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ABSTRACT

In the measurement of structural deformation by analytical 
close-range photogrammetry, design is a necessity. The design 
of precision, reliability and sensitivity for photogrammetry alone 
and photogrammetry with measured distances is studied. The 
methods which have been developed for design based on the three 
criteria above mentioned can be used to meet the specifications 
in many deformation surveys.

The problem of optimal design can be classified in terms of 
four interconnected problems: zero-, first-, second-, and third- 
order design. Zero-order design problems have been solved by 
adopting the free bundle adjustment method (inner constraints). 
As a "one-number" indicator of the precision, for sake of 
comparative studies, the mean variance of the object point 
co-ordinates has been adopted. For reliability assessment, the 
redundancy number lying between 0 and 1 has been discussed and 
shown to be advantageous over other measures especially in pre-
analysis studies.

Of primary concern in the design of a network is the 
sensitivity of that network for the detection of point movements 
at some given level of statistical significance.

A new method has been developed dealing with the sensitivity 
of a series of formulated deformation models and successfully 
applied to the different simulated networks.

The main conclusions are that (1) the more cameras used,the 
more precise the network becomes; (2) not only the number of 
cameras but also the configuration of the cameras affects 
reliability in a significant way; (3) the higher the number of 
cameras used,the less sensitive the network is to hypothesised 
deformation; and (4) the addition of distances, measured by the 
conventional methods, to a large degree, does not significantly 
improve the results of the precision, reliability and sensitivity. 
This leads to the advocation of the argument that photogrammetry 
alone, in deformation measurement, can be used without any survey 
measurements.
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NOTATION

Most of the symbols and abbreviations used in this thesis are 

defined at their first usage in the text. Where a symbol has only 

a special localised meaning it is defined in the text and not 

included in this list.

£ vector of observations

X vector of unknown parameters

x° vector of approximate values of x

Ax vector of corrections to x°to give x

A design matrix

£° vector of computed values of the observations,£°=f (x °)

C££ covariance matrix of the observations, C =o?W"^
££ 0

%2 a priori variance factor

a posteriori variance factor

W weight matrix of the observations

P AA
Lxx covariance matrix of the unknown parameters,

Xxx cofactor matrix of the unknown parameters, if

and only if a* = 1

X least squares estimate of x

b vector related to the observations, or vector of 

observational discrepancies, b =£-£°

V vector of corrections to the observations or, vector

of residuals

WV cofactor matrix of residuals

ns number of cameras or photographs

no number of object points
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o2 variance

0 standard error

o2m mean variance of object point co-ordinates

tr trace

Ho null hypothesis

h A alternative hypothesis

a probability of type I error

6 probability of type II error

r redundancy number

c sensitivity parameter

x2 chi-square distribution

F Fisher distribution

E{x} 

xT

expected value of x 

the transpose of x

Q"

Q+

Q"1

a generalised inverse of Q

Moore-Penrose inverse of Q 

standard Cayley inverse of Q

I identity matrix

deg degree

rad radian
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CHAPTER 1

INTRODUCTION

1.1, Background

The photogrammetric network is essentially formed through 

the processes of three-dimensional spatial resection and intersection, 

the resection phase being the determination of the position of the 

camera perspective centres and the attitude of the camera axes, and 

the multi-ray intersections being utilised to determine object point 

positions. Under the most rigorous restitution procedures, these two 

phases are carried out simultaneously using a method termed the 

bundle adjustment.

A photogrammetric network shares many common features with 

three-dimensional geodetic networks in Euclidean space. Therefore 

techniques employed in the design optimisation of monitoring networks 

in geodesy are applicable to photogrammetry.

Due to the complexity of the general problem of optimisation 

of design, it is convenient to consider it as being made up of four 

distinctly different problems originated by Grafarend (1974) of which 

the first two are especially important for this study.

(i) Zero Order Design - the datum problem, i.e. the choice of 

the reference system.

(ii) First Order Design - the configuration problem, i.e. the 

selection of the network configuration.

(iii) Second Order Design - the generalised problem, i.e. the

selection of the weights of observations.

- 11



(iv) Third Order Design - the densification problem, i.e. the 

improvement of an existing network.

The zero order design problem involves the choice of an optimal 

reference system for co-ordinates, given the object points, the 

photogrammetric network and the precision of the observations.

The first order design problem is concerned with the search 

for an optimal network geometry, given both the precision of the 

observations and criteria for the structure of the covariance 

matrix of the unknown parameters.

In the second order design problem the covariance matrix of 

the unknown parametersC"' (C'~ = where is the a priori

variance factor, and is the cofactor matrix of the unknown

parameters and Q** = when c* = 1) and the design matrix A are
XX XX u

known. What is wanted is the weight matrix, W, required for the 

observations in order to achieve the ideal covariance matrix 

(often called criterion matrix) of the unknown parameters.

The third order design problem is associated with the 

improvement of an existing network by alteration of either or both 

of A and W. For example, this type of problem includes the 

densification of an existing network by the addition of new stations 

and/or new observations.

Before seeking any solution to the design problems, the 

required quality of the proposed network should be fixed. The 

most important criteria for a monitoring network are precision, 

reliability, and sensitivity.
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1. Precision This is a numerical assessment of the

influence of the random observational 

errors on the estimated parameters 

(e.g, co-ordinates),

2. Reliability - For a network, reliability can be defined

as its ability to detect gross errors in 

the observations and the determination of 

the effect of undetected gross errors on 

the co-ordinates.

3. Sensitivity - As the main task of monitoring networks is

the determination of movements or the proof 

of the non-existence of movements, the 

ability to test specific deformation models, 

given by the sensitivity of the network 

(first introducted by Pelzer, 1972), is of 

further importance. For computation of 

sensitivity measures, some prediction of the 

movements of interest must be possible.

The last criterion, namely, sensitivity, may be more important 

than either precision or reliability because the sensitivity analysis 

produces results which can easily be explained to, and understood 

by people unfamiliar with the methods and principles of surveying 

and photogranmetry.

Clearly, if a design of a network is required, then there is 

need for investigating the costs. However, if the optimal design 

is sought, a search must be made for the observation scheme which
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will meet the precision, reliability and sensitivity requirements 

with the least cost. Obviously this cannot be undertaken unless 

the proposed scheme is costed. This aspect of detailed cost

analysis is out of the scope of this thesis, although consideration 

is given to it.

There are two approaches to the solution of the aforementioned 

design problems. They can be solved for in an iterative (simulation) 

manner or by a direct (mathematical) solution. Using the simulation 

approach, the designer first solves for using a first 

approximation to a good solution to the problem. Then the 

differences between the computed and desired C" matrix are derived
X X

and the first approximation is updated. This process continues 

until the solution provides a Cjj  matrix close enough to the 

desired one. The simulation technique has been greatly improved 

by the use of computer interactive graphics which allow the designer 

to draw a proposed network on a graphics screen and to have a visual 

picture of how its precision relates to the design specifications 

(e.g. Krakiwsky et al, 1982). Moreover, Cross and Whiting (1982) 

have automated the technique for level networks (Fagir, 1984). 

However, the main disadvantage with this method is that the optimal 

solution may not be achieved in practice, and these systems do not 

employ all the criteria necessary for the design of truly optimum 

monitoring networks. It is important to notice that a network or 

part of it may be precise without being reliable at all (Ashkenazi 

and Crane, 1982).
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The direct approach in which the required information is 

solved for mathematically is intuitively more pleasing. It 

does, however, have several problems. The W matrix (second 

order design problem) that results is generally fully populated 

and is frequently singular. Both of these properties are in 

direct conflict with reality (Krakiwsky et al, 1982). To the 

knowledge of the writer, no mathematical (analytical) optimisation 

has been carried out for geodetic or photogrammetric networks, 

which uses reliability or sensitivity as target functions.

1.2. Objectives and Methodology

Like any engineering project, a close-range photogrammetric 

project should be planned and designed to produce the best solution 

to a problem. The recent sudden collapse of Starra Dam in Italy 

(July 1985) indicates the practical importance of a properly 

implemented monitoring survey.

There is a number of methods and instruments to detect and 

monitor deformation in structures. Some of these instruments, 

inclinometers, extensometers, strain gauges, etc., are built into 

the structures and provide information about their internal changes 

and conditions. The main disadvantages of the use of such 

instrumentation for monitoring deformations are:

1. Costly maintenance.

2, Difficulty of interpreting the large amounts of data supplied, 

and 3. One-dimensional information (e.g, case of extensometers)

is often provided.

- 15 -



On the other hand, ground survey (e.g. triangulation and/or 

trilateration, levelling) are often used to accomplish the data 

gathering needed for monitoring surface structural deformations. 

A number of targets placed on the surface of the structure whose 

positions, carefully chosen, are determined by using one or more of these 

methods. Such a survey is repeated at predetermined intervals 

and in order to quantify the deformations, positions of the targets 

at each time are compared. At least two epochs are necessary.

In general, no statement can be made about the moment of occurrence 

of the deformation. It should be noticed that one- or two- or 

three-dimensional information is the end product of such methods, 

however, they have their limitations especially in the following 

situations:

Firstly, when large number of targets on the structure have

to be recorded.

Secondly, when hazardous or inaccessible positions are to be 

monitored.

Finally, if the rate of deformation is rapid,deformation 

inevitably would occur during the survey.

Consequently, close-range photogranrnetry incorporated with 

a few spatial distances is thought to be the most economical 

alternative to the above mentioned methods. The choice of the 

distances in the object space is made due to the fact that it is more 

easy to measure distances than angles or height differences (e,g. 

in offshore structures or oil extraction platforms).

A photograph near-instantaneously records almost an infinite 

number of points, hence replacing hundreds of angular measurements.

- 16 -



In such a case, three-dimensional information about the structure 

as a whole can be provided and deformation is not likely to occur 

during the relatively short time of photography.

Close-range photogrammetry is based on the basic theoretical 

concept that the photograph, being a perfect plane, is a central 

projection of the object. Implicit in this concept is the 

condition of collinearity of the image point, the projection 

centre, and the object point. In reality, however, this collinearity 

condition is not exactly met because of the following reasons:

1. Lens distortion owing to the fact that when a light ray 

traverses from the object to its image it is deflected by 

the media through which it passes.

2. The image point is displaced from its theoretical

position in a plane because of (a) film shrinkage or expansion, 

and (b) lack of film flatness.

3. Systematic and random errors in data reduction due to the 

instrumental errors of the photogrammetric instruments 

and the human factor.

To overcome such pitfalls, the camera supposed to be in use in 

this pre-analysis study, Zeiss (Jena) UMK 10/1318 available at 

The City University, is a metric camera. Most close-range cameras 

operate with glass plates which are known to be generally stable 

emulsion bases within narrow limits. Therefore, glass plates of 

format (130 x 180 mm) are considered. The best photogrammetric 

solution is attained when all systematic errors are corrected for 

and the random errors are minimised. Accordingly, in the analytical 
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method of close-range photogrammetry, the mathematical procedure 

followed to correct the image co-ordinates for systematic errors 

in image positions on the photograph is ascribed as image 

refinement and the co-ordinates are referred to as the refined 

image co-ordinates which are then used in the collinearity equations 

discussed in Chapter 4,

The free bundle adjustment approach (inner constraints method) 

has been adopted as it provides a very useful way of making a priori 

estimates of precision so that a particular optimum configuration 

of camera positions can be arrived at (Cooper, 1981) and as a 

solution to the zero order design problem.

Such a method has the following characteristics:

(i) a least squares solution

(ii) a minimum norm solution

(iii) minimum trace of the covariance matrix of the

unknown parameters.

In addition, from practical standpoint the following two

points are made:

(a) the object point co-ordinates which are of primary 

importance can be constrained without bothering about 

the camera stations.

(b) the alternative, namely, the fixed (constrained) network 

adjustment is invalid due to the false assumption that 

the selected object points defining the co-ordinate 

system are stable. Especially in deformation analysis 

such stability is questionable,

- 18 -



At the present time, the detection of smaller movements 

has become critical for ensuring the safety of structures and 

in order to satisfy the increased demands placed on the 

monitoring of structures in a more reliable way an attempt is 

made to achieve optimal design of precision, reliability and 

sensitivity for deformation monitoring networks.

The data acquisition in close-range photogrammetry is 

defined by:

1. the camera in use (metric or non-metric).

2, the configuration of data acquisition, or the 

arrangement of the camera stations with respect 

to each other and with regard to the object space 

and it is this, coupled with the number of cameras 

to be used, which is of primary importance in 

this investigation.

The main objectives of this thesis are:

1. The development of efficient algorithms for the optimal design 

of precision, reliability and sensitivity of deformation 

monitoring networks.

2. Study of effect of incorporating survey measurements (slope 

distances) with photogrammetric observations in a 

simultaneous free bundle adjustment.

3. Investigating the relationship between the geometry of the 

network, i.e. its configuration and number of cameras and 

the three design criteria.
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It is important to note that utilising a combination of 

both photogrammery and survey measurements (slope distances) 

proved to give flexibility to the designer so as to obtain an 

acceptable geometry of the monitoring network for the purpose 

in hand. The free bundle adjustment method (inner constraints) 

is used in an appropriate manner in order to give rigorous a 

priori cofactor matrices for both the unknowns and residuals. 

The redundancy number is examined and shown to be a very successful 

tool in assessing the reliability of the networks and has a number 

of advantages especially in pre-analysis studies.

A new method for the design of sensitivity has been developed 

through a series of simulated deformation models where displacements 

of 10 mm are to be detected, with 95% confidence, by the simulated 

networks. These models are:

1. Settlement, expansion and deflexion models in the cube 

case study.

2. Settlement and deflexion models in the bridge case study.

3. Settlement and drift models in the dam case study.

The method proved to be very successful and gave important 

findings concerning the sensitivity analysis of structural defoliations. 

These findings can be summarised as follows:

(i) The more cameras used the less sensitive the network 

would be,

(ii) The networks are found to be least sensitive to a single 

point movement and most sensitive to multiple point 

displacements.
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(iii) Effect of including slope distances on the settlement 

model is insignificant in the cube case study while 

they slightly degrade the sensitivity in the bridge 

case study.

(iv) Incorporating slope distances has not significantly 

increased the sensitivity when using the deflexion and 

expansion models (cube case study) whereas for the 

deflexion model in the bridge case study the sensitivity 

has been slightly decreased.

Finally, the developed algorithms are successfully tested 

using a total of seventeen case studies.

1.3. Scope and Organisation

Chapter 2 outlines a critical review of some of the recent 

applications of close-range photogrammetry to engineering and 

structural deformation studies. Such applications cover large, 

medium, and small, sized structures.

Chapter 3 reports on the design criteria specified as precision, 

reliability and sensitivity. Among the precision criteria, the 

mean variance of object space co-ordinates is chosen to represent 

a global indicator of precision of the different configurations. 

To represent the reliability, the redundancy number is chosen 

besides other indicators.

In Chapter 4 the development of the mathematical model for 

the simultaneous adjustment of the photogrammetric and survey 

measurements is outlined. Slope distances were selected to be 

incorporated with photogrammetric data.
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To demonstrate the suitability of the mathematical procedures 

developed, their application to simulated deformation analysis of 

a cube are addressed in Chapter 5.

The three criteria were computed from data, some of which are 

real and others are fictitious, acquired through application to 

a medium-sized bridge in Chapter 6.

Chapter 7 encompasses the results of the application of the 

design criteria to a typical concrete dam. Three different 

configurations are discussed in the photogrammetric mode only.

Chapter 8 presents the conclusions drawn from the investigation 

and suggestions made for future research.

The appendices are concerned with the properties of generalised 

matrix inverses and the development of the inner constraints approach.



CHAPTER 2

REVIEW OF SOME RECENT CLOSE-RANGE PHOTOGRAMMETRY

APPLICATIONS TO ENGINEERING

2.1. Introduction

Photogrammetry (as derived from three Greek words: photos = 

light; gramma e something drawn or written; metron = to measure) 

(Ghosh, 1979) has been defined by the American Society of 

Photogrammetry as "The art, science and technology of obtaining 

reliable information about physical objects and the environment 

through the process of recording, measuring and interpreting 

photogrammetric images and patterns of electromagnetic radiant 

energy and other phenomena". The photographs are commonly aerial 

photographs, before the advent of remote sensors, and are geometrically 

very close to an ideal central projection (Torlegard, 1980).

The classic and still the major application of photogrammetry 

is in aerial mapping wherein a sequence of stereoscopically viewed 

pairs of overlapping photographs taken from an aeroplane is used 

to generate topographic maps.

2.2. Close-range photogrammetry

Close-range photogrammetry is covered by the definition 

aforementioned but lies outside the specialised field of map 

production. Close-range means that the object to camera distance 

is limited. Some advocate 300 m as a maximum limit (Karara, 1985).

In close-range photogrammetry, not only central projections
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(bundles and pencils of rays) are used for mathematical models of 

image formation, but also parallel projections, scanner generated 

images and others. Not only is camera film used for the sensor 

system but also X-rays, scanning and transmission electron 

microscopes, photodiode arrays with analogue or digital output 

are also suitable for photogrammetric measurements.

Time is the fourth dimension in close-range photogrammetry 

when detection of deformation of structures is required.

In any photogrammetric process, there are two major phases:-

(a) Acquiring data from the object to be measured by 

taking the necessary photographs.

(b) Reducing the photos into plans, profiles, sections 

or spatial co-ordinates or combinations of these.

Thus the total photogrammetric system can be subdivided into 

two major divisions: data acquisition and data reduction.

The data acquisition system is concerned with procuring what 

may be termed as the raw data or raw information, i.e. necessary 

and suitable photography. Whereas the data reduction system is 

concerned with converting the raw data or photoqraphs into a final 

form suitable for the intended use of the data. The final data 

form may be analogue such as map or digital such as printed spatial 

co-ordinates.

In this research, the data acquisition tool is the metric 

camera (UMK 10/1318) produced by Zeiss (Jena).
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2.2.1. Analogue method

The introduction of stereoscopic measurements at the turn of 

this century marks a significant development in photogrammetry. 

The application of its principle led to the development of plotting 

instruments. Stereometric cameras are a pair of cameras rigidly 

attached to a fixed base with the optical axes of the cameras 

being parallel to each other and both perpendicular to the base. 

So, the stereometric camera - plotting instruments systems were 

manufactured. The arrangement, then, was that the photographs 

taken with the stereometric camera were used in the plotting 

instruments for a reconstruction (or restitution) of an optical 

model of the object space from which measurements were taken, or 

plotting done, directly on the instruments.

When the optical axes of the two cameras are both perpendicular 

to the base, the photography obtained is referred to as the "normal 

case". Due to their construction, stereometric cameras are 

restricted to taking only "normal case" photographs (Figure 2.1).

The normal case, however, has the disadvantage that the 

accuracy of the co-ordinate parallel to the direction of the camera 

axes is three to four times less than the co-ordinate perpendicular 

to this direction (Marzan and Karara, 1976). It suffices for some 

applications but as accuracy requirements are more and more stringent, 

means have to be sought to at least equalise accuracies in the three 

dimensions. Furthermore, the traditional stereoplotting instruments 

are severely limited in the principal distance and size of photo-

format that can be used in them (Ibid).
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Figure 2.1.

object space
Data acquisition set-up.. .. the normal case of photogrammetry

Camera
No.l

target array

Figure 2.2. Convergent photography.
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2.2.2. Analytical methods

Breakinq away from the two cameras being rigidly attached 

to a fixed base was inevitable. This permitted the introduction 

of bigger base separation between the two cameras, and the increase 

of the base-to-object distance ratio. Parallel to this development 

came the investigation of introducing convergence between the 

camera axes (Figure 2.2.). However, the latter development 

precluded the use in many cases of the conventional stereoplotting 

instruments because these were primarily designed for the normal 

case of photography, or for slight variations of the normal case, 

and it is often not possible to accommodate the focal length of 

a given camera in the available plotting instrument.

The availability of comparators, then, made possible the 

utilisation of the analytical method of data reduction. The 

analytical method was not restricted by the amount of convergence 

between the camera axes, the size of the photo format, nor the 

principal distance used, and therefore was more flexible than the 

analogue method.

In addition, the analytical method permitted the application 

of corrections forknown systematic errors in the photographs which 

could not be conveniently done in the analogue method. A great 

improvement in accuracies was therefore, realised (Marzan and 

Karara, 1976).

Usually in close-range photogrammetry the search is for great 

flexibility and homogeneous accuracy so the determination of 

dimensions of the object photographed should be an analytical 
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solution applying the least squares method rather than by making 

use of optical and mechanical devices in analogue methods. The 

use of photogrammetric data for further calculations, data analysis, 

and data banks has also promoted analytical methods( Torlegard, 1980).

2.2.2.1. Modification of methods used for air photographs

Cooper (1981) shows that when the close-range photogrammetric

task resembles in several ways the normal case for topographic 

mapping from air photographs, it may be satisfactory to use basic 

functional models that have been developed primarily from aerial 

triangulation and to modify them to take account of the particular 

differences brought by close-range photography. One of the major 

changes from the methods of analytical aerial triangulation was 

the use of full terms in the rotation matrix of orientations of 

one camera axis in relation to the next.

2.2.2.2. Direct Linear Transformation (DLT) method

Abdel-Aziz and Karara (1971) developed an approach for data 

reduction not requiring the classic elements of orientation 

(principal point and principal distance). This approach was 

placed on a more rigorous foundation by Bopp and Kraus (1978). 

Such a method is particularly suitable for non-metric cameras.

The approach involves a direct linear transformation from 

comparator co-ordinates into object-space co-ordinates. Since 

the image co-ordinate system is not involved (on the contrary with 

metric camera) in this approach, fiducial marks are not needed.
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DLT is a direct solution and does not involve initial 

approximations for the unknown parameters of inner and outer 

orientation of the camera.

The basic equations used in thismethod are (Karara, 1972):

, *ix + V + £3z + *4
M + W + £nz +1

= 0

(2.2)

where x, y - comparator co-ordinates of an image point

X,Y,Z - object-space co-ordinates of the point

" tranformation coefficients

Ax,Ay - errors due to lens distortion and film 

deformation; the mathematical modelling 

of which by power series involves at least 

3 coefficients (a^^^).

The number of unknowns in this case is 14(£-|,£2........^]1*

a-] ,a2,a3). From the knowledge of at least 7 control points and 

their comparator co-ordinates, the 14 unknowns can be determined.

This approach, DLT, which is originally tailored to reduce 

the data acquired via non-metric cameras,cannot be applied when 

higher precision, as in the case of deformation analysis, is 

required. Lenses of the non-metric cameras are designed for 

high resolution at the expense of high distortion which results 

in excluding the restitution with analogue plotters. Unlike 
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metric cameras, most of the non-metric cameras operate with small 

format film which has questionable dimensional stability particularly 

because no flattening mechanism is used. The parameters of 

orientation in DLT technique are not physical characteristics of 

photogrammetry, so if their estimates are sought, they have to be 

found out through additional computations. Finally, the non-metric 

cameras, confirmed by Karara (1980) cannot completely replace 

metric cameras in close-range photogrammetry.

2.2.2.3. Sequential Adjustment method (Fixed number of unknowns)

The two methods described above include the assumption that 

the co-ordinates of the control points are much more accurate than 

the inherent accuracy of the photogrammetry.Therefore in the least 

squares estimation of the parameters of the transformations, the 

stochastic models include the assumption that the values of the 

co-ordinates of the control points are fixed, error free quantities 

(Cooper 1981). Such an assumption is seldom justified in close-

range photogrammetry of objects that are essentially three-dimensional.

One important advantage of sequential adjustment is that the 

observer can, after a few measurements, examine the solution and 

then take more measurements to improve the results if necessary.

Following Cooper (1981), suppose that the first sequence is to 

estimate A from p observation equations and associated weight matrix:

V • VP + bP : WP <2-3)
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T h e  l e a st s q u ar e s s ol uti o n i s:
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( 2. 4)
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(2.9)

Equation (2.9) after reduction becomes:

1 - <ApTw pAP + VW’1 (APTw pKP + AqTwqbq>

(2.10)

Equations (2.7) and (2.10) are identical. Hence,the result 

of making an adjustment in two sequences is the same as that which 

would be obtained from a simultaneous adjustment.

2.2.2.4. Bundle Adjustment method

The photogrammetric network is essentially formed through the 

processes of three-dimensional spatial resection and intersection. 

The resection phase being the determination of the position of the 

camera perspective centres and the attitude of the camera axes, and 

the multi-ray intersections being utilised to determine the object point 

positions. Under the most rigorous restitution procedures, these two 

phases are carried out simultaneously using a method termed the bundle 

adjustment. System self-calibration is also afforded using this 

technique when the model is extended to include inner orientation 

parameters.

By virtue of the bundle adjustment method, one can reconstruct 

what is, in effect, a three-dimensional model of an object from 
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measurements made on two or more photographs of the object. The 

difference between the self-calibration technique and other methods 

is that self-calibration attempts this modelling without requiring 

any additional observations to be made specifically for the purpose 

of systematic error compensation.

The bundle method is based on the collinearity of the object 

point, the perspective centre and the imaged point.

Granshaw (1980) suggests that convergent multi-station photography 

(bundle method) may permit the recovery of the inner orientation 

elements, even if there are no control points, because of much lower 

correlation between the interior and exterior orientation elements. 

He concludes that the bundle adjustment is a powerful computational 

technique which provides the necessary flexibility which is essential 

in the various situations that may be encountered when co-ordinating 

engineering and industrial structures by photogrammetric methods.

2.2.2.5, Free adjustment method

The concept of inner accuracy introduced by Meissl (1962) allows 

the effect of an arbitrary set of parameters to be filtered out of 

a covariance matrix. If the filter parameters are selected to be 

rotational, translational and scaling parameters, then the inner 

accuracy refers to the precision of a free network adjustment 

(Granshaw, 1980).

Consider a bundle adjustment where the shape of an engineering 

structure is sought, the filter parameters are seven (in three- 

dimensional space). The shape is determined by purely photogrammetric 
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measurements without control. In a free network adjustment an 

attempt is made to determine a solution vector and a covariance 

matrix when the system of normal equations is singular due to 

rank defect. Any solution vector will be biased, statistically, 

but as only the shape defined by the co-ordinates, and not the 

co-ordinates themselves, is important, this is not of significance.

In a free network adjustment a solution where the trace of the 

covariance matrix is a minimum is chosen. The geometrical 

interpretation of the minimum trace is that there should be no 

overall translational, rotational or scaling changes from the 

approximate values. Thus precision estimates are referred not 

to particular (arbitrary) points, but to the network of points as 

a whole.

Despite the fact that one of the earliest applications of a 

free network adjustment was to the relative orientation of a 

photogrammetric model (Meissl, 1965), the method has received most 

attention in connection with geodetic networks, although one notes 

the wider concept of inner accuracy has been used by Ebner (1974) 

and Gruen (1976) in a photogranmetric context (Granshaw, 1980). 

The results can be determined by transformations on arbitrary 

covariance matrices (Meissl, 1962,1964), generalised inverses 

(Mittermayer, 1972), and zero eigenvalue concepts (Mittermayer,1973) 

amongst others. Other useful summaries are given by Ashkenazi (1973) 

and Welsch (1979). Details of generalised inverses are given in 

Appendix A.
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2.2.3. Semi-Analytical Method

This approach is similar to the semi-analytical approach

in aerotriangulation. A stereoscopic pair of photographs is 

mounted in a stereoplotter, and relative orientation is performed 

to construct a three-dimensional optical model of the object 

being mapped. The spatial co-ordinates of any discrete point 

in the model can be measured with respect to the co-ordinate 

system of the stereoplotter.

Linking of the overlapping models and absolute orientation 

to an object space co-ordinate system can be performed analytically 

using the appropriate analytical technique.

Since a stereoplotter is used for the construction of any 

optical model, the type of cameras to be used and the geometric 

configuration of the photography must be restricted by the mechanical 

limitation of the stereoplotter (Wong, 1975).

2.4. Merits and drawbacks of close-range photogrammetry

In comparison with other measuring techniques in general and 

to surveying in particular, close-range photogrammetry has many 

advantages:

(i) the object is untouched during measurement (non-contact)

(ii) the data acquisition is rapid

(iii) the photographs are a permanent record

(iv) not only rigid and fixed objects but also deformation and 

movement can be measured, especially inaccessible or 

hazardous objects.
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(v) time dependent parameters such as velocity, acceleration

and frequency can be determined

(vi) photography and evaluation are flexible and can be

optimised to the project requirements as, for example, 

precision and reliability

(vii) analytical methods provide a means of integration with 

succeeding calculations and data handling.

In order to make photogrammetry more effective and better 

suited to new fields of application, there are some drawbacks 

to be overcome.

(i) the results of the measurement are not immediately at hand, 

because time is needed for processing the photographs and 

for evaluation

(ii) it must be possible to photograph the object

(iii) errors during photography and development of the film/plate 

can ruin the whole measuring project, so expertise is 

requi red.

2.5. Representative examples of applications

An attempt has been made to categorise the applications 

according to the size of the structure. Cheffins and Chisholm 

(1980) chose an arbitrary subdivision which classifies structures of 

20 m to over 200 m as large, 2 m to 20 m as medium-sized and 0.2 m 

to 2 m as small.
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2.5.1. Large structures

Examples of photogrammetric measurements of structures in 

the range 20 m to 200 m or larger are generally to be found in 

the Civil Engineering branches of industry, although there are 

notable exceptions such as in the shipbuilding industry. Very 

often, the engineer chooses to use those methods and equipment 

with which he is familiar, unless the alternative offers distinct 

advantages. If photogrammetry is just as good as, but not better 

than, an established technique, it is unlikely to be adopted because 

it requires expertise and equipment which are relatively unusual.

(a) Rockfill Dams

1. The Building Research Station and Hunting Surveys Ltd. were 

jointly responsible for the photogrammetric study of the 

constructional displacements of the rockfill dam at Llyn Brianne 

in mid-Wales (Atkinson, 1976). The dam, when completed, was 

300 m wide and 90 m high (Cheffins and Chisholm, 1980). A Wild 

P30 phototheodolite (principal distance 163.65 mm) was used to 

provide stereoscopic coverage at eight different stages of 

construction, of both upstream and downstream shoulders. Control 

points were fixed on the valley sides by theodolite observations. 

Eighty targetted points at various levels of the dam as the 

construction progressed were established. Three-dimensional 

displacements were determined to an average accuracy of 0.05 m 

according to Moore (1973).
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2. Brandenberger (1974) used six camera stations to obtain

16 photos of the downstream face of a rockfilled dam (at Outardes, 

Quebec, Canada). The photographs were taken not to provide 

conventional stereomodels by normal case photography but to give 

adequate coverage of the area of interest, given the limitation 

of the topography. Geodetically surveyed control points (including 

the camera positions) were used as constraints in the estimation 

of co-ordinates of the photogrammetric points. The standard error 

of the positions of photogrammetrically determined points was 

found to be of the order of 28 mm (vector) over a dam length of 

about 240 m (or 1/8600), relative to the control.

(b) Buildings and Structural models

1. Cooper and Shortis (1980) used stereophotogranmetry with 

relative and absolute orientation for measuring two large structures; 

elevation of south transcept of St.Paul's Cathedral, London, and

a tower crane under load. They concluded that the deformation was 

predominantly in the XZ plane, where the X-axis was roughly parallel 

to the facade of the building and the Z-axis was vertically upwards. 

Added to that, the accuracy can be improved by: first, the 

disposition of the cameras so as to get stronger geometrical 

configuration. Secondly, the case study of the crane, the crane 

has to be closer to a background where control can be better 

di stributed.

2. Nooshin and Butterworth (1974) describe experimental investigation 

of a 1:50 scale model of a prestressed cable roof (Atkinson, 1976).

The roof consists of a number of suspension cables which are connected 
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at one end to a reinforced concrete spatial beam and at the other 

end to a flexible cable which is in turn supported by two pin-ended 

steel pylons. A family of prestressing cables is arranged 

orthogonally to the suspension cables. The object of the 

investigation was to check the preliminary design and to provide 

information for the final design of the cable roof. Stereometric 

photography of the model and five premarked control points was 

taken with an Officine Galileo camera mounted on the laboratory 

ceiling above the model. The co-ordinates of all points of cable 

intersection were determined with a standard deviation of -0.1 mm in plan 

and -0.3 mm in elevation.

( c) Cooling Towers and Storage Tank Calibration

1. Chisholm (1977) used a Wild RC5 A aerial, camera (nominal 

principal distance 152 mm) to check for any distortion in the shape 

of three cooling towers, owned by Imperial Chemical Industries Ltd. 

(ICI) in north-east England, from their original design shape.

The use of a large format (230 mm x 230 mm) allowed fairly large 

scale photography of the complete extent of each tower, the tallest 

of which is approximately 115 m high. For each of the first two 

towers seven overlapping stereopairs were taken. However, for 

the third one 14 overlapping stereopairs had to be taken at 

distances varying from 25 m to 40 m. Classical triangulation 

methods, using a theodolite from a series of baselines around each 

tower, established the co-ordinates of at least six identifiable 

points on each stereoscopic overlap in a local origin Cartesian 

system. Contours defining the shape of the towers were plotted; 
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these were compared with the theoretical design contours. The 

maximum deviations were of the order of 0.3 m. The subsequent 

strength analysis usingthesedata from comparisons showed that 

one tower would have to be demolished, one would survive with 

appropriate strengthening, while the third tower was relatively 

free from deformation.

2. Papo and Perelmuter (1980) used free network analysis of 

storage tank calibration. A control network of 12 points 

symmetrically located with respect to the tank bottom, together 

with the bottom centre was established. These points were used 

as camera stations as well. At height 14 m, 160 points were 

targetted to be photographed. They came to conclusion that the 

residuals of a free network adjustment can best disclose the 

existence of certain unmodelled systematic effects.

(d) Shipbuilding

Because of the need to make very large vessels, they are 

sometimes built in two separate parts owing to the limited size 

of existing berths. Cheffins and Chisholm (1980) have reported 

that Newton (1974) used a Galileo Santoni (nominal focal length 

150 mm) with a workable format area of 110 mm x 160 mm to assess 

the quality control in shipbuilding using photogrammetry. A 50 m 

x 30 m cross section of the vessel was photographed with two 

overlapping photographs, each comprising 13 exposures, for each 

section of the ship. 27 premarked points were used as control 

established by traditional triangulation from a measured baseline.
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Three-dimensional photogrammetric measurement was carried out in 

a Wild A7 stereoplotter. Some of the photogrammetric measurements 

were repeated using a stereocomparator and the accuracy in 

co-ordinate position within the plane of the mating surface was

3 mm.

2.5.2. Medium-sized structures

(a) Bridges

1. Christensen (1980) used stereophotogrammetry for observing 

displacements of a bridge loaded to failure. Vertical displacements 

were checked by comparison with similar results achieved by 

levelling to a series of rods hung up under the bridge. There

was accordance between the two methods. The results of strain 

were inconsistent (Christensen, 1980) because the camera stations 

and control points were lying almost on the same circle.

2. Veress (1980) used photogrammetry for dimensional control 

of a curved segmental concrete bridge. He used control survey, 

both distances and angles, and adjusted a horizontal network by 

trilateration. He reached a conclusion that one of the most 

influential factors on achievable accuracy is the precision of

a control network.

3. Cheffins and Chisholm (1980) used a Zeiss (Jena) phototheodolite 

(nominal focal length 162 mm) and format of 180 mm x 130 mm to 

photograph a low skew brick built arch carrying a commuter railway

by an armoured lining which would be prepared so that it closely 

followed the distorted contour. 16 premarked reference points 

were established in the abutments at the springing of the arch and 



signalised with white paint. Stereoscopic photogrammetry achieved 

by setting up 4 camera stations (2 at each end of the arch). 

Complete profiles, which include the arch, the abutments and the 

roadway, were plotted photogrammetrically at a scale of 1:12.

(b) Marine propeller

A study conducted by Cooper (1979) to see how far photogrammetry 

could be used to determine how the profiles of the finished propeller 

blade surfaces deviate from the design dimensions. The propeller had 

six blades and was about 7.5 m in diameter. The camera used was 

Zeiss (Jena) UMK (nominal focal length 100 mm) and usable format 

size of approximately 120 mm x 165 mm. Stereoscopic photography 

was taken of both sides of the object, which was contained within 

a single overlap on each view. Four external markers were placed 

on the floor surrounding the propeller, and these were co-ordinated 

by steel band and precise level to an estimated accuracy better than 

1 mm. 16 premarked control points had been defined on the aft face 

of the propeller and were measured with a cylindrical polar co-ordinate 

measuring device to an estimated accuracy of 2 mm to 3 mm (r.m.s.) 

