial

control. In this chapter we will be looking at ways of dealing with

large scale problems through hierarchical control and coordination.

2.2 Control of Process

Let us begin by looking at some basic notions and formulations

relating to control systems as proposed by Findeisen et. al ( 1 980) .

A typical scheme of a control system is shown in Fig. 2.2, where the

task of the control unit is to determine the value of manipulated 

input, m, that achieves a certain goal such that it meets a certain 

specification on the behaviour of the controlled system. The 

control unit makes use of the system model and the observation v 

to shape its control decisions.

In many controlled systems, the output y(t) at a particular time t, 

depends not only on the input u(t), the disturbance input z(t) at

the same instant but also on the state of a system x(t) which

describes all their pas t values for all t ranging from infinity to

the present. The vector of state variable x(t ) at
0 value t and the 0

inputs m and z over the interval [t ,t] determine 0 the state x(t)

uniquely.

The state can now be written as

X ( t ) = ’"ttO.t]'* (to> ,m[to,t]’z[to,t]) (2.1)
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and the output can be expressed as

y(t) = g(x(t),m(t),z(t)) (2.2)

Combining (2.1) and (2.2) yeilds :

(2.3)

When a steady-state condition is enforced by using manipulated 

inputs m, the output y which describes a static time-varying system 

can be written as folllows :

y(t) = g(x$,m(t),z(t)) (2.4)

where xg is the value of state parameter in this dependence and it 

changes over the time because of the external input z(t).

The observation v(t) and manipulated input m(t) are assumed to be 

in the forms :

v(t) = h(x(t),m(t),z(t))

and

m(t) = d(v )[to.t]

respectively.

The goal of the control unit can be expressed in terms of control 

decisions that maximize or minimize a scalar-valued performance 

index Q, which can be written in two equivalent formulas :

Q = J q(t)dt
t

J q(t)dtQ = 1
t
o o
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where q(t) is the value of the performance rate at t, t is0 the

initial time and t is the final time, 
f

Let us now describe the complex system of Fig.2. 1 . For the

subsystem i, x. denotes the state vector, m. the manipulated input, 
1 i

z^ the disturbance, u^ the input from other subsystems and y .1 the

output connected to other subsystems. The subsystem state equation

is (compare Eq.(2 .1 ) )

Xi(t) = <pi,[to,t]{xi(to),rni,[to,t]'ui,[to,t]'zi,[to,t])

(2.5)

Assume that Eq.(2.5) is in the form of an ordinary

differential equation :

x. (t) = f.(x.(t),m.(t),u.(t),z.(t)) (2.6)
1 11111

The output y will be related to (x.,m.,u.,z.) by the output 

equation :

y. (t) = g.(x.(t),m.(t),u.(t),z.(t)) (2.7)
1 11 1 i i

Introducing the first-layer or direct controls to the subsystem, as 

in Fig. 2.3, the following is enforced :

c.(t) = h.(x.(t),m.(t),u (t)) = c (t) (2.8)
1 iiii di

where functions h(.) relates c(t) to the values of plant variable 

x(t) and m(t) at the same instant in time. The values of c are 

directly measured (observed). At steady-state, xjt) = 0, Vt, 

x.(t) = x . = a constant ; the functions h.(.) have been chosen
1 si 1

properly so as to ensure uniqueness of the state x . and
si
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manipulated output nr (t) in response to the imposed cr(t) and 

u^(t), with z.(t) as a parameter. Then Eq.(2.6) becomes

f. (x .,m.(t),u.(t),z.(t)) = 0 (2.9)
1 si 1 1 1

and Eq.(2.9) along with (2.8) provide for x ., m.(t) to be
si 1

functions of c.(t). Therefore Eq.(2.7) becomes the following input-

output dependence :

y.(t) = F.(c.(t),u.(t),z.(t)) (2.10)
1 1111

Equation (2.10) is a relation between instantaneous values, where 

the system is assumed to be in steady state x(t) = xs = a constant. 

Additionally, if we use notation y^, c^, u^, z^ to express time 

functions, and the dynamics of the subsystem are suppressed, then 

by dropping the disturbance input Eq.(2. 10) becomes

y. = F.(c.,u.) , i e 1 ,N (2.11)
1 ill

Assuming that the system is in steady state, the interconnections 

in the system are described by

N
u. = H.y = E H. .y., s0 that u = Hy (2.12)
1 1 i=1 13

where H. is part of matrix H:
1

H = I Ht |
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It may assummed that a resourse constraint is imposed on the system

as a whole

N
L r.(c.,u.) < r (2.13)
.,111 oi=1

and also that some local constraints (C..UJ may exist

(2.14)

We further assume that a local performance index is associated

with the system

Q.(c.,u. )
ill

(2.15)

and a global system performance is also defined as

Q = 4>(Q1 ,Q2.........Qn ) (2.16)

where the function ip is assumed to be strictly order-preserving.

2.3 Decomposition of the Control Problem

In a large-scale system it is often imposible to design a single

control system for the entire process. Consequently it is

necessary to decompose the problem into number of smaller

( c. , u . )
1 1

e CU. ,
1

i c 1 , N

i e 1 , N

a

problems where the individual subsystem control problems can be 

solved more easily. It is important to solve the individual 

problems in such a way that the overall goal will be achieved.

The above problem can be decomposed by use of some special 

hierarchical structures. There are two classical concepts in 

hierarchical control : The multilayer concept (Lefkowitz, 1966),
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where the control of an object is split into algorithms, or layers,

each of which act at different time intervals ; and the multilevel

concept (Mesarovic et. al, , where the control of an

interconnected, complex system is divided into local goals, and

local control units are introduced where their action is

coordinated by an additional supremel unit.

In this section, we will be looking at three different approaches

to decomposition of on-line systems as proposed by Mesarovic (1970)

which is based on the above two classical concepts of

decomposition. They are

i) The multilevel approach.

ii) The stratum approach

iii) The multilayer approach

It is also important to note that all three approaches are often

present in one system.

2.3. Multilevel Approach

Decomposition on the basis of structure results in a multilevel

control system where a system is decomposed into a number of

smaller subsystems with each subsystem having its own control

system, which are all coordinated by an upper level in order to

optimise the overall system objective. Fig.2.4 illustrates a

multilevel decomposition where the local decision units and the 

coordinator make their decisions based on the mathematical models 
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of the system, and may also use information feedback from the 

system.

Fig.2.5 represents a multilevel, multi-goal system. The controllers 

are distributed in levels and they are arranged in a hierarchy 

having a pyramid structure. The controllers on the first level

control each of the interconnected subsystems, whereas the

controllers on the second level are then assigned the task of 

coordinating groups of first-level controllers. Similarly, third- 

level controllers may in turn control the second-level units which 

results in a hierarchy. The higher level in the hierarchy must act 

in such a way that the global solution is obtained.

2.3.2 Stratum Approach

Decomposition by the stratum approach refers to a decomposition of

the control system based on the level of influence ; the problem is 

separated into a number of smaller better defined subproblems and 

each of the subproblems are solved separately. There are three 

characteristics of the decomposition on the basis of strata :

i) Individual strata have different tasks.

ii) A priority is associated with each stratum with the higher 

strata having priority over the lower.

iii) Each of the strata considers a different time horizon, the 

higher strata having the longer horizon.

Fig. 2.6 illustrates the decomposition based on stratum, where all 

the strata are acting in parallel and, in general, the higher the 

36



level the less often the control action takes place.

2.3.3 Multilayer Approach

Multilayer decomposition is based on the decomposition of levels of 

control. This implies that the control objective is divided into 

separate parts according to relative frequency of occurance of the 

disturbance. Thus faster disturbances are assigned to one layer of

the control and slower disturbances assigned to another layer of

the control and even slower disturbances to yet another Individual

layers are solved by a different methodology.

An example of a process using the multilayer concept to control a 

process is shown in Fig. 2.7. Firstly, the disturbances are 

classified into four frequency ranges, then control systems 

corresponding to the four frequency ranges are designed in the form 

of a multilayer system, with each layer of control devoted to each 

frequency range. The layers are :

i) Regulation or direct control

ii) Optimisation

iii) Adaption

iv) Self-organisation

The above functional four-layer hierarchy will be described in the

following sections.

i) The regulation or direct control layer 

37



The task of this layer is to maintain the chosen process variables 

at their desired values (set-points) despite fast disturbances 

acting upon the process.

ii) The supervisory or optimising layer

The task of this layer is to determine the optimal values of the 

set-points by optimising some performance function subject to 

operating constraints and assuming some fixed parameters in the 

model of the plant or the environment or both.

iii) The adaptive layer

This layer is concerned with adapting or updating the parameter 

values used in the mathematical models employed in the optimisation 

layer.

iv) Self organisation layer

This layer is responsible for selecting the structure, functions 

and strategies for the lower layers such that an overall goal is 

achieved.

2.4 Coordinator

Optimising a single subsystem in a large system without taking 

account of the effects of interaction can result in a significant 

loss of efficiency in overall performance. In this section, we will 

look at two different approaches which allow decomposition of a 

static optimisation problem into independent subproblems which will 
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give the overall system optimum when solved independently.

i) The model-coordination method ( the feasible method )

ii) The goal-coordination method ( the dual feasible method )

First, let us consider the following model based optimising 

problem :

N
min E q^c^ti^y.)

i= 1

subject to :

(2.17)

N
i e 1 ,N

where

c. is a vector of set points to subsystem i. 
1

u. is a vector of inputs to subsystem 1 
1 which are

composed of outputs from other subsystems.

y. is a vector of outputs from subsystem i.
71

z. is a vector of disturbance inputs to subsystem i.
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2.4.1 The Model-Coordination Method

In this approach the coordinator prescribes the values of the 

subprocess interconnected outputs and inputs. The optimisation 

problem (2.17) can now be decomposed into a first-level problem and 

a second-level (coordinator) problems as follows :

First-level problem

min qi(cjL,y)
c.
1

subject to : y. -
1

fi(ci,y,zi) = 0

(2.18)g. (c.
i i

,y.zJ < o

where y are specified by the second level problem.

Second level problem

N
min Q(c,y) = E q^c-.y) 
v i=1

(2.19)

The coordination variables y are obtained by performing 

one iteration of the second level problem, where c i c 1,N are 

the specified solutions of the first level problems at the previous 

iteration. For the particular case of two subprocesses the method 

can be illustrated as shown in Fig. 2.8.

2.4.2 The Goal Coordination Method

In this method the interaction between the subsystems is removed by 
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cutting all links between the subsystem. This may be done as 

indicated in Fig.2.9.

An additional penalty term is introduced to penalize the 

performance of the system if the interconnections do not balance.

The modified performance index is

N
L(c,u,y,X) = { £ qi(ci,ui,yi) + - £ Hijyj) *

i= 1
(2.20)

where p is a vector of lagrange multipliers, known as the price 

vector.

The modified performance index may be decomposed to form individual 

modified optimisation indices, one for each subsystem. Hence, the 

i-th infimal unit problem becomes :

min { qi(ci,u.,yi) ♦ Piui - E )

Ci’Ui

subject to : y^ = K(c^,u^,z^)

g.(c.,u ,z.) < 0
1111

where values of p are specified by the coordinator. The value of c
i 

and u are directly obtained by the optimisation. The coordinator 
1

task is to choose the coordination variables p to force interaction

balance which is achieved when the interaction constraints :

N

(2.21)

Using Lagrange Duality Theory, an algorithm for the

0
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coordinator can be determined and the following overall dual

function can be obtained :

N
D(A) = E DJA) = min L(c,u,y,A) (2.22)

i = 1

Fig.2.10 illustrates the goal-coordination method for a two 

subsystems example.

2.5 Summary

A technique of controlling a large scale process through 

hierarchical control has been examined. The control problem is 

decomposed into a number of smaller problems such that the 

individual design or implementation is straightforward. Three 

methods of decomposition have been discussed in decomposing the 

control problem. The model-coordination and the goal-coordination 

methods for multi-level decomposition are introduced in order to 

counter the effects of interaction between the subsystems so that 

the overall system goal is achieved.
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Control decisions

Figure 2.1 The large scale system with an ordering matrix H.

inputs

Figure 2.2 The control system.
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figure 2.3 A two-layer system.

Figure 2.4 Multilevel control.

44



figure 2.5 The multi-level multi-objective control structure
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Hgure 2.6 The decomposition of control system on the basis of strata.
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Figure 2.7 Multilayer control.
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Figure 2.8 Multilevel solution using model coordination.

Figure 2.9 Decoupled system.
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Figure 2.10 Multilevel solution using goal coordination.
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CHAPTER 3 ON-LINE INTEGRATED SYSTEM OPTIMISATION AND

PARAMETER ESTIMATION (ISOPE)

3.1 Introduction

When solving an on-line optimisation problem, a process model is

usually employed. In practice it is inevitable that model-reality

differences exist and this gives rise to a suboptimal solution in

the optimisation problem. This may be overcome by using output

feedback from the process to update the model parameters. Even

though these parameters are updated, as in the standard two-step

approach, this still does not guarantee that the solution of the

optimisation problem will be optimal.

The modified two-step algorithm (Roberts 1979) was developed by

integrating the optimisation problem with the parameter estimation 

problem. Hence, the algorithm is sometimes referred to as belonging 

to a class of algorithm known as Integrated System Optimisation and 

Parameter Estimation (ISOPE). In spite of model deficiency, the 

algorithm converges to the correct optimum. This is due to the 

combined nature of the method which compensates for derivative 

differences between model and reality. The algorithm has been 

succesfully applied to solve many example problems (Roberts and
/

William (1981) ; Ellis and Roberts (1981) ; Stevenson, Brdys and

Roberts (1985)). Brdys and Roberts (1987) extended the 

applicability of the modified two-step method to a problem where

the system inequality constraints are output dependent. Brdys ,

50



Chen and Roberts (1986) has also proved that the algorithm 

converged to the real optimum.

The drawback of the modifed two-step algorithm is the requirement 

to evaluate real process derivatives, which will affect the 

robustness of the method when the process is contaminated with 

noise. In order to avoid using real process derivatives, the 

two-level type method has been derived by Brdys and Roberts (1986) 

and investigated by Chen and Roberts (1984), but at the cost of 

introducing a second level.

Michalska, Ellis and Roberts (1985) extended the application of the 

two-step approach to interconnected large-scale systems by 

combining the two-step approach with the price technique, and this 

combined method is known as the joint coordination method.

Applying a similar approach as in the joint 

coordination methods, Brdys and Roberts (1986) formulated several 

optimal adaptive structures. In these structures, the available 

process measurement feedbacks are employed efficiently. The 

algorithm is also applicable to problems with output dependent 

inequality constraints.

3.2 The ISOPE Technique for a Single Process

In this section we will be looking at methods of determining the 

optimal set-points of the process feedback controllers using 

integrated system optimisation and parameter estimation (ISOPE) 
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techniques. The integrated techniques to be examined are .

i) The two-step technique

ii) The modified two-step technique

Consider the following optimising control problem

min
c,y

0 (c, y)

s. t y = F,(c>

c e C = { c :: G(C)< 0 }

(3.1)

Where c e R° and y e Rm are vectors of controls ( controller set-

points ) and real process outputs respectively. The performance of 

the system is described by the mapping Q : ROxRm ----> R , 

and F : Rn ----> Rn is the process input-output mapping . G : Rn 

----> RS is an inequality constant mapping imposed on the system.

Assuming the process output mapping F* is not available. its

approximate model F: RnxRm ----> R™ will be used instead

y = F ( c , a) < 3.2 J

where a e R™ is a vector of parameters of the process model.

It is assumed that the model equation (3.2) is point-parametric on

C that is for every c e C there is an a(c) such
/

that F (c) = F(c.atc)) (Brdys, 1983), and that mappings F, F*. Q, G 

are twice continously differentiable.
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3.2.1 The Two-step Technique

By substituting model equation (3.2) into equation (3.1), the 

optimising control problem (3.1) can be written in an equivalent 

form :

min q(c,a)
c ,a

s.t F(c.a) = FJc)

g(c,a) < 0

(3.3)

where q(c,a) = Q(c,F(c,a)) 

g(c,a) = G(c,F(c,a))

The process model optimisation and parameter estimation problems 

are treated separately and solved repetitively, one after another, 

until an optimal solution is found.

The technique proceeds as follows :

Choose some initial set point c° e C and 0 < 0.

k
Step 1 : Apply c to the real process and measure its output

k A kF*(c ). Determine the new parameter value a(c ) by 

solving the estimation problem

r,Ak Ak, c , k. F(c ,a ) = F* (c )

Step 2 • • • A kSolve the optimisation problem (3.3) to obtain c

k Ak ka given value of a . If the condition lie -c II < p 

for

is
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satisfied then stop, otherwise update the control c

as follow

and goto step 1.

A simple relaxation algorithm can be used

k+1 c

Simulation results
/

by Brdys, Chen and Roberts (1986) have shown

that this technique gives a sub-optimal real performance. This is 

due to the difficulties in getting an exact match between process 

and corresponding model output derivatives with respect to the set-

points at the optimal point, when an inaccurate model is used

(Durbeck, 1 965 ) .

3.2.2 The Modified Two-step Technique

Since the conditions suggested by Durbeck are difficult to satisfy,

Roberts (1979) proposed a modified two-step technique in which the

optimisation and the parameter estimation tasks are combined

together. Later, a new version of the modified two-step method was

formulated
/

(Brdys and Roberts (1987)) for problems in which

inequality constraints are output dependent.

In order to decouple the optimisation and parameter estimation
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tasks, additional variables v e Rn are futher introduced

converting (3.3) into :

min q ( c, a)
c, v ,a

s . t G ( c , a) < 0

F(v,a) = FJv)

V = c

The lagrangian function for (3.4)

L(c,v,ot,A,p) = q(c.a) + AT(v-c) +

is

pT(F(v,a)-FJv) ) + £Tg(c,a)

(3.5)

where A e R° . P £
„rR are lagrangian or Kuhn-Tucker

multipliers. The problem (3.5) is reformulated in the 

following form ;

min { q(c,a(v)) - AT(v)c }

c

s.t g(c,a(v)) < 0 (3.6)

/
where (Brdys, Chen and Roberts (1986))

A(v) = [Fc(v,a(v))-Ft(v)]T[QyT(v,F(v,a(v))+GyT(v,a(V))^]

(3.7)

and where a(v) is a parameter value such that

F(v,a(v)) = F*(v) (3.8)
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The technique can be implemented as follow :

Choose some initial set-points v° e C , £ c Rr and P

Step 1 : Apply v to the real process and measure its output

k A kF*(v ). Determine a new parameter value a (v) by solving 

the estimation problem

_. k Ak. _ . kF(v ,a (v)) = F*(v )

Perform perturbations around v and, based on the

corresponding process outputs, evaluate finite difference

* k kapproximations F*(v ). Then calculate A (v) using Eq.(3.7)

Step 2 : Solve the model-based modified optimisation problem

(3.6) to obtain c for given a and X . If lie -v II < P

stop. otherwise

(3.9)

(3.9)

< are satisfied then

k kupdate the control v and E as follow

k+1 . .Ak k
v = (c , v )v

and goto to step 1.

Simple

k+1v

Ek+1

4>E(£k,Ek)

relaxation formulae were used for

kv +
,Ak k 

e (c - v )
v

Ek *

example problems 

and gives optimal solutions as proved by Brdys, Chen and Roberts 

( 1 984 ) .

This technique has been successful in solving many
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3.2.3 Two-level Type Method

A two-level type method investigated by Chen and Roberts (1984) 

requires an additional introduction of a second level to prescribe 

modifiers by minimizing the performance index. The advantage of the 

proposed algorithm is that process derivatives are not required 

Therefore, the algorithm is applicable to problems, where the 

constraint G(c,y) is non-differentiable with respect to y and under 

noisy conditions.

The model optimisation problem at the infimal level has the 

following form :

min { Q(c,F(c,a)) - XTc } (3.10)

c

with X given by the supremal level, and the solution of the infimal 

level is 

The task

denoted by c(X).

of the supremal level is to determine a X such that opt

X = arg min q(X) 
°pt XeX

(3.11)

A A
where A consists of all X for which c(X) exists, and

q(X) = Q ( c (X ) , F ( c (X ) , a ( c (X ) ) ) = Q(c(X),F*(c(X)))

Simulation results by Chen and Roberts (1984) have shown that the 

technique is as accurate as the modified two-step technique but at 

the cost of increasing on-line computing time.
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3.3 The ISOPE for Large Scale Industrial Process

/

Brdys and Roberts (1986) has extended the centralised ISOPE to 

interconnected industrial processes. This is done by incorporating 

the modified two-step technique with the price method in a similar 

manner as in the Mutually Interacting Approach (Brdys (1983)) and 

Joint Coordination method (Michalska, Ellis and Roberts (1985)).

/

Brdys and Roberts (1984) have proposed several iterative optimal 

adaptive schemes, which utilise the available real process 

measurements efficiently and some of the schemes do not require 

real process derivative information. In this section, two of the 

proposed schemes will be examined : namely, the structure with 

output feedback and the structure with input and output feedbacks.

3.3.1 Preliminaries

By employing a similar technique as Findeisen and co-workers 

(1980), it is assumed that the controlled system together with its 

follow-up controllers are described in a decomposed manner by the 

set of subsystem input-output equations :

y. = F . ( c. ,u . ) i e 1 , N
1 *111

where F . : C.xU. ----> Y. , i e 1,N is the i-th subsystem
*1111

input-output mapping and N denotes the number of subsystems. C, th

and Y. are finite dimensional spaces. The variables c., u. and y. 1 ill

are the i-th subsystem control, interaction input and interaction 
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output, respectively, and also € C , il € lb, and y.. e Y^.

The subsystems are interconnected with assumed structure 

equations :

u. =H.y = H..y. , ie1,N
11 i] 3

where H. and H. . are interconnected matrices, 
i 13

Let us denote

A A
c (c ... . . . , c ) £ C x. . .. . . xCk, C

1 ‘ N 1 N
A A

u . . . , u ) £ U,x. . .. . . xU., U' 1’ • • N 1 N
A A

y ty,... ...,yN) e Y.x...1 ...XYn Y

then the subsystem equations and interactions can be written in the

global form :

y = FJc.u) , u = Hy (3.12)

where

Assuming that for each c e C, there exists only one solution of the 

equation :

y = F*(c,Hy)

the global system mapping is given by :

K* : C —> Y

i.e y = K .(c) = (K ..(c).... ,K (c))
* * 1 *N
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In practice, approximate models are used due to uncertainty of the

real system relations. The models are

F.
1

C. XU.XA.
Ill

1 ,N

yi 1 .N

where a.
1

is a finite dimensional space and

subsystem model parameter variable. However,

A. is the i-th
1

the ir»4<rcc>nnec¥\®rt

relationships are assumed to be known exactly.

Each subsystem is assumed to be subjected to local constraints

(c.,u.,y.)eCUYi = {(^.u^yJcC.xU.xY. : G..

These constraints can be written jointly as

= {(c,u,y) e CxUxY : G(c,u,y)< 0 } (3.13)

where

(G1(ci'u1'yi’......GN1CN'VyN”

= (G. (c.|U.,y.),....,G.
11 1 1 1

.(c.,u.,y.))
13 1 1 1

With each subsystem, a known local performance function is

G ( c , u , y ) =

--> Y.
1

i

i

e

e

. u

a.
1

(c.
1

e

.ui,yi)<0, jejp

associated :

Q. : C.xU.xY.
1 ill

--> R1 i e 1 ,N

The overall performance index of the system is assumed to have the 

additive form :

N
Q(c,u,y) = 1 Q(c^,u^,y^) 

i= 1
(3.14)
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The algorithm is applicable when the following assumptions are 

satisfied :

/ 
Al. The system model is point parametric on a set Kcxu^CUY^ (Brdys

1 983). That is for every point (c,u) e it (CUY) there exists a e A cxu

such that F (c,u) = F(c.u.a).

A2. : Mappings F(.), F*(.), K*(.), K( . ) , Q(.) and G(.) are

continuously Frechet differentiable on their domains.

The system optimising control problem (OCP) can be defined as

follows :

min Q(c,u,y)
c , u , y

(OCP) s.t y = F*(c,u) (3.15)

u = Hy

(c,u,y) e CUY = { G(c,u,y)< 0 }

where G(c.u.y) = (G^^.u^y,......GN (CN' UN ' yN11'

The above optimising control problem (3.15) consists of minimising

Eq.(3.14) with respect to the set-point vector c (controls) subject 

to Eqs. (3.12) and (3.13).

Using an approximate model, OCP is replaced by the equivalent 

problem (Brdys, 1983)

min q(c,u,a)
c, u ,a

(OCP)1 s.t F(c,u,a) = KJc) (3.16)

u = HF(c,u,a)

g(c,u,a) < 0
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where q(c.u.a) = Q ( c , u , F ( c , u , a) )

g(c,u,a) = G(c,u,F(c,u,a)

3.3.2 Structure with Output Feedback

Assuming the real system output measurements are available, the 

(OCP) is expanded by introducing new variables v and w as follows
*

(Brdys and Roberts (1986)) :

min q(c,u,a)
c.u,v,w,a

u = HF(c.u.a) (3.17)

g(c,u,a) < 0

F(v,w.a) = K*(v )

v = c

w = u

The Lagrangian function for (3.17) is

Kc.u.v.w.a.p.A, t ,Lpl = q(c,u,a) + pT [u-HF ( c , u , a) ] + AT(v-c)

T T
+ t (w-u) + E g(c,u,a) + p [F(v,w,a)-K*(v)] (3.18)

where A e R , t e R and F e R are lagrangian or Kuhn-Tucker 

multipliers.

For given values of v, w, a and price vector p e U, Lagrangian 
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analysis provides the following optimising problem ( Brdys and

Roberts , 1985).

min [q(c,u,a) + pT[u-HF(c,u,a)] - A^c - t^u ] (3.19)

where

A(v,w,p,E) = [ dTKA(v) - dTF(v,w.a) ][ dTF(v.w,a) ]

dv dv da

T T Tv'
[ - d q(c,u,a) + d F(c.u.a) - d g(c,u,a)E 1 (3.20)

da da da

tT(v,w,p.E) - dTF(v.w.a)[dTF(v,w,a)] 1[ 

dw da

- d T .q ( c , u , a) 

da

+ dTF(c,u.a) - dTg(c,u,a)E ] 

da da
(3.21 )

The parameter a(v,w) is determined by the parameter estimation

problem by satisfying

F(v,w,a(v,w)) = K*(v) (3.22)

It is assumed that any required inverse of a matrix exists.

