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Abstract

The primary aim of this thesis is to analyse and provide insights into several critical

issues related to the construction, interpretation, and implications of market entry and

exit decision models under uncertainty. As discussed by Brennan and Schwartz (1985),

Dixit and Pindyck (1994), and Hackbarth and Johnson (2015), operational flexibility

refers to the capacity to adjust production in response to market fluctuations with

a certain degree of reversibility. In line with this framework, this thesis approaches

operational flexibility from three perspectives; each one is examined in a separate

chapter and constitutes a di�erent piece of research.

The first chapter explores optimal strategies for managing production projects and

the e�ects of di�erent price models on when to suspend, resume or permanently cease

operations. The analysis is conducted calculating the optimal transition barriers, the

probabilities of switching between states and the time spent in each. Results suggest

that, when dealing with moderately volatile markets, modelling prices by means of

simpler processes for ease of use could be acceptable, as this would not significantly

impact firms strategic decisions.

The second chapter provides a theoretical basis for understanding the relation-

ship between operational flexibility and the risk-return characteristics of firms equity.

Consistently with intuition, more flexible production projects exhibit higher equity
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value and lower risk. Implications for risk management and asset pricing pertain a

subsequent decrease in the implied volatility of option contracts and in CAPM’s —.

Importantly, the stochastic nature of the latter is also documented. Moreover, findings

are robust across di�erent price di�usion models.

The third chapter investigates the impact of a stochastic convenience yield on

flexible projects as a primary scope. The analysis considers a gas-fired turbine for

electricity generation that can be switched-o� and on at multiple dates in the short

term; uncertainty concerns both electricity and gas prices. Findings document that

operational flexibility partially o�sets the aleatory behaviour of gas’ convenience

yield, whose impact is, instead, sizeable when flexibility is not available. Bivariate

and trivariate trees are used to deal with the model, making this work particularly

attractive for use by practitioners.
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Chapter 1

Evaluating operational flexibility

under one-dimensional di�usions:

impacts on firm policy and valuation

Abstract

We study the optimal operational strategy of production projects. We investigate

di�erent underlying price models and determine the optimal barriers of transition to

suspension, recovery, or irreversible abandonment of productive activity. We compute

probabilities of switching between alternative states and the time spent in each state.

Our findings suggest that in moderately volatile markets, di�erent model assump-

tions lead to minimal variations in project strategy. This insight underscores that

adopting sub-optimal choices in the interest of model tractability can be permissible

under certain conditions. Our work significantly advances in this direction by demon-

strating when and how model simplifications can be made without sacrificing accuracy.

Keywords: Real options; investment; uncertainty; optimal switching



2

Evaluating operational flexibility under one-dimensional di�usions: impacts on firm
policy and valuation

1.1 Introduction

For real options models to be an e�ective tool in supporting managerial and finan-

cial decisions, they should reliably depict the uncertain decision environment. As

such, the traditional modelling of underlying state variables through a geometric

Brownian motion has been widely disputed. For example, its inadequacy to capture

the mean-reverting nature of several variables, such as commodity prices or market

demand-supply dynamics has been emphasised.

In this paper, we investigated the impact of the model used for the dynamics of the

underlying on the optimal managerial strategy of the project. In particular, we studied

not only the e�ects of variations in the drift coe�cient related to the existence of

mean-reversion, but also those of changes into the di�usion term. Hence, we compared

four models, namely the inhomogeneous geometric Brownian motion (Bhattacharya,

1978; Zhao, 2009), the square root mean-reverting (Cox et al., 1985), the constant

elasticity of variance (Cox, 1975) and the usual geometric Brownian motion. Most

importantly, we considered a real options model for a production project that can be

suspended infinitely many times with partial reversibility or, alternatively, irreversibly

abandoned, over an infinite horizon.

The optimal managerial strategy is determined by the values of the underlying

variable that triggers the aforementioned switching decisions. Focusing on the relative

positions of such boundaries, we were able to numerically verify whether the exercise

timing and exercise probability of real options are significantly altered by di�erent

underlying models. We document that little di�erences arise within markets charac-

terised by mutually o�setting mean-reversion and volatility features, subject to an

accurate model parametrisation, in contrast with more extreme scenarios for which

discrepancies in the project operating strategy are noticeable. Additionally, we report
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that mean-reverting models seem to be more sensitive to changes in the degree of

flexibility of the project. We also find that the value of the project is in general more

impacted by the adoption of di�erent models, compared to the project strategy.

Unlike previous works, we did not assume that all the models share the same

parameters, but we rather calibrated them to match variance features. In doing this,

we mitigated the so called “variance” and “realised price” e�ects (Metcalf and Hassett,

1995). Additionally, we assumed that, albeit optimal switching boundaries can be

derived for di�erent price dynamics, in operational practice they must be applied to

observed data; hence, in computing the timing and the probability of options exercise,

we attached them to the same reference model. Instead, previous works used to simulate

di�erent processes for this purpose.

The remainder of the paper is as follows. In section 1.2 we analyse the main

literature in the field. Next, in section 1.3, we present the framework in which our

analysis is carried on, introducing our own notation and showing how to find the value

of the project and its optimal running strategy. Additionally, we discuss the case

of a levered project and we motivate our choice to study an unlevered one, instead.

In section 1.4 we provide numerical results, analysing the problem from multiple

perspectives. Concluding remarks are given in section 1.5, whereas technical details

are relegated to the Appendix.

1.2 Literature Review

The comparative nature of our project inserts it in the field of research that investigates

the impact of di�erent dynamics of uncertainty on investment problems. One of the

seminal works tackling the comparison between di�erent models in the real options

realm is due to Metcalf and Hassett (1995). The Authors studied the problem of



4

Evaluating operational flexibility under one-dimensional di�usions: impacts on firm
policy and valuation

irreversibly investing in a production project with stochastic output prices, which can

either evolve as a geometric mean reverting process (Dixit and Pindyck, 1994) or as a

drift-less geometric Brownian motion. Noticeably, their experimental findings excluded

significant di�erences in terms of cumulative investments when moving from one

model to another and led to accept geometric Brownian motion as a good simplifying

assumption for investment models under uncertainty. This result was explained in

the light of two o�setting e�ects: the “variance e�ect” refers to the reduction in the

long-run variance associated to auto-regressive dynamics and has a positive e�ect on

investment, as it lowers its trigger price; however, the lower variance of the process also

reduces the probability of reaching such critical threshold, having a negative impact

on investment - so called “realised price e�ect”.

In contrast, Sarkar (2003) observed that the probability of investing is substantially

impacted in either direction by the adoption of mean-reverting dynamics in the input

cost process. The reason for this outcome comes from the reduction e�ect of mean-

reversion on systematic risk, termed “risk discounting e�ect”, which was disregarded

by Metcalf and Hassett (1995). Tsekrekos (2010) and Tvedt (2022) came to a similar

conclusion when revenues are uncertain within the framework of partially reversible

entry and exit decisions. Furthermore, it is also shown that the composition of a

hypothetical industry undergoes less frequent changes under mean-reversion, compared

to the drift-less geometric Brownian motion. The subsequent contribution by Tsekrekos

(2013) is likewise relevant to extend these result to a setting with the option to

irreversibly exit the market. Additionally, these contributions share the use of the

same mean-reverting model, namely the inhomogeneous geometric Brownian motion,

meaning they can be compared alongside one another with greater ease.

The higher interest devoted to mean-reverting dynamics, compared to other models,

is justified by the fact that, typically, the source of uncertainty underlying real options
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models is either a price or the demand function of a given good or service and mean-

reversion is particularly suitable to describe equilibrium adjustments, as extensively

highlighted by Bhattacharya (1978), Kulatilaka (1988), Lund (1993), Bessembinder

(1995), Schwartz (1997a), Sarkar and Zapatero (2003), Fama and French (2000) and

Ewald and Wang (2010) among the others. Nevertheless, depending on the industry and

on the specific features of the project considered, diverse models should be accounted

for, either to accommodate di�erent variables or to specifically address particularly

attributes. For example, the existence of the leverage e�ect in stock prices showed

by Black (1976), or of the inverse leverage e�ect documented in energy markets by

Geman and Shih (2008) and Li et al. (2017) among the others, led to the adoption of

the constant elasticity of variance process for modelling purposes, as it can be seen

in Geman (2005), �ermák (2017), and, in the real options field, in Dias and Nunes

(2011).1

To the best of our knowledge, a few papers o�er a well-structured comparison

of many di�erent models for a given investment related problem. Dangerfield et al.

(2018) obtained the optimal time of intervention against pests when the level of infec-

tion follows a log-normal, a mean-reverting or a logistic SDE, with the last process

known to be the most appropriate one according to empirical evidence. The Authors

highlighted that, in the worst case scenario, both the geometric Brownian motion

and the mean-reverting models prescribe not to intervene, in contrast with the op-

timal policy found under the benchmark (i. e. the logistic model), which suggest to

eradicate the pest within a reasonable amount of time. Moreover, they showed that

such a di�erence is exacerbated when the volatility of the underlying is large. Their

setting is comparable to that of getting the optimal investment timing in a financial

management framework, hence it is reasonable to presume that similar results are
1Recall that the leverage e�ect refers to the negative correlation between asset returns and changes

into asset volatilities, whilst inverse leverage e�ect defines a positive correlation among those quantities.
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applicable to the financial industry too. To some extent closer to ours, is the work by

Dias et al. (2015), who extended Tsekrekos (2010)’ analysis to the constant elastic-

ity of variance model, with and without mean-reversion, getting comparable conclusions.

A common feature of the aforementioned works is their focus on a single investment

problem at a time, as it can be the decision to enter or to exit the market, either

reversibly or irreversibly. Put into practice, decision-makers continuously choose

whether to keep their project in its current state or to switch it to the - unique -

alternative one. Such kind of framework was originally introduced by Mossin (1968),

and the most representative results relate to Brennan and Schwartz (1985), McDonald

and Siegel (1986), Dixit (1989), Pindyck (1990), who explicitly promoted reversible

switching options as a corporate risk management tool in turbulent markets. In contrast

with the full reversible scheme of Brennan and Schwartz (1985), from Dixit (1989)

forward it is widely acknowledged that a partially reversible framework with switching

costs introduces the so called hysteresis e�ect, which leads firms to bear some losses

or to give-up potential profits before suspending or restarting operations, and is more

appropriate to represent most productive economic realities.

However, the assumption to reduce the management of a project to the simple

comparison between the continuation and a single alternative seems hardly realistic.