(Cooper, 1979).

(c) Measurement of Car body

Cooper (1979) studied the potential of applying photograninetry 

to the measurement of a car body. He used 39 premarked control 

points on the car body, their three-dimensional co-ordinates were 

measured by the manufacturer using a conventional mechanical probe 

with readings taken from steel scales. A strip of 6 photographs 

was obtained by setting the camera (UMK 10/1318) successively at 
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about 0.75 m intervals along a line roughly parallel to and 

about 1.5 m from the side of the car. Block adjustment was 

carried out using only 13 of the 39 measured points. The other 

26 were regarded as check points. The r.m.s. in the longitudinal 

direction was 0.77mm, 0.34 mm in the height, and 1.88 mm in the 

transverse direction. He attributed the unexpected figures of 

accuracy to inherent random errors present in the measurements 

of the control which were greater than the internal random errors 

in the photogrammetry,

2.5.3. Small structures

The models of chemical plants are of crucial importance in 

both design and maintenance. These plants in general consist of 

pipelines of different dimensions and are mainly of complicated 

structure. A survey according to conventional methods often is 

impossible or possible only with extreme difficulties (Jaensch, 1979).

I CI used a 1000 mm x 750 mm x 500 mm model which represents 

the pipe system they need (Cheffins and Chisholm, 1980). The 

model is assembled in 24 sections which could be separated to gain 

access to the inside. Stereoscopic photography was taken, using 

a specially made Galileo Santoni camera of focal length 75 mm, from 

distances as close as 500 mm and complete cover of all sections of 

the model might need 50 to 100 stereopairs. The pair of photographs 

were set in the plotting instrument Galileo Santoni Stereosimplex IIB 

to obtain an oriented scaled model after a small adjustment. 

Design drawings of pipe layouts in both plan and elevation were 
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plotted simultaneously at 1:16 scale.

All the foregoing applications are typical examples representing 

the use of close-range photogranmetry in engineering and monitoring 

of large structures' deformations. The methods used in these 

examples differ from each other in the way of formulation of the 

adjustment technique. On the other hand, such methods are similar 

in having no proper or rigorous a priori planning. For most of 

the applications mentioned before, if a prior design criteria mostly 

represented by precision, reliability, and sensitivity had been 

performed, better results could have been attained in more economical 

ways.

Therefore, such criteria, addressed in detail in the next 

Chapter (Chapter 3) are taken into consideration as grounds for 

this investigation.

Rather than using the stereophotogrammetry or nearly vertical 

photography techniques, the free bundle adjustment procedure is 

adopted as it leads to more homogeneous and most precise specifications 

which are to be met in monitoring deformation of structures.
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CHAPTER 3

OPTIMAL DESIGN OF NETWORKS

3.1. Network Design

By network optimisation it is meant the design or reconnaissance 

of such networks subject to criteria derived from and determined by 

the purpose of these networks (Baarda, 1977),

In planning an optimal multi-station photogrammetric network for 

some special purpose, such as for monitoring structural deformation 

or for determining the precise shape characteristics of an object, 

due attention must be paid to the quality of the network design.

Quality is usually expressed in terms of the precision and 

reliability of the photogrammetric network (Fraser, 1984) but it 

also may include aspects of economy and testability (Dodson, 1983).

Alberda (1980) hints that in the design of a network, although 

powerful mathematical techniques are available, it does not seem 

possible so far to optimise all aspects in a unified model. Baarda's 

criterion theory for precision gave for the first time a consistent 

framework for decisions to be made by geodesists when planning a 

network (Molenaar; personal communication).

Following the widely accepted classification scheme of Grafarend 

(1974) which may be thought of in terms of the fixed and free 

parameters of the least squares adjustment to be carried out, the 

interconnected problems of network design can be identified as:
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(i) Zero Order Design : the datum problem.

(ii) First Order Design : the configuration problem.

(iii) Second Order Design : the weight problem.

(iv) Third Order Design : the densification problem.

3.1.1. Zero Order Design

The datum problem involves the choice of an optimal reference 

system for the object space co-ordinates, given the photogrammetric 

network design and the precision of the observations. That is, 

for fixed A, the design matrix, and W, the weight matrix, one usually 

seeks, through the selection of an appropriate datum, an optimum 

form of the cofactor matrix of the unknown parameters, Q~.

It is usually required to express the spatial position of 

object points within a three-dimensional XYZ Cartesian co-ordinate 

system, however the observations (photo co-ordinates, and possibly 

object space distances, and angles) do not contain any information 

about the datum of this co-ordinate system, other than perhaps its 

scale if spatial distances are observed. Thus, a datum must be 

defined by the imposition of constraints which establish the origin, 

orientation and scale of the XYZ reference co-ordinate system.

Parameters of the shape of network, namely distance ratios 

and space angles, are determined solely as a function of the 

observations, and they are invariant with respect to changes in the 

datum, or zero-variance computational base. On the other hand, 

object space co-ordinates relate to the datum, and thus when the 

minimal constraints (Appendix B) are changed so one can expect the 
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solution vector and the cofactor matrix of the unknown parameters 

to be altered.

In situations where the datum is arbitrarily assigned as in 

the case of relative deformation networks in which all points are 

assumed unstable, zero order design can be thought of as being the 

process of establishing a particular zero-variance computational 

base. Such a base for a given network geometry yields a cofactor 

matrix of the unknown parameters (exterior orientation, object
A A

space co-ordinates and additional parameters, if any) which is "best" 

in some sense (Fraser, 1984).

The solution for x which is optimal in the sense of minimising 

the mean variance cj * of the object point co-ordinates (which are of 

main concern) is provided by a free network adjustment. Such an 

approach, either using the Moore-Penrose inverse technique or the 

method of inner constraints (Blaha, 1971) yields a minimum Euclidean 

norm of the object point co-ordinate corrections (and hence for the 

co-ordinates) as well. The latter technique need not apply to all 

object points, and the imposition of this implicit minimal constraint 

may simply refer to a chosen subset of the target array.

According to Fraser (1984), the common, computationally simpler 

approach of "fixing" object point co-ordinates to remove the seven 

network defects of translation (three), rotation (three), and scale 

(one) will yield a mean variance a* for the object points, which is 

larger in magnitude than that obtained from the inner constraints 

adjustment. Difference in the precision of functions of unknown 

parameters (e.g. distances) derived from a subset of x corresponding 

- 47 -



to object point unknown parameters, may, however, be insignificant 

from a practical point of view.

An S-transformation (Baarda, 1973) could be used (Fraser, 1985) 

to transform both and its corresponding cofactor matrix 

relating to one zero-variance computational base into their 

corresponding values for any other zero computational base including 

minimal constraints. For example, after the cofactor matrix of 

object point XYZ co-ordinates is computed for a datum of seven 

explicitly fixed co-ordinate values, the corresponding solution for
(2)Q-/ is obtained simply by applying an S-transformation.

A A

In close-range photogrammetric networks with dense target arrays, 

where a full cofactor matrix may not be sought, it is often 

computationally more practical to re-adjust the network with a 

different datum rather than applying an S-transformation as the 

latter (Strang Van Hees, 1982) does necessitate the computation of 

a full matrix.
A A

3.1.2. First Order Design

The configuration problem is concerned with the search for an 

optimal network geometry, given both the precision of the observations 

and criteria for the structure of the covariance matrix of the unknown 

parameters. In other words, this procedure entails the finding of 

an optimal design matrix A given weight matrix W subject in certain 

cases to satisfying criteria imposed by an ideal covariance matrix.
(2)For example, a criterion may be that ' has a structure which 

A A

is both homogeneous and isotropic, i.e. all point error ellipsoids 

are spheres of equal radius (Fraser, 1984).
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The more flexible and seemingly the simplest part of network 

design, first order design is the most difficult problem. There 

are constraints on the choice of the positions of the points as 

these are largely dictated by topography, geology, accessibility, 

and aesthetics (Murnane,1984). The locations of the target array 

points are determined by engineering requirements.

Although its principal component is imaging geometry, first 

order design also embraces such aspects as camera and target point 

locations and camera selection.

The most common approach to first order design is through 

network simulation (Fraser, 1984) and such a process is adopted in 

this investigation as pre-analysis is undertaken.

(a) Imaging geometry

Simulations conducted by Granshaw (1980) have clearly indicated 

the significant overall accuracy enhancement that can be anticipated 

through the use of convergent rather than "normal" photography 

(Chapter 2).

In numerous practical applications, the site of a photogrammetric 

survey can impose restraints on the selection of an ideal imaging 

geometry, especially in industrial photogrammetry.

(b) Number of Camera Stations

Depending on the imaging geometry adopted, the use of additional 

camera stations can be expected not only to improve precision, but 

also significantly to enhance the network's reliability. Additional 

imaging rays increase the redundancy in a spatial intersection, and 

also alter the intersection geometry.

- 49 -



Fraser (1984) suggests that more attention should be paid 

to the imaging geometry, rather than concentrating too much on 

obtaining a coverage of a certain arbitrary number of photographs.

(c) Image scale and focal length

According to Fraser (1984) there is a linear relationship 

between object point precision and imaging scale. Concerning the 

focal length of the taking camera, as it increases, so the geometry 

of multi-ray intersections tends to become more homogeneous, thus 

leading to a reduction in the range of object point standard errors. 

Kenefick (1971) proposes that long focal length cameras are less 

subject to the critical influence of film unflatness, however, 

the choice of focal length is most often limited by both camera 

availability and the physical layout of the survey site.

3.1.3. Second Order Design

The second order design is defined as the problem of finding 

optimal weights for the observations which are projected in a 

geodetic or photogrammetric network with given point positions 

(Schmitt, 1978). This problem is characterised by an unknown W 

and fixed A and Q-~, i.e. by a solution to the matrix equation:
A A

(ATWA)‘ = Q- (3.1)

The generalised inverse ( )” becomes either ( )+, i.e. Moore-Penrose

inverse for a minimum norm solution of a free network or ( )"\ i.e.

standard Cayley inverse for a constrained network (Schmitt, 1980). 

In the area of geodetic networks, considerable research attention
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has recently been directed to the analytical solution of equation 

(3.1) to mention but few; Cooper and Leahy (1978), Cross and Fagir 

(1982), Fagir (1984), Grafarend (1977), and Schaffrin (1977).

3.1.4, Third Order Design

The densification problem concerns the question how best to 

improve an existing network by additional stations and observations. 

Regarding the photogrammetric network optimisation, Fraser (1984) 

considers the densification problem is solved at the first order 

design stage due to the fact that object point precision is largely 

independent of target array density in networks with "strong" 

geometries. This problem can be considered as a special case of 

the first and second orders.

3.2. Quality of networks

The photogrammetric network is essentially formed through the 

process of three-dimensional spatial resection and intersection, 

the resection phase being the determination of the position of the 

camera perspective centres and the attitude of the camera axes, and 

the multi-ray intersections being utilised to determine object point 

positions. These two phases are carried out simultaneously in the 

case of bundle adjustment.

The quality of a geodetic or photogrammetric network is 

characterised by quantitative assessment of the influence of 

observational errors on the estimated co-ordinates and derived 

functions. If these observational errors are of known distribution 

(often normally distributed),then quality is appraised by the size 
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of errors that can be anticipated with a certain probability.

The errors in quantitative measurements can be broadly 

classified into the following four types (Slama, 1980):

(i) blunders

(ii) constant errors

(iii) systematic errors, and

(iv) random errors.

Therefore quality could be assumed with regard to the following:

(i) Precision

This is a numerical assessment of the effect of the random 

observational errors on the final results, e.g. co-ordinates.

(ii) Rellability

A definition may be given to reliability as the ability of a 

network to detect gross errors in the observations and the 

determination of the effect of undetected gross errors on the 

co-ordinates.

(iii) Systematic error compensation

Systematic errors in observations can be of tremendous importance 

in monitoring networks. The reason for this is that, if undetected, 

they may be mistaken for a systematic deformation (Dodson, 1983), 

While there is no a priori knowledge about blunders, neither about 

their location nor about their size, we have a fairly well documented 

knowledge about possible systematic errors that are likely to occur 

in the data. This allows us to model those anticipated systematic 

errors as additional parameters in the estimation model. This 

procedure is called self calibration.

- 52 -



A widely accepted strategic approach in the treatment of 

additional parameters is to include a fairly large set in order 

to be sure to cover all possible errors. Because this creates 

the danger of overparameterization, a procedure for the deletion 

of non determinable additional parameters must be incorporated 

(Gruen, 1985). Alternatively prior calibration is required.

(iv) Sensitivity

If a three-dimensional network is subjected to deformation 

the sensitivity of that netowrk is expressed in terms of the 

minimum level of detectable object point movement (Fraser, 1982b). 

Prior information on quantity and direction of expected deformations 

gives important hints on network configuration and observation 

scheme (Welsch, 1982).

It should be pointed out that the problems of control of 

systematic errors is not considered here and what follows pertains 

only to precision, reliability and sensitivity as criteria for 

quality.

3.2.1. Precision

The precision of a network can be defined as its ability to 

propagate random errors. Information about precision is derived 

from the covariance matrix of the unknown parameters.

The Gauss-Markov model is the estimation model most widely used 

in photogrammetric linear or linearised estimation problems. An 

observation vector £ of dimension n x 1 is functionally related to 

a u x 1 unknown parameter vector x (x = x° + Ax) through:
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A Ax = b + v (3.2)

where A is the design matrix, Ax is a vector of corrections to 

x° (approximate values of x) to give x, b is a vector related 

to the observations, and v is a vector of corrections to the 

observations. If the observations have an associated weight 

matrix W, then the normal equations are given by:

ATWAAx = ATWb (3.3)

and the covariance matrix is given as (Cross, 1983; Bomford, 1980): 

(assuming the variance factor = 1)

a2 Q- = (ATWA)_1 
o xx

Q- = (ATWA)_1 (3.4)

where Q;; is the cofactor matrix of the unknown parameters.

If it happened that matrix (ATWA) is singular the standard 

Cayley inverse is to be replaced by a particular generalised inverse, 

the Moore-Penrose inverse. Mittermayer(1972) has shown that when 

using the latter inverse for solving equation (3.4) it leads to 

a covariance matrix of minimum trace.

An insight into the covariance matrix shows that precision 

depends on the geometry of the network characterised by the design 

matrix, the quality of the observations expressed by the weight 

matrix and the sort of inverse used.
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It is notable that the covariance matrix, parallel to what was 

mentioned in the preceding paragraph, depends on the choice of 

the reference system or the so-called datum parameters. In other 

words how the measurements had been adjusted.

In practice, there are two alternatives: constrained (or 

fixed network) adjustment and a free (network) adjustment.

3.2.1.1. Constrained Network Adjustment

In the constrained adjustment two of the observation stations 

are assumed to be fixed (or their co-ordinates are given known 

variances), or fixing one point, an azimuth and a distance in the 

two-dimensional network. If we change the datum parameters, 

different solutions for equations f3.4) are produced. Such 

different solutions are related to each other by Baarda (1973) 

S-transformations.

The main disadvantage of such a network is the probably false 

postulation of an umoving (stable) station(s).

3.2.1.2. Free Network

Literally, free network means a network with which adjustment 

is made free from any kind of constraint such as given earlier. 

In this method of adjustment the corrections to the approximate 

co-ordinates are derived by selecting the "best" co-ordinate system 

(Blaha, 1971). In this sense "best" is interpreted as resulting 

in the smallest trace of the covariance matrix for the unknowns, 

namely, the aforementioned corrections. In other words, neither 

the length of the solution vector nor the sum of the corresponding 
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variances can be decreased any further by a change in location 

of fixed point, observed azimuth or measured distance. It can 

be shown (Mitterm.ayer,1972) that, in a two-dimensional network, 

the position is fixed by the centre of gravity (centroid) of the 

network and the scale and orientation are determined by the 

average distance and bearing from that centre to the points.

From the estimation viewpoint, it can be shown that the 

solution for free network adjustment characterised by singular 

normal equations is biased (Cooper, 1980). This means that the 

expected values of computed co-ordinates are different from their 

true values (Appendix B). In the meantime, whereas the co-ordinates 

and their variances depend on the arbitrarily chosen reference system, 

the variances of a distance or bearing, if any provided, are invariant. 

Equivalence of both unbiased estimable quantities and invariant 

quantities has been proved by Grafarend and Schaffrin (1976) (Fagir, 

1984). Bearing in mind one of the objectives of this study of 

deformation monitoring it should be noticed that the co-ordinates 

themselves are of no concern but their difference is of utmost 

importance. Such a difference is datum independent if the same 

network was used in two or more epochs.

It is why the precision of estimable quantities which are 

invariant with respect to datum transformations should be considered 

as criteria to define the quality of networks.
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3.2.1,3. Common Precision Criteria

(i) Standard error of co-ordinates

The standard errors of co-ordinates in the direction of the 

co-ordinate system are obtained by taking the square root of the 

corresponding diagonal elements of the covariance matrix of the 

unknown parameters. As mentioned before, the covariance matrix 

is dependent on the chosen reference system, these quantities are 

datum dependent. Therefore they are not valid representations 

of the precision of the network.

(ii) Absolute error ellipses and ellipsoid

Error ellipse and ellipsoid are used to evaluate the precision 

of geodetic or photogrammetric determination of position in two- 

and three- dimensional spaces respectively (Slama, 1980). The 

absolute, ellipses are informative, to some extent, but for some 

monitoring purposes may be misleading due to the fact that their 

size is dependent on their distance from the points selected as 

datum points. The closer to the datum the lesser the size (higher 

precision) of the ellipse and vice versa.

covariance matrix (z) of a point j which has theLet the

co-ordinates X-, Y- and Z. be defined as follows (dropping the 
J J J

index j):

Z = a2Q~~ osxx °XY

°XY

A
CXZ

Following Mikhail

axz °YZ

CYZ

°Z

(3.5)

(1976), the ellipsoid of constant probability

is then given by the following quadratic form:
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xVx = [X Y Z] E_1 (3.6)

when k = 1, it is called the standard ellipsoid. The semi-axes 

of the ellipsoid (a,b,c) are determined by diagonalising E by

writing:

0 0 ’ a2 0 0 X .1
0 0

0 o2 0 - 0 b2 0 = 0 X 0V 2

0 0 o2 0 0 c2 0 0 Xw 3

where

T is an orthogonal matrix whose columns are the normalised 

eigenvectors of E;

X ,X ,X are the eigenvalues of E; and
1 2 3

u,v,w is a rotated co-ordinate system such that the random

variables in the directions of its axes are uncorrelated.

In regard to the statistical significance of the error 

ellipsoid, the possibility of a point falling inside or on the 

ellipsoid defined by a = kou, b =kcrv, c = kc?w is expressed as:

- a (3.8)

For the standard ellipsoid (1 - a) = 0.199 which is obtained 

from x^with three degrees of freedom. Confidence regions are 

established through selecting the significance level a and then 

the multiplier k is to be computed. For example, for a = 0.05
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P[x32<x2 J = P[x^<7.81] = 0.95
0.05,3 3

and

k = /7.81 = 2.79.

Thus for the ellipsoid whose semi-axes are

a = 2.790,. b = 2.79n , c = 2.79nu V w

there is 95 percent probability that the computed position of 

point j would fall within that ellipsoid or simply there is 

95 percent confidence region.

The eigenvalues (the squares of the semi-axes of the 

ellipsoid) are the roots of the following characteristic equation:

X3-(a^ + Oy + c?pX2 + (0^ +0^7 +axCFZ "aXY ”aYZ "aXZ^

(3.9)

Having determined the eigenvalues, the eigenvectors are 

determined and normalised to obtain the T-matrix. Then, the 

error ellipsoid can be plotted by automatic plotting devices (Veress 

et al, 1979).

Because of the involved computation, it is neither practical 

nor necessary to perform analysis using error ellipsoids for all 

points in the photogrammetric solution (Slama, 1980). However, 

for many applications, the two-dimensional equivalent, error ellipse, 

is enough to determine the precision of the system. The formulae 
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for the error ellipse are the same as for the error ellipsoid, 

except that terms which belong to two selected dimensions are 

retained and the third dimension terms are neglected.

For the X,Y selected directions,equation (3.6) will read:

[X (3.10)

where r 2 ~1
°X °XY

E =
_°XY °Y _

(3.11)

Then the semi major and semi minor axes a,b may be computed 

from (Mikhail, 1976; Bomford, 1980; Cross, 1983):

a 2 = ^( + aY) +^(cFy + Oy) - o ^y

b2 = + cr^) + Oy) - o^y

(3.12)

and the angle 6 between the semi major axis of the ellipse and the

X axis is obtained from:

20yy
tan2e =------ — (3.13)2 2 

°X - °Y

It is clear that a and b are the square roots of the eigenvalues

of the characteristic equation :

X2- ( + Oy)A + " °XY = 0 (3.14)
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Figure 3.1. The standard Ellipse (after Mikhail, 1976)

Unlike the standard errors of co-ordinates which define the 

precision in the directions of the co-ordinates system chosen only, 

the standard error ellipse can be used to determine the standard 

error of any point (e.g. point E) at any direction (e.g. 0 E) by 

drawing the foot point curve or the pedal curve. However, it is 

the error ellipse rather than its pedal curve that is generally 

most useful in practice (Cross, 1983).

Statistically, if the observational errors are normally 

distributed, then there is 39.4 percent confidence region (Cross, 

1983; Schofield, 1984).

(iii) Relative measures of Precision

The standard errors of quantities derived from the co-ordinates 

(e.g. co-ordinate differences, distances, angles) are often used 

as criteria of precision for networks due to the reason that they 

are not only invariant but they also related to the purpose of the 

network.
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The relative error ellipse between two points describes the 

relative precision of those two points. Unlike absolute error 

ellipses, relative error ellipses are invariant with respect to 

translations of the datum. Further details of both absolute 

and relative error ellipses can be found in many textbooks to 

mention but few: Richardus (1966), Mikhail (1976), Mikhail et al 

(1981), and Cross (1983).

3.2.1.4. Global measures of Precision

To compare alternative network configurations, global measures 

which describe the precision of a network as a whole are desirable. 

The following are single numbers which could be used for this task,

(i) Mean Variance of Object Points

The most widely accepted indicator of statistical quality is 

simply the covariance matrix (a^ q --) of co-ordinates X,Y,Z. Near ** A A
homogeneous precision is often desired for the X,Y,Z co-ordinates 

and a single estimator a* can be employed to express the mean 

variance of the nQ object point co-ordinates (assuming

xx (3.15)

The magnitude of a* can be expected to vary dramatically with 

different imaging geometries and also with changes in minimal and 

redundant control configurations.

It is this criterion which was chosen to be used in the 

assessment of global precision in this investigation.
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(ii) Average Standard Error of Derived Quantities
e 

Distances and directions are examples of such derived

quantities. It is important to point out that the choice of 

the quantities would be a function of the purpose of the network. 

Ashkenazi and Cross (1972) have used the average standard of 

errors of selected distances and directions to analyse the scale 

and orientation of the U.K. network [Fagir, 1984)

(iii) Maximum Eigenvalue of the Covariance Matrix

The largest eigenvalue of the covariance matrix can be 

considered as a viable global scalar measure of precision. Its 

square root is the largest semi-axis of the hypersphere associated 

with the covariance matrix. Use of the largest eigenvalue as a 

criterion is therefore tantamount to saying that the best 

determination of a point is the one that produces the standard 

ellipse whose major axis is smallest. However, the main drawback 

of using the maximum eigenvalue as criterion is that the eigenvalues 

are dependent on the reference base,

3.2.2. Reliability of Networks

Reliability is concerned with the control of quality of 

conformance of an observed network to its design, i.e. to see if 

the assumptions made in the design are not invalidated by disturbances 

(Alberda, 1976). It should describe the qualities of the network 

with respect to the possibility of detecting gross erros in the 

observations and the influence of undetected gross erros on the 

co-ordinates.
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Due to the increasing use of automatic data acquisition 

and the great amount of data captured, it is essential to have 

an objective measure to recognise the possible presence of 

gross errors or outliers, Hawkins (1980) defines an outlier 

as an observation which deviates so much from other observations 

as to arouse suspicions that it was generated by a different 

mechanism.

Baarda (1967, 68, 73, 76) developed an extensive reliability 

theory where the problem of gross error detection is treated on 

statistical bases (Molenaar; personal communication).

3.2.2.1. Internal Reliability

Internal reliability may be defined as the ability of a 

network to detect gross observational errors. Baarda (1968), 

Pelzer (1977), Niemier et al (1982), Ashkenazi and Crane (1982) 

and Cross (1983) have developed different criteria for internal 

reliability based on statistical tests examining the residuals 

or their cofactor matrix. The latter can be derived as follows:

Restating equation (3.3):

ATWAAx = ATWb (3.16)

then

Ax = (ATWA)_1 ATWb (3.17)

and for the residuals v we obtain from equation (3.2):

v = AAx - b (3.18)

= A(ATWA)_1ATWb - b (3.19)

= [A(ATWA)_1 ATW - I]b (3.20)
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Applying the Gaussian propagation of error laws, the

cofactor matrix of the residuals can be found from:

=[A(ATWA)_1 A^-lJC^fA^A)*1 ATW-l]T (3.21)

= o^[A(ATWA)_1 ATW-I]W’1 [WA(a\|A)’^AT -ij (3.22)

(with Cb = C^= o^J 1; C is the covariance matrix of

the observations, = ])

Hence;

Qj; = W’1 - A(ATWA)_1AT (3.23)

The product Qjq W is an idempotent matrix (Latin: idem = same, 

potent = power), and singular as the only idempotent matrices that 

are nonsingular are identity matrices (Searle, 1982).

From equation (3.23) we get:

v =- Q~Wb (3.24)v v

A popular method of checking for gross errors after initial 

adjustment( post adjustment) is to compare the weighted residuals 

with the a posteriori variance factor For instance, if

|viWii’5| > 3S0 (3.25)

we suspect a gross error in the ith observation. However, such 

a technique assumes that all the residuals can be represented by 

a common a posteriori variance factor which is not the case and 

there is, additionally, no account taken of the design matrix A.
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Gruen (1978,1979) has suggested the adoption of the data 

snooping technique for gross error detection in photogrammetry. 

The method is based upon given in equation (3.23) and requires 

not all the elements of but the diagonal elements only. Such 

a technique requires a considerable amount of computation, 

although the problem is not so severe in engineering or large 

structures monitoring applications as it is with the large blocks 

of photography encountered in aerial triangulation.

If the jth observation, is suspected of containing a 
«J

gross error A. and all other observations have only random, normally 

distributed errors c-,since the systematic errors are supposed to
J

be eliminated or compensated for, we can set the following test:

H
(3.26)

where £.
V

is the observation vector without errors.

Baarda (1968) introduced a test statistic

(3.27)

where

(3.28)

in which £. is the jth observed quantity computed from the parametersV
derived from least squares computation of all observations except 

£j (Cross, 1983).
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Following the notions of Pelzer (1979), Fagir (1984) proved 

that equation (3.27) could be reduced to the so-called standardised 

residuals test given as:

v (3.29)

As we are in pre-analysis stage, v is not at hand so we will 

apply the approach proposed by Cross (1983) for assigning the test 

statistics for reliability appraisal. Such an approach presents 

itself as an ideal candidate for such kind of study.

Now, if Hq is true, wj ~ N(0,l) but under the normal 

distribution will have a mean not zero but as given by:
J

(3.30)

Due to the fact that Aj is not known a choice should be made 

so that the probability (a) of type I error (rejecting HQ although 

it is true) and the probability (g) of type II error (accepting Ho 

although it is false) are as small as possible and hence determine

an upper bound 6 (Figure 3.2) on 6•.
J Therefore the largest gross

error which will remain undetected is given by:

(3.31)

and

(Fagir, 1984) T -c5 = l/fclwQ^WCj) (3.32)

where cT is a null vector but for the jth element which is unity, 
J

i .e.
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Figure 3.2. Probability density function of statistic w..
J
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c. = [0 0 .... 1 0]T

Substituting (3.32) into (3.31) we get:

Ao = V(cjWQj;Wcj)!s

(3.33)

(3.34)

If we require the largest undetected gross error, Ao, to 

be as small as possible compared to the standard error, a., of 
vl 

observation, £., the following criterion could be established
J

(Fagir, 1984):

Ao/oj= 6o/aj(cjWQ;;Wcj>5'2 *min

where
°j = (4W'lc/2

(3.35)

(3.36)

Substituting (3.36) into((3.35) yields:

wQvvWcj^ <3-37>
or

A0/Oj = 6q Tj  . (3.38)

Hence:
Ao = 6o°jTj (3-39)

Since depends only on the chosen probabilities a and 6, 

it could be regarded as constant and the criterion (3.35) reduced

to:
2

-> minimum (3.40)
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It is extremely important that for uncorrelated observations

is given as: J

(3.41)

From equation (3.41) the limits of t ? are:
V

1 < Tj 00 (3.42)

It is worth mentioning that equation (3.41) was used in this 

thesis as criterion for the reliability but one important point 

against its use is that, as seen from equation(3.42) its upper 

bound is infinity so t  could take any value up to infinity. However, 

it is very useful tool for screening the maximum undetected gross 

error in any observation (equation 3.39) which could be used as 

a global measure for reliability, i.e.

Aq -> a minimum (3.43)

Further, t  is independent of both v and the reference system.

An alternative was sought to circumvent the loose upper bound 

of t . The redundancy number technique proved to be very efficient 

criterion to assess reliability of different configurations of 

networks simulated in this study.

Redundancy Number Technique

Recall equation (3.24) which reads as follows:

v = - Q.XWb
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The effect of a gross error A£. on the residual v • of an 
J J

observation £. is therefore:
V

(3.44)

where

r. is the jth diagonal element of the matrix Qqq W-

and is called redundancy number (Forstner, 1979; El Hakim, 1981).

The redundancy number indicates the reliability of the adjustment 

of a particular observation. Zero redundancy means no reliability 

while increasing redundancy indicates increasing reliability.

So the limits for r. are as follows:

0 < r. < 1 (3.45)

Thus if r. is large, the gross error At- is well revealed in the J J
residual v (v is the visible part of the true error e (Pope, 1975)

and can easily be detected.

As has been demonstrated earlier Qjq W is an idempotent matrix 

with rank r (r = redundancy). Hence it yields:

tr(Q^W) = rank(Q-W) = rank (Q~) = r (3.46)

That is, the trace of Q--W equals the redundancy of the system and

r- can be interpreted as the contribution of the observation £. to 
J J

the total redundancy r.

It is the author's point of view that for the evaluation of 

reliability, the local redundancy indicated by r- is more important
J

than the total redundancy r.
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However for the sake of comparison between different systems

the following criterion can serve as a global reliability measure

(Gruen, 1978, 1979);

n r
m m (3.47)

where m denotes number of observations.

The main restraint on using (3.47) is that such measure 

presumes that the redundancy is distributed homogeneously on the 

observations.

For the optimisation standpoint another global criterion has 

been introduced to indicate the overall reliability of different 

networks' configurations. This criterion is the maximum 

redundancy number of network. That is:

r(o?) = r. -> a maximum (3.48)
Jx

and

r(y) = r. -> a maximum
Jy

where x, y are the observed photographic co-ordinates and

r (measurement) = r. a maximum (3.4-9)

for survey measurements.

The local redundancies again are mainly influenced by parameters 

as:

(i) number of rays determining an object point.

(ii) type of an object point (control or non-control point),

(iii) number and distribution of image points.
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(iv) number and distribution of control points.

(v) focal length of the taking camera.

The parameters mentioned in (iii), (iv), (v) may play a 

certain role, which however is not expected to be as significant 

as the influence of the first two parameters (Gruen, 1979).

In this thesis, the central point is the adoption of free 

network approach, i.e. there is no use of control points. 

So, the parameter NoXi)(above) will only be considered.

3.2.2.2. External Reliability

External reliability indicates the influence of undetected 

gross errors on an arbitrary function of the co-ordinates. Such 

a function can be: the co-ordinate itself, an angle, a distance, 

a difference of co-ordinates or an area computed with the adjusted 

co-ordi nates.

Consider a quantity F, with least squares estimate F, computed 

from the parameters and let AF. be the effect of a gross error of

size A^ in the jth observation on F. Then it can be shown that 
J

for uncorrelated observations:

(Cross, 1983) (3.50)

where

(3.51)
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Inspection of equation (3.50) leads to the fact that y. 
J

could be used as an indicator of the external reliability since by 

its multiplication by the standard error of the wanted function 

of the parameters it gives the maximum effect on that function.

It is important to point out that for the evaluation of external 

reliability one must consider the precision of the co-ordinates 

and their functions respectively.

We could have an appriasal for external reliability which 

is independent of the precision through soliciting the relationship 

between t - and y.,
J J

Recalling equation (3.41) and (3,51) we formulate:

Tj *" ~

with 2
0^ 7 ^7
"j = % ‘

Thence:

- y2 = 1
J

Finally,

Yj = Tj - 1 (3.52)

Hence the computation of t - automatically leads to y«.
J J

As it can be noticed from (3.52) that for an observation, 

the higher its internal reliability the higher is its external 

reliability.

y could be proposed to serve as global external reliability max
indicator as follows:
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Ymax a minimum (3.53)

Such a criterion will ensure that the influence on the parameters 

of undetected gross error of a designated size is minimum.

As has been mentioned before with regard to t -, y- is 
J J 

independent of the selection of reference system.

It is worth mentioning that y. computed as in equation (3.52)w
was used in this study but here, of crucial importance, the term 

reliability is chosen to be more strongly connected with the 

detection than with the effect of gross errors. Therefore a 

brief mention has been given on the topic of external reliability.

3.2.3. Sensitivity of Networks

3.2.3.1. Introduction

The concept of sensitivity analysis can be outlined in terms 

of a deformation analysis which employs tests for departures from 

congruency (Fraser, 1983) in other words, the proof of existence 

or non-existence of point movements. Since neither "true" 

co-ordinates nor "true" deformations can be obtained through a 

physical measuring process it is necessary to turn to statistical 

or "estimated" deformations in order to establish whether or not 

significant movements have occurred between two measuring epochs.

Essentially, the congruence of the two networks is examined 

within the tolerance implied by their respective covariance matrices. 

It is therefore not surprising that the covariance matrix of object
2(2) points co-ordinates Plays a key role in assessing how

sensitive a network is to the detection of systematic point 
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displacements which are likely to occur under formulated 

deformation models. Such deformation models are formulated 

under the assumption that there is prior information regarding 

the magnitude, direction and extent of expected deformations 

provided by other disciplines (e,g. civil engineering, geology, 

etc.)

3.2.3.2. The Global Congruency Test

Fundamentally, this test examines the null hypothesis that 

the object target point array is stable over all measuring epochs. 

For the case of a two-epoch analysis, the null hypothesis Ho can 

be written as:

H : E{x(1+1)J - E(£(i)}= E{d} = 0 (3.54)
o 2 2

(i 1in which xv ' is the vector of XYZ object point co-ordinates
2

at epoch i, and d is the vector of co-ordinate differences.

Pelzer (1971) introduced the following test statistic which 

determines whether or not HQ will be rejected.

hoo

where

% = «xx(2) + q;j (1) <3-56’
The cofactor matrix Qd of co-ordinate differences has a 

rank h; in photogrammetric context rank (Qd) - 3nQ -7 where nQ 

is the number of object points. The Moore-Penrose inverse in 

equation (3.55) is necessitated because of the rank defect of Q^.
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If the null hypothesis is accepted, i.e. no point displacement 

occur, F follows the central Fisher distribution.Should the null 

hypothesis is rejected, the point movements are implied and an 

alternative hypothesis is to be specified. It could be given 

as follows:

Ha = E {d} = d / 0 (3.57)

Now F is distributed according to the non-central F-distribution 

with non-centrality parameter.

dTQ^d
co = ----- 5------- (3.58)

Qo

The probability y = 1 -8 that d will lead to the rejection 

of the null hypothesis at significance level a is termed the power 

of the test with respect to the alternative hypothesis. For a

specified probabilities a and 8 a critical value for co (say coU) 

can be computed as a function of a,8 and rank (Q^)

Nomograms for cou, for three power values (y = 0.70, 0.80, 0.90) 

are given in Baarda ( 1968). For this investigation values of 

a = 0.05 and y = 0.80 were selected.

If co >cou for a given d then it can be concluded that d 

represents a detectable movement at the assigned probability levels 

a and 8.