The overall problem (3.17) can be solved by solving the 

optimisation problem (3.19) provided by the Lagrange analysis 

associated with problem (3.17), and variables c and u are obtained 

as the solution. The parameter a is calculated by solving (3.22), 

whereas the variables v, w, E and p will be adjusted, in an 

appropriate way, to solve the following equations :

c(v,w,E,p) = P (3.23)

u(v,w,E,p) = w (3.24)

t(v,w,E.p) = E (3.25)

u(v,w,E,p) = HF(c(v,w,E.p),u(v,w,E,p),a(v,w)) (3.26)
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The optimising problem (3.19) can be decomposed into the following

The subsystem model parameter value cLtv.w^) is determined by the

i-th subsystem model parameter estimation, which is made up of N

independent local estimation units, by solving :

F.(v.,w.,a.)1111 (3.28)

The optimum set-points c . can be opt determined by solving equations

( 3.23 ),..,( 3.26 ) by three different strategies, as proposed by
t

Brdys, Abdullah and Roberts (1985) :

i) Single loop iterative technique is obtained by solving equations

( 3.23 ),...,( 3.26 ) with the same frequency.

ii) System based double loop iterative technique is obtained by 

solving (3.23), (3.24) and C3.25) in the inner loop for a given 

iteration of the outer loop, while Eq.(3.26) is solved in the 

outer loop to determine the value of price p.

iii) Model based double loop iterative technique consisting of 

separating Equations (3.23), (3.24) and (3.25) from Equation 

(3.26). The price p is determined by solving Eq.(3.26) in the inner 

loop for given values of v, w and £ which are prescribed by the

i e 1 , N
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outer loop. The values of v, w and E are obtained by solving 

equations (3.23), (3.24) and (3.25) respectively in the outer loop.

/

Numerical simulation results by Brdys, Abdullah and Roberts (1986) 

have shown that the model based double loop technique significantly 

reduces the real set-point changes in comparison with the other two 

techniques.

3.3.3 Structures with Input-Output Feedback (ISOPE)

It is assumed that the real system output and the real system input 

measurements are both available. The optimisation problem described 

by Eq.(3.16) can be expanded by introducing a new variable v as 

follows :

min q(c,u,a) 
c , u , v , a

u = HF(c,u,a)

g(c,u,a) < 0

F(v.HKJv) ,a) = KJv)

V = c

(3.29)

The Lagrangian associated with problem (3.29) is

L(c,u,v,a,p,X,E,p) = q(c,u,a) + pT[u-HF(c,u,a)] + XT(v-c) +

ETg(c,u,a) + pT[F(v,HK*(v),a)-K*(v ) ]

(3.30)

For a given value of v, a and price vector p e U, Lagrangian 
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analysis provides the following optimisation problem ( Brdys and

Roberts, 1987) :

min [ q(c.u.a) ♦ pT[u-HF(c,u,a)] - ATc ] (3.31)

c, u 

where

A(v,w,p,E) = dTKA(v) - aTF(v.HKJv) .a) ][ dTF(v.HKJv) .a)] 

dv dv ‘ da

[ - dTa(c,u,a) + dTF(c,v,a)HTp - dTg(c.u,a)E 1 

da da da
(3.32)

The parameter value a(v) is determined by solving

F(v,HKJv) ,a(v) ) = KJv) (3.33 )

Let c(v,E,p), u(v,E.p) be the solution of (3.31) and ^(v.E.p) be a 

corresponding Lagrangian multiplier vector. Similarly, as in 

section 3.3.2 , the values of v, E and p are adjusted so as to 

satisfy the following set of equations :

c(v.E.p) = v (3.34)

£(v,E.p) = £ (3.35)

u(v.E.p) = HF(c(v,E.p),u(v,E.p),a(v)) (3.36)

The optimisation problem (3.31) can be decomposed into the
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following form :

min q . ( c .
1 1

c, u

T
N

3=1

s.t g.(c.,u.,a.(v.)) <0 i e 1.N (3.37)
11111

where the parameter value or (vp is determined by solving

F.(v.,HK (v.).a.) = K .(v.) . i e 1,N (3.38)
11 *1 1 K1 1

Similarly Equations ( 3.34 ),...,( 3.36) can be solved by the three

different schemes described in section 3.3.2.

Brdys, Chen and Roberts (1986); and Brdys et. al (1987) have 

demonstrated that these techniques have solved many example 

problems successfully with optimal results, and have also shown 

that these structures are superior than the structures with output 

feedback only. Among the three techniques, in both structures, the 

model based double loop method proved to be the most efficient in 

reducing the number of set-point changes, but at the cost of 

increasing the amount of information exchange between the decision 

making units.

3.4 Summary

/
Brdys and Roberts (1984) extented the applicabilty of the modified 

two-step approach (Roberts 1983) to problems with output dependent 

inequality constraints. Furthermore, Michalska; Ellis and Roberts
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(1985) Brdys and Roberts (1984) combined the modified two-step 

approach with the price method for solving large 

interconnected industrial processes.

scale
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Figure 3.1 Modified two - step algorithm.
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Figure 3.2 Two - level type algorithm.



Figure 3.3 A two-level structure with output infonnation feedback



Figure 3.4 A two-level structure with input-output information feedback



CHAPTER 4 AUGMENTED ISOPE WITH OUTPUT FEEDBACK (AISOPE)

4.1 Introduction

Brdys, Ellis and Roberts (1986) introduced augmentation to the 

modified two-step method. The augmentation is done by adding

2
a quadratic penalty term llv-cll to the optimising control problem 

which helps to convexify the problem. The resulting augmented ISOPE 

has been successfully applied to a pilot-scale vaporisor.

In this chapter the above augmented ISOPE is extended to 

interconnected subprocesses. The augmentation is applied to three 

algorithms proposed by Brdys, Abdullah and Roberts (1986). Two 

approaches are used to augment the control optimising problem ; In 

the first approach, a simple augmentation is introduced by adding

2 2quadratic penalty terms llv-cll and llw-uK , involving subsystem 

controls and interaction inputs, which will be called variable 

augmentation. The second type of augmentation is done by adding a

2
quadratic penalty term llu-HF ( c, u, a) II which will be referred to as 

constraint augmentation.

The separability of the additively decomposed optimisation problem 

is retained in the case of the variable augmented approach. The 

separability of the constraint augmented is obtained by applying an 

approach proposed by Tatjewski (1984, 1986).

4.2 Statement of the Problem

Assuming that the real system output measurements are available,
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problem (3.18) can be augmented in two different ways as follows :

min { q(c,u,a) + l^Hv-cll2 + J.Q H w-u II 2 } (4.1)

c,u,v,w,a 2 2

and

min { q(c.u.a) + Jr llu-HF (c , u ,a) II2 } (4.1a)
c, u , v , w,a 2

s.t u = HF(c,u,a)

g(c.u.a) < 0

F(v,w,a) = K*(v)

v = c, w = u

The combined augmented Lagrangian function for problem (3.18), see

chapter 3, is :

L(c,v,u,w,a,p,X,t,p,^,q,r) = q(c,u,a) ♦ pT[u-HF(c,u,a)]

+ XT(v-c) + tT(w-u) + pT[K (v) - F(v.w,a)] + _1_q IIv-cH2
2 1

+ iQ-Ow-ull2 + J.Q IIK* (v)-F(v ,w,a) II2 + _J.r IIu-HF ( c, u , a) U 2 
2 2 2 3 2

M
♦IE Q3 .[(max(0,g(c,u,a)

2 j=1 3
(4.2)

where

Q = C el,e2’e3....... eM+3 3 ’ 3 > 0 for every

3 = 1,2,3,..,M + 3.

and r are penalty coefficients ; X, t, p and E are vectors of

Lagrangian multipliers.

For given values of q and r the stationary points of
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L(.,.,p,A,t,p,£,p,r) are defined as follows :

A L = dgT(c,u,a) + 8T[u-HF(c,u,a)]p - A - p (v-c)
C de de

- rdT[ u-HF(c.u,a)][u-HF(c,u,a)]T + dPT(c,u,a,E) = 0 

de de

AL = dqT(c,u,a) + dT[u-HF(c,u,a)]p - t - p (w-u) 

du du

- rdFT[u-HF(c,u,a)][u-HF(c.u.a)]T + PT(c,u,a,E) = 0

dudu

Al = A + [ dTKA(v) - dTF(v,w,a)]p + p (v-c)

dv dv

+ [dKx(v) - dF(v,w,a)]T[K*(v) - F(v,w,a)]T = 0

dv dv
(4.5)

AL = t - dTF(v,w,a) + p (w-u)
W dw Z

p dFT(v,w,a)(KA(v)-F(v.w.a))T = 0 (4.6)

dw

- rdFT(c,u,a)(u-HF(c,u,a))T + 

da

dPT(c,u,a,E) = 0

da

A L = u - HF(c.u.a) = 0
P

(4.8)

(4.9)
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A L 
M

K,(v) F ( v , w, a) = 0 (4.10)

A^L(c.v.u.w.p.X.tJ,p,Q,r) 0 (4.11)

where

M 2
P(c,u,a,U = 1 L q + j t (ma x ( 0 , g j ( c , u , a) + ) )

2 *’~1

(I.)2]

(4.12)

4.3 Variable Augmentation

Equations (4.3 ) , . .. , (4.11) can be used to reformulate optimality 

conditions for (4.1) in the form of an ISOPE algorithm, and the 

corresponding optimising control problem is :

min [q(c,u,a(v,w)) - XTc - tTu + pT[u-HF(c,u,a(v,w))

+ J_Q llv-cll2 + JLP llw-ull2 ]
2 ' 2 2

(4.13)

s. t g(c,u,a(v,w)) < 0

where

AT(v,w,£,p,Q) C K T(v) - F T(v,w,a)][F T(v,w,a)] 1[- q (c,u,a)
* v a a

+ F T(c,u,a)HTp - P T(c,u,a,E)] 
a a

(4.14)

and

tT (v ,w, E. p , Q ) • t ‘ t -1
F (v,w,a)[F (v,w,a)] [ - q (c.u.a)w a a

+ F T(c,u,a)HTp - P T(c,u,a,E)] 
a a

(4.15)
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and assuming that the inverse [F T(v,w,a)] 1 exists.

Since

[F T(v,w,a)] 1q T(v,w,a) = Q T(v,w,F(v,w,a))
a a y

and

• T -1 ’ T M
[F (v.w.a)] P (v,w,a,E) = E q_ . [max(0,g . (c,u,a)) + £ . ]. a a . ,3 + 3 ] j

.(G .) T(v.w.a)
3 y

Therefore, X and t can be transformed to

XT(v,w,£,p,q) = [pTH -
M AV* /\
£ q .max (0 , g . (c, u ,a(v ,w) ) + £. ) 
3=1 3 3 p 3 .

w3 + 3

.(G .) T(v,w,a(v,w))
3 y

- Q ( v , w, K ( v ) ) ] [ K ( v ) - F (v,w,a(v,w))] y * * v

(4.16)

tT ( V , W , , p , Q )
MT v' A

[p H - L q .max(0,g .(c,u,a(v,w) ) + £. ).

a(v,w)) - Q T(v,w,K (v))]F (v,w,a(v,w))
y * u

(4.17)

The parameter a(v,w) can be estimated by solving

F(v,w,a(v,w)) Kt(v) (4.18)

The solution of (4.13) is described by c(v.w.^.p) and

and the corresponding Lagrangian multiplier by
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The following is a set of coordinating conditions for (4.13) :

c(v,w,£,p) = v (4.19)

u(v,wj,p) = w (4.20)

^(v.w.E.p) = E (4.21 )

u(v,w,£,p) = HF ( c ( v , w, £ , p) , u ( v , w, £ , p) , a ( v , w) ) (4.22)

If the regularity conditions are satisfied at every point of a set 

CU, then a part (vt,wt) of any solution (v*,w*,E ,p*) of the set of 

equations (4.19), (4.20), (4.21) and (4.22) satisfies the first 

order necessary Kuhn-Tucker (K-T) conditions corresponding to the 

expanded problem (3.18) (see Brdys and Roberts, 1987).

If the process inequality constraints are output independent i.e

G(c.u.y) = G(c,u), equation (4.19),..,(4.22) can be simplified to

c(v,w,p) = v

u(v,w,p) = w

u(v,w,p) = HF(c(v,w,p),u(v,w,p),a(v,w))

(4.23)

(4.24)

(4.25)

and the corresponding A and t are

AT(v,w,p(Q) = [K*T(v) - FyT(v,w,a)][F^T(v,w,a)]

- q T(c,u,a) + F T(c,u,a)HTp ]
a a (4.26)

tT(v,w,p,Q) = - F T(v,w,a)[F T(c,u,a)] 1.
w a

- q r(c,u,a) + F T(c,u,a)HTp ] 
a a (4.27)
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The above set of equations (4.19 ) . ..,(4.22) have a two-level 

hierarchical structure with information exchange between 

local control units and with information feedback from the system
/

to each control unit as shown in fig.4.1 (Brdys and Roberts, 1987).

/
Brdys and Roberts (1987) proposed an iterative scheme for finding 

the optimum solution through solving equations (4.19),..,(4.22). 

This hierarchical structure consists of N local units, where each 

i-th control unit is composed of two parts : namely, a local 

parameter identification unit and a local optimisation unit. The 

task of the local parameter identification unit is to estimate the

k
i-th subsystem and model parameter by solving

c , k k k. iz / k.F.(v. ,w. ,a. ) = K (v )1111 *i (4.28)

for given values and

The local optimisation unit task, for given values of or and p^ 

from the parameter identification and coordinator respectively, is 

to perform the following modified optimisation problem

min E q£(c£, uj. , a(v,w) ,, t£, pi, q ) 
c, u

s.t gi(ci,ui,ai(vi,wi)) <0 , i e 1,N
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where

.P.Q)

N

II w. - u . II 
1 1

(4.29)

producing corresponding

Where the vectors A^k,

. , A k control c.
1

. k _ kt. and $•.
1 1

and interaction input

are i-th components of the

A k u .
1

vectors

. T k k k k ck .A = X(v ,w ,a ,p ,q ) . k . k k t (v ,w ,a k k k . 
,P .p)

and _. k k k E(v ,w ,a ,
k _k . 

P .p) (4.30)

respectively.

k Information exchange between the units is required to compute A^ , 

k k k kt. and £. . The derivatives needed for evaluating A. , t. are
11 ii

determined experimentally by performing additional perturbations 

around v^k , i e 1 , N.

The local units are coordinated by a coordinator whose task is to 

adjust the new price vector according to the rule

for each local unit according to

k+1 
P

, . k Ak
= 4>p(p . u -

.Ak Ak Ak. .
(4.31 )Hr ( C ,U ,,a ) )

k+1 k+1 k +1 ---while the new values of V . .
1 w. ,1 , 1 e 1,N are iterated

k+1 w.
1
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and (4.32)

i e 1 , N have to be

properly chosen in order to ensure convergence.

The key element of the algorithm structure is the 
/

coordinator algorithm for adjusting v, w and p. Brdys, Abdullah and 

Roberts (1986) proposed 3 different schemes for adjusting v, w and 

p for solving problem (4.13) which resulted in the following 

algorithms :

i) Single loop technique

ii) System based double loop technique

iii) Model based double loop technique

In the next section, we will be looking at problems with output 

independent inequality constraints.

4.3.1 Single loop technique

An augmented single loop technique is obtained by iterating all the 

coordinating variables in equations ( 4.23 ),..,( 4.25 ) simultaneously, 

with mappings i|)p ^(.), 4>v and 4>w . ) chosen in such a way 

that

k+1 
P

k+1 v

k+1 w

(4.33)

(4.34)

(4.35)
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where e , e
P v

and e are positive constants, known as gainw

coefficients. In order to speed up convergence, equation (4.25

is replaced by
/

( see Brdys, Abdullah and Roberts, 1986).

u(v.w.p) = HF(c(v,w,p),u(v,w,p),a(c(v,w,p),u(v,w,p)))

(4.36)

The sets of equations (4.23), (4.24), (4.25) and (4.23), (4.24) and

(4.36) are equivalent.

Applying the same iterative strategy used previously to (4.23), 

(4.24) and (4.36), we obtain exactly the same formulae as (4.33), 

(4.34) and (4.35) for updating p, v and w, except for the parameter 

value in (4.33) which now becomes :

Ak Ak.Ak Ak.a = a (c , u )

The convergence properties of the technique will be analysed in 

chapter 5 with gain coefficients possibly varying during the

k k kiteration but under the assumption that e = e = e . The vw

structure of the single loop algorithm can be summarised as

follows :

1°. The initial values of the coordinating variables v°, w° and

o _p are prescribed. The accuracy values p , 8 and 6 arev w p

appropriately chosen and k is set as k = 0 .

2 . The set-point v^ are applied to the system and outputs

K (v) are measured. The derivatives K (v) are estimated by ’ 1 * 1
k

applying a perturbation around v. .
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o k3 . The parameter values or (v) are estimated by solving

equation (4.28). These tasks are performed by each of the i-th 

local parameter estimation units.

o k k4 The modifier A. and t. are evaluated according to (4.26)
ii

and (4.27) respectively and performed by the i-th local

interaction u^(v,w,p).

control unit. The required information to evaluate Ak and

l<
t is obtained from s o otep 2 and 3 and the rest of the

information comes from information exchange between the

local control units •

5° For given values of A.k.
1

k kt. and price p. , each of1 1 the i-th

local optimisation units solves its local augmented modified

problem (4.29), yielding set-point control c.(v,w,p)
1 and input

6° Each of the i-th local control units adjusts v., w. and p.
i i 1

according to (4.33), (4.34) and (4.35) respectively. The

updating of price p is performed by the coordinator.

7° Convergence of the coordinating variables is checked, i.e 

if conditions | vk+1 - vk | < p^ , | wk+1-wk | < p^ and

k +1 k
|p -p | < Pp are satisfied the algorithm stops, otherwise

the whole procedure is repeated.

A second version of the augmented single loop technique is 

formulated with slightly less restrictive sufficient conditions.
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The problem (4.13) can be written as follows :

min { q(c,u,a(v,w) + p g(c,u,a(v,w))

' tAT(e,ep)(v'w’pl'tT(e,sP)<v’w'pl]l p j *le,«v-cll2

+ iQ llw-ull2 } (4.37)
2 2

where 

txT(e.ep)<v’w-p'p,'tT(e.ep)('''w'p>el1 = qc. u 1 v •”• “(v 1

- eq*(v,w) + PT^9C u(v.w,a(v,w)) - egt(v,w) ] (4.38)

and where e is a positive number.

Using similar equations (4.23), (4.24) and (4.36), and applying the

k e
P

previously presented algorithm with ande
P

k 
e v

k <e = 1 w

the following algorithm is obtained :

v

P
k+1

t
k 

= P

k+1 Ak= c

k+1 Aku

_Ak
+ e [u

P
. Ak Ak Ak. , HF(c ,u ,a )] (4.39)

(4.40)

(4.41 )

The mappings defined by are different, therefore

the sequence of points generated by this algorithm is different

from the previous algorithm.

w

The algorithm is iterated in the same manner as in the first 

version of the augmented single loop method, except that (4.37) and 

(4.38) are used instead of (4.13), (4.26) and (4.27).

4.3.2 The System Based Double Loop Technique

The proposed technique involves an iterative procedure of solving 
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equations (4.23) and (4.24) in the inner loop for a given value of 

price p. The outer loop task is to evaluate the price p such that 

equation (4.25) is satisfied and this is equivalent to solving the 

following equation :

w( p) (4.42)

where v(p) and w(p) are the solution of the inner loop problem 

under given p. The outer loop task is performed by the 

coordinator. The following strategy is proposed for updating 

the price.

(4.43)

where is a positive number suitably chosen to preserve 

convergence and s denotes an iteration number.

The properties of the inner loop solution are stated in the proof 

of Lemma 5.2 ( see Chapter 5 ). Let us consider the inner loop 

problem with the iterative strategy :

+ (4.44)

k
where e is a positive number suitably chosen at the k-th 

iteration to preserve convergence.

Sufficient conditions for convergence of the iterative scheme

(4.43), expressed in terms of the properties of L (.), can be 
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derived from the general results, as reported in Findeisen et. al

(1980). The optimality and convergence analysis of the algorithm is 

presented in Chapter 5.

The procedure of implementing the algorithm are summarised as 

follows :

O 0Steps 1 to 4 are similar to the single loop technique.

5° For given values of k k . kv. , w. and p. , the
ii 1

i-th local

optimisation unit performs the minimisation of the

augmented modified optimisation problem (4.13), giving rise 

to c.(v,w,p) and u.(v,w,p).
1 1

6° Each i-th local unit adjusts v and w according to (4. 44 ) .

7° Convergence of the set-point v and iteraction input w are

checked, i.e if
,., . , k+1 k, <3 andV

K+1 k,
< Pwcondition |v -vK| | w -w |

are satisfied then the algorithm stops, otherwise return to 

step 5°.

8° Coordinator updates price p according to (4.43) which uses 

the appropriate information from all the local control units.

o
9 Price convergence is checked , if equation (4.42) is satisfied 

to the prescribed accuracy the algorithm is stopped,

otherwise the whole procedure is repeated from step 2°.

4.3.3 Model Based Double Loop Technique

The model based double loop technique is derived by solving 
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equation (4.25) saparately from equations (4.23) and (4.24). The 

outer loop task is to produce the new values of v and w by 

satisfying equations (4.23) and (4.24). The values of v and w, 

obtained from the outer loop, are sent to the inner loop to solve 

equation (4.25) with respect to price p. The new value of the price 

p is sent back to the next outer loop iteration and the whole 

procedure is repeated until optimal values of the set-point are 

achieved.

/

Employing a similar technique by Brdys, Abdullah and Roberts (1986) 

the coordinating equations (4.23), (4.24) and (4.25) are modified 

in order to make the method more suitable for application. Let us 

replace problem (4.13) by the following :

min { q(c,u,a(v,w)) + p

-[AT(v,w,p2),tT(v,w,p2)]|

Tg(c,u,a(v,w))

2 
c | + jo IIv-cII 
u | 2

J_Q llw-Ull2 }
2 2

+

(4.45)

The price affecting term pTg(c,u,a(v,w)) is distinguished from the 

price affecting term [XT(v,w,p),tT(v,w,p)]| c | .

I u |

The solution of (4.45) with respect to c and u under given 

and p2 , v and w is denoted by c(v,w,p1,p2) and u(v,w,p,p ).

Therefore, the set of coordinating equations (4.23), (4.24) and

(4.25) is equivalent to

A/c(v,w,p ,p ) = v (4.46)

u(v,w,p p ) = w (4.47)

u(v,w,pi(p2) = HF(c(v,w,p1,p2),u(v.w.p ,p2),a(v,w)) (4.48)

87



The resulting inner loop problem is to solve the following equation 

u(v,w,p ,p ) = HF(c(v.w,p1,p2).u(v,w,p1,p2),a(v,w))

(4.49)

Equation (4.49) can be solved using the Interaction Balance Method 

( see Findeisen et. al., 1980 ). Therefore the inner loop iteration 

is performed in the following way :

problem.

S+ 1
p, - p

s rAs
1 + t[u -

Iir/As As Ak
HF(c ,u ,a )] (4. 50)

where 7 > 0 , As A. k u = u(v ,
k s k.

w ,P1 ,P2 ),
As A. k
c = c (v , w

k
*P1

s k
.P2 ) .

Ak
a =

A k k 
a(v ,w ) and where s denotes the number of the inner loop

iterations corresponding to the k-th iteration of the outer loop.

The following iterative scheme is proposed for the outer loop

k+1 1 1 k -V I1 1 v | 1
I1=1 1 + R |

k+1 1 k xw |1 1*1 1

k+1 k n rA
P2 = P2 ‘ Rp[p1

Ak k .
c - V I

Ak (4.51)
u - w |

A k,** P2 1 (4.52)

where matrices R and 
x

R have inverses 
P

and

respectively, and are suitably chosen to preserve convergence,

and where

Ak c

. A k and p^ = k k 
w ,P2

A 
P
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The following procedure summarises 

algorithm :

o ... oo1 The initial values of v , w , 

accuracy of pp1 and pp2

k = 0.

o o . .Steps 2 and 3 are similar to the

the model based double loop

0 , 0 . . .p^ and p2 are prescribed. The 

are appropriately chosen, and 

single loop technique.

o k k k
4 For given (pp , the modifiers -V and t are evaluated 

according to (4.26) and (4.27) respectively, where the price

k
(p^i is substituted for p.

o s k k5 For given values of (p_). , X. and t. , the i-th local
2ii 1

optimisation unit determines the local optimum augmented 

A kmodified performance of (4.45), producing c. (v.w.p ,p ) and 

A k . ,u£ (v,w,pi,p2).

6° s
The price (p1) is updated according to (4.50).

7° Convergence of the
s

price is checked ; i.e if condition

is satisfied then proceed to
o

step 8 ,

otherwise return to step 5°.

8° The i-th local control k kunit updates v. and w.
ii

according to

(5.51), and
k

^P2^i iS ad3ustecl according to (5.52)

k v.
1

9° Convergence of if conditions

satisfied then stop, otherwise set k = k+1 and repeat from step 2°.