Indeed, corporate strategies typically include a great variety of options (see, for example,

Guthrie, 2009), which might require to compare the value related to continuation with

those achievable by undertaking one of multiple alternatives. A simple, yet meaningful

example is portrayed in chapter 7 of Dixit and Pindyck (1994), where partially reversible

entry and exit options are considered together with the irreversible abandonment of

the market within an infinite horizon. The main message from this model is that,

depending on the parameters of the price model, irreversible abandonment might
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overtake reversible options as a result of optimal choices. Far from being a secondary

problem, the appropriate parametrisation of the model can become a crucial aspect in

determining business operational strategies. As an example, it is worth to mention

the ambiguous, non-monotonic, e�ect of interest rates variations on the timing of

investments observed in Gutiérrez (2021), which also highlights the importance of

systematically updating the inputs of the model.

In light of the existing results, we contribute to the literature as follows: first, we

document that adopting di�erent model specifications for the underlying price process

could be not that improper, despite potential changes in the ex-ante strategy of the

project, in some selected scenarios. Second, in doing this, we try to make the processes

under investigation as similar as possible to each other by selecting one of them as a

benchmark and carefully calibrating the others against it. Additionally, we address the

sensitivity of our results to changes in the degree of flexibility of the project, which we

assume to be captured by the costs paid upon switching and by the fixed production

costs of the plant. Besides, we discuss that introducing debt into our analysis would not

qualitatively a�ect the validity of our results, at least as long as second-best solutions

are accounted for. Marginally, we show how to express solutions to the model in terms

of confluent hypergeometric functions of the first kind only, aiming at reducing the

bias in numerical results due to the use of di�erent special functions.

In Table 1.1 we list the works which are closer to ours, summarising which kind of

real options and price models are studied and showing where our paper stands. For

the sake of brevity, we adopt the following acronyms: CEV = constant elasticity of

variance process; CKLS = mean-reverting CEV (Chan et al., 1992); CIR = square-

root mean-reverting di�usion; GBM = drift-less geometric Brownian motion; GMR
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= geometric mean-reverting process; IGBM = inohomogenous geometric Brownian

motion; OU = Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930).

Table 1.1 The Table summarises the contributions closer to ours, highlighting which
kind of real options and of price models are included, and showing where our article
stands.

Reference Options Models

Metcalf and Hassett (1995) irreversible entry GMR; GBM
Sarkar (2003) irreversible entry IGBM; GBM
Tsekrekos (2010) partially reversible entry and exit IGBM; GBM
Tsekrekos (2013) irreversible exit IGBM; GBM
Tvedt (2022) partially reversible entry and exit IGBM; GBM
Dias et al. (2015) partially reversible entry and exit IGBM; CIR; OU

GBM; CEV; CKLS
This paper partially reversible entry and exit; IGBM; CIR;

irreversible exit GBM; CEV

1.3 Model and methodology

As for its structure, our model is based on the entry and exit model with scrapping

option given in Dixit and Pindyck (1994). In this section, we present its features and

we adapt it to our own notation and price models (1.3.1). In particular, we show how

to calculate the value of the project, in general as solution of an ordinary di�erential

equation (1.3.2) and, specifically, according to di�erent possible states of production

(1.3.3). Last, we state the conditions to satisfy in order to get the optimal managerial

strategy of the project (1.3.4).

1.3.1 The framework

We consider an investment project that consists of producing and selling a certain

good. We assume that the value of the project is entirely given by the selling price x,

determined by the market, net of production costs. Additionally, it is widely accepted
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in the literature to assume an infinite time-horizon when dealing with long-lived

investment projects; we adopt this line of thought. Let (�,F ,F = {Ft}tØ0 ,P) be a

filtered probability space, where P is a given probability measure. Then, the output

price process, x := {xt}tØ0 solves

dx = ”(x) dt+‹(x) dW . (1.1)

given the initial condition x0 œ R+ and with W being a standard Brownian motion

under P. On the other hand, operating costs are constant, strictly non-negative, and

equal to c = v +f , where v is the variable component, directly related to the production

activity, and f represent the fixed cost, which is incurred whether production takes

place or not (Dixit and Pindyck, 1994).

Furthermore, managers can partially manage market ups and downs by suspending

production; when this happens, then the option to restart activates. Following Dixit

(1989), the payment of a lump sum s10 œ R+ (resp. s01 œ R+ is required to switch

production from the active (resp. suspended) to the suspended (resp. active) state.

Additionally, there exists the option to permanently abandon the project, which can be

exercised when production is either active or suspended. In the first case, abandonment

is an alternative to suspension, whilst in the second one it comes in place of reactivation.

Upon abandonment, all the assets related to the project are liquidated and investors

receive a fraction ÷I of some initial investment cost I,÷ œ [0,1],I œ R+, .

Put into practice, every option is instantaneously exercised when the output price

hits a critical threshold from above - as it is the case for suspension and abandonment

- or from below - considering reactivation. We denote with xs, xr, and xa the price

boundaries triggering the suspension, reactivation and abandonment of the project,

respectively. We also account for a second project, equivalent to the former one except

for the absence of the options to suspend and reactivate production and for which
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abandonment occurs when the output price drops below x̄a. We call this project

“rigid” in contrast with the (former) “flexible” one.

It must be noted that if xs is lower than xa the managers of the flexible project

behave as if it was rigid and abandonment becomes the only relevant option; in the

opposite case, the suspension option is exercised first and the critical level triggering

abandonment is pushed-down, compared to the rigid project. Consequently, x̄a is a

cap for xa.

1.3.2 Underlying dynamics and the value of the project

In this work, we mainly address the implications of adopting di�erent specifications for

the process of the underlying variable x, and, in particular, we consider four di�erent

processes which satisfy (1.1). Namely, our choice includes the IGBM (Bhattacharya,

1978), the drift-less GBM, the CIR (Cox et al., 1985) and the CEV (Cox, 1975)

processes; it is worth mentioning that the CEV model nests a GBM with non-zero

drift under the condition — = 0.

By assumption, the value of the project, denoted by V (x), depends on the cash-flows

it generates and on the dynamics of the underlying variable. Applying Itô’s Lemma to

(1.1) and taking expectation, we get the expected capital gain of the project

E[dV ]
dt

¥ ‹
2(x)
2 V

ÕÕ(x)+ ”(x)V Õ(x).

The risk-free total return of the project, rV (x)
dt , must equate the expected capital gain

plus the cash-flows F (x) generated per unit of time. Then, multiplying all by dt,

defining AV (x) := ‹2(x)
2 V

ÕÕ(x)+ ”(x)V Õ(x) and rearranging, we get

AV (x) = rV (x)≠F (x). (1.2)
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We collect the stochastic di�erential equations for price models, the corresponding

expressions for AV (x), and the related sets of parameters � in Table 1.2.

Table 1.2 The Table presents the price models included in this work. The corresponding

SDEs, expressions AV (x) := ‹
2(x)
2 V

ÕÕ(x) + ”(x)V Õ(x) and sets of parameters � are
specified.

Model SDE AV (x) �

IGBM dx = Ÿ(◊ ≠x)dt+‡xdW
‡2

2 x2V ÕÕ(x)+Ÿ(◊ ≠x)V Õ(x) Ÿ,◊,‡

CIR dx = Ÿ(◊ ≠x)dt+‡
Ô

xdW
‡2

2 xV ÕÕ(x)+Ÿ(◊ ≠x)V Õ(x) Ÿ,◊,‡

CEV dx = µxdt+‡x—+1dW
‡2

2 x2—+2V ÕÕ(x)+µxV Õ(x) µ,‡

GBM dx = ‡xdW
‡2

2 x2V ÕÕ(x) µ,‡

As usual, the solution to (1.2) is given by the solution of the homogeneous equation

AV (x) ≠ rV (x) = 0 plus a particular solution H(x). Specifically, the solution to

AV (x) ≠ rV (x) = 0 can be easily obtained in terms of special functions, which, in

general, require to be evaluated numerically. Numerical algorithms are available for

this purpose, but they potentially exhibit di�erent degrees of accuracy. Given the

comparative nature of our study and in order to reduce the computational bias, it is

convenient to express all the solutions in terms of the same special function. Then, for

the price processes specified in Table 1.2, we have the following

Proposition 1.3.1. The solution of equation 1.2 is of the form

V (x) = p�(–,“;h(x))x
›1 + q�(1+– ≠“,2≠“;h(x))x

›2 +Â(x)

where �(–1,“1;h(x)) := qŒ
k=0

(–)kx
k

(“)kk! , |h(x)| < Œ,– œC,“ œC\Z≠ is a confluent hyper-

geometric function of the first kind, p,q œ R are constant coe�cients to be determined

by means of proper boundary conditions, and Â(x) is a properly chosen particular

solution.

Proof. See Appendix A.1.
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1.3.3 The state-contingent valuation problem

It must be remembered that instantaneous cash-flows are contingent to the state of the

project. In particular, we have F (x) = x≠c when production takes place and F (x) = ≠f

while it is suspended. Consequently, the value of the project di�ers accordingly. Let

V1(x) and V0(x) be the value of the project when production is active and suspended,

respectively. Then, V1(x) solves

AV1(x) = rV1(x)≠ (x≠ c) (1.3)

subject to lim
xæ+Œ

V1(x) < Œ, whereas V0(x) is the solution of

AV0(x) = rV0(x)+f (1.4)

subject to lim
xæ0+

V0(x) < Œ.

The two conditions prevent the value of the project from exploding as the output price

enlarges or approaches zero, respectively. From an economic point of view, it means

that the value of the option to suspend (resp. restart) production, which exists while

the project is in the active (resp. suspended) state, decreases as the output price grows

(resp. converges to zero). When this is the case, the value of the project at time t = 0

converges to

Â(x) = E0
5⁄ Œ

0
F (x)e≠ru

du

6
.

