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Abstract

Objectives

Evaluating craniofacial phenotype-genotype correlations prenatally is increasingly impor-

tant; however, it is subjective and challenging with 3D ultrasound. We developed an auto-

mated label propagation pipeline using 3D motion- corrected, slice-to-volume reconstructed

(SVR) fetal MRI for craniofacial measurements.

Methods

A literature review and expert consensus identified 31 craniofacial biometrics for fetal MRI.

An MRI atlas with defined anatomical landmarks served as a template for subject registra-

tion, auto-labelling, and biometric calculation. We assessed 108 healthy controls and 24

fetuses with Down syndrome (T21) in the third trimester (29–36 weeks gestational age, GA)

to identify meaningful biometrics in T21. Reliability and reproducibility were evaluated in 10

random datasets by four observers.

Results

Automated labels were produced for all 132 subjects with a 0.3% placement error rate.

Seven measurements, including anterior base of skull length and maxillary length, showed

significant differences with large effect sizes between T21 and control groups (ANOVA,

p<0.001). Manual measurements took 25–35 minutes per case, while automated extraction

took approximately 5 minutes. Bland-Altman plots showed agreement within manual

observer ranges except for mandibular width, which had higher variability. Extended GA

growth charts (19–39 weeks), based on 280 control fetuses, were produced for future

research.
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Conclusion

This is the first automated atlas-based protocol using 3D SVR MRI for fetal craniofacial bio-

metrics, accurately revealing morphological craniofacial differences in a T21 cohort. Future

work should focus on improving measurement reliability, larger clinical cohorts, and techni-

cal advancements, to enhance prenatal care and phenotypic characterisation.

Author summary

In this work, we propose a method of obtaining multiple prenatal facial and skull mea-

surements with state of the art 3D MRI methods. In clinical practice, this would be a time

consuming task with a risk of human errors due to the specialist nature of the task. We

found that we can extract approximately 30 measurements reliably and in less than a fifth

of the time when compared to traditional clinical techniques. Typically, it is difficult to

obtain objective measurement of a baby’s craniofacial development during pregnancy.

Since we also found that our new measurements could characterised facial development

in a group of Down Syndrome subjects, we hope this will provide opportunities for clini-

cal researchers to understand fetal growth and development in rarer condition during

pregnancy.

Introduction

Comprehensive prenatal characterisation of craniofacial development remains a challenge for

obstetric ultrasound due to limitations caused by fetal position, artefacts, and technical diffi-

culties in the 2D and 3D domain. Currently, clinical imaging techniques broadly relies on sub-

jective assessment of facial features, and in high-risk cases, quantitative linear measurements,

facial angles, and indexes, have been proposed for use with prenatal ultrasound [1–4]. Prenatal

detection of face, ear and neck anomalies are low during universal second-trimester ultra-

sound screening in pregnancy. Indeed, a recent systematic review found them to have the low-

est detection rate of 46 organ groups assessed, with a sensitivity of 32.3% [5]. Prenatal

detection of facial anomalies, even in high-risk groups referred for a targeted specialist ultra-

sound, are even more likely to remain undetected if isolated, or, if presenting with an addi-

tional non-genetic body structural anomaly [6]. Fetal MRI is complementary to ultrasound

and clinically may be used to confirm or further characterise ultrasound findings. Although, as

a modality, MRI is less available, more expensive and is more affected by fetal motion than

ultrasound, it can provide high-quality soft tissue contrast and is considered less subjective,

being particularly important in the evaluation of the central nervous system [7]. The fetal MRI

craniofacial clinical literature usually describes subjective imaging assessments, and are often

clinical reviews or case studies, however, its complementary role to ultrasound is often

highlighted. For example, a recent historical cohort study of 45 patients referred to fetal MRI

for a wide range of suspected craniofacial malformations at an anomaly level, e.g. cleft lip and

palate, craniosynostosis, hyper/hypotelorism, ear structure anomalies, facial cysts and masses,

found MRI was more likely to make a confident diagnosis and less likely to over-diagnose

when compared to ultrasound [8].
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Imaging craniofacial development in-utero

Imaging the craniofacial complex prenatally requires expert image acquisition, precise 2D

image planes, or, 3D data that can be aligned to the region of interest (ROI). A quantitative

assessment, for a prenatal phenotypic characterisation, is thus time-consuming and subject to

observer variation. International guidelines for routine mid-trimester ultrasound, performed

at approximately 20 weeks gestational age (GA), suggests the facial examination should be lim-

ited to a qualitative assessment of the upper lip, orbits, and an optional examination of the

mid-sagittal facial profile and nasal bone [9].

The increased use of 3D data in fetal ultrasound and the expanding applications of struc-

tural fetal MRI have resulted in the feasibility of using extended biometrics methods to better

characterise and/or diagnosis subtle craniofacial dysmorphology [10,11]. In an expert consen-

sus paper, Merz et al (2012) suggested a targeted craniofacial examination to include 3D ultra-

sound, with multiplanar and aligned 2D views to allow the biometric assessment of the nasal

bone (NB), frontomaxillar facial angle (FMA), inferior facial angle (IFA), orbital diameters

(OD), interorbital distance (IOD), and outer orbital distance, (or bi-orbital distance (BOD)),

maxilla width (MxW), and mandibular width (MdW) all in addition to standard head biome-

try i.e. head circumference (HC), occipitofrontal diameter (OFD), and biparietal diameter

(BPD) [1]. However, few antenatal imaging studies have sought to comprehensively assess

multiple craniofacial biometric parameters, often focussing on fetal estimated weight bio-

metrics (i.e. HC, OFD, BPD, in addition to abdominal circumference, and femur length), and

orbital and mandibular regions [3,12–16].

Fetal MRI for craniofacial assessment

Toren et al in (2020), confirmed the feasibility of multiple manually extracted fetal MRI cra-

niofacial biometrics [17]. The authors reviewed the use of eight fetal MRI 2D measurements

related to the mandible and nasal cavity, these included the previously cited measurements,

IFA, BPD, and IOD, and four new measurements, the mandibular anterior-posterior diameter,

mandibular vertebral length, maximum nasal length, septal height, and septal length. The

authors highlighted the additional need for structural radiological biomarkers to characterise

fetal facial development and importantly noted that 70% (843 MRI scans) had to be excluded

from their final sample due to motion artefact that degraded the image quality or the absence

of a true orthogonal plane to produce the required measurement.