< Pv •
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k.k Constraint Augmentation

Using a similar approach to the formulation of problem (4.13), the 

constraint augmentation problem (4.2) can be reformulated as 

follows :

min [ q(c,u,a(v,w)) - ATc - tTc - pT[u-HF(c,u,a(v,w))

+ _1rllu-HF(c,u,all2)} (4.53)

2

s.t g(c,u) < 0

where

XT(v,w,p,r) = [K T(v) - F T(v,w,a(v,w))[F T(v,w,a)l 1.
* c a

q (v.w.a) + F T(c,u,a)HTp + F T(c,u,a)HTr[u-HK.(v))] 
a a a *

(4.54)

tT(v,w,p,r) = - F T(v,w,a(v,w))[F ^(v.w.a)] 1.
u a

- q (c,u,a) + F T(c,u,a)HTp + F T(c,u,a)HTr(w-HK. (v ) ) ]
a a a *

(4.55)

2
The constraint augmenting term j_rllu-HF(c, u ,a) II is not separable,

2

II u-HF ( c, u , a) II2 = Hull2 + II HF ( c , u , a) II2 - 2uTHF ( c , u , a) (4.56)

because each variable in the term 2uTHF(c,u,a) depends on each 

corresponding input or output variable, hence the term is not a sum 

of N terms. Separability can be obtained by linearisation of this

s sterm around some point (c ,u ) as proposed by Stephanopoulos and

Westerberg (1975), which results in the following approximation
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uTHF(c,u,a) = ( uS ) THF ( c , u , a) + liTHF ( cS , uS , a)

(uS)THF(cS,uS.a) (4.59)

As AsIn order to solve c and u , we have to introduce an additional 

loop known as an approximation loop which can be summarised as 

follows :

i) Set the initial values of (c°,u°) and the accuracy of > 0 

is appropriately chosen, and set s =1.

ii) For given X(v,w,p,r), t(v,w,o,r), p and r the following

saparable modified optimisation problem

min {q(c,u,a(v,w)) + pT[u-HF(c,u,a(v,w))] - AT(v,w,p,r)c

- tT(v,w,p,r)u + [ JLrllull2 + IIF (c, u , a( v, w) ) II 2

2

2(uS)TpHF(c,u,a(v,w)) - 2uTHF(cS,uS,a(v,w))]}

(4.58)

is solved to obtain cs and us.

iii) The convergence is checked, i.e if condition |(cS,uS)

s s A A s A
(c ,u )| < 6^ is satisfied then set c(v,w,p) = c , u(v,w,p) =

us, where (c(v,w,p),u(v,w,p)) denotes a solution of (4.58),

otherwise, cs and us are updated as follows

and set s = s+1 and go to (ii).

(4.59)

When the constraint augmentation is applied to the three proposed

algorithms, the iterative procedures described in sections 4.3.1,
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4.3.2 and 4.3.3 remain the same, except that the optimising control

step is replaced by the approximation loop. As an example, when the

augmented single loop technique is applied, the iterative procedure

in section 4.3.1 is modified as follows :

Step 1° to 4° remain the same.

5° The optimising control step is replaced by the approximation

loop which consists of steps If the convergence

.... . As As .condition (c ,u ) is satisfied then set c(v,w,p)

As . A. .c and u(v,w,p) As 
u and proceed to

„o 
step 6 .

. s s. ,(c ,U ) 4

4.5 Summary

An extended hierarchical Augmented ISOPE method with output

measurement feedback has been augmented using variable and

constraint augmentation. Hence, six versions of the hierarchical

ISOPE algorithm are obtained :

i) Variable augmented single loop technique

ii) Variable augmented system based double loop technique

Variable augmented model based double loop techniqueiii)

iv) Constraint augmented single loop technique

v) Constraint augmented system based double loop technique

vi) Constraint augmented model based double loop technique

A significant reduction in the number of the system iterations is

achieved with these two types of augmentation and this has been

confirmed by simulation results in Chapter 7. A comparative study

of these algorithms will also be presented in Chapter 7. The
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optimality

analysed in

and convergence conditions of these algorithms will

Chapter 5.

be
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C H A P T E R  5  -  O P T I M A L I T Y  A N D  C O N V E R G E N C E  A N A L Y S I S  F O R  A U G M E N T E D  I S O P E

W I T H  O U T P U T  F E E D B A C K

5 . 1  I n t r o d u c t i o n

I  n t h i s  c h a p t e r t h e v a r i a b l e a n d c o n s t r a i n t a u g m e n t e d I S O P E

a l g o r i t h m s  w i t h o u t p u t  f e e d b a c k  w i l l  b e  p r e s e n t e d .  T h e  a l g o r i t h m s

a r e  s t u d i e d  w i t h t h e  i n e q u a l i t y  c o n s t r a i n t s  b e i n g  o u t p u t  d e p e n d e n t .

T h e  o p t i m a l i t y a n d c o n v e r g e n c e  o f  t h e  v a r i a b l e  a u g m e n t e d  I S O P E

a l g o r i t h m w h i c h w i l l  b e  p r e s e n t e d  h a s  b e e n  d e v e l o p e d  b y  A b d u l l a h ,

✓

B r d y s  a n d R o b e r t s  ( 1 9 8 6 ) .  T h e  c o n v e r g e n c e  s t u d i e s  o f  t h e  c o n s t r a i n t

a u g m e n t e d I S O P E p e r f o r m e d  b y  T a t j e w s k i ,  A b d u l l a h  a n d  R o b e r t s ( 1 9 8 6 )

w i l l  a l s o b e i n c l u d e d  i n t h e  c h a p t e r . T h e s e a u g m e n t e d I S O P E

a l g o r i t h m s a r e e x t e n d e d  v e r s i o n s  o f  t h e  n o r m a l l a g r a n g i a n I S O P E

a l g o r i t h m s
✓

f o r m u l a t e d  b y  B r d y s ,  A b d u l l a h  a n d  R o b e r t s  ( 1 9 8 6 ) .

Z a n g w i l l ' s T h e o r e m (  1 9 8 6  ) w i l l  b e  e m p l o y e d  i n  t h e  c o n v e r g e n c e  p r o o f

o f  t h e  p r o p o s e d  a u g m e n t e d  i n t e g r a t e d s y s t e m  o p t i m i s a t i o n  a n d

p a r a m e t e r  e s t i m a t i o n  A I S O P E  a l g o r i t h m s . T h e  t e c h n i q u e s  u s e d  b y

C o h e n ( 1 9 8 0 )  w i l l  a l s o  b e  a p p l i e d  i n  t h e c o n v e r g e n c e  p r o o f  o f t h e

a u g m e n t e d  s i n g l e  l o o p t e c h n i q u e  a n d  t h e  a u g m e n t e d  m o d e l  b a s e d

d o u b l e  l o o p  t e c h n i q u e .

5 . 2  O p t i m a l i t y  P r o p e r t i e s  o f  T h e  V a r i a b l e  A u g m e n t e d  A l g o r i t h m s

L e t  Q b e  a s e t  o f  a l l  p o i n t s ( v , w , p , £ ) s o l v i n g  t h e  s e t  o f  

e q u a t i o n s  ( 4 . 1 9 ) , ( 4 . 2 0 ) , ( 4 . 2 1 ) a n d ( 4 . 2 2 ) . T h e  o p t i m a l i t y  

p r o p e r t i e s  o f  t h e  p o i n t s  w h i c h  b e l o n g  t o  Q  w i l l  b e  e x a m i n e d .  T h e
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first key step is to apply equations (4.14) and (4.15) to problem

(4.13) which converts problem (4.13) into another equivalent form:

min { Q(c,u,F(c,u,a(v,w)) + Q (v,w,K.(v ) ) . y x

.(K.(v)-F (v,w,a(v,w))]c - Q (v,w,K.(v))F (v,w,a(v,w))u * c y ’ u

♦ pT(u-HF(c,u,a(v,w))] + p^HEF (v,w,a(v,w))-K (v)]c 
c *

. * M AT A •*» A* p HF (v,w,a(v,w))u + E p . max(0,g . (c,u,a(v,w)+£ .). 
u j=1 3 3 p -1

J **3

.(G_.)^(v,w,a(v,w)).Fu(v1w,a(vIw))u

M v. A ‘A
+ E p . max(0.g .(c,u,a(v,w))+£.)(G .) (v,w,a(v,w)).

• . 3 + 3 3 _ .3. 3 y
3=1 °4.j

.(F ( v ,w,a( v ,w) )-K ( v ) ] c + Jo llv-cll + J.p llw-ull } 
c * „ 1 _2 2

(5.1)

Let us define

A
q*(c.u) = Q(c,u,Kt(c)) (5.2)

9*(c.u)
A

u - HKf(c) (5.3)

g(c,u,a)
A

u - HF(c,u,a) (5.4)

PJc.u.E)
A M

1 E
2 3=1

2P3 + ^( (max ( 0 , gt ^ (v, w)+£ j ) -(£.. 

g4+j e4+j

(5.5)
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Equations (4.14), (4.15) and (4.18) can now be expressed in the 

following form :

(v,w,p,p),tT(v,w,p,p)] = q (v,w,a(v,w)) - q (v,w) 
C | II *

* P (v,w,a(v,w),E) - P<_(v,w,E)c, u *

* pT[g (v,w,a(v,w)) - g.(v,w) ] (5.6)
c, u *

Therefore problem (4.13) can be expressed as follows :

min { q ( c, u , a (v , w) ) + pTg(c,u,a(v,w))

(c.u)eCU

- [XT(v,w,p,q),tT(v,w,p,p)]| c |

I □ I
+ IQ^IIv-cII2 + JLQ2 IIW-U II 2 }

2 1 2
(5.7)

s.t g ( c,u,a) < 0

The optimal control problem, OCP, can be written as

min qt(c,u)
(c,u)eCU

s.t g*(c,u) = 0

gt(c,u) < 0

(5.8)

where
A
= G(c,u,Ft(c,u))(c,u )

Let (v.w.p.E) e Q and define a Lagrangian function
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corresponding to Eq.(5.8) as

L*(c,u,p,a) = qt(c,u) + pTgt(c,u) (5.9)

</> /\
Then g(v,w,a(v,w))< 0 and let us assume that the regularity

</>
conditions are satisfied at each point of CU={(c,u):g*(c,u)<0}.

Lemma 5.1

If the set CU is convex then (v.w.p.E) is a stationary point 

of L (.) on CUxU. If, additionally, the function Lt(.,p,E) is 

convex on CU then v is a solution of the OCP.

Proof

It follows from the definition of c(.), u(.), £(.), a(.) and

Eq.(5.7) that (Luenberger, 1984):

[q (c(v,w,p,E),u(v,w,p,E),a(v,w))c, u

♦ pT9c u(c(v,w,p,E),u(v,w,p,E),a(v,w))

p[v - c(v,w,p,E), w - u(v,w,p,E)]

- [XT(V,w,p,E,Q),tT(V,W,P,E,Q)]( I C I - I V I ) > 0

I I I _ I
I U I I w I

for all (c,u)eCU
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Let us notice that 

[XT(v,w,p,£,p),t^(v,w,p,E,p)] = qQ u(v,w,a(v.w)l

- q(v,w) + P (v,w,a(v,w),E) - PJv.w.S)* c, u *

* pT(g (v,w,a(v,w)) - g.(v,w)J
c, u *

Therefore, due to the fact that (v,w,p,£) e Q the following

holds :

L (v.w.P.E)| c - v | > 0 , I
I _ I I
| u - w I |

I 
for all (c,u) e CU I

I 
Moreover , Eq.(4.18) and (4.22) imply that |

}■ (5.10)
I

gt(v,w) = 0 |
I 

and |
I

ET.gt.(v.w) = o , E- ) o. g*-(v,w) < o , |
j j j j

for j=1,....M J

and a proof of the first part of the Lemma is completed.

If L (.,p,£) is convex on CU then (v.w) minimizes 

Lt(.,p,£) on this set which, together with (5.10), means that 

(v,w,p,E) is a saddle point of L*(.) on CUxU (Lasdon, 1970). 

Hence v is a solution of OCP.

Q.E.D 
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The following theorem provides sufficient conditions under 

which, for every solution c of OCP, there exists u, p and £ 

such that (c,u,p,E) belong to Q .

Let us define the model based Lagrangian as

A T
L(c,u,a,p) = q(c,u,a) * p g(c,u,a)

Let c be a solution of OCP and let a e a(c,u)

Theorem 5.1

Assume

i) The function G. . is convex on C.xU. for every jeJ. and ie
XJ i 1 N

___  ti
1,N and, for every aeA , peU and E; e R the function

(L(c,u,a,p) + _1o llc-cll + JLQ llu-ull } is convex on CU with
2 1 2 2

respect to ( c , u ) .

ii) At a point (c,HK*(c)) the regularity conditions for OCP are 

satisfied.

iii) The set {(c.u)eCxU : g(c,u,a(c,HK*(c))<0 } is convex.

Then , for every solution of the OCP, there exists values of
N

- - i-1Ji
interaction input u e U , price p e U and £ e R such that

(c,u,p,E) e Q .
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Proof

Due to assumption (ii) there exists a vector E e R

N

such that

L. (c,u) + (P.) (c,u,E) = 0 * c * c I
I 
}- (5.11)

£ -g* ■ (v,w) = o , E . > o 
j j  j

, g*.(v,w)< o, 
j

I
I

for j=1,...,M)
1

J

Let us consider problem (5.7) for given values of v = c , 

w = u, E = E and a = a ; Its derivative with respect to c and 

u at a point (c.u.a.E) is equal to

[q (c.u.a) + pTg (c,u,a) - q (c,u,a)
c, u c , u c, u

+ qjc,u) - pT(g (c,u,a) - g.(c,u))
* c, u *

- P (c.u.a,E) + P.(c,u,E) +[p.(c-c) 1 Q (u-u)J
C , U * 1 c

- q*(c,u) + pTg*(c,u) + P*(c,u,E)

Therefore, due to the above and the relations (5.11), the 

point (c,u,p,E) constitutes the Kuhn-Tucker point for problem 

(5.7) where v=c, w=u, E = E and a = a.

Q.E.D

a

The a s sumptions of Theorem 5. 1 are much weaker compared

with the assumption of Lemma 4 of Brdys and Roberts (1984) due

to the fact that the existence of [F T(c, u ,a) ] -1 .is not required.
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This means that the method is not restricted to situations where 

the number of model parameters is equal to the number of measured 

outputs. At the same time the function q(.,.,a) does not have to be 

convex.

Assuming that q(.,.,a) and F(.,a) are twice

continuously Frechet differentiable for a = a(c,u) and that the set 

CU is convex and compact, it can be shown that assumption (i1 is

— 2 ~ 2
satisfied with the function {L(c,u,p,a) + J.Q llc-cll + _1_p llu-ull }

2 1 2 Z

is not only convex but is also a uniformly convex function if p1 

and q2 are sufficiently large.

5.3 Convergence of Variable Augmented Algorithm

In this section the theoretical studies of the algoritm are made 

under the simplifying assumption that the process inequality 

constraint are output independent.

5.3.1 System Based Double Loop Technique

The properties of the inner loop solution are stated in the 

following Lemma.

Lemma 5.2

Assume that CU is convex and compact and that for given p e U a 

function L*(.,p) is convex on CU. Then

o
1 . The inner loop problem solution exists and the point 

(v(p),w(p)) minimizes L*(.,p) on CU.
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2°. A dual function <P*(.) corresponding to Lfc(.) is sub- 

differentiable at p and its subgradient dtp*(p) at p can be 

determined by

d<p*(p) = w(p) - HF(v(p),w(p),a(v(p),w(p)) (5.12)

Moreover, if the inner loop problem has a unique solution then 

(p*(.) is Frechet differentiable at p and (5.12) represents the 

formula for ( p) .

Proof

Proof of part 1° follows immediately from Lemma 5.1. Due to the 

assumptions of Lemma 5.2 and according to 1° the following holds 

(see Findeisen et. al, 1980):

d<p*(p) = w(p) - HKt(v(p) )

This , together with the definition of a(.), implies that (5.12) 

holds. The last statement of the Lemma results from general 

properties of the dual function ( Findeisen et. al, 1980).

The scheme (4.43) proposed for updating the price in the 

coordinator is a gradient type iterative strategy. Sufficient 

conditions for convergence of this iterative scheme (4.43) 

expressed in terms of the properties of L*(.) can be derived from 

the general results presented by Findeisen et. al (1980).

Sufficient conditions for iterative strategy (4.44) of the inner 

loop are formulated in the following theorem.
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The algorithm gain (see (5.15)) is allowed to change during the 

iterations such that

x < K1 < Bfv^w1)
v, w

where t > 0 and B : CU ---> R1 is an appropriately defined

function of v and w.

Let us define the following point-to-set mapping :

id : CU ----> gCUxCU

u(v,w) = ((v,w),(c(v,w,p),u(v,w,p)))

and

CU
7 : CUxCU ----> 2

^((v,w),(c.u)) = {(v,w) + kv ^(c-v.u-w) r<k <B(v,w) } v, w

Therefore, without performing a stop criterion operation, the i-th 

k <• 1 k+1 
iteration of the algorithm can be described as finding v , w 

such that 

where A(.,.) is named an algorithmic mapping and it is defined as a 

composition of w and y, i.e.,

CU
(v,w) ----> A(v,w) e 2
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A(v,w) A {(v,w) + k (c-v,u-w) : t < k
= v, w v, w < B(v,w),

c e c(v,w,p), u(v,w.p), a(v,w) } (5.13)u e

Let us define

.A A &
( c, U ) , X =

A A
( C , U ) , Z = ( V , w) , Q = (Q ,Q2)

and

A x
A

L (.,p,a) 
Q

A
= [q(.,p,a)

Theorem 5.2

For given pe U assume,

i) The set CU is compact and convex.

ii) The set A is compact.

iii) The mappings F (.) and F(.,a) are continuous on CU and 

CUxA respectively.

iv) The function Lt(.,.,p) is Frechet differentiable on CU.

v) For every a e A the function L (.,p,a) is twice Frechet

differentiable on CU and L (.,p,a), L (.,p,a) and 
q px

are continuous on CUxA.

vi) A positive constant q is chosen ( at least one choice is 

possible ) such that

Q > - min b(a) 
aeA
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min 
xeCU

((L ) min p (5.14)

vii) The point-to-set mapping
A. . .
g( . ) is open on A

Then,

I. If 8(v,w)
A
= min { 1 , 2

A geg(v,w)
6 + c

(5.15)

where 6 £ max II Lt(x,p)ll 
xeCU

(5.16)

and if x and e ) 0 are chosen ( at least one choice is possible )

such that

0 4 x 4 min { 1 . }

6 + e

then the algorithm mapping A(.,.) is well defined on CU for every

v, w e CU.

II. There is at least one cluster point of the sequence

k k{ (v ,w )} generated by the inner loop iterative scheme. Each

cluster point belongs to the algorithm solution set Q .

Proof

According to assumptions A1 . the

mappings c(.,p), u(.,p) and g(.) are well defined on CU,

respectively. Therefore, a mapping w(.) is also well defined.
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Let us now consider a mapping i(.). Due to assumptions (i) and (v), 

the function b(.) is continuous on A which is a compact set ( see 

assumption (ii)). Hence, there exists p > 0 such that for all q > p 

the assumption (vi) is satisfied.

Assumption (iv) implies that a number 6 (see(5.16)) is finite and 

not negative. Therefore there exists numbers r and e such that 

inequalities (5.17) are satisfied. Since

inf b(a) + 2p < inf b(a) + 2p
aeA aea(v.w)

for every v.weCU then (5.17) implies that the mapping ft.) with

B(.) defined by (5.15) is well defined on CU.

Therefore, the algorithm mapping A(.) is well defined on CU (see 

(5.13)). Due to (5.16) and according to assumption (i), A(v,w)e

CUxCU . X X2 . A proof of the assertion has now been completed.

We will now show that A(.) is closed at every point ((v,w),(c,u)) e 

CUxCU such that v A c and w i u, by proving closeness of these 

mapping components and then by applying suitable composition 

theorems. Let us start with mapping a(.), for given v.weCU

a(v,w) = Arg min II F*(.) - F(v,w,a) II
aeA

Since the set A is compact ( see assumption (ii) ) and function

HF*( . ) - F ( . , . ,a) II is continuous on CUxA ( see assumption (iii))

then the mapping a(.) is closed on CU (Hogan, 1973).
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Let us consider a function

CUx(CUxA) 3 (c,u,v,w,p,a) ---> L (c,u,v,w,p,a) -
Q

- CAT(v,w,p),tT(v,w,p)]| c | e R1

I u I

Let v, w, p and a be fixed in CU and A, respectively. The Hessian 

of this function is equal to

(L ) (c,u,p,a) + pl
p xx

and

T ' 'h (L (c,u,p,a) + p)h 
Q X X

where h e R° .

) (q + min b(a)) II h II2 

aeA

Hence, due to assumption (vi) problem (5.7) consists of minimizing

a uniformly convex function on a convex and compact set at given

values of v. w, p and a. Consequently, c(v,w,p,a) and u(v,w,p,a)

consists of a single point. The continuity of the considered

function (assumptions (iv) and (v)) on CUx(CUxA) and compactness of

CU imply that c(..p.a) and u(.,p,a) is a continuous function on

CUxA.

Let us consider the following mapping

CU 3 (v,w)----> {(v,w^,a) e 2CUxA

Since a(.) is closed on CU, this mapping is also closed on CU.

Hence, because CUxA is compact then we can employ a closeness of 
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mapping composition theorem ( Zangwill, 1969 ) and obtain that the 

mapping

A &
CU 3 (v.w) ----> J € Z

is closed on CU.

Finally, applying a closeness of mapping arithmetic composition 

theorem ( Zangwill, 1969 ) to the above mapping and to an identity 

mapping on CU, we conclude that the mapping w(.) is closed on CU.

The continuity of (L ) (.,.,a) on CUxA and
q xx compactness of CU

(assumptions (v) and (i) respectively ) imply upper-

semicontinuous on A ( see (5.14) ) . Therefore, owing to assumption

(vii) the following function

--> inf b(.) e 
aca(v, w)

r '

is upper semicontinuous on CU ( Hogan, 1973 ). Thus B(v,w) is upper 

semicontinuous on CU ( see (5.15) ).

We will now show that f(.) is closed at every point ((v,w),(c,u)) 

e CUxCU such that v i c and w i u.

Let

CUxCU 3 ((vk,wk,(ck,uk)) ---- > ((v,w),(u,w)), v#c, w*u
k --><»

and

. k k..k k. . k . k k. k.k k k kt
•y(v ,w ),(c ,u )) x = (v ,w ) + e (c -v ,u -w )----> x.

k-->°°
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Thus, for sufficiently large k, the following holds :

k k k ke = II x - (v , w ) II

n . k k k k ..II (c -v ,u -w III

Clearly,

+x £ (c-V,U-w)

Since

T kk
V , w

and due to assumption (v) , the function BC . ) is upper

semicontinuous then

T < £
X

k k 
lim sup B(v ,w ) 
k--><»

< B(v,w)

Therefore, e 7((v,w),(c,u)) and consequently, y(.) is closed atx

((v,w),(c,u)) . Hence, the algorithmic mapping A(.,.) is closed at

every point which is not a solution of an inner loop problem.

To show that A(v,w) e 2CUxCU, let us notice that due to (5.15),

B(v,w)<1 and t ) 0 . Hence, according to the convexity of CU ( see 

assumption (i) ), A(v,w) e ^CUxCU^ 7herefore( a prOof of part II of 

the theorem has now been completed.

Moreover defining the algorithm solution set as a set of all

solutions of the inner loop problem, we can now state that the

following assumptions of Zangwill’s convergence theorem are

satisfied and that all the points generated by the algorithm are in
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a compact set CU and the algorithm mapping is closed outside an 

algorithm solution set. To verify the remaining assumptions of 

Zangwill's theorem it is necessary to show that there is continuous 

function Z : CU ---> R1 such that

-- if (v.w) is not a solution then for any (c.u) e A(v,w)

Z ( c , u ) < Z(v,w)

and

if (v.w) is a solution then for any (c,u) e A(v,w)

Z(c,u) < Z(v.w)

Let (c.u) e A(v,w) where v.w are arbitrarily chosen from CU. We 

shall prove that the above conditions hold if Z(.) = L (.,p). Due 

to both assumptions (i) and (iv), L*(.,p) is Lipshitz continuous on 

CU with constant 6 (see (5.16)) and, due to the convexity of CU. 

the following inequality holds (see Kantorovich and Akilov, 1964).

' 2
L*(v,w,p) - L*(c,u,p) ) L*(v,w,p)| v-c | - J.6II (c-v ,w-u) II

I w-u I 2

for all c.u c CU

But

(c,u) = (v,w) ♦ k [(c(v.w.p)-v),(u(v.w.p)-w)) v.w

for some

k < k < B(v,w)
- V , w

Therefore,

L*(v,w,p) - L*(c.u,p) > k(v v - c(v.w,p) |

A
| w - u(v.w.p) I

(5.18)

1 10



In order to estimate the first term on the right hand side of

(5.18),  we will utilize the definition of c(.), u(.), problem (5.7) 

and the fact that CU is convex. Therefore the following holds ( see 

Luenberger, 1973 ) :

<Lc Jv,«.p),u(v,w,p),p,a(v,w)) - [AT(v,w,p),tT(v,w,p)]

- q(v-c,w-u))| v - c(v,w,p) | ) 0

I A, JI w - u(v,w,p) I

together with (5.6) implies that

) [L .(v.w.p.a) - L (c,u,p,a)]. c, uc, u

+ Qll

(5.19)

Assumptions (i) and (v) imply that there is 0 < 8 < 1 such

that (see (5.14))

(L (v.w.p.a) c, u u(v,w,p)
Lc, u

v C(V,w,p)

w

V - C ( V , w, p)
T

w - u(v,w,p)
L (c(v,w,p.a) 0(v - c(v,w,p)),a(v,w)).+
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Iv-c(v.w.p)I .. A A
I | > X . (L (c(v,w,p)+8(v- c(v,w,pH,a(v,w)).. A, .. min xx
|w-u(v,w,p)I

- g (v ,w ,p )
- u(.v,w4>)

Z
> b(a) II v-c(v , w, p) , w-u (v ,w, p) II 2

Therefore

, |v-c(v,w,p)| A 2
Lt(v,w,p)| | > (b(a)+p)llv-c(v,w,p) ,w-u(v,w,p) II

|w-u(V,w,p)I
(5.20)

Finally, combining (5.19) and (5.20) we obtain

L*(v,w,p) - L*(c,u,p) t ( b(a) +Q-j_k... 6 ) .
2

C ( V , w, p) , w - u (v , w, p) II 2

Since

k(v,w) < 8(v'wl 2b(a) <■ 2p
6 + c

then b(a) + p - 1k. .6 >
“ (v.w)

Hence,

Lt(c,u.,p) < Lt(v,w,p)

and

Lt(c,u,p) < Lt(v,w,p) if (v,w) is not a solution

V

V

0

v, w

Q. E. 0
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5.3.2 Single-loop Technique

Zangwill’s theorem will be used to prove convergence of the 

algorithm. The techniques developed by Cohen (1980), in the 

convergence proof of his algorithm 6.1, will also be utilized to 

some extent to find the Z function.