The value-functions of the project can then be easily obtained accounting for the

results in Proposition 1.3.1. In particular, we claim that

Proposition 1.3.2. The value V1(x) of the project in the active state

1. under IGBM is

V1(x) = q2�
A

–2,“2; 2Ÿ◊

‡2x

B

x
›2 +Â

MR(x)
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with {–1,“1,›1}, {–2,“2,›2} as in (A.14);

2. under CIR is

V1(x) = q̃2�
3

–2,“2; 2Ÿx

‡2

4
x

›2 ≠ q̃1�
3

–1,“1; 2Ÿx

‡2

4
+Â

MR (x)

where q̃1 = q2

A
2k

‡2

B1≠“2 �(“2)�(1≠“2)
�(–2)�(“1) , q̃2 = q2

�(1≠“2)
�(“1) and {–1,“1,›1}, {–2,“2,›2}

as in (A.15);

3. under CEV is

V1(x) =

Y
______________]

______________[

C

q̃1�
A

–1,“1; µ

|—|‡2x2—

B

x
›1 + q̃2�

A

–2,“2; µ

|—|‡2x2—

B

x
›2

D

e

µ

—‡2x2— 1{—<0}+

+Â(x) if µ ”= 0
C

q̃1�
A

–1,“1; 2
Ô

2r

|—|‡x—

B

x
›1 + q̃2�

A

–2,“2; 2
Ô

2r

|—|‡x—

B

x
›2

D

e

Ô
2r

|—|‡x— +

+Â
M̄R(x) if µ = 0

where

q̃1 =

Y
_________________]

_________________[

q2
�(1≠“1)

�(–2) if — < 0; µ ”= 0

0 if — > 0; µ ”= 0

q2

Ô
fi�

1
1
—

2

�
1

—+1
2—

2
1
≠2

Ô
2r

‡—

2≠ 1
2— if — < 0; µ = 0

q2

Ô
2r

2
1

2— ‡—�
1

1
2— +1

2 if — > 0; µ = 0
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q̃2 =

Y
___________________]

___________________[

A

≠ µ

—‡2

B1≠“1 �(“1 ≠1)
�(–1) if — < 0;µ ”= 0

q3 œ R if — > 0;µ ”= 0

0 if — < 0;µ = 0

q2

�
A

≠ 1
—

B

�
A

— ≠1
2—

B2
≠

1
2—

Ô
fi

A

≠
Ô

2r

‡—

B 1
2— if — > 0;µ = 0

and {–1,“1,›1}, {–2,“2,›2} as in (A.17), (A.18) or (A.21) depending on the sign

of — and on µ;

4. under GBM is

V1(x) = q2x
›2 +Â(x)

with {–1,“1,›1},{–2,“2,›2} as in (A.22).

Across all models, it holds the following

Â(x) =

Y
____]

____[

x

r +Ÿ
+ ◊

r
≠ ◊

(r +Ÿ) ≠ c

r
if MR

x

r ≠µ
≠ c

r
if not MR

(1.5)

which leads to the notation Â
MR(x) and Â(x) to distinguish between the mean-reverting

(MR) and the non-mean-reverting case.

Proof. See Appendix A.2.

and

Proposition 1.3.3. The value V0(x) of the project in the suspended state

1. under IGBM is

V0(x) = p1�
A

–1,“1; 2Ÿ◊

‡2x

B

x
›1 +p2�

A

–2,“2; 2Ÿ◊

‡2x

B

x
›2 ≠ f

r
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with {–1,“1,›1}, {–2,“2,›2} as in (A.14);

2. under CIR is

V0(x) = p1�
3

–1,“1; 2Ÿx

‡2

4
+p2�

3
–2,“2; 2Ÿx

‡2

4
x

›2 ≠ f

r

with {–1,“1,›1}, {–2,“2,›2} as in (A.15);

3. under CEV is

V0(x) =

Y
_________]

_________[

C

p̃1�
A

–1,“1; µ

|—|‡2x2—

B

x
›1 + p̃2�

A

–2,“2; µ

|—|‡2x2—

B

x
›2

D

e

µ

—‡2x2— 1{—<0}+

+Â(x) if µ ”= 0
C

p̃1�
A

–1,“1, 2
Ô

2r

|—|‡x—

B

x
›1 + p̃2�(–2,“2;2z)x

›2

D

e
≠ 2

Ô
2r

|—|‡x— if µ = 0

where p̃1 =

S

WUp1
Ô

fi2
1

2|—|
�

1
≠ 1

|—|

2

�
1

1
2 ≠ 1

2|—|

2 +p2
1

2
1

2|—| �( 1
2|—| +1)

T

XV
2
Ô

2r

|—|‡ ,

p̃2 = p12
1

2|—|
�

1
1

2|—|

2

�
1

1
2 + 1

2|—|

2
2
Ô

2r

|—|‡x— and {–1,“1,›1}, {–2,“2,›2} as in (A.17), (A.18)

or (A.21) depending on the sign of — and on µ;

4. under GBM is

V0(x) = p1x
›1 +p2x

›2 ≠ f

r

{–1,“1,›1}, {–2,“2,›2} as in (A.22);

Proof. The proof follows the same argument as in Proposition 1.3.2 under the condition

lim
xæ0+

V0(x) = 0 and with F (x) = ≠f . Moreover, Â(x) = ≠f

r
regardless the model, since,

by construction, fixed costs depend on the type of production plant but not on the

price process.
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Last, the value of the project at the time of abandonment is equal to the scrap

value ÷I whatever the dynamics driving the underlying price process.

1.3.4 Optimal switching boundaries

At any instant, managers decide whether to exercise an option, and which one, compar-

ing the continuation value of the project with that achievable through a switching; they

choose the running policy that maximises profits. For the purposes of this work, the

continuation value is V1(x) while the project is active and V0(x) while it is suspended;

net of the proper switching cost s10 or s01, they are mutually alternative. Additionally,

since the abandonment of the project is non-reversible, it can only be an alternative to

keeping the project active or suspended. Moreover, the value of the project is driven

by the uncertain behaviour of the output price: it turns out that we need to determine

three critical values of x - namely, xs, xr, xa (x̄a for the rigid project) - that trigger

switching decisions. Noticeably, in correspondence of such boundaries, managers are

indi�erent between continuation and switching; hence, the continuation value must be

equal to the alternative one, net of switching costs. Consequently, we get the following

boundary conditions

V1(xs) = V0(xs)≠ s10

V0(xr) = V1(xr)≠ s01 (1.6)

V0(xa) = ÷I.
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Additionally, for xs,xr,xa to be optimal, smooth-pasting conditions must be satisfied

too2

V
Õ

1(xs) = V
Õ

0(xs)

V
Õ

0(xr) = V
Õ

1(xr) (1.7)

V
Õ

0(xa) = 0.

Clearly, when the project is rigid, or whenever it is optimal to immediately exercise

abandonment without previously suspending, systems (1.6) and (1.7) reduce to

V1(x̄a) = ÷I (1.8)

and

V
Õ

1(x̄a) = 0. (1.9)

Solving (1.6) and (1.7) (resp. equations 1.8 and 1.9) with respect to the constant

coe�cients and with respect to xs, xr, xa (resp. x̄a), respectively, allows to solve the

model. Appendices A.3 and A.4 show how to deal with value-matching and smooth-

pasting conditions to get the constant coe�cients and the optimal options’ boundaries

for the IGBM case as an example.

1.3.5 Discussion of the levered case

The model presented in section 1.3 refers to a project entirely financed by equity. In

this section, we briefly discuss the case in which debt is present too.
2For decision makers’ choices to be optimal, both the utility and the marginal utility of staying in

the continuation region, evaluated at the optimal stopping point, must be equal to those of switching
to (any of) the alternative(s). Such kind of requirements generates boundary conditions that are
labelled as “value-matching” and “smooth-pasting” conditions, respectively. A detailed explanation
can be found in Dixit and Pindyck (1994), pp: 130-132.
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Consider a framework similar to that given in section 1.3 but assume that the

project is partially funded by means of a perpetual bond with continuous coupon C;

possibly, a tax-shield exists for a constant tax-rate Ë. Abandoning the project implies

the default on debt, with the payment of some recovery value to bondholders and

no residual value to equity-holders. The price that optimally triggers default is xd

(project). According to accounting principles, the value of project’s assets is the sum

of equity an debt values, i. e.

V (x) = E(x)+D(x),

where E(x) is the value of equity, D(x) it the value of debt and both depend on the

instantaneous output price. Hence, they satisfy ordinary di�erential equations of the

kind

AE(x) = rE(x)≠F (x)+C(1≠Ë) (1.10)

and

AD(x) = rD(x)≠C (1.11)

where F (x) is the same cash-flow appearing in (1.2) and AE(x) and AD(x) have a

form equivalent to that of AV (x) in Table 1.2. Hence, compared to the basic all-equity

case, the only di�erence for equity-holders is an earning reduction equal to C(1≠Ë).

Conversely, bond-holders receive a constant payment C until default; when this last

occurs, the assets of the project are liquidated and they get the value stemming from

the sale process as partial reimbursement. We call this value ÊV (xd), where V (xd) is

the value of an all-equity project for x = xd and Ê œ [0,1]. Hence, equations in (1.11)
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are solved subject to the boundary conditions

lim
xæŒD(x) = E0

C⁄ +Œ

0
Ce

≠ru
du

D

= C

r

D(xd) = ÊV (xd).

Notice that none of the above conditions is imposed at suspension or resumption

boundaries. Additionally, the default boundary is exogenous to bond-holders. Indeed,

decision-makers are intended to be equity-holders or managers acting in their interest.

Consequently, it can be assumed that operational choices are such that the value of

equity - and not that of assets - is maximised. This fact implies to solve equations in

(1.10) subject to the systems of value-matching

E1(xs) = E0(xs)≠ s10

E0(xr) = E1(xr)≠ s01 (1.12)

E0(xd) = 0

and smooth-pasting

E
Õ
1(xs) = E

Õ
0(xs)

E
Õ
0(xr) = E

Õ
1(xr) (1.13)

E
Õ
0(xd) = 0

conditions. Based on the assumptions above, any impact of debt on suspension and

restart boundaries can be excluded. This fact depends on the coupon being paid

independently from production being active or suspended, and it can be easily verified
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analytically by solving (1.12) and (1.13).3 Second, all the other things being equal,

the default price of a levered firm is larger than the liquidation price of an unlevered

one, because the coupon payment lowers equity cash-flows. In sum, the only e�ect of

introducing debt into the analysis would be a reduction in equity-holders’ cash-flows

regardless of whether production is ongoing or suspended. However, this e�ect can be

equivalently reached by increasing the level of fixed costs f in the base case all-equity

framework.

On the other hand, our assumption of managers maximising equity value gives

rise to a second-best optimal strategy for the project. Recently, Glover and Hambusch

(2016) and Ritchken and Wu (2020) obtained first-best solutions for similar problems by

maximising over the total asset value under the assumption of output prices evolving

as an IGBM and a GBM with drift, respectively. Moreover, they determined the

optimal coupon on debt, which we assumed as given in this discussion. Additionally,

in presence of the option to relocate investments in foreign Countries, then it would

also be interesting to relax the assumption of a constant tax-rate, letting it to be

uncertain. In respect of this point, Azevedo et al. (2019) underscored the importance

of stable and predictable tax policies in attracting foreign investment and suggested

that carefully designed tax holidays can significantly influence investment decisions.