It should be noted that the global congruency test only tests 

the magnitude of the movement on the bearing designated by the 

vector d.
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An alternative approach for sensitivity analysis is given 

by Niemier et al (1982) in which the use of external reliability 

measures in sensitivity analysis has been discussed (Fraser, 1983).

3.2.3.3. Sensitivity Measure

The cofactor matrices given in equation (3.56)

can be determined from simulation procedures and for sensitivity 

analysis are generally assumed to be equal. Hence, the test 

statistic given in equation (3,58) can be calculated a priori from 

the knowledge of the proposed measuring system and the movements 

required to be detected.

The importance of the test of w given in equation (3.58) in 

terms of sensitivity analysis is that any so-called form vector 

d of modelled point displacements can be assumed in order to 

ascertain a just-detectable deformation.

Let c be a scalar value, called sensitivity parameter, then

if:

U _ 2
W = C U)

(cd)TQd+(cd)

2

(3.59)

then cd represents a critical amount of movement, i.e. a just- 

detectable deformation.

For a sensitivity analysis of a single network which is 

remeasured at another epoch cd can be considered as measure of 

the sensitivity of the network.
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Finally, it is worth mentioning that the criterion given 

in equation (3.59) was used coupled with the use of the nomograms 

of Baarda (1968) in this research to assign the sensitivity of 

different simulated networks.
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CHAPTER 4

MATHEMATICAL DEVELOPMENT •

4.1. Introduction

In technical practice, as well as in all experimental sciences, 

one is faced with the following problem: evaluate quantitatively 

parameters describing properties, features, relations, or behaviour 

of various physical objects. The parameters can be evaluated 

usually only on the basis of the results of some measurements or 

observations.

The problem gets more complicated as the system whose parameters 

we are trying to determine gets more complex. The problem to be 

treated has to be first translated into the language of mathematics. 

That is the problem has to be first mathematically formulated.

The mathematical formulation of the problem would really be 

the mathematical formulation of the relation between the observed 

quantities and the wanted quantities. This relationship is called 

the mathematical model,

4.2, The Mathematical Model

The mathematical model links observable reality with the 

mechanism generating the observations (Morrison, 1976). In this 

investigation, the mathematical model denotes the relationships 

between observations (measurements), for instance, image co-ordinates 

and slope distances; and the three-dimensional co-ordinates of the 

object points.
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Mathematical models may be divided into two general parts: 

(1) functional model (deterministic), and (2) stochastic. The 

functional model should represent, as far as possible, the 

physical relationship between measurements and three-dimensional 

co-ordinates. Morrison (1976) suggests that the functional 

model should be sufficiently tractable to permit the sort of 

mathematical manipulations required for the estimation of its 

parameters and other inferences about its nature. The stochastic 

model describes the properties of random errors inherent in the 

observations and how these errors will propagate through the used 

mathematical model and result in certain errors in the derived 

quantities of the three-dimensional co-ordinates of the object 

points.

4.2.1. The Functional Model

It is proposed that slope distances between object points 

are to be incorporated with the photogrammetric observations in 

an attempt to investigate their effect on the different adopted 

design criteria discussed in the preceding chapter. Therefore, 

in addition to the model of the photogrammetric measurements the 

model for slope distances is to be addressed in this section.

4.2.1.1. Functional model for a photograph

Assuming that light rays travel in straight lines, that all 

rays entering a camera lens system pass through a single point 

and that the lens system is distortionless, then a projective 

relationship exists between the photographic co-ordinates of the 
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image points and the object space co-ordinates of the corresponding 

object points as illustrated in Figure 4.1.

This projective relationship can be represented as follows:

(4.1)

xj - Xi rll r21 r31 *ij "
i

Y3 - Y?
1

= X
r12 r22 r32 "i j ’ .

1
Zj -zi r13 r23 r33 - f.

1
— i — —

matrices

1
X

rll

r21

r31

where subscript i refers to the photo (i = l,2,....m) and subscript

j refers to the object point A (j=l,2........n). Here x,y are image 

co-ordinates.

principal point

a? and

(p).

2/ are the photo co-ordinates of the

f is the focal length of the camera, x is a

scale factor and r's are elements of R, a (3,3) orthogonal matrix, 

functions of three independent rotation parameters (w,4),<) of the 

camera. The latter represent the rotations of the image space

co-ordinate system (x,y,z) with respect of the object space 

co-ordinate system (X,Y,Z). X-, Yj and Zj are the spatial

co-ordinates of the object point A. Superscript c refers to the 

camera, so XC,YC and Zc are the spatial co-ordinates of the
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z

Figure 4.1. The geometrical basis of analytical photogrammetry
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perspective centre in the object space co-ordinate system. t

Dividing the first two equations in system (4,2) by the 

third, assuming both a; ,y are zeros and f is constant, and
r r

rearrangement yields:

These equations are called the collinearity equations.

Their derivation is based on the fundamental assumption that 

the perspective centre, the object point and its corresponding 

image point all lie on a straight line. These collinearity 

equations represent the functional model for a photograph.

Thus, for every point of interest that is imaged, its light 

ray provides two equations, one for x and one for ?/, in nine 

unknowns:(X?,Y?,Z?), (oo,ct>»k); the exterior orientation parameters 

and (X-,Y.,Z«), the object space co-ordinates of point A. System
J J J

(4.3) is non-linear and in order to be used, it is usually reduced 

to a linear form by Taylor series expansion where all terms above 

and including the second order are dropped.

On the other hand, as is the case in practice, several 

photographs are taken from different locations of the same object 

so an over-determined model is available and hence, least squares 

is applied to get a unique solution vector and its covariance matrix.
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4.2.1.2. Functional model for a Slope distance

The relationship between the measured slope distance 

between points D,H and their three-dimensional co-ordinates

(^d’^d’^d^ and ^Xh’Yh’^h^ depicted in Figure 4.2 can be

expressed as follows:

Figure 4.2.

2 + w+vx (4-4)

4.2.1.3. Notes on the functional models

The aforementioned functional model for a photograph as a 

perspective projection described by the collinearity equations 

(4.3) is rather theoretical. Due to some non-perspective projection 

parameters the photograph departs from such a projection. The 

following can be considered as non-perspective projection parameters:

i) the photographic co-ordinates of the principal point (p)

are probably not (0,0).

ii) the axes of the photograph defined by the lines connecting

the fiducial marks might be non-orthogonal.

iii) the radial and decentring lens distortion.

iv) deformation of the emulsion carrier (film or glass).

v) the atmospheric refraction.
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So, these factors affecting the functional model must be 

eliminated or corrected for in the functional model for the 

photograph. For the functional model for distances no mention 

of the systematic errors which would occur has been given. It 

is assumed that these errors are to be evaluated by standard 

calibration methods, and application of the appropriate 

corrections. On the other hand, to get rid of the significant 

systematic errors of photography the camera is assumed to be 

calibrated prior to the photography. Another way to handle the 

problem of systematic errors of photography, as has been mentioned 

in section (3.2), is to use an additional parameter set to take 

account of these errors (Gruen, 1978).

It has been decided that no additional parameters be adopted, 

thus avoiding instability of the solution which might occur if 

additional parameters were introduced (Cooper, 1983). Moreover, 

inclusion of additional parameters might lead to the singularity 

of the augmented normal matrix given in section (4.2.3.2). Such 

instability and singularity are due to significant correlations 

between the additional parameters and the exterior orientation 

elements.

The general form of the functional model including both 

photogrammetric and slope distance observations can be written as:

£ = F(x,c) (4.5)

where

£ is the vector of observations;

x is the vector of unknown parameters; and

c is the vector of constants.
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4.2.2. The Stochastic Model

In this investigation, as mentioned in section (4.2,1), the

observations are photographic co-ordinates and slope distances.

The stochastic model is the means by which the random errors are

dealt with. Therefore equation (4,5) expresses the non-linear

relationship between the vector of observations namely, the

photographic co-ordinates and the slope distances, and the vector

of unknown parameters namely, the exterior orientation elements

and the object point co-ordinates.

The random or residual errors designated as v are introduced

to give the stochastic model based on two assumptions. Firstly,

E{v} = 0. This yields the linearised observation equations:

Aax  = b + v (4.6)

where

is the design matrix, A =

and

AX

x=x° 

vector of corrections to x°(the approximate 

co-ordinates of x) to give x via x = x °+ax .

is the

is

of

the vector related to the observations or, vector 

observational discrepancies, b = jt-£°, £°=F(>P),

is the vector of residuals or, vector of corrections

to the observations.

A

b

v

Secondly, the covariance matrix of the observations £ is 

symmetric positive-definite matrix C££ = a^W’1, in which o* js 

the a priori variance factor and W is the weight matrix of the 

observations.
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The weight matrices are proportional to the inverse of the

estimated covariance matrix of the 

the covariance matrix of the image 

observations. For example,

co-ordinates x and y takes

the form:

in which

and oary

equation

o2
X

is

Cxy °0
u2x oxy

oxy o2
y

(4.7)

and o2
y

the covariance of the two measurements. From

are the variances of x and y respectively

(4.7) the weight matrix of these measurements will be:

W = 6? C"1
xy o xy

oxy
-1

axy o2
y

(4.8)%
" o2

X

Although the co-ordinates for a given point may be correlated 

it is assumed that co-ordinates for different points are uncorrelated. 

Further assumptions have been made on the weight matrix in this 

study. That is x and y co-ordinates of a given point are also 

uncorrelated. Although such an assumption may be invalid it is 

accepted because it is not possible to account for such a 

correlation in the covariance matrix of the observations. As 

a consequence, the covariance matrix for the image co-ordinates 

x and y and the corresponding weight matrix W have a diaaonal form:
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Applying the same assumptions stated above, the weight matrix 

for the other observed quantities can be formulated.

In other words both and W are diagonal matrices.

Consequently, the entire weight matrix can be written as:

0
W =

WP
(4.10)

0

where Wp is the diagonal

observations, and

weight matrix of the photogrammetric

Wg is the diagonal weight 

observations.

matrix of the slope distance

4.2.3. The Least Squares estimation and Datum definition

It is relevant to mention at the outset that, briefly, the 

adjustment process determines the unknown parameters based on the 

information contained in the discrepancies between the measured 

values and those computed from the assumed model.

The operator that relates the corrections in the unknown 

parameters to these discrepancies is the design matrix of the 

problem. In the usual case where there are redundant observations 

available, the row space of the design matrix has a dimension 

larger than that of its column space. If its columns are linearly 

independent, then the rank is equal to their number, the dimension 

of the column space, and the problem will have a unique solution. 

In the event that two or more of its columns are linearly dependent, 

the design matrix is rank deficient, its deficiency determined by 

the number of interdependent columns.
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We can now, in light of the above discussion, start as 

follows: Recalling equations (4,6) and (4.10) the problem is

to estimate Ax from A and W using the principle of least squares 

which minimises the quadratic form:

n = vTWv (4.11)

If A is of full column rank, the Best Linear Unbiased Estimate 

(BLUE) AX can be found (e.g. Mikhail, 1976; Welsch, 1979) by 

solving the normal equations:

(ATWA)Ax = ATWb (4.12)

then Ax = (ATWA)_1ATWb (4.13)

and the covariance matrix of the least squares estimate is given

as:

= s^aWAx AX (4.14)

/X 2
in which oQ - v Wv/v : the a posteriori variance factor and v is

the number of degrees of freedom. The latter represents the number 

of observations in excess of the minimum required for a unique 

solution.

Because the functional model includes co-ordinates whose 

reference system has not been defined in the observation equations 

(4.6) nor in the normal equations (4.12), the matrix (ATWA) will be 

singular.

The datum definition is referred to as the Zero Order design 

problem which has been discussed in Chapter 3. It has been 
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mentioned that rank deficiency of the design matrix as well 

as the normal equations matrix can be as high as seven: position 

of the origin of the co-ordinates (three elements); direction 

of co-ordinate axes (three elements); and the scale (one element). 

Therefore such elements have to be defined in order to define 

the datum. Conventionally these elements can be defined by 

assigning fixed values to all three co-ordinates of two selected 

points and to one co-ordinate of a third, non-collinear point. 

In deformation analysis, however, such a procedure has the main 

disadvantage that it is obligatory at the second epoch to relocate 

the same datum points which were chosen at the first epoch. 

These points, themselves, are likely to undergo deformation. 

In other words there is no guarantee they are stable.

To overcome the problem of dependency on stability of any 

points in the network, the free network technique (inner constraints 

method) was used to define the datum.

From the computational viewpoint, there are two approaches to 

get the solution and the covariance matrix of the unknown parameters 

in a free network adjustment.

4.2.3.1. The Moore-Penrose inverse approach

Appendix A demonstrates some of the details concerning the 

definition and characteristics of such an inverse.

Now, let N = ATWA , u = ATWb

then the normal equations(4.12) can be expressed as:

NAx = u (4.15)
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As matrix N is singular, the Moore-Penrose inverse N+ can 

be applied to replace the standard Cayley inverse given in 

equation (4.14). However, the solution in such a case will 

be Best Linear Biased Estimate (BLBE) (Welsch, 1979).

Then

Ax = N+u (4.16)

The following properties are associated with the above 

solution:

(i) it is a least square solution (i.e. vTWv is a minimum)

(ii) it is a minimum norm solution (i.e. AxTAx is a minimum), 

and(iii) its covariance matrix and hence that of x via x = x+Ax 

has a minimum trace (i.e. trN+ = minimum).

4.2.3.2. The minimal set of constraints approach

An alternative method to achieve the minimum trace covariance 

matrix (Granshaw, 1980) is to apply an appropriate set of constraints 

G^ax  = 0 to the observation equations. Such set is a subset of 

minimal constraints and is called inner constraints(Appendix B).

A Ax = b + v

GTax  = 0 (4.17)

where

G is of order (6n +3n )x7 s o n£ = no.of cameras used 

nQ = no.of object points

and satisfies the following two conditions:
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(i) t h e c ol u m n s of  G  ar e  li n e arl y i n d e p e n d e nt, b et w e e n

t h e m s el v e s a n d  t h e c ol u m n s of  A.

(ii) G T a x  = 0

D e n oti n g  k a s t h e e sti m at or  f or t h e v e ct or  of  L a gr a n gi a n

m ulti pli er s  of  or d er  ( 7 x 1) t h e l e a st s q u ar e s s ol uti o n  of  t h e

s y st e m ( 4. 1 7) i s gi v e n b y:

a t w a
G

1

< X<
3

1_
_
_
_
_
_

A T W b

g t
0

✓ s
k 0

( 4. 1 8)

T h e  m atri x  of  c o effi ci e nt s i s n o w  r e g ul ar a n d t h e s ol uti o n

A x  c a n b e f o u n d i n t h e c o n v e nti o n al w a y.

It s h o ul d b e  n ot e d  t h at w h at  w e  ar e  pri m aril y  c o n c er n e d

a b o ut,  ar e  t h e o bj e ct  p oi nt  c o- or di n at e s a n d n ot  t h e e xt eri or  

ori e nt ati o n  p ar a m et er s  of  t h e c a m er a s. T h er ef or e  it i s r e a s o n a bl e 

t o a p pl y  i n n er c o n str ai nt s n ot  t o mi ni mi s e  t h e tr a c e of  t h e c o v ari a n c e  

m atri x  of  t h e f ull s ol uti o n  b ut  t o mi ni mi s e  o nl y  t h e tr a c e of  t h e 

c o v ari a n c e  m atri x  of  t h e o bj e ct  p oi nt  c o- or di n at e s.

L et  u s p artiti o n  a x  a s A x-j c orr e s p o n di n g t o X 1 w h er e

A X £ x 2

A x-]  r e pr e s e nt s t h e v e ct or  of  c orr e cti o n s  t o t h e a p pr o xi m at e

ori e nt ati o n  el e m e nt s  t o gi v e  x-j a n d  A X 2  r e pr e s e nt s t h e v e ct or

of  c orr e cti o n s t o 

p oi nt s  t o gi v e  x ^  

e q u ati o n s  wit h  n o

t h e a p pr o xi m at e  c o- or di n at e s  of  t h e n Q  o bj e ct

a n d G  a s T h e  li n e ari s e d o b s er v ati o n
L G J

c o n str ai nt s  will  r e a d:

r 0
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= b + v (4.19)

Then the photogrammetric normal equations are given by

A^WA-j a{wa 2 > 1 X >
J

A^Wb

A^WA1 a2wa 2
/S

AX£

---------------
1

JO31— C
M

____

(4.20)

Bordering (4.20) with G = 
0

G
yields the augmented

photogrammetric normal equations:

a]wa 1 a]wa 2 0 Ax^ A^Wb

A2WA1 A2WA2 g AX£ = A2Wb

t
0 G 0 _k 0

The standard Cayley inverse of the coefficient matrix of the 

augmented photogrammetric normal equations gives the minimum trace 

solution for Ax 2 (and hence for if the following transformation

matrix G is applied ( see Appendix B).

0 0 0 Z? -Y? x?l
J J J

1 0 -Zd 0 X?
V

s° ( 4.22)

0 1 Y° -X? 0 7°
J J

in which the subscript j denotes the jth object point with approximate

co-ordinates (X?,Y?,Z?). The first three columns of G- define the 
J J J J

origin of the datum, the columns 4, 5 and 6 define the direction of 

the axes and the last column (7th column) defines the scale.
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It should be noticed that if, in the network used, one

or more slope distances are measured, then the 7th column is

omitted from G. Moreover, if height differences are measured

in the object space, then the 4th, 5th, and the 7th columns 

are to be dropped.

Investigation of the product G^Ax shows that the inner

constraints are equivalent to the following equations:

n o"o
(i) Li=1 6X.

no
Ei=l 6Zi = 0

or

n
E 0 X. =e 
i=l 1

no Yo

(i.e. the co-ordinate system's origin is the centroid of the 

approximate co-ordinates x?).

(ii) E (Y?6ZrZ? 6Y.)=E (Z°6X.-X?6Z.)=E "°
i=l 111 1 i=1 Illi i=1

(X?6Yi-Y?6Xi) = 0

(i.e the mean orientation of the system of points will 

not change after adjustment).

(iii) E 0 (X%X. + Y?6Y. + Z%Z.) = 0 (i.e. the mean scale 
i=l 1 1 ii ii

of the network will be held fixed).

Thus the zero variance datum is implicitly defined in terms 

of the initial values of the co-ordinates (approximate co-ordinates) 

of the object points. Hence, the derived covariance matrices of 

the object points are related to this datum. It is notable that 

the co-ordinates are, in this way, datum dependent whereas some
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of their derived functions (e.g. adjusted measurements) are not.

To conclude, in this research, equations (4.10), (4.21)

and (4,22) are of crucial importance to the simulated cases 

discussed in the coming chapters when assessing the design 

criteria.

- 96 -



CHAPTER 5

SIMULATED NETWORKS FOR DEFORMATION ANALYSIS (CUBE)

5.1. Introduction

To design and plan a project before it is carried out is a 

common engineering practice. Pre-analysis is the simulation of 

the propagation of uncertainties in observations to uncertainties 

in results. In this way it is possible during the design of a 

photogrammetric network to predict the accuracies of the results 

and compare them with the desired accuracies. If the predicted 

results are too accurate or not accurate enough the design can be 

changed before any expensive work is carried out.

In this Chapter the simulation procedures used to demonstrate 

the concepts of precision, reliability and sensitivity analysis are 

described.

5.2. Network Configurations

Suppose a solid cube (Figure 5.1) of 4 m side comprises

26 regularly distributed points on its six faces. Such points 

represent the target array. Eight convergent photographs shown 

(each camera axis being directed towards one corner andthe centre 

of the cube) will image the object with considerable redundancy. 

Fictitious provisional co-ordinates were assumed for the targets 

and the camera stations based on an origin at the centre of the 

cube. The taking camera is supposed to be the Zeiss (Jena) UMK 10/1318 

with nominal principal distance 100 mm. Table (5.1) shows the
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6

• . . . object point

Figure 5.1. Object target array and Camera station configuration.
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orientation elements of the individual photographs.

TABLE 5.1. Orientation elements of the camera stations of 
the network arrangement of Figure 5.1.

Camera f Xc YC Zc GO K
No. (mm) w (m) (m) (deg) (deg) (deg)

1 100 10 -10 10 315 315 0
2 100 10 10 10 315 225 0
3 100 10 10 -10 45 225 0
4 100 10 -10 -10 45 315 0
5 100 -10 -10 10 315 45 0
6 100 -10 10 10 315 135 0
7 100 -10 10 -10 45 135 0
8 100 -10 -10 -10 45 45 0

While the target array remains unchanged in the following 

computational cases, the photographs are grouped as seen in Table 

(5.2.)

TABLE 5.2 Photo-arrangements, number of targets and slope distances.

Case Photo-arrangement Total number 
of object points

Number of 
slope distances

1 1-2-3-4 25
2 Case 1 + slope dist. 25 8
3 1-2-3-4-5 25 -
4 Case 3 + slope dist. 25 8
5 1-2-3-4-5-6 26 -
6 Case 5 + slope dist. 26 8
7 1-2-3-4-5-6-7 26 -
8 Case 7 + slope dist. 26 8
9 1-2-3-4-5-6-7-8 26 -

10 Case 9 + slope dist. 26 8

- 99 -



TABLE 5.3. Simulated slope distances.

Observation 
No.

Target Object Points
From To

1 1 20
2 3 18
3 7 18
4 1 24
5 5 24
6 7 22
7 3 22
8 5 20

5.3. The Observation equations

5.3.1. The Observation Equations of Photogrammetric Measurements

The observation equations are confined to the image co-ordinates.

As the camera can only be used to recreate directions, the determination 

of object point co-ordinates must be achieved by intersection from 

at least two spatially separated camera stations.

As has been mentioned in Chapter 4, the collinearity condition 

equations(4.3) constitute the functional model for a photograph. 

Therefore, for any object point imaged and measured on a photograph, 

two equations can be written. One equation relates the x-co-ordinate 

of the photogrammetric measurement to the six elements of exterior 

orientation (X p Y pZ pWptJjpKp of the ith camera and to the 

three object point co-ordinates of the point (XpYpZ.), and otherWWW 
equation relates the y-co-ordinate of the photogrammetric measurement 

to the same items.
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Linearisation of equations(4.3) using Taylor series expansion 

and neglecting second and higher order terms yields the following 

observation equations for photogrannetric measurements based on 

approximate values x° for x.

(5.1)

Adopting the partitioning forms: A = [A 
bD 1 P

H1 , equation (5.1) could be put in the form: 
b

P2

Ax
Ax-j

p '-■,p1’ap2^’

where: Ax-j is

Ap^Xi

the vector of

+ A Ax 9
P2 2

(5.1a)

correctionsto photo orientation elements

AX£

bp 

vp 

and A„ ,A^
Pl P2

For

the vector of corrections to object point co-ordinates

is

is

one

the

the

vector

vector

of

of

photo observational discrepancies

photo co-ordinate residuals,

are the design matrices.

object point imaged on one photograph:

AP1

(2,6)

9a; 9a; 9a?_ 9a? 9a; 9a;
9XC 9YC 9ZC 9w 90 9k
9y 9y 9y 9y 9y 9y
9XC 9YC 3ZC 9td 3(f) 9k

AP2 =

(2,3)

9a? 9a? 9a?
9X 9Y 9Z

9Z

»
AX£

(3,1)

6X V "b '
6Y =

X b • X

6Z
» P

(2,1) y. (Ll)

-----------
1

______
1

i s

5
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If there are ns camera stations and nQ object points, the 

design matrix, A, is of order 2n^x(6ns + 3nQ) in which n^ is the 

number of image points measured.

5.3.2. The Observation Equations of Survey measurements

Observation eqjations were developed for the slope distances

in Chapter 4. It should be noted that in order to combine 

photogrammetric and survey measurements in a simultaneous adjustment, 

all the observation equations must be expressed in the same reference 

co-ordinate system. The utilisation of survey data will require the 

development of a solution which can combine both photogrammetric and 

survey measurements in a simultaneous solution.

In matrix form, the observation equations for slope distances 

based on approximate values x° for x can be:

(5.2)

where

and

bg is the vector of survey observational discrepancies

v is the vector of survey observation residuals, 
y

A„ is the design matrix.
9

For slope distance,
• J

„ _ 3xij 3i"ij 3P”ij 3J"ij 3S"ij 32ij 
g‘ 3Xj 3Yj 3Zj 3Xi 3Yi 3Zi

(1.6)

and vg = [VjlJ ; bg -[b..J

(1.1) (l.D
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Equation (5.1a) coupled with equation (5.2) constitute the 

complete extended observation equations in the simultaneous 

bundle adjustment model.

A 
pl 

(2mn,6m)

A
p2

( 2mn ,3n)

AX] 

(6m,1)

V
P

(2mn,l)
-+

b 
P

(2mn,l)

0 A AX? v b
9 9 g

(k,6m) (k,3n) (3n,1) (k,l) (k,l)

(5.3)

where

m,n,k represent orders of the above matrices as fol lows

m = number of photographs

n = number of object points imaged on m (or less) photographs, 

k = number of survey measurements (slope distances) measured 

between targets.

5.4. Formation of the Normal Equations

5.4.1. Structure of the Normal equations matrix (N) with 
strictly photogrammetric measurements

From the linearised observations equations (5.1a) and their

corresponding weights we can form the normal equations. The

partitioned normal equations can be given by:

AI Vi AlWpA2 Ax-j

— ■“

AXb

AIWpAl aIw a,
2 p 2 Ax^ aIw b 

L2 P J

- 103 -



in which Wp is the image co-ordinate weight matrix. With N$ 

A^WpA], No = A^WpA^ and NSq = A^WpA^, equation (5,4) could be 

written in the following simplified form: 

(5.4a)
Ax-j

where the suffix o indicates object point co-ordinates and the 

suffix s indicates the camera parameters.

If there are ng camera stations; each photograph will produce 

a 6 x 6 entry in N$. In the meantime, if we have nQ object points; 

Nq will be a series of 3 x 3 diagonal blocks, with a block for each 

object point. NSQ represents the interaction between an object 

point and the photographs on which it is imaged. Consequently, 

the entire coefficient matrix of normal equations is of order 

(6ns + 3nQ) x(6ns + 3nQ). Typical structures of normal equations 

are represented in Figures (5.2) through (5.6). It is notable 

that such structures show the property of being sparse banded-bordered 

matrices as only a few of the total nQ are imaged on each photograph.

It should be noted that if an object point does not image on 

a particular photograph, the corresponding 6x3 submatrix of Nsq  

is null and the structure of N is not regular.so
Due to the lack of datum definition, the normal equations matrix 

(5.4a) is singular and the observation equations (5.1a) have column 

rank deficiency of 7 (3 translations, 3 rotations and one scale) as 

discussed in Chapter 4.
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e

Figure 5.2. Structure of the coefficient matrix of the 
normal equations for 4 photos and 25 object 
points.
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Figure 5.3. Structure of the coefficient matrix of the 
normal equations for 5 photos and 25 object 
points.

- 106 -



Figure 5.4. Structure of the coefficient matrix of the normal 
equations for 6 photos and 26 object points.
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Figure 5.5. Structure of the coefficient matrix of the normal 
equations for 7 photos and 26 object points.
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Figure 5.6. Structure of the coefficient matrix of the normal 
equations for 8 photos and 26 object points.
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5.4.2. Effect of Survey measurements on the structure of N

The survey measurements are confined to the targets in this 

study. The slope distances between object points represent the 

survey measurements subject to investigation. Hence, their 

contribution to the normal equations will be in the submatrix N o 
keeping the order of the normal equations constant for each two 

successive cases of the same number of cameras.

The structure of the normal equations with only photogrammetric 

observations as discussed in Section (5.4.1) can be exploited 

efficiently by reducing the size of the normal equations when 

seeking their solution. Such reduction can be performed through 

successive inversion of nQ (3 x 3) submatrices or n$ (6 x 6) ones 

depending on the size of ri0 and ng. However, the inclusion of n^ 

distances between object points, given in Table (5.3) necessitates 

the inversion of n^ (6 x 6) submatrices in addition to the usual 

inversion of a series of one of the two categories mentioned before.

Such an inclusion of survey observations in object space has 

a devastating effect upon the matrix N in terms of computer storage 

as the quality of sparsity is no longer retained. Further, the 

correlation between targets of object points increases the bandwidth 

of NQ significantly.

With the presence of survey measurements (slope distances) the 

normal equations (5.4) will be modified to count for the contribution 

of these survey measurements and could be written as:-
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4WpA1 4WpA2

i

O
 

x>
—

i

J

A{Wpb

aIw A. aIw a o + aJw a Ax 9 aIw b + ATW b
2 p 1 2 p 2 g g g 2 2 p g g g

(5.5)

in which subscripts p and g designate photogrammetric and survey 

respectively, and denotes the survey measurements weight matrix. 

Of prime computational importance is the fact that the normal equations 

matrix is created here as a point-wise accumulation without actually 

forming the observation equations matrix A. This means that the 

different observation equations need never be formed and considerable 

savings in computing and storage requirements is attained.

5.5. Inversion Algorithms and Covariance matrix of Co-ordinates

It has been mentioned, Section (4.2.2) that the common assumption 

that the a priori covariance matrix of the photogranmetric observations 

is a scalar matrix is in use; however it is almost certainly fallacious, 

yet it has the merit of being common to all the results which we wish 

to compare. As one of the primary goals of this investigation is 

to compare different network configurations to assess precision, 

reliability and sensitivity criteria for different designs, the most 

universal estimate of precision is the covariance matrix derived from 

the inverse of the coefficient matrix of the normal equations as 

discussed in Section (4.2.3).

Owing to the column rank deficiecy of (5.4a) and (5.5), there 

is no standard Cayley inverse as has been addressed in the above- 

mentioned sections, but a generalised inverse, namely the Moore-Penrose
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can be used. Such an inverse yields minimum trace covariance

matrix of the unknowns. Through this investigation, FO1BLF 

subroutine from the National Algorithm Group (NAG) Library was 

used to determine the Moore-Penrose inverse of the normal equations 

in cases 1, 2, 3 and 4. Unfortunately, its use was inefficient 

as it is rather expensive in terms of execution time and computer 

storage.

Alternatively, the likely most straight-forward approach is 

the method of inner constraints as mentioned in Section (4.2.3.2) 

and discussed, in detail, in Appendix B. It involves the bordering 

of the submatrix corresponding to the object point co-ordinates of 

the singular matrix, equation (5.5) with a transformation matrix,

G,to minimise only the trace of their cofactor matrix.

G satisfies the condition GTAx2 = 0. For an object point, j, 

in a network with a datum defect of seven, the appropriate 3x7

matrix Gj is given as follows (see Appendix B):

GJ

0 Z?
J

-Z? 0
J

VO Yo
Yj J

Y?
J

Z3°

(5.6)

1

0

0

0 0

1 0

0 1

s°

0

Under the scheme of inner constraints, the augmented normal

equations matrix (non-singular) can be written as:

4w pa i a>pa2 0

4WpAl aIw ao +a!w a G2 p 2 g g g

0 g t 0

A^ A>pb

AX2 = 4Wpb+A5Wgbg

A
K 0

(5.7)
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in which K is an estimator for the vector of Langrangian multipliers.

With the relatively small networks encountered in deformation 

monitoring, a direct solution can be considered for equation (5.7) 

using the standard Cayley inverse. The Cholesky factorisation 

algorithm best suited symmetric matrices cannot be used for the 

solution of equation (5.7) due to the introduction of a null principal 

submatrix which causes the matrix to become indefinite. Thus, an 

alternative to the Cholesky factorisation must be found.

At first sight, Gaussian elimination with partial or complete 

pivoting may appear to represent a useful alternative solution 

technique. In applying complete pivoting, the first trailing 

submatrix produced will generally no longer be symmetric. However, 

to preserve the symmetry property, the choice of pivots is restricted 

to the diagonal elements, yet the augmented matrix has a null 

principal submatrix which will give rise to zero pivots.

Further, the recursive partitioning technique, which could have 

been used to reduce the size of the normal equations matrix, cannot 

be applied as it necessitates the presence of the inverse of one of 

the main block diagonal submatrices which is not the case.

An efficient inversion subroutine, available at the London 

University Computer Centre: Scientific Subroutine Package (SSP) , was 

used. Such a subroutine was tested and found to give very accurate 

results when double precision arithmetic was used. The computer 

programs were coded in Fortran 77 Language and were run on the 

Honeywell, Amdahl and Cray IS systems.
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Now, if the standard Cayley inverse of equation^ 5.7) is

expressed as:

'll "12 "13

M22 M23
Symmetric

M33

then M^2 is identical to the minimum trace cofactor matrix

obtained when using the Moore-Penrose inverse.

As has been mentioned in Section (4.2.3.2) the incorporation 

of slope distances, the seventh column of G in equation (5.6) is 

to be suppressed.

The inner constraints can be imposed through G related in 

some cases to all object points and in others to a sub-set of 

targets. However, the former situation can be advantageous 

especially in sensitivity analysis stage.

5.6. Simulated Networks

5.6.1. Description

In order to examine the numerical behaviour of the different 

criteria for design, namely, precision, reliability and sensitivity, 

an experiment was conducted in which data were obtained through 

simulation. Of primary concern was examination of the magnitude
2

of the change of the mean variance om of the object point co-ordinates, 

the maximum internal reliability r of the observations and themax
indicative parameter of sensitivity c which accompany addition of 

slope distance measurements and/or changes in the number of cameras 

used.
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Ten distinct cases( Table (5.2)) were considered, 5 pm 

standard deviation has been assumed for the photogranmetric 

co-ordinates. Photography on glass plates with format 130 x 180 

mm was assumed. The odd-numbered cases comprise pure photogrammetric 

observations whereas the rest (even-numbered) include in addition 

to the photogrammetric observations, 8 diagonal distances, with 

presupposed 0.5 mm standard deviation on the four upright faces 

(Tables (5.2), (5.3)) of the cube. The object target array comprises 

26 points as mentioned earlier in Section (5.2).

The least number of photographs to cover the cube was found to 

be 4, otherwise some of the object points would appear only on one 

photograph, in which case its co-ordinates and their variances would 

be indeterminate. Therefore the start arrangement was to have 4 

photographs as shown in Figure (5.1).

Density of object points was such that, on average, 19 image 

points would appear on each photograph. Examination of Table (5.2) 

shows that the number of object points in the first four cases is 

25. There is one missing point (point 15) which does not appear 

in cases 1,2, however it appears in cases 3,4 on photograph 5.

The computer programs are coded in a way to override any point which 

appears only on one photograph. This assumption helps comparison 

between two identical sets of object points. On the other hand, 

addition of photographs 6,7, 8 (Figure (5.1)) leads to imaging point 

15 on 2,3, 4 photographs respectively. So the number of targetted 

object points will be 26, instead of 25, in cases 5-10.
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5.6.2. Results and Analysis

It is relevant to mention at the outset that due to the

bulk of the results, it is not possible to include all of them 

in the text but a sample is to be included. Results of cases 

9 and 10 were chosen to be typical representations as they give 

comprehensive illustration for the concepts to be discussed herein.

5.6.2.1. Mean Variance of Object Point co-ordinates

An indication of the effect of number of cameras employed in 

cases 1-10 is perhaps best gained by equation (3.15) which reads

% = tr^(2) <5-8)

0

in which n is the number of object points and is their cofactor

matrix. Because the geometry of the target array is the same for 

each case, the derived a priori precision of the object point 

co-ordinates depends almost solely on the number of cameras.

The variances of the estimated object point co-ordinates for

each case have been computed using the free network bundle adjustment 

procedure. Figures (5.7) and (5.8) illustrate the variation in
2

the mean variance om with changes in the configuration of camera 

stations in both pure and combined cases, which comprise slope 

distances, respectively. It is obvious from the two figures that 

precision increases with the increase of the number of cameras used.

As expected, the incorporation of the 8 slope distances does improve 

the precision. However, such an improvement is marginal "within"
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VARIANCESPOINT

NO X ( mm2) Y (mm2) Z (mm?)