Except for the established cranial vault measurements (HC, OFD, BPD), there are limited

examples of fetal MRI craniofacial reference ranges. Noteable anatomical areas examined are

the orbits [18–20], and includes our previous work on the automated extraction of fetal 2D

orbial biometry from 3D volumes [21]; the mandible [22] and more recently maxillary sinuses

[23]. A reason for slower development of the MRI craniofacial literature may be because 3D

fetal MRI investigations have focused on brain development and assessment. Indeed, the first

step would be to accurately define MRI anatomical landmarks for any new measurements and

to ensure that image quality enables the accurate localisation of rarely assessed structures in-

vivo. Furthermore, there is also a known lack of clear consensus on formalisation of fetal MRI

biometry protocols, nomogram model formulas and measurement techniques for MRI

between different clinical centres [24]. T2-weighted MRI is considered the optimal choice of

image contrast for fetal structural assessment due to the faster acquisition times and good fluid

tissue differentiation. The effect of field strength (1.5 Tesla compared to 3 Tesla (T)) on brain

biometry has been shown to produce small absolute differences for some measurements. This

is likely due to the increased contrast and spatial resolution, as well as improved signal to noise

at 3T, which results in only minor discrepancies, particularly for smaller structures [25]. In
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addition, whilst both brain and facial anatomical detail are visible at both 1.5T and 3T, the image

quality may differ due to the field strength or acquisition parameters used [26]. There are, of

course, additional sources of error due to clinician training and experience, reporting software

and environment, maternal breathing and fetal motion, leading to imprecise acquisition planes

and measurement placement that result in increased intra- and inter-observed variability.

Automation of biometry for fetal MRI

Motion correction methods, based on 3D slice-to-volume registration (SVR) [7], partially

resolves these challenges since the 3D reconstructed images can be reoriented to any plane.

3D-derived biometric measurements are reportedly comparable with 2D slice-wise biometry

[27,28]. Yet, there may be considerable operator variability when placing labels in a 3D volume

due to the requirement to choose the correct plane for the measurement and then define the

anatomical landmarks in 3D space.

Theoretically, in addition to being faster, automation of biometry should also allow repro-

ducible biometric measurements. Recently, there have been several proposed methods for

automated fetal MRI biometry with deep learning brain measurements such as biparietal and

transverse cerebellar diameters and atrial diameters [29,30] in 2D slices and ocular measure-

ments using registration and deep learning [21,31] in 3D motion-corrected images. However,

outside of the cranial vault, there have been no reported automated solutions of craniofacial

measurements for fetal MRI.

Contributions

In this study, we formalise the first label-based protocol for craniofacial biometry for 3D T2w

fetal head MRI in the atlas space and develop the first automated pipeline for extraction of 31

craniofacial biometry measurements based on label propagation. To understand the perfor-

mance of the pipeline we systematically evaluate the outputs visually and by the assessment of

biometric results. Importantly, we assess the biometric variability of the automated measure-

ments as compared to traditional direct measurements by expert observers in order to under-

stand the variability and outliers in the new automated pipeline. Our cohort of Down

Syndrome (T21) fetuses are known to have characteristic facial features in the newborn period

and this has been highlighted in antenatal ultrasound studies previously [32,33]. We compare

the T21 cohort to an age-matched control group with similar baseline characteristics to assess

variation across GA. Lastly, using the same methodology, to find the mean measurements of

the controls for their GA, we produce extended GA range normative range charts for the 2nd

and 3rd trimester of pregnancy (between 19–38 weeks GA) which is when fetal MRI is most

typically performed, thus providing opportunities for future research in this area.

Methods

Fetal MRI datasets and preprocessing

Participants were scanned between 2014 and 2024 at a single site (St. Thomas’ Hospital, Lon-

don, UK) and all maternal participants gave written informed consent for the use of data

acquired under one of eight ethically approved MRI research studies with research ethics com-

mittee (REC) approval by the Health Research Authority boards of: London (including -Ful-

ham, -South East, -Riverside, Dulwich, -West London and GTAC, and -Brent) and, South East

Scotland. The datasets were acquired under different research studies: The Placental Imaging

Project (PIP: REC 16/LO/1573); the Intelligent Fetal Imaging and Diagnosis (iFIND: REC 14/

LO/1806); the quantification of fetal growth and development with MRI study (fetal MRI: REC
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07/H0707/105); the fetal CMR service at Evelina London Children’s Hospital (fCMR: REC 07/

H0707/105); the developing human connectome project (dHCP: REC 14/LO/1169); the early

brain imaging in Down syndrome study (eBiDS: REC 19/LO/0667); the Individualised risk pre-

diction of adverse neonatal outcome in pregnancies that deliver preterm using advanced MRI

techniques and machine learning study (PRESTO: REC 21/SS/0082); and the Cardiac and Placen-

tal Imaging in Pregnancy project (CARP: REC 19/LO/0852). The inclusion criteria for case selec-

tion included: singleton pregnancy, fetal MRI stacks with full ROI coverage, acceptable quality

whole head SVR output. The normal control cohort included 314 cases without reported fetal or

maternal anomalies with moderate to excellent image quality from four different acquisition pro-

tocols, from 19 to 39 weeks GA. The T21 cohort was curated primarily based on the availability of

datasets with research consent and acceptable 3D head SVR reconstruction quality. In total, we

selected 24 T21 cases from 3 different acquisition protocols and 29–36 weeks GA range.

MRI acquisition protocols. The included datasets were acquired with different MRI

acquisition protocols depending on the recruiting study:

• 4 T21 and 34 healthy control subjects scanned on a 1.5T Philips Ingenia MRI system using

28-channel torso coil with TE = 80ms, 1.25x1.25mm resolution, 2.5mm slice thickness,

-1.25mm gap and 9–11 stacks (iFIND, FCMR studies);

• 17 T21 and 106 healthy control subjects were scanned on 3T Philips Achieva MRI system

using a 32-channel cardiac coil with TE = 180ms, 1.25 x 1.25mm resolution, 2.5mm slice

thickness, -1.5mm gap and 5–6 stacks (PIP, PRESTO, eBIDs studies);

• 3 T21 and 130 healthy control subjects were scanned on 3T Philips Achieva MRI system

with a 32-channel cardiac coil using a dedicated dHCP fetal acquisition protocol with

TE = 250ms, 1.1 x 1.1mm resolution, 2.2mm slice thickness,

• -1.1mm gap and 6 stacks (dHCP, fetal MRI studies).

• 44 healthy control subjects scanned on a 1.5T Philips Ingenia MRI system using 28-channel

torso coil with TE = 180ms, 1.25x1.25mm resolution, 2.5mm slice thickness, -1.25mm gap

and 9–11 stacks (PIP, CARP studies).