This result is presumed to play in role in a�ecting the optimal level of financial leverage

or, equivalently, the amount of debt that a firm can raise.

Indeed, finding the optimal financing strategy of the project is beyond the scope of

our work; nevertheless, we signal it as promising area of further research, particularly

because of the insightful information about the creditworthiness of firms that can be

recovered from the analysis of financial leverage.
3Our claim is based on the implicit assumption that debt repayment remains a�ordable while

production is suspended. While this is reasonable for most standard situations, we can not ignore that
it is not necessarily true in general. Indeed, cases for which the lack of cash-inflows makes coupon
payment unfeasible might exist. A detailed analysis of this point would be beyond the scope of our
work; nevertheless we signal it as an interesting topic for future research.
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1.4 Results and discussion

In this section, we present the results of our numerical experiments. After the calibration

of the parameters of each model against those of a specified benchmark (1.4.1), we

investigated numerically how di�erent price models a�ect the optimal strategy of the

project in terms of real options’ boundaries (1.4.2), of probabilities that the optimal

strategy is implemented within a short-horizon (1.4.3), and of decision timing (1.4.4).

Furthermore, we tested the sensitivity of our results to changes in the degree of flexibility

of the project (1.4.5). Additionally, we looked for project value implications (1.4.6).

Table 1.3 shows the set of parameters, that, unless stated otherwise, were kept constant

across the analysis.

Table 1.3 The Table collects and describes the parameters used for the numerical
implementation of the model.

Notation Value Description
r 0.04 Risk-free rate
v 1.7 Production cost of the project
f 0.1 Fixed cost of the project
I 20 Initial cost of the project
÷ 0.5 Recovery fraction of I upon project liquidation

s10 0.1 Cost to switch from production to suspension
s01 0.2 Cost to switch from suspension to production

1.4.1 Calibration of the models

The recurrent approach in the literature consists of comparing di�erent models using

the same value for parameters that are in common among processes. For example,

Sarkar (2003) and Tsekrekos (2010) confronted the results from an IGBM with those

from a (drift-less) GBM having the same volatility parameter ‡. A rationale for this

choice could be found in the low speed of mean-reversion empirically observed in several

time-series of data, which led some Authors to simply assume it to be zero. If this
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could be reasonable to some extent, less easy to understand is the choice of - apparently

- keeping the key parameters in Dias et al. (2015) and Dangerfield et al. (2018) the

same across di�erent model specifications.

However, an e�ective comparative analysis should be carried on among models that

exhibit similar features. For example, introducing mean-reversion typically reduces the

variance of a process for the same volatility parameter. Our reasoning is pretty simple

and is based on the fact that parameters values are estimated from data. Within

this step, a preliminary analysis of price dynamics can be aimed at fitting a model

as consistent as possible with empirical observations; alternatively, a certain process

could be assumed a priori. Furthermore, even the analyst that captured the correct

time-series’ dynamics might be willing to substitute them with a process simpler to

handle. Nevertheless, they have to calibrate the new process in such a way that the

main features of the empirical one are retained.

Hence, we calibrated our models as follows: first, we chose the IGBM model as a

benchmark4 and we assigned it a plausible yet arbitrary set of parameters, assuming

it represented a reliable description of some time-series of prices. Next, we estimated

the first and second moment for the logarithm of this process and for the k-th model,

with k œ {CIR, CEV(—), GBM}. Last, we obtained the set of parameters �, specified

in Table 1.2 for the k-th price model, by solving

min
�

Tÿ

j=1
(µj(k,�)≠µj(�IGBM))2 + 1

4

Tÿ

j=1
(µ2

j(k,�)≠µ
2
j(�IGBM))2

where j = Tj is the j-th time-horizon, T = 8, µ
n
j (�IGBM) = E[ln(xj)n|F0] if {xt}tØ0 is

an IGBM, and µ
n
j (k,�) = E[ln(xj)n|F0] if {xt}tØ0 is the k-th process alternative to

IGBM.
4We selected the IGBM as benchmark because of its large employment in the literature and of its

mean-reverting features, which make it suitable to applications in several markets.
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We considered three scenarios that, being based on the opposite e�ect of the

volatility parameter ‡ and of the speed of mean-reversion Ÿ on the variance of mean-

reverting processes, capture a low, an intermediate and a high variance environment.

We emphasise that the range of Ÿ (0.07 to 0.30) is significantly larger than that of ‡

(0.15 to 0.30). By means of this choice, we aimed at focusing on the e�ect of mean-

reversion, capturing two meaningful scenarios: a first one where mean-reversion plays

a primary role in shaping firm’s characteristics and strategy, and a second framework

where mean-reversion is marginal, compared to the turmoil attributable to a larger

di�usion coe�cient. For the sake of completeness, we recall that the third scenario

corresponds the intermediate case. For each case, we implemented the calibration

procedure described above. Results are collected in Table 1.4. As expected, little

adjustments occurred when moving from IGBM to CIR, whereas a significant reduction

in the instantaneous volatility coe�cient was necessary to balance the exploding nature

of non-mean-reverting processes, particularly when the reversion rate was large in the

benchmark case.

1.4.2 E�ect on optimal boundaries

Table 1.5, reports the optimal boundaries for the flexible project and, as a benchmark,

for its rigid counterpart. Importantly, the last column signals whether reversible

suspension is actually included in the optimal strategy of the firm. Apparently, selecting

a model di�erent from the IGBM benchmark causes a shift between suspension and

abandonment only in few cases. However, the abandonment threshold is much more

sensitive to changes in the variance of the price process, compared to the suspension

boundary. The reason for that, as highlighted also by Tsekrekos (2013), relies in the

irreversible nature of abandonment, which make such decision to be postponed if price

variability is high enough to make a recover from losses possible. Instead, the possibility
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to switch back again to the previous state makes suspension - and resumption too -

less elastic to such variations. Consequently, we observed a sizeable reduction in the

abandonment boundary when passing from the low variance scenario depicted in the

top panel to the high variance one given in the bottom panel. Most importantly, the

distance between the suspension and the abandonment thresholds exhibit a kind of

U-shaped behaviour that makes intermediate cases critical. Indeed, when neither the

drift nor the di�usion component play a predominant role in the benchmark model,

such distance is tiny and makes the occurrence of shifts between the two boundaries

more likely and sensitive to model parameters. This is observable for GBM in the

mid-panel, where suspension suddenly is included in the strategy of the project in

spite of an average variation of about 7% in the relevant thresholds with respect to the

IGBM case.

1.4.3 E�ect on entry and exit probabilities

We further computed the probability to suspend, restart and abandon production within

the short-term, which we quantify in 5 years over a 30-years horizon. The standard

approach is to simulate M trajectories for each of the models under investigation and

to superimpose to them the corresponding boundaries, then to calculate probabilities

by counting the frequency of state transitions. Our method is conceptually similar,

but we simulated cash-flows only according to the benchmark process and we attached

all the boundaries to it. We believe that our describes better the operational reality of

the project.

Results are shown in Table 1.6. Di�erences among models are sizeable particularly

within the two extreme scenarios based on low and high price volatility. Moreover,

GBM o�ers the worst match with respect to the benchmark and it overestimates

the probability of multiple transitions between the active and the suspended states;
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Table 1.5 The Table shows the optimal abandonment (xa), suspension (xs) and re-
sumption (xr) thresholds of the flexible project next to the abandonment threshold
(x̄a) of an otherwise equivalent rigid one. The last column highlights whether the
optimal strategy include suspension. Panels (a), (b) and (c) refer to a scenario of low,
medium and high volatility, respectively, identified by di�erent combinations of the
IGBM parameters Ÿ and ‡. All the other model parameters are as in Table 1.3.

Optimal boundaries, panel (a): Ÿ = 0.30,‡ = 0.15.
Model x̄a xa xs xr Suspend

IGBM 1.92476 1.92476 1.44852 1.96248 No
CIR 1.95865 1.95865 1.43154 1.95553 No
GBM 1.58730 1.58730 1.53379 1.89496 No
CEV
— = ≠0.5 1.65871 1.65871 1.19290 2.01668 No
— = 0 1.99913 1.99913 1.60244 1.91355 No
— = 0.5 1.87485 1.87485 1.60169 1.81494 No

Optimal boundaries, panel (b): Ÿ = 0.15,‡ = 0.20.
Model x̄a xa xs xr Suspend

IGBM 1.61305 1.61305 1.42419 2.03507 No
CIR 1.67350 1.67350 1.40484 2.01944 No
GBM 1.49308 1.48127 1.51492 1.92030 Yes
CEV
— = ≠0.5 1.58528 1.58517 1.21306 1.97321 No
— = 0 1.49302 1.48128 1.51511 1.92017 Yes
— = 0.5 1.66345 1.66345 1.55848 1.87358 No

Optimal boundaries, panel (c): Ÿ = 0.07,‡ = 0.30.
Model x̄a xa xs xr Suspend

IGBM 1.11047 0.93379 1.36080 2.15801 Yes
CIR 1.28974 1.23948 1.34818 2.11314 Yes
GBM 1.22664 1.11321 1.46148 1.99704 Yes
CEV
— = ≠0.5 1.31758 1.25818 1.33363 1.72098 Yes
— = 0 1.42044 1.38913 1.48418 1.97782 Yes
— = 0.5 1.24320 1.14523 1.47271 2.01351 Yes
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nevertheless, such error is contained for the intermediate volatility scenario. It is also

worth to notice that the rigid project is less sensitive to model changes than the flexible

one. In short, the choice of the model substantially impacts the short-term entry and

exit probabilities. To understand how much this a�ects the project strategy as a whole,

in the next section we estimate the time-to-abandonment of the project.

1.4.4 E�ect on the timing of strategic decisions

To fully understand the impact of di�erent models on the project strategy, we calculated

its expected time-to-abandonment, i. e. the time needed before the abandonment barrier

is crossed, causing the liquidation of the project. On top of that, we computed the

percentage amount of time spent by the project on the pre-abandonment state over

a 30-years horizon; conditional on being alive, we further considered for how long it

remained in the active and in the suspended state, respectively. Results are given in

Table 1.7. Again, the more significant variations occur for GBM and for the square-

root CEV process in the low-variance scenario, confirming they are highly unreliable

proxies for the benchmark in such case. In the intermediate and in the high-variance

environments, abandonment occurs within 2.5 years of di�erence between models

for the rigid project and 4 years for the flexible one. Although not negligible, these

di�erences are pretty small, compared to the overall horizon. Moreover, the profile of

the cumulative time spent in the active and in the suspended state looks very similar

in all cases, signalling that little discrepancies in the time to abandonment do not

necessarily a�ect significantly the project strategy as long as it is “alive”. The GBM

case in Panel (b) is particularly noteworthy: while this is the only case in which

suspension in included in the strategy of the project, it is also evident that it acts as a

preliminary step towards full abandonment, with the project being kept in this state

for less than 4 months in total.
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Table 1.6 The Table reports the probabilities to abandon, suspend, and restart pro-
duction within 5-years. Values have been computed numerically via Monte Carlo
simulation, using 100,000 trajectories, a 30-years-long horizon and 250 steps per year.
The probability of abandonment is computed conditional on the project being either
rigid (P (A|rig)) or flexible (P (A|flex)) whilst P (S Ø 1) and P (S > 1) refer to the
probability that suspension occurs at least once and more than once, respectively. With
analogous interpretation, label “R” denotes restart. Values are expressed in percentage
terms.