1 0.141903720 00 0.14763672D 00 0.14768672D 00
2 0.1 54790 300 00 0.163509650 00 0.1 627301 2D 00
3 0.1 4 1 903721) 00 0.14768672D 00 0.14768672D 00
4 0.164473660 00 0.164535120 00 0.16453512D 00
5 0.141903720 00 0.147686720 00 0.14768672D 00
6 0.1 54790300 00 0.163509650 00 0.16273012D 00
7 0.141903720 00 0.1 47686720 09 0.14763672D 00
8 0.164473660 00 0.164535120 00 0.164535120 00
9 0.244125940 00 0.24300722 D 00 0.20952573D 00

1 0 0.154790800 00 0.162730120 00 0.16350965D 0 9
1 1 0.186263390 0 0 0.232673890 00 0.232673890 90
1 2 0.154790800 00 0.162730120 00 0.16350965D 00
13 0.24 41 25 94 0 0 0 0.20952573D 00 0.24300722D 00
14 0.15479030D 00 0.16273012D 00 0.16350965D 00
1 5 0.186263390 00 0.232673890 00 0.232673890 00
16 0.154790800 00 0.162730120 00 0.16350965D 00
17 0.24412594D 00 0.209525730 0 0 0.243097220 00
1 8 0.141903720 00 0.147636720 00 0.14768672D 00
1 9 0.1547903UD 00 0.16350965D 00 0. 1 627301 2D 00
20 0.141903720 00 0.147636720 00 0.14768672D 00
21 0.164473660 0 0 0.16453512D 00 0.164 535 1 2D 00
22 0.1 4 1903720 00 0.14768672D 00 0.147686720 00
23 0.1 54790800 00 0.163509650 0 9 0.16273012D 00
24 0.1 4 1 903 720 00 0.14768672D 00 0.14768672D 00
25 0.16447366D 00 0.164535120 00 0.16453512D 0'0
26 0.24412594D 00 0.243007220 00 0.20952573D 00

TABLE 5.4. Estimates of the variances of the 26 object point 
co-ordinates for case 9.
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VARIANCESPOINT

NO X (mm2) Y (mm2) Z (mm 2)

1 0.12732O23D 00 0.1 31 22635D 00 0.110959510 00
2 0.168089700 00 0.1632001OD 00 0.17301027D 00
3 0.127320230 00 0.131226350 00 0.110959510 00
4 0.16421463D 00 0.1 78338090 00 0.17498007D 00
5 0.12732023D 00 0. 1 31 226350 00 0.110959510 00
6 0.168089700 00 0.163200100 00 0.173010270 00
7 0.127320230 00 0.131226350 00 0.11095951D 00
8 0.164214630 00 0.1 78338090 00 0.17498007D 00
9 0.24335061D 00 0.24276900D 00 0.22268668D 00

1 0 0.167912560 00 0.176114230 00 0.163121180 00
1 1 0.201693660 00 0.23265213D 00 0.232403890 00
1 2 0.167912560 00 0.1 761 1 4230 00 0.163121180 00
1 3 0.24410036D 00 0.225901930 00 0.242776290 DO
1 4 0.167912560 00 0.176114230 00 0.163121180 00
1 5 0.201693660 00 0.232652130 00 0.232403890 00
1 6 0.16791256D 00 0.176114230 0 0 0.163121180 00
1 7 0.244100360 00 0.225901930 00 0.24277629D 00
1 8 0.12732023D 00 0.13122635D 00 0.110959510 00
1 9 0.168089700 00 0.16320010D 00 0.173010270 30
20 0.12732023D 00 0.131226350 00 0.110959510 00
21 0.16421463D 00 0.1783380°D 00 0.1 74980070 00
22 0.12732023D 00 0.131226350 00 0.110959510 00
23 0.168080700 00 0.163200100 00 0.17301027D 00
24 0.127320230 00 0.1 31.226350 00 0.110959510 30
25 0.164214630 00 0.1 78338090 00 0.174980070 00
26 0.243850610 00 0.242769000 00 0.22268668D 00

TABLE 5.5. Estimates for the variances of the 26 object point 
co-ordinates for case 10.
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8 (No.of cameras)

9 (Case)

Figure 5.7. Relation between no.of cameras and precision 

(Photogrammetry)
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Figure 5.8. Relation between no.of cameras and precision

(Photogrammetry + 8 distances) 
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the same number of camera cases. On the other hand, the 

improvement in precision "between" different number of camera 

cases is more significant. On the average there is a 24% 

and 23% improvement in precision should the number of cameras 

be increased to be 8 instead of 4 for the pure cases and combined 

cases respectively. The highest precision level is exhibited by 

cases 9 and 10.

5.6.2.2. r and other reliability indicators max

i

where w^

- 121

In the design phase of a monitoring network, reliability values 

are computed to ensure that the network geometry and planned 

observation scheme exhibit a high degree of self-checking. 

Reliability values were attained by applying the concept of 

"redundancy numbers" (rp, for each observation, computed from 

the diagonal elements (qj J ) of the cofactor matrix of the residuals
vi * vi

Qjj. Equation (.5.9) represents such redundancy numbers. It can 

be argued that by computing the redundancy numbers in simulated 

tests, it is possible to discover weak situations in advance and 

avoid them while planning the photogrammetric project.

The global reliability of the x- and y- co-ordinate observations 

are represented by rmax (x) and rmax (w) respectively. Equation 

(5.9) can be given as:

(5.9)

is the a priori weight of observation .



PHOTO POINT r(x) r(w)

1 1 0.44025168D 00 0.4 3848660D 00
2 0.547907600 00 0.571427720 00
3 0.608310040 00 0.629910640 00
4 0.64829768D 00 0.6703421 2D 00
5 0.633745720 00 0.62120360D 0 0
6 0.687692840 00 0.671920760 00
7 0.670607200 00 0.639901680 0 0
o <J 0.59726324D 00 0.55551532D 00
9 0.557774720 00 0.580557320 00

1 0 0.549432200 00 0.56990312D 00
1 1 0.5.38433480 00 0.547137920 00
1 2 0.648541320 00 0.649282280 00
1 6 0.636560640 00 0.67305296D 00
1 7 O.554353OOD no 0.583979040 00
1 3 0.603663960 00 0.62955676D 00
1 9 0.649227720 00 0.648595880 00
20 0.5 <31180240 00 0.61239384D 00
24 0.634347320 0 0 0.62060200D 00
25 0.647486400 00 9.671153440 00

2 1 0.608663960 00 0.62955676D 00
2 0.549432 2OD 00 0.5699031 2D no
3 0.440251630 .00 0.4 3848660D 00
4 0.59726324D 00 O.55551532O 00
5 0.670ol)7 20 0 00 0.639901 68 D on
6 0.68656064 0 0 0 0.67305296D 00
7 0.634347320 00 0.620602000 00
8 0.64748640D 00 0.67115344D 00
9 0.554 35300D 00 0.583979040 00

1 0 0.649227720 00 0.64859588D 00
1 1 0.538433480 no 0.54713792D 00
1 2 0.54 790 7 60 0 no 0.57142772D 00
13 0.557774720 00 0.58055732D 00
1 4 0.687692840 on 0.67192076D 00
13 0.581180240 no 0.61239384D 00
1 9 0.64854132D 00 0.649282280 00
20 0.608310040 00 0.62991064D 00
21 0.64829763D 00 0.670342120 00
22 0.633745720 00 0.621203600 00

TABLE 5.6. Computed values of redundancy numbers for case 9.
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PHOTO POINT r(x) r(u)

3 1 0.58118024D 00 0.6123938AD 00
2 0.6A85A132D 00 0.64928228D 00
3 0.60331OOAD 00 0.6299106AD 00
4 0.648297680 00 0.6703421 2D 00
5 O.6337A572D 00 0.62120360D 00

1 0 0.6A9227720 00 0.64859588D 00
1 1 0.58843548D 00 0.54713792D 00
1 2 0.54790760D 00 0.57142772D 00
1 3 0.557774 72D 00 0.5 3 0 5 5 7 3 2 D 00
1 A 0.637692 SAD 00 0.67192076D 00
1 8 0.608663960 00 0.62955676D 00
1 9 0.549432200 00 0.5699031 2D 00
20 0 . A A 0 2 5 1 6 8 D 00 0.4 3 8A3660D 00
21 0.597263240 00 0.5 5 5 5 1 532 D 00
22 0.67060720D 00 0.63990168D 0 0
23 0.6365606AD 00 0.67305296D 00
2A 0.63A3A 7320 00 0.620602000 00
25 0.6A 7486 AOD 00 0.6 7 1 1 5 3 4 4 D 00
26 O.554353OOD 00 0.533979040 00

4 1 0.608663960 00 0.62955676D 00
2 0.649227720 00 0.6A859588D 00
3 0.581180240 00 0.61239384D 00
7 0.63A3A7320 00 0.62060200D 00
8 0.6A7A86A0D 0 0 0.6 7 1 1 5 3 4 4 D 0 0

1 0 0.5A9A3220D 00 0.5 699031 2D 00
1 1 0.53843348D 00 0.54713792D 00
1 2 0.648541320 00 0.649282280 0 0
16 0.636560640 00 0.67305296D 00
1 7 O.55A353OOD 00 0.5339790AD 00
1 3 0.440251680 00 0.4 38A8660D 00
1 o 0.5A790760D 0 0 0.57142772D 00
20 0.60831OOAD 00 0.62991 064 D 00
21 0.6A829763D 0 0 0.67034212D 00
22 0.633745720 00 0.6212O36OD 0 0
2 3 0.6376928AD 0 0 0.67192076D 00
2A 0.670607200 00 0.63990168D 00
25 0.597263240 00 0.55551532D 00
26 0.557774720 00 0.58O55732D 00

TABLE 5.6. (Continued)
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PHOTO POINT r(z) r(v)

1 0.670o0720D 00 0.6399016SD 00
n L 0.68656064 0 0 0 0.673052960 00
3 0.634347320 00 0.62060200D 00
4 0.647486400 0 0 0.671153440 on
5 0.60866396D 0 0 0.629556760 0 0
6 0.549432200 00 0.5699031 2D 00
7 0.44025168D 00 0.438486600 00
P. 0.5'*72o324D 00 0.55551532D 00
9 0.554 35300D 00 0.58397904D 00

1 0 0.68769284 0 00 0.671920760 no
1 4 0.649227720 DC 0.643595880 0 0
1 5 0.583433480 00 0.547137920 0 0
1 6 0.547907600 0 0 0.57142772D 00
1 7 0.55 7774 720 00 O.53O55732D 00
18 0.6 33 74 5 720 00 0.6212036OD 00
22 0.531180240 on 0.612393840 00
2 3 0.648541320 00 0.64928228D 00
24 0.608310040 00 0.629910640 00
2 5 0.648 29 7 6 80 00 0.670342120 00

1 0.634347320 00 0.62060200D 00
2 0.686560640 00 0.67305296D 00
3 0.670607200 00 0.639901680 00
4 0.5972o324D 00 0.55551532D 00
5 0.440251680 00 0.4384866CD 00
6 0.549432200 00 0.5699031 2D 00
7 0.608663960 00 0.62955676D 00
o < / 0.647486400 no 0.67 1 1 5344D 0 0
9 0.554353000 00 0.5 8 397904 D 00

1 2 0.68769284D 00 0.671920760 00
1 3 0.557774720 00 0.53055732D 00
14 0.547907600 00 0.57142772D 00
1 5 0.58843348D 00 0.54713792D 00
16 0.64922772D 00 0.648595880 00
20 0.633745720 00 0.621203600 00
21 0.648297680 00 0.6703421 2D 00
22 0.603310040 GO 0.629910640 00
2 3 0.648541320 00 0.649282280 00
2 4 0.531180240 00 0.61239384D 00

TABLE 5.6. (Continued)
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PHOTO POINT r(x) rfp)

3 0.63434732D 00 0.620602000 00
4 0.647486400 00 O.67115344D 00
5 0.608663960 00 0.629556760 00
6 0.649227720 00 0.64859588D 00
7 0.531180240 00 0.612393840 0 0

1 2 0.686560640 00 0.67305296D 00
1 3 O.554353OOD no 0.583979040 00
1 4 0.549432200 00 0.5699031 2D on
1 5 0.58843348D 00 0.547137920 00
1 6 0.648541320 00 0.64923228D 00
13 0.633745720 00 0.621203600 00
1 9 0.63769284D 00 0.67192076D 00
20 0.670607200 no 0.639901680 00
21 0.597263240 00 0.555515320 00
22 0.44025168D on 0.4 38486 60D 00
2 3 0.547907600 no 0.571427720 00
24 0.608310040 00 0.629910640 00
25 0.648297680 00 0.670342120 00
26 0.557774720 00 0.580557320 00

1 0.63434732D 00 0.620602000 00
5 0.531180240 no 0.61239384D 00
6 0.649227720 00 0.648595880 00
7 0.60866396D 00 0.62955676D 00
8 0.64748640D 00 0.671 1 5344 D 00

10 0.63656064 0 00 0.673052960 00
1 4 0.648541320 00 0.649282280 00
1 5 0.538433430 0 0 0.547137920 00
1 6 0.54943220D 00 0.569903120 00
1 7 O.554353OOO oc 0.583979040 00
18 0.670607200 00 0.639901680 00
1 9 0.687692840 00 0.671920760 00
20 0.63374572D 00 0.62120360D 00
21 0.64829768D 00 0.6703421 2D 00
22 0.608319040 on 0.62991064D 00
23 0.547907600 no 0.571427720 00
24 0.44025168D on 0.4 384866 0D 00
25 0.507263240 00 0.55551532D 00
26 0.557774720 00 0.53055732D 00

TABLE 5.6. (Continued)
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PHOTO POINT r(x) r(w)

1 0.453066240 00 0.445887600 00
2 0.550596760 00 0.57300392D 0 0
*7 . ) 0.616604 720 0 0 0.691825000 00

0.643993640 0 0 0.67148416D 00
5 O.67285792D 00 0.66269208D 00
6 0.689236320 no 0.672440960 0 0
7 0.717712 5 60 00 0.657479240 0 0
o I > 0.600204040 00 0.556824000 00
p O.558538O8D 00 0.58092880D 00

1 0 0.5 51 802 92 0 00 0.571699320 00
11 0.53934152D 0 0 0.547410520 00
1 2 0.650302200 00 0.650095920 00
1 6 0.6 3 7 7 7 5 7 2 D 0 0 0.67470936D 00
1 7 0.554749320 0 0 0.534301200 00
1 a 0.655712840 00 0.67888004D 00
1 9 O.65050276D no 0.64878764 D 00
20 0.61613624D 00 0.627122480 00
24 0.637050840 00 0.66724204D 0 0
25 0.647834320 00 0.672322400 00

1 0.61 7424 28D 00 9.69 1 0054 4 D 00
•)r. 0.552328360 00 0.571272320 00
_» 0.45385160D 00 0.4 4 51 0228D 00
4 0.600379720 0 0 0.55664836D 00
5 0.71505732D 00 0.660134440 00
6 0.63<309260D 00 0.67358472D 00
7 0.67317528D 00 0.662374720 00
8 0.648236480 00 0.672241280 00
9 O.55522972D 00 0.584287160 00

1 0 0.651016480 00 0.64938164D 00
1 1 0.589340960 00 0.547411080 00
1 2 0.5 50 34 1 28 0 00 0.573160960 00
1 3 0.55820176D no 0.53134876D 00
1 4 0.638964680 00 0.67352036D 00
1 8 0.613267380 00 0.62999084D 00
1 9 0.64982140D 00 0.64946900D 00
20 0.654987200 00 0.67960563D 00
21 0.648692800 00 0.671 46396D 00
22 0.63608020D 00 0.668212680 00

TABLE 5.7. Computed values of redundancy numbers for case 10.
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PHOTO POINT r(x) r(?)

3 1 0.61 3 26 7 88 0 00 0.62999084D 00
*> u 0.649821400 00 0.649469000 00
7 .J 0.654987200 00 0.67960568D 00
4 0.64369280D 0 0 0.671463960 00
5 0.63608020D 0 0 0.668212680 00

10 0.65101648D 00 0.649381640 00
1 1 0.5.39340960 0 0 9.54 74 1 1 OSD 00
1 2 0.550341280 0 0 0.57316096D 00
1 3 O.5582O176D 00 0.58134876D 00
1 4 0.6-33964 680 00 0.67352036D 00
1 8 0.617424280 00 0.691005440 00
1 9 0.552328360 0 0 O.57127232D 00
20 0.453851600 00 0.445102280 00
21 0.600379720 00 0.55664836D 00
22 0.715057320 00 0.66013444D 00
2 3 0.6.3809 2 60 D 00 0.673584720 00
24 0.673175280 00 0.66237472D 00
25 0.64823648D 0 0 0.67224128D 00
2 6 0.555229720 00 0.58428716D 0 0

4 1 0.655712840 0 0 0.67838004D 0 0
2 0.650502760 00 0.648787640 00
3 0.61 61 3 6 2 4 D 00 0.62712248D 00
7 0.637050840 00 0.66 7 24 2 04 D 00
r» 
<» 0.647334320 00 0.67232240D 00

10 0.55180292D 00 0.571699320 00
11 0.539341520 00 0.547410520 00
12 0.650302200 00 0.650095920 00
16 0.68777572D 00 0.674709360 00
1 7 0.554749320 00 0.584801200 00
18 0.453066240 GO 0.445887600 00
1 9 0.550596760 00 0.573003920 00
20 0.61 6604 720 0 0 0.691825000 00
21 0.648993640 00 0.671484160 0 0
22 0.672857920 0 0 0.66269208D 0 0
23 0.68^236320 co 0.672440960 00
24 0.717712560 00 9.657479240 00
25 0.60020404D 00 0.556824000 00
26 0.558588080 00 0.58092880D 00

TABLE 5.7. (Continued)
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PHOTO POINT r(x) r(u)

5 1 0.715057320 0 0 0.660134440 00
2 0.683092600 00 0.673584720 00
3 0.673175280 00 0.66237472D 00
4 0.648236480 00 0.672241280 00
r J C . 61 7 4 2 4 2 8 0 co 0.691005440 00
6 0.552328360 00 0.571272320 00
7 0.45385160D 00 0.445102280 00
o « » 0.600379720 00 0.55664836D 00
n 0.555229720 00 0.53428716D 00

1 0 0.688964680 00 0.67352036D 00
1 4 0.6 5 1 01 6 4 8 D 00 0.649381 64 D 00
1 5 0.5.VJ34096D 0 0 0.547411080 00
16 0.550341280 00 0.5 731 6096D 00
1 7 0.553201760 00 0.581348760 00
1 8 0.636080200 00 0.66821268D 00
2 2 0.61326788D 00 0.62999084 D 00
23 0.64982140D 00 0.64946900D 00
24 0.654987200 0 0 0.67960568D 00
25 0.643692800 00 0.67146396D 00

6 1 0.67317523D 00 0.662374720 00
2 0.63309260D 00 0.67358472D 00
3 0.715057320 00 9.66013444D 00
4 0.600379720 00 0.556643360 00
5 0.453851600 00 0.445102280 00
6 0.552323360 00 0.57127232D 00
7 0.617424280 00 0.691005440 00
3 0.648236480 00 0.672241280 GO
o O.55522972D 00 0.58428716D 00

1 2 0.638964680 00 0.673520360 00
13 0.55820176D 0 0 0.58134876D 00
1 4 0.550341280 00 0.57316096D 00
1 5 0.58934096D 00 0.547411080 00
1 6 0.651016480 00 9.649381640 00
20 0.636080200 00 0.66821268D 00
21 0.648692800 0 0 0.671463960 00
22 0.6549S720D 00 0.679605680 00
23 0.649821400 00 0.64946900D 00
24 0.61326788D 00 0.62909084 D 00

TABLE 5.7.(Continued)
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PHOTO POINT r(x) r(w)

7 3 0.637050841) 0 0 O.667242O4D 0 0
4 0.647834320 00 0.67232240D 00
5 0.65571 2841) 00 0.67383004D 00
6 0.65050276D 0 0 0.648787640 00
“7
1 0.6 1 6 1 3 6 2 4 0 00 O.62712248D 0 0

1 2 0.637775720 00 0.67470936D 00
1 3 0.554749320 00 0.58480120D 00
1 4 0.551802920 0 0 0.57169932D 00
1 5 0.539341520 00 0.54741052D 00
1 6 0.650302200 00 0.650095920 00
1 8 0.672857920 00 0.66269208D 00
1 9 0.639236320 00 0.672440960 00
20 0.717712560 00 0.657479240 00
21 0.600204040 00 0.556824000 00
22 0.453066240 00 0.445887600 00
23 0.550596760 00 0.573003920 00
24 0.616604 72D 00 0.691825000 00
25 0.648993640 00 0.671484160 00
26 0.558588080 0 0 0.58092880D 00

8 1 0.637050840 00 0.66724204D 00
5 O.61613624D 00 0.627122480 00
6 0.650502760 0 0 0.643787640 00
7 0.65571284D 00 0.67888004 D 00
8 0.647834320 00 0.67232240D 00

10 0.6877757 2D 00 0.67470936D 00
1 4 0.650302200 00 0.650095920 00
1 5 0.589341520 00 0.547410520 00
16 0.551802920 00 0.57169932D 00
1 7 0.554749320 00 0.584801200 00
1 8 0.71 771 2560 00 0.65747924D 00
1 9 0.68923632D 00 0.672440960 00
20 0.67285 792 D 0 0 0.662692080 00
21 0.648993640 00 0.671484160 00
22 0.61o60472D 00 0.69182500D 00
23 0.55059676D 00 O.573OO392D 00
24 0.453066240 00 0.44583760D 00
25 0.600204040 00 0.556824000 00
2 6 0.558588080 0 0 0.580928800 00

TABLE 5.7. (Continued)

129



Figure (5.9) illustrates the relation between number of 

cameras and the reliability of the x-co-ordinate photogranmetric 

observations whereas Figure (5.10) shows that with respect to the 

y-co-ordinate. Illustrated in Figures (5.11) and (5.12) are the 

reliability of the x- and y- co-ordinate combined observations 

res pecti vely.

The reliability of the x- and y- co-ordinates of cases 1,2 

is sufficient (Case 1: r(s) = 0.583, r(y) = 0.540; Case 2: r(a-) = 

0.586, r(y) = 0.610). On the other end of the scale, cases 9,10 

display the highest reliability (Case 9: r(rr) = 0.688, r(y) = 0.673; 

Case 10: r(-) = 0.718, r(y) = 0.692). One plausible explanation 

for such a situation is due to the symmetric network arrangement. 

The latter cases are the optimum configuration in reliability sense.

Again in reliability analysis of the x- and y- co-ordinate, 

as in precision, there is slight improvement "within" the same number 

of camera cases.

With regard to the "between" percentage of improvement for 

purely photogrammetric cases, it can be noticed that there is some 

similarity in the trend of the rate of improvement in x- and y- 

co-ordinate observations.

For the combined different number of camera cases x- and y- 

co-ordinate reliability improvements, it seems that the improvement 

rate is insignificant especially after the 6 camera case.

The reliability of the slope distances are plotted against 

the number of cameras in Figure (5.13). As can be seen from this 

figure, with the number of slope distances kept constant, the more
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rmax

Figure 5.9. No.of cameras against Reliability (internal) 
of photo x-co-ordinates.

(Photogrammetry)
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750

Figure 5.10. No.of cameras against Reliability (internal) 
of photo y-co-ordinates.

( Photogrammetry)
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No.of cameras against Reliability (internal) 
of photo x-co-ordinates.

(Photogrammetry + 8 distances)

r xlO3 max

(No.of cameras)
(Case)
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r xlO3 
max

Figure 5.12. No.of cameras against Reliability (internal) 
of photo y-co-ordinates.

(Photogrammetry + 8 distances)
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r xlO3 
max

Figure 5.13. No.of cameras against Reliability (internal) 
of survey measurements (8 distances).
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the number of cameras the more the reliability of slope distances

is.

Because of the large amount of results involved, only 

representative sample points are presented herein to demonstrate 

the effect of number of rays (i.e. number of cameras) and addition 

of slope distances on the redundancy numbers (i.e. reliability).

Table (5.8) displays the average values of r^ for points with 

different number of rays intersecting at the object. The values 

shown in the table prove a strong correlation between the number 

of rays and the reliability. Points appearing on two photographs 

only (e.g. points 9, 26) display the lowest reliability. Examination 

of Table (5.8) reveals that for specific points imaged with less 

number of rays (e.g. point 2) provide higher reliability than other 

points photographed on larger number of photographs (e.g. point 1). 

This slight gain in reliability is thought to be related to the 

position of the target on the object and consequently on the photograph(s). 

This confirms that there is a relation between the location of a 

point on the photograph and the reliability.

When two measured distances originate from a point, the 

redundancy number increases substantially. Table (5.9) lists the 

values of redundancy numbers with and without adding distances and 

the percentage improvement. The latter varies between 14 to 4 for 

the x-co-ordinate whereas it ranges from 18 to 5 for the y-co-ordinate. 

It is also noted that the improvement in redundancy numbers slows down 

considerably after 6 rays. Therefore, it is not economically 

desirable to try to improve the redundancy if the object points
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already have 6 rays and display redundancy numbers of the order of

0.6 or more.

Object 
Point
Number

Number 
of 

Rays

Redundancy numbers

r(x) r(y)

4 0.450 0.431

1
5 0.522 0.525
6 0.564 0.563
7 0.597 0.599

4 0.516 0.488
2 5 0.579 0.573

6 0.623 0.626

2 0.314 0.139
9 3 0.440 0.464

4 0.552 0.581

2 0.314 0.139
26 3 0.436 0.474

4 0.557 0.581

TABLE (5.8) Relation between number of rays and 
redundancy numbers.
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Object 
Point
Number

Number 
of 

Rays

r (without 
distances)

r (with 
(distances)

Improvement %

r(*) r (t/) r(x) r (t/) rH r (z/)

4 0.450 0.431 0.490 0.508 8.9 17.9

1
5 0.522 0.525 0.561 0.576 7.5 9.7
6 0.564 0.563 0.596 0.604 5.7 7.3
7 0.597 0.599 0.624 0.634 4.5 5.8

4 0.451 0.430 0.493 0.506 9.3 17.7
5 0.511 0.499 0.546 0.555 6.9 11.2

3 6 0.564 0.563 0.597 0.603 5.9 7.1
7 0.593 0.594 0.619 0.629 4.4 5.9

4 0.478 0.479 0.547 0.567 14.4 18.4

5 5 0.516 0.518 0.563 0.574 9.1 10.8
6 0.567 0.575 0.602 0.615 6.2 7.0
7 0.597 0.599 0.624 0.633 4.5 5.7

4 0.421 0.453 0.502 0.515 19.2 13.7

7 5 0.515 0.518 0.564 0.573 9.5 10.6

6 0.556 0.559 0.593 0.604 6.7 8.1

7 0.597 0.599 0.624 0.633 4.5 5.7

TABLE (5.9) Effect of distances between object points and their 
image co-ordinate reliability (Sample of points 
having 4, 5, 6, 7 rays).
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On the other hand, for object points which have no distances, 

their image co-ordinates reliabilities are insignificantly improved. 

Table (5.10) represents the improvement gained by the inclusion of 

slope distances in the photogrammetric network as a whole. It 

should be noted that points with 2 or 3 rays can be seen to have 

had no significant improvement compared with that of"distance- 

connected" points.

Object Number
Point of
Number Rays

r (without 
distances)

r (with Improvement %
distances)

r W r(y) rW
4 0.516 0.488 0.523 0.491 1.4 0.6

2 5 0.579 0.573 0.583 0.575 0.7 0.4
6 0.623 0.626 0.626 0.628 0.5 0.3

4 0.524 0.518 0.526 0.520 0.4 0.4
4 5 0.584 0.581 0.586 0.584 0.4 0.5

6 0.629 0.630 0.631 0.631 0.4 0.2

4 0.502 0.527 0.506 0.529 0.8 0.4
6 5 0.577 0.591 0.580 0.592 0.5 0.2

6 0.629 0.630 0.531 0.631 0.4 0.2

4 0.500 0.520 0.509 0.522 1.8 0.4
8 5 0.583 0,582 0.585 0.584 0.4 0.4

6 0.631 0.633 0.632 0.634 0,2 0.2

2 0.314 0.139 0.314 0.139 0.0 0.0
9 3 0.440 0.464 0.441 0.465 0.2 0.2

4 0.552 0.581 0.554 0.581 0.4 0.0

2 0.314 0.139 0.314 0.139 0.0 0.0
26 3 0.436 0.474 0.437 0.474 0.2 0.0

4 0.557 0.581 0.558 0.582 0.2 0.2

TABLE (5.10) Effect of slope distances on redundancy numbers.



Table (5.11) summarises the precision and reliability values 

(fi max) of the photogrammetric measurements.

Case Precision
0^ (mm2)m

Reliability

max r(ar) max r(y)

1 0.40027546 0.583039 0.540271
2 0.38408995 0.585583 0.610033
3 0.30379145 0.657194 0.650357
4 0.29312554 0.681672 0.651317
5 0.25444611 0.682046 0.669123
6 0.24798812 0.694132 0.670347
7 0.20352679 0.685850 0.671341
8 0.19979033 0.712184 0.688901
9 0.17192943 0.687693 0.673053

10 0.16986719 0.717713 0.691825

TABLE (5.11) Summary of precision and reliability (r ) of 
photogrammetric measurements.

Naturally the global indicators don't provide in each case 

for sufficient precision/or reliability of all individual object 

points/and observations, e.g. if some observations have been cancelled 

or if points cannot be observed from certain camera stations.

Such a situation is encountered in the computer programs, when 

dealing with object point (no.15) incasesl-4, and observations from 

or to that point. So, in addition to the computation of the exact 

redundancy numbers other individual indicators, namely Tau (internal 

reliability), Gam (external reliability) and Delta (max. undetected 

gross error) were computed according to the equations presented in
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PHO PT TAU GAM

2

3

NO

1

) NO X y X

1 0.150712570 01 0.15101561D 01 0.112757620 01
2 0.135007200 U1 0.132287660 01 0.908364060 00
3 0.123214610 01 0.125997090 01 0.802432900 00
4 C.124197470 01 C.12213826D 01 0.73654686D 00
r J 0.125615230 01 0.126077030 01 0.760210450 00
6 0.1 2052,7630 01 0.121994700 01 0.673897300 00 .
7 0.122114120 01 0.125009600 01 0.70084656D DO
8 0.1 2 03 04.38 0 01 0.134168940 01 0.821159920 00
Q 0.133806020 01 0.131243390 01 0.890414800 00

10 0.13490063D 01 0.132404490 01 9.9C557207D 00
11 0.130362090 01 0.135192190 01 0.836317780 00 -
1 2 0.1 241 7414 c 01 0.124103270 01 0.736153380 00
16 0.12063702c 01 0.121892050 01 0.675674170 00
1 7 0.134200520 01 0.130858330 01 0.39660735D 00
1 8 0.128177330 01 0.126032500 01 0.801837070 00
1 9 0.124103480 01 0.124168920 01 0.735045300 DO
20 0.13117304D 01 C.127786390 01 0.848903180 00
24 6.125555700 01 0.126938520 01 0.759225570 00
25 0.124275260 01 0.122064420 01 0.737857700 00

1 0.128177330 01 0.126032500 01 0.801837070 00
2 0.134909630 01 0.132464490 01 0.905572070 00
3 0.150712570 01 0.151015610 01 0.11275762D 01
4 0.129394080 01 0.134168940 01 0.821159920 00
5 0.1221141 2D 01 0.125009600 01 0.700846560 00
6 0.1 2068.702 D 01 0.12189205D 01 0.675674170 00
7 0.125555700 01 0.12693852D 01 0.759225570 00
8 0.124275260 01 0.122064420 01 0.737857700 00
9 0.134309520 01 0.139858330 01 0.896607350 DO

1 C 0.1 24 1 08 43 0 01 0.1241of,92D 01 0.735045300 00
1 1 0.139362990 01 0.135192190 01 0.836317780 00
1 2 0.135QO720D 01 0.132287660 01 0.9CR36406D DO
1 3 0.133896920 01 0.131243390 01 0.89041480D 00
1 4 0.1 205 8.763 0 01 0.1219O470D 01 9.673397300 00
1 8 0.131173040 01 0.127786390 01 0.848903180 00
1 9 0.1241’4140 01 0.124103270 01 0.736153380 DO
20 0.1 2 3 2 1 4 61 D 01 0.125997090 01 0.80243290D 00
21 0.124197470 01 0.122138260 01 0.736546860 00
22 0.125615280 01 0.1 268,77030 01 0.760210450 00

1 0.131173040 01 0.127786390 01 0.848903180 00
2 0.1241’4140 01 9.124103270 01 0.736153380 00
3 0.123214610 01 0.125997090 01 0.8C243290D 00
4 U.124197470 01 U. 122138260 01 0.736546860 DO
5 0.125615280 01 9.126E7703D 01 0.760210450 DO

1 0 0.124108480 01 0.124168920 01 0.735045300 00
1 1 0.130362090 01 0.135192190 01 0.836317780 00
1 2 0.135897200 01 0.1 3228.7o6D 01 0.908364060 DO
1 3 0.1338°6920 01 0.131243390 01 0.890414800 00
1 4 U. 1 205 8.763 0 01 0.121094700 01 0.673897300 00
1 8 0.12817’330 01 0.126O3250D 01 0.80183707D 00
1 9 0.134909630 01 0.132464490 01 0.905572070 00
20 0.1 507 1 2570 01 0.151015610 01 0.112757620 01
21 0.12°’. 94 83 0 01 • 0.134168940 01 0.321159920 00
22 0.122114120 01 0.125009600 01 0.700846560 00
23 0.1 206-',.702D 01 0.121892050 01 0.675674170 DO
24 0.125555700 01 0.126938520 01 0.759225570 00
25 0.1242’5260 01 0.122064420 01 0.737857700 00
26 0.13430952D 01 0.130858330 01 0.896607350 00

y
0. 1 1 31 62330
0.8660269.1 D
0.766502940
0.731267120
0.78088295D
0.698763720
0.75016003D
0.E9453337D
0.349989880
0.86872562D
0.909776200
0.734957250
0.696973300
0.8440321 20
0.767084820
0. 736065280
0.795 5 72800
0. 781 881 490
0. 6999801 8D

0.76708482D 
0.868725620 
0.113162330 
0.894503070 
0.7501 63330 
0^696970000 
0. 781 881 490 
0.69998018D 
0.844032120 
0.736065280 
0.909776200 
0.86602691 0 
0.349989880 
0.698763720 
0.795572800 
0. 73495 7250 
0.766502940 
0.701267120 
0.780882950

TABLE 5.12. Values of Tau and Gam for Case 9 
(at a = 0.05 and y = 0.8)

31
30
03
33
33
DO
30
33
33
03
33
33
33
33
DO
33
33
00
00

33 
03 
01
33
33
33
03
33
33
03
03
03
33
30
03
33
33
33
03

33
03
33
33

0.795572800 
0.734957250 
0.766502940 
0.701267120
0. 780882950- 03 
0. 73606528D 
0.909776200 
0. 86602691 D 
0.849989380 
0.698763720 
0.76708482D 
0.368725620 
0.113162330 
0.894500070 
0.75016005D 
0.696973330 
0.781881490 
0.69998318D 
0.844032120

33
33
33
33
03
03
33
31
30
33
33
33
33
03

141



o 
X 
a.

o 
z

0.
1.

28
1 7

73
30

 01 
0.

12
60

32
50

0 01
 

0.
80

1 
83

70
70

 00 
0.