3D SVR head reconstruction. All datasets were reconstructed for the whole head using

two different automated SVR methods: the dedicated SVR pipeline developed for dHCP proj-

ect [34] and the optimised automated version [35] of the classical 3D SVR reconstruc- tion

method [36] in SVRTK package (https://github.com/SVRTK/SVRTK and https://github.com/

SVRTK/ auto-proc-svrtk) [37]. The reconstructed 3D head images have 0.8 mm isotropic reso-

lution and are reoriented to the standard radiological space (see examples in Fig 1). In order to

account for the small dimensions of some of the biometrics, we applied additional resampling

of 0.5mm isotropic resolution to all 3D reconstructions prior to anatomical label propagation.

The 3D whole head MRI image quality scoring protocol is shown in S1 File, similar to that

proposed in our previous qualitative 3D MRI assessments [11]. An image score of ‘good’ or

‘excellent’ was given when the brain could be visualised with no, or minimal, image or recon-

struction artefacts, in addition, the mid and lower facial region and the facial profile should be

included within the image volume.

Formalisation of 3D MRI craniofacial biometry protocol

Following an extensive literature search (JM), two 3-hour consensus workshops (JM, MR,

AEC, AL, SA) were held which included an image review of proposed 3D labelling points
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Fig 1. a. GA distribution of control subject datasets in the study per MRI protocol; b. proportional distribution of MRI

protocols in the whole control group (MRI protocol (field strength/TE) = 1.5T/ 180ms; 1.5T/ 80ms; 3T/ 180ms; or, 3T/

250ms); and examples of a 3D SVR fetal head reconstructions at different acquisition parameters.

https://doi.org/10.1371/journal.pdig.0000663.g001
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based on anatomical knowledge. A set of 31 biometric measurements (35 points) were agreed

as relevant to clinical craniofacial assessment and feasible/reliable in terms of anatomical visi-

bility in 3D fetal MRI and included distance, angular and area measurements of the deep vis-

cerocranial and cranial vault regions, see Fig 2 for a visual representation of the 3D point

cloud.

The formalised biometry protocol, with abbreviations used in this work, is summarised in

Fig 3. along with citations of publications that directly relate to the proposed measurement

technique and/or the related reference charts [17–19,22,27,33,38–49]. Additionally, the wider

literature supported the rationale for anatomical label definition and included: prenatal cranio-

facial biometry and anatomical MRI literature [50,51]; 2nd and 3rd trimester prenatal US mea-

surement literature [52–54]; ex-vivo/ post-mortem anatomical studies [55,56]; and, neonatal,

Fig 2. Visual representation of 3D labels placed within a 3D population-averaged MRI atlas (31 weeks GA).

https://doi.org/10.1371/journal.pdig.0000663.g002
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paediatric or adult clinical imaging literature, where relevant [23,32,57–61]. The label defini-

tion and location of anatomical points of interest were agreed upon in the consensus work-

shop, resulting in 35 points related to the measurements and a further 15 anatomical points of

interest that may be of future interest (the latter not investigated in this work). These points

are summarised in S2 File. The points were manually placed in 3D space on to a population-

average atlas of the volumetric whole fetal head [21] using a 5mm 3D isotropic spherical ‘paint-

brush’ with the ITK-SNAP software, a user friendly programme to define 3D points and pro-

vide text labels for the relevant anatomy. (http://www.itksnap.org/pmwiki/pmwiki.php); a

visual overview of the points can be seen in Fig 2. The atlas template, extended 3D segmenta-

tion file (50 anatomical points), and the labelling protocol, are publicly available online at the

KCL CDB data repository (https://gin.g-node.org/kcl_cdb/craniofacial_ fetal_mri_atlas).

Automated 3D craniofacial biometry pipeline

The proposed pipeline for automated biometry is outlined in Fig 4. Firstly, the defined 3D

labels from the atlas were propagated to the subject space via registration. Next, we employed

the classical label propagation approach based on registration of the atlas to the subject space.

We used affine + non-rigid free form deformation registration [62] implemented as register
function in MIRTK package(https://github.com/BioMedIA/MIRTK). In order to minimise

the impact of the background in the subject target image, the source atlas image is masked to

the dilated face ROI [11]. This registration-based approach was feasible since the 3D head

Fig 3. Table of formalised measurement definitions for the proposed label-based craniofacial biometry protocol with 3D T2w fetal MRI, with

measurement and anatomical landmark abbreviations.

https://doi.org/10.1371/journal.pdig.0000663.g003

Fig 4. Proposed pipeline for atlas-based 3D craniofacial biometry for fetal MRI (orange boxes).

https://doi.org/10.1371/journal.pdig.0000663.g004
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images were reoriented in the standard atlas radiological space a priori after SVR reconstruc-

tion and craniofacial features do not exhibit global changes in appearance during 2nd and 3rd

trimesters. The affine registration step is initialised with the global average transform correspond-

ing to the subject GA to ensure convergence. We used standard MIRTK registration settings with

local normalised cross-correlation similarity metric with a 6mm control point spacing parameters

that were optimised for this particular task. After registration, the labels from the atlas were trans-

formed to the subject space using output transformations with standard nearest neighbour inter-

polation. Label propagation was followed by the extraction of the label centre points i.e. the

geographical centre of a 3D labels in 3D world space and equivalent to the position of 1 voxel.

Lastly, this was followed by the computation of the defined biometry measurements including

distances, angles and areas, see Fig 3. The formulas used are provided in S2 File, and the imple-

mented function for label-based craniofacial biometry calculations is publicly available as a part of

SVRTK package. All these steps were combined into a single bash script for batch processing with

additional visualisation of the results in 3D slicer for validation [63].

Evaluation of the proposed biometry protocol

With the pipeline outputs of the automated label segmentation files and 31 biometrics per sub-

ject, we performed an extensive evaluation of the feasibility of the proposed protocol and pipe-

line on normal and T21 cohorts from different acquisition protocols. This included qualitative

assessment of automatic label localisation in a total of 132 datasets followed by extensive quan-

titative evaluation based on comparison with manual measurements in 10 cases.