Entry and exit probabilities, panel (a): Ÿ = 0.30,‡ = 0.15.
Model P (A|rig) P (A|flex) P (S Ø 1) P (S > 1) P (R Ø 1) P (R > 1)

IGBM 97.708 97.708 0 0 0 0
CIR 98.777 98.777 0 0 0 0
GBM 64.427 64.427 0 0 0 0
CEV
— = ≠0.5 75.276 75.276 0 0 0 0
— = 0 99.749 99.749 0 0 0 0
— = 0.5 95.545 95.545 0 0 0 0

Entry and exit probabilities, panel (b): Ÿ = 0.15,‡ = 0.20.
Model P (A|rig) P (A|flex) P (S Ø 1) P (S > 1) P (R Ø 1) P (R > 1)

IGBM 74.334 74.334 0 0 0 0
CIR 79.864 79.864 0 0 0 0
GBM 62.001 60.640 62.166 2.150 4.738 0.157
CEV
— = ≠0.5 71.587 71.587 0 0 0 0
— = 0 61.993 60.641 62.227 2.165 4.770 0.161
— = 0.5 78.935 78.935 0 0 0 0

Entry and exit probabilities, panel (c): Ÿ = 0.07,‡ = 0.30.
Model P (A|rig) P (A|flex) P (S Ø 1) P (S > 1) P (R Ø 1) P (R > 1)

IGBM 48.053 32.641 67.573 5.211 17.702 0.616
CIR 62.569 58.659 66.712 2.633 7.318 0.199
GBM 57.662 48.267 74.519 14.667 27.125 4.134
CEV
— = ≠0.5 64.553 60.131 65.642 6.129 9.929 0.876
— = 0 71.777 69.608 75.912 7.170 11.624 1.021
— = 0.5 58.932 51.031 75.202 14.378 26.240 3.975
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Table 1.7 The Table contains the expected time to abandonment of the project(·xa ,·x̄a),
the percentage of time spent in the pre-abandonment state in relation to a time horizon
of 30 years (%·x>xa,%·x>x̄a) and the percentage time spent in the active or in the
suspended state before abandonment (%·act,%·sus). Values have been computed
numerically via Monte Carlo simulation, using 100,000 trajectories, a 30-years-long
horizon and 250 steps per year.

Time description of the project strategy, panel (a): Ÿ = 0.30,‡ = 0.15.
Model ·x̄a (years) ·x>x̄a (%) ·xa (years) ·x>xa (%) ·act (%) ·sus (%)

IGBM 0.64925 2.164 0.64925 2.164 100 0
CIR 0.37887 1.263 0.37887 1.263 100 0
GBM 5.07987 16.933 5.07987 16.933 100 0
CEV
— = ≠0.5 3.73901 12.463 3.73901 12.463 100 0
— = 0 0.09609 0.320 0.09609 0.320 100 0
— = 0.5 1.08167 3.606 1.08167 3.606 100 0

Time description of the project strategy, panel (b): Ÿ = 0.15,‡ = 0.20.
Model ·x̄a (years) ·x>x̄a (%) ·xa (years) ·x>xa (%) ·act (%) ·sus (%)

IGBM 4.18030 13.934 4.18030 13.934 100 0
CIR 3.37894 11.263 3.37894 11.263 100 0
GBM 6.02549 20.085 6.23044 20.768 95.406 4.594
CEV
— = ≠0.5 4.57443 15.248 4.57601 15.253 100 0
— = 0 6.02678 20.089 6.23037 20.768 95.381 4.619
— = 0.5 3.51263 11.709 3.51263 11.709 100 0

Time description of the project strategy, panel (c): Ÿ = 0.07,‡ = 0.30.
Model ·x̄a (years) ·x>x̄a (%) ·xa (years) ·x>xa (%) ·act (%) ·sus (%)

IGBM 8.80221 29.341 11.73235 39.108 64 36
CIR 6.41350 21.378 7.02868 23.429 88 12
GBM 7.19449 23.982 8.76210 29.207 69.686 30.314
CEV
— = ≠0.5 6.09465 20.315 6.78857 22.629 93 7
— = 0 4.94099 16.470 5.28362 17.612 88.783 11.217
— = 0.5 6.98382 23.279 8.29358 27.645 71 29
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1.4.5 Sensitivity to flexibility-related costs

Next, we tested the sensitivity of our results to the degree of flexibility of the project.

A project is considered to be comparatively more flexible if the costs to move from the

active to the suspended state and vice-versa are lower. Similarly, smaller fixed costs

increase flexibility by reducing the amount of the negative cash-flows to pay while

suspended.

As a preliminary illustration, in Figure 1.1 we plotted the boundaries of the flexible

project for the IGBM model and for s10 œ [0,0.15]. For simplicity, we assumed that

restarting production is as costly as suspending it, i. e. s01 = s10. It is well-known

that, under cost-less reversibility, production is stopped (restarted) as soon as earnings

turn negative (positive), hence, xs = xr = v. Instead, larger transition costs reduce

(increase) the level at which suspension (resumption) occurs, progressively widening

the spread between the two boundaries. Such mechanism, known in economics as

hysteresis, is discussed in detail in Dixit (1989) and Dias et al. (2015). We observed

that greater variance in the price process exacerbates hysteresis. Furthermore, we

noticed a significant asymmetry in the behaviour of the suspension and resumption

boundaries. We argue that this is due to the value of the parameters used: when

the price process is highly mean-reverting towards a zero-profit long-run scenario (we

recall that we set ◊ = v +f) and has low-variance, the e�ect on xs is more pronounced,

apparently signalling a preference for production; on the contrary, when the price

process exhibit slow mean-reversion and high variance the impact on xr is stronger

than that on xs. Noticeably, when the values of Ÿ and ‡ are similar and almost o�set

in contributing to the variance of the process the asymmetry between boundaries is

remarkably reduced. As expected, in response to the decline in the suspension barrier,

the abandonment barrier grows moderately.
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Fig. 1.1 Panel a displays the suspension and resumption boundaries, xs and xr, as
functions of the suspension cost s10. In panel (b) the same is done for the abandonment
boundary xa. Low (dashed-dotted lines), intermediate (dashed lines) and high (solid
lines) volatility scenarios arise from the couples of parameters (Ÿ = 0.30,‡ = 0.15), (Ÿ =
0.15,‡ = 0.20),(Ÿ = 0.07,‡ = 0.30), respectively. For simplicity, the cost to restart
production is assumed equal to that of suspension, i.e. s01 = s10. .

In contrast, the choice on when to suspend and restart production is insensitive to

variations in the fixed costs of the project. In fact, the amount f is paid regardless of

whether production takes place. We showed in Figure 1.2 that the earnings reduction

due to an increase in this value raises the abandonment barrier of both the flexible

and the rigid project.

The reasons behind such behaviours are purely economic, therefore they have to

be taken as qualitatively valid for all the price models under exam. Nevertheless, the

quantitative sensitivity of each model to changes in the above parameters may vary.

Hence, we calculated the variation of each barrier in response to three equidistant

changes in the levels of s10 and f , respectively. Results, collected in Tables 1.8 and

1.9, document a larger sensitivity of options’ exercise boundaries to changes in s10 and

in f , on average, for IGBM and CIR processes. This fact signals that the operating

strategy of the project would be comparatively more a�ected by changes in the degree

of flexibility; this conclusion is attenuated in the case of moderately volatile markets.
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Fig. 1.2 The Figure displays the abandonment boundaries of the rigid a and of
the flexible b project as functions of the fixed cost f . Low (dashed-dotted lines),
intermediate (dashed lines) and high (solid lines) volatility scenarios arise from the
couples of parameters (Ÿ = 0.30,‡ = 0.15),(Ÿ = 0.15,‡ = 0.20),(Ÿ = 0.07,‡ = 0.30),
respectively.

1.4.6 E�ect on the value of the firm

We concluded the analysis by measuring how much the value of the project change

under alternative price models compared to the IGBM case. Table 1.10 shows that,

in terms of direction, the CIR systematically underestimated the value of the project,

in contrast to other processes that used to overestimate it. Most importantly, the

magnitude of the error appears to be a monotonic increasing function of the degree of

volatility in the market if the CIR or the CEV with positive — are considered. The

latter, in particular, produced a comparatively highly unreliable estimate of project

value in the high-variance scenario. Instead, we observed a sizeable impact of the

intermediate volatility case on the error associated to the other CEV and GBM models.

Noticeably, zero-— CEV is the one that better accommodates extreme situations of

particularly low and high variance of the price process. It is interesting to notice that

these last results are almost opposite to those obtained for the strategy of the firm.

This fact points out the importance of clearly defining which goal - either valuation
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of determination of the optimal strategy - has to be pursued when developing a real

option model. We did not record remarkably di�erent responses from the rigid and

flexible projects.

Table 1.10 This Table shows the variation in the value of an active project when it
is computed under the assumption of price processes other than IGBM. The current
price level is x0 = 2.00 for all models and scenarios, the value of the active project
under IGBM is reported in the first row and is given in monetary terms; variations are
given in percentage values.

Setting Ÿ = 0.30,‡ = 0.15 Ÿ = 0.15,‡ = 0.20 Ÿ = 0.07,‡ = 0.30

Model �V
r

1 (x) �V
f

1 (x) �V
r

1 (x) �V
f

1 (x) �V
r

1 (x) �V
f

1 (x)

IGBM 10.01708 10.01708 10.58344 10.58344 13.80811 13.99732
CIR -0.12128 -0.12128 -2.07846 -2.07846 -15.61073 -17.23415
GBM 33.93756 33.93756 37.30910 36.82929 31.38040 31.16004
CEV
— = ≠0.5 23.84919 23.84919 23.93548 23.93547 15.45188 13.73292
— = 0 -0.17028 -0.17028 37.30910 36.82929 2.14315 0.45043
— = 0.5 6.19184 6.19184 21.09373 21.09373 50.18965 51.46859

1.5 Conclusion

Most of the real options models are built upon the assumption that the underlying

source of uncertainty can be conveniently modelled as a geometric Brownian motion.