Let Q be a set of all solutions of (4.23), (4.24) and (4.25).It is

k k kassummed that the algorithm is stopped iff (v ,w ,p ) c Q , which

k +1 k k +1 k k +1 kis equivalent to v = v , w = w and p = p , for some k,

since e t 0 and e * 0.

Let us define the following notation for simplicity

A 4 .A A A
X = ( c , u ) , z = (v.w)

and

A
.. 2

q(x,a,g) q(x,a) + _1_Q II X II
2

Theorem 5.3

Let the assumptions of Theorem 5.1 be satisfied, and assume

i) The set CU and A are compact and the function q(.,a) is 

twice continuously Frechet differentiable on CU for every aeA.

ii) The mapping q*(.) is uniformly monotone on CU with 

constant a*>0.

iii) The mappings Ff(.) and F(.,a) are linear for every acA.
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SA
iv) There exists numbers A and a such that, for every aeA,

VA

A > A(a) and a(a) ) a > 0 (5.21)

v) A value of q is chosen at least one such choice exists )

$A

such that there exists numbers A > 0 and a > 0 satisfying the

following inequalities

A ) max II qt (x,a) II + q 
xeCU
aeA

(5.22)

and

min A . ( q (x,a)) + q > a. min xx
aeA
xeCU

(5.23)

vi) The system mathematical* model and value of q are chosen

such that

SA

A < 2a . - A, and 3A, < a < A. (5.24 )
2 4 SA

where A* is a Lipschitz constant of qt (.) on CU.

vii) The class of systems considered is restricted in such a

manner that

a* > SA*
8

(5.25)

Then

1° There exists a unique solution (v,w) of the OCP. Every

SA

point belonging to Q is of a form (v,w,p).

114



2° There exist such numbers £ , e and £, such that £
-P -

* £

and Ce, e] C (0,1) and the algorithm either stops at Q or

generates a sequence <■ k k. (v ,w } convergent to (v.w) provided that

0 < z k £ < £ 
“P P

, a . k , ,< and e £ [e,£]
P

s
V*

and

K,(.)

s =

on CU.

max {1, 2 2r IIHII } where r is a Lipschitz constant of

Proof

Assumption (ii) implies that the functional qt(.) is uniformly

monotone on a compact and convex set CU. Hence, there is a unique

point z solving the OCP and due to Theorem 5.1, there is p such that

Since

belongs to Q . Let (v,w,p) e Q

q,(.) is convex (assumption (ii)) and because Ft(.) is

linear, then Lemma 5.1 implies that V
V*

v and w w. Therefore,

othe proof of part 1 is completed.

Let us consider the k-th iteration of the algorithm. Due to the

fact that the set CU is convex and to condition

on the

* A k
the function {q (.,a ) 

x + q(.)} is uniformly monotone

convex set CU and a unique xk exists. Therefore, the

following condition holds (see Luenberger, 1 973 )
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Furthermore, because x e CU and defining (z,p) as the solution, we 

obtain

[q* (z) + pTgt (z)J(xk - z) > 0 (5.26)

Adding (5.26) and (5.25) leads to the following inequality

. k.T ’. k. ~ Ak.
♦ (p ) gt (z )(z-x ) +

-T '
P 9*

.Ak “(z)(x -z)
kT.Ak -

+ qz (x -z)

AkT -
+ QX (Z k,- x II ) 0 (5.27)

Since e e (0,1) then
k+1 Z E CU.

Inquality (5.27) can be written as

♦ (p)^9t (z)(xk-z) > 0 (5.28)

1 16



Let us notice that, due to assumption (i), for a given a the 

corresponding numbers

max II q ( . ,a) II + p 
xeCU

and

min A . ( qmm xx

are lipschitz and monotonicity constants respectively of the

function q(.,a).

The first and the second term of (5.28) can be expressed as

follows

,Ak Ak q(x ,a
scr 

i 
so-

-P)

2

, Ak q(z,a , Q)
2~

, k Ak .,Ak ~ (z ,a ,p) (x -z)

k Ak^ Ak Ak . •*. k Ak , . ..Ak k..q (x , a , q) - q(z , a , g) - _1_aIIx -z II
2^

Ak k„2 *. k Ak .
" " 'I ♦ q(z ,a ,o)

va --- A Iz Lz 2
- q ( z , a , p) + _1_AII z - z II

2
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Applying assumption (ii) to the third and fourth terms of (5.28) 

gives :

k. — k. k.“ k. k,. k k+1.q* (z )(z-x ) = qt (z )(z-x ) + q* (z )(z -z )

) (z k+1 Ak-xk z

> /“» . k V « kn 2 ' . k V / k k+ 1 1< q*(z) - qt(z ) - J_atHz-z II + q* (z )(z -z )
2

and

'..Ak —. ' — ..Ak k+1. ' —., k+1 -.q* (z)(x -z) = q* (z)(x -z ) + q* (z)(z -z)

, Ak k+1. , k+1. —. t „ k+1 -„2
< q* (z)(x -z ) + q*(z ) - q*(z) - lajlz -zll

2

Application of assumption (iii) to a sum of the last four terms in

(5.28) yields :

, kiTr Ak. ,Ak Ak., / k.T, /Ak Ak. ~ Ak.,(p ) [g(z,a ) - g(x ,a )] + (p ) [g(x ,a )-g(z,a )] +

(Pk)Ttg*(z)-g*(xk)] + pT[g*(xk)-g*(z)]

= (pk - p)T[g*(z)-g*(xk)]

Applying the above relations to inequality (5.28) we obtain

1 18



r *, k. * “ ,, k+1 Ak. . „ k — .. 2+ [q* (z )-q* (z) ] (z -x ) + lajlz - z II
2

, k+1 “ 2 , ..Ak -„2 . ..A k..2- la*Ilz -zll - J_aIIx -zll - lallx-z II
2 2 2v'

, . .. k ~.,2 . k —k.Tr ~. ,Ak,_ K n+ 1AII z -zll + (p -p ) [ g * (z ) - g * ( x )] > 0 
2

(5.29)

Notice that

(5.30)

and that

r '/ k. ‘ ~ k,., k+1 Ak._,4 k. .. ’ ~ k...., k Ak..[q* (z )-q* (z )](z -x )<(1-e ) II q * (z)-q* (z ) IIII z -x II

,k.... kAk.,... k._ ... k —..2 .. k Ak.2,< ( 1 -e ) AJIz-z IIII z -x ll<_1_( 1-e )A*(|lz -zll + II z -x II )
2

(5.31 )

Let us consider the last term in (5.30) since g*(z) = 0 and

k+1 
P

the following holds :

- 9t(z)]H2
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and

(pk-p)T[gt(z)-g*(xk)]

P

II pk-pll2

P

Using definitions (5.3) and (5.4) and part 2°

Hg*(xk)-g* (z) II2 = lluk - HKf(ck) - u + HK*(c)ll2

4 lluk - ull2 ♦ r 2 ■ HII2II ck-c II2 4 Sllxk-zll2

Therefore

. k “. Tr /Ak., y „ k — ..2 4 „ k+1 “„2(P -p) Cg*(z)-g (x )] < 1 lip -pll - 1 lip -pll 
2e 2ek

P P

+ (5.32)

Finally, applying inequalities (5.30), (5.31) and (5.32) to

inequality (5.26), we obtain :

r * . . k. 2 k . ., „ Ak.,2+ [a - A ( (e ) - e + 1 ) ] Hz-x II
v* * (5.33)

120



Notice that if

2a * - A + (ek - 1 ) A* > 0 (5.34)

(5.35)

(5.36)

then the right hand side of (5.33) is not negative.

Conditions (5.21) and (5.24) are sufficient for an existence of

such a number £., e e [0,1], e. t e such that inequalities (5.34), 

(5.35) and (5.36) hold provided that ek c [c, e] and 0 < e k < 3
” Ps

VA

Since A > A(a) ) ata) ) a , then condition (5.25) is sufficient V*

and necessary for the existence of the pair (A,a) satisfying

inequalities (5.24).

A Z function could be easily derived from inequality (5.33), then 

Zangwill's theorem can be used to prove that z is only a cluster 

point of this sequence. However, since inequality (5.24) is 

already expressed in analytical form, therefore instead of applying 

Zangwill's theorem, it is easier to use inequality (5.33) directly

k —
to prove that a sequence {z } converges to z.

k kLet us consider the infinite sequence {z ,p } generated by the

k kalgorithm. Since (z ,p ) c Q for every k = 1, 2, 3, there are two
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k+1 ork
possible cases to be considered : z t z

t 0

e t

k k+1 _ . kp = p . Since e

k Ak .. _then z t x , in the -former case. In the second case, since

Ak
x z.

Let us define a function

T(z,p,e ) = a llz-zll2 + 1 llp-pll2 (5.37)
P

P

k k kIt follows from the above that the sequence {T(z ,p ,e )} and the 
P

inequality (5.33) is strictly decreasing and it is bounded below by

k k k
zero. Thus, the sequence {T(z ,p ,e )} is convergent and, 

P

consequently, a left hand side of the inequality (5.33) tends to

zero. Therefore, the right side of inequality (5.33), which is not

negative also tends to zero. Finally, we obtain 

and part 2° of the theorem has now been completed.

k ~ k
Let us consider {p }. A sequence { 1 (p - p) } is convergent

e
P

k k k k — osince {T(z ,p ,e ) and {z - z} are convergent. From part 2 of 
P k ~ k

the theorem 0 <e < e < --- therefore {p } is bounded. By using—p p S J J

standard arguments (Bensoussan, Lions and Teman (1972)) it can be

VA

shown that any cluster point p ( at least one exists ) of the

k —
sequence {p } constitutes together with z a saddle point of Lt(.,.) 

on CUxU.

Q.E.D 
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The sufficient condition for convergence of the single loop 

technique are much stronger than those required by the system based 

double loop technique. However, the uniform monotonicity assumption 

IS now on derivatives of the augmented mappings and thus can be 

readily satisfied. Due to assumption (iii), then the algorithm is 

restricted to a linear system. Condition (5.25) limits the 

technique applicabilty while condition (5.24) makes the choice of 

the system model difficult.

The convergence conditions of the second version of the augmented 

single loop technique will be presented in the following theorem.

The algorithm solution is equal to the optimal solution set Q. The

k k k algorithm is stopped iff (v ,w ,p )e Q.

Theorem 5.4

Let the assumptions of Theorem 5.1 and assumptions (i), (ii) ,

(iii) (iv) and (v) of Theorem 5.3 be satisfied.

Assume in addition

vi) 

that

The numbers e and e and 
P

0 < e < £ < 2a*
p p s *

V*

the value of p are chosen such

(5.38)

(5.39)
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0 < e. < e (5.40)

where A* is a Lipschitz constant of q*(.) on CU, and

= max { 1 , r2II HII 2 }

where r is a Lipschitz constant of K*(.) on CU.

The system mathematical model is chosen such that the above choice

of e and e
P

is possible.

Then

1° There exists a unique solution (v,w) of the OCP. Every

point belongs to Q is of the form (v,w).

2° The algorithm either stops at Q or generates a sequence 

k k k k k — ~
{v ,w ,p } such that {v ,w } is convergent to (v,w).

Proof

Proof of part 1° is exactly the same as in Theorem 5.3. The symbols 

A .x, z and q(.) used previously in Theorem 5.3 will be used again.

Using exactly the same arguments as before, we conclude that

♦

. k. ~ Ak. ' —. .Ak “q* (z )(z-x ) + q* (z)(x -z) +

, k ,T ' , k.Ak. T ',"1(Ak . . ._ ,„.(p ) g (z )(z-x ) + p g (z)(x -z) > 0 (5.41)x *
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The first and the second terms of (5.41) can be expressed as

follows :

,Ak Ak 
% (X .«

- Ak
< q(z,a ,q) ^.Ak Ak q (x ,ot ■ Q)

. ..Ak ~ 2 j.a II x - z II
2^

, k Ak q(z -Q)

. ..Ak k.,2 k k . *Ak . 4 „ k “2la II x - z II + q(z ,a , p) - q(z,a , p) + J_ AII z -zll
2^ 2

Applying assumption (ii) to each of the third and fourth terms

of (5.41) in an appropriate manner, yields

'. k..— Ak. '. k, ~ k. ’. k,, k Ak.eq* (z )(z-x ) = eq* (z )(z-z ) + eq* (z )(z -x )

< eq*(z) - £q*(zk) - ea*llzk-zll2 + eq*(zk) -

2

’.“..Ak “ .Ak. “ ,.Ak -„2
eq* (z)(x -z) = eq*(x ) - eq*(z) - ea*llx -zll

2

Applying assumption (iii) to a sum of the last four terms

(5.41), shows that the sum is equal to

of

e(pk-p)T[g*(z) - g*(xk)J
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Introducing the above relations to inequality (5.41) yields

4 »Ak ~..2 4 ..Ak k.,2 . . „ k ~2- _[a II x -zll -J_a II x -z II + _1_A II z -zll
2«/> 2>/' 2

* ii k Ak 2 k -..2 ..Ak ~2+ eAJIz -x II - eafllz -zll - e. a * II x -zll
2 2 2

/ k Tr .Ak,, v „
+ e(p -p) (gjz) - gt(x ) ] >0 (5.42)

Since ( see derivation of (5.32))

then the following inequality holds :

( A-ea * ) H zk-zll 2 + ellpk-pll2 -

e
P

“ i H Ak —„ 2 .. k+1 ~ 2(A-ea*)||x -zll - _eIIp -pH
e
P

(a + 2eat - A -
va

. ii A k “2 see ) II x - z II
P

/ . m k Aku2(a-eAt)llz -x II

Conditions (5.21) (5,38) and (5.39) imply that

VA
A - ea * > 0

a + 2ea^ - A - see > 0VA * P

a - eA. > 0
VA X
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Taking into account that x = zk+1 ( see (4.40) and (4.41) ) and

using the arguments used in the proof of Theorem 5.1 , we conclude

k k
that in the case of an infinite sequence {z ,p } generated by the

k — —
algorithm, the sequence { z } is convergent to (v,w).

The properties of {p } have been discussed previously . Hence, the 

proof is completed.

Q.E.D

5.3.3 Model Based Double Loop Technique

The convergence properties of the augmented model based double loop

technique will be studied by considering a linear quadratic problem

Q(x,y) = (x-d)TM(x-d) + (y-e)TE(y-e) (5.43)

where x = (c.u)

F(x,a) = D1c + D2u + P (a) (5.44 )

and

F*(x) = D*1C + D*2U + d* (5.45)

Matrices , 02 , D , D*2 and P(.) are such that assumptions A1 and

A2 are satisfied. Furthermore, equation (u-HDc - HD u = 0 ) and 
1 2

9*(x) = 0 are both linearly independent.

Let us define the following matrices

B = [ - HD1 , I - HD2 ] (5.46)
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where I is an identity matrix,

B, = ( (HD,2 - iT'ko,,. I] (5.47 )

TM = M + D ED (5.48)

bl = M + D ED** * * (5.49)

where D = [D O] , 0* = [ ( I-D^H ) ’ 1 D* j , 0].

k k kThe iterations are terminated when (v ,w ,p ) e Q .

Theorem 5.5

i) (Rp"1)T8 = BR (5.50)

ii) (M + q)R 1 = (R 1)T(M+q) (5.51 )

iii) (M+q)R 1 - JM* > 0
2

(5.52)

iv) B M.~1R 1 * (Rp~1)T8M ~1BT -
* * p *

8 M ~1((M + p)R "1 + J.M )M 1 B? > 0 (5.53)

2

Then

1° There exists a unique solution (v.w) of the OCP. The 

algorithm solution set Q consists of a single point (v,w,p).

2° The algorithm either stops at Q or generates a sequence

)} which is convergent to (v,w,p).
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Proof

By using (5.43) , (5.44) and (5.45) we obtain 

q(x,a) = _£(x-d)TM(x-d) + _1_( Dx-e ) TE ( Dx-e ) + PT(a)E(Dx-e)

2 2

+ pT(a)EP(a) (5.54)

9*(x) = B*x " b* 

where

b* = (I - HD*2)"1Hdt , (5.55)

g(x,a) = Bx - HP(a) (5.56)

q*(x) = Kx-d)TM(x-d) + JJ D*x-f)TE(D*x-f) (5.57)

2 2

where f = e - d

Let us denote

A A . A A. . A . .x = (c,u) and z = (v,w)

k kLet (z ,p2 ) be given.

k A 2Since {q(.,a ) + J.QIIx-zII } is a uniformly convex function if
2 k

sufficiently large and g(.,a ) is linear then necessary

Ak Ak Aksufficient conditions for (c ,u ,p ) to be a solution of 

g is

and

the
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corresponding inner loop problem can be written as follows (see

(5.46) , (5.47) and (5.49)) :

.,Ak . k nT.A k k. „ T k „ T__
(M+q)(x -z) + M*z + B (pi -p^ ) + B* p^ - Md - D* Ef = 0

(5.58)

and

Bxk - HP(ak) = 0 (5.59)

k A k k Ak
Since g(z ,a ) = g*(z ) (see (4.18), (5.3) and (5.4)), then HP(a )

k k= Bz - B*z + b* and condition (5.59) can be written as

n,Ak k. „ k
B(x - z ) + B*z - b* = 0 (5.60)

Due to the assumptions M > 0 and matrix B has full rank

I (M+q) 
det ( |

I B

det (M+q) det (-B(M+q)8T)

Therefore the solution of (5.58) and (5.59) is unique with respect 

Ak A k
to (x ,pl ). Hence, the iterative scheme (4.51) and (4.52) is well 

defined. A point z is a solution of OCP iff there is pcU such that

the following holds :

Mtz + BtTp2 - Md - D*TEf = 0

and

Bj - bt = 0

(5.61 )

(5.62)

I )
0 I
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Since M > 0 and B* has full rank, employing a similar approach as 

previously, there is exactly one pair (z.p^) satisfying (5.61) and 

(5.62). Next, using similar arguments as in the proof of part 1° of 

Theorem 5.3, the proof of part 1° of the theorem is completed.

Conditions (5.58) and (5.60) constitute a basis for further 

consideration. By using (4.51) and (4.52), these conditions can be 

expressed in terms of points generated by the outer loop as 

follows:

,y? . „ -1 . k +1 k4 k „T(M+p)R (z -z ) + M z + B R x *
P_1(P2

o T k B p* h2 Md (5.63)

-1, k+1 k. „ kBR (z -z ) + B z - b. = 0x * * (5.64)

Next, let us consider an approach used by Cohen (1980) in his

Theorem 5.1 Then , we will utilize Cohen's approach as a basis

for further consideration.

k k+1 T
Multiplying equality (5.61) by (z -z ) and equality (5.64) 

k+ 1 k T
by (P? -P2 ) . then adding the resulting equalities and next

employing assumption (i), we obtain

(5.65)

0
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Due to (5.61) and (5.62) the following holds :

and

( Zk* 1 -Zk ) T (Md-0 JEf I =
*

Applying these equalities to equality (5.64) and performing

suitable ordering, we obtain :

(5.66)

The first term in (5.66) can be expressed as

(5.67)

The second term in (5.66) is equal to

/ k,T_ k. “ k+1.T ~ k+1.
(P2-P2 ) B*(z-z ) - (P2"P2 ) B*(z-z ) +

, k+1 k k+1 k. . k k+1.To ~ k.
(p2 "P 2 ’ P2 'P2 B*(z~z ’

Let us now compute the term B*(z-z )
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Inequalities (5.61) and (5.62) imply that

k - 1 VA - ‘I . k + 1 k t -1 T -1, k+1 kz + M (M+p)R
* X (z z ) + M B R (p -p ) +

* p 2 2

-1 T k -1 , T
M. B .p -M. (Md+D* Ef) = 0

and

“ + -1 T “ -1 , TZ + M Bp♦ * ~ o - M* (Md+D Ef) = 0

Hence,

L/ — 1 i/i — 1 Iz 4- 1 Lz

B (z-z ) = B M (M+p)R (z -zK) +
X XX X

B*M _1BTR 1<Pok+1~P9k) + B M “1BT (p k-p )
* * p 2 2 * * t k2 h2

Q - k k +1.T_ ~ k.
2(P2 -P2 ) B*(z-z > =

k ~ k+1.To M -1,2 ,n -1, k+1 k.
2 P2 ~P2 B*M* (M+0)Rx (z -z ) +

* 2(P2k-P2kt’|TetM,-'BTRp-’(p2k*1-p2k) ♦

. 2<P2k-P2k‘1>B,M,-'B/(p2k-p) -

- z(P2kt1’Pk2>TB,M, ,<H*p)Rx '(zk*1-zk)

,, k<-1 k ,T„. -1„T„ -1, k + 1 k ,
- 2(P2 -P 2) BtM, B Rp (p2 -p 2)

♦ <Pk2-P2)TB,M/,B,T(p2k-p2)

- (P2k‘'-P2)TB,H,-1B/(p2k‘1-p)

‘ <P2kt1-P2k|TB,M,'1B.T(P2kt'-p2k)

(5.691
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Finally, let us define the following functional:

t (z.p2) = K p2-p2 ) TBt M/1 T ( p2-p2 )

+ J_[Mfc(z-z) ♦ BtT(P2"P2) 1[Mt(z-z) + b/(P2-P2)1

(5.70)

Applying (5.69), (5.68) and (5.67) to (5.66), we conclude that

. k k+1.Tf.£ ._ -1(z -z ) [(M+q)R*

k k+1.Tro „ -1 ~ -1 „ k k+1.* 2 (p2 -p2 ) (M+q)Rx - BJ(z -z )

. k k+1.Tro_ .. -1OT_ -1 _ w -1 T_. k+1 k.
* (P2 -P2 ) C2BtMt B Rp - B,Mt B* ](p,> -p,, )

(5.71)

Employing assumptions (ii) and (iii), and utilizing the following

equality 

aTXa ♦ 2bTYa [ Xa ♦ YTb ]TX_1[ Xa + YTb ] - bTYX~1YTb

where a and b are the vectors while X and Y are the matrices

such that X 1 exists and X = XT , from (5.71), we obtain the

following :

k k. k+1 k+1. r, k k+1 -i t k k+14nTT(z ,p2 ) - T(z ,p2 ) =[(z -z ) + B* (p2 -p2 )] .
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.((M*p)Rx 1 - JMt)[(zk-zk+1) + Mt~1B*T(p2k-p2k+1))

♦(P2k-p/*,>T(2B1M/,B\p''-BtH,’,((M*e>Rx'' * H, IM, ’ ’ B,T ) ] .

(5.72)

k kLet us consider an finite sequence {z ,p } generated by the

k k algorithm. Due to assumption (iii) and (iv), therefore (z ,p ) e Q

k kfor every k = 1, 2,.., and the sequence {T(z ,p2 )} is strictly

decreasing ( see (5.72)). Since 1B*T > 0 and M* 1 > 0 then

k k(5.70) implies that the sequence is bounded. Hence, T(z ,p2 ) 

k k k +1 k +1converges and consequently T(z ,p2 ) - T(z ,p2 ) ---> 0.

Therefore, (5.72) implies that the sequence

, k k+1 { z -z

is convergent to zero.

By applying (5.61), (5.62), (5.63) and (5.64), we conclude

eventually that

{(zk,pk)} ----- > {z,p}
k -- 00

Q. E. D
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5.4 Optimality and Convergence Analysis of Constraint Augmentation

The optimality properties of the augmented variable augmentation 

technique can easily be extended to the constraint augmentation 

method. The algorithms are optimal in the sense that a point found 

by their application satisfies necessary optimality of the original 

optimising control problem (OCP). If the problem is convex, then 

the obtained point is a desired optimal point. For non-convex 

problems some kind of augmentation should be used, and the obtained 

point is expected to be at least locally optimal.

Let us begin with the convergence analysis of the augmented system 

based method ( see (4.3a) and (4.40)), and let us define 

g(c,u,a) = u - HF(c,u,a) (5.72)

g*(c,u) = u - HK*(c) (5.73)

T 2
L (c.u.p) = q (c,u) + p g.(c,u) + 1 r II g . ( c , u ) II (5.74)

X p X X ““ X

2

T 2L (c, u , a, p) = q ( c , u , a) + p g ( c , u , a) + j_r II g (c, u , a) II
r 2

(5.75)

The properties of the inner loop solution are stated in the 

following lemma
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Lemma 5.3

Assume that CU is convex and compact and that, for a given peU and 

every a c A, L (.,.,a,p) is convex on CU. Then the inner loop 

solution exists. If L*(.,.,p) is convex on CU, then every inner loop 

solution z(p) = (v(p),w(p)) minimizes L (.,.,p) on CU. Moreover,* r

if z(p) is unique, then the augmented dual function,

d (p) = min L. (c,u,p)
r (c,u)ec6

(5.76)

is differentiable and

d (p) = 0(p) - HF(z(p),a(z(p)))
* r (5.77)

The proof of this Lemma is given by Tatjewski, Abdullah and

Roberts (1986 and it is attached as Appendix B.

In the case of non-convex problems L (.,a,p) can always be made 
r

strictly convex at least locally ( in a neighbourhood of the

optimum), provided the following model optimisation problem

min { q(c,u,a) }

s.t g(c,u,a) = 0, G(c,u) < 0 (5.78)

satisfies the second order sufficient optimality conditions (see

Findeisen et. al. 1980). These conditions are known to be weak and 
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almost necessary. Similarly, L (.,p) can always be made strictly * r

convex, at least locally, provided that the system optimisation 

problem , OCP,

min q ( c, u)
(5.79)

s.t g*(c,u) = o , G(c,u) < 0

satisfies the second order sufficient optimality conditions. The 

statement that z(p) minimizes L (.,p) is very favourable, since 

then taking = r in the outer-loop adjustment formula (4.39)

makes it equivalent to the Hestenes-Powell multiplier rule, whose 

convergence properties are well known ( see Findeisen et. al 1980).

Sufficient conditions for convergence of the inner loop iteration 

(5.40) are given in the following theorem.