Qualitative visual evaluation of labels. A single operator (JM) visually inspected all auto-

mated 3D points for all 132 subjects (later used in normal and T21 comparison). The whole

head SVR volume and 3D labels for each subject were loaded into 3D Slicer in turn to detect

any major errors in the automatic label placement. 35 labels per subject related to biometry

were inspected and scored as ‘minimal or no’ error, or as having a ‘major’ error (i.e. requiring

a manual change of more than a few millimeters, degrees or mm3). Any measurement that was

documented as an outlier (based on the distribution of cohort), had a detailed inspection and

qualitative comments on the suitability of the related label placement. During this assessment

each case was rescored for image quality, blinded to the intial image score during data curation

and including an additional criteria to those presented in S1 File, so that ‘reasonable image con-
trast to differentiate deep naso-oral soft tissue structures’ was also considered in the qualitative

assessment.

Measurement Validation, intraobserver, interobserver, intramethod and inter-

method. We performed assessment of intra-, inter-observer and intermethod variability in a

subset of 10 random cases (from the control and T21 cohorts) given in S2 File. Intraobserver

repeatability was assessed by repeating measurements on the subset using a similar method to

the label propagation pipeline [64]. That is, the 3D anatomical labels, related to each biometric,

were placed using ITKsnap software, and then the measurement was automatically indirectly

calculated (‘indirect’ because the calculation was between points rather than using a visual

measurement tool, i.e. using a calliper or digital ruler on the image would be a ‘direct’ mea-

surement). The assessment was repeated after a washout period of 2 weeks, to reduce reviewer

bias.

To understand the expected variability within clinical raters, the interobserver reproducibil-

ity was assessed with three fetal radiology experts. After importing the SVR volume into MITK

workbench, the use of coupled cross-hairs in the x-y-z planes allowed for fine and precise

adjustment of image planes within the 3D volume, required for the direct calliper

measurements.
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The absolute and relative differences were calculated for intra-observer, inter-observer and

the automated measurements compared with the most experienced fetal radiologist, consid-

ered to be the ground truth. Bland Altman plots were constructed to visualise the variability of

the automated and manual observers and compared to the most expert observer. An intraclass

correlation coefficient (ICC) (two-way random effects model with absolute agreement) was

performed to statistically assess the reliability of both systematic and random error to include;

intraobserver (single observer, repeated indirect measurements), interobserver (3 expert raters,

single direct measurements), and intermethod agreement (4 human observers and automated

measures, single measurements). The ICC interpretation threshold values were reported as:

<0.50 = poor; 0.50–0.75 = moderate; 0.75–0.90 = good; and, >0.90 = excellent as defined by

Koo and Li (2016) [65]. A Cronbach’s Alpha test was applied to assess internal validity for each

measurement, as a high internal error within the subset will reduce the power and therefore

validity of the ICC [66]. A threshold of 0.7 was set as a minimum value to interpret the ICC

value safely.

All human observers were asked to rate their diagnostic confidence of measuring on a

binary scale (confident/not confident) for all the measurements or labels, where relevant. Due

to the small sample size the results were presented descriptively.

Comparison of normal and abnormal cohorts. Next, in order to assess the clinical utility

of the proposed biometry pipeline for automated analysis of a large number of craniofacial bio-

metrics, we ran a multivariate analysis of covariance (MANOVA) to assess the impact of scan-

ner field strength with GA as a covariate (control group only). A comparison with 24 T21 cases

and 108 GA-matched normal control cases, including three different acquisition protocols, was

tested with a univariate analysis (ANOVA) using robust standard errors to account for multiple

comparisons [67]. Posthoc power calculations were included to assess the risk of type 2 error

and magnitude of effect size (using, partial estimated squares, η2) [68]. In addition, the centile

normative range charts were used to assess the proportion of T21 cases falling above the 95% or

below the 5% for gestation for the most relevant biometrics identified by the ANOVA.

To ensure the test assumptions were met for the analysis of variance, normality was evalu-

ated using Q-Q plots and Shapiro-Wilk tests, multicollinearity was assessed with a Pearson’s

correlation coefficient, tabulated correlation matrix, and a variance inflation factor (VIF) test

was performed to detect severe multicollinearity (i.e. VIF>10). Lastly, linearity was visually

assessed with scatterplots of the variable against GA and lastly, homogeneity of variance was

assessed with a Levene’s Test, [69]. Parameter estimates using robust standard errors [67] and

using the HC3 method [70] are reported for the analysis of variance to account for any viola-

tions in test assumptions.

Normative craniofacial biometry growth charts. Next, the automated label propagation

for all suitable control cases from 19 to 38 weeks GA was performed to create extended GA

nomograms for the proposed biometry protocol. We used the same registration parameters

for all GA timepoints. The 3D landmark points were visually inspected and corrected if neces-

sary, where required. After extraction of all biometric measurements, the 5th, 50th, and 95th

centiles for the automated biometry results were calculated based on the widely used statistical

approach for growth chart construction [71] similar to fetal MRI brain charts described by

Kyriakopoulou et al. (2017) [27]. Normative range plots with centile trendlines and quadratic

formula (or linear formula where relevant) formula were then produced.

Image Processing and Statistical Analysis Software. All image processing steps, includ-

ing image reconstruction, reorientation and label propagation, were implemented using

SVRTK and MIRTK packages.

All image review software used was open source and compatible with nifti and/or dicom

format 3D image volumes. Image anatomical labelling for the atlas template and for the
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intraobserver measurements was performed in ITKsnap. Interobserver measurements were

performed in MITK workbench. The review of labels for data quality was performed in 3D

slicer [63].

Data was analysed in Excel (Microsoft Excel for Mac, Version 16.85, 2024; descriptive statis-

tics, plots), SPSS Statistics (IBM corp, version 29.0.2.0 (20), 2023; growth curves, ICC,

ANOVA, MANOVA), and, RStudio (R version 4.3.3 (2024-02-29, data visualisation and out-

lier assessment).

Results

Evaluation of reliability of the proposed biometry protocol

Visual assessment of the proposed automated method The automated pipeline produced an

output of labels, centre-points and biometrics for all cases. The quality of the label placement is

fundamental to the centre-point extraction and therefore the subsequent biometric calcula-

tion, thus a detailed assessment of image quality and appropriateness of label placement is

described below:

Visual inspection and outlier assessment of all subjects The 132 subjects used in evalua-

tion the had paired SVR and automatic label data available for visual assessment, which took

approximately 5 minutes per case. Of the 4620 total labels assessed, n = 15, 0.3%, were deemed

as requiring major editing/unsuccessful by a single operator. The 15 unsuccessful labels were

all in SVR images of moderate quality and no single subject had more than one major label

error. Qualitative comments were collected about the label placement, with the most com-

ments made for the lip (n = 3), posterior tongue (n = 3) and chin (n = 2). The limitations in

image quality described were related to low contrast resolution and high noise in the lower

facial region, as well as compression of superficial soft tissue by external structures e.g. placenta

or maternal uterine wall. Poor visibility was also described in the naso-oropharyngeal area,

which received multiple mentions (n = 17) largely due to fluid motion artefact, especially in

the choanal region. Fig 5 gives an overview of the SVR QA results stratified by field strength

over GA and image examples of major label errors.