 7
67

08
48

20
 33

I LA I o

TA
BL

E 5
.1

2 (C
on

tin
ue

d)



oo i
o

X 
o

I

CO

I

C
C

 ae1?
 18

8 t
flz

 *0
 

00
 0ZS

S2
?6

SZ
‘0 to <J2t»

yf
o9

? 
I • 

0 
10

 OU
Zb

SS



TABLE 5.13. Values of Tau and Gam for Case 10 
(at a = 0.05 and y = 0.8)

PHO PT. TAU CAM

NCI NO X y X y
1 1 0.1 4R565OOD 01 0.1 49757060 01 0.1O987187D 01 0.111477250 31

2 0.1 34766380 01 O.1321O559D 01 0.903444070 30 0.86324 31 60 33
3 0.127349300 01 0.1 20226960 01 0.788533150 00 0.667422090 33
4 0.12413036O 01 0.122^34 360 01 0.735423110 00 0.699455790 33
5 0.121909710 01 0.122841220 01 0.697278900 00 0.71343938D 33
6 0.12045253D 01 0.121947510 01 0.671476860 00 0.697939400 33
7 0.118033730 01 0.12332723D 01 0.627148670 DO 0.721 7 75 980 03
8 0.12°O?75OD 01 0.134011180 01 0.816149550 00 0.89213205D 33
9 0.1337OO40D 01 0.131201420 01 0.88894767D 00 0.349341710 33

m D . 1 x 4 6 0 5 1 0 01 0.132256240 61 0.90124427D 00 0.865 5 46780 33
11 0.13026162D 01 0.135158520 01 0.834750870 00 0.909275 850 03
1 2 0.12460591D 01 0.124025580 01 0.733312080 00 0.733644700 03
1 6 0.120500360 01 0.12174234D 01 0.673767280 00 0.694343360 33
1 7 0.134261540 01 0.130766310 01 0.895888390 DO 0.842604780 33
1 8 0.1234^3230 01 0.121367800 01 0.724608740 00 0.687760340 33
10 0.123936760 01 0.124150570 01 0.732988740 00 0.73575566D 00
20 0.1273°7710 01 0.126276870 01 0.78931468D DO 0.771093280 33
24 0.125239000 01 0.122421670 01 0.754806880 00 0.706191560 33
25 0.124241830 01 0.121958260 01 0.737295430 00 0.698127240 03

2 1 0.12726476D 01 C.120298240 01 0.787166950 00 0.668705170 33
2 6.1 34555460 01 0.13230566D 01 0.90028729D 00 0.866301710 33
3 0.143437310 01 0.149889110 01 0.1G969792D 01 0.111654580 01
4 0.129058610 01 0.134032320 01 0.815850820 00 0.892449590 03
5 0.1 18.25 774 0 01 0.12307896D 01 0.631260080 DO 0.717525570 33
6 0.120552590 01 0.12184393D 01 0.673270210 00 0.69612804D 33
7 0.121880980 01 0.122870640 01 0.696776300 00 0.713946390 33
8 0.124263340 01 0.121965620 01 0.73664571D 00 0.698255780 33
9 0.1 3420344 0 01 0.130823820 01 0.895017500 DO 0.34349731D 33

1 0 0.1239X7860 01 0.124093780 01 0.732160790 00 0.734796910 33
1 1 0.136261680 01 0.1 351 58450 01 0.834751830 00 0.90927483D 03
1 2 0.134793160 01 0.132087490 01 0.903910570 00 0.B62966160 33
1 3 0.1 332,45690 01 0.13115403D 01 0.889644280 00 0.34860936D 33
1 4 0.12047627D 01 0.12184975D 01 0.671902680 DO 0.696229930 33
1 8 0.1 27665290 01 0.125989070 01 0.794108810 00 0.766371100 03
1 0 •0.124651730 01 0.124085430 01 0.734087440 00 0.734655950 03
20 0.123561620 01 C.12130299D 01 0.725773650 00 0.686615980 33
21 0.1 24 1 5964 0 01 0.122036190 01 0.735908780 DO 0. 699487820 33
22 0.125384560 01 0.122332720 01 0.756391960 00 0. 70464851 D 03

3 1 0.127665’90 01 0.12598907D 01 0.794108810 00 0.766371100 33
2 0.12405178D 01 0.12408543D 01 0.734087440 00 0.734655950 33
3 0.123561620 01 0.121302990 01 0.725773650 00 0.686615980 03
4 0.124159640 01 0.122036190 01 0.735908780 00 0.699487820 33
5 0.125334560 01 0.122332720 01 0.75639196D 00 0.70464851D 03

1 0 0.123937860 01 0.124093780 01 0.732160790 00 0.734796910 33
1 1 0.130261630 01 0.13515845D 01 0.33475183D 00 0.90927483D 03
1 2 0.1347981oD 01 0.132087490 01 0.90391 0570 00 0.862966160 30
1 3 0.13384569D 01 0.131154030 01 0.889644280 00 0.848609360 33
1 4 0.1 204 76270 01 0.121849750 0,1 0.671902680 00 0.696229930 33
1 8 0.127264760 01 0.1202«824D 01 0.787166950 00 0.668705170 03
1 9 0.134555460 01 0.132305660 01 0.900287290 00 0.86630171D 03
20 0.1 42,4 3 731 0 01 0.149889110 01 0.109697920 31 0.111654580 31
21 0.1 290 5 861 D 01 0.134032320 01 0.815850820 DO 0.89244959D 33
22 0.1 1 8.2 5 7 74 0 01 0.1 2 30 78,96 D 01 0.631260080 00 0.71752557D 33
23 0.120552590 01 0.121843930 01 0.673270210 00 0.696128040 33
24 0.121220980 01 0.122870640 01 0.696776300 DO 0. 71 394639D 33
25 0.124203340 01 0.121965620 01 0.73664571 0 DO 0.698255780 33
26 0.134203440 01 0.1 ’0.823820 01 0.395017500 00 0.84349731 D 33
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PHOTO POINT TAU DELTA(um)

1

NO no X y X y
1 0.1 48565900 01 0.1 4975706D 01 0.20800 02 0.23970 02
2 0. 1 3476688D 01 0.1 3 2 1 0 5 5 9 0 01 0.18870 02 0.18490 02
3 0. 1 27349300 01 0.120226960 01 0.17830 02 0.16830 02
4 0.124130860 01 0.122034360 01 0.1738D 02 0.17080 32
5 0. 1 2190971 0 01 0.1 2284 1 220 01 0.17070 02 0.1720D 32
6 0.120452530 01 0.121947510 01 0.16860 02 0.1707D 02
7 0.113038780 01 0.1 23327230 01 0.16530 02 0.17270 02
8 0.12907750D 01 0.134011180 01 0.1807D 0? 0.18760 32
9 0.13379940D 01 0.131201420 01 0.18730 02 0.1837D 02

TO 0.134619510 01 0.132256240 01 0.18850 02 0.18520 02
11 0.13026162D 01 0.135158520 01 0.18240 02 0.18920 02
12 0.124005910 01 0.1 24025580 01 0.1736D 02 0.17360 32
16 0.12O58O36D 01 0.1 21 742340 01 0.16880 02 0.17040 32
17 0.134261540 01 0.130766310 01 0.1880D 02 0.18310 02
18 0.123493230 01 0.1 21367800 01 0.17290 02 0.16990 02
19 0.123986790 01 0.124150570 01 0.1736D 02 0.17380 32
20 0.12739771D 01 0.1 262 76C70 01 0.17840 02 0.17680 32
24 0.125289000 01 0.122421670 01 0.17540 0 2 0.17140 02
25 0.124241880 01 0.121958260 01 0.17390 02 0.17U7D 32

1 0.127264760 01 0.120298240 01 0.1782D 02 0.16840 32
2 0.134555460 01 0.132305660 01 0.18840 02 0.1852D 02
3 0.143437310 01 0.149889110 01 0.2078D 02 0.20980 32
4 0.129053610 01 0.134032320 01 0.18070 02 0.1876D 32
5 0.11825774D 01 0.123078960 01 0.16560 02 0.17230 32
6 0.120552590 01 0.121843930 01 0.16880 02 0.17060 02
7 0.121880980 01 0.122870640 01 0.17060 02 0.172UD 32
8 0.124203340 01 0.121965620 01 0.17390 02 0.17080 32
9 0.134203440 01 0.130823820 01 0.1879D 02 0.1 8320 02

10 0.123937860 01 0.124093780 01 0.17350 02 0.1 7370 02
11 0.13026168D 01 0.13515845D 01 0.18240 02 0.18920 02
12 0.13479816D 01 0.132087490 01 0.18870 02 0.18490 32
13 0.1 3384 5690 01 0.131154030 01 0.18740 02 0.18360 32
14 0.1 204 7627D 01 0.121849750 01 0.16870 0 2 0.17060 02
18 0.127695290 01 0.125989070 01 0.17880 02 0.17640 32
19 0.124051780 01 0.124085430 01 0.17370 02 0.17370 32
20 0.12356162D 01 0.121302990 01 0.17300 02 0.16980 32
21 0.124159640 01 0.122U3619D 01 0.17380 02 0.17090 D2
22 0.125384560 01 0.122332720 01 0.17550 02 0.17130 02

1 0.127695290 01 0.125989070 01 0.17880 02 0.17640 02
2 0.124051780 01 0.124085430 01 0.17370 02 0.17370 02
3 0.123561620 01 0.121302990 01 0.17300 02 U.1 6980 02
4 0.124159640 01 0.122036190 01 0.17380 02 0.17090 32
5 0.125384560 01 0.1 22332720 01 0. 1 7550 02 0.17130 32

10 0.123937860 01 0.124093780 01 0.17350 02 0.17370 02
11 0.130261630 01 0.135158450 01 0.18240 02 0.18920 02
12 0.134798160 01 0.132087490 01 0.18870 02 0.18490 32
13 0.133845690 01 0.131154030 01 0.18740 02 0.18360 32
14 0.1 204 76270 01 0.121849750 01 0.16870 02 0.17060 02
18 0.127264760 01 0.120298240 01 0.17820 02 0.16840 02
19 0.134555460 01 0.132305660 01 0.18840 02 0.18520 32
20 0.148437310 01 0.149889110 01 0.20780 02 U.2098D 32
21 0.129058610 01 0.134032320 01 0.18070 02 0.18760 32
22 0.118257740 01 0.123078960 01 0.16560 02 0.17230 02
23 0.120552590 01 0.121B43°30 01 0.16880 02 0.17060 32
24 0.12188098D 01 0.1 2287064 0 01 0.17060 02 0.17200 02
25 0.124203340 01 0.121965620 01 0.17390 02 0.17U8D 32
26 0.13420344D 01 0.130823C2D 01 0.18790 02 0.1832D 32

TABLE 5.15, Undetected Gross Errors for case 10.
(at a = 0.05 and y = 0.8)
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Chapter 3 and are listed in Tables(5.12) through (5.15) for cases 

9,10. The maximum values of Tau, Gam and undetected gross errors 

for the different cases are summarised in Table (5.16) for the 

photogramnetric measurements. Those for slope distances are 

tabulated in Table (5.17).

Case Tau Gam Maximum 
undetected 
gross error (pm)

x y x y X y

1 1.9922311 2.8393368 1.7230743 2.6574110 27.89 39.75
2 1.9846228 2.8387769 1.7142778 2.6568128 27.78 39.74
3 1.9257858 2.8345602 1.6457980 2.6523068 26.96 39.68
4 1.9174364 2.8341615 1.6360202 2.6518807 26.84 39.68
5 1.8218268 3.0545315 1.5228437 2.8862021 25.51 42.76
6 1.8216204 3.0508413 1.5225967 2.8822964 25.50 42.71
7 1.6778018 1.7862221 1.3472264 1.4800640 23.49 25.01
8 1.6774491 1.7860925 1.3467870 1.4799076 23.48 25.01

9 1.5071257 1.5101561 1.1275762 1.1316233 21.10 21.14

10 1.4856590 1.4988911 1.0987187 1.1165458 20.80 20.98

TABLE (5.16) Max Tau, Gam and undetected gross errors for 
photogrammetric measurements (at probability levels 
a = 0.05, y = 0.8)

As anticipated, the reliability increases with the increase in 

number of cameras and higher internal reliability reflects higher 

external reliability as can be seen from the values shown in that 

table. Moreover, the more number of cameras used, the larger the 

chance to detect gross errors with less magnitudes.
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Case Tau Gam Maximum 
undetected 
gross error

(mm)

2 1.9964749 1.7279792 2.795
4 1.9215369 1.6408242 2.690
6 1.8127073 1.5119219 2.538
8 1.6707385 1.3384196 2.339

10 1.5575812 1.1941771 2.181

TABLE (5.17) Max Tau, Gam and undetected gross errors 
for the 8 slope distances (at a = 0.05, 
Y = 0.8)

5.6.2.3. Models for Sensitivity analysis

Simulated models to investigate the sensitivity of the

photogrammetric network and its relation to the number of cameras

and to the incorporation of slope distances are undertaken. In

the design phase we assume, for simplicity, that we have deformations

between two epochs only to be detected. Presumably, the deformation 

monitoring networks have the same datum and identical cofactor 

matrices. To assess the just-detectable deformations, we apply 

equation (3.59) given in Section (3,2.3.3).

Restating equation(3.59):

(cd)V(cd)
uu = __—9------

2

%
(5.10)

in which cd represents a just-detectable deformation and d is a 

form vector which characterises the deformation model to be tested. 
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The models chosen are designated deflexion, expansion and settlement 

models. Before delving into the analysis of these models, a brief 

mention is to be given about the examination of the impact of single 

and multiple point movements on sensitivity. Table (5.18) reveals 

that the more the number of points in movement, the more sensitive 

the network is and vice versa.

Form vector description (units are in mm) Sensitivity 
parameter c

d = (dxl dzl
10,0,5,0,0,0,....0,0,0) 0.7807

J = j dx24 dz24

0,0,0,...-10,0,-5......... ,0,0,0) 0.5458

dxn dx9 dxQ
d = ( 1 Z 9

10,0,0,10,0,0,....,10,0,0,...0,0,0) 0.2104

~ (dx-j dx£ dxg dx18 ^x19

10,0,0,10,0,0,...10,...,-10,0,0,-10,.

dx26
.-10,0,0) 0,1569

TABLE (5.18) Values of sensitivity parameter (c) for 
case 1 (4 photos).

It is meant by deflexion model that the targets on both the 

upper and lower surfaces of the cube are subjected to 10 mm downward 

displacements. The same magnitude of displacement was assumed but 

in outward radial direction for all the targets representing what 

we called the expansion model. Unlike deflexion model, in the 

settlement model all the targets are supposed to be moving 10 mm 

downwards. It is important to notice that both expansion and 
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settlement models were applied to cases 5,6,7,8,9,10 only as cases 

1-4 suffer from lack of determination of point 15. Deflexion 

model is applicable to all cases.

Table (5.19) lists the values of c for both expansion and 

settlement models while Table (5.20) displays these values for the 

deflexion model. The results sunrnarised in such tables are 

graphically represented in Figures (5.14) and (5.15) respectively. 

These figures suggest that the sensitivity decreases with the 

increase of the number of cameras (larger values of (c) mean 

less sensitivity). This can be thought of as the effect of more 

correlation between the co-ordinates of different object points 

imaged on more photographs.

Number 
of cameras

Model
designation

Photogrammetry
c

Photo+ distances 
c

6 Expansion 0.2018 0.1003
6 Settlement 0.1531 0.1530
7 Expansion 0.2304 0.1076
7 Settlement 0.1736 0.1729
8 Expansion 0.2435 0.1130
8 Settlement 0.1899 0.1886

TABLE (5.19) Relation between sensitivity parameter (c) and 
number of cameras for Expansion and Settlement 
models (at a = 0,05 and y = 0.8)

- 156 -



Expansion model 
(Photogrammetry)

Expansion model 
(Photogrammetry+8 dist)

Settlement model 
(Photogrammetry & 
Photogrammetry+8 dist)

c x 10

6 7 8 (No.of cameras)

Figure 5.14. No.of cameras versus sensitivity parameter (c) 
for Expansion and Settlement models.
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Deflexion model
----------- (Photogrammetry)
----------- (Photogrammetry+8 distances)

Figure 5.15. No.of cameras versus sensitivity parameter (c) 
for Deflexion model.
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Number Model
of cameras designation

Photogranrnetry
c

Photos+distances 
c

4 Deflexion 0.2661 0.2599
5 Deflexion 0.2961 0.2877
6 Deflexion 0.3164 0.3064
7 Deflexion 0.3643 0.3494
8 Deflexion 0.3963 0.3781

TABLE (5.20) Relation between sensitivity parameter (c) and 
number of cameras for Deflexion model (at 
a = 0.05 y = 0.8)

Additionally, the inclusion of distances between object points, 

as anticipated, does not enhance the sensitivity for settlement 

model. On the other hand, it has slightly increased the sensitivity 

for both deflexion and expansion models.

5.6.3. Conclusions

On the basis of these simulations one can conclude that both 

the precision and reliability increase with the increase of the 

number of cameras used. However, sensitivity was found to decrease 

with the increase of that number, which can be thought of as being 

due to the increased correlation between the object point co-ordinates. 

This explanation is conformal with that of Fraser (1982a) where he 

states that the trace of the parameter covariance matrix is minimised 

at the expense of higher correlation between the parameters which is 

a well-known property of inner constraint adjustment. Comparing 

the global indicators r _ and o* of the different cases it can be
3 max m
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noticed that good precision does correspond to good reliability.

With regard to precision, the more cameras the better precision, 

but the benefit gained decreases as the number of cameras increases. 

Should the number of cameras be doubled, an average percentage 

improvement of the order of 24 and 23 in purely photogrammetric 

and combined, which comprise slope distances, cases respectively 

would be achieved.

Addition of slope distances provides a marginal improvement 

"within" the cases of the same number cameras, while it considerably 

enhances the improvement "between" the different number of camera 

cases. All the cases produce submillimetre level for a* but case 9 
m

(8 photographs) and case 10 (same as case 9 but with 8 slope distances)
2 2

exhibit the highest precision = 0.172 mm2, am(]Q)= 0.170 nn2)

which is attributed to the full coverage of the cube.

The main factor affecting the reliability is the number of 

images per object point. More intersecting rays from an object 

point give better reliability (larger redundancy numbers). However, 

it is noticed that improvement in redundancy numbers slows down 

considerably after 6 rays. Therefore, it can be said that it is 

not economically desirable to try to improve the redundancy if the 

object point already has 6 rays and its image co-ordinates display 

redundancy numbers of the order of 0.6 or more.

Distance observations between object points, in general, increase 

the reliability substantially when adjusted simultaneously with the 

photogrammetric data. Cases 9 and 10, again, show fully homogeneous 

and highest reliability (rmax(g)W = 0.688, rmax(9)(z/') = 0.673; 
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rmax(10^) = °’718’ rmax(10^ = °’672) which is justified 

the symmetric arrangement of camera positions and distances 

measured on the cube's surface. Moreover, they can detect a 

gross error of the order of 4-fold the a priori standard error. 

It is notable that high internal reliability leads to higher 

external reliability, and the more the number of cameras the 

greater is the chance of detection of small gross errors.

Regarding the sensitivity it is worth mentioning that a 

network is least sensitive to a single point movement and most 

sensitive to multiple point displacements depending on the assumed 

pattern of movements of that cluster of points. Inclusion of 

distance observations between object points does not affect the 

sensitivity for the settlement model. On the other hand, such 

an addition has slightly increased the sensitivity for both the 

deflexion and expansion models.

Summarising the experiences gained by these investigations 

and indicated by the precision, reliability and sensitivity criteria, 

we have to prefer case 6 ( 6 cameras + slope distances) because in 

this case the x- and y- observations are of sufficient reliability 

(r U) = 0.682, r (zy) =0.670) together with a satisfactory 

sensitivity (c (expansion, setllement models) = 0.10, 0.15 respectively;
2 

c (deflexion model) =0.31) and precision (o = 0.248 mm2).

One more important point is the considerable saving in computer 

storage and processing time due to the strategies implemented in 

this research: first, the direct editing of the normal equations 

without need to form the observation equations and, secondly, the 
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computation of only the diagonal elements of the cofactor matrix 

of the residual.

- 162 -



CHAPTER 6

SIMULATED NETWORKS FOR DEFORMATION ANALYSIS (BRIDGE)

6.1. Introduction

The general need for monitoring structures is well known to 

the people of all walks of life due to the loss of human lives 

when large structures fail. Present methods of detecting and 

monitoring structural deformations can be divided into two basic 

groups: internal and external (Erlandson and Veress, 1975).

Internal methods generally utilize sophisticated instruments 

such as extensometers, inclinometers, and strain gauges. The 

main disadvantages of their use is their costly maintenance and 

the difficulty of interpretation of the large amount of data they 

supply. On the other hand, external methods utilize conventional 

field surveys (e.g. triangulation and/or trilateration, levelling) 

where a number of targets whose positions are determined by using 

some of these methods are placed on the surface of the structure. 

Such a survey is repeated at predetermined intervals, and positions 

of the targets each time are compared to quantify the deformations. 

If the number of targets is fairly large, these methods are 

considerably time consuming because an individual observation is 

required for each target on the structure. Erlandson and Veress 

(1975) claim that a complete survey of a large structure may take 

more than two weeks during which, deformation can occur but would 

be undetected.
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Photogrammetry, with the inclusion of a few spatial distances, 

is thought to be the most economical alternative to survey methods 

as it can replace hundreds of angular measurements thus providing 

information about the structure as a whole and not to mention the 

common advantages such as near-instantaneous, complete and permanent 

recording of a situation. Bridge deformation presents itself as 

an ideal candidate for such kind of study to be presented in this 

Chapter.

6.2. Network Configurations

A plan of the bridge, under investigation, and the camera 

locations is shown in Figure (6,1). Both sides of the bridge 

(Figures 6.2a, 6.2b) and the columns ( Figures 6.3a, b,c,d) with 

41 targetted object points are based on real data which were made 

available to the author. Such data were considered as the

approximate values required for the evaluation of the propagated 

covariance matrices. Thewide angle metric camera Zeiss (Jena) 

UMK 10/1318 having a nominal focal length of 100 mm was assumed 

to be implemented with the use of glass plates with a negative 

format of 130 mm x 180 mm. Four camera stations were assumed to 

represent the start configuration. Subsequently, cameras 5 and 6 

were added to provide the different network configurations as 

displayed in Table (6,2) keeping the number of targets unchanged. 

The orientation elements of the individual photographs are given 

in Table (6.1) assuming that the camera principal axis is directed 

towards the centre of the bridge. The photogrammetric co-ordinates
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Figure 6.2.(a) S-elevation with target numbers.

Figure 6.2.(b) N-elevation with target numbers.



Figure 6.3(b) E elevation W columnFigure 6.3(a) W elevation W column

Figure 6.3(c) W elevation E column Figure 6.3(d) E elevation E column
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were assigned a standard deviation of - 3 pm. Seven spatial 

distances, Table (6.3) were added to the photogrammetric 

measurements. The a priori standard deviation for these 7 

slope distances was 0.4 mm. Six distinct cases, Table (6.2) 

were considered.

Camera f XC Yc Zc U) 0 K
No. (nm) (m) (m) (m) (rad) (rad) (rad)

1 100 968.8800 1054.2146 18.6406 1.5728 3.6220 0.0040

5 100 1008.0000 1049.0000 11.0000 1.5700 3.1000 0.0000

2 100 1038.9038 1044.0665 18.9812 1.5719 2.6949 0.0063

3 100 964.1530 966.4781 19.7393 1.5752 -0.4506 -0.0077

6 100 998.0000 957.0000 12.0000 1.5700 0.0000 0.0000

4 100 1032.1230 947.9636 20.4986 1.5838 0.4517 -0.0088

TABLE (6.1.) Orientation elements of camera stations shown 
in Figure 6.1.
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TABLE (6.2) Photo arrangement, No,of targets and slope distances.

Case Photo arrangement Total number 
of Targets

Number of slope 
distances

1 1-2-3-4 41 —

2 Case 1 + slope dist. 41 7
3 ]_2-3-4-5 41 -
4 Case 3 + slope dist. 41 7
5 1-2-3-4-5-6 41 -
6 Case 5 + slope dist. 41 7

Target Object Point
Observation ------------------------------------

1 1 3
2 1 2
3 17 19
4 17 18
5 1 17
6 2 18
7 3 19

TABLE 6.3. Simulated slope distances.
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6.3. Results and Analysis

Both the observation equations and the normal equations 

were formed in the same way as has been previously discussed 

in Sections (5.3) and (5.4) respectively. The same inversion 

routine used for the cube cases in Section (5.5) was adopted. 

Again, results of cases 5 and 6 were selected to represent the 

different criteria of design. Figure (6.4) depicts the structure 

of the coefficient matrix of the normal equations for 6 photographs 

and 41 target object points. The same levels of probability 

adopted throughout this study, i.e. a = 0.05 and B = 0.20 were 

applied.

6.3.1. Mean Variance of Object point co-ordinates

As has been previously discussed in Section (5.6.2.1), the
2

mean variance, a , given in Equation (5.8) for each configuration 

is to be compared in order to show the influence of the number of 

cameras without and with the addition of spatial distances on the

precision.

Restating Equation (5.8):

2 1_
3no

trQ~~(2)
Xxx (6.1)

in which Q~~^is the a priori cofactor matrix of the object points.

The free network bundle adjustment was performed to compute the 

variances of the object point co-ordinates.
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Figure 6.4. Structure of the coefficient matrix of the normal 
equations for 6 photos and 41 object points.
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Figures(6.5) ana (6.6) demonstrate the change in the mean 

variance o* with the alteration of the configuration of camera 

stations for both purely photogrammetric and combined cases 

respectively. From these figures it is evident that the precision 

varies with the number of cameras used. Remarkable precision 

enhancement was achieved by adding the 7 slope distances which 

were adjusted simultaneously with the photogrammetric data in one 

system. Case 1 (4 photographs) displayed the lowest precision
2

(a e oo) while adding the 7 slope distances (case 2) did improve 

the precision by a factor of 30 000, This can be explained as 

follows: the targets on each side of the bridge together with

the two corresponding cameras were adjusted as if they were two 

separate networks and when the slope distances were included, the 

strength of the network was extremely improved leading to higher 

precision in case 2 compared to case 1. For case 3 (5 cameras) 

the improvement factor, with respect to case 1 (4 cameras) was of
5 

the order of 10 . In such a case, the addition of the 7 slope 

distances improved the precision by 6-fold. The addition of the 

sixth camera improved the precision by only 3-fold and the same 

amount of improvement was attained when the 7 slope distances were 

added. Case 4 gave rise to 16-fold improvement in precision over 

case 2 whereas case 6 indicated the highest level of precision
2 

(a = 2.644 mm2) and the improvement compared to case 4 was only 

by 2-fold. Such higher precision can be thought of being due to 

the symmetric arrangements of the cameras around the bridge, in 

addition to the inclusion of the 7 slope distances.
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POINT VARIANCES

NO X (mm2) Y (mm2) 2 (mm 2)

1 0.241631520 02 0.299532400 02 0.19628969D 01
2 0.719366090 01 0.-1 40060100 02 0.147579330 01
3 0.444451330 02 0.41674834D 02 0.20644292D 01
4 0.955495850 01 0.1 26460870 02 0.145283270 01
5 0.53752395D 01 0.804274650 01 0.110615160 01
6 0.31215124D 01 0.841362790 01 0.104674020 01
7 0.368883580 01 0.93660310D 01 0.10431978D 01
8 0.60308295D 01 0.1 1 2681 7 2D 02 0.11039966D 01
9 0.582967540 01 0.106658710 02 0.115926370 01

10 0.459367130 01 0.996202940 01 0.12413489D 01
1 1 0.42484368D 01 0.994850220 01 0.1 2674 1 5 5 D 01
12 0.310606240 01 0.792278540 01 0.95685298D 00
1 3 0.405569110 01 0.89113917D 01 0.12282922D 01
14 0.27855104D 01 0.75066368D 01 0.122900650 01
1 5 0.4269201 1 D 01 0.86405314D 01 0.13027218D 01
16 0.147410850 02 0.212943150 02 0.182704200 01
1 7 0.337694440 02 0.287179220 02 0.21388992D 01
1 8 0.647278680 01 0.107407300 02 0.12653904D 31
1 9 0.26016797D 02 0.32751371D 02 0.16819860D 01
20 0.13454835D 0 2 0.166991690 02 0.196389530 01
21 0.43818406D 01 0.776009440 01 0.11900035D 01
22 0.482419720 01 0.782837190 01 0.11444078D 01
23 0.562719140 01 0.82311365D 01 0.10237010D 01
24 0.53107548D 01 0.84432326D 01 0.94398531D 00
25 0.430207360 01 0.812880740 01 0.895105810 00
26 0.306711500 01 0.719154540 01 0.868125620 00
27 0.285070140 01 0.683427670 01 0.868808580 00
28 0.52398856D 01 0.80706095D 01 0.934666390 00
29 0.41408799D 01 0.67452417D 01 0.115248510 01
30 0.266702140 01 0.62394393D 01 0.834133870 00
31 0.41474005D 01 0.743651260 01 0.127922710 01
32 0.251643720 01 0.586923020 01 0.107141010 01
33 0.10176257D 02 0.135962610 02 0.130614350 01
34 C.206513610 01 0.48902693D 01 0.136533830 31
35 0.31667963D 01 0.135393430 02 0.194984100 01
36 0.234891650 01 0.612555050 01 0.138345030 01
37 0.226354150 01 0.41660863D 01 0.13054571D 01
38 0.247428330 01 0.562516900 01 0.13142269D 01
39 0.360574410 01 0.117316260 02 0.25928749D 01
40 0.662607620 01 0.880358610 01 0.142609210 01
41 0.60350567D 01 0.775484350 01 0.13999430D 01

TABLE 6.4. Estimates of the variances of the 41 object point 
co-ordinates for case 5.
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POINT VARIANCES

NO X (rnirr2) Y (in in 2) Z ( mm 2)

1 0.227240330 01 0.326666490 01 0.11681276D 01
2 0.150582430 01 0.21296390D 01 0.109071 400 01
3 0.213143100 01 0.364487940 01 0.17106786D 01
4 0.20701229D 01 0.294425280 01 0.106389920 01
5 0.232477120 01 0.28145963D 01 0.893685380 00
6 0.248473000 01 0.40625645D 01 0.87501431D 00
7 0.233997330 01 0.44060884D 01 0.887830110 00
8 0.207607740 01 0.512616600 01 0.98554491D 00
9 0.227115610 01 0.51432827D 01 0.105992550 01

1 0 0.26472401D 01 0.510072480 01 0.115077610 01
1 1 0.276717740 01 0.511233800 01 0.117794800 01
1 2 0.218341890 01 0.430001950 01 0.897900860 30
1 3 0.26329768D 01 0.520400740 01 0.117374390 01
1 4 O.21635283D 01 0.6374159OD 01 0.95621624D 00
1 5 0.287351490 01 0.74688871D 01 0.120981950 01
1 6 0.41113367D 01 0.689653230 01 0.157901390 01
1 7 0.173364220 01 0.307148460 01 0.184358500 01
1 8 0.147188770 01 0.21220209D 01 0.99938882D 00
1 9 0.132036570 01. 0.374250000 01 0.10451263D 01
20 0.373574630 01 0.621553000 01 0.170097180 01
21 0.24 1 5933 1 D 01 0.41 0322050 01 0.11176232D 01
22 0.231396170 01 0.407324380 01 0.107445710 01
23 0.208269720 01 0.40256702D 01 0.957035930 30
24 0.203756810 01 0.39325149D 01 0.87035402D 00
25 C.21034951D 01 0.370922800 01 0.808628190 30
26 0.24664349D 01 0.322535360 01 0.761479090 00
27 0.257086450 01 0.299161550 01 0.752612720 00
28 0.238871620 01 0.227784280 01 0.777897890 00
29 0.223179570 01 0.409510370 01 0.109189120 01
30 0.234178730 01 0.318725140 01 0.76764076D 00
31 0.251515120 01 0.645698620 01 0.11780530D 01
32 0.23305343D 01 0.464884140 01 0.84374174D 00
33 0.188220870 01 0.259428480 01 0.98853228D 00
34 0.108366380 01 0.448390390 01 0.107536940 01
35 0.244184120 01 0.111077790 02 0.144513970 01
36 0.179945960 01 0.56598707D 01 0.117053610 01
37 0.113231380 01 0.363259820 01 0.10U42579D 01
38 0.164701370 01 0.497738930 01 0.109924600 01
39 0.282003570 01 0.102272890 02 0.196756170 01
40 0.161749460 01 0.530924560 01 0.1 1 1 205720 01
41 0.171991450 01 O.425O8OO5D 01 0.109184840 01

TABLE 6,5. Estimates of the variances of the 41 object point 
co-ordinates for case 6.
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Figure 6.5. Relation between no.of cameras and precision 

(Photogrammetry)
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80

Relation between no.of cameras and precision 

(Photogrammetry + 7 distances)

(No.of cameras)
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6.3.2. r and other reliability indicators

Adopting the concept of redundancy numbers (rp which was 

discussed in Section (5.6.2.2) the global reliability of the x- 

and y- co-ordinate measurements were represented by r (x) and max 
rmax(^) respectively.

Restating Equation (5.9):

ri = q;?v. x w£. <6-2>

in which q~ j is the ith diagonal element of the cofactor matrix 

of the residuals Q-q and w^ is the a priori weight of observation

Figure (6.7) illustrates the relation between number of 

cameras and the reliability of the x-co-ordinate photogrammetric 

measurements while Figure (6.8) shows that relation with respect 

to the y-co-ordinate. Illustrated in Figures (6.9) and (6.10) 

are the reliability of the x- and y- co-ordinate measurements in 

the combined cases respectively.