Theorem 5.6

For given p and r assume :

i) CU is compact and convex.

ii) a(.) is point-to-point continuous mapping on CU.

iii) For given a e A, L (.,a,p) is twice continuously

differentiable on CU, with L . .(x.a.p) satisfying, for some

constant b>0 and every xeCU, heCU.

(x + h)T[L . . ( x , a, p) + e I ] (x + h ) > b II h II 2 (5.80)
r (x , x )

iv) L .(.,p) is Lipschitz continuous on CU with Lipschitz*r ix i

constant 6 > 0.
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Then,

o k1 The inner loop iteration scheme (5.40) with e = c is well

defined on CU provided

e < ck < { 1, 2b - t } (5.81 )

6

where t > 0 and 1 > e. > 0 are any sufficiently small constants

chosen such that

e 4 2b - t (5.82)
6

o k2 There is at least one cluster point of the sequence {z } 

generated by (5.40), and each such point is an inner loop 

problem solution z(.).

The proof of this theorem is given by Tatjewski, Abdullah and 

Roberts (1986) and is given in Appendix C.

Assumption (iii) of Theorem 5.6 seems to be restrictive. Condition 

(5.78) is satisfied at least locally in the neighbourhood of the 

optimum provided that the modified optimisation problem (4.49) 

satisfies second order sufficient optimality conditions.

Let us consider the augmented single loop technique, see (4.31), 

(4.32) and (4.33), and define

q (x, a) = q (x , a) + j_r II g ( x , a) II2 (5.83)

2 2
d* (x) = q (x) + Jr U g (x) II (5.84)

X p X X

139



A set of sufficient convergence conditions for the constraint 

augmented single loop technique is presented in the following 

theorem :

Theorem 5.7

i) The set CU is compact and convex.

ii) The derivative q^^(x) is uniformly monotone on CU with 

constant a >0.
*r

iii) For every a e A the mapping q^^tx.a) is uniformly 

monotone on CU with constant a (a) > 0.
r

iv) The mappings F (.) and F(.,a) are linear , for aeA.

v) There exists values a and A 
r such that for every aeA^r

A ) A (a) , a (a) > ar r r rVA

where A^fa) is a Lipschitz constant of q (.,a) on CU. rx

vi) The system its mathematical model and values of r

and e, 0 < e < 1, are such that

Ar < 2atr ♦ (e-1)Atr (5.85)

a > (e2 - e + 1)A.
r *r (5.86)

where s = max{2,

(5.87)

2IIHK* ( . ) II2} and A is a Lipschitz constant of

e
P

0

q (.) on CU. 
*r
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Then the algorithm (4.31), (4.32) and (4.33) either stops at a

point (z.p) satisfying the coordinating conditions, i.e., (compare 

(4.23) - (4.25)).

x(z,p) = z (5.88)

u(z.p) - HF(x(z,p),a(z)) = 0 (5.89)

or generates a sequence converging to (z,p).

The proof of the Theorem is presented by Tatjewski, Abdullah and 

Roberts (1986) and given in Appendix 0.

The assumptions of Theorem 5.7 are restrictive. However, the 

uniform monotonicity assumptions are now on derivatives of the 

augmented mappings and thus they can be readily satisfied, at least 

locally.

The second version of the augmented single loop technique is 

fomulated sligtly different, and a less restrictive sufficient 

condition is obtained as follows :

Let us take e = 1 in the updating formulae (4.31) and (4.32). Using

(5.2), (5.3) and (5.4), the formulae (4.50), (4.51) can be expressed 

in the following form :



Thus, for the second version, (A , t ) is used instead of (A.t), 
e e

together with the updating formulae ( compare (4.31) - (4.33))

k+1 A, k k,z = x (z , p ) (5.91 )

k+1 k .A k k. A . k . . (5.92)P = P + epg(x(p ,z ) ,a(z ))

We have the following convergence theorem.

Theorem 5.8 

Assume that assumptions (i) - (v)

that

of Theorem 5.7 are satisfied, and

such thatvi) The values of e, e and r are 
P

0 < -a < e <r

2a* *r -e s 
P

0 < e
P < 2atr

s

(5.94)

Then the algorithm (5.89) - (5.90) either stops at a point (z,p)

satisfying the required coordinating conditions, or generates a 

sequence converging to (z,p).

The theorem is a rather straightforward generalization of Theorem 

5.4, and the proof is analogous. 
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Assumption (vi) is different and less restrictive than in Theorem 

5.7, since (5.91) and (5.92) can always be satisfied if e is
P

sufficiently small and p sufficiently large.

Convergence analysis of the constraint augmented model based double 

loop technique is omitted here due to its restrictive 

applicability. Convergence conditions for the approximation loop 

will be presented in Chapter 6.

Summary

Optimality and convergence proof of the variable and the constraint 

augmented techniques are presented. The proposed algorithms are 

optimal in terms that a point generated by the algorithms satisfies 

the necessary optimality conditions of the original optimising 

problem (OCP).
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CHAPTER 6 - THE AUGMENTED ISOPE WITH INPUT-OUTPUT FEEDBACK

6.1 Introduction

In the present chapter the variable and constraint augmented ISOPE 

algorithms using input-output feedbacks are presented. The 

optimality properties of the algorithms are studied with the 

inequality constraints being output dependent.

Since the augmented model based double loop technique is the most 

efficient algorithm in reducing set-point changes compared to the 

other two algorithms, a detailed analysis of this technique will be 

studied in this chapter. The convergence analysis for the variable 

augmented model based double loop technique presented by Abdullah, 

Brdys and Roberts (1986) will be examined.

However, convergence analysis for the approximation loop portion of 

the constraint augmented ISOPE algorithms has been achieved as 

presented by Tatjewski, Abdullah and Roberts (1986) and will also 

be included in this chapter.

6.2 Problem Statement and formulation

Let us assume that both system output and input measurements are 

available. Similarly, problem (3.80) ( see chapter 3) can be 
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augmented in two different ways as follows :

min { q(c.u.a) + 1Q II v - c II 2 + _1_p llu-HK ( v ) II 2 } (6.1)

2 2

and

min { q(c,u,a) + J_rllu-HF(c,u,a)ll2 } (6.2)
2

s.t u = HF (c , u , a)

g(c,u,a) < 0

F(v,HKt(v,a) = HKJv)
V = c

The Lagrangian function for problem (3.30) is

L(c,v,u,a,p,A,p,£,p,r) = q(c,u,a) + pT[u-HF(c,u,a)] + AT(v-c)

+ pT[K*(v) - F(v,HK*(v),a)] + j_o II v - c II 2 + J.Q II u - H K * ( v ) II 2
2 1 2 2

+ II (v )-F ( v , HK* ( v ) ,a) II 2 + JrHu- HF(c,u,a)ll2
2 3 2

M 2 2
+ 1 E Q- • [ (max(0,g .(c.u.a) + £ . )) - ( £ . ) ]„ . 3 + j 3 j 32 x I Q . Q .

3+3 3’3 (6.3)

where

Q = [ QrQ2.Q3.... Qm+3 ]. 3 > o for every j= 1 , 2,3 , . . , M + 3

and r are vectors of penalty coefficients ; A, p and £ are vectors 

of Lagrangian multipliers.
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For given values of p and r, the stationary points of

L( . , .,p,X,p,£,p,r) are defined as follows :

Q1(v-c)

rdT[u-HF(c,u.a)][u-HK(c.u.a)]T + dPT ( c , u . a, E) = 

de de
0

(6.4)

T T
AL = d q(c,u,a) + d [u-HF(c,u,a)]p

du du

+ p dT[u-HKA(v)][u- HKt(v)]T

du

+ rdT[u-HF(c,u,a)][u-HF(c.u.a)]T + dPT(c,u,a,E) = 0 

du du
(6.5)

A L= A + dTIK (vj-Ftv.HK (v),a) ]p + p (v-c)
V 1 'dv

+ P^dT[KA(v)-F(v,HKx(v),a)][KA(v)-F(v.HKA(v),a) ]T 
dv

♦ P dT[u-HKA(v)][u-HKA(v)]T = 0 (6.6)

dv

AL = dTq(c.u.a) + dT[u-,HF( c, u ta) ]p

da da

+ dTLKt(v)-F(v,HKt(v),a)]p

da

+ QqdT[KA(v)-F(v,HKA(v),a)][KJk(v) - F (v , HK* ( v ) , a) ] T 

da

+ rdT[u-HF(c.u,a)][u-HF(c,u,a)]T + dPT(c,u.a.E) = 0 

da da
(6.7)

AL = u - HF(c,u,a) = 0
P

A^L = v-c = 0

(6.8)

(6.9 )
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A L = KJv) - HF(v,HK (v) .a) = 0p * *

A^L(c,v,u,a,p,A,p,£,q ,r) = 0 

(6.10)

(6.11)

where p(c,u,a,E) is the same equation as defined in (4.12) (see 

chapter 4).

6.2.1 Variable Augmentation

Employing a similar approach as the one presented previously,

equation (6.3),...,(6.11) can be used to formulate optimality

conditions for the variable augmented problem (6.1), giving

T T 2
min [q(c,u,a) - A c + p [u-HF (c, u ,a) ] + _1_Q II v - c II 
(c,u)eCU 2 1

♦ le.iiu-HK,(v)n2 ]
2 2

s.t g(c,u,a) < 0 (6.12)

for given values of v, a = a(v), price p and p.

Where

A(v.E.P.Q) = [K T(v) - F T(v,HK (v),a)][F T(v,HK (v),a)]~1
x C * Ct *

.[- q T(c,u,a) + F T(c,u,a)HTp - P T(v,u,a,£)] 
a a a

(6.13)

and assuming that the inverse [F^T(v,HK*(v),a)] 1 exists.
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Since

[F T(v,HK.(v),a)] 1q T(v,w,a) = Q T(v,HK.(v),a) 
a * a y *

and

[F T(v,HK.(v),a] 1P T(v,u,a,^) 
a * a

M
E q .[max(0,g .(c,u,a)) + £. )].(G.) '(v,HK (v),a) 

j=1 3 3 Q 3 • 3
J 3 + j

A can be transformed to

A(v,£,p,q) [pTH - 1

2

M
E max(0,g . (c,u,a)
3=1 3 3

.(G.) T(v,HK (v),a)][K (v) - F T(v,HK (v),a)]
3 y * * a *

(6.14)

The formula (6.14) does not require an existence of

[F T(v,HK. (v,a)] 1, and therefore the number of process model 
a *

parameters does not have to be the same as the number of the

outputs. The parameter a can be estimated by solving

F(v.HKJv) ,a) = KJv) (6.15)

a t

VA

3 ‘ *3 ’•

problem (6.1) :

The solution of (6.1) is denoted by c(v,p,H), u(v,p,U and the

corresponding Lagrangian multiplier vector by £(v,p,E) . The

following is a set of coordinating conditions associated with

c(v,p,U = v (6.16)

£(v,p,E) = B (6.17)

u(v,p,E) = HF ( c ( v , p, E ) , u ( v , p , E;) , a ( v ) ) (6.18)
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The control set-point vector v* of any solution (vt,pt,£*) of the 

set of the equations (6.16), (6.17) and (6.18), which corresponds

to the expanded problem (3.30), satisfies the Kuhn-Tucker first 

order necessary conditions if the regularity conditions are satisfied
/

at every point of a set CU ( see Brdys and Roberts 1984). If the 

process inequality constraints are output independent, equations 

(6.16), (6.17) and (6.18) and A can be simplified to

c(v,p) = v (6.19)

u(v,p) = HF(c(v,p),u(v,p),a ( v)) (6.20)

and

A(v,p) = [K T(v) - F T ( v , HK ( v ) , a) J [ F T ( v , HK ( v ) , a) ] ' 1 .
x C * Ot *

.[- q T(c,u,a) + F Tp(c,u,a)HTp] (6.21)
a a

respectively.

The general structure of the algorithm is identical to the previous 

algorithm considered in Chapter 4. The modified optimisation (6.12) 

and parameter estimation (6.15) are both separable for fixed values 

of v and p, where each problem separates into N independent smaller 

problems.

By structuring the coordinator algorithm differently, problem 

(6.12) can be solved in a similar scheme as proposed in Chapter 4
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for the augmented ISOPE algorithm using output feedback : 

i) An augmented single loop coordination technique is obtained when 

v and p are adjusted simultaneously,

(6.22)

k+1 
P

k 
P +

where and are positive numbers suitably chosen to ensure

convergence and k denotes an iteration number.

c £
p

ii) An augmented system based double loop technique is obtained

when p is adjusted in an outer loop,

while in the inner loop the set-point vector v is adjusted, for

r • .. nfixed p according to

(6.25)

iii) An augmented model based double loop technique is obtained 

when v is adjusted in an outer loop,
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k n
while in the inner loop the price p is adjusted, for fixed v ,

according to

(6.27)
where x > 0.

Since the price p enters the performance index (6.12) through the 

modifier A(v,a(v,p),q ) ( see equation (6.21) ) strategy (6.27) is 

not of a gradient type (relaxed method) and the existance of the 

inner loop solutions may be restricted. In order to overcome these 

difficulties, equation (6.19) and (6.20) are modified in the 

following manner. The optimisation (6.12) is replaced by

min { q(c,u,a(v)) + _1_q llv-cll2 + 1q llu-HK (v) II2
2 1 2 2

♦ P1T(c,u,a(v)) - AT(v,p2)c } (6.28)

where, in comparison with Eq. (6.12), the price affecting term 

pTg(c,u,a(v)) is distinguished from the price affecting term 

AT(v,a(v),p)c. The solution of Eq. (6.28) with respect to c 

and u under given pi , p^ and v is denoted by ctv.p^p ) and 

ulv.p^p ). Clearly, the set of Eqs. (6.19) and (6.20) is 

equivalent to :

c(v,p ,p ) = v (6.29)

P (6.30)

u(v,P1,p2) = HF(c(v,p1,p2),u(v,p1,p2),a(v)) (6.31 )
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Equation (6.31) is solved in the inner loop with respect to p1 for 

given values of v and p^, and the solution is denoted as p^tv.pp. 

The outer loop solves Eqs. (6.29) and (6.30) with respect to v and 

P2. The price p1 in the inner loop, now adjusted according to 

(6.27), is of the gradient type of the interaction balance 

iterative scheme (Findeisen and co-workers, 1980). An additional 

iteration of the price vector in the outer loop is required :

k+1 k _Ak Ak
p2 • P2 * Sptp, - p2 1 (6.32)

where is a positive number suitably chosen in order to guarantee 

convergence ( e t e in general ).

The structure of the algorithms is identical to the previous 

augmented ISOPE method described in Chapter 4. For example in the 

case of the augmented single loop technique, it is iterated in a 

similar manner as decribed in section 4.3.1 with the modified 

optimisation problem (6.12) and parameter estimation problem (6.15) 

used instead of (4.29) and (4.28) respectively. The set-point v and 

the price p are adjusted according to equations (6.22) and (6.23) 

respectively. The modifier X is evaluated by solving equation 

(6.21) instead of equation (4.26). Similarly, by applying 

appropriate changes the augmented system based double loop and the 

augmented model based double loop techniques can be iterated as 

described in Chapter 4.
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6.2.2 Constraint Augmentation

Using a similar approach to the formulation of problem (6.12), the 

constraint augmentation problem (6.2) can be reformulated as 

follows :

min { q(c,u,a(v)) + _1_rHu-HF(c,u,a(v))ll2
2

+ pT(u-HF(c,u,a(v))) - A(v,p)Tc }

(6.33>
s.t g(c,u) < 0

for given value of v, a = a(v), price p, p and where A(v.p.r) is 

evaluated by equation (6.21).

The constraint augmenting

linearized around some

term Jr II u-HF ( c , u ,a) II in problem (6.33) is 
2

. s spoint (c ,u ) in the same way as proposed

in section 13.4 see Chapter 3), in order to obtain the

separability of the term.

The approximation loop can now be iterated as follows :

o o
i) Set the initial values of (c ,u ), an appropriate choice of 

p > 0, and set s = 1.

ii) For given A(v,p,r), p and r the following separable modified 

optimisation problem

min { q(c,u,a(v)) + pT(u-HF(c,u,a(v)) ) - A(v,p,r)T
(c,u)eCU

+ J_r [ II u II 2 + IIF ( c , u ,a( v) ) II 2 - 2(uS)THF(c,u,a(v))

2

♦ 2uTHF(cS,uS.a(v))]} (6.34)
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is solved to obtain As and Asc u

ii) The convergence is checked , i. e if .As condition (c As .
.u ) -

. s s.( c , u )

A, . s A, , s , A. .
< P is a

satisfied then set c(v,p ) = c , u (v , p) = u , where (c(v.p),

u (v , p) ) denotes a solution of (6.34). otherwise, As c and Asu are

updated as follows

. s+ 1 (c / s s \ i ( c , u ) ]

and set 1 ands = s *

When the single loop, the system based double loop and the model

based double loop techniques are applied to the constraint

augmented algorithm, the general iterative procedure remains the 

same as prevously described in section 6.3, and the approximation 

loop is iterated in a similar manner as in the AISOPE structure 

with output feedback described in section 3.4 (see Chapter 3).

6.3 Optimality and Convergence Analysis

In this section we will be examining the optimality properties of 

AISOPE algorithms with input and output feedback. The convergence 

analysis is restricted to the model based double loop technique for 

the variable augmentation and to the approximation loop for the 

constraint augmentation.

6.3.1 Optimality

Let Q be a set of all points (v.p) solving Equations (6.16), 

(6.17) and (6.18). In this section we investigate the optimality 
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properties of points which belong to Q. The first step is to apply 

equation (6.13) to problem (6.12) and then transform it to another 

equivalent problem as follows :

min { Q(c,u,F(c,u,a(v)) + Qy(v,HK*(v),K*(v)).

.[F (v,HK*(v),a(v))-Kfc(v)]c - pTH[K*(v)-Fc(v,HK*(v),a(v))]c

+ pT[u - HF(c,u,a))]

M Av* A
+ E Q . max(0,g . (c,u,a(v)) 

j=1 3 3

.[F ( v , HK ( v ) , a ( v ) ) - K.(v)]c + 1pllv-cll2 
c * * “

+ lQllu-HKt(v) II2 } (6.35a)

2

Let us define

A
qjc.u) = Q(c,u,Kt(c)) (6.36)

9jc,u)
A

u - HK*(c) (6.37)

g(c,u)
A

u - HF(c,u,a) (6.38)

A
P*(c,u,F) = 1

M
E

2 3=1

e3tj((max(O,5t;j(v,HKt(v)) )2 - (£ )2)

°3+j °3+j

(6.39)

Equation (6.13) for the modifier A(v,p,^,p) together with Eq.
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(6.15) can be expressed as :

XT(v,p,£,p) = q (v,HK*(v),a(v)) - q*c(v,.HK*(c))

+ [q (v,HK (v),a(v)) - q (v.HK (v))]HK (v) u * u * *

+ pT([g (v,HK (v),a(v)) - g (v.HK.(v))]
c * x c *

+ [g (v,HK*(v),a(v)) - g*u(v,HK*(v))]HK*(v)

+ Pc(v,HK*(v),a( v) •5)- \c'v.HK,(v» >r) (6.40)

Therefore, problem (6.13) can be expressesed as :

min { q(c,u,a(v)) + pTg(c,u,a(v)) - XT (v , p, ^ , p ) c

(c.u)eCU
+ 1Q II v-cll 2 + J_p II u-HK* ( v ) Il } (6.41)

2 1 2 2

The optimal control problem, OCP, can be written as

min q*(c,u)
(c,u)eCU (6.42)

s.t g*(c,u) = 0

Let (v,p) c Q and define a Lagrangian corresponding to OCP,

Eq . ( 6.39 ) , as

A T
L*(c,u,p) = q*(c,u) + p g*(c,u) (6.43)

we also define

A
u = u ( v , p ) (6.44)

P

(6.45)
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Lemma 6.1

Assume that a point (v,HK*(v)) e CU the Kuhn-Tucker regularity 

conditions are satisfied. Then the point satisfies the Kuhn-Tucker 

necessary optimality conditions for OCP while the price p is the 

corresponding Lagrange multiplier.

Proof

A
Due to the definition of a( . ) and according to Eq . (6.18 ) the 

following holdss :
A_____
u(v,p,U = HK*(v) (6.46)

A A
Utilising the definition of c(.) and u(.) and employing (6.46) and 

Eq.(6.16) we obtain that there exists such a vector E > 0 that the 
following holds :

q (v,HK (v),a) + pTg (v,HK (v),a) - [AT(v,a,p),0]
c, u * c, u *

♦ P T (v,HK (v),a.E) =0 (6.47)
c, u *

and Ej’gij(ci,ui) = 0 , for i e 1,N , jeJ (6.48)

Combining (6.16), (6.47) and (6.48) and performing straight forward 

manipulations we conclude that

q* (v,HK(v)) + *pTg (v.HK (v)) ♦ P* (v,HK (v),E))=0
*c,u * *c,u * *c,u *

and

Eg. . (v. , H . K (v) ) = 0 , for i c 1,N , jeJ
g 1 1

which completes the proof of the Lemma.
Q. E. D

Sufficient conditions for optimality of the solution set A are 

given in the next Lemma.

Let us define the system model based Lagrangian as

L(c,u,a,p) = q(c,u,a) + pTg(c,u,a) (6.49)

and let us denote
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and £
opt

A
£(c J. opt

We assume that the point (c . ,u t) opt opt satisfies the Kuhn-Tucker

regularity conditions for the OCP. Let us denote bu p and E
opt opt

the corresponding Lagrange multipliers associated with interaction

input and inequality constraints, respectively. It is also assumed

that the inverse [g
u
’T.(c . , u . , a .] exists. opt opt opt

Lemma 6.2

Assume that the set CU is convex and the function L(.,.,a ^.p) is
opt

convex on CU, where

, u ,a ) . opt opt

.Q ,a . , £ . )opt opt

Then (c r,p) e 
opt

Let us consider the modified model based algorithm problem

under v c . , a opt 01 4- opt and p. Performing

straightforward computations we obtain that a derivative of the

minimised function taken at point (c u ) is equal toopt opt

P
• T

a

I 5 = P

Therefore, a triplet (c opt

the considered modified model based optimisation problem. Hence,

due to the Lemma assumptions on convexity, the point {c .,u ) is opt opt

a solution to this problem. Clearly, this solution satiesfies

Eqs.(6.16), (6.17) and (6.18). Therefore, (c x,p,E) e S . A
opt

proof of the Lemma has now been completed.

Q. E. D
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The optimality studies for the constraint augmented algorithm can 

be performed in a similar manner, exept that the modified 

optimisation problem (6.33) is used instead of (6.12).

6.3.2 Convergence of the Model Based Double Loop Technique

In this thesis, no attempt is made to analyse the convergence of

the single loop technique and the system based double loop

technique.
/

Brdys, Abdullah and Roberts (1986) presented a

convergence analysis for the model based double loop technique but

only for a case with a quadratic performance Q, linear system and

model mappings F* and with no inequality constraints. Even for such 

a simplified case, the proof is lengthy and the convergence 

conditions are rather complex and difficult to check. When the

algorithm is applied to nonlinear problems, the convergence results

are valid in a local sense only. The performance index is

considered to have the form : 

where x = (c,u)

F(c,u)=D c+0 u-d* ' *1 *2 * (6.58)

where M is a symmetric matrix, and matrices D? and P(a) are
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chosen so that the model is point parametric. It is assumed that 

the inverses

[HD*2 - I]'1 and [HD^ - I]

exist and consequently the following matrices are well 

defined :

A [ - HO I - hd2 ] (6.54)

[ [HD,2 - I] (6.55)

B

A

A
B [I - HD2JBt (6.56)

Assuming that the matrix 8* has full rank, and that the second 

order sufficient conditions for optimality hold for the optimising 

control problem (3.16), i.e

xTMx > 0 for every xeCxll, x f 0 such that B*x = 0 (6.57),then 

there is a unique solution c to the control problem and a unique 

corresponding price p associated with the contraints g*(c,u) = 0. 

Consequently, there is a unique solution (c,p) of the set of Eqs. 

(6.19) and (6.20) , 

where 

and the non-convex case is included from the considerations. It is

assumed that the value of q in (6.12) is chosen such that

M
Q

A
= M + pl > 0 (6.59)
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The following matrices are defined

I I
A cxc

L = I -1
I (i-hd 2) hd 1

and

(6.60)

I Icxc
II'HO«2I ,H0*1 I

(6.61 )

Theorem 6.1

Assume

i) BM ~1BT > 0 (6.62)
Q

ii) L TM L > 0 (6.63)
* Q

Then :

1. The inner loop problem described by Eq. (6.20) is well defined. 

There exists a number X > 0 such that for any x e (0,6) . the 

iterative scheme (6.27) is convergent for every v.

2. The outer loop iterative scheme described by Eq. (6.26) is 

convergent to the point c while the corresponding sequence of 

price vectors is convergent to p for every value of e such that.

L/MeL - eL/ML, > 0 (6.64)

A proof of this theorem is given in Appendix E.

The condition (6.62) is only required to preserve convergence of

the inner loop iterations while condition (6.63) is needed to

preserve convergence of the outer loop iterations. By choosing a

sufficiently small value for e, condition (6.64) can always be

satisfied. Since B = B and L* = L if the mathematical model is
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perfect, conditions (6.62) and (6.63) are satisfied in that 

particular situation.

The second double iterative loop technique with the relaxed inner 

loop problem will now be considered.

Let us define a matrix M in the following way :

(6.65)

where t  > 0 is chosen such that M > 0. 
y

Notice that, according to (6.52) and due to assumption (6.53), such 

a choice always exists (e.g Luenberger 1973). It is assumed, 

additionally, that the matrix B has full rank.

Theorem 6.2

assume

I 1 l !m L - 1 l Jm l * - 1
1 BM M L + 1 BL* I

I e " * Q 2
♦ y *

IT y Q --- *
2e I

I
I 1

- 1 
BM M L + 1 BL* bm~1b t - tA — 1 VA T

1 BM B
I > 0
I

I 2e " T Q 2c
— * T T7

(6.66)

Then the algorithm described by Eqs. (6.26) and (6.32) is well 

k kdefined and generates a sequence {v ,p } which is convergent 

to {c,p}.

The proof of Theorem 6.2 is given in Appendix F.