Outlier measurements in the control and T21 groups were defined by assessing the mea-

surement distributions, see boxplots in S1 File. 57 measurements were outliers from 32/132

unique subjects, 4 (12.5%) of the 32 outlier subjects were scanned at 1.5T and the remaining at

3T MRI field strength. The image quality of the outlier subjects ranged from poor to excellent,

with a moderate score having the highest frequency. Only one measurement, the internal cra-

nial base angle, in a 33 week old fetus scanned at 3T, was an ‘extreme’ outlier, i.e., it had values

above the 3rd quartile and also was more than 3 times the interquartile range. The labels

related to the angle measurement appeared correctly placed on visual inspection.

Automated and human observer agreement and reliability. The observer variability was

assessed to understand if the measurement error found for the automated biometrics were

within the limits expected for expert observers. 10 cases were randomly selected for review and

are presented in S2 File, and were balanced interms of fetal sex, MRI field strength and were

not selected for quality a priori. The automated pipeline took approximately 5 minutes to pro-

duce the labels and the biometric result and the timing for the manual observers took between

25–35 minutes for each case. The repeated measures (for intraobserver agreement and reliabil-

ity) were performed by a single observer, a clinical researcher with 15 years fetal imaging expe-

rience. The reproducibility measures (for interobserver agreement and reliability) were

performed by 3 consultant fetal MRI neuroradiologists, with more than 10 year experience

each.
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For the assessment of variation of the automated measurements, the most experienced con-

sultant radiologist was considered the ground truth, to which the absolute and relative differ-

ence were compared and presented with its mean bias and limits of agreement in a selection of

Bland Altman (BA) plots, see Fig 6 (absolute and relative difference tables for all variables can

be found in S2 File. Intermethod agreement and reliability included all observations except the

first set of intraobserver measures. An acceptable relative mean bias of less than +/−10% was

seen for 22/31 automated measurements. Despite this, all automated measurements had mean

error within the range seen for human observers except for the mandibular width (mean abso-

lute difference; automated = 5.30mm (14.62%) versus manual (range for 3 observers) = -0.99–

1.28mm (-2.63–4.55%)). The automated random error in all 31 measurements was within the

limits of agreement for that seen in the manual observers, however, nine measures had an

unacceptably high random error of more than +/−20% (Cho_L, PnTh, CBA2, MNMA, IFA,

PAH, ChoH, NASO and ORO) [72].

Intermethod reliability (i.e. for all measurements/methods including the automated) was

excellent for the cranial mea- surements of; the anterior and posterior base of skull; the occipi-

tofrontal diameter; biparietal diameter; maximum cranial height; internal cranial base angle;

head circumference and, bi-occular diameter, (ICC range = 0.915–0.986, 95% CI range, 0.770–

0.995). The intermethod reliability threshold was not below that of the interobserver reliability

(expert radiologists) in any assessed variables except for the mandibular width where the ICC

score changed from good (ICC = 0.904, 95% CI = 0.677–0.975) to moderate (ICC = 0.635,

95%, CI = 0.176–0.888). The ICC values were interpreted only when good internal validity of

Fig 5. Upper row: Face SVR quality assessment results stratified by MRI field strength (1.5T/3T) and GA. Lower Row: i. Anatomical landmarks with automated

labels, ii. Example: Excellent quality SVR with good label placement, iii. Example: Moderate quality SVR (poor contrast resolution lower face), with poor lip

label placement due to limited boundary definition adjacent to maternal tissue. (Label key: Ve = vertex; Oc = occiput; Si = sinciput; NaIn = inner nasion;

NaO = outer nasion; Fc = foramen caecum; NBt = nasal bone tip; v = vomer; H = hormion; PcP = posterior clinoid process; Ppw = posterior pharyngeal wall;

Pav = palate vault; Ba = basion; ANS = anterior nasal spine; PNS; posterior nasal spine; Tp = posterior tongue; Me = bony mentum; Lip = lip; Chin = chin).

https://doi.org/10.1371/journal.pdig.0000663.g005
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Fig 6. Bland Altman plots of absolute and relative difference for observer 0, grey diamond, (using manual label-based

indirect measurement method); observers 2 and 3, grey square and triangle respectively, (both using direct manual

measurement method); and, automated biometry, red circle, all compared to expert observer 1, (direct manual method),

for a selection of biometrics (ABSL, IFA, HPL, and NASO). Grey dash = mean difference for automated biometry and red

dash = upper and lower limits of agreement for automated method.

https://doi.org/10.1371/journal.pdig.0000663.g006
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the measurement was present, i.e. Cronbach’s Alpha>0.70, violation of the ICC test assump-

tions was seen in 12/31 measurements. Full ICC results can be found in S2 File.

Human observer confidence. Subjective scoring of diagnostic confidence found that

observers were least confident with measurements in the choanal and nasopharyngeal area.

The intraobserver repeated measures included failed label placement for the nasopharyngeal

space, i.e. choanal and pharyngeal width measurements and the nasal bone tip, and the average

confidence scores and the variation across the three radiologist measurements are presented as

boxplots in S1 File. Of note, a total of 4/10 cases could not have an accurate measurement of

the nasal bone performed. For the measurements obtained, the confidence scoring demon-

strated that there was minimal/no variability in confidence scores, with biometrics generally

scored as ‘confident’. The exception was for the choanae width measurements (left, right and

total width, i.e. NPW) and for cases 7 and 10 where multiple measures were more difficult.

Both cases were at different scanner field strengths (1.5T/3T) and GAs (32.38 and 35.14

weeks), and image quality was subjectively scored as moderate.

Comparison of normal control and T21 cohorts

In order to understand the clinical utility of the proposed automated pipeline, and its ability to

assess differences in craniofacial development, an analysis of variance was performed on the

dataset.