Case 1 exhibited the lowest reliability of the x-co-ordinate 

while reliability of the y-co-ordinate was fairly high (r( ar) =0.002, 

r( ?/)=0.704). Addition of the 7 slope distances (case 2) enhanced 

the reliability in the x-co-ordinate by 6-fold whereas it improved 

the reliability in the y-co-ordinate by only 3 percent. For case 3, 

the enhancement over case 1 x-co-ordinate was of the factor of 224 

while adding the 7 slope distances (case 4) did improve the reliability 

in the same direction by 5.4 percent. As for the y-co-ordinate there 

was a slight improvement, 3.6 percent for the purely photogrammetric
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PHOTO POINT r(r) r(v)

1 0.280156770 CO 0.53967773D 00
2 0.210042040 00 0.62362729D 0 0
3 0.42024963D'-01 0.37855436D 00
4 0.402188390 GO 0.65542409D on
5 0.412651360 00 0.73007523D 00
6 0.33402621D 00 0.72571040D 00
7 0.309535740 00 0.71831480D 00
8 0.23010791D co 0.67113528D 00
9 0.195502560 00 0.63758557D 00

10 0.16242081D 00 0.59796567D co
1 1 0.15350490D 00 0.58622104D 00
1 2 0.31319662D 00 0.71577990D 00
13 0.16221498D 00 0.58989361D 00
1 4 0.21 582006D 00 0.53904646D 00
1 5 0.110430070 00 0.48724389D 00
1 6 0.7 51 60 84 4 0 -01 0.432023220 00
35 0.228243880 -01 0.365345000 00
37 0.225536340 00 0.65045783D 00
38 0.1 2662371 0 00 0.65064241D 00
41 0.218174910 00 0.60429701D 00

1 0.215696890 -01 0.21949242D 00
2 0.2166791 6D 00 0.582106200 00
3 0.26508098D 00 0.61848141D 00
4 0.510628660 -01 0.3070G026D 00
5 0.75116888D -01 0.386351220 co
6 0.13753816D 00 0.509135390 00
7 0.155196820 00 0.53470054D 00
8 0.23163484D co 0.61097686D 00
9 O.27593857D 00 0.63992082D 00

10 0.314979300 00 0.65938378D 00
1 1 0.323621460 co 0.66307969D 00
1 2 0.16112689D 00 0.53924613D 00
13 0.31493908D 00 0.6604Q373D 00
14 0.1 1040055D oc 0.39370861D 00
1 5 0.214418190 00 0.60417933D 00
16 0.331765130 00 0.64649916L 00
34 0.320084860 00 0.67331043D 00
36 0.268315170 00 0.63545768D 00
39 0.1614131 2D -01 0.21110894D 00
40 0.241105920 00 0.65310748D 00

TABLE 6,6. Computed values of redundancy numbers for case 5.
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PHOTO POINT r(a:) r(u)

1 7 0.1 26 94602D 00 • 0.557576140 00
18 0.956308260- 01 0.430935070 CO
1 9 0.360277580- 02 0.139488920 00
20 0.16039902D 00 0.575508080 00
21 0.149500110 00 0.536250960 0 0
22 0.1 43025780 GO 0.578886000 00
23 0.12135060D 00 0.549481820 00
24 0.101955350 00 0.51247259D 00
25 0.843835160- 01 0.471146270 0 0
26 0.652324090- 01 0.415282370 0 0
27 0.535345610- 01 0.392433200 0 0
28 0.356924920- 01 0.293754530 00
29 0.144126630 (•0 0.530814740 00
30 0.6741135OD- 01 0.41588807D 0 0
31 0.977913870- 01 0.491932670 00
32 0.531384530- 01 0.31755560D 00
33 0.227051490- 01 0.20641230D 00
35 0.934852380- 02 0.149996840 00
37 0.160523400 00 0.60257052D 00
38 0.112727360 00 0.55038510D 00
41 0.106827800 00 0.585289420 00

1 7 0.680462120-•01 0.381063920 00
18 0.313778580 00 0.672938000 00
1 9 0.29191202D 00 0.64818152D 00
20 0.115813340 00 0.42829906D 00
21 0.243001220 00 0.617178500 00
22 0.256375430 00 0.633971080 00
23 0.29692262D 00 0.63080481D 00
24 0.335727890 00 0.716754320 00
25 0.374352090 00 0.743514600 00
26 0.421553330 00 0.76583993D 00
27 0.438058070 00 0.771 1 1 091 D 00
28 0.47085617D co 0.772863930 00
29 0.25676367D GO 0.624966880 00
30 0.422487530 00 0.75817346D 00
31 0.174363430 00 0.4824681 2D 00
32 0.330U48360 00 0.647765110 00
33 0.443466770 00 0.69968042D 00
34 0.29928969D 00 0.655336430 00
36 0.237629690 00 0.639417470 00
39 0.198156310- 01 0.339960960 00
40 0.272523700 00 9.61832836D 00

TABLE 6.6.(Continued)
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PHOTO POINT r(x) r(v)

1 0.17477961D 00 0.42376967D 00
2 0.392683180 00 0.492318470 00
3 0.223782330 00 0.45260671D 00
4 0.305456430 0 0 0.491423190 00
5 0.360754770 00 0.549963010 0 0
6 0.404989360 00 0.53792861D 00
7 0.410957310 00 0.536000320 00
8 0.433144390 00 0.533311100 00
9 O.443O3333D 00 0.544263810 00

10 0.441919840 00 0.546875310 00
1 1 0.438824660 00 0.54659460D 00
1 2 0.429124000 co 0.555416730 00
1 3 0.448373560 co 0.55168610D 00
1 4 0.295026620 00 0.55534492D 00
1 5 0.30449006D 00 0.518936180 00
1 6 0.333529090 00 0.47730827D 00
34 0.36280867D 00 0.53819756D 00
3 6 0.326649700 0 0 0.591684540 00
37 0.254684620 00 0.508034390 00
38 0.169753660 00 0.489529710 00
40 0.170557010 co 0.51233116D 00
41 0.1 27 76831D 00 0.346553720 00

1 7 0.289602760 00 0.487775870 00
18 0.429331180 00 0.56315816D 00
1 9 0.163778170 00 0.481617020 00
2 0 0.41 3590220 00 0.5071 8331 0 00
21 0.511333030 00 0.60151348D 00
22 0.5071 52490 00 0.604490060 0 0
23 0.48758097D 00 0.61045342D 00
24 0.464635040 00 0.61251942D 00
25 0.44263071D 00 0.614747100 00
26 0.415825930 00 0.622347960 0 0
27 0.404970030 00 0.627097590 00
28 0.354577010 00 0.642571170 00
29 0.515913100 00 0.609691320 00
30 0.429185440 00 0.63458361D 00
31 0.347736520 00 0.57052762D 00
32 0.3401387 3D 00 0.601129340 00
33 0.297275600 00 0.564716120 00
34 0.319508570 00 0.520721600 00
36 0.273465600 00 0.51738536D 0 0
37 0.338433930 00 0.63144432D 00
38 0.37250340D 00 0.622060440 00
40 0.15649817D 00 0.392683030 00
41 0.139436100 00 0.54221696D 00

TABLE 6,6.(Continued)
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PHOTO POINT r(x) r(y)

1 0.33333120D 00 0.624794240 0 0
2 0.272764180 00 0.641723880 0 0
3 0.543059940 -01 0.38039391D 00
4 0.411738630 GO 0.665203010 0 0
5 0.41 93381 1 0 00 0.73 1 1 32320 0 0
6 0.33641536D 00 0.730070660 00
7 0.311926940 00 0.723537290 00
8 0.23193600D 00 0.677687990 0 0
9 0.1^6520810 DC 0.642719830 00

10 0.163152910 00 0.6 0 1 0 6 1 1 1 D 00
1 1 0.15430738D 00 0.588818380 0 0
1 2 0.314406460 00 0.722749870 00
13 0.163373010 00 0.596476460 00
14 0.249367010 00 0.657091770 0 0
1 5 0.119337760 00 0.562812120 00
1 6 0.79o88962D -01 0.437531830 00
35 0.26665249D -01 0.42682484D 00
37 0.389375340 00 0.675916480 00
38 0.156795640 00 0.653420460 00
41 0.467617490 00 0.60775776D DO

1 O.3O225223D -01 0.2 24321 1 2D 00
*> G 0.260190420 00 0.602373190 00
3 0.368768220 00 0.654065870 00
4 0.520870100 -01 0.30975847D 0 0
5 O.760892270 -01 0.387225460 00
6 0.139254040 00 0.51986484D 00
7 0.15700298D 00 0.545737660 00
r» 
O 0.233230710 0 0 0.619049660 00
9 0.277179500 00 0.64507352D 00

10 0.316685910 00 0.66287923D 00
1 1 0.325721840 00 0.66649162D 00
1 2 0.16221422D 00 0.544043530 00
13 0.31717204D 0 0 0.664367740 00
1 4 0.133584240 00 0.430451360 00
1 5 0.232143230 00 0.651016770 00
16 0.347963380 00 0.65413629D 00
34 0.407816860 00 0.633965570 00
36 0.236152320 00 0.667137500 00
39 0.139201660 -01 0.247453000 00
40 0.438317630 00 0.671207730 00

TABLE 6.7. Computed values of redundancy numbers for case 6.
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PHOTO POINT r(x) r(»)

3 1 7 O.24OO5258D 00 0.589038220 00
18 0.13714389D 00 0.49861256D 00
1 9 0.1 2531 084D'-01 0.14476249D 0 0
20 0.1 68 54 22 1 D 0 0 0.53578960D 0 0
21 0.150502980 00 0.58921793D 00
22 0.1 4391 4 760 00 0.53214256D 00
23 0.122504660 00 0.554739610 00
24 0.1025714OD 00 0.52056959D 00
25 0.851 0051 01) -01 0.43123808D 00
26 0.66075249D -01 0.424888660 00
27 0.593668730 -01 0.40079556D 00
28 0.360649700 -01 0.294459270 00
29 0.1 4495931 D 00 0.534238610 00
30 0.679663580 -01 0.420949610 00
31 0.106660730 0 0 0.55458790D 00
32 0.61734139D -01 0.37149944D 00
33 0.23192442D -01 0.211269340 00
35 0.10Q21683D -01 0.1 752381 3D 00
37 0.245785590 00 0.620822410 00
38 0.13386169D 00 0.60494676D 00
41 0.349618410 00 0.607514780 00

4 1 7 0.806937230 -01 0.333046640 00
1 8 O.35158O71D 00 0.681640340 00
1 9 0.363990720 00 0.666362630 00
20 0.12291260D 00 0.43183744D 00
21 0.244 781 44 0 00 0.618995100 00
22 0.258369380 00 0.635908960 00
23 0.29954800D 00 0.63296868D 00
24 0.338535260 00 0.719077090 00
25 0.376331960 00 0.745626520 00
26 0.423636290 00 0.767394400 00
27 0.440250810 00 0.772467680 00
28 0.476230590 00 0.77386942D 00
29 0.258361910 00 0.63037363D 00
30 0.424511310 00 0.763247320 00
31 0.13681746D 00 0.56538360D 00
32 0.368186900 00 0.69025227D 00
33 0.4 51 87 561 0 00 0.70837843D 00
34 0.398004360 00 0.671298690 00
36 0.252963820 00 0.64237739D 00
39 0.232270460 -01 0.398437890 00
40 0.4^1618490 no 0.625139280 00

TABLE 6.7.(Continued)
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PHOTO POINT r(a:) r(y)

1 0.1 82973870 00 0.456698090 00
2 0. AA00A95AD 00 0.53803099D 00
3 0.252537030 00 0.47808023D 00
4 0.312315510 0 0 0.A9866997D 00
5 0.366325A7D 00 0.5505 2 6 3 8 0 00
6 0.A0826A97D 00 0.55884716D 00
7 0.A1A190A8D 00 0.55847217D 00
8 0. A3590259D 00 0.555468760 00
9 0. AAA97687D 00 0.553887470 00

10 0. 44A 090 34 0 00 0.550149710 00
11 0. AA14 1 5 00 0 00 0.54866330D 00
1 2 0.A31091530 00 0.564944500 0 0
13 0. A5209997D co 0.552832670 00
1 A 0.360109330 00 0.56019491D 00
1 5 0.330501200 co 0.542115920 00
1 6 0.352278670 00 0.49444052D 00
3A 0. A0417021 0 00 0.596689310 00
36 0.347853830 00 0.604449610 00
37 0.361146880 00 0.5468G260D 00
38 0.207192140 00 0.543809970 00
AO 0.305317720 00 0.5200(16160 00
A1 0.258269680 00 0.361388490 00

17 0.334869930 00 0.507944860 00
1 8 0.486481320 00 0.605501300 on
1O 0.179055880 00 0.52595521D 00
20 0.437812030 00 0.521940560 00
21 0.51511992D 00 0.603670730 00
22 0.510923740 00 0.60789590D 00
23 0.491178030 00 0.619292140 00
2A 0. A6783778D 00 0.627939770 00
25 0.445552520 00 0.635258610 00
26 0.419062440 00 0.643438210 00
27 0.408492120 OP 0.646021910 co
28 0.358582620 00 0.643518900 00
29 0.518944030 00 0.610133990 00
30 0.431722430 co 0.64200130D 00
31 0.379977380 00 0.596323010 00
32 0.3^8592310 co 0.632425590 00
33 0.303798800 00 0.574565280 on
3A 0.377830710 00 0.544677390 00
36 0.290747590 00 0.547902370 00
37 0.45550140D 00 0.641372520 00
38 0.422137130 00 0.639614820 on
AO 0.264294940 00 0.40369917D 00
A1 0.39134632D 00 0.549578160 00

TABLE 6.7. (Continued)
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r xlO max

456 (No.of cameras)

135 (Case)

Figure 6.7. No.of cameras versus Reliability (internal) of
photo x-co-ordinates (Photogrammetry)
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790

Figure 6.8, No.of cameras versus Reliability (internal) 
of photo y-co-ordinates (Photogrammetry)
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550

Figure 6.9. No.of cameras versus Reliability (internal)
of photo x-co-ordinates (Photos + 7 distances)
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r xlO3
max

2 4 6 (Case)

Figure 6.10. No.of cameras versus Reliability (internal)
of photo y-co-ordinates (Photos + 7 distances)

- 187 -



measurements while only 0.3 percent for the combined case (case 4).

6 percent improvement was accomplished in both the x- and y- 

co-ordinate owing to the addition of the sixth camera (case 5) 

compared with case 3.

Adding the 7 slope distances (case 6) enhanced the reliability 

in case 5 by 0.6 percent in the x-co-ordinate and 0.1 percent in 

the y-co-ordinate. Case 4 improved the reliability in the x- 

and y- co-ordinate by 39-fold and 0.7 percent compared with case 2 

while case 6 showed 10 percent and 6 percent over case 4. Case 6 

provided the highest reliability as well as the highest precision. 

The reliability of the 7 slope distances increased with the increase 

of number of cameras as illustrated in Figure (6.11).

Table (6.8) sets out a summary of the precision, a*, and the 

internal reliability values r. of the photogrammetric measurements.
max

Case
Precision

Global Mean Variance 
(mm2)

Reliability

max r(x}I max r(?/)

1-4 cameras 2312988.800000 0.002028 0.704284
2-4 cameras+

7 distances 76.306048 0.011553 0.726046
3-5 cameras 22.382190 0.447481 0.728521
4-5 cameras+

7 distances 4.887012 0.472039 0.730573
5-6 cameras 6.859595 0.515913 0.772869
6-6 cameras+

7 distances 2.644175 0.518944 0.773869

TABLE (6.8) Summary of precision and reliability of
photogrammetric measurements.



80

r xlO1* 40
max

20

0

60

Figure 6.11. No.of cameras versus Reliability (internal) 
of 7 slope distances.
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PHO PT. TAU cam

NCI NO X y X y
1 1 0.133929350 01 0.1 30224 48D 01 0.160294420 01 0.6341 71 1 7 D 00

2 0.218196050 01 0.126630240 01 0.193931730 01 0.776866700 00
3 0.48720509D 01 0.162530880 Cl 0.477445080 01 0.12812605D 31
4 0.157683130 01 0.123520430 01 0.121917880 01 0.725072200 30
5 0.155671230 01 0.117035120 01 0.119304370 01 0.608047570 33
6 0.173O2535D 01 0.117386550 01 0.141201170 01 0.614784620 33
7 0.179739940 01 0.117989290 01 0.149353430 01 0.626216650 30
8 0.203465520 01 0.12206152D 01 0.18291493D 01 0.69992969D 33
9 0.2261641o D 01 0.125236450 01 0.202855190 or 0.75393430D 33

1 0 0.248129940 01 0.12931836D 01 0.227086910 01 0.819961470 03
1 1 0.255234210 01 0.130607860 01 0.234828660 01 0.840143550 33
1 2 0.17E68639D 01 0.118198030 01 0.1 48083840 01 0.630143860 33
1 3 0.24328731D 01 0.130200650 01 0.227258860 01 0.833799100 33
1 4 0.21525542D 01 0.13029424D 01 0.190617150 01 0.835259820 03
1 5 0.30C92365D 01 0.143260610 01 0.2C3822200 01 0.10256461D 31
16 0.36475745D 01 0.152141070 01 0.35078193D 01 0.114659950 01
35 0.66191227D 01 0.165443010 01 0.65431480D 01 0.131800560 31
37 0.21056769D 01 0.123991030 01 0.185307180 01 0.73306117d 30
38 0.281023400 01 0.123973490 01 0.262629300 01 0.732763630 33
41 0.214090600 C1 0.128639630 01 0.18930078D 01 0.809206650 33

2 1 0.680891730 01 0.21 3447090 01 0.673508390 01 0. 1 88572690 01
2 0.214323270 01 0.13106867D 01 0.190134650 01 0.847289550 33
3 0.19422750D 01 0.127155950 01 0.16650622D 01 0.785406560 33
4 0.44253478D 01 0.180480640 01 0.431088190 01 0.150244010 01
5 0.364364160 01 0.16088252D 01 0.350892940 01 0.126028510 01
6 0.26964254D 01 0.140139970 01 0.250413850 01 0.981794910 33
7 0.253839140 01 0.136755460 01 0.23331161D 01 0.932848160 33
8 0.207777230 01 0.127934430 01 0.182130170 01 0.797949380 03
9 0.190367930 01 0.125007730 01 0.161987500 01 0.750128870 33

1 0 0.173130020 01 0.123148990 01 0.147472430 01 0.718726300 33
1 1 0.17578431D 01 0.1228U5310 01 0.14456936D 01 0. 71 2821 41 0 33
1 2 0.249124240 01 0.13617785D 01 0.228172930 01 0;924359640 03
13 0.17819139D 01 0.123045480 01 0.147486180 01 0.716951120 03
1 4 0.300963380 01 0.159372190 01 0.28386486D 01 D.124094700 31
1 5 0.215957950 01 0.128652160 01 0.191410120 01 0.809405780 33
1 6 0.17361395D 01 U.124370110 01 0.141921830 01 0.739454140 30
34 0.176753260 01 0.121868740 01 0.145745380 01 0.69656229D 03
36 0.1 93053370 01 0.12544596D 01 0.165135110 01 0.757409350 33
39 0.737101210 01 0.217643990 01 0.780722950 01 0.193310390 51
40 0.203655460 01 0.123739300 01 0.177413490 01 0.72879459D 30

3 1 7 0.230666420 01 0.13392076D 01 0.262247280 01 0.590773270 33
1 8 0.323370980 01 0.14419718D 01 0.307520390 01 0.1 03888540 01
1 9 0.107815380 02 0.267750410 01 0.107350620 02 0.248375280 31
20 0.249633850 01 0.13181737D 01 0.22b789250 01 0.858833550 33
21 0.258630200 01 0.130604520 01 0.233515370 01 0.840091 750 33
22 0.2644 1 91 1 0 01 0.131432710 01 0.244780450 01 0.85291022D 33
23 0.236474630 01 0.13490354D 01 J.26845430D 01 0.905481320 00
24 0.31313070D 01 0.139689790 01 0.296786370 01 0.975358330 00
25 0.34424 782 0 01 0.145oE7440 01 0.32940334D 01 0.105947300 31
26 0.391532930 01 0.1 55 1 7732D 01 0.378547270 01 0.11865918D 31
27 0.41332704D 01 O’. 1 59630960 01 0.401047630 01 0.124426860 31
28 0.529311780 01 0.1 84 5G482D 01 0.519779730 01 0.155054920 31
29 0.263407340 01 0.131214300 01 0.243687150 01 0. 54954069D 33
30 0.385153130 01 0.155064280 01 0.371944850 31 0.118511310 31
31 0.31977332D 01 0.1 4 2 57624 D 01 0.303740830 01 0.101626700 31
32 0.433305990 01 0.177455760 01 0.422122780 01 0. 1 46596550 01
33 0.663648050 01 0.22010617D f'1 0.656070680 01 0.19607837D 31
35 0.1 03425700 02 0.258201610 01 0.102941130 02 0.238053560 31
37 0.24959209D 01 0.12882379D 01 0.228683650 01 0.612131020 33
38 0.297341590 01 0.134731610 01 0.280552330 01 0.902917810 33
41 0.305955220 01 0.130711760 01 0.289151510 01 0.341757930 33

TABLE 6.9. Values of Tau and Gam for Case 5.
(at a = 0.05 and y = 0.8)
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TABLE 6.9 (C
ontinued)

383352260 
01 

0.161994800 
01 

0.370079660 
01 

0.127445350 
01



PHO PT. TAU GAM

no no  x y x y I
1 0.173205640 01 0.12651 193U 01 0.14 1422040 01 0.77493671D no
2 0.191472470 01 0.124831990 01 0. 1632841 30 01 0.747196510 00
3 0.4291 1 7391) 01 0.162030950 01 0.417302930 01 0.12749129D 01
4 0.15534 3680 01 0.122609150 01 0.119529290 01 0.709436730 0 0
5 0.1 5442 5U3D 01 0.11O950480 01 0.117673720 01 0.606416910 0 0
6 0.172409860 01 0.117O3548D 01 0.140446290 01 0.608054 640 0 0
7 0.1 79 J4 9O°.O 01 0.1 1 75627(10 01 O.14K522O1D 01 0.618141390 0 0
8 0.20764 2340 01 0. 1 21 4 74500 01 0.181976210 01 0.689641440 00
9 0.2 2 5 57 74 70 1)1 0. 1 2 4 7 3 5 2 3 0 01 0.20220088D 01 0.74 5 578890 0 0

10 0.247572600 01 0. 123935440 01 0.226477800 01 0.814692790 0 0
1 1 0.254569670 0 1 0. 1 3031 9480 01 0.234106210 01 0.835653370 0 0
1 2 0.173 34 2260 01 0.1 1 7626720 01 0.14 7668420 01 0.619358170 0 0
1 3 0.24 74 15730 01 0.1 29481)200 01 0.2262954 3D 01 O.8225O356D 0 0
1 4 0.20025 3<»30 01 0.123363590 01 0.173497940 01 0.722 39 7020 0 9
1 5 0.2894 75OOl> 01 0. 1 3329 6360 01 0.271653780 01 0.881357970 0 0
16 0.3 5424 2 700 01 0.151180290 01 0.339835100 01 0.113382010 01
35 0.612338720 01 0.1 53064740 01 0.604168800 01 0.11588276D 01
37 0.160256550 0 1 0.1 2 1 6 3 3 5 8 D 01 0.1 2 5 22 84 3D 01 0.692439700 00
38 0.2 5254 1 040 91 0.123709670 01 0. 23 1899290 01 0.72829126D 0 9
41 0.146236110 01 0.123272850 01 0.106700520 01 0.80336319D 0 0

1 0.5 751951 80 01 0.210992360 01 0.566435790 01 0. 1 85687390 01
2 0.1 9 6 04 4360 (11 0.12884435D 01 0.168622030 01 0. 8 1 2457 1 80 00
3 0.164673330 01 0.1 236486 2D 01 0.130833120 01 0.727253740 00
4 0.4 381 62530 01 0.17967531D 01 0.426598700 01 0.149275640 01
5 0.362525330 01 0.160700800 01 0.34 846040D 01 0.1 25 796460 01
6 0.267976120 01 0.133693070 01 0.248618580 01 0.961029080 00
7 0.2 52 574340 01 0.135365510 01 0.23171763D 01 0.912349860 00
8 0.207065210 01 0.127097570 01 0.1 81 31 7400 01 0.784461150 00
9 0.189941320 01 0.124506980 01 0.161485930 01 0.74175392D 00

1 0 0.177699260 01 0.122823870 01 0.146391210 01 0.713141230 00
1 1 0.1 7521 71 30 01 0.12249057D 01 0.143878570 01 0.707385290 0 0
1 2 0.243237390 01 0.1 35 5754 9u 01 0.227259490 01 0.915462350 00
1 3 0.177563030 01 0.122686200 01 0.146726380 01 0.710767520 00
1 4 0.273603960 01 0.144269750 01 0.254674550 01 0.103989240 01
15 0.2 0754 741 D 01 0.123937840 01 0.18186788D 01 0.732160330 0 0
1 6 0.16 752 4 6 7D 01 0.123o372 30 01 0.136889060 01 0.727060220 0 0
34 0.1565^1220 ') 1 0.120915750 01 0.120502330 01 0.679751360 00
36 U.186939620 0 1 0.1224312oo 01 0.157944370 01 0.706357820 00
39 0.72700 5 2 50 01 0.’0102665D 01 0.720094860 01 0. 1 743,<f)55D 01
40 0.143103020 01 0.122059480 01 0.102364420 01 0.699094030 no

1 7 0.2041’11 790 01 0.139295150 01 0.177925660 01 0.835274030 00
1 8 0. 2 70029’350 (11 0.141617980 01 0.250830860 01 0.10027787D 01
1 9 0.893317150 0 1 0.26232821D 01 0.887702390 01 0.243061040 01
20 0.24 558 2260 01 0.130655940 01 O.2221O88OD 01 0.84089094D 00
21 0.2 5776 7.130 01 0.139275280 01 0.237579180 01 0.834964020 00
22 0.265601170 01 0.131064580 91 0.243896650 01 0.847226240 00
23 0.235 70336D 0 1 0.134262710 01 0.267636980 01 0.895905990 00
24 0. 3 1 22 58 790 01 0.13859916D 01 0.29579226D 01 0.95967326D 00
25 0.3427 74560 01 0.144151780 01 0.327884290 01 0.103825510 01
26 0.389027760 01 0.153413100 01 0.375955580 01 0.116342500 01
27 0.4194 1 94 50 01 0.157956880 01 0.398050380 01 0.1 2 2 2 7 1 7 3 0 01
2 8 0.526571530 0 1 ().184233900 01 0.516988750 01 0. 1 54 79 1 970 01
29 0.262649720 9 1 0.130829260 01 0.242868020 01 0.84 358 1 3 1 D 00
30 0.38357739D 01 0.154129210 01 0.37031286D 01 0.1 1 7285 1 3D 01
31 0.306194730 01 0.134281070 01 (I. 289404930 01 0.896181160 00
32 0.402473510 01 0.164066880 01 0.339852440 01 0.13006898D 01
33 0.656039130 01 0.21756136D 01 0.64897993D 01 0.193217350 01
35 0.956375030 01 0.23338325D 01 0.951635340 01 0.21694517D 01
37 0. 201 70 738D 0 1 0.126915980 01 0.17517382D 01 0.781515570 00
38 0.27332023d 91 0.128570530 01 0.254369760 01 0.808107690 00
4 1 0.1 691 2 3070 01 0.12829850D 01 0.136391400 01 0.803772660 00

TABLE 6.10. Values of Tau and Gam for Case 6.
(at a = 0.05 and y =0.8)
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PHO PT. TAU GAN

NO NO X y X y
4 1 7 0.352039360 01 0.161575OOD 01 O.33752833D 01 0.12691131D 01

1 8 0.168650440 01 0.1 21 1 2 1 B1 0 01 0.135304900 01 0.68341006D on
1 9 0.165750500 01 0.122502420 01 0.132186340 01 0.70759055D 00
20 0.285234330 01 0.1 52 1 73 790 01 0.26713035D 01 0.114793360 01
21 0.202120680 01 0.1 2 7 1 051 70 01 0.1 75649570 01 0.784551890 00
22 0.196734030 01 0.125401440 01 0.16942337D 01 0.756671760 00
23 0.182711880 01 6. 1 21 003970 01 0.152917070 01 0.681319300 00
24 0.171869200 01 0.117926730 01 0.139782050 01 0.625037180 00
25 ).1629J1900 01 0.1 1 5808200 01 0. 1 28596370 01 0.584083910 00
26 9.153639690 01 0.114153880 01 0. 1 1 664 1 140 01 0.55O55 5O7D on
27 0.15 371 2 720 01 0. 1 1 3 7 78410 01 0.1 1 2757820 01 0.542 72695D 00
28 0. 1 4490 7660 01 0.1 1 367531 0 01 0.104872450 01 O.54056236D 00
29 0.1 96 7 3 6 3 ZD 01 0.12595U81D 01 0.169426670 01 ,0.76574197D 00
30 0.153431260 01 0.1 1 4 4 6 3 5 9 D 01 0.116432380 01 0.556948200 0 0
31 0.231361600 01 0. 1 329 ?2880 01 0.208634100 01 0.876761460 00
32 0.164803270 01 0.120363850 01 0.13099664D 01 0.669884 84 0 00
33 0.143761500 01 0.118313920 01 0.110136210 01 0.641618910 00
34 0. 158509690 0 1 0.122051210 01 0.122985050 01 0.699749860 0 0
36 0.193824910 01 0.124768480 01 0.171346860 01 0.746134910 00
39 0.656149820 01 0.158413590 01 0.643484840 01 0.12286116D 01
4 0 0.142621790 01 0.126477010 01 0.101690590 01 0.774 366530 00

5 1 0.233773980 01 0.147974000 01 0.21 131165D 01 0.109070180 01
2 0.1 5074 71 9D 0 1 0.1 36331 540 01 0.112803870 01 0.926622 360 00
3 0.198992850 0 1 0.144627080 01 0.172041140 01 0.104484410 01
4 0.173938270 01 0.141609830 91 0.14338768D 01 0. 100266360 01
5 0.165221460 01 0. 1 34 775490 01 0. 131522350 01 0.903572 570 00
6 0.15650526D 01 0.133768380 01 0.12O39O6OD 01 0.88 848074 0 0 0
7 0.155331730 01 0.133813290 01 0.118926370 01 0.889156640 0 0
8 0.151462550 0 1 0.134174560 01 0.1137581OD 01 0.894584420 00
9 0.149910230 01 0.134365950 01 0. 1 1 1 6 8 2 9 4 D 01 0.897452440 0 0

1 0 0.1 5005 7790 01 0.134321620 01 0.1 1 1 38360D 01 0.904260490 0 0
1 1 0.150513”5D 01 0.135004130 01 0.112491860 01 0.906979290 90
1 2 0.152305380 01 0.133044560 01 0.1 1 487789D 91 O.877545O9D 0 0
1 3 0.143724580 01 0.13447407a 01 0.110086340 01 0.899369560 00
1 4 0.166641360 01 0.133607370 01 0. 1 33301 700 01 0.886054720 00
1 5 0.173945610 01 0.135816930 01 0. 142327360 01 0.919034230 UO
16 0.1634 3 3290 01 0.142214200 01 0.1 35597260 91 0.101118150 01
34 0.1 5 7296060 01 0.1294571UO 01 0.121416850 01 0.822139920 00
36 0.169551490 01 0.123623390 01 0.136Q222 7D 01 0.808948470 0 0
3 7 0.166401820 01 0.135226210 01 0.1 330021 20 01 0.910281760 00
38 0.21969155D 0 1 0.1356O522D 01 0.195612830 01 0.915902650 00
40 0.1 8097725a 01 0.133674230 01 0.150840200 01 0.960757080 00
4 1 0.196772000 01 (). 1663461 80 01 0.169467450 01 0.13293251D 01

6 1 7 0.17280724D 01 0.140311000 01 0.140933820 01 0.9842 34 550 0 0
1 8 0.143372350 01 0.128511640 01 0. 10274 1 300 01 0.8071 70440 00
1 9 0.236522350 01 0. 1 3788773D 01 0.214122600 01 0.949369570 00
20 0.151131900 01 0. 13841 70 10 01 0.113317480 01 0.957040750 0 0
21 0.1393303HD 01 0. 128706340 01 0.970203860 09 0.810266740 00
22 0.139901370 01 0. 1 282582 70 01 0.97838604 0 00 0.803130440 0 0
23 0.142635730 01 0.1 2707269D 01 0.101780240 01 0.78405790D 00
24 0.146201680 01 0.1261946 70 01 0.1U665332D 01 0.76974634D 0 0
25 9.14931 3 560 01 0.125465610 01 0. 1 1 1552870 01 0.75773482D 00
26 0. 1 54 4 Z5 8t>i) 01 0. 124665580 01 0.117740360 01 0.744413050 0 0
2 7 0.156461740 01 0.1 2441604a 01 0.120334020 01 0.740226390 00
28 0.166995740 0 1 9.124657770 01 0.1 3374 4440 01 0.744232150 00
29 0.138316070 01 0.128022820 01 0.962803240 00 0.799364910 00
30 0.152194060 01 0.1248U5020 01 0. 1 1 473025D 01 0.746745770 0 0
31 0.16222625D 01 0. 129496850 01 0.1 277394 1 D 01 0.822 765 770 00
32 0.158392840 01 0.1 25 7463 20 01 0.122334410 01 0.762373720 00
33 0. 1 814291 1D 0 1 0.131925970 01 O.151382O4D 01 0.860491880 00
34 0.16263645D 01 0.1 3549720a 01 O.12832334D 01 0.914302560 0 0
36 0.185456450 01 0.135097840 01 0.156186090 01 0.908373650 00
37 0.14616325D 01 0. 1 24 8661 80 01 O.1O933357D 01 0.747767540 00
38 0.153912260 01 0.125037630 01 0.116999930 01 0.75O627O3D 00
4 0 0. 1 9451 61 ID 01 0.157387800 01 0.166842790 01 0.12153568D 01
4 1 0.1 5985 2480 0 1 0.134891710 01 0.124710920 01 0.90530515D 00

TABLE 6,10 (Continued)
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PHOTO POINT TAU DEL TA(um)

no X y X y
1 0.138929550 01 0.13022448D 01 0.15870 02 0.10940 02
2 0.213196050 01 0.126630240 01 0.18330 02 0.10640 32
3 0.437805090 01 0.162530880 01 0.40980 02 0.1365D 32
4 0.157683130 01 0.123520430 01 0.13250 02 0.10380 02
5 0.15567123D 01 0.1 1 70351 2D 01 0.13080 02 0.98310 01
6 0.173O2535D 01 0.117386550 01 0.1 4530 02 0.98600 31
7 0.179739940 01 0.11798929D 01 0.1510D 02 0.991 10 31
r 0. 20.3465520 01 0. 1 2 2061 52D 01 0.17510 02 0.10250 02
0 0.22616416D 01 0.125236450 01 0.1900D 02 0.10520 02

10 0.248129940 01 0.12931886D 01 0.2084D 02 0.1386D 32
11 0.255234210 01 0.130607860 01 0.21440 02 0.1 0970 02
12 0.178686390 01 0.118198030 01 0.15010 02 0.99290 01
13 0.243237310 01 0.130200650 01 0.20860 02 0.1094D 02
14 0.215255420 01 0.13029424D 01 0.1808D 02 0.1 0940 32
15 0.300923650 01 0.143260610 01 0.2528D 02 0.12030 32
16 0.364757450 01 0.152141070 01 O.3O64D 02 0.1278D 02
35 0.661912270 01 0.165443010 01 0.5560D 02 0.1 3900 02
37 0.210567690 01 0.123991080 01 0.1769D 02 0.1042D 32
38 0.231023400 01 0.12397349D 01 0.23610 02 0.1041D 32
41 0.214090600 01 0.12863963D 01 0.17980 02 0.10810 02

1 0.630891730 01 0.213447U9D 01 0.57190 02 0.17930 02
2 0.2 1 4828270 01 0.131C6867D 01 0.18050 02 0.11010 32
3 0.194227500 01 0.127155950 01 0.1 6320 02 0.10680 02
4 0.442534780 01 0.1 80480641' 01 0.37170 02 0.15160 32
5 0.364864160 01 0. 16088252D 01 0.30650 02 0.13510 32
6 0.269642540 01 0.14013997D 01 0.22650 02 0.11770 32
7 0.253839140 01 0.1 36755460 01 0.21320 02 0.11490 02
8 0.207777280 01 0.1 27934480 01 0.17450 02 0.10750 02
9 0.190367930 01 0.125007730 01 0.15990 02 0.135UD 32

10 0.1 78180020 01 0.12314 8990 01 0.14970 02 0.1034D 02
11 0.175734810 01 0.122805310 01 0.1 4 7 7 D 02- 0.10320 02
12 0.249124240 01 0.136177850 01 0.20930 02 0.11440 32
13 0.17819139D 01 0.123045480 01 0.14970 02 0.1034D 32
14 0.30096388D 01 0.159372190 01 0.25280 02 0.13390 32
15 0.215957950 01 0.128652160 91 0.18140 02 0.10810 32
16 0.173613950 01 0.124370110 01 0.1458D 02 0.10450 32
34 0.176753260 01 0.121868740 01 0.14850 02 0.13240 32
36 0.193053370 01 0.1 25445960 01 0.16220 02 0.1054D 32
39 0.787101210 01 0.21 764399D 01 0.66120 02 0.18280 02
40 0.203655460 01 0.123739300 01 0.17110 02 0.10390 32

17 0.230666420 01 0.133920760 01 0.23580 02 0.11250 02
18 0.323370980 01 0.144197180 01 0.27160 02 0.12110 02
19 6.107815380 02 0.267750410 01 0.90560 02 0.22490 32
20 0.249688850 01 0.131817870 01 0.20970 02 0.11070 32
21 0.258630200 01 0.130604520 01 0.21720 02 0.10970 02
22 0.264419110 01 0.131432710 01 O.2221D 02 0.11040 02
23 0.236474630 01 0.134903540 01 0.24060 02 0.11330 02
24 0.313180700 01 0.139689790 01 0.26310 02 0.11730 32
25 0.344247820 01 0.145687440 01 0.28920 02 0.12240 32
26 0.391532930 01 0.155177320 01 0.32890 02 0.1303D 02
27 0.413327040 01 0.159630960 01 0.34720 02 0.13410 02
28 0.529311780 01 0.184504820 01 0.44460 02 0.15500 32
29 0.26340734D 01 0.131214300 01 0.22130 02 0.11020 02
30 0.385153180 01 0.155064280 01 0.32350 02 0.13030 02
31 0.319778820 01 0.142576240 01 0.26860 02 0.11980 02
32 0.433805990 01 0.177455760 01 0.36440 02 0.14910 32
33 0.663648050 01 0.22010617D 01 0.55750 02 0.18490 32
35 0.103425700 02 0.256201610 01 0.86880 D2 0.21690 02
37 0.249592090 01 0.12882379D 01 0.20970 02 0.10820 02
38 O.29784159D 01 0.134731610 01 0.25020 02 0.1132D 32
41 0.305955220 01 0.130711760 01 0.25700 02 0.10980 32

TABLE 6.11. Undetected Gross Errors for case 5.
(at a = 0.05 and y = 0.8)
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PHOTO

NO

POINT

(JO

TAU OELTA(un)

X y X y
1 1 0.173205640 01 0.126511930 01 0.14550 02 0.1 0630 02

2 0.191472470 01 0.124831990 01 0.16080 02 0.1 0490 02
3 0.429117390 01 0.162030950 01 0.36050 02 .0.1 3610 02
4 0.155843680 01 0.122609150 01 0.13090 02 0.10?00 02
5 0.154425030 01 0.11C95043C 01 0.12970 02 0.98240 01
6 0.172409360 01 0.1 1 7035430 01 0.1 4480 02 0.9831 0 01
7 0.179049630 01 0.117562700 01 0.1 5040 02 0.9875D 01
8 0.207642340 01 0.121474500 01 0.1 7440' 02 0.1020D 02
9 0.225577470 01 0.124735230 01 0.18950 02 0.1 3480 02

10 0.247572600 01 0.128985440 01 0.20800 02 0.10830 02
11 0.254 569t>70 01 0.130319480 01 0.21 380 02 0.10950 02
12 0.173342260 01 0.117626720 01 0.14980 02 0.98810 01
13 0.247405730 01 0.129480200 01 0.2078D 02 0.1088D 02
14 0.200253680 01 0.123363590 01 0.16820 02 0.1 0360 02
1 5 0.239475000 01 0.133296360 01 0.24320 02 0.11200 02
16 0.354242700 01 0.151130290 01 0.29760 02 0.1270D 02
35 0.612388720 01 0.1 53064740 01 0.51440 02 0.1286D 02
37 0.160256550 01 0.121633580 01 0.13460 02 0.10220 02
38 0.252541640 01 0.123709670 01 0.21210 02 0.10390 02
41 0.146236110 01 0.123272850 01 0.12280 02 0.1 3770 02

n c. 1 0.575195180 01 0.21090236D 01 0.48320 02 0.1772D 02
2 0.196044360 01 0.128844350 01 0.1 6470 02 0.10820 32
3 0.16467333D 01 0.123643620 01 0.13830 02 0.1 0390 02
4 0.433162530 01 C.179675310 01 0.36810 02 0.1 5090 02
5 0.362525380 01 0.16070080D 01 0.30450 02 0.13500 02
6 0.26797o120 01 0.13869307D 01 0.22510 02 0.11650 02
7 0.252374340 01 0.135365510 01 0.21200 02 0.11370 02
3 0.237065210 01 0.127097570 01 0.17390 02 0.10680 02
9 0.139941320 01 0.124506980 01 0.15960 02 0.10460 02

10 0.177699260 01 0.1 22823870 01 0.1493D 02 O.1O32D 02
11 0.175217130 01 0.12249057D 01 0.14720 02 D.1D290 02
1 2 0.243287390 C1 O.13557549D 01 0.20860 02 0.11390 02
13 0.177563030 01 0.122636200 01 0.14920 02 0.10310 02
14 0.273o03960 01 0.1 4426975 D 01 0.2298D 02 0.121 2D 02
1 5 0.207547410 01 0.123937340 01 0.17430 02 0.10410 02
16 0.169524670 01 0.123637230 01 0.1 424D 02 0.10390 02
34 0.156591220 01 0.120915750 01 0.13150 02 0.1016D 02
36 0.186939620 01 0.1 22431 2o0 01 0.157OD 02 0.1028D 02
39 O. 72 7UOC>23D 01 0.20102665D 01 0.61G7D 02 0.16890 02
40 0.14310302D 01 0.122059480 01 0.12020 02 O.1O25D 02

3 17 0.2041017^0 01 0.130295150 01 0.17140 02 0.13940 02
18 0.27002935D 01 0.141617930 01 0.22680 02 0.1190D 02
19 0.893317150 01 0.262828210 01 0.75040 02 0.22080 02
20 0.243582260 01 0.1 3065594 D 01 0.20460 02 0.1 0980 02
21 0.257767030 01 0.130275280 01 0.21650 02 0.10940 02
22 0.263601170 01 0.131064580 01 0.22140 02 0.1101D 02
23 0.235703860 01 0.134262710 01 0.24000 02 0.11280 02
24 0.312238790 01 0.138599160 01 0.26230 02 0.11640 02
25 0.342794560 01 0.14415173D 01 0.2879D 02 0.121 ID 02
26 0.309027760 C1 0.153413100 01 0.3268D 02 0.12890 02
27 0.4 1 04 1 943D 01 C.157956880 01 0.34480 02 0.1 3270 02
28 0.526571330 01 0.184283900 01 0.44230 02 0.15480 02
29 0.262649720 01 0.130829260 01 0.22060 02 0.10990 02
30 0.333577390 01 0.154129210 01 0.32220 02 0.12950 02
31 0.306194730 01 0.134281070 01 0.25720 02 0.11280 02
32 0.402473510 01 0.164C66880 01 0.3381D 02 0.13780 02
33 0.656639130 01 0.217561360 01 0.55160 02 0.18280 02
35 0.956875030 01 0.238883250 01 0.80380 02 0.20070 32
37 0.201707380 01 0.126915980 01 0.16940 02 0.10660 02
38 U.27332023D 01 0.128570530 01 0.22960 02 0.13800 02
41 0.16912307D 01 C.128298500 01 0.14210 02 0.1078D 02

TABLE 6.12. Undetected Gross Errors for case 6.
(at a = 0.05 and y =0.8)
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In addition to the global indicators of reliability, the 

individual indicators Tau, Gam and Delta were computed (see 

Chapter 3) and are listed in Tables (6.9) through (6.12) for 

cases 5 and 6. The maximum valuesof Tau, Gam and undetected 

gross errors for the six cases are summarised in Table (6.13) 

for the photogranmetric measurements. Those for the 7 slope 

distances are set out in Table (6.14).