Such choice is mainly due to the comparatively higher tractability of this model,

which allows to get closed-form solution for a variety of managerial decision problems.

However, some recent literature disputed this approach, claiming that it superficially

ignores some typical features of economic variables, such as mean-reversion or the

capability to catch leverage e�ects. Precisely the e�ect of mean-reversion has been the

subject of careful analysis, which led to the exclusion of its negligibility due to the

strong sensitivity of the probability of investment and of the market composition to

changes in the reversion parameters.
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In this article, we extended the comparison to several di�erent models - the

inhomogeneous geometric Brownian motion as a benchmark, then the geometric

Brownian motion, the square root mean-reverting and the constant elasticity of variance

processes - specifically addressing the issue of determining the optimal management

strategy for a project that can be reversibly suspended or irreversibly abandoned. A

strength of our study, compared to existing works, is the use of a benchmark model,

which we consider representative of the market, and on which we not only calibrated

the parameters of the alternative price processes, but we also based the study of the

timing and the entry-and-exit probabilities of project real options. In doing this, our

goal was to make the comparison as accurate as possible.

We focused on the strategic implications for the operating policy of a flexible and of

a rigid project; in particular, for a long-term project, we concentrated on three aspects,

namely the determination of the optimal switching price levels (ex-ante analysis), the

probability of exercising real options within a short time, and the study of the timing

at which decisions are made (ex-post analysis).

We showed that the di�erences in project operational strategy due to the adoption

of models other than the benchmark are limited for intermediate environments where

mean-reversion and variance components mutually o�set. Indeed, when this is the

case, the adoption of di�erent models may lead to a sub-optimal ex-ante strategy, but

we observed that ex-post e�ects exhibit small di�erences compared to the benchmark

case, not significantly altering neither the short-term nor the long-term managerial

plan of the project. In short, the error is comparatively low and can be neglected with

minimal cost. The main implication of this results is the possibility to adopt models

simpler to handle than those empirically observed, provided that they are supported

by an adequate estimation of the parameters.



1.5 Conclusion 37

However, for extreme cases where the benchmark is meant to capture a highly

turbulent market or, alternatively, a strongly mean-reverting one, the above conclusion

is no longer valid. In particular, in this last case of the “risk discounting” (Sarkar,

2003) makes definitely not advisable to approximate strongly mean-reverting processes

with models without this characteristic.

It is worth noting that such di�erences, likely, are not without consequences, as

spill-over e�ects could arise either in the same market or in several related markets.

Moreover, the analysis of the interplay between the aspects above and the uncertainty

that pertains to some important macroeconomic variables, in the market or in several

related markets. The analysis of these aspects, not touched on in this article, could be

a promising starting point for further research.





Chapter 2

Operational flexibility and firm risk:

a real options perspective

Abstract

This paper aims at providing a theoretical foundation to explain the relation between

operational flexibility and the risk-return characteristics of firms equity. We focus on

the implied volatility of option contracts and on CAPM’s — as measures of risk and on

the distribution of firms values and returns at future horizons. We obtain the optimal

running policy of production firms characterised by di�erent degrees of operational

flexibility, represented as real options, and we get equity values at both current time

and future maturities, stressing the path-dependent nature of the algorithm. As a

main result, we document a remarkable reduction in the IV curve and in the cost of

equity, together with an increase in equity values and returns due to the introduction

of an exit option; interestingly, the value added by further optionalities is marginal.

Additionally, we prove the stochastic nature of CAPM’s —. Moreover, our results are

robust to di�erent price model specifications.
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2.1 Introduction

Amidst economic unpredictability, the capability of businesses to reshape their pro-

duction lines with fluctuating market conditions becomes a pivotal corporate risk

management tool (Triantis, 2000). In this work, we explored the relationship between

this form of operational flexibility and the riskiness of companies. In particular, we

investigated the impact of exit options on two key risk metrics: the implied volatility of

equity option contracts and the systematic risk coe�cient of the Capital Asset Pricing

Model (Sharpe, 1964). Our main findings reveal a sizeable risk reduction related to

the introduction of a single disinvestment opportunity with respect to the absence of

optionalities, whilst the e�ect of adding further stopping options is marginal.

Most of the literature on operational flexibility aims at understanding the value

that such a characteristic adds to projects, the role it plays in determining the optimal

running policy of firms, and the interplay between these aspects and the enrichment

of traditional models with more realistic features (Bengtsson, 1999; Carmona and

Ludkovski, 2008; Fontes, 2008; Guthrie, 2009; Triantis and Hodder, 1990; Yash P. Gupta,

1989). On top of that, a flourishing stream of literature relates to industry specific

applications; lots of examples can be found in the commodity sector, spanning from the

agricultural field to the energy environment (Abadie, 2015; Bastian-Pinto and Brandão,

2016; Brennan and Schwartz, 1985; Geman, 2005; Liu et al., 2019).

In finance, attention was paid to the complex interplay between production flexibility

and the capital structure of firms (Chod and Zhou, 2014; Goldstein et al., 2001;

Hackbarth and Mauer, 2012; Leland, 1994; Lin, 2009; Mackay, 1999; Mauer and Ott,

1995; Mauer and Sarkar, 2005; Reinartz and Schmid, 2016). For example, Sarkar
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(2014) used a contingent-claim model to study corporate structure choices when there

is uncertainty over the selling price because of a stochastic demand curve. The work

concluded that the presence of product-market flexibility is potentially crucial in

determining optimal capital structure decisions, unless the firm is already operating at

full capacity when financing choices are made. Also, Iancu et al. (2017) and Li et al.

(2020) pointed out that flexibility might even induce the rise of ine�ciencies, because

the risk-shifting mechanism it generates promotes agency conflicts.

Gu et al. (2018) showed that in presence of contraction and expansion options, the

risk level of a firm is subject to changes, being mitigated by the exercise of the first

option and comparatively enhanced by that of the latter. Furthermore, they noted

that the level of risk rises with operating leverage for firms lacking flexibility, whereas

it diminishes for those characterised by flexibility.

El Ghoul et al. (2023) empirically investigated the relation between flexibility and

the cost of equity, finding evidence of higher risk premia required by equity-holders of

less flexible firm. As a sample, they collected corporate financial data from 1989 to

2018 for manufacturing firms from over 60 countries. Moreover, no significant changes

occurred to their results neither when the measure of flexibility was adapted to account

for potential changes of such metrics over time, nor when alternative measures of

the cost of capital were considered. Their conclusion was thus consistent with the

hypothesis of an inverse relation between the degree of flexibility and the riskiness of a

company.

Considering the recognised influence of firms’ characteristics on stock returns, the

question arises as to whether business policies and structural features are also reflected

in the price of financial options. Toft and Prucyk (1997) delved into the complexities

of option pricing in leveraged firms, proposing a model that integrates leverage e�ects

into the Black and Scholes (1973) framework. Geske et al. (2016) explored how a
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firm’s capital structure influences the pricing of equity call options. They demonstrated

that changes in leverage can significantly impact option prices due to shifts in the

volatility of firm’s assets. Through mathematical modelling, they showed that the

relationship between leverage and option prices is nonlinear and can vary depending on

factors such as the firm’s risk level and market conditions. Recently, Chen et al. (2023)

investigated how firm fundamentals influence the implied volatility (IV) in the option

market, finding a remarkable e�ect of factors like leverage and firm size on shaping the

IV curve. Specifically, they observed that firms with riskier financial profiles exhibit,

on average, higher implied volatility, while those with higher liquidity and larger size

may have a flatter IV curve.

Closer to our study, Gamba and Saretto (2022) related equity option price formation

to a structural model for a production economy where contraction and expansion options

are available. They observed that option prices resulted endogenously from the running

policy that managers made optimally to maximise firm value. It is particularly relevant

to notice that such mechanism empirically fits market data, stressing the goodness of

their approach and how promising this line of research is to understand the relations

between the productive economy and financial markets.

In this work, we focused on the relation between operational flexibility and firms

risk-return characteristics as measured by options contracts’ implied volatility and by

the systematic risk - “beta” - coe�cient. We first build an artificial economy with three

firms, of which one without real options and the others provided the possibility to leave

the market and temporarily suspend production activity, according to an increasing

degree of operational flexibility in light of Brennan and Schwartz (1985), Dixit and

Pindyck (1994) and Hackbarth and Johnson (2015).

We conducted our analysis as an inside-out exploration. First, we focused on the

e�ects of operational flexibility on firm value and its empirical distribution to di�erent
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future horizons; we established that introducing a single option is much more relevant

than increasing the level of flexibility when some optionality is already in place. In

detail, the reduction of variability in cash-flows and in the corresponding equity returns

associated with the inclusion of options has been identified as the cause of a significant

impact on the implied volatility curve. Furthermore, making reference to the CAPM,

we derived the relation between the “beta” of the underlying price of firms’ output

and that of firms’ equity. We emphasised that this last quantity is itself stochastic

regardless the presence of real options: in fact, it directly depends on the current level

of the production output price. Most importantly, when real options are available, it

takes values strictly contingent to the state of the firm. Further, we carried our analysis

according to di�erent specifications for the output price dynamics, thus enhancing the

robustness of our findings. We believe that our investigation could provide a fruitful

starting point for future empirical works aimed at understanding the complex relations

between real options and asset prices.

The remainder of the paper is as follows: in the next Section we present the basic

setting and the assumptions behind the model; Section 2.3 numerically illustrates our

results, presenting, separately, the e�ect of flexibility on the firms valuation, the impact

on the returns distribution and on options’ implied volatility, and the link with equity

risk premia. Last, Section 2.4 concludes.

2.2 Basic setting and assumptions

We consider an economy within which we take the position of three manufacturing firms

that face uncertainty over the selling price of their output. Firms are price-taker and

two of them have some flexibility in the form of real options. Our goal is to investigate

the e�ect of optionalitites on firms’ risk-return profile. In the next paragraphs we

provide details of the market hypotheses and model construction.
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2.2.1 The market model

Our first assumption relates to the market structure, which we assume to be perfectly

competitive. When this is the case, market participants are price-taker, that is, they

have no power on setting the selling price, which results from market equilibrium.