Demographics and baseline characteristics. The final retrospective sample contained

108 control and 24 T21 subjects. The mean GA for the control group was 31 weeks and 6 days

(range 29 weeks and 0 days to 36 and 0 days) and for the T21 group the mean GA was 32

weeks and 3 days (range 29 and 6 days to 35 and 5 days). The distribution of MRI protocols

used in the healthy control group differed from the T21 group (1.5 Tesla and echotime of

80ms in 34 (31.5%) and 4 (16.7%) respectively; 3 Tesla and echotime of 180ms in 25 (23.1%)

and 17 (70.1%) respectively; and, 3 Tesla and echotime of 250ms in 49 (45.4%) and 3 (12.5%)

respectively). Most datasets in the T21 cohort were performed at 3 Tesla at 180ms echotime

whereas the datasets were more evenly spread in the control group, with most scans performed

at 3 Tesla and 250ms. The ratio of female and male fetuses were evenly split between the cohort

groups (healthy controls = 53 (49.1%)/ 54 (50.0%), and, T21 = 10 (41.7%)/10 (41.7%), the

remaining fetuses had unknown sex at the time of the scan). S1 File, shows the spread of fetal

sex and protocols across the GA, with the control group having a peak at 30 weeks GA and the

smaller sample of T21 fetuses being more evenly spread. The maternal ethnicity across the

control group was largely of White European origin (79.6%), with 9.3% of participants report-

ing as having an Asian background, 3.7% as having a Black background, and the remaining

participants of other or unknown ethnicity, see S2 File.

Summary statistics of the dataset. The mean measurements and standard deviations

were similar between the GA-matched T21 and healthy control groups, (see S2 File), however,

there were relatively larger mean differences between the T21 and control groups for; the occi-

pitofrontal diameter (97.87mm and 101.05mm, respectively); inferior facial angle (55.16 and

48.97˚, respectively); and, the nasopharyngeal and oropharyngeal areas (58.42 and 63.88mm3

and 181.41 and 173.97mm3, respectively). Box plots for the measurements indicate these differ-

ences graphically and it was noted that outlier cases were noted predominantly in the control

group (see S1 File).

Growth chart utility and biometric variability assessment. Biometric growth charts

based on the age-matched control cohort were constructed for each automated biometric mea-

surement with a calculated best-fit line and standard deviation regression equations (presented

in S2 File). Using the centile ranges to assess the T21 subjects falling outside the normative
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ranges, the 5th to the 95th percentile were considered the threshold thus, by definition, only

10% of the healthy control cohort would be expected to fall outside of this range. 17/24 of the

T21 fetal subjects had measurements that were out of range for at least one of the 7 biometrics

that showed significant differences with large effect sizes compared to a health cohort, i.e. the

ASBL, VPL, HPL, OFD, IFA, MXL, and NASO (i.e. 71% true positive rate, TP), see Fig 7.

When considering all biometrics 23/24 cases had at least one biometrics falling outside of nor-

mative range (96% TP), with 21/24 cases having at least two measurements falling outside of

the normative range (88% TP), see Fig 7.

Biometric variation in the control population for subgroups of MRI field

strength and GA

A MANOVA was conducted to examine the effects of MRI field strength (1.5T/3T) on the

combination of 31 dependent continuous variables, i.e. the craniofacial measurements, with

GA in completed weeks included as a covariate.

Variation with GA: Evaluating the control group, the overall biometrics varied with GA, p
<0.001, η2 = 0.866, observed power = 1.00 and on univariate analysis there was no statistically

Fig 7. Growth charts for seven craniofacial biometrics* with statistically significant differences from control group and a large effect size, and biparietal diameter,

BPD, with no significant differences between groups. (*ASBL, anterior skull base length; VPL, velopharyngeal length; HPL, hard palate length; MXL, maxillary length,

IFA, inferior facial angle; NASO, nasopharyngeal area; and, occipitofontal diameter).

https://doi.org/10.1371/journal.pdig.0000663.g007
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significant measurement variation seen with GA for the FMA, IFA, CBA1 or ChoH (p = 0.943,

0.432, 0.639, and 0.827 respectively).

Variation with field strength: Within the control group there was a statistically significant

difference in overall biometric variation between 1.5T and 3T MRI scans (with GA as a covari-

ate), p = 0.006, η2 = 0.537, observed power = 0.99 (corrected for multiple comparisons).

Overall biometric variation between control and T21 groups

A two-way MANOVA was performed to examine whether the dependent variables (the cra-

niofacial measurements) differed by disease status i.e. control group or confirmed T21. The

combined dependent variables of the main effect variable (disease status) showed statistically

significant differences between groups p< 0.001, η2 = 0.710, observed power = 1.000.

Individual biometric variation between control and T21 groups

The ANOVA indicated that 7/31 variables; ASBL, HPL, VPL, OFD; IFA, MXL, and, NASO,

were statistically significantly different (p<0.05) and had large effect sizes (η2 = 13.6 and

30.4%), with the ASBL having the largest effect, see S2 File. 13 additional variables were statisti-

cally significant (PSBL, Cho_L, Cho_R, NPW, PnTh, OD_L, OD_R, IOD, BOD, MXW, MDL,

MDL, and, HC) however had relatively small effect sizes of between 3.4 and 11.7%.

All non-significant variables (11/31) had a power of less than< 80% (PAH, PAW, CHOH,

BPD, MCh, CBA1, CBA2, FMA, MNMA, ORO and interestingly NB). There were four vari-

ables reaching statistical significance despite a power below 80%; OD_R; IOD; MXW; and,

MDL; all had small effect sizes of less than 5.5%. These are therefore variables that would bene-

fit from a larger sample to meaningfully assess statistical differences in control and T21 popu-

lations with MRI.

2nd and 3rd trimester normative growth charts for craniofacial biometry

Following the analysis of utility of the proposed craniofacial biometry protocol for the assess-

ment of abnormal cases we generated extended nomograms with a mixture of 3 different

acquisition protocols. Datasets were included to cover the 2nd and 3rd trimester of pregnancy

(>20 weeks GA), and with an even distribution of protocols across the GA range. Automated

biometric data from 280 subjects were included, with a GA range of 19.67 to 38.62, mean 27.79

weeks. 84.3% of the sample (n = 236) was at 3T field strength and 15.7% (n = 44) was per-

formed at 1.5T.

Linear growth patterns were seen in 5/31 measurements, IFA, FMA, CBA1, CBA2 and the

NB, with the remaining variables having a quadratic growth pattern. These findings contrast

with the third trimester only growth charts in section where 21/31 measurements had a linear

growth pattern. In the extended GA range growth charts most variables varied with GA, how-

ever, the IFA and FMA appeared relatively stable across GA which contrasts with the four

measures that were stable in the third trimester, i.e. IFA, FMA, CBA1, and ChoH. A selection

of plots with the mean bestfit regression equations are shown in Fig 8 and the full range of

plots, along with dataset demographics and sample characteristics, are publicly available for

research purposes online at the 3D fetal craniofacial atlas KCL repository (https://gin.g-node.

org/kcl_cdb/craniofacial_fetal_ mri_atlas).