Case Tau Gam Max.undetected 
gross errors (pm)

X V X y X y

1 8767.473900 36,059799 8767.473900 36.045931 73650.00 302.90
2 7975.718700 4.491667 7975.718700 4.378935 67000.00 37.73
3 6922.358400 4.661124 6922.358400 4.552590 58150.00 39.15
4 162.169730 4.384509 162.1666650 4.268948 1362.00 36.83
5 10,781538 2.677504 10.735062 2.483753 90.56 22.49
6 9.568751 2.628282 9.516353 2.430610 80.38 22.08

TABLE (6.13) Maximum Tau, Gam and undetected gross errors for 
photogrammetric measurements (at a = 0.05 and y = 0.8)

Case Tau Gam
Max.undetected 
gross errors (mm)

2 87.636129 87.630424 98.153
4 38.869742 38.856877 43.534
6 21.673544 21.650462 24.274

TABLE (6.14) Maximum Tau, Gam and undetected gross errors
for the 7 slope distances (at a - 0.05 and y = 0.8)
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Conformal with the findings of Chapter 5, an insight into the 

latter two tables reveals that reliability increases with the 

increase of the number of cameras and higher internal reliability 

leads to higher external reliability. Moreover, detection of 

gross errors is more likely, the greater the number of cameras used.

6.3.3. Simulated models for sensitivity analysis

Only were the two models, namely the settlement and deflexion 

models mentioned in Section (5.6.2.3) investigated in this section. 

The just-detectable deformations were computed according to Equation 

(3.59) which reads:

„ (cd)T Q*((cd)
o>u =---------d----------  (6.3)

o
0

in which cd indicates a just-detectable deformation and d is a 

form vector characterising the deformation model to be tested.

Listed in Table (6.15) are the values of c for both settlement 

and deflexion models. The results summarised in such a table 

are graphically represented in Figures (6.12) and (6.13). These 

figures suggest that the sensitivity decreases when the number of 

cameras increases.
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Figure 6.12. No.of cameras opposite sensitivity parameter (c) 
for Settlement model.
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Figure 6.13. No.of cameras opposite Sensitivity parameter (c) 
for Deflexion model.
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Number of 
cameras

Model Photogrammetry Photo+7 distances

c c

4 Settlement 0.0002 0.0040

4 Deflexion 0.0050 0.0290

5 Settlement 0.0207 0.0298

5 Deflexion 0.1300 0.1690

6 Settlement 0.0317 0.0385

6 Deflexion 0.1750 0.2060

TABLE (6.15) Relation between sensitivity parameter (c) and No.of 
cameras for Settlement and Deflexion models 
(at a = 0.05 and y = 0.8)

The addition of the 7 spatial distances slightly deteriorated 

the sensitivity in both settlement and deflexion models as can be 

seen in Figures (6.12) and (6.13) respectively.

6.4. Conclusions

Some of the conclusions mentioned in Section (5.6.3) were 

confirmed here in the bridge deformation analysis. First, the 

precision and reliability were found to be increasing with the 

number of cameras with the exception that sensitivity was decreasing. 

Secondly, good precision did correspond to good reliability.

Thirdly, addition of the 7 slope distances provided extremely high 

precision improvement especially with case 1 when augmented with 

those distances (case 2). At last, the higher internal reliability 
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led to higher external reliability and the more the number of 

cameras the greater is the chance of detecting gross errors.

Case 6 (6 cameras + 7 slope distances) exhibited the highest 

precision (o = 2.644 mm ) as well as the highest reliability 

(rm (:c)= 0.519, r (i,) = 0.774). Furthermore, in such a case 

gross errors of the order of 7- and 26-fold the a priori standard 

error in the x- and y-co-ordinates respectively can be detected. 

Consequently, the reliability in the y-co-ordinate direction was 

significantly much better than that of the x-co-ordinate.

With regard to sensitivity, the addition of the 7 slope 

distances, listed in Table (6.3),led to the results of slightly 

deteriorating the values of c in both settlement and deflexion 

models. On the contrary to the cube, where the slope distances 

were on each of its upright faces and no transverse distances, here 

in the bridge defoliation investigation such transverse distances 

could be the reason for such a slight deterioration as it might 

have increased the correlation between the co-ordinates of the 

opposite linked targets.
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CHAPTER 7

SIMULATED NETWORK DEFORMATION ANALYSIS (DAM)

7.1. Introduction

For safety reasons it is necessary to perform periodic 

control surveys of large engineering structures, such as dams, 

in order to determine whether the structure remains stable or 

whether it is subject to movements or local deformations as a 

function of time. Usually this is done by the classical methods 

mentioned in Section (6.1). Such methods are time consuming 

especially with large networks and therefore photogrammetric 

structural survey was chosen as an alternative. It offers an 

economical substitute and, rather, provides an instantaneous 

description due to the short time lapse between the data 

acquisition and data reduction.

During the preparation of this thesis (July 1985), the 

collapse of Starva dam, Italy, took place causing large scale 

losses and mortalities. It can be argued that the catastrophy 

happened, mainly, due to lack of surveillance and monitoring of 

that dam. Therefore, this investigation gets its utmost 

importance as a guard, if followed, against sudden failure of 

large structures among them are dams.

7.2. Network configurations

A typical concrete dam (Figure 7.1) was chosen to be under 

investigation. A total of 14 targets was placed in two rows 

on the face of the dam (Figure 7.3), A Zeiss (Jena) UMK 10/1318 
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camera, of nominal focal length of 100 mm, which accepts glass 

plates (130 mm x 180 mm) was assumed to be used for photography. 

An 3 pm standard error has been postulated for the photogrammetric 

measurements.

Three camera stations were selected (Figure 7.1) to represent 

the first configuration. To strengthen the network, an additional 

camera was chosen to constitute the second configuration which 

almost takes the "L-letter" shape as shown in Figure (7.1). The 

third configuration which, also comprises four camera stations is 

illustrated in Figure (7.2). Consequently, three distinct cases 

were obtained taking into account that the number of targets is 

constant through all these cases. Table (7.1 ) sets out the 

orientation elements of the individual cameras along with the 

photo arrangements.

Case Photo Camera XC Yc ZC w K
arrangement No. (m) (m) (m) (deg) (deg) (deg)

1 1-2-3 1 326.0 94.0 55.0 87 55 0
2 310.0 208.0 55.0 87 125 0
3 444.0 208.0 55.0 38 95 0

2 1-2-3-4L 4L 344.0 148.0 50.0 88 90 0

3 1-2-3-4- 1 326.0 94.0 55.0 87 55 0
2 312.0 130,0 50.0 88 109 0
3 306.0 168.0 50.0 88 88 0
4 310.0 208.0 55.0 87 125 0

TABLE (7.1) Orientation elements of camera stations shown 
in Figures 7.1 and 7.2.
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Figure 7.1. Camera Station Configurations for cases 1 and 2



Figure 7.2. Camera station Configurations for case 3.
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Figure 7.3. Dam Face Targets.



7.3. Results and Analysis

The observation equations as well as the normal equations were 

formed in the same way as has been previously discussed in Sections 

(5.3) and (5,4) respectively. To invert the bordered normal 

equations, the routine given in Section (5.5) was adopted. 

Illustrated in Figure (7.4) are the structures of the coefficient 

matrix of the normal equations for the aforementioned cases. The 

probability levels a = 0.05, and 3 = 0.20 were applied.

7.3.1. Mean Variance of Object-point co-ordinates

To exhibit the effect of the number of cameras on precision, 

the mean variance, a*, given in Equation (5.8) for each configuration 

is to be computed.

Restating Equation (5.8):

VQxx(2) (7J)
0

in which Qj^^isthe a priori cofactor matrix of the nQ object points.

The variances of the object point co-ordinates were computed 

through the free network bundle adjustment and presented in 

Tables (7.2), (7.3) and (7.4), for cases 1, 2 and 3 respectively. 

Figure (7.5) illustrates the relation between the precision, 

designated by and the number of cameras. Case 1 (3 photographs) 

exhibited the lowest precision whereas case 2 (4 "L-shaped" cameras) 

showed the highest.

It is notable that the precision increases with the number of 

cameras, however it seems that the position of the cameras is of a
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(a) Case 1-3 Photos and 14 object 
points.

(b) Case 2-4 Photos "L-Shaped” 
and 14 object points.

Figure 7.4. Structure of coefficient matrix of the normal equations.
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p c I r J t VARIANCES

0'0. X (m in2) Y (mm2) Z (mm-2)

1 0.1 55793640 03 0.758517940 03 0.27697723D 02
2 0.641026360 02 0.129103900 03 0.16973876D 02
3 0.670343861) 02 0.122058080 03 0.17316938D 02
4 0.934363330 02 0.813828690 02 0.874403730 01
5 0.112674000 03 0.50331720D 02 0.352390450 01
6 0.776860390 02 0.183647230 02 0.110340780 02
7 0.702296120 02 0.283227160 02 0.95578663D 01
8 0.242370270 03 0.604542920 03 0.20369646D 02
9 0.939938640 02 0.12147482D 03 0.14933940D 32

10 0.42028943D 02 0.139590500 03 0.382524610 01
1 1 0.67633994D 02 0.130809630 03 0.63270976D 01
1 2 0.813537740 02 0.106718200 03 0.-705067740 01
13 0.540765460 02 0.497428750 02 0.33214389D 01
1 4 0.939530760 02 0.207949360 02 0.994356720 31

TABLE 7.2. Estimates of the variances of the 14 object point co-ordinates 
for case 1.
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TABLE 7.3. Estimates of the variances of the 14 object point co-ordinates 
for case 2.

poi nt VARIANCES

NO. X (inn?) Y (min2) Z (mm2)

1 0.115493120 03 0.62744038D 03 0.25174333D 02
2 0.57822753D 02 0.12390681D 03 0.166892350 02
3 0.615007260 02 0.110296670 03 0.140727250 02
4 0.745953270 02 0.71772139D 02 0.76675450D 01
5 0.349302280 02 0.40981802D 02 0.726938060 01
6 9.57894693D 02 0.133494500 02 0.80222558D 01
7 0.597353770 02 0.229424980 02 0.62743356D 01
8 0.197935550 03 0.451346980 03 0.137768540 32
9 0.314260960 02 0.119543880 03 0.139043560 02

10 0.36555229D 02 0.12050678D 03 0.68435526D 01
1 1 C.534126320 02 0.100390760 03 0.43553650D 01
1 2 0.66409436D 02 0.741361430 02 0.50800947D 01
1 3 0.45971737D 02 0.33384781D 0 2 0.5855E595D 01
1 4 0.7341467 8D 02 0.175158770 02 0.72147745D 01
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POINT VARIANCES

NO. X ( min2) Y (m in * ) Z (mm 2)

1 0.251139540 03 0.535889260 03 0.401177400 32
2 0.571609220 02 0.798373160 02 0.181670950 02
3 0.713587600 02 0.75757566D 02 0.130486780 32
4 0.12942578D 03 0.390820910 02 0.657161010 01
5 0.156068690 03 0.25894729D 02 0.570966800 01
6 0.979249630 02 0.32308468D 02 0.71719912D 01
7 0.703962290 02 0.396258210 0 2 0.69604839D 01
8 0.571571940 03 0.585682380 03 0.21918924D 02
9 0.99077473D 02 0.167464550 03 0.1 5400927D 02

10 0.280870340 02 0.77382462D 02 0.586290910 01
1 1 0.44543375D 02 0.5 5 861 86 7 D 02 0.422801040 01
1 2 0.661443840 02 0.571486830 02 0.418840730 31
13 0.4 54475 730 02 0.67745636D 02 0.49228660D 01
1 4 0.320127930 02 0.484547790 02 0.95714883D 01

TABLE 7.4. Estimate of the variances of the 14 object point 
co-ordinates for case 3.
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Figure 7.5. Relation between no.of cameras and precision 
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prime importance. This is evident from the comparison of the 

results of case 2 to those of case 3 where the presence of 

camera No.3 which contains images of all object points in the 

former case gave rise to considerable higher precision compared 

with the latter.

7.3.2. rmax and other reliability indicators

- 215 -

The global reliability of the x- and y- co-ordinate measurements 

represented by rmax(^) and rmax(^) respectively where r is the 

redundancy number mentioned in Section (5.6.2.2.) and computed as 

given by Equation (5.9) which reads:

ri = qvivi x % (7’2)

in which q- ~ is the ith diagonal element of the cofactor matrix
vi* vi

of the residuals and w^_ is the a priori weight of observation 

£.. The values of r (x) and for case 1 are displayed

in Table (7.5) while Tables (7.6) and (7.7) set out these values 

for cases 2 and 3 respectively. Figure (7.6) shows the relation 

between number of cameras and the reliability of the x-co-ordinate 

photogrammetric measurements whereas Figure (7.7) demonstrates 

that relation with regard to the y-co-ordinate.

Agreeable with what has been mentioned in Section (7.3.1) 

the reliability does increase with number of cameras, yet such an 

increase depends on the location of the camera and number of imaged 

points caught by such a camera.



TABLE 7.5. Computed values of redundancy numbers for case 1.

PHOTO POINT r(z) r(j-)

1 3 0.148125510-01 0.653224130-01
4 0.320948780-01 0.315126700 09
5 0.308577360-01 0.-378861 780 00
6 0.222772670-01 0.4201 5574 0 GO
7 0.94958649D-02 0.526234490 00
u 0.727016310-03 0.171373420 00

1 0 0.14689800D-01 0.63005474 0-C1
11 0.243645160-01 0.313951640 00
1 2 0.22353246D-01 0.379267800 00
1 3 0.12054237D-C1 0.509739330 GO
1 4 0.220485870-02 0.463145360 00

2 1 0.27270334D-02 0.1793o9330 00
2 0.542703340-02 0.236329440 00
3 0.689864080-01 0.331469430 00
4 0.11332489D 00 0.469415330 00
5 0.10501042D CO O.3525OO5OD GO '
6 0.82724446D-01 0.241446020 00
7 0.430590810-01 0.155561340 00
9 0.733813840-04 0.223831480 00

1 0 0.61894133D-01 0.362930570 00
1 1 0.911258OOD-O1 0.478783630 00
1 2 0.892237090-01 0.36299330D 00
1 3 0.78122333D-01 0.282192690 00
1 4 0.45987280D-01 0.131333090 00

3 1 0.141663700 00 0.196525310 00
2 0.21253589D 00 0.338017220 CO
3 0.396570620 00 0.62734946D 00
4 0.692579620 00 0.724648820 00
5 0.685587500 GO 0.721575010 00
6 0.720120840 00 0.720504970 CO
7 0.653085960 00 0.53056592D GO
r» o 0.21406696D 00 0.912478890-01
0 0.27434746D 00 0.22902998D 00

1 0 0.579980470 00 0.544053900 00
1 1 0.70298706D 00 0.65558293D 00
1 2 0.718113260 00 0.o47356430 00
1 3 0.744603280 00 0.670517120 GO
1 4 0.594442320 00 0.573776360 GO
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PHOTO POINT r(x) r(y)

1 3 0.499464980 -01 0.116831040 00
4 0.1 27635 1 30 CO 0.434206520 G 0
5 0.17621788D 00 0.499988170 CO
6 0.223044 1 3D 00 0.555067260 00
7 0.253693600 00 0.64 235ot6D CO
8 0.1241121OD 00 0.428395140 0 0

1 0 0.468385910 -C1 0.132847260 00
1 1 0.121214730 oc 0.43738552D 00
1 2 0.167732370 00 0.538451G70 00
1 3 0.222794660 00 0.622088130 00
1 4 0.22427522D 00 0.5830857C0 00

2 1 O.277O5526D -02 0.182232290 00
2 0.54623176D -G2 0.23786594D 00
3 0.156763570 00 0.454344540 00
4 0.21165098D 00 0.5584201 2D 00
5 0.168609000 oc 0.468753220 00
6 0.122070030 oc 0.34055723D 00
7 0.651399370 -01 0.243973710 CO
9 0.792377320'-04 0.226276930 on

10 0.1 41 1 1 832D 00 0.473689660 CO
1 1 0.18873256D 00 0.561098610 00
1 2 0.14910543D oc 0.43005196D 00
1 3 0.120638230 00 0.397516130 00
1 4 0.671923930'-01 0.210281330 00

3 1 0.1 4392443D 00 0.199661540 00
2 0.213917700 00 0.340214860 00
3 0.45734800D 00 0.65675639D 00
4 0.720319120 oc 0.763778660 00
5 0.720139240 00 0.752784100 00
6 0.75523759D oc 0.745372760 00
7 0.712097760 00 0.61C586680 00
S 0.332060800 00 0.135353720 00
9 0.277344810 00 0.23153222D 00

1 C 0.62627771D 00 0.591980880 00
1 1 0.752490830 oc 0.69832270D 00
1 2 0.763946100 00 0.69328941D 00
1 3 0.777297400 00 3.700517620 00
1 4 0.66884448D 00 0.629237190 00

4 3 0.296480330 oc 0.430542060 00
4 0.544313080 oc 0.559639500 00
5 0.541387200 oc 0.538183830 00
6 0.50781443D 00 0.560965230 00
7 O.44554467D 00 0.567171810 00
b 0.1 221 41 54 D oc 0.290313910 00

1 0 0.290349110 00 0.339369700 00
1 1 0.512220960 00 0.59751051D 00
1 2 0.492675030 00 0.633925040 00
1 3 0.484305230 00 0.63708113D 00
1 4 0.401202710 00 0.523999280 GO

TABLE 7.6. Computed values of redundancy numbers for case 2.
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PHOTO POINT r(a?) r (?/)
1 3 0.81348794D -01 0.130560280 00

4 0.25001 080D 00 0.51016220D 00
5 0.25934034D 00 0.577542000 00
6 0.219372200 00 0.573914570 00
7 0.251O5554D 00 0.657596070 00
8 0.46606946D -01 0.404810310 00

10 0.57790431D -01 0.148615670 0 0
1 1 0.183816120 00 0.518403360 00
1 2 0.233704610 00 0.618329120 00
13 0.186526340 00 0.621701660 00
1 4 0.258372770 00 0.55196444D 00

2 1 0.588503510 -02 0.566923040'-01
2 0.142971140 -01 0.1884G6140 00
3 0.326719000 00 0.306750810 on
4 0.478830330 00 0.454344920 00
5 0.184734140 00 0.33657492D on
9 0.358491340 -02 0.111202030 on

1 0 0.300883230 00 0.316447440 00
1 1 0.315718980 00 0.505075670 00
1 2 0.14699818D 00 0.307346340 00

3 4 0.18035622D 00 0.355685790 on
5 0.407873430 00 0.41658869D 00
6 0.395106260 00 0.364347890 00
7 0.257825040 00 0.416079890 00
8 0.301 2421 1 D -02 0.120421780 00

1 1 0.13668288D 00 0.283017710 00
1 2 0.32040723D 00 0.526078930 00
1 3 0.31977449D 00 0.479943530 00
1 4 0.260941370 00 0.358607570 00

4 1 0.421922060 -01 0.153966790 00
2 0.849767070 -01 0.46037250D 00
3 0.180108200 00 0.553253000 00
4 0.298682260 00 0.64085244D 00
5 0.317874830 00 0.54893352D 00
6 0.169692190 00 0.337086670 00
7 0.540041560 -01 0.285191570 00
9 0.176976340 -01 0.27599994 0 00

1 0 0.153162240 00 0.542693040 00
1 1 0.271314420 00 0.61887124D 00
1 2 0.248416840 00 0.566337o80 00
1 3 0.131351930 00 0.453416970 00
1 4 0.454723230 -01 0.237285460 00

TABLE 7.7. Computed values of redundancy numbers for case 3.
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It is surprising and notable that case 3 (4 photographs) 

showed lower reliability than case 1 (3 photographs) which can 

be thought of due to, again, the position of camera No.3. The 

presence of that camera later in case 2 (4 "L-shaped" cameras) 

produced the highest reliability in both the x and y axes 

directions. The gap between reliability of case 2 and case 3 

gets more wide in the x than that of the y co-ordinate.

Displayed in Table (7.8) is a summary of the precision, a , 

and the internal reliability values rmax of the photogrammetric 

measurements.

Case Precision
Global Mea2n Variance 

(mm )

Reliability

max r(a?) max r(w)

1-3 cameras 0.91779957 0.744603 0.724649

2-4"L-shaped" 
cameras 0.74697933 0.777297 0.763779

3-4 cameras 0.91019901 0.478830 0.657596

TABLE (7.8) Summary of precision and reliability of 
photograimetric measurements

Tau and Gam as individual indicators of reliability, were 

computed and are presented in Tables (7 9.) through (7. 14) for 

cases 1, 2 and 3.

The maximum values of Tau, Gam and the undetected gross errors 

for the three cases, at hand, are shown in Table (7.15).
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PHO PT . TAU CAM

no no I y X y
1 3 0»o21t4661D 01 0.391263100 01 0.315536570 01 0. 3 7 b 2 6 3 1 7 0 3 1

4 0.5 5 31 9(11 1 1) 'JI 0.178138340 C1 0.549159540 01 C. 1 4 74 22370 31
5 0.569269530 •31 0.1 62464920 01 0.560417570 01 0.123342380 31
6 0.66 ?9O11 2d 01 0.1 54274750 1,1 0.662486300 01 . 3.117475370 31
7 0.102620170 02 0.1 37 84 4 590 01 0.102131730 32 3.94S74285D 33
G 0.37087531D (J 2 0.241561800 01 0.370740470 02 0.21 9891 1 20 31

1 0 0.82597243b 01 0.333467060 01 0.318989900 01 0.373193580 31
11 0.64365041u 01 0.178471400 01 0.632797720 31 0.147824350 31
1 2 0.663351 SOD 01 0.162377930 01 0.661333750 01 0.127931990 31
1 3 C.910314930 01 0.140056940 01 0.905308700 31 0.9b06U930D 33
1 4 0.212965560 02 0.146940440 C1 0.21 2730770 02 0.137663300 31

2 1 0.191493320 02 0.236115930 01 0.19123254D 32 0.213894210 31
2 0.1 3 574 34 1 D 02 0.205703220 01 0.135374570 02 0.179763430 31
3 0.330731 'JOO 01 0.173691380 01 0.367363700 01 0.142015530 31
4 0.297055330 01 0.145955800 01 0.2797174SD 31 3. 1 3631 5320 31 .
5 0.303591330 01 0.168430260 01 0.291939450 01 0.135551380 31
6 0.34763269D 01 0.203511930 01 0.332991370 01 0.177245760 31
7 0.431911370 01 0.253541560 01 0.471422370 01 0.232987320 31
Q 0.11295190D 03 0.211368090 L1 0.112947470 33 3.1 6 6 2 1 5 1 '9 0 31

1 C 0.401952960 01 U.165992410 01 0.389315C4D 31 3.13248955D 31
1 1 0.331267830 01 0.144520300 01 0.315313830 31 0.134337250 31
1 2 0.3 34 •’30 2 JD 31 0.165978060 01 0.319496220 01 0.132471570 31
1 3 0.357776200 01 0.188246590 01 0.343517640 31 0.159489120 31
1 4 C.4u6j16ddD 01 J. 2 7 5 4 1 5 1 2D 01 0.455408370 31 3.256619350 31

3 1 0.26553’250 01 0.225574390 01 3.246149780 31 3.232195300 31
2 0.210912143 01 0.172UCG85D 01 0.192486040 31 0.139943390 31
3 0.15079oOoD 31 0.126254030 01 0.123353920 31 0.770719390 33
4 0.12016145D 01 0.117472500 01 0.666241180 03 0.616424190 33
5 0.123772640 01 3.117722440 01 0.577202350 3 3 0. 521 1 74 1 30 33
6 0.117341240 01 0.11780982D 01 0.623422660 33 3.522823520 33
7 0.123741340 01 0.137287290 01 0.723829210 33 0.943627410 33
8 0.21 61 3 504 0 01 0.331046130 01 0.191609910 01 0.3155S133D 31
9 0.193917170 01 0.20395551D 01 3.1 6263495 D 31 0.163473150 31

1 G 0.1 313') 364 0 01 0.13557482D 01 3.350997060 30 0. 9 1 5 4 5 2 4 4 D 33
1 1 0.1192o3660 91 3.1 2 35054 70 01 0.650001000 33 3.724S17240 33
1 2 0.113005350 01 0.12428773D 01 3.626528530 30 0.735057780 33
1 3 U.1153)7750 31 0.122122320 01 3.585659490 3 3 0.730939460 33
1 4 (,. 1 29701 540 01 0.13144516D G1 0.325983650 33 3.853132340 33

TABLE 7.9. Values of Tau and Gam for case 1. (at a = 0.05 and y = 0.8)
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PHO PT. TAU CAW

n 0 1.0 - y X y
1 3 0.447453060 01 0.292563990 01 0.436135570 31 0. 2 7494 3963 91

4 0 .270907720 01 0.1 51 758080 01 0.26143514D 31 3.114154280 91
5 C.233213240 01 0.1 4 1 42303C- G1 0.21621270D 01 3.103392370 91
6 C.21317933D 01 0.134223039 01 0.138269560 01 3.595311950 33
7 0.193538730 01 0.1 2 4 7 2 1 7 5 0 01 0.171515u3D 01 0. 7 4 5 3 5 3 2 1 U 99
o 0.233352640 01 0.152783950 m 0.26565451D 31 3. 1 1 55 1 1 62 D 91

1 n 0.4620 5'’70 0 01 0.274361846 01 0.451 10682D 01 3.255483590 91
11 0.237224O3D 01 0.151205570 01 0.2&92543SD 31 0.113415720 31
1 2 0.244191420 01 0.136278350 01 0.222776630 01 0.92583961D 99
1 3 0.211359340 01 0.1 2678680D 01 0.18677361D 31 0.779415910 99
1 4 0.2111533 3 0 '11 0.13095853D 01 0.185978o 9D 01 0.S4558486D 99

2 1 0.139933900 0 2 0.234254170 01 0.189720540 02 0.211837240 91
2 O.1j5jO'»23D 02 0.205037775 01 0.134934230 32 0.178993570 91
3 0.252567480 01 0.1 48275200 01 0.23192743D 31 9.199475460 91
4 0.217365120 01 0. 1 3331 9520 01 0.192996360 01 3.869259480 33
5 0.243534310 01 0.1 46058850 01 0.22205583D 91 3.10645744U 01
6 0.236217030 01 0.171358220 01 0.26317939D 31 3.139153300 91
7 0.39131074D 01 0.202454990 01 0.378834600 31 0.176034150 91
o U. 1 1 23 3 9 390 03 0.210222820 01 0.11233544D 03 0.184015210 91

1 0 0.2oo2091 5 D 01 0.145295800 01 0.246703300 01 0.1954G3130 31
1 1 0.230154290 01 0.1 3 349973 0 01 3.207294470 31 0.834439850 99
1 2 0.253972236 01 0.144329760 01 0.23888620D 31 9.134072470 91
1 3 0.23791045D 01 0.1 586071 00 01 0.269935930 31 0.123119570 91
1 4 0.33573021D 01 0.218071870 01 0.372594110 31 0.19379230D 91

3 1 0.263592310 01 0.223796240 01 0.243887080 01 3.239211780 91
n c 0.21621043D 01 0.171444420 01 0.191694940 31 3.139259440 91
3 0.147733060 01 0.123395080 01 0.1C8317730 01 0. 7 229347 1 0 99
4 0.117784150 01 0.114423770 01 0.622342820 33 9.5 561 2 9 3 4 D 99
5 0.117639740 01 0.1 1 5 256330 01 0.623394210 30 0.573063810 99
c> 0.11506515D 01 0.1 1 5739090 01 0.54 920909D 30 0.583704770 99
7 0.118503230 01 0.1 27975350 01 0.635847130 9 9 0. 7986044 80 99
r*
O 0.173536640 01 0.232270200 01 0.14182724D 31 0.299 6 41230 91
o 0.1 898.34 70 0 01 0.207823320 01 0.161419330 91 0.162182690 91

1 C 0.1 26362310 01 0.129970910 01 9.772486720 99 0.839207050 99
1 1 0.11527379D 01 0.119666320 01 0.573515340 CO 0.657269130 99
1 2 0.11441123D 01 0.1 200cc92D C1 0.555371270 09 5.665139860 99
1 3 0.113424370 01 0.119478690 01 0.535265230 39 0.653E4595D 99
1 4 0.12227493d 01 0.1 26064 50D 01 0.70364471D 39 0.767610470 09

4 *7 0.183654700 01 0.1 5 240254 0 01 0.154042360 91 9.115006573 91
4 0.13554254D 01 0.133667680 01 0.914974300 90 0.886963390 99
r J 0.135908310 01 0.13631218D 01 9.920384C7D 90 0.926337490 jj

0 0.140329020 01 0.1 3351 560D 01 0.98449133D 9 0 0.884 679370 39
7 0.149314680 01 0.132783060 01 0.1 1 1 55464 D 91 3.87357551D 99
c» C.236133230 G1 0.185 594 92 D 01 0.248089960 01 0.156359480 91

1 [I 0.13558367D 01 0.171657770 01 0.1 563371 3D 91 9.13952231D 91
11 0.139724100 01 0.129368110 01 0.975849620 00 0.820737920 99
1 2 0.142463790 01 0.125597510 01 0.1G147538D 91 9.759915310 99
1 3 0.143694590 01 0.125286020 01 0.1U3189E0D 31 0.754757440 99
1 4 0.15707671D 01 0.138144840 01 0.122168150 91 0.95309998D 99

TABLE 7.10. Values of Tau and Gam for case 2 (at cc = 0.05 and y = 0.8)
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PHO PT. TAU GAM

li o no X y y

1 3 0.350610110 01 0.27O75436D Cl 0.336046800 01 9.2 560561 5D 01
4 0.199995680 01 0.140005750 01 0.173200090 01 0.979873010 00
5 0.196365400 01 0.131535556 01 0.168995170 01 0.855263590 00
6 0.2135D557D 01 0. 132000740 01 0.183638880 01 0.861637750 03
7 0.1 9 o 5 i 1 o 01 0.123316276 01 0.172718910 01 0.7 2 1 5 8*3 7 d o 00
8 0.4 6 3 2 0 6 5 4 D 91 0. 1 571 71 650 01 0.452283420 01 0.121255630 01

1 0 0.4 1 5 G "’9 6 3 0 01 0.259393640 01 0.403760920 01 0.239348400 01
1 1 0.203242780 01 0. 1 3888344 0 01 0.210718230 01 0.963846390 00
1 2 0 • 2 0 o 3 5 5 1 5 0 01 0.127171600 01 0.1810774 9 0 01 0.7o56oJJ3D 00
1 3 0.231542370 01 9.1 2632620D 01 0.20883422D 01 0.780056770 03
1 4 0.1 9 5752 740 01 0.134599310 01 0.169421870 01 0.900950000 00

2 1 0.130354330 0 2 0.419939030 01 0.12997020D 02 0.407910260 01
2 0.o 3632o 39d 01 0.230384U80 01 0.33032634D 01 0.207549570 01
3 0.174949540 01 0.130552240 01 0.143552570 01 0.150330010 01
4 0.144513750 01 0.143356700 01 0.104327490 01 0.139533320 01
5 0.23266251D 01 0.1 72368980 01 0.210075810 01 0.140396110 01
9 0.167016990 02 0.299377330 01 0.166717350 02 0.23271260D 01

1 0 0.132306020 01 0.177766210 01 0.152431900 01 0.146972190 01
1 1 0.177971170 01 0.140708970 01 0.14722003D 01 0.989399570 33
1 2 0.26032163D 01 0.180379000 01 0.240890130 01 0.1 5J121900 01

3 4 0.235143660 01 0.1 6 7674390 01 0.212820440 01 0.134590870 31
5 0.156530360 01 U. 1 54933330 01 0.120488210 01 0.11834058D 31
6 0.159000060 01 0.1 6566924D 01 0.123732160 01 0.1 3 2 0 3 4 4 3 D 01
7 0.196941590 01 0.1 5 502353D 01 0.169664350 01 0.113464540 01
3 0.1 3 2 1 9 7 3 9 D 02 0.233169150 01 0.181922760 02 0.2702o1330 01