Condition (6.62) implies that condition (6.63) is satisfied and 

condition (6.62), in which a matrix M^1, is replaced by matrix 

M 1, is also satisfied.
T
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Condition (6.66) is only required to preserve convergence of the 

outer loop. The convergence properties of the relaxed inner loop 

are better, but the overall convergence conditions of the outer 

loop seem to be more restrictive in the linear quadratic case. The 

second technique is expected to be more efficient in some general 

non-linear problems due to better efficiency of the inner loop.

let us examine condition (6.66) and the conditions (6.62) and (6.63)

in a convex case, i.e, when M > 0 and assume that e = e . The value
P

Q = 0 and *y = 0, the conditions (6.62) and (6.63) and (6.66]I take the

form

I^t , T
BM~ B > 0, L ML > 0*

and

1L,TML - Jl/ml, 1A
1 (BL + BLt) |

e 2 2e I
I > o-1 v»T -1 </>T

1 (BL + BL.) BM B - IBM B |— *
2e 2 I

respectively.

It can be easily verified that BL + BL* = 0. Therefore, condition

(6.66) is equivalent to conditions (6.62) and (6.63) in the convex 

case.

6.3.3 Convergence of the Approximation Loop of Constraint

Augmented algorithms

We will be looking only at the convergence conditions for the 

approximation loop used within AISOPE with input and output 
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feedbacks which has been presented by Tatjewski, Abdullah and

Roberts (1986) and later extended to AISOPE algorithms with output 

feedback.

Let us denote by x = (c,u) the optimal point of the original

optimising control problem (3.16) (see Chapter 3), and by p the

optimal Lagrange multiplier for the constraints u-HF(c,u,a)=0

which is equivalent to formulation (3.17) (see Chapter 3), and also 

note that v = c, a = a(v), A . A (v,p). Let us formulate the

following non-augmented model optimisation problem 

(6.67)

where a and a denote values corresponding to the optimal point. 

Finally, let us denote by (v,p) a current point of an AISOPE

k kalgorithm with input and output feedbacks, i.e., (v,p) = (v ,p )

n kfor the single loop technique, (v,p)=(v ,p ) for the system based 

double loop technique. The local convergence conditions are 

formulated in the following theorem :

Theorem 6.3

Assume that

i) Mappings Q, F and G are twice continuously differentiable, 

locally in some neighbourhood of the optimal point, and the problem

(6.67) satisfies at (c,u) second order sufficient optimality 
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conditions with strict complementarity ( see Findeisen et. al.

1 980 ) .

a t

gradients of all active constraints are linearly independent.

A 
v,iii) is continuously differentiable in some neighbourhood of

and F 
a

nonsingular.

Then, provided (v,p) is sufficiently close to .A Ai(v.p) and is

sufficiently large, there is an e >0 such that a for every

convergent

approximation algorithm locally linearly

to the solution (c(v,p) the constraint

r

e a e

augmented optimisation problem (6.34) The proof of the theorem is

given in Appendix G-

The assumptions of Theorem 6.2 are rather weak and the second order 

sufficient optimality conditions are known to be “almost necessary"

(see Bertsekas 1982). It can be shown that c >1, but usually values 
a

e =1 or a little smaller result in good convergence ( Tatjewski a

1985). The convergence conditions for AISOPE algorithms using

output feedback are identical, except that the optimisation problem

(4.58) must be considered instead of (6.34).

6.4 Summary

Optimality and convergence analysis of the constraint and variable 

augmented ISOPE algorithms using input-output feedback has been

investigated

the variable

The convergence analysis has only been performed on 

augmented model based double loop technique and the 

approximation loop portion of the constraint augmented ISOPE
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algorithms. The convergence analysis of the model double loop 

technique is restricted, however, to a quadratic performance Q, 

linear system and model equations, and with only equality 

constraints. Even with a simplified example, the convergence 

analysis is very complex, and it was found that, at present, the 

complete convergence analysis for the more general situation 

including constraint augmentation, is intractable. Simulation 

results and a comparative study of these algorithms will be 

discussed in Chapter 7.
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CHAPTER 7 DISCUSSION OF THE SIMULATION RESULTS

7.1 Introduction

In this chapter we will be discussing the simulation results of the

Augmented Integrated System Optimisation and Parameter Estimation

(AISOPE) algorithms. All together we will be looking at twelve

versions of the augmented ISOPE algorithm as summarised in Table

7.1. In order to avoid confusion and simplify matters, we will be

applying abbreviation, for example the augmented ISOPE with input

and output feedbacks will be referred to as AISOPE1 whereas the 

other structure with only output feedback will be known as AISOPE2.

The number of system iterations (IS), i.e, iterations on the system 

(set-point changes) required to achieve the desired final accuracy 

from a given initial starting point, will be used as a comparison 

criterion to study the effectiveness of the algorithms. Sensitivity 

of the convergence speed of each algorithm to its parameters, such 

as step length coefficients e and e and penalty coefficients r and
P

q, will be used as a means of providing an insight into practical 

applicability of the algorithms. Both criteria as mentioned above 

describe the practical effectiveness of each algorithm. Lastly, the 

total number of solutions of the modified optimisation problem (IT) 

will roughly give us the time of pure computation taken by various 

algorithms to perform model based optimisation.
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1.2 Discussion

In order to examine the behaviour of the proposed algorithms, the

following examples have been simulated

7.2.1 Examples

Example 1

Subsystem 1

+ u
1

4 (c . uJ = 2.1c* 1 1 2

F1(c1’u1 ,«l) = 2c

°1(c1’u1 'yi} = 32c

CU. = { c„ , u„ : 2c

+ U1

4-

1

- 16c

0.5ciU1

<■ (y1 - n2

< 2.25 }

1

+

1

1
+ u 1

Subsystem 2

F*2(C2’U2) = °'6c2 + °’55u2

F2(C2,U2'a2) = 0>5c2 + °*5u2 + a2 

Q2(c2,u2,y2) = 10c22 + 4c2u2 " 8<y2)2 

CU2 = R2

Structure equation

I 0
I
I 1

1

0

I I
II
II
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Example 2

Subsystem 1

°.15Un

1 .01

F2(C1'U1'“l ) = C 11 “ C12 + 2 . Ou 11 + a 11

Q (c , u ) = (u - 1. o)4 + 5.0(c + c
1 1'1 11 1 1 1 2

3 2 2CU = { (c . , u ) e R : c . . + c < 1.0.1 1 1 1 1 1 2 0.0 < ( 0.5 J

2

Subsystem 2

F»2'C2-U2I = c 21 C22 + 1 . 2u 21 - 30u22 * 0
2

. 1 C 22

F (c , u ,) = c „, - c + u _ . - 3.Ou _ + a _
2 2 2 2 21 22 21 22 2 1

F (c , u ) = 2. Oc 1 . 25c_ _ - u + u + 0 . 25c + 0.1
*22 2 2 22 23 21 22 22 23

F (c , u , a ) 2.0c„„ - „ + u„„ + a
22 2' 2 2 22 23 2 1 22 22

2 2 , 2 2 2
Q (c , u ) = 4 . Ou + + 2.0(c - 1.0) + c + 3.0c

21 22 21 22 23

CU = { (c,u„ ) e R5 : 0 . 5co« + c_ _ + 2•0co_ < 1.0,2 2 2 2 1 22 23
4.0c 2 + 2.0c 11 + 0.4u_ . + C_.C„_ + 0.5c 2 <■ u 2 < 4.0 }

21 21 21 21 21 23 23 21

Subsystem 3

F*3(C3'U3) = °‘8C31 + 2‘5C32 4-2U31

F3(C3-U3’ - c ♦ 2.5c „ - 4.0u„4 + a
31 32 31 31

WV - (U31 - 1.0)2 . (C3, ♦ 1.0)2 + 2.5c

CU3 = (lc3' u3) e R3 : c3, * u3, ♦ 0.5 ) 0..0, 0

Structure equations

U11 1 0 1 0 0 11 y11
U21 1 1 0 0 0 11 y21
U22 = I 0 0 0 1 11 V22
U31 1 I 0 0 1 0 11 V31
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Starting points were chosen as :

Example 1 

v° = [0.5, 0.25]T 

w° = [1.25, 2.2 5 ] T 

p° = [8.0, 13.0]T

Example 2

0
V = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0

0 w = [0.0, 0.0, 0.0, 0.0]T

0 
p = [0.0, 0.0, 0.0, o.o]T

In order to test the effectiveness of the techniques the real 

optimal solutions have been determined as follows :

Example 1

v = [ 0.347, 0.251]

w = [1.555, 2.555]

p = [ - 5.461 , 8.711]

Q = - 15.447

Example 2

v = [0.481, 0.876, 0.986, -0.179, 0.0360, -0.512, 0.342]

w = [0.137, 0.0316, 0.356, 0.0200]

p = [- 0.552, -1.563, 0.663, -0.282]

Q = 6.326
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7.2.2 AISOPE Algorithms with Input-Output Feedback

Extensive simulation studies have been performed on two examples.

Example 1 is a small dimensional example, where modified local

optimisation can be easily analytically solved. It is taken from

Tatjewski (1987) I but with a non-linear term 0.5c u additionally

introduced to F
* I

The problem is non-convex, with a duality gap,

where the minimal necessary convexification requires r and q be

greater than 4.0.

Example 2 has been taken from Findeisen and co-workers

has non-linear and non quadratic 

mapping F . with linear models
* 1

inequality constraints. The NAG

performance Q , non-linear output

F., i=1,..N, and some nonlinear
1

Library subroutine E04VBF was used

to obtain the subsequent solution of the modified local

optimisation problems, for each of the tested AISOPE algorithms.

First, we will be looking at simulation results obtained from

Example 1. The stopping criterion, for every algorithm, is

satisfied if the Euclidean norm of the coordinating equations

becomes not greater than 6 10~4 . Selected results for Example 1,

presenting the number of system iterations IS for all combinations

of e and e , 
P

are given in Tables 7.2 to 7.9. Number 111 in Table

7.2 indicates fast divergence and number 100 implies slow

divergence. It can readily be seen from Tables 7.2 and 7.3 that the

constraint a ugmented single loop (CA SL1 ) algorithm is less

sensitive and always performs well in a region near e
V*
= 1,

£ =
P

0.5r. In the case of the variable augmented single loop

1 7 1



(VA-SL1) algorithm, the optimal value of e can also be chosen in 
P

the region near e = 0.5p, but a suitable value of e has to be

properly chosen in order to ensure convergence, which depends very

much on the value of q being used.

The optimal values of e and e are chosen so 
P

as to produce the

smallest number of system iterations IS required to achieve a

prescribed final accuracy 6. Tables 7.4 and 7.5 indicate that at an

optimal value of e and e
P

for each algorithm, the constraint

augmented technique requires about 9 system

iterations IS, which is about half those needed by the variable

augmented single loop (VA-SL1) technique. Comparing the constraint

augmented single loop (CA-SL1) and the variable augmented single

loop (VA-SL1) techniques, it appears that the constraint augmented

single loop (CA-SL1) technique is superior, both in the value of IS

and its sensitivity to the value of the penalty coefficient. 8ut

the results in Table 7.4 and 7.5 show also the disadvantage of the

constraint augmented algorithm due to the increased total number

of optimisations IT. Table 7.6 demonstrates that combining the

variable augmentation with the constraint augmentation to the

single loop technique did not improve the convergence.

Representative results obtained for the model based double loop

technique for Example 1 are presented in Tables 7.7 to 7.9 and

Figs. 7.1 and 7.2, where III denotes the number of times the

multiplier p is updated in the first inner loop. Fig. 7.2 shows

that the penalty coefficient p improves the inner loop convergence

of the model based double loop technique for the variable augmented
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(VA-MBDL1) algorithm, if the value of q is chosen large enough and 

also allows a higher value of to be employed. However, the value 

of e in the outer loop is sensitive to the value of q, as shown in 

Fig.7.1. Therefore a suitable value of q has to be chosen such that 

it improves the convergence of the inner loop, but does not affect 

the outer loop convergence. Sensitivity to the choice of e seems to 

be better with the constraint augmented version, and practically 

does not depend on r, see Fig. 7.1 . The variable augmented 

version indicates significantly greater numbers of optimisation IT 

for smaller values of the penalty coefficient (q = 5.0, 6.0), and 

smaller numbers of IT for medium and large values of p. Medium 

range values of the penalty coefficient r yield the smallest IT 

numbers for the constraint augmented version.

Comparing the number of system iterations IS for both types of

augmentation, see Tables 7.7 and 7.8, it appears that the

constraint augmented model based double loop (CA-MBDL1) technique

is slightly better than the variable augmented version. Table 7.9

indicates that the combination of the two types of augmentation did 

not improve the convergence.

Simulations of Example 1 were not performed with the system based 

double loop technique. This is due to the reason that the 

convergence of the price p in the outer loop is slower compared to 

the convergence of the set-point in the inner loop. Therefore, the 

system based double loop (SBDL1) technique is not competitive with

respect to the set-point change or system iterations IS when

compared to the other two algorithms.
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Results obtained from the simulation study for Example 2 are 

presented in Tables 7.10 to 7.15. Tables 7.10 and 7.11 present the 

results for the single loop algorithms. The variable augmented 

single loop technique (VA-SL1) will converge for q < 3.0, if the 

step coefficient ep chosen is very small, and the algorithm gives 

the best result for values of step coeficients around e = 1,

£ (q) = 0.6. The constraint augmented single loop technique
P

(CA-SL1) is convergent for a much wider range of the penalty 

coefficient r and step coefficient c . The number of the system
P

iterations IS decreases as r gets larger. It requires approximately 

half the number of system iterations IS and about twice the number 

of optimisations compared to those required by the variable 

augmented single loop technique (VA-SL1 ) . The algorithm gives the

best result for value of step coefficient about £ = 1, £ (r)
P

VA 
= 1.

In example 2, when simulated with the model based double loop

technique, dynamic accuracy is employed in the approximation loop.

In the model based double loop technique, both inner and

approximation loop are performed on the model only, and the use of 

dynamic accuracy for the approximation loop is possible and 

advisable, which should significantly reduce the number of 

optimisations IT for the constraint augmented algorithm. Hence, for 

the constraint augmented model based double loop technique 

k
(CA-MBDL1) a dynamic accuracy of the approximation loop was

also applied

k +1 u /A, n k. A n6 = “YII g ( x (v ,p ) , a (v ) II, k = 0,1,..,a

with 7 = 0.5
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Results obtained for the model based double loop techniques are 

presented in Tables 7.12 and 7.13. Simulation results show that the 

model based double loop techniques are better than the single loop 

techniques. The constraint augmented model based technique 

(CA-MBDL1) is significantly better than the variable augmented 

model based technique (VA-M8DL1), both with respect to the number 

of system iterations IS and to the number of optimisations IT, 

especially when using the dynamic accuracy technique in the 

approximation loop, see Tables 7.12 and 7.13. The best coefficient 

values are similar to those previously found for the single loop 

technique case.

Example 2 was also simulated using the system based double loop 

technique with a dynamic inner loop accuracy for the 

coordinating equation, according to

n n +1 „ .A. n. A n. . ...p = ollg ( x( p ),a(v(n ) ) ) II (7.1)

where o > 0 is some scaler. In the case of the variable augmented 

system based double loop technique (VA-SBDL1), for sufficiently 

large a the algorithm behaves as a single loop technique and

decreasing o only causes deterioration in the number of system

iterations IS, see Tables 7.14 and 7.10. However, for the

constraint augmented system based double loop technique (CA-SBDL1)

similar or even slightly improved results, when compared with the 

constraint augmented single loop technique (CA-SL1), were obtained 

for larger values of r, see Tables 7.15 and 7.11. The value o = 0.5 

was used in (7.1) but the results were similar.
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The augmented single loop technique of version 2 were also 

simulated using Examples 1 and 2 and, since the performance of the 

algorithms were almost similar to the augmented single loop 

technique of version 1, the result is not included in the thesis.

7.2.3 AISOPE2 Algorithms with Output Feedback

The AISOPE2 algorithms were also applied to Examples 1 and 2 and

the results are shown in Tables 7.16 to 7.20. The variable

augmented single loop technique (VA-SL2) works with Example 1, but 

the convergence is very poor. Table 7.16 presents the optimised 

variable augmented algorithm (VA-SL2) with the numbers of system 

iterations IS required. They are much worse compared with the other 

variable augmented single loop technique (VA-SL1) of the AISOPE1 

algorithm (see Table 7.4). The constraint augmented single loop 

technique (CA-SL2), when applied to Example 1, did not satisfy the 

prescribed tolerance even after 150 iterations of IT, for all 

values of r. The algorithm converged very slowly only for a range 

of values around r = 20.

The results obtained for the model based double loop technique for 

Example 1 are shown in Tables 7.17 and 7.18, for optimised variable 

and constraint augmented algorithms respectively. Both versions of 

the augmented model based double loop technique work better than 

the single loop ones, but the results are still significantly worse 

than when they were applied to the AISOPE1 algorithms (compare 

Tables 7.7 and 7.8). The variable augmented algorithms seem to give 

better results than those with the constraint augmented algorithms, 
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in contrast to the case when they are applied to AIS0PE1 

algorithms.

Tables 7.19 and 7.20 represent the simulation results obtained with 

Example 2, for the variable augmented single loop (VA-SL2) and 

system based double loop (VA-SBDL2) techniques respectively. The 

variable augmented single loop technique (VA-SL2) converges much 

slower than in the case of the AISOPE1 algorithms (compare 

Table7.10). In the case of the variable augmented system based 

double loop technique (VA-SBDL2), when simulated with inner loop 

dynamic accuracy, the algorithm behaves as a single loop technique 

(see Table 7.20).

Applying the variable augmented model based double loop technique 

(VA-MBDL2) to Example 2, the algorithm did not converge. This is 

due to the fact that Example 2 does not satisfy part (iv) of 

Theorem 5.5 ( see Chapter 5 ).

The constraint augmented version of AISOPE2 was also applied to 

Example 2. The results are not presented, since the algorithm 

converged significantly slower, or even failed to converge at all 

for many choices of the penalty and step length coefficients.

7.2.4 Comparison

We will be comparing the efficiency of both types of augmentation 

based on the simulation results of Example 1 and 2. The best 

results selected for each of the single loop or model based double 

loop techniques of AISOPE1 and AISOPE2 algorithms are tabulated in 
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Table 7.21 and 7.22, respectively. Since the system based double 

loop technique behaves as the single loop technique, they are not 

included in the comparison.

In the case of AISOPE1 algorithms, the constraint augmented model 

based double loop technique (CA-MBDL1) gave the best performance 

and also the best sensitivity characteristic. The constraint 

augmented single loop technique (CA-SL1) and the variable augmented 

model based double loop technique (VA-MBDL1) gave a similar 

performance with Example 1 but the constraint single loop technique 

(CA-SL1) is superior in example 2. It is observed that the 

constraint augmented algorithms are less sensitive to the choice of 

values of penalty coefficients and also the choice of step length 

coefficients. Based on the obtained results, a suitable value of e
P 

can be chosen for the constraint augmented algorithms from the 

proposed formula = y.r, where ■y e (0.5, 1.25).

When applying AIS0PE2 algorithms, the variable augmented model 

based double loop technique (VA-MBDL2) gave the best performance 

with Example 1 but the algorithm did not converge with Example 2, 

(see Tables 7.21 and 7.22). In the case of AIS0PE2 algorithms, the 

variable augmented algorithms are superior than the constraint 

augmented algorithms. In both examples, the constraint augmented 

algorithms failed to converge.

7.2.5 Effect of Noise on the AISOPE Algorithms

The calculation of modifiers A and t involves the evaluation of the 

derivatives of process outputs with respect to the set-points.
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These derivatives are evaluated by perturbing each set-point around 

v and measuring all the interconnected outputs, K*(v), and then 

performing finite difference computations.

If measurement is taken under noisy conditions, the derivatives

and will deteriorate the performance of thewill be distorted.

algorithms. Howerer, introducing simple filter techniques can

significantly reduce the influence of noise. The modifier vectors

are filtered by using a first order low-pass digital filter

(Ellis, 1981) *•

xk rk-1
eA + d - £A)Ak (7.2)

and

—k —k-1
t = St + ( 1 - €fc) t (7.3)

where (Ak,tk ) and (Ak, t ) are filtered and unfiltered values of

the modifier vectors, respectively, and < £ < 1. Furthermore,0

the effect of zero mean value noise can be reduced by employing

a simple averaging technique, for instance take T measurements and

apply the averaging formula

—* 
y 1

T

T *
L y (i)

i = 1
(7.4)

Both versions of the augmented based double loop algorithms were

applied to Example 2 in the presence of noise. The NAG library

subroutine G05DDF is used to generate the noise vector. Figs. 7.5

and 7.6 illustrate the behaviour of the constraint and variable

augmented algorithms, respectively, when the measurements are
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contaminated with noise with a standard deviation of 0.02 and 

representing a noise to signal power ratio of 10Z. The performance 

of both versions of augmented algorithms has deteriorated compared 

to those in the absence of noise (see Figs. 7.4 and 7.4). Figs. 7.5 

and 7.6 show that a significant improvement is achieved by using 

simple digital filter techniques (7.2), (7.3) and (7.4), where T is 

taken as 50 measurements.
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Algorithm
I
| Technique
I
I

I Basic
i_______ __

version I
| Variable
| constraint
| augmented

1
I Variable |
| augmented |

Constraint | 
augmented |

I
|Single loop

1 1
1 VA-SL1 |

I
CA-SL1 |

I
| VCA-SL1

ISOPE1 I I I 1I

(using
I
I System based

I I
| VA-SBDL1 |

1
CA-SBDL1 |

I
| VCA-SBDL1

input Idouble loop I I II
feedback) I

i _____ _
I I
I _ _ _ _ |

II
I _ _ _ _1 _ _ _

1
|Model based

I I
I I

I
I

I
I
I

jdouble loop | VA-MBDL1 | CA-MBDL1 || VCA-MBDL1

Table 7.1 : Different versions of the augmented ISOPE algorithms.

|Single
I
i

loop | VA-SL2
1

| CA-SL2
1

| VCA-SL2
1

ISOPE2 
(using 
input & 
output 
feedback)

1---

1
|System
|double
1

based 
loop

1
| VA-SBDL2
1
1

1
| CA-SBDL2
1
1

. 1 _________ .

1
| VCA-SBDL2
1
1

1 ----

1
|Model 1
|double
J

____

1
based
loop 1

1
1 VA-MBDL2
1
1

1
| CA-MBDL2
1
l

1
| VCA-MBDL2
1
l
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D - 15 I

0.9 0.8

e 
v(

0.7

,W
I
| 1.0 0.6 0.5 0.4 0.3 0.2 0.1

15.0 I 111 111 11 1 111 111 1 11 11 1 111 46 95
13.5 1 Hl 1 11 11 1 111 111 1 1 1 1 1 1 111 44 96
12.0 | 100 100 111 111 111 111 111 48 40 98
10.5 | 100 100 100 100 100 100 100 46 32 99
9.0 | 100 100 100 100 100 100 100 48 38 100
7.5 | 100 100 100 100 79 50 47 50 51 100
6.0 I 81 73 66 58 53 49 49 51 61 100
4.5 I 73 71 66 60 55 58 56 59 70 100
3.0 I 74 74 73 72 70 67 66 66 84 91
1 .5 I 100 100 100 100 100 100 100 100 100 100

q = 30

e =

I
I
| 1.0
I

£
V ,W

0.3 0.2 1.00.9 0.8 0.7 0.6 0.5 0.4

P

30.0
I
I Hl 1 1 1 1 1 1 1 11 111 1 1 1 1 1 1 1 1 1 67 100

27.0 1 111 11 1 11 1 111 111 1 1 1 1 1 1 45 68 100
24.0 1 m 100 1 1 1 111 111 1 1 1 32 47 70 100
21 .0 | 100 100 100 100 100 19 34 48 71 100
18.0 | 100 100 38 20 20 26 36 50 74 100
15.0 | 100 40 21 23 24 29 38 52 76 100
12.0 | 100 23 27 28 29 32 40 54 79 100
9.0 | 3 0 31 31 31 31 31 43 57 83 100
6.0 1 49 49 49 49 49 49 49 61 89 100
3.0 1 100 100 100 100 100 100 100 100 100 100

Table 7.2 : Sensitivity of the variable augmented single
loop technique (VA-SL1) of AISOPE1 (Example 1).

o = 60
I

e v ,w

I
£n 1

| 1.0
I

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

P
60.0 |

I
I 111 111 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 96 100

54.0 |I 111 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 70 98 100
48.0 |I 111 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 72 100 100
42.0 |I 111 111 1 1 1 1 1 1 44 49 59 74 100 100
36.0 | i 100 1 00 100 75 44 51 61 77 100 100
30.0 || 100 100 100 41 45 53 63 80 100 100
24.0 | 100 100 94 41 47 55 66 81 100 100
18.0 || 100 100 41 43 49 58 70 89 100 100
12.0 | 100 100 48 48 51 61 75 96 100 100
6.0 |

I
| 100 98 98 98 98 98 98 100 100 100
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Table 7.3 : Sensitivity of the COhSlnaurf augmented single loop

r = 15 |
I

£

0.8

V

0.5 0.4 0.3 0.2 0.1| 1.0 0.9 0.7 0.6

e = 
P

15.0

I _ _ _

I
I
| 100 60 45 37 32 27 24 21 25 50

13.5 | 6 5 50 41 35 31 28 25 23 25 49
12.0 I 47 42 36 33 31 29 26 25 26 48
10.5 I 37 36 34 32 31 29 28 27 27 48
9.0 I 31 32 31 30 30 31 30 30 31 47
7.5 I 27 27 28 29 31 31 33 33 35 47
6.0 I 24 25 26 28 30 31 34 38 41 50
4.5 | 22 21 24 26 29 33 38 43 49 61
3.0 | 28 26 27 31 33 35 41 50 61 83
1 .5 | 6 4

I
64 64 64 63 62 58 67 81 100

r = 30 I
I
| 1.0 0.9 0.8

£ 
V

0.7 0.6 0.5 0.4 0.3 0.2 0.1
£ = 
P

30.0

I
I
| 100 36 32 23 18 17 1 6 18 21 48

27.0 I 43 30 27 21 19 1 8 1 7 1 8 21 48
24.0 | 33 27 22 19 20 19 19 19 21 47
21 . 0 I 27 23 20 20 19 1 8 1 9 20 23 47
18.0 I 21 18 19 19 20 19 21 21 27 46
15.0 I 17 1 7 1 6 1 8 19 21 22 22 30 45
12.0 I 13 14 17 16 17 19 21 25 32 44
9.0 I 18 18 18 19 -20 22 25 29 36 48
6.0 | 26 27 27 28 29 29 30 31 43 60
3.0 j 4 8

I
48 47 47 48 51 54 58 62 86

r = 60 I
I
| 1.0 0.9 0.8

£ 
V

0.7 0.6 0.5 0.4 0.3 0.2 0.1
£
P

60.0

I
I
| 48 32 28 24 30 100 100 14 100 50

54.0 | 38 26 20 18 22 20 100 100 100 88
48.0 | 29 22 17 17 17 19 16 12 100 45
42.0 I 19 17 14 15 15 1 4 1 8 1 8 20 45
36.0 I 16 1 1 15 14 15 15 19 22 20 44
30.0 I 10 1 1 12 13 1 4 1 7 20 16 19 44
24.0 I 9 1 1 14 15 17 19 22 1 7 23 44
18.0 I 16 15 15 16 15 15 24 20 26 44
12.0 I 25 25 25 24 24 23 25 27 32 48
6.0 I 54

I
54 54 53 53 52 51 48 48 67

(VA-SL1) of AISOPE1 ( Example 1 ).
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I 
Q I

1
5.1

1 1
1 6.|

1 1
1 8.|

I
1O.|
___ i

1
15.|
____1.