Discussion

This work proposed the first comprehensive craniofacial biometry protocol and automated

measurement pipeline for 3D T2w fetal MRI. We began with an extensive literature review
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Fig 8. Selected growth charts for craniofacial biometry from 280 normal controls (blue circles) during 2nd and 3rd trimesters. The quadratic or linear regression

equation for the 50th centile bestfit line is included on the chart (y = the mean measurement of the variable under investigation, and GA is the selected GA).

https://doi.org/10.1371/journal.pdig.0000663.g008
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which supported the selection of 31 biometric measurements, 29 being unique (i.e. non-bilat-

eral), to characterise craniofacial development. The anatomical landmarks, related to the bio-

metrics, were defined within a 3D population-averaged fetal head MRI atlas space and

included 35 label points and corresponding mathematical 3D vector formulae for the mea-

sures. Next, we developed a pipeline for automated biometry, based on the registration of the

atlas to the individual subject space and classical label propagation. The biometry protocol and

automated pipeline were evaluated on a T21 cohort and a GA-matched healthy control cohort

with a mixture of MRI acquisition protocols. This included a qualitative assessment of 132

cases by visual inspection of label placement, which saw a low error rate of 0.03%. The quanti-

tative comparison included an analysis of differences between groups and an assessment of

intermethod variability comparing four expert observers (manual method) and automated

outputs.

This is the largest study of multiple prenatal craniofacial measurements in fetuses with con-

firmed T21, and whilst the MANOVA comparison of biometrics revealed statistically signifi-

cant differences in many measurements (19/31), only 7 had strong effect sizes (ASBL, HPL,

VPL, OFD, MXL and NASO (p<0.001)). These variables are all consistent with a shorter ante-

roposterior length of the skull and/or a smaller maxillary area, related to mid-face hypoplasia,

and the findings are consistent with ultrasound and postmortem findings in T21 fetal and neo-

natal cohorts [32,73,74]. Interestingly the NB measurement was not found to be significantly

associated with T21 in our study, which is in stark contrast to ultrasound nasal bone measure-

ment literature [13,33]. This result is most likely due the higher variability in MRI and the dif-

fering contrasts between the two imaging modalities, with MRI T2 weighted sequences having

a far poorer contrast resolution of bone compared to adjacent soft tissue, affecting visibility

and precision of measurements. There has been some promise of ‘black bone’ imaging and,

more recently, zero TE MRI sequences development to examine fetal bone, however, there are

limited investigations related to craniofacial applications in fetal life [75–78]. The centiles

charts related to the 7 biometrics of interest in the ANOVA model gave a true positive rate

(sensitivity) of 71% that increased to 91% when all 31 variables were included. In clinical prac-

tice, the assessment of the true negative rate (specificity) is also important and not assessed

here. It is highly likely that including more variables with lower effect sizes, would increase

sensitivity but also increase false positives and thus reduce the specificity.

Our results indicated that the automated 3D label-based measurements were within the var-

iance range of expert manual calliper placement for measurements. Systematic differences

were only notable for the mandibular width and this is likely related to the manual measuring

of an angular structure which requires precise slice alignment in a 3D volume of non-standard

image plane, which adds complexity compared to traditional 2D measurements. As described,

the MDW anatomical points used for the automated measurement method was the posterior

border of the last toothbud, however it is likely that the human operators, who rarely perform

this biometric, may have positioned their callipers at the widest point of the posterior arch of

the mandible as this landmark may have been visually easier to define when reorienting the

image. In addition, the manual landmark choice by the human operator may have had some

parallels to the method used in the ultrasound literature that they may have been more familiar

with despite training [3]. This finding highlights the importance of training and standardisa-

tion of anatomical label definitions. It is important to consider that in this case there is no reli-

able ground truth measurement because there are always small differences in an individuals’

repeated measures due to human random and systematic error which may be caused by differ-

ences in training, experience, environment, or fatigue. The automated method produces the

same results for the same datasets, if repeated, and in addition, one of the advantages of the

proposed automated pipeline is that even with manual visual verification (and minor
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refinement of landmarks) it allows significantly faster and more consistent biometry, approxi-

mately 5 minutes, in comparison to the classical manual approach that can take 25–35 minutes

per case for all measurements. Future work is important to understand the true precision of

the more novel MRI fetal measurements.

Lastly, the publicly available 2nd and 3rd trimester normative biometry growth charts,

based on 280 normal control subjects from 19 to 39 weeks GA, could be used as a reference for

future research studies. This is a first step towards standardisation of automated 3D MRI fetal

craniofacial biometry for quantitative analysis that could potentially allow efficient assessment

of large cohorts.

Limitations and future work

In this paper, we focus on the variability and reliability of fetal MRI measurements of our new

baseline protocol with a first evaluation of the feasibility in a T21 cohort. Despite, yielding

novel and comprehensive results in this group, a deeper analysis will be required for its appli-

cation in clinical practice due to the relatively small size of the T21 group.

While the conducted detailed evaluation of autobiometry performance in the 3rd trimester

showed the general feasibility of the classical label propagation approach, further optimisation

3D label localisation based on deep learning, rather than atlas registration, should potentially

improve the reliability of the results. Deep learning localisation of landmarks (e.g., [79]) will

also allow more robust performance for suboptimal image visibility and face positioning cases.

This is important to consider as the proposed method cannot exclude a label based on low con-

fidence as a human observer would. Incorporation of surface-derived information could also

ensure that the "upper/lower limit" measurements (e.g., skull OFD) will correspond to true

anatomical values [30]. Automated quality control, QC, of 3D T2w image volumes and confi-

dence in label placement could be achieved based on deep learning classification which would

require a rigorous definition of a QC protocol.

Martins et.al (2014), suggests cut off values for the limits of agreement (i.e. random errors)

in measurement variability studies and their suitability for research or clinical use as +/-<5%

to 10% is considered good or very good for clinical precision. However, any variability of 20–

50% may still be useful for research but should be used with caution in clinical practice [72]. In

our case there were large random errors observed in the manual measurements of more than

20% for nine variables and therefore any future work should exhibit caution and investigate

error reduction.