1 1 0.270434350 01 0.187972010 01 0.25132062D 01 0. 1 591 64 94 D 01
1 2 0.176664320 01 0.137371510 01 0.145637500 01 0.949134050 33
1 3 C.17633902 D 01 0.144346060 01 0.145849370 01 0.104095370 01
1 4 0.1°57620o D 01 0.166939930 01 0.168293750 01 0.13373719D 01

4 1 0.486837350 01 0.25031 1 1 3D 01 0.476456300 01 0. 23001 352 i) 01
2 0.343044180 01 0.147302330 01 0.326145250 01 0. 1 081 571 dD 01
3 0.235631450 01 0.134442970 01 0.213359280 01 0.39060521 0 3~j
4 0.182976490 01 0.124916840 01 0.153233140 01 0.748613120 33
5 0.177366640 01 0.134970890 01 0.146486650 01 0.906434540 03
6 0.242755500 01 0.172238090 01 0.22120179D 01 0.14023538D 01
7 0.43 531 4930 01 0.137254240 01 0.418534270 m 0.15831661u 31
9 0.751696260 01 0.190346770 01 0.745014950 01 0.161962620 31

1 0 0.255519550 01 0.135744700 01 0.235133770 01 0.917966330 33
1 1 0.191933350 01 0.127115890 01 0.163882900 01 0.78475792O 03
1 2 0.200636290 01 0.132830810 C1 0.173939410 01 0.875060580 0 3
1 3 0.2759191UD 01 0.148508430 01 0.257160160 01 0.109794150 01
1 4 0.4639 /, 9 soD 01 0.205288410 01 0.458163710 01 0. 1 79285 62 J 31

TABLE 7.11. Values of Tau and Gam for case 3. (at a = 0.05 and y = 0.8)
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PhOTO

NO

POINT

no

T AU OELTA(un)

y •** V

1 3 0 . 3 2 1 6 4 6 6 1 D . 01 0.391263100 01 0.69020 02 0.32370 0 2
4 0.5 5.31 901 1 0 01 0.178138340 01 C.46b90 02 0.14960 32
5 0. 56:J2 69530 01 0.1624&492D 01 0.47t»2D 32 0.1*3 65 0 32
6 0.6599911 2D Cl 0.154274750 01 0.56280 02 0.129&0 32
7 0.132620170 02 0.137844590 01 0.86200 02 0.11580 02
3 0.37037531D 02 0.241561300 01 0.31150 03 0.20290 02

10 0.325072400 91 0.383467060 01 0.69310 02 0.322 1 D 32
1 1 0.640650410 01 0.178471400 01 0.5381D 02 0.14990 02
1 2 0.6uo351500 01 0.162377930 01 0.5o180 02 0.13640 3 2
13 0.913314^30 01 0.140056940 01 0.76510 02 0.11760 32
14 C.212965600 02 0.146940440 01 0.1789D 03 0.12340 32

2 1 0.1 9 1 493320 02 0.236115930 01 0.16090 33 0.198 3 0 32
2 0.135743410 02 0.205703220 01 0.11400 03 0.1728D 32
3 0.3^0731000 01 0.17369138D 01 0.31980 02 0.1459D 32
4 0.297055330 01 0.145955800 01 0.2495D 02 0.1226D 32
5 0.393591330 01 0.163430260 01 0.25920 02 0.1415m 02
6 0.347632690 01 0.203511980 01 0.29210 02 0.171 3D 02 ,
7 0.4 31 9 1 1 3 7 D 01 0.25354156D 01 0.40460 32 0.21330 32
9 0.11295190D 03 0.211368090 01 0.94330 03 0.17750 32

10 0.401952930 01 0.165992410 01 0.33760 02 0.13940 32
1 1 0.33126733D 01 0.144520800 01 0.27830 02 0.12140 32
12 0.33473023D 01 0.165978060 01 0.28120 32 0.13 94 D 32
13 0.35777698D 01 0.188246590 01 0.3005D 02 0.1581D 32
1 4 0.466316330 01 0.275415120 01 0.3917D 32 0.231 3D 32

J 1 0.26568725D 01 0.22557489D 01 0.22320 02 0.18-950 32
2 0.21691214D 01 0.172CC085D 01 0.18220 02 0.14450 32
3 0.1 53796060 01 ' 0.12o254030 01 0.13340 02 0.10610 32
4 0. 1 2 01 6 1 4 5 D 01 0.117472500 01 0.10090 02 0.9boSD 31
r J 0.120772640 d 0.117722440 01 0.10140 02 0.98590 31
6 0.11734124 D 01 0.1178U982D 01 0.96990 01 0.98960 31
7 0.123741340 01 0.137237290 01 U . 1 0 5 9 0 32 0.11530 32
8 0.21o!35040 01 0.331046180 01 0.13160 02 0.27810 32
9 0.190019170 01 0.20895551D 01 0.16C40 32 0.17550 32

10 0.131308640 01 0.135574320 01 0.11030 02 0.1139D 02
1 1 0.119263u6D 01 0.123505470 01 0. 10020 02 0.13370 32
1 2 0.113005350 01 0.124287730 01 0.99120 01 0.10440 02
13 0.115837750 01 0.122122320 C1 0.97350 31 0.13260 32
14 0.129731540 01 0.1 31 44 51 6D 01 0.1089D 02 0.11340 32

TABLE 7.12. Undetected Gross Errors for case 1. (at a = 0.05 and y - 0.8)
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PHOTO

NO

POINT

NO

TAU DELTA(ud )

X y X y
1 7 0.4474 5306D' 01 0.292563996 01 0.3759D 02 0.2 4 5 80 92

4 0.27990772D 01 0.151758080 01 0.2351D 02 0.1'27 5 0 92
r J 0.233213240 01 0.1414230 3 0 01 0.2001D 02 0.11880 92
6 0.21317^330 01 0.134223OCD 01 0.1791D 02 0.11270 92
7 0.193533730 01 0.1 24721 750 01 0.16680 02 0.194£0 92
8 0.233852640 01 0. 1 5273395D 01 0.23840 92 9.12830 92

10 0.462059700 01 0.27436184D 01 0.3381D 02 0.2 3u5D 92
1 1 0.287224930 01 0.1 51 20557D 01 0.241 3D 02 0.12790 92
12 0.244191420 01 0.1 362 7835 0 01 0.2051 D 02 0.11450 92
13 0.211859340 01 0. 1 26786800 01 0.17800 02 0.1065D 92
14 0.211158330 01 0.130953530 01 C.1774D 02 0.11OJD 92

2 1 0.139983900 02 0.234254170 01 0.1596D 03 0.19680 92
2 0.135304230 02 0.205037770 01 0.11370 03 0.17220 92
3 0.252567430 01 0.148275200 01 0.2122D 02 0.12460 02
4 0.21 7365 1 2D 01 G. 13381 952D 01 0.18260 02 0.11240 92
5 0.243534010 01 0.146058350 01 0.2046D 02 0.1 2 2 7 D 9 2
6 0.236217030 01 0.171358220 01 0.2404 D 92 9.14390 92
7 0.391310740 01 0.202454990 01 0.32910 02 0.17010 92
0 0.112339390 03 0.210222320 01 O.Q437D 93 0.17660 92

10 0.266200150 01 0.1 45295800 01 0.22360 02 0.12200 92
1 1 0.230154290 01 0.1 3349973D 01 0.1933D 02 0.1121 D 92
1 2 0.253972230 01 0.1 44329760 01 0.21750 02 0.1 2 1 2 D 92
1 3 0.237910450 01 0.158607100 01 G . 2 4 1 8 D 02 0.13320 92
1 4 0.335730210 01 0.21307187D 01 0.3241D 92 0.1632D 92

3 1 0.263592310 01 0.223796240 01 0.22140 02 0.18890 92
2 0.21621O43D 01 •0.171444420 01 0.1816D 02 0.14490 92
3 0.147733060 01 0.1233950SD 01 0.12410 02 0.19373 92
4 0.117734150 01 0.11442377D 91 0.9 8 94 D 01 0.96120 91
5 0.117339740 01 0.115256330 01 0.98990 01 0.96820 91
6 0.115065150 01 0.115739090 01 0.96650 91 D.9725D 91
7 0.11850323D 01 0.12797535D 01 0.99540 91 0. 1 0750 92
c G 0.173536640 01 0.232270200 01 0.14530 02 0.1951 D 92
9 0.139384700 01 0.207823320 01 0.15950 02 0.174oD 92

10 0.126362010 01 0.129970910 91 0.10610 92 9.1992D 92
11 0.115278790 01 0.119666320 01 0.96830 01 0.10053 02
12 3.114411230 01 0.120099920 01 0.96110 01 0.19990 92
13 3. 1 1 34 24 3 7D 01 0.119478690 01 0.95280 01 0.1 0 0 4 D 02
14 0.122274930 01 0.126064500 01 0 . 1 0 2 7 D 02 9.19593 92

4 3 0.133654700 01 0.1 5240254 D 01 0.15430 02 G.12890 02
4 0.135542540 01 0.13366763D 01 0.1139D 02 0.11230 92
5 0.135903310 01 0.136312180 91 0.11420 02 G.1145D 92
6 0.14332902D 01 0.133515600 01 0.11790 02 0.11220 92
7 0.149314680 01 0.13278306D 01 0.12530 02 0.11150 92
8 0.2 J61 33230 01 0.13559492D 01 0.24040 92 0.1 5 5 9 0 92

10 0.135583670 01 0.17165777D 01 0.15590 92 0.14420 92
11 0.139724100 01 0.12936811D 01 0.1174D 92 0.10870 92
1 2 0.142463790 01 0.125597510 01 0.1197D 02 0.19550 92
13 0.1 4 3 O 9 4 5 9 0 01 0.12528602D 01 0.12070 02 0.19520 92
14 0.157370710 01 0.1 381 4 4 84 o 01 0.13260 92 0.11690 92

TABLE 7.13. Undetected Gross Errors for case 2. (at ot = 0.05 and y = 0.3)
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photo

no

POINT

no

TAU DELTA(um)

X V X y
1 3 0.3506101 ID 01 0.276754360 01 G.2945& 02 0.23250 02

4 0.199995680 01 0.140005750 01 0.166GD 02 0.11766 32
5 0.1 96365400 01 0.131565 55 0 01 G. 1 6490 02 0.11050 32
6 0.218505570 01 0.132000740 01 0.17930 02 0.11096 02
7 0.199579110 01 0.123316270 01 0.16760 02 0.13366 32
E 0.46320654D 01 0.157171650 01 0.38910 02 0.13200 32

1C 0.415970600 01 0.259398640 01 0.34940 G2 0.21790 02
1 1 0.233242730 01 0.13oEE844D 01 G.19590 02 0.11670 32
1 2 0.206355160 01 0.12717160D 01 0.17330 02 0.13680 32
13 0.231 54207D 01 0.126826200 01 0.19450 02 0.13650 32
14 0.106732740 01 0.134599310 01 0.16530 02 0.11310 32

2 1 0.130354330 02 0.419989030 01 0.1095D 03 0.35280 0 2
2 0.836326390 01 0.230384080 01 C.7C25D 02 0.19350 32
3 0.174949540 01 0.180552240 01 0.1 4 7 0 0 02 0.15170 32
4 C. 1 4451 3750 01 0.14E35670D 01 0.12140 G2 G.1246D 3 2
r 0.232662510 01 0.172368980 01 0.19540 C2 0.14 4 bO 32
0 0.16701o99D 02 0.29987733D 01 0.14030 03 0.25190 32

1C 0.1u23 0 6020 01 0.177766210 01 0.15310 02 0.14930 02
11 0.177971170 01 G.140708970 31 0.14950 02 0.11820 32
1 2 C.260321230 01 0.130379000 01 0.21910 G2 0.15150 3?

3 4 0.235143660 01 0.167674390 01 0.19750 02 C.14080 32
c 0.156580360 01 0.154933S30 01 C.1315D 02 0.13010 02
6 0.159090060 01 G.1656c9240 01 0.13360 02 0.13920 02
7 0.1^694 1 590 01 0.155G2853D 01 G . 1 6 5 4 0 02 C.1302 0 32
3 6.132197390 02 0.2881o915D 01 0.15300 03 0.24210 32

11 0.27048435D 01 0.137972G1D 01 0.22720 02 U.15790 32
1 2 0.176o64320 01 0.137871510 01 0.14340 02 0.11560 32
13 0.17683902D 01 0.144346060 01 0.1 485D 32 0.12130 32
14 0.1 95 7 (.2'36 0 01 0.1 6698.9930 01 0.16440 32 O.14O3D 32

4 1 G.43o 337j 50 01 0.250811130 91 0.40390 02 0.21070 02
2 0.343044180 01 0.147302330 01 0.28820 32 0.1237D 32
7 0.235631450 01 0.134442970 01 0.19790 02 0.11290 32
4 0.182976490 01 0.124916o4D 01 0.1537D 02 0.13490 02
5 0.177366640 01 0.134970890 01 0.14900 02 C.1134D 32
6 0.242755500 01 0.172238090 01 0.20390 32 0.14470 32
7 0.4 3031 4930 01 0.13725424D 01 0.36150 32 0.15730 32
9 0.751o9626D 01 0.19034677D 01 0.63140 02 0.15990 32

10 0.25551955D 01 0.13574470D 01 0.2146D 0 2 0.11400 32
11 0.191983350 01 0.127115890 01 0.16130 32 0.13680 32
12 0.20063629D 01 0.13288081D 31 U.16350 02 0.1116D 32
13 0.275919100 01 0.14350343D 01 0.23130 32 0.12470 32
1 4 0.463949330 01 0.205238410 01 0.39390 32 0.17240 32

TABLE 7.14. Undetected Gross Errors for case 3. (at a = 0.05 and y = 0.8)
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Case Tau Gam Max.undetected
gross errors (pm)

x V X V X i/

1 112.951900 3.912631 112.947470 3.782682 948.80 32.87

2 112.339890 2.925640 112.335440 2.749431 943.70 24.58

3 18,219739 4.199890 18.192276 4.079103 153.00 35.28

TABLE (7.15) Maximum Tau, Gam and Undetected Gross Errors for 
photogranmetric measurements (at a = 0.05, and y =0.8)

An insight into Table (7.15) reveals that, agreeable with the 

findings of Chapters 5 and 6, higher internal reliability reflects 

higher external reliability. With one exception, all the results 

given in Table (7.15) are in line with computed values of r (x) and 

r (w) for the different cases. Case 3 provides the best chance 

of detecting gross errors in the x-axis direction, yet it manifests 

the lowest level of detection in the y-axis direction.

7.3.3. Simulated models for sensitivity analysis

In addition to the settlement model discussed in Section (5.6.2.3) 

the drift model was regarded. By drift model it is meant all the 

targets were to undergo displacement of the order of 10 mm in the 

positive direction of the X-axis, i.e. in a direction which is nearly 

perpendicular to the dam wall. Recalling Equation (3.59) to compute 

the just-detectable deformation (cd):



(7.3)
(cd)TQ^ (cd)

W = ---------------- 2-------------
O 

0

where d is a form vector which characterises the deformation model

under test.

The values of the sensitivity parameter, c, for both

Settlement and Drift models are shown in Table (7.16) and

graphically represented in Figures (7,8) and (7.9).

Number of 
cameras

Model
designation

Sensitivity parameter 
c

3 Settlement 0.020460

3 Drift 0.005428

4L Settlement 0.023120

4L Drift 0.006224

4 Settlement 0.022920

4 Drift 0.004877

TABLE (7. 16) Number of cameras against the sensitivity 
parameter (c) for Settlement and Drift 
models, (at a = 0.05 and y = 0.8)

In general, the two figures pertain to the outcomes of Chapters 

5 and 6 concerning the sensitivity analysis in such a way that the 

more the number of cameras, the less the sensitivity of the 

photogrammetric network.
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(Case)

________ 3 & 4 L cameras

_______ 3 & 4 cameras

Figure 7.8. Relation between sensitivity parameter (c) 
and no.of cameras (Settlement model).
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85

cxlO

(No.of cameras)

(Case)

________ 3 & 4 L cameras

________ 3 & 4 cameras

Figure 7.9. Relation between sensitivity parameter (c) 
and no.of cameras (Drift model).
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7.4. Conclusions

By applying the photogrammetric network presented in case 2 

(4 "L-shaped" cameras) the highest precision has been gained 

(cf * = 0.746979 mm2). Moreover, such a case provides the best 

and the most homogeneous reliability indicated by the redundancy 

numbers (^max(^) = 0.777297, ^max(y) = 0.763779). Nevertheless, 

configuration of case 3 (4 cameras) proved to be more sensitive 

than that of case 2. The most sensitive configuration was that 

of case 1 (3 cameras) for which c= 0.02046; settlement model, and 

c= 0.005428; drift model.

In conformity with what has been reached at in Chapters 5 and 

6, the increase in the number of cameras leads to the increase of 

precision of the photogrammetric network while its sensitivity does 

decrease.

As far as reliability is concerned, the most notable finding 

is that not only does reliability depend on the number of cameras 

but depends also on the location of these cameras. In other words, 

reliability depends on the geometry of the network to be used.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

Detailed discussion of results and conclusions are given 

in Chapters 5, 6 and 7. The following is a summary of the 

important findings pertaining to all aspects of the research.

1. The techniques which have been developed for design of a 

photogrammetric network for precision, reliability and sensitivity 

can be adapted to the required specifications in any deformation 

survey.

2. The precision is almost proportional to the number of cameras 

in use. However, there is an insignificant improvement in 

precision especially after implementing six cameras as in the 

case study of the cube. Such an increase cannot be justified 

economically.

3. The redundancy number, which lies between 0 and 1, as an 

indicator of reliability has been used successfully in testing 

the reliability of the simulated networks in Chapters 5, 6 and 7.

4. The inclusion of additional observations through increasing 

the number of cameras used in order to improve the reliability of 

a photogrammetric network is a precocupied misconception, Such 

an increase of number of cameras does lead to the degradation of 

the reliability unless the cameras are properly configured. 

Therefore the geometrical configuration or disposition of the 

cameras, is a very important factor in reliability which should be 

accounted for when designing networks.
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5. A network, whether it be photogrammetric or geodetic, must

be precise as well as reliable. In practice, one could encounter 

a very precise network which is not reliable at all.

6. Based on the simulation studies it was found that the main 

factor which affects the reliability is the number of images per 

object point. More intersecting rays from an object point give 

better reliability, i.e. larger redundancy numbers. Nevertheless

it is noticed that improvement in reliability slows down considerably 

after 6 rays (cube case study). Therefore it is advisable not to 

try to improve the redundancy,in turn the reliability, if the 

object point already has 6 rays and its image co-ordinates display 

redundancy numbers of the order of 0.6 or more.

7. It is proved that at 95% confidence the networks are least 

sensitive to a single point movement and most sensitive to multiple 

point displacements depending on the hypothetical pattern of 

movement of that cluster of points.

8. The more cameras used the less sensitive the networks would be 

at 95% confidence. This can be thought of as being due to the 

increasing correlation between the object point co-ordinates when 

more cameras are used.

9. The addition of survey measurements namely, slope distances, 

provides a marginal improvement in precision "within" the cases 

of the same number cameras, while it considerably enhances the 

improvement in both precision and reliability "between" the different 

number of cameras cases. As for its effect on sensitivity it can

be exhibited as follows:
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(a) It does not affect the sensitivity for the settlement 

model of the cube case study whereas it has slightly 

increased the sensitivity for both the deflexion and 

expansion models postulated in that case.

(b) On the contrary, for the bridge case study the settlement 

and deflexion models lead to slightly worse values of 

the sensitivity parameter (c). This can be explained

as follows: the slope distances are measured on the 

upright faces of the cube but in the bridge it is the 

presence of transverse distances which led to what 

might be an increase in the correlation between the 

co-ordinates of the opposite linked targets.

10. The photogrammetric monitoring system is both independent of 

the structure, which is a necessity when hazardous deformations 

occur, and economical in a sense that if the number of targets 

were increased it would not affect the costs too much. In addition, 

sometimes unexpected deformation occurs. In this case, the 

photographic record is a valuable source of information about the 

state of the object at the time of photography.

11. The set of equations used in the pre-analysis in this research 

is a subset of the equations used in the least squares adjustment.

12. Considerable savings in computer storage and processing time 

has been obtained by:

(a) The direct formation of the normal equations matrix without 

the need to form the observation equations.

(b) The computation and storage of only the diagonal elements

of the cofactor matrix of the residuals.
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Moreover, the software accepts a normal equations matrix of 

any size. The size would be limited by the hardware only. In 

other words, any number of cameras, object points, or slope 

distances can be accommodated.

With these thoughts in mind, the following recommendations 

are made.

1. It is highly recommended that after arriving at the suitable 

design for the three criteria, the resulting network configuration 

is to be executed, adjusted and checked for the goodness of the 

adjustment. This can be achieved by applying y2 and F tests. 

Above all, a posteriori analysis must be carried out to emphasise 

that the functional analysis complies with the assumptions made 

before.

2. The banded bordered structure of the normal equations matrix 

has not been fully exploited as the number of targets in this 

investigation is too small. If it happened that such a number 

is large (more than a few hundred) then further work should be 

oriented towards the full utilisation of that structure which 

would save a great deal of computer storage.

3. The effect of incorporating slope distances between the camera 

stations and the object points, rather than distances between the 

object points only, on the three design criteria is an important 

aspect for future research, However, it is difficult with metric 

cameras in current production to locate the perspective centre.

It might be undertaken with the Centrax camera, produced by the 

National Physical Laboratory, London.
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4. In-situ measurements (inclinometers, extensometers, strain 

gauges, etc,) can be usefully incorporated with the photogrammetric 

and survey measurements in a widened deformation study. This is 

a useful but undeveloped area of further research into design of 

monitoring deformation. In such a case, structural deformation 

models will play an important part.
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APPENDIX a

SOME PROPERTIES OF GENERALISED MATRIX INVERSES

A.l. Significance of generalised inverses

Recent years have seen development for rectangular and 

singular matrices of an analogue of the inverse of non-singular 

matrices. The resulting matrices, known generally as generalised 

inverses, play an important role in understanding the solutions 

to linear equations AX=Y when A has no inverse (Searle, 1982).

Given here is a brief account of generalised inverses in 

addition to their properties, especially as they pertain to the 

least squares estimation.

It has been shown that the column rank of A, the design 

matrix, and hence that of N, the normal equations matrix, is 

deficient by 7, in a three-dimensional space, due to the orientation, 

translation and scale defects so that:

rank(A) = 6n$ + 3nQ - 7

in which ns denotes the number of photographs and nQ is the number

of object points. Consequently, the normal equations matrix 

cannot be inverted using the standard Cayley inverse. Then, 

generalised matrix algebra is required, particularly to search 

for an inverse so that the solution is unique, the primary pre-

requisite property.
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A.2. Definitions

Penrose (1955) on foundations laid by Moore (1920) shows 

that for any matrix A there is a unique matrix K which satisfies 

the following conditions:

(i) AKA = A (A.l)

(ii) KAK = K (A.2)

(iii) (KA)T = KA (A.3)

(iv) (AK)T = AK (A.4)

Such a matrix K exists and is unique no matter what the form 

of A is, be it square (singular or non-singular) or rectangular 

(Boullion and Odell, 1971; Searle, 1971). It was named after 

Penrose as Moore-Penrose inverse and Greville (1957) used instead 

the term "pseudoinverse". Table (A.l) presents some names for 

matrices satisfying some or all of the Penrose conditions (equations 

A.l through A.4)

Conditions
satisfied Name of matrix Symbol

i Generalised inverse A"

i and i i Reflexive generalised inverse Ar

i,ii and iii Left weak generalised inverse Aw

i,ii and iv Right weak generalised inverse An

i ,ii ,iii
and iv Moore-Penrose inverse (pseudoinverse) A

TABLE A.l. Names of matrices satisfying some or 
all of Penrose conditions.
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A.3. Useful identities related to the Moore-Penrose inverses

The following well-known identities involving the Moore-Penrose 

inverses will be listed without proof (e.g. Rao and Mitra, 1971; 

Blaha, 1982a, 1982b, 1982c).

(A+) + = A (A.5)

(AT)+ = (A+)T (A.6)

(AAV = (A+)TA+ (A.7)

A+A = AA+ iff A is normal, i.e.A^A=AA^ (A.8)

(An)+ = (A+)n iff A is normal (A.9)

(AAT)+AAT = AA+ (A.10)

A+ = (ATA)+AT = AT(AAT)+ (A.11)

A+ = A+(A+)TAT = AT(A+)TA+ (A.12)

a t  = ATAA+ = A+AAT (A.13)

a t  = ATAA+ = a+aa t (A.14)

A = (A+)TATA = AAT(A+)T (A.15)

(ATA)+ = A+(A+)T (A.16)

A+A = (ATA)+ATA = ATA(ATA)+ (A.17)

very important to notice that: A+A / I (A.18)

(A’)’ t A (A.19)

A.4. Some computational rtiethods of Moore-Penrose inverses

A rapid review of some of the theorems for computing the 

Moore-Penrose inverses is provided. They are to be construed 

as neither the best nor the only possible. Strictly speaking, 

not all of which may be suitable for computer coding.
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A.4.1. Computation of A+ when independent rows or columns 
are identifiable

ALet, if possible,

An

A21

be partitioned in the form:

A =
A12

A22

by a permutation of rows

is an rxr matrix of rank

suitable orders such that

In such a case A^

and columns, if necessary, such that A-j -j 

r; A-J2» A^i and A?? are matrices of

: the order of A is mxn.

: A21 An] A12

Then one choice of

Ta -1
o

generalised inverse of A

A' =

and the Moore-Penrose • .+ inverse A (Graybille, 1969;

(A.20)

Rao and Mitra,

a

0

0

is:

1971) is as follows:

A+
aLba h 41BA21

AT2BA21 (A.21)

where

b = (AnAii + Ai2Ai2) An(AiiA
-1 ,T T -1

n'"nAn + A2iA2?

A.4.2. Computation of A+ based on factorisation of matrices

(a) Rank factorisation

If the mxn matrix A is of rank r then it can be factorised

in the form:
A = BC (A.22)
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in which B is an mxr matrix and c an rxn matrix and both of 

rank r.

Although the factorisation is not unique since if Y is any
* -1 non-singular rxr matrix, BY are also factors of the specific 

type.

The Moore-Penrose inverse (Greville, I960; Peters and 

Wilkinson, 1970; Rao and Mitra, 1971) is given by:

A+ = CT(CCT) (BTB) \ (A.23)

(b) The LU and related factorisations (Square matrices only)

According to Peters and Wilkinson (1970) the simplest 

factorisation used in solving linear systems are those related to 

Gaussian elimination technique. These effectively give a 

decomposition of A of the form A = LU where L is lower triangular 

and U is upper triangular matrices. Either L or U can be chosen 

to have a unit diagonal or alternatively one can have A = LDU where 

D is a diagonal matrix and both L and U have unit diagonals, 

then:

A+ = UT(LTLUUT) LT (A.24)

The matrix Y = (ULUU^) is of dimension rxr, |7l  and UUT are 

symmetric positive definite.

(c) Singular value decomposition

Any matrix A of order mxn can be written (Rao and Mitra,1971) 

in the following form:

- 242 -



(A.25)A = W?.......+ WJ

2 2 y y
in which Xp........ Xf are the non-zero eigenvalues of AA or A A

and the vectors Vp.... Vf are orthcnormal eigenvectors of AA^ and 

Up.......... Uf are orthonormal eigenvectors of A^A corresponding to

2 2the eigenvalues Xp........ ,X . Then:

+ -1 -1 T
A = X1 U^............+ Xr UrV* (A.26)

(d) Diagonal reduction

Searle (1971) defines A" as a generalised inverse which 

satisfies the first condition of Penrose (equation A.l) such 

an inverse is not unique as will be shown below.

If a matrix A has order mxn then it can be reduced to a

diagonal form as follows:

p A Q = A =
mxm mxn nxn mxn

D 0
rxr rx(n-r)

0 0
(m-r)xr (m-r)(n-r)

(A.27)

or simply, as:

0

0

where P and Q are products of elementary matrices (non-singular), 

r is the rank of A and Df is a diagonal matrix of order r.
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Analogous to A, A~ can be defined (Searle, 1971) as:

A“ =
d;1

0

0

0

then

A’ = QA’P

(A.28)

(A.29)

Clearly A" as given by (A.29) is not unique because neither 

P nor Q by their definition is unique, neither A nor A~. 

However, the Moore-Penrose inverse A+ can be established (Searle,

1972) as:

A+ = FAT (A.30)

According to Searle (1971) the derivation of F can be done

as follows.

Consider A^A, for some integer t there will be a series of

scalars Xp X£,.......... X^ not all zero, such that:

x/a + X2(ATA)2+............tX/A^)1 = 0

If Xf is the first X in this identity that is non-zero, then 

F is defined as (Searle, 1971):



APPENDIX B

INNER CONSTRAINTS APPROACH

B.l. Minimal adjustment constraints

In a free network adjustment because the columns of the design 

matrix A are linearly dependent the system of normal equations is 

singular. Any solution vector will be biased statistically as 

shown below.

Let the functional model be given by the linearised observation 

equations:

AAx = v + b (B.l)

in which Ax,v and b are the u-vector of unknown parameter corrections, 

the n-dimensional vector of residuals and the n-vector related to 

the observations, respectively.

With the W matrix as the weight matrix of the observations,

the classical least squares solution is:

Ax = (ATWA)"1 ATWb (B.2)

E{Ax}= E{(ATWA)’1 ATWb}

= (ATWA)_1 ATWE{Aax -v )

with E{v} = 0, then

E{Ax} = (ATWA)_1 ATWAE{Ax }

= E{Ax} (B.3)

On the other hand if A is not of full (column) rank, then the 

standard Cayley inverse will be replaced by the Moore-Penrose 

inverse (see Appendix A). Then:
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(B.4)Ax = (ATWA)+ATWb 

E{Ax}= E{(ATWA)+ATWb} 

= (ATWA)+ATWAE{Ax} 

with (AW ATWA / I, then:

E{A£} / E{Ax } (B.5)

However, as only the shape defined by the co-ordinates, and 

not the co-ordinates themselves, is important, such a bias 

(equation B.5) is not of significance.

The singularity of the normal equations matrix will disappear 

if information about the definition of the co-ordinate system is 

introduced (Leick, 1982). This is accomplished by imposing as 

many constraints upon the adjustment as there is rank deficiency.

Adjustments which incorporate no more and no less conditions 

than are necessary to define the reference system lead to the 

so-called minimal constraint solutions. Each specific choice of 

constraints results in a different adjustment. Some quantities 

remain invariant with respect to each choice; others vary. The 

adjusted observations represent an invariant set (Cooper, 1980); 

Blaha, 1982b) while the vector of unknown parameters x, and their 

covariance matrix o* Qjj  are identified as variants.

One widely used scheme for imposing minimal constraints to 

overcome the defect inherent in the normal equations matrix is to 

suppress d, rank deficiency, appropriate columns from the design 

matrix. Nevertheless, there is one pitfail in such an approach, 
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the reference system may be ill-defined by some particular set of 

minimal constraints.

B.2. Inner adjustment constraints

It is advisable to define the reference system the best way 

bringing the inherent numerical difficulties ((ill- definition) 

pointed out in Section (B.l), to a minimum. In this sense "best" 

is interpreted as resulting the smallest trace of the covariance 

matrix of the unknown parameters (co-ordinates) (Blaha, 1971) and 

minimises ax Tax . The set of minimal constraints which materialise 

this "best" co-ordinate system is called inner adjustment constraints; 

first developed by Meissl (1962) for geodetic networks (Ashkenazi,

1973) and reported in detail by Blaha (1971,1982a,1982b,1982c),

According to Meissl (1966) a free network can be obtained from 

a given arbitrary network by a Helmert transformation (Papo and 

Perelmuter, 1982) matrix. This transformation is to be applied 

to the corrections to the approximate co-ordinates so that GTAX = 0 

(inner constraints). Such a transformation can be arrived at by 

subjecting the object point network to three translations, three 

rotations and a scale change all differentially small (Fraser, 1982a) 

What follows is a detailed discussion concerning the construction 

of the G matrix.

Let (X?)T = [X° Y° Z°J.. denotes the co-ordinates of point i

in an original co-ordinate system; and 
xT =[x Y z]. its co-ordinates in a new system;
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and

dtT =[dt1 dt^ dt3]

where

dt| = [6X 6Y 6Z]

dt^ =[6o) 6(f) 6 kJ

dt^ = 6L

differential translations; and

differential rotations; and

change in scale

Let G be partitioned as G = [g ^ Gf G ]

where t, r and s refer to translation, rotation and scale respectively.

(B.6)

thus the differential changes due to the translations 6X, 6Y, 6Z

are as follows:

’ dX 6X

dY = I 6Y
3x3

. dZ.6X,6Y,6Z _ 6Z .
(B.7)

which gives: _ —

1 0 0 6X
0 1 0 ; dt] = 6Y
0 0 1 . 6Z _

(B.8)
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The differential orientations can be found as follows:

As is known, it is possible to relate the co-ordinates of two

Cartesian co-ordinate systems having the same origin by the equation:

where the matrix R

X
Y II

—
1

---
---

---
---

-1
-<

 X o o 1

Z• - z°_

rotation

(B.9)

can be written as follows (Ghosh, 1979):

R = R
CO

R
K%

COS0 COSK coswsin<+ sincosin0cosK si ncusi nK-coscosi n0cosK

R = -cos0sinK cosl oco sk - sinwsin0sinK sintocosK+coswsin^sinK

_ s i n0 -siniocos0 COSGOCOS0

(B.10)

Now assuming differentially small rotations 6w, 64), 6k around

X°,Y°,Z° axes respectively it follows:

si neo = 6w

sin0 = 60

sin< = 6k

(B .11)

COSW = COS0 = COSK -1

and neglecting second-order terms, the rotation matrix becomes:

1 6k  -60

-6k  1 6co

60 -6co 1

(B.12)

It should be noted that R (equation B.12) is orthogonal only

up to first-order terms. Therefore, the differential changes due

to the rotations 6w, 60, 6k are given by:
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X - x° x° x° x°
Y - Y° Y° - Y° =(r T-i ) Y°

_Z - Z°_ Z° Z°
1

Z°.
i i

(B .13)

or in a compact form:

0
6k

- 6$

-6 k
0

6oo

60
-6co

0 _

X°
Y°
Z°

(B.14)

Thus,

%

scale,

0 z° -Y°" 6u)
-z° 0 x° ; dt9 = 60 ■
_Y° -x° 0

c

6k

(B.15)

For the change has :onein

dX X°6L x°
dY = Y°6L = 6L Y°
dZ. i _Z°6L_ ,Z°.

6L

(B.16)

Hence,

Gs • “
x°
Y°
Z°

Finally, if we put C = g t  =

and dt3 = 6L (B.17)

minimal constraints, namely

Then:

GI 

g t  
r

then C constitutes a set of

the set of inner constraints (Blaha, 1971).
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1 0 0

0 1 0

0 0 1

rTGi 
(7x3)

0

Z°

-Y°

-z°
0

X°

Y°

-X°

0
(B.18)

X° Y°

This pattern of G-matrix

Z°_

repeats for each object point.

B.3. Geometrical interpretation of inner constraints

Let x? denote the set of approximate co-ordinates of the ith 

unknown point, Ax^ denote the corrections to these co-ordinates, 

and x^ denote the adjusted co-ordinates, i.e.

xi = x° + Axi (B.19)

For those inner adjustment constraints which correspond to G^

it holds that:

G^Ax = 0 (B.20)

In vector notation this can be expressed as:

no 
E 6x. = 0 (B.21)
i=l 1

in which nQ = number of object points in a network.

The geometrical interpretation of these conditions is that 

the centre of gravity of all points will not change after adjustment, 

i ,e.
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no
E

i=l
(B .22)

The second set of constraint equations,

g J Ax = 0 (B.23)

corresponds to the conditions:

E x° x 6x- = 0 
i=l 1 1

(B.24)

If the centre of the system remains fixed, then the cross 

products x° x <5x.j reflect rotations of the points around the 

fixed centre. These constraint equations ensure that the sums 

of the rotations around all three co-ordinate axes are zero. 

Geometrically, this means that the mean orientation of the sytem 

of points involved in forming Gf will not change after adjustment 

either.

Finally, the part

g I Ax = 0 
s (B.25)

with the previous notations and interpretations yields:

o
E (x? ,6x) = 0
i=l 1

(B.26)

which means that the average scale of the network will be held 

fixed.
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