1
20. |
___ 1 .

1
30. |
___ 1 .

I
40. |
__  I .

1
60. |
___ 1 .

I
80. |
___ I .

100.
----I 

e I

------- 1
I
1---- 1
1 3. |

1----1
1 4. |

1
8. 1

1
10.5|

I

1
8. 1

_ _ |
21 . | 16.| 18.| 16. | 30.

p | || || | I I | I I I
e I

1
1
I

o.il
i i

1 0.1| 
I |

0.2| 
|

0.2 |
|

0.9 | 
|

0.5 | 
I

0.8 |
I

0.8 | 
|
0.8 | 

I
0.7

IS |
1
1.

1
1
1
1

1 1
1 97 |
1 1
1 1

I 1
1 61 |
I I
I l_

l
48 |

1
1

l
32 |

1
1.

27 |
1
1.

19 I 
I 
I.

27 |
1
1.

41 I
I 
I.

48 |
I 
I.

59

Table 7.4 : Variable augmented single loop technique (VA-SL1)

results of AISOPE1 (Example 1).

Table 7.5 : Constraint augmented single loop technique (CA-SL1)

r
I I
I 5. | 
i i

I
6.I

1

1
8.1

. _ 1.

1
10.|

. _ _ I .

I
15.|

I ■

I
20. |
___ I .

1
30. |
___ I.

1
40. |

_ I .

I
60. |

_ _ | .

1
80. |

1.
100.

e
P

1 2.5|
1

4.2|
1

1
8.0 |

1
10. 1

1
4.5|

I
6- I 

|
12. | 

|
16. |

I
24. |

I

1
40 . |

1
40.

e
1 1
1 0.2| 0.1|

I

1
0.2 |

1

1
0.2 1

|

I
0.9 |

1
1.0|

1
1.0|

1
1 .0|

I
1 .0|

I

1
0.9 |

I
0.7

IS
1 1
1 88 |
1 1

I
56 |

i
34 |

I

l
26 |

1
21

I
16 |

1
13 |

1
12 |

I

1
9 1

1

1
9 1

1
10

IT
1 1
1312 | 
J I.

1
1 92 |

1.

1
1 26 |

1.

1
103 |

I
87 |

I.
73 |

1.
67 |

1.

I
65 |

I.

1
53 |

1.

1
63 |

1.
69

results of AISOPE1 (Example 1).
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Table 7.6 : Variable and constraint augmented single loop technique

r
I 
I
|

20 .
I
I
I

60 .
1
1
1

Q
I I
I 1-1

1 1
2.1 3.|

I
5. I
___ I

I I
I 10.|
____ 1 .

I
20. |

_ _ | .

1
1.1

___ 1.
2.

I I I
I 3- I 5.|

1 1
10. |20. |
___|___ I

e
P

I I I I
|10. | 12. | 14. | 16.| 

|
16.| 

|
20. |

|
36 . |

I
42. 1 54. |54 . |

1 1 1
42. |16. |

I |

£
1 1
1 1-1

i i
1.1 1-1

1 |

1
1. I

I

i 1
0.9|

I
0.7|

|

1
0.8 |

|
1 .

1 1 1
| 1 . |0.9|0
I I I

1 1
.8 |0.9|

1 |

IS
1 1
1 171

1 1
16| 18|

I I
19 |

I

1 1
21 |

I 1
24 |

I
10 |

I
1 1

I I I
I 11 1 12|
I 1 1

1 1
14 | 21|

I I

IT
1 1
1 771
1___ 1

I I
73| 82|

I I.
87 |

I

I I
I 80 |
I I.

1
86 |

1.

1
71 I

I.
63

1 1 1
| 66 | 84|
1 1 1

I 1
69 | 80)

1 1

(VCA-SL1) results of ISOPE1 (Example 1).

|p I 5.I 6. I 8.I 10. I 15. I 20.I 30. I 40.| 60.| 80.| 100.|
I-—I—-I—-I-—I—-I-—I—-I—-I.......... I
I e | 0.5| 2.4| 4.8| 7. | 12.| 16.| 24.| 28.| 42.| 64.| 70. |
I P I I I I I I I I I I I I
| e I 0.9| 0.8| 0.8| 0.8| 0.8| 0.7| 0.3| 0.4| 0.4| 0.5| 0.5 |
I I I I I I I I I I I I I
| IS | 8 | 8 | 9 | 10 | 12 | 14 | 13 | 9 | 11 | 14 | 9 |
I I I I I I I I I I I I I
| IT | 352| 231| 127| 96 | 88 | 48 | 60 | 49 | 51 | 45 | 40 |

Table 7.7 : Variable augmented model based double loop technique

(VA-MBDL1) results of AISOPE1 algorithm (Example 1).
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Table 7.8 : Constraint augmented model based double loop technique

I 
r I

I
5.I

1
6.1

1
8.1

___ 1 .

I
1O.|

___ 1 .

1
15. |

_ _ _ | .

1
20. |
__  1 .

I
30. |
__  I .

I
40. |

_ _ _ | .

1
60. |
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1
80. | 100.

----1 

e I 
p

----1.

3 1
1 1

--- 1

4.2 |
I
7.2 |

1
10.|

1
15.|

1

1
20. |

1

I
24.|

1
24. |

1
24.|

1

--- 1

32. |
1

30.
I 

e I
i

1
□ .7|

1 |
0.7|

1
0.7|

1
0.7|

I
0.7| 

|
0.7|

I
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I
0.7|

I
0.7| 

I
0.7|

I
0.7

I
IS |

i

1 1
1 6 |
i i

1
7 1

1

1
7 1

I
7 1

i

l
7 1

1

1
7 1

1

1
7 1

1
7 1

1
7 1

I

1
7 1

1
6

I
IT |

I

1 1
1 259|
1 1.

1
1 65 |

1.

i i
134|123 |

I I.

1
1 02 |

1.

1
109 | 

I.

I I
109|110 |

I I.

1
1 28 |

1.

1
11 8 |

I.
138

(CA-MBDL1) results of AISOPE1 for Example 1 (r=20).

Table 7.9 : Variable and constraint augmented model based double 

loop technique (VCA-MBDL1) results of AISOPE1 for 

Example 1 (r = 20 ) .

Q
I I
I 1. I
I------ I

I I
2. I 

------ |

I
3. I 

------ I

I I
I 5. |
------ |

1 0 .

e
I I
I 20. |

I
20. |

I
20. |

I
20. | 20 .

P | | I I I
£ I 0.7 |

i i
0.7 |

I
0.7 |

I
I 0.8 |
I I

0.8

IS
1 1
1 7 |
i i

I I
7 I

I i

I
8 |

I

1
1 8 |
I 1
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J I

I I
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I
105 |
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1
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I
Q I

I I
I e I
I_______ i %.!

1
1 is

I I
I IT I

_ _ I _______i
final Q*

------- I

I
< 3 |

I I
| for

I 1
1

all algorithm

I |

I I
to converge

_______________

!
the step

I
I

coefficient
i i i

c has
| P

to be very small
I

4.0 | 1 1-0 11 0.7 |
1
I not

l 1
convergent |

I
I

I1 11 0.6 | 20 1 20 | 6.3261
I1 1 0.4 | 1 31 1 31 | 6.3260
I
I
1 0.8 |

1
1 0.6 |

1
22

!
I 22 |
I I

6.3264

I
6.0 |

1 1
1 1.0 |

1
0.7 | not

I I
convergent |

I1 1 0.6 | 24 I 24 | 6.3260
I 1 0.4 | 37 I 37 | 6.3258
I
I
1 0.8 1

1
1 0.6 |

1
24

I
I 24 |
I I

6.3258

I
8.0 |

1 1
1 1-0 |

1
0.7 |

i
not

I I
convergent |

II I 0.6 | 28 I 28 | 6.3259
I I 0.4 | 44 I 44 | 6.3259
I
I
I 0.8 |

I
0.6 |

1
29 I 29 |

I I
6.3259

I
10.0 I

I
1.0 |

1
0.7 | not

I I
convergent |

I I 0.6 | 33 I 33 | 6.3260
I
I
I

0.8 |
I
I

0.6 |
1
1

33 I 33 |
I I
I I

6.3259

Table 7.10 : Variable augmented single loop (VA-SL1) technique

results for Example 2.
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Table 7.11 : Constraint augmented single loop technique
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1 I
1 4.0 |

I
9 I 48

1
| 6.3351

1 I1 3.5 | 6 I1 34 | 6.3343
1 I1 3.0 | 6 I| 32 | 6.3341
1
1

0.8 |
I
1 3.0 |
i I

7 I
i
1 41
I

| 6.3341
11

4.0 | 1.0 I
1 I
1 5.0 |

I
8 I 43

1
| 6.3392

1 I
I
1 4.0 |

1
6 I

1
31

i
| 6.3397
11

6.0 |
I

1.0 I
1 1
1 7.0 |

1
7 1 43

1
| 6.3538

1 I 6.0 | 6 1 35 | 6.3538
1
1
1

0.8 |
I
I

1 6.0 |
1
1-

6 1
1
1

35 | 6.3538
1
1

(CA-SL1) results for Example 2.
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I 
Q I e

I
I c P

1
1 is

. I _ _ _

I I
I IT |
I ______ |

final Q*
----- I

I
< 4.0 |

—

I
I

iI 
o

I 
M-

1 1
1

algorithm

I I
I I
to converge the step

I
1

I
I
1 coefficient e

i P
has to be

i i
very small

1
6.0 | 1.0 || 0.7 | not convergent |

1 I| 0.6 1 12 1 123 | 6.3267
1 I| 0.4 I 12 I 161 | 6.3263
1 I| 0.2 I 12 I 345 | 6.3264
1
1

0.8 |
I
| 0.6
1

I 16
i

I 141 I
l i

6.3263
1

8.0 | 1.0 | 0.7
i i i
| not convergent |

1 I| 0.6 1 15 1 164 | 6.3266
1 I| 0.4 I 14 I 246 | 6.3259
1 I| 0.2

1
I 14 | 488 | 6.3258

1
10.0 I

I
1.0 I

1
| 0.7

i i i
| not convergent |

I I| 0.6 1 1? I 185 | 6.3269
I I| 0.4 I 16 I 278 | 6.3259
I I| 0.2 I 16 I 552 | 6.3259
I 0.8 || 0.6 | 20 I 204 | 6.3264

3.0 |
I
I
I
I.

1.0 |
I
I
I
I

| 4.0
1
1
1

I 9
I
I
I
I

I 48 |
I I
I I
I I
I I

6.3351

Table 7.12 : Variable augmented model based double loop

technique (VA-MBDL1) results for Example 2.
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II
I
I

r I
........ -I

I
I
I
I e
I.........-

I I
I I
I I
I £ I

dynamic 6 = 6 k 
a a

1 -4
6a =

IS 1 IT 
|----

I final Q 
-|-------------

1 IS I
1------ 1

1 IT
|------

I
0.25 |

I
| 1.0

I I
I 0.5 | 5

1
| 56

1
I 6.3284

1 1
1 5 1

1
| 141

I I | 0.25 | 5 | 102 I 6.3282 1 5 || 263
I| 0.8
I

I 0.5 |
i |

6 | 55
1

I 6.3269
1

1 6 |
1 1

| 141
i1

0.5 |
I
I 1.0

1
1 0.5 | 5

1
| 59

1
I 6.3282

1 1
1 5 |

I
| 172

1
i
| 0.8
i

1 0.5 | 6 | 59 I 6.3271 1 6 | 169
I

1.0 |1 1.0
1 1
I 1.0 I 5

l
| 38

I
| 6.3294

1 1
1 5 |

I
120

I| 0.8 I 1 .0 I
1 1

6 | 38
1

| 6.3276 
I

1 1
1 1

I
I

I
2.0 |

I
| 1.0

1
1 2.0 | 5

1
| 33

I
| 6.3323

1 1
1 5 |

I
| 95

II
| 0.8 1 2.0 |

i i
6 1 34

I
| 6.3306 
I

1 6 | 93
iI

4.0 |
I
I 1.0

1 1
1 4.0 | 6

1
| 33

I i
| 6.3397 |

1 1
1 5 | 80

I| 0.8 1 4.0 |
1 1

6 1 34
1

| 6.3306 |
1 i

1 6 |
1 i

78
I

6.0 | 1.0
1
1 6.0 | 6

1
1 37

1 1
| 6.3530 |

1 1
1 5 | 72

I
I
I
I

0.8
I
I
I

1 6.0 |
1 1
1 1
1 1

6 1 34
1
1
1

| 6.3540 |
1 1
1 1
1 1

1 6 |
1 1
1 1
1 1

71

Table 7.13 : Constraint augmented model based double loop technique

(CA-MBDL1) results for Example 2.
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I
I
I

Q I

I
I I
I
I e

I
I
I
I P

I
Idynamic 6^ ■ ‘ ■!

final Q*I is |
I ___I

IT
____ I------ I

I
I

4.0 |

I --  I
I I
I I

1-0 |

I------

I
I
| 0.6

I I
I I
I 20 |

I
I

23 | 6.3261
II I | 0.4 I 31 I 34 | 6.3260
I
I

0.8 |
I I

0.6
I

I 19 I 
I I

23 |
I

6.3257

I
8.0 |

I I
I 1-0 |

I
| 0.6

I I
I 32 |

I
32 | 6.3260

II I | 0.5 I 38 | 38 | 6.3259
I
I
I 0.8 I
I I

| 0.6
I

I 33 |
I I

33 |
I

6.3258

I
10.0 I

I I
1.0 |

I
| 0.6

I I
I 36 |

I
36 | 6.3258

I I I | 0.5 I 43 | 43 | 6.3258
I
I
I
I
I

0.8 |
I I

I
I
I

| 0.6
I
I
I
I

I 37 |
I I
I I
I I
I I

37 |
I
I
I
I.

6.3258

Table 7.14 : Variable augmented system based double loop technique

(VA-SBDL1) results for Example 2.
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I 
r I £

I I
I c I IS

I
I IT

I
| final Q.

------- 1 ------- | |-------- 1 *|---------------

I
0.25 |

1

1
1.0 |

1

I I
| 0.25 | 39

I
| 144
I

1
| 6.3263
11

0.5 |
1

1.0 1
1 1
1 1.0 I 20 I 75

1
| 6.3267

1 1I 0.5 | 22 I 75 | 6.3267
1 0.8 |

i
I 1-0 | 20 I 87

I
| 6.3267
I1

2.0 |
1

1.0 I
1 1
1 3.0 | 12

I
| 66

1
| 6.3296

1 I1 2.0 | 8 | 38 | 6.3301
1 I1 1.5 | 12 I 51 | 6.3301
1
I

0.8 |
I
1 2.0 | 8 | 36

I
| 6.3301
I

4.0 | 1.0 |
1 1
15.0| 7 I 43

I
| 6.3409

1 I1 4.0 | 6 | 33 I 6.3398
1 I1 3.0 | 9 I 43 | 6.3396
1
1

0.8 |1 4.0 | 6 | 32
1

| 6.3397
11

6.0 |
1

1.0 I
1 1
1 8.0 | 11

1
| 66

1
| 6.3544

1 I1 6.0 | 5 | 29 | 6.3537
1 I1 4.0 | 9 1 47 | 6.3531
1
1
1
1

0.8 |
I
I
I

1 6.0 |
1 1

1
I-

5 1 31
I
I
I

| 6.3537
I
I
I

Table 7.15 : Constraint augmented system based double loop

technique (CA-SBDL1) results for Example 2.
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(CA-MBDL2) results of AISOPE2 for Example 2.

I
I Q
I __

1
1 6.
1_____

I I
| 6.5 | 7.
I____ I _ _

1 1
1 8. |
1 __ | _

1
10. |

_ _ _ _ i
15.

I
| 20.
I______

1 1
1 30. |
1 _ _ 1

I
£

1 
|

I I
| 4.55 | 6.3

1 1
1 1
1 7-2 |

_ _ |

1
9- 1 10.5

I
I
I 12.

1 1
1 1
1 15 |

P I I I 1 1 I I I I
I £
1

1
1

| 0. 1 | 0.1
I |

1 0.1 I
1 1

0.1 |
1

0. 1 | 0.1
l

I 0.1 I
1 11

1 is
1

1
1
1

I I
| 133 | 114
I I

1 1
1 115 |
I I

1
120 |

I
140

1
| >150
I

1 1
| >150 |
I I

Table 7.16 : Variable augmented single loop technique (VA-SL2)

results of AISOPE2 for Example 1.

1
1 Q
1____

I
I 5.

_ | _ _ _ _

I I
I 6. | 8.
I _ _ _ I __

I I
I 10. |
I _ _ _ |

I
15. |

_ _ |
20.

I
| 30.
I _ _ _

I I
I 40. |
I __ |

1
1 £

I
I
| 1.5

I  I
I I
I 2.4 | 4.

1 1
1 1
1 4. |

1
1

4.5 | 6.
I
I 6.

I------ |

I I
I 8 |

1 P I I I 1 1 1 I I I
1 £
1

| 0.3
1

| 0.3 | 0.3
1 |

1 0.3 | 0.2 |
1

0.2 | 0.2
I

I 0.2 |
I |1

1 is
1

1
| 26
1

1 1
| 26 | 27
1 |

1 1
1 33 |

1
62 |

1
72

I
| 920
I

I I
| >100 |
1 |1

1 IT
1

1
| 565
1

1 1
| 343 | 176
I I

1 1
1 284 |
1 1

1
353 |

1
4 1 8

I
| 703
I

1 1
1 >745 |
1 1

Table 7.17 : Variable augmented model based double loop technique

(VA-MBDL2) results of AISOPE2 for Example 1.

1
1 r
i _

I
I 5.

I I
I 6. | 8.

1 1
1 10. |
I  i _

1
15. |
_____ I

20.
I
| 30.
I _ _ _

1 1
1 40. |
1 _ _ i1

1
1 e

. I -----

I
|

I------ I----

I I
I I 4.8

I 1
1 1
1 5. |

I
7.5 | 8.

I
I 9.

1 1
1 7. |

p I I | 1 1 I I 1 I
1 £
i

I
1

I I 0.1
1 i

1 0.1 | 0.1 |
I

0.3 | 0.2
1

1 0.1 |
1 i1

1 is
i

1
1
1

1 1
1 1 90

1 1
1 97 |

I
95 |

I
75

1
| 80
1

1 1
| >100 I
1 11

1 IT
I

1
1
I

1 1
| | 623
1 1

1 1
1 524 |
1 1

I
576 |

I
2757

1
| 2357
1

1 1
|>1323 |
I I

Table 7.18 : Constraint ;augmented model based double loop technique
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I
Q I_ i

1 1
e

I
! '»

I
I IS I
I 1 11 

b- 
1 

>-H 
1111

final Q*
------- I

I
<0.5 |

I

i i i
1 1

| convergent if
1 1 1

1 1 1
1 1 1
e is taken very small
p 1 1

I
1.0 |

1
1 1.0 |

i i
I 1.0 |

1 1
1 91 |

1
91 I 6.3266

I I1 0.8 | I 88 | 88 | 6.3264
II 0.8 |

I
1 1-0 |

I
| < 130 |

l
I
11

2.0 |
1

I
1.0 |

I

I
1.0 I

I

1
45 |

1

1
45 |

1
6.3263

1
3.0 |

I

I
1.0 |

I I

I
1.0 I

I

1
57 1

1

1
57 |

1
6.3265

1
5.0 |

1
1

I
1.0 I

I
I

I
1.0 I

I
I

1 
slow

1
1.

1
convergent

1
1

Table 7.19 : Variable augmented single loop (VA-SL2) technique

results of AISOPE2 for Example 2.
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I
I
I 

Q I

I I
I I
I I

e

I
I
I
I £ p

I
Idynamic 6.=6. 
_________i1 1

1
1
I
| final Qfc

_i______________
i is ii___ i __ IT

-- I

I
<0.5 |

I

i - - - i
1 1
| convergent if
1 1

1 1
e is taken
1p 1

very

1 - ------------
1 
small
1

I
1.0 |

I

1 1
1 1 .0 |
1 1

I
| 0.9
I

1 1
1 55 |
1 1

55
1
| 6.3264
1

I
2.0 |

I

1 1
1 1.0 I
1 1

I
| 0.9
I

1 1
1 50 |
1 1

50
1
| 6.3264
1

I
3.0 |

I
I

1
1.0 |

I
I

I
| 0.9
I
I

1 1
1 65 |
1 1
1 1

65
1
| 6.3265
1

.1 1

Table 7.20 : Variable augmented system based double loop (VA-SBDL2)

technique results of AISOPE2 for Example 2.
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Table 7.21 : Comparison of best results of AISOPE1 algorithms.

Algorithm
| Example
I

1 I
I
| Example 2

I IS | IT II IS I
_____ 1 ___

IT

VA-SL1

_ I--------------I - -
I I
I 19 I

I
19 |

I

1 1
1 20 | 20

CA-SL1
1 1
1 9 |

I
53 |

I

1 1
1 6 |
I I

32

VA-DLM1
1 1
1 8 1

I
231 |

1 1
1 12 | 123

1 9 | 49 |I I

CA-DLM1
1 1
1 6 1

I
259 |

I I
I 5 | 120*t

1 9 |
1 1
1 1

102 |
I
I

5 I 
I
I

38

* - fixed accuracy for the approximation loop 

** - dynamic accuracy for the approximation loop

Table 7.22 : Comparison of best results of AISOPE2 algorithms.

Algorithm
| Example 1 |
I I

| Example 2
1

I is I IT I
I_______ t

1 is I
________ |

IT

VA-SL2

- | - --
I
| 114

■ I---- I
I I
|114 |
I 1

1
45 |

I
45

CA-SL2 I - I - I
I I I

1
- 1

1
-

VA-DLM2
I
| 26

1 1
1 26 |
I I

1
- 1

I
-

CA-DLM2 I - I " I
I I I
I I .......  I

1
" 1

1
1

-
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Figure 7.1 Sensitivity to e of model based double loop (MBDL1)
techniques (Example 1).

IIL
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Figure 7.2 Sensitivity to c of model based double loop (MBDL1) 
technique (Exaiqrle 1).
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Figure 7.3 Convergence behaviour of the constraint augmented

model based double loop (CA -MBDL1) technique of

AISOPE1 (Example 2).
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figure 7.4 Convergence behaviour of the variable augmented model

based double loop (VA -MBDL2) technique of AISOPE2

(Example 2) .
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Figure 7.5 Behaviour of the constraint augmented model

based double loop (CA-MBDL1)technique of

AISOPE1 in the presence of noise (Example 2).
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Figure 7.6 Behaviour of the variable augmented model

based double loop (VA-MBDL2) technique of

AISOPE2 in the presence of noise (Example 2).
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CHAPTER 8 CONCLUSIONS

A detailed study of some hierarchical ISOPE algorithms based on the 

augmented lagrangian has been presented. Two different kinds of 

augmentation have been applied to convexify the problem : namely, 

variable augmentation and constraint augmentation. In the case of 

the variable augmentation, additional quadratic penalty terms, 

Hv-cU and Hw-uH or IIu-HK* (v) II , involving subsystem controls and 

interaction inputs, are introduced to the normal lagrangian 

function. Whereas for the constraint augmented algorithms, the

2 
quadratic penalty terms of the interaction input, ilu-HF( c , u ,a) II , 

is applied to convexify the problem. Employing augmentation to the 

normal lagrangian has several advantages. Firstly, the 

applicability of the algorithms is extended to nonconvex problems. 

Secondly, if it is applied to convex problems this can result in a 

faster convergence rate.

The augmented ISOPE algorithms have been formulated for two

different structures : the first structure employs input-output 

feedback (AISOPE1) and the second structure used only output 

feedback (AISOPE2). The optimality and convergence conditions of

the algorithms have also been analysed together with the new

results obtained from the variable augmented algorithm with the

output feedback.

Based on the simulation examples, a comparative study of the AISOPE 

algorithm has been presented. These results have shown that the 

model based double loop technique was the most efficient algorithm 
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in reducing the number set-point changes compared to the single-

loop and the system based double loop techniques. The system based 

double loop technique is as good as the single-loop technique, if 

the dynamic accuracy is employed in its inner loop. The simulation 

results have also shown that the AISOPE1 were more efficient than 

the AISOPE2. Among the AISOPE1 algorithms the constraint augmented 

model based double loop technique was the best with respect to all 

the considered comparison criteria and also giving a better 

convergence rate. The constraint augmented single loop of AISOPE1 

and the variable augmented model based double loop of AISOPE2 

showed similar performance. The constraint augmented algorithms are 

less sensitive to the values of their coefficients which have to be 

prescribed by the user.