Additional sources of error include the MRI scanner field strength which may impact spatial

resolution, contrast resolution and the presence of artefacts. In our data, we found statistically

significant differences in variability between 1.5T and 3T autobiometry. Image quality is very

likely a factor that resulted in this difference with the image contrast of the lower face noted qual-

itatively to be a factor of variability, especially in the choanal and nasopharyngeal regions and

requires further investigation before clinical use. Our analysis controlled for GA, however, there

are other factors that may have also contributed to differences in the automated biometry includ-

ing the impact of fetal sex or ethnicity which may all influence natural biological variation. Fur-

thermore, our study was conducted at a single site with retrospective data, strict inclusion

criteria relating to baseline image quality, and a dominant ethnic group. Thus, due to the risks of

selection bias the results should be interpreted with caution and future work should investigate

the impact of biological parameters (sex, ethnicity), parental characteristics, as well as the impact

of normalising results to individual fetal anatomical size via measurement indexes.

Our constructed growth charts spanning the 2nd and 3rd trimester of pregnancy offers

opportunities for detailed characterisation of fetal craniofacial features in future clinical
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research studies. This, together with the investigation of the growth trends in longitudinal

datasets could potentially help with development of patient-specific approach for evaluation of

high-risk cases. Evaluating the clinical utility of facilitating diagnoses, particularly in syndro-

mic cases is a route of future investigation. A wider range of confirmed craniofacial structural

anomalies or genetic and syndromic cases with a known craniofacial phenotype, is also a fur-

ther route of investigation and could help to understand which selection of biometrics are reli-

able for characterisation.

Assessing the facial phenotype in the newborn can be made by expert geneticists and sup-

portive imaging results that support the selection of additional diagnostic tests could be an out-

come. This might also require an extension of the proposed biometry protocol with additional

measurements related to the extended labelling protocol we have provided publicly. Indeed,

our MRI 3D volume labelling protocol offers opportunities to expand on the choice of tradi-

tional biometry, to further characterise the complex craniofacial region with 3D label-based

geometric morphometry studies or statistical shape modelling to assist diagnostic prediction,

as an emerging method in clinical practice [80]. That said, fetal MRI is a specialist service most

available in high-income countries and tertiary centres, whereas obstetric ultrasound is more

readily available and likely to remain the first-line imaging modality in pregnancy. In addition,

the clinical implementations of the pipeline as described in this work would require the sup-

port of MRI physics and computer science specialists to ensure appropriate sequence program-

ming and computing resources for reconstructions and specialist clinical staff (radiographers,

radiologists and fetal medicine specialists) to ensure quality data acquisition and interpretation

as well as development of local protocols and guidelines related to the appropriate clinical use

of the automated pipeline.

Despite these clinical limitations, a known dilemma in our T21 test cohort relates to coun-

selling parents about the severity of expression of the phenotype and co-morbidities. Thus,

with advances in early volumetric imaging assessment of the fetal and neonatal brain and fur-

ther understanding of the morphological covariation with craniofacial characteristics, future

research could begin to explore these questions [81].

Conclusion

This study presents the first comprehensive craniofacial biometry protocol and automated

measurement pipeline for 3D T2w fetal MRI, identifying 31 key biometric measurements, and

defining corresponding labels in a 3D fetal head MRI atlas. An automated biometry pipeline

was developed and validated with a T21 cohort and GA-matched controls, showing compara-

ble accuracy to manual methods. Significant differences in craniofacial measurements were

found in T21 fetuses, particularly highly sensitive biometrics indicating mid-face hypoplasia, a

feature consistent with the T21 phenotype. The automated method reduces human error and

speeds up measurements significantly, although further optimisation, especially using deep

learning, is needed for clinical practice. Future work may include evaluation across earlier GA

ranges and addressing potential sources of error like MRI image quality and craniofacial spe-

cific sequences at different field strengths. In addition, a focus on reducing measurement vari-

ability and exploring additional diagnostic biometrics, with growth charts and longitudinal

datasets will offer a potential for personalised evaluation in high-risk cases.

Supporting information

S1 File. Fig A: Image examples of SVR head image quality scoring for inclusion in the data-

set, scores of 3 or 4 were considered adequate quality for inclusion in the study. Fig B: Box-

plots of measurements stratified by healthy control (blue) and T21 groups (red). Central
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tendency is represented by the black horizontal line, and the upper and lower limits of the

box represent the interquartile range (2nd to 3rd quartile). The black dots represent outliers.

Fig C: Human observer diagnostic confidence of label placement and measurement accuracy.

a. Observer 0 (repeated measures). b. Average of observers 1 to 3 (each performing single inde-

pendent measurements. Fig D: GA-matched fetal MRI datasets used in the control (104) and

T21 (24) comparison a. GA distribution b. MRI protocols and fetal sex. Fig E: Chart demon-

strating the proportion of biometrics that fell outside of normative range (5th - 95th percentile)

for each T21 subject, upper chart: for most significant biometrics and lower chart all bio-

metrics.

(DOCX)

S2 File. Table A: 3D Anatomical Landmarks (labels) (*Landmark not used for biometry

extraction). Table B: Formalised measurement definitions for label-based craniofacial biome-

try protocol with 3D T2w fetal MRI. Table C: Formulae for automated biometry calculation

based on 3D labels. Table D: Demographics of the 10 cases selected for quantitative evaluation

of the proposed biometry protocol and pipeline. Table E: Results of absolute (upper table) and

relative (lower table) differences with observer 0 (manual label based indirect measurement),

observer 2 and 3 (direct manual measurement) and automated results compared to a single

expert radiologist (direct manual measurement. Green represents relative mean difference or

<10% or relative limits of agreement (+/− mean) of<20%. Orange represents automated mea-

surements with more variation than any one manual observer. Table F: Table of Intraclass

Correlation Coefficient (ICC) results. Green is and excellent or good agreement, yellow a mod-

erate agreement, red is poor agreement (n.b. ICC threshold criteria interpreted only if Cron-

bach’s Alpha is>0.70). Table G: Summary of included datasets for the 3rd trimester T21 and

age-matched control cohorts, by GA, MRI protocol, fetal sex and ethnicity. Table H: Table of

number of subjects (n), mean measurement, and standard deviation (SD)—stratified by

healthy control and T21 groups. Table I: Best linefit and Standard Deviation (SD) regression

equations and method, for each biometric growth chart. GA = GA. Note: all SD regression for-

mulae have linear bestfit method. Table J: ANOVA results for statistically significant biometry

with largest effect size in T21 cohort (ABSL, HPL, VPL, OFD, IFA, NASO) and BPD as a non-

significant results. Results corrected with robust standard errors.
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