Consequently, market price comes as a primary source of uncertainty to drive firms

policies. In this work, we assume that the market price x := {xt}tØ0 at which the

product is sold is described by an SDE of the kind

dxt = a(xt) dt+ b(xt) dWt. (2.1)

for a given filtered probability space (�,F ,F = {Ft}tØ0 ,P); W is a Wiener process

and the initial condition x0 œ R+ is set. Furthermore, we assume that operations take

place over a virtually infinite horizon. Also, firms cash-flows depend on production

variable and fixed costs, denoted by v and f , respectively. For notation compactness,

we define c := v +f . Di�erently from the output price, production costs are assumed

to be constant throughout time.

Firms’ characteristics

We postulate the existence of three kinds of equity-financed firms within the market. A

first firm is committed to continuously producing whatever it happens on the market;

we refer to this entity as to the “rigid” firm. The second company holds the real option

to permanently exit the market in return for a scrap value from assets liquidation when

prices fall below a certain threshold; this is what we call “semi-rigid”. Last, in light

of Dixit and Pindyck (1994), the third business has both the options to irreversibly

and reversibly exit; this firm is called “flexible” and it is characterised by the payment

of a lump switching, non-negative, cost s whenever production is either stopped or
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resumed. Importantly, fixed costs f continue to be paid also when production is

suspended. Moreover, real options are immediately exercised when the output price

hits some specific thresholds. If only abandonment is available, then there is a unique

boundary called x̄a. Instead, in the case of the “flexible” firm, three boundaries exist:

xs triggers suspension, xr determines resumption, and xa leads to abandonment. The

values of such thresholds are determined endogenously by each firm. In light of Dixit

and Pindyck (1994), getting the optimal options’ boundaries entails the solution of

a system of value-matching and smooth-pasting conditions1 that have to be imposed

over the value function of the firm; in particular, for the “flexible” firm, one has

EC(xj) = EA(xj)≠ s j œ {s,r,a} (2.2)

and

E
Õ
C(xj) = E

Õ
A(xj) j œ {s,r,a} (2.3)

where EC(x) (resp. EA(x)) is the value of the firm in the current (resp. alternative)

state. Specifically, the current state of production is either “active” or “suspended” and

both states also represent mutual alternatives, while the “abandoned” state, by virtue of

its irreversibility, comes only as an alternative. The reasoning behind the “semi-rigid” is

conceptually the same, but the current state can only be “active” and abandonment is

the unique alternative available.

Figure 2.1 depicts the above framework. In the top-left panel, we plotted a simulated

path for the price process x over a period of 30 years and we assume this was the market
1Being well-known in the optimal stopping literature particularly because of its applications to

American options (McKean Jr., 1965; Merton, 1973; Samuelson, 1965), the methodology we adopt is
extensively used in the real options literature to find the optimal boundaries that trigger the switching
between mutually alternative operational states. See Dixit and Pindyck (1994); Sødal (1998) for a
detailed explanation.
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situation faced by firms. On the same graph, we reported the optimal suspension,

resumption and abandonment barriers of the flexible and semi-rigid firms and we

noticed that these are crossed several times by the price process. Based on this picture,

we obtained the cash-flows for each kind of firm and we plotted the results in the

remaining panels.

The amount and the size of losses incurred by the rigid firm (top-right panel) are

remarkable; moreover, we observe that the company generates losses for about the half

of the simulation period and no recoveries occur in the last 18 years, during which they

become even heavier.

By contrast, the cash-flows pattern of the semi-rigid firm (bottom-left panel)

stresses the exercise of the abandonment option, which occurs as prices fall below x̄a :

in correspondence of this point, a unique positive cash-flow (i. e. the scrap value) is

gained and no further cash-flows are generated since then on.

Last, the options to suspend and restart allow the flexible firm (bottom-right panel)

to mitigate losses in all its life stages. Importantly, by containing the amount of

negative earnings, this company is able to defer its abandonment, which in fact occurs

later in time compared to the semi-rigid firm as a consequence of a comparatively lower

abandonment threshold xa.

Valuation of firms equity

The equity value of each firm can be decomposed into two components, namely the

expected discounted present value (DPV) of future cash-flows, as per the standard DCF

analysis, and the value of real options. Also, from a di�erential calculus perspective,

the value of equity can be expressed as the solution of a second order ODE, with the

value of the options component, denoted by h(xt), as general solution and the DPV
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Fig. 2.1 The Figure shows the cash-flows of the 3 di�erent companies (rigid, semi-rigid
and flexible in panel (b), (c) and (d), respectively) given by a simulated trajectory of
the underlying price x (a) and by the optimal suspension (xs), resumption (xr) and
abandonment (xa : flexible; x̄a : semi-rigid) barriers.

part as particular solution, i. e. we can write

E(xt) = DPV(xt)+h(xt)

regardless the kind of firm.

By definition, the value of the DPV component is calculated as

DPV(xt) = Et

5⁄ Œ

t
(xu ≠ c)e≠”udu

6
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given a discount rate ”. In practice, given that cash-flows are discounted at the same

rate for all the kinds of firms included in our analysis, we will adopt the risk-free rate

r as discount rate without loss, i. e. we set ” © r. We incorporate Merton’s ICAPM

(Merton, 1973) into the model; in doing this, we define ã(x) : = a(x) ≠ ⁄fl‡x, with

⁄ = E[rm]≠r
‡(rm) being the market price of risk and fl œ [≠1,1] representing the correlation

of changes in x with the market portfolio. Then, the value of the option component

solves a di�erential equation of the kind

b
2(x)
2 h

ÕÕ(x)+ ã(x)hÕ(x)≠ rh(x) = 0, (2.4)

whose general solution takes the form

h(x) = pH1(x,�1)+ qH2(x,�2)

where H1(x,�1) and H2(x,�2) are an increasing and a decreasing function of x and

of the set of parameters �1 and �2, respectively. Moreover, they constitute linearly

independent solutions of (2.4).

We can exploit the above results to provide a general expression for the equity

value of the firm, which is

E(xt) = Et

5⁄ Œ

t
(xu ≠ c)e≠rudu

6
+pH1(x,�1)+ qH2(x,�2). (2.5)

Notice that p,q œ R are constant parameters that, in general, need to be determined

by boundary conditions. It is crucial to note that boundary conditions are firm specific

and state-contingent; for the semi-rigid and the flexible firms, they coincide with the

value-matching conditions in (2.2). Furthermore, the rigid firm holds no options, hence
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its equity value constitutes a special case for which p = q = 0. For this reason, the

equity value of the rigid firm at time t, denoted by E
R(xt), is simply given by

E
R(xt) = Et

5⁄ Œ

t
(xu ≠ c)e≠rudu

6
.

When production takes place and a stopping option is available, it should be

intuitively clear that if earnings are particularly high no company would consider

it profitable to stop productive activity. Consequently, both the semi-rigid and the

flexible active firm read the condition

lim
xæŒh(x) = 0,

which imposes the coe�cient of the increasing function in (2.2.1) to be equal to zero.

Given this framework, we can now provide the expressions for the equity value of the

semi-rigid and of the flexible firm, denoted by E
SR(xt) and E

F (xt), respectively; these

are

E
SR(xt) =

Y
___]

___[

Et

Ës Œ
t (xu ≠ c)e≠rudu

È
+d2H2(x,�2) if active

Scrap Value if abandoned

and

E
F (xt) =

Y
________]

________[

Et

Ës Œ
t (xu ≠ c)e≠rudu

È
+ q2H2(x,�2) if active

≠f

r
+p1H1(x,�1)+p2H2(x,�2) if suspended

Scrap Value if abandoned.

Coe�cients d2,q2,p1,p2 œ R have the same meaning as p and q in (2.5) and replaced

them in terms of notation to emphasise that their numerically di�er across firms and

states of production.
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Last, it is worth to mention that, in all cases when the firm is active, the actual

form of the DPV component is conditioned to the dynamics of x. Instead, the same

computation is trivial if the flexible firm is in the suspended state, as the results reduces

to the present value of the perpetual stream of flows ≠f , i. e. to ≠f

r
.

2.2.2 Flexibility and options’ implied volatility

Our first goal is to understand whether the value of flexibility is reflected in financial

options’ prices. In doing this, we take the perspective of a given firm and we assume that

European call option contracts have been written on its equity value; for illustrative

purposes, we consider three option maturities, namely 3, 6 and 12 months. The main

challenge in pricing these options, unless the fully rigid firm is considered, is to determine

the state of production at maturity. Indeed, the equity value will depend on the state

of the firm at the option maturity. We also have to consider the probability that the

firm has abandoned. For this reason, flexibility introduces some path-dependency that

must be recognised in pricing the apparently standard plain vanilla European option.

In practice, we need to know the value of firm’s underlying, i. e. x, and to put it in

relation with the exercise boundaries of the real options retained by the company. Also,

it is crucial to keep track of the entire trajectory followed by x in the interval between

the time of assessment t0 and the reference maturity. In fact, this recording allows

us to identify at every moment in which state of production the company is in and,

consequently, to determine its correct value. In the following, we detail the procedure

we adopted.

Equity valuation and option pricing

Consider a time interval [t0,T ], where T denotes the maturity of the option contract

and t0 = 0 is the current time. At t0 real options’ boundaries, the current value x0 of
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the output price and, so, the state of the firm are known: in practice, we assume that

all the firms are currently producing; for this hypothesis to be consistent, we set x0 to

be higher than the suspension threshold. Further, we recall that the payo� at maturity

is

CT = (xT ≠K)+,

where K is the strike of the option, and that the option price is obtained by calculating

c0 = e
≠rTE0[(xT ≠K)+]. (2.6)

In practice, we need to make use of Monte Carlo simulation techniques. We simulate M

trajectories for the underlying price process at dates t œ (t0,T ] and we superimpose them

to real options’ boundaries. Let x
(j)
t be the value of xt on trajectory j,j œ {1,2, . . . ,M};

getting the value of the semi-rigid firm only requires to verify that x
(j)
t > x̄a and no

abandonment occurred up to time t. If abandonment occurs at time tk œ (t0,T ),k Ø 1,

then a single cash-flow, stemming from the liquidation of firm’s assets, is obtained

immediately; from that point forward, there will be no other flows generated. Following

the path of the flexible firm is less immediate: indeed, production is active at time tk if

it was active also at tk≠1 and x
(j)
tk

> xs (continuation) or if it was suspended at tk≠1 but

x
(j)
tk

Ø xr (switching). Similarly, production is suspended if it was active at tk≠1 but

x
(j)
tk

Æ xs (switching) or if it was suspended at tk≠1 and xa < x
(j)
tk

< xr (continuation).

The implication of abandonment, i. e. of x
(j)
tk

falling below xa is the same as in the

semi-rigid firm. In other words, the step-by-step simulation of the equity price must

account for the current state of the firm (active, suspended, or abandoned).