The requirement for the real output derivatives with respect to the 

set-points is an important practical drawback of using AISOPE 

algorithms. However, within a tolerable noise level the algorithms 

will work provided the modifer vector is filtered. This can be done

by using simple filter technique and averaging output measurements

which will also significantly improve the performance of the AISOPE

algorithms under noisy measurement conditions.

Recently, Lin, Hendawy and Roberts (1987a, and 1987b) have

developed another version of ISOPE which is based on the normal

lagrangian with output dependent constraints . The applicability of

these new versions of ISOPE algorithms can be extended by

introducing augmentation. These can be done by employing a similar

technique of augmentation as used in this thesis.

203



All the algorithms derived in the thesis use simple relaxation

formulae. However, it is considered that these formulae may not be

utilised in the most efficient way compared to the information

contained in the subsequently updated model results of their

optimisation. An improved version of the modified two-step

algorithm for a single process has been successfully implemented

where the set-points and lagrangian multipliers are updated using a 

Newton-like formula (Tatjewski and Roberts, 1987). Currently, 

research has been carried out in the control Engineering centre of 

The City University to apply simple Newton-like formulae to the 

AISOPE Algorithms developed in this thesis.

Further work is required to extend the application of the 

algorithms to on-line steady-state and dynamic processes.

AISOPE

Other

versions of ISOPE algorithms which are based on a normal

lagrangian, have been succesfully applied to the on-line control of

1986), hence applying AISOPE based on the

augmented lagrangian might improve the efficiency of its control

system. The modified two-step algorithm for a single process has

also been successfully applied to the on-line control of a pilot

scale travelling load furnace, which is a batch dynamic plant

(Stevensen, 1985 Similarly, after decomposing the travelling load

furnace into several subsystems the AISOPE could be used to

control the furnace.
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APPENDIX A : MATHEMATICAL PRELIMINARIES FOR CHAPTER 5

Definition A.1 : Point-to-set map

A point-to-set map F from a set X into a set Y is a map which 

associates a subset Y with each point of X.

Definition A.2 : Algorithm

An algorithm is an iterative process consisting of sequence of

X
point-to-set maps : X ---- > 2 and the iteration of the

k k+1 kalgorithm generates a sequence { x } such that x e ip^Jx )• The 

mappings are called the algorithmic mappings.

Definition A.3 : Open mapping

F is open at a point x in X if { xk }C X, xk----> x, and y e F(x)

j/
imply the existence of an integer m and a sequence { y }C Y such 

that yk e F(xk) for k ) m and yk ---> y.

Definition A.4 : Closed mapping

F is closed at a point x in X if { xk X, xk---> x, yk e F(xk),

and yk ---> y imply that y € F(x).

Definition A.5 : Continuous mapping

F is continuous at point x in X if it is both open and closed at x.
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Defination A.6 : Composite Mapping

Let F : X ---> Y and G : Y --- > Z be point-to-set mappings. The 

composite mapping H = GF is defined as the point-to-set mapping H :

X-- > Z with

H (x)
yeF(x)

Definition A.7 : Compactness

A set X is compact if any sequence ( or subsequence ) contains a 

kconvergence subsequent. Given a subsequence { z } in X , where X 
K

is compact, there exists a K Cl K such that

k 00
z ---> z k e K

and z°° is in X.

Remark In Euclidean space compact sets correspond to closed and

bounded sets.

Definition A.8 : Monotone

A mapping F : D CL X---> Y is monotone on DqC D if

CF(x) - F(y)JT(x-y)> 0, V x.y e Dq (a.1)

F is strictly monotone on Dq if strict inequality holds in (A.1) 

whenever x i y and uniformly monotone if there is a r > 0 such 

that

CF(x) - F(y)]T(x-y) ) r(x-y)T(x-y), V x.y e D
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Definition A.9 Upper semicontinuous

A real-valued function f : X -- > R is upper semicontinous at x e X

k --- kif x -- > x, k--- > 0° implies lim f(x ) < f(x), where
k- ->oo

___ k A k
lim f(x ) = lim sup f(x )
k-->o° k --> °°

Definition A.10 : Point-to-point mapping

The mapping F is a point-to-point mapping if for each x e X the set

F(x) consists of a single point in Y.

Remark : If xk ---> x then F(xk) --- > F(x), and it follows that F

is closed at x. Thus for point-to-point mappings continuity implies

closedness.

The following two theorems are due to Hogan (1973):

Let us define a real valued function f : W x Y ---> R and a point-

to-point mapping H : W -- > Y. Let

A A
d(w) = inf {f(wxy):yeH(w)} and Q(w) = { yeH(w) : C(w) = f(w,y) }

The function C is termed the infimal value function and the point-

to-set map Q describes its solution set.

Theorem A.1

If H is open at w and f is upper semicontinuous on wxH(w), then d

is upper semicontinuous.
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Theorem A. 2

Suppose H is continuous on w, w is connected, Y is compact, f is 

continuous on WxY, and Q is single-valued at w. Then Q is 

continuous at x.

Theorem A.3 (Zangwill 1969, Luenberger 1984)

Let C W---> X and B : X--- > Y be point-to-point mappings .

Suppose C is closed at w and 8 is closed at C(w). Then the

composition mapping A BC is closed at w if any of the following

three conditions holds

some , ki subsequence t y

is compact.

e C(w ), then there is a y such that, for

i ki 
y --> y.

is a point-to-point mapping continuous at x.

Theorem A.4 (Zangwill, 1969)

Let C : W ---> X and B : X --- > Y be point-to-set mappings closed

at w c W. Then the sum map A = C + B : W ---> Y is closed at w if

any one of the following three conditions holds :

a) Either B or C is a point-to-point mapping continuous at x.

k k k
b) If w ---> w and y £ C(w ), then there is a y such that, for

r ki i kisome subsequence { y }, y ---> y.

c) Y is compact.
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Theorem A.5 (Luenberger 1984)

Let the real-valued function f be a convex function defined on the

convex set C and assume that f is continuously differentiable. If

*
x is the global minimum point of f over C, then for all yeC

Af(x* ) (y - x*) > 0

where Af(x) denotes 6f(x) .
fix

Zangwill’s convergence theorem (Zangwill 1969, Luenberger 1984)

Let the point-to-set mapping A X ---> X, and suppose that, given

x the sequence o
oo

xk \-0 iS 9eneratecl satisfying

e A(x ) k

Let a solution set QCX be given, and suppose

i) All point x^ are contained in a compact set s e X.

ii) There is a continuous function Z on X such that

a) if x e Q , then Z(y) < Z(x) for all y e A(x)

b) if x e Q , then Z(y) < Z(x) for all y e A(x)

iii) The mapping A is closed at points outside Q . Then either the

algorithm stops at a solution or the limit of any convergent

subsequence of { xk} is a solution.
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Appendix B - Covergence Proof of LO-mmo 5-5 (Chapter 5)

It follows from the Weierstrass theorem that there exists a point z

1A VA
(v ,w) minimising L (..p) on CU. Then ( recall x = ( c , u ) ) .

KA VA
L . .(z,p)(x *r(x)

-z) ) 0 for all x e CU (B.1)

using (5.72)- (5.75) the formulae (4. 54) , (4.55) for modifers can

be expressed in the form

(A,t)(z,p,r) = q* (z,a(z)) - q* (z) + [p + rg*(z)]T.

.(gt (z.a(z)) - g* (z)] (B.2)

Using (B.1) we obtain

L*r(x)(Z'P) = q* + [p + r9*(z)]Tpgt (z) =

q (z.a(z)) + [p + rg(z,a(z))]Tpg (z,a(z)) -
X X

- (A.t)(z,p,r)T = L (z,a(z),p) (B.3)

Due to the convexity of L (.,a,p). (B.1) and (B.3) imply that

x(z,p) = z is a solution to the modified optimisation problem

min { q(x,a(z)) + pTg(x,a(z)) + lr II g (x , a( z) ) II 2

xeCU 2

- (X.t)(z,p,r)Tx } ( B. 4 )

Thus, z is an inner loop solution z(p). An argument analogous to 

the above, but with Lf and L interchanged, proves that every 

inner loop solution minimises L*r(.,p) on CU if L* (.,p) is convex

If z(p) is unique, then, see (Findeisen and others 1980).
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Ad*r(p) = gt(z(p)),

which completes the proof since gt(z(p)l = g(z(p).a(z(p))).

Q.E.D.
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Appendix C : Convergence Proof of Theorem 5.6 (Chapter 5)

Despite a somewhat different formulation Theorem 5.6 is a 

generalisation of Theorem 2 from ( Brdys, Abdullah and Roberts 

1986) and the proof is analogous. The only significant difference is 

that now L (.,p) should be used as a Zangwill function, andK r

estimation of the term L (z,p)(z-x(z,p)) is somewhat different. It A 1

will be shown now. The optimality condition for the modified 

optimisation problem (4.53), with the variabe augmentation added, 

can be stated as follows :

. AAA. . where x = x(z,p) for notational simplicity.I

then assumption (iii), we obtain from (C.1)

♦ q(z

. A. Tr, (z - x) [L

where o < 8 < 1. The rest of the proof is analogous.

Q.E.D.
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Appendix D : Convergence Proof of Theorem 5.7 (Chapter 5)

The Therem 5.7 is a generalization of Theorem 3 from (Brdys, 

Abdullah and Roberts 1986), although the formulation is slightly 

different. Thus, the proof can be made quite analogously, by taking 

and q instead of q. and q.
Xp p *
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APPENDIX E - CONVERGENCE PROOF OF THEOREM 6.1 (CHAPTER 6)

Using (6.51) and (6.52) we obtain

c

u

c
g(c,u,a) HP(a)

u

where b * (I

Let k .v be given, and denote uJ.k
*

. k k Ak9(v ,u* ,a 9*<v then

. Ak. HP(a ) = B

and the condition

.Ak Ak Ak g(c ,u ,a ) 0

can be written as

0 (E. 1 )

Let us denote

A k c k vA
Akx and

k 
u*

k u

k z

M
0

>Since 0 (see Eq. (6.57 ) ) then the sufficient

necessary condition for xn to be a solution of the inner

and

loop
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infimal problem described by Eqs. (6.12) and (6.13) can be 

written as follows :

M (xn - zk) * Mzk * BTpn - Md = 0 (E.2)
Q

where n denotes the number of the inner loop iteration

th .
corresponding to the k iteration of the outer loop.

Eq. (E.2) yields that

xn = - M "1BTpn + (I - M ~1M)zk * M "1Md (E.3)
Q Q Q

Therefore, and due to (E.1), the iteration scheme (6.27) can 

be written as :

n+1 n „,An k. ,T Bu _1oTi np = p + xB(x - z ) = [I - XBMp 8 ]p

♦ (I - M _1M - X8)zk + M "1Md (E.4)
Q Q

Since the last two terms on the right side od Eq. (E.4) are 

constant the sequence {pP 1} is convergent to pk ( if it is 

convergent then, due to the structure of (6.27) it must 

kconverge to p ) from an arbitrary chosen starting point if 

and only if the following discrete dynamic system :

n+1 
P (E.5)

is asymptotically stable in the large at a point p = 0. 

— 1 T .
Since the matrix BM B is not symmetric then a positiveness 

Q

of this matrix does not immediately guarantee an existence of 
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a suitable value of x sufficient for stability. Let us define

z ( p) = II p II 2 (E.6)

as a candidate Liapunov function.

Let us denote

- 1^T
A(x> = CI - XBM^ B ]

and

A - 1^T
W = BM B

Q

Then

■»/*/»» T T.. T T 2 TZ(A(x)P> = P p - XP Wp - XP W P + X P Wp

= pTp - xpV + W)p + X2PTWTWP < II p II2 - 5X . (W + WT) llpll2 
min

+ X2X (wTW)llpll2 = ^(x)Hpll2
max

where

& T 2 T

?(xl = 1 - 6WW * w > ‘ * WW w>
Since £(0) = 1 and because X . (W + WT) > 0 and X (wTw) > 0 

min max

then one can easily verify that exists such a value x that for

every x £ (0,x3 the following holds :

0 < ?(x) < 1

and consequently

Z(A(X)p) < HpH2 = Z(p) 

for such value of X-

It has now been proved that for x £ (O.xl the function Z(.) 
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described by Eq.(E.6) is the Liapunov function corresponding 

to the system described by Eq.(E . 5 ) .

Therefore, assertion 1 has now been proved.

kUnder a value z of z prescribed by the outer loop, the inner

k kloop generates the solution (x ,p ) satisfying the following 

equations :

A k k k v** T k
M (x - z ) <■ Mz <■ 8 p - Md = 0 (E.7)
Q

and

B(xk - zk) = 0 (E.8)

The optimising control problem solution z = (c,HK (c)) 

satisfies the following equation :

Mz ♦ B*Tp - Md = 0

and

8 J ’ b* = 0

(E.9)

(E.10)

Eq. (E.9) can also be written as ( see EQs. (6.58) and (6.55))

v*T v*
Mz <■ B p - Md = 0 (E. 11)

Conditions (E.7), (E.8), (E.10) and (E.11) constitute a basis 

for further considerations. Using (6.26) and (E.8) we can 

express (E.7) in terms of points generated by the outer loop 

as follows :

, k £ T k ... _+ Mz +Bp - Md = 0 (E. 12)
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k
Multiplying the equality (E.12) by (z

v« k k+1
the fact that B(z - z ) = 0 we obtain

1(vk41 - vk>T. TM l(vk4' - vk) ♦ (vk
- . e

. k k + 1T 
(z - z ) Md

k+1 .T 4. •z ) and utilizing

(E.13)0

Note that owing to (E.11) the following holds :

(zk4' k I T.. , z ) Md k.T ' z ) Mz

which together with (E.13) and (6.61) yield

- 1(vk4'-vk)TL,TM L(vk+,-vk) .
I * 6

/“ TUI . k+1 k(c-v ) L* ML*(v -v )

k — T T k —
+ l(v -c) L/MLJv-c)

2

. . k+1 —. T, Tu, . k+1 —. l(v -c) L* ML*(v -c)
2

k+1 k T TU1 . k+1 k + Kv -v ) L* ML (v
2

-vn)

(E.U)

k —
Since B*L*(v - c) = 0 and BtL*(vk+1 - c) = 0 then (E.U) can

be written in the following form :

2e

+ l(vk-c)TL TM L (vk-c)
— x V *
2 ’

. . k + 1 T, Tm , . k+1 ~- 1(v -c) L M L (v -c) - X V X
2 1

(E.15)

where

•y > 0 (E.16)

Let us notice that due to assumption (6.56) there exists such

A T
M = M + B
y * * *

0
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a value of -y that (Luenberger ( 1 973 ))

(E.17)M > 0
1

Finally, let us define the following function :

A
T( v) 1(v-c)TL TM L(v-c)

— X -y X

2 ’
(E.18)

where *y is chosen to satisfy Eq. (E.17).

The matrix L T has full rank ( see (6.61)).
* Hence, the matrix

positively defined. Therefore, according to (E.15)

and due to assumption (6..64), the sequence {T(zn)} is

decreasing and bounded above by T(z°). This and (E.18) imply

that the sequence {vk} is bounded and consequently the

sequences {zk} and {xk} are also bounded (see (E.8) ). The

matrix 8 * has full rank. Hence, the
VA

matrix B also has full

rank.

yeilds

Therefore, the
VA - 1 VA T - 1

inverse (BM B ]
Q

exists and (E.12)

k ^t , - 1 k+1 k k,
P = [BM B ] [Md - 1M (v - v - Mz ]

Q 7 e

which implies that the sequence (Pk) is also bounded.

Therefore, the k ksequence {z ,p } has at least one convergent

subsequence. Eqs. (E.7) and (E.8) show that a limit of any 

k ksubsequence of the sequence {z ,p } satisfies Eqs. (E.10) and

(E.11). It has been proved, however, that (z.p) is the only 

single point to satisfy these inequalities. Therefore, a proof 

of assertion 2 has now been completed.
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A P P E N D I X  F  -  C O N V E R G E N C E  P R O O F  O F  T H E O R E M  6 . 2  ( C H A P T E R  6 )

T h e  n e c e s s a r y  a n d  s u f f i c i e n t  c o n d i t i o n s  f o r  x a n d  p t o  b e  a  

s o l u t i o n  o f  t h e  i n n e r  l o o p  p r o b l e m ,  c o r r e s p o n d i n g  t o  a

k k
p r e s c r i b e d  o u t e r  l o o p  v a l u e  ( z  , p ^  ) o f  ( z . p ^ )  c a n  b e  w r i t t e n  

a s  f o l l o w s  :

, / A k k ,  k d T . A  k  k . y ? T k
M ^ ( x  -  z  ) +  M z  +  B  ( p i -  p 2  ) +  B  p ^  -  M d  =  0

( F . 1 )
a n d

B ( x k  -  z k ) =  0  ( F . 2 )

A c c o r d i n g  t o  t h e  a s s u m p t i o n s  t h a t  M  > 0  a n d  t h a t  t h e  m a t r i x  B  
Q

h a s  f u l l  r a n k ,  t h e r e f o r e ,  t h e r e  i s  a  u n i q u e  s o l u t i o n  o f  ( F . 1 )

A  k  A  k
a n d ( F . 2 ) w i t h  r e s p e c t  t o ( x  , p ^  ) . H e n c e , t h e  i t e r a t i v e

s c h e m e  ( 6 . 2 6 ) ,  ( 6 . 3 2 )  i s  w e l l  d e f i n e d .

C o n d i t i o n s  ( F . 1 )  a n d  ( F . 2 ) ,  t o g e t h e r  w i t h  d e f i n i t i o n s  ( 6 . 6 0 )

a n d ( 6 . 6 2 ) , c o n s t i t u t e  a  b a s i s  f o r  f u r t h e r  c o n s i d e r a t i o n s .

U s i n g  ( 6 . 2 6 ) ,  ( 6 . 3 2 )  a n d  ( F . 2 ) ,  ( s e e  ( 6 . 6 0 ) ) ,  w e  e x p r e s s  ( p ' 1 )

i n  t e r m s  o f  p o i n t s  g e n e r a t e d  b y  t h e  o u t e r  l o o p  a s  f o l l o w s  :

« ✓ > k —
U t i l i z i n g  ( E . 1 1 )  a n d  t h e  e q u a l i t y  B ( z  -  z )  =  0  w e  t r a n s f o r m

2 2 8



(F.2) to the following form :

z)

k+ B (P2K - P) 0 ( F . 4 )

Multiplying Eq.(F.4) by (zk k+1 T
z ) and utilizing (6.61) we

obtain :

- Kv^'-vVl /” Uv^’-vS
7 ‘ 6

~ k.T, Tu , , k+1 k(c-v ) LM L.(v -v ) * 7 *

(F.5)

The second term in (F.5) can be expressed as :

k “ T, T._ . k . .. k+1 T Tu , . k+1 “1 v -c) L4 M L(v -c) - l(v -c) M L (v -c)
2 7 2 7

. . k + 1 k. T. T . . k+1 k.+ 1 (v -v ) L M L (v -v ) * 0 *
2 w

(F.6)

The third term in (F.5) is equal to

k.k, ~ k. . k+1.T£, ~ k+1.
(p-p2 ) BLt(c-v ) - (p-P2 ) Bl_t(c-v )

. k+1 k.Ts, . k+1 k. A , k k+1.Ts, .“ k. ._
+ <P2 -P2 ) BL*(v "v > (p2 -p2 8L*(c-v ) (F.7)

Let us now compute the
XZ* M

term BL*(c - v ). The equalities

(F.4) and ( F . 11 ) imply that

7 - zk 1M -'m L(vk<1
7 e

k.v )

+

0

— 1 T T v".
+ M^ B (p2 - p)
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and

-U, k+1+ 1BM 8 (p„ 
~ 7 2 e
P

¥?.. - 1 y?T , k
BM^ B (p2

VA

p)

Hence

t k

P2 P2
k*1,T«, . k. . < k) BL*(c - v ) = j_(p2 

e

k+1i p_ BM
2 7

<, k
♦ Kp2

e
P
/ k• (p2

k + 1. Tg - 1 T, k + 1 
P2 ) BM^ B (p2

P2k+1)TBM^"1BT(p2k+1 kA

p)

k+1- l(p2
e

k.- 1 k+ 1p„ ) BM M L(v
2 7 Q

k. V )

k,T~ -1dT. k+1p BM B (po
7 2

kA

P2

< / k+1-l<p2 - 1 . k+1p) BM^ B (p2
VA

p)

k) »

+

. . k+1
♦ JJP2

2

-OT, k+1
B (P2kJ^u -1ST p„ BM B

2 7
( F. 8 )

Finally, let us define the following function :

A
T(v,p ) = 1CM L (v - c)

2 2

* bt(p2 - p)J

♦ 8T(p2 - p)]TM^ 1(M^Lt(v - v)

(F.9)

We shall now utilize a technical idea from Cohen's proof of 
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his Theorem 5.1 (cohen 1980). Namely, applying (F.8) and (F.7) 

and (E.6) to (F.5) we conclude that

k k 
. P

. k k+1 . T T k k+ 1 ,♦ (v - v ) [1LM L - 1L. M LI v - v )
e y 2 1

. k k+1.Tr ~ -1M , ,, k k + 1.+ (p - p ) [IBM M L + _1_BL ](v - v )
2 2 e 7 c e *

P
. k k+1iTr.£.. -1dT . v? -I^T,. k+1 k.+ (p^ -p^ ) [J.BM B - _£BM B ](p - p ) (F.10)

£ 7 2 7
P

According to (F.10) and due to assumption (6.66) the sequence 

k k -1{T(v ,p2 )} is not increasing. Because M^ > 0, (F.9) then

implies that the sequence is bounded below. Hence, 

k k{T(v ,p2 )} converges and consequently

------ > 0
k --> 00

Therefore, (F.10) implies that

k+1 k k+1 .
v ,P2 - P2 )} -------- > 0

and consequently ( see (F.2))

k --> 00

------ > 0
k --> 00

Since B z - b^ = 0 then * *

Bzk - (I - HD2)bt = 0 (F.11)
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k k
Eqs. (F.1) and (F.11) imply that the sequence {z ,p2 } 

converges to a point (z.p^) satisfying the following equations

Mz * 8Tp2 - Md = 0 (F. 12)

and

Bz - (I - HD )b* = 0, or B*z - b* = 0 (F.13)

Because there is only one solution of (F.12) and (F.13) then 

z = z

and

— VA

p2 = p

and a proof of Theorem F has now been completed.

Q.E.D.
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APPENDIX G - CONVERGENCE PROOF OF THEOREM 6.3 (CHAPTER 6)

The separable modified optimisation problem (6.34) can be 

easily transformed to the following equivalent form 

min { L (c,u,a(v),p) - A(v,p)Tc + r(u - u S ) H [ F ( c , u , a ( v ) ) -
(c,u)ecG

- F(cS,us,a(v) ) ]} (G.1)

Let us restrict the analysis to a neighbourhood of the optimal 

point (c.u) such that precisely those inequality constraints 

which are active in this neighbourhood are also active at 

(c.u). Such a neighbourhood exists due to the strict 

complementarity assumption. Let us denote by G.(c,u)< 0 the A

vector of active constraints. Then, necessary optimality 

conditions for (5.1) are

Lr(c,U)(c-u'S(vl'f>|T '
I X(V.p)
I
I 0

* r[F (c.u.a(v))HTp(u - uS)
(c.u)

♦ I H ( F ( c, u , a (v ) ) - F(cS,uS,a(v))] * G (c,u)Tt = 0
O A A

G ( c . u ) = 0 A (G.3)

where 1° = A^c [u] , and pA is a Kuhn-Tucker multiplier. 

Due to assumption (iii) A(v.p) and a(v) are continuously 

differentiable mappings, (see (6.15)), in a neighbourhood of

= A(v,p), a = a(v). Eqs. (G.2) and (G.3) are satisfied for 

. . <A A. . . . s s. .A A A A(c.u) = (c.u) if (c ,u ) = (c.u), v = v and p = p. Due to 
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assumption (i) and (ii) it can be shown using the implicit

function theorem in a similar way as in Theorem 2 in 

s s(Tatjewski 1985), that the solutions ( c , u , p ) ( v , p , c ,u ) of

Eqs. (G.2) - (G.2) are locally unique minimizing points for

s s(6.34), continously dependent on (v,p,c ,u ).

Keeping v and p constant let us denote s* = (c.u.p ), 

s s s s
thus s = (c ,u ,p ). Then Eqs. (F.2) - (F.3) can be treated

* A •

Ass sas defining an operator Y(s.(s ),s ) = 0, when p. is an
* A

auxiliary variable. Hence, formula (6.35) can be written in an

extended form.

s +1 
s* (G. 4 )

The a im of iteration (G.4) is to find a fixed point
*vp

of

Y( . ) ,
A
S* vp (c(v,p),u(v,p),p (v,p)). According to Ostrowski's

Theorem, see e.g. (Ortega and Rheinbodt 1970), local

convergence of (G.4) will be assured if

)H s

where II . II denotess the spectral norm. Using (G.4) we have

Y(jY(s/) + (1 
e
a

and, due to continuous differentiability of Y ,

= 0

where Y.
1

denotes the partial derivative of Y with respect to
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the i-th argument. From (G.5) we obtain

v’(s, )
* vp

e P(s, ,s. ) + (1a *vp *vp (G.6)

where

, A A
P<S..S,)

A
, A A .

Due to (local) continuity of all mappings it is

sufficient to show that Y (s*,s*) is nonsingular and

IIY (s )|| < 1* s to complete the proof, provided that V, p are

sufficiently
_ . A A u A Aclose to v, p , where s^ = s^

* * vp
.AAA. 
(c.u.y ).

Matrices Y
, A A . , A A , ,
(s*,s*) and P(s*,s*) are precisely equal to

matrices M(p) and P(p) from Theorem 2 in (Tatjewski 1985), and 

it was shown there that M(p) is nonsingular and P(p) has all 

eigenvalues real and less than 1 provided r is sufficiently 

large. If v is an eigenvalue of P(s*,st), then due to (G.5) 

there is an eigenvalue of 6. of T(s*) such that

e V. = 6. - (1 - e )ail a

Thus, since v^ < 1 for all i, 5^ e (-1, +1) for all i provided 

e £ (O.e ). where e = 2 . v being the smallesta a a — —— m
i r o/A A i Vm

eigenvalue of P(s ,s ).
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