Finally, at T we are able to observe the equity value of the firm for each trajectory,

namely E(x(j)
T ). A preliminary analysis allows us to appreciate the impact of increasing

operational flexibility on the equity value of the firm as well as on its returns distribution.
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Most importantly, known the strike price K, we can calculate payo� of a call option

contract for each j-th path, i. e.

C
(j)
T (x(j)

T ,K) =
3

x
(j)
T ≠K

4+

and the we estimate the related option price averaging across the M paths

ĉ0(T ,K) = e
≠rT 1

M

Mÿ

j=1

3
x

(j)
T ≠K

4+
.

Last, implied volatilities are obtained from Black-Scholes (1973); specifically, one gets

the volatility ‡(K,T ), which, if substituted into the Black-Scholes formula

BS(K,T ,‡) = x0�(d1)≠Ke
≠rTi�(d2) ,

where

d1 =
ln(x0/K)+

3
r + ‡2

2

4
T

‡
Ô

T

d2 = d1 ≠‡

Ô
T ,

returns the theoretical price ĉ0(K,T ) given the maturity T .

2.2.3 Flexibility and the cost of equity

Consider the price of a certain good following (2.1). Further, consider the equity value

of a firm whose profits depend on the underlying x. Then, by Ito’s Lemma,

dE =
C

b
2(x)
2 E

ÕÕ(x)+ ã(x)EÕ(x)
D

dt+ b(x)EÕ(x)dW . (2.7)
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Let rx and rE be the return on x and on E within the period dt given the current

levels of the two processes. Then, CAPM’s equation allows to express the cost of equity

for a generic i-th asset as

E[ri] = r +—i (E[rm]≠ r) (2.8)

where (E[rm]≠ r) is the expected excess return of the market portfolio with respect

to r and the coe�cient —i := Cov(ri,rm)
V ar(rm) is a measure of systematic risk. Assuming the

same reference market portfolio for both the value of equity and its underlying, it

can be noticed that the quantity driving their expected excess returns over r is the

coe�cient —i. Let us call —x and —E , respectively, the coe�cients for the ouput price

and for the equity value of the firm. Then, it is easy to get the link between them.

Recalling that

—x : = Cov(rx,rm)
Var(rm)

=
Cov

1
dxt
xt

,rm

2

Var(rm)

=
Cov

1
b(xt)dWt

xt
,rm

2

Var(rm)

= Cov(b(xt)dWt,rm)
xt Var(rm) (2.9)
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we have

—E (xt) : = Cov(rE ,rm)
Var(rm)

=
Cov

1dE(xt)
E(xt) ,rm

2

Var(rm)

=
Cov

3
b(xt)EÕ(xt)dWt

E(xt) ,rm

4

Var(rm)

=
EÕ(xt)
E(xt) Cov(b(xt)dWt,rm)

Var(rm)

= xt
E

Õ (xt)
E (xt)

—x. (2.10)

Notice that, in (2.9) and in (2.10), dxt and dE(xt) have been replaced with their own

expressions as per equations (2.1) and (2.7), respectively, from which we considered

only the non-zero term. Further, to ease notation, we define —E := —E(xt). We exploit

the relation in (2.10) to observe the variation of the ratio —E
—x

as a function of the degree

of flexibility of the firm, remembering that firms’ equity value is also a function of the

switching cost s. Specifically, we perform a sensitivity analysis by computing the values

of E(xt) and E
Õ(xt) at di�erent levels of the switching cost and we next scale-up the

result obtained by xt.

Notice that even though the value of —x is constant over time, that of —E is stochastic

due to the dependence on xt, which, in fact, varies stochastically.

Analysis under the GBM case

By way of example, we derive the relations of the previous paragraphs in the case of

the geometric Brownian motion, which is distinguished by the particular tractability.

In particular, we have

dxt = µxtdt+‡xtdWt
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that leads to

E(xt) = Ax
“1
t +Bx

“2
t +cf(xt),

E
Õ(xt) = “1Ax

“1≠1
t +“2Bx

“2≠1
t +cf Õ(xt)

and

—E = xt—x
“1Ax

“1≠1
t +“2Bx

“2≠1
t +cf Õ(xt)

Ax
“1
t +Bx

“2
t +cf(xt)

where A,B œ R are constant coe�cients to be determined by boundary conditions as

in (2.2) and will be di�erent according to the kind (i. e. rigid, semi-rigid or flexible) of

the firm; cf(xt) = xt
r≠µ+⁄fl‡ ≠ c

r ; “1,2,“1 > 1,“2 < 0, are the roots of the characteristic

equation ‡2
2 “(“ ≠1)+(r ≠µ+⁄fl‡)“ ≠ r = 0.

Furthermore, the simplest case of a rigid firm is particularly suitable to illustrate

what happens to —E . We recall that the equity value of the rigid firm equals cf(xt),

hence, under GBM,

E(xt) = xt

r ≠µ+⁄fl‡
≠ c

r
,

E
Õ(xt) = 1

r ≠µ+⁄fl‡
.

Consequently,

—E = rxt

rxt + c(µ≠ r ≠⁄fl‡)—x. (2.11)

In Figure 2.2 we illustrate how the empirical distribution of —E might look like. After

simulating 20,000 paths for the output price xt and plotting its empirical distribution

(panel a), we used the values of xt to recover the corresponding —E following (2.11)

and choosing —x = 1. While the first one clearly matches a lognormal distribution

by definition of GBM, the latter does not. Moreover, we performed the same steps
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using di�erent GBM parameters (µ = 0.15,‡ = 0.55 in panel b and µ = 0.30,‡ = 0.35 in

panel c), finding significantly di�erent shapes. Additionally, we explored the relation

between —x and —E for both the couples of GBM parameters as well as for the

couples (µ = 0.15,‡ = 0.35) and (µ = 0.30,‡ = 0.55) to visualise di�erences entirely

due to changes in µ or in ‡. Interestingly, —E converges to —x in all cases; nevertheless,

parameters determine whether this happens from the above or from the below (panel d).

It is worth to mention that, given µ, lower volatility levels make the firm comparatively

less risky; on the contrary, lower levels of the drift parameter increase —E for a given

value of ‡. Overall, these results are proving that not only —E is stochastic, but that it

is also strictly contingent to model parameters.

2.3 Numerical illustration

In this section, we show the results of some numerical experiments we run to understand

how operational flexibility relates to the value and riskiness of firms. To incorporate

more possibilities in the analysis, we often made use of three specifications for the

price process given in (2.1): we assumed this takes the form of a geometric Brownian

motion (GBM), of an inhomogeneous geometric Brownian motion (IGBM) and of a

square root mean-reverting process (CIR), whose SDEs are as follows:

dx = µxdt+‡xdW (GBM)

dx = Ÿ(◊ ≠x)dt+‡xdW (IGBM)

dx = Ÿ(◊ ≠x)dt+‡
Ô

xdW (CIR).

These processes have been chosen as they are widely used in computational finance to

describe the dynamics of many variables, such as the prices of equity and commodities

or interest rates fluctuations (Bhattacharya, 1978; Brennan and Schwartz, 1979; Brigo
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Fig. 2.2 The Figure shows the distribution of the output price xt when it follows a GBM
with µ = 0.15,‡ = 0.55 (panel a) together with that of the coe�cient —E calculated from
the same values of xt (panel b). Panel c displays the distribution of —E when the GBM
parameters are changed to µ = 0.30,‡ = 0.35. Last, panel d shows the relationship
between —x and —E as a function of xt for specified GBM parameters.

and Mercurio, 2007; Hull, 2018). Our aim was to exclusively compare di�erent levels

of flexibility within each model, hence we disregarded cross-comparisons between them.

For this reason, we chose an arbitrary main set of parameters, given in Table 2.1. For

simulations, we resorted to standard methodologies, looking for a compromise between

accuracy and computational time: for GBM, we made use of simulated increments of
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Table 2.1 The table collects the parameters used in the computation of firms’ equity
values and subsequent option contracts’ prices.

Notation GBM IGBM CIR Description

µ 0.01 - - Drift parameter
‡ 0.35 0.55 0.55 Volatility parameter
Ÿ - 0.02 0.02 Speed of mean-reversion
◊ - 2 2 Long-run price level
r 0.06 0.06 0.06 Risk-less rate of return

x0 2.50 2.50 2.50 Current price

s 0 0 0 Switching cost
v 1 1 1 Production cost
f 0.05 0.05 0.05 Fixed cost

SV 9 9 9 Scrap value from assets liquidation
⁄ 0.20 0.20 0.20 Market price of risk
fl 0.20 0.20 0.20 Correlation of changes in x with the market portfolio

ABM and then we took the exponential; we adopted the Euler–Maruyama method for

IGBM and the Gaussian approximation for CIR2.

We divided our study in three parts: following the procedure described in section

2.2.2, we first focused on the implications of flexibility for valuation purposes by

investigating how firms’ equity value at current and future times is a�ected by the

introduction of flexibility; we put this in relation with the time spent by flexible firms

in each production state. Second, we studied subsequent implications for the equity

returns of firms and, moreover, for the implied volatility embedded in financial option

contracts. Third and last, we turned our attention to the impact of flexibility on the

cost of equity, focusing on the e�ect that abandonment, suspension and resumption

options have on CAPM’s — of equity.

2.3.1 Flexibility and equity value: a primer

The most intuitive impact of operational flexibility is on equity value. Theory suggests

that companies with greater operational flexibility have greater value, other things
2See Tubikanec et al. (2022) and Ballotta and Fusai (2018) for a detailed discussion on simulation

methods for IGBM and CIR, respectively.
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being equal. The reasoning behind this statement is easily understood from what is seen

in equations (2.2.1)-(2.2.1). Indeed, there are two channels of transmission: on the one

hand, the increase in the value of the optional component at the same cash-flow; on the

other hand, a change in cash-flows themselves, aimed at reducing the negative amounts.

Our findings are consistent with this argument and, most interestingly, highlight that

introducing some form of flexibility over its total absence returns a more pronounced

e�ect, compared to adding further options, in terms of both point valuation at t0 and

distributional features at future horizons. This is clearly visible in Table 2.2, where we

reported the current equity values for the three firms and estimates for such quantities

at short and mid-term maturities, and in Figure 2.3, in which we showed how the

distribution of equity values changes with longer horizons.

The growth over time of the variability of the underlying increases the probability

of exercising any available options and determines a shift to the right of the distribution

of the equity value, in contrast to the shift to the left of the equity value of the rigid

company, which faces extreme values of losses and profits with increasing probability.

In particular, the value of the semi-rigid company and that of the flexible one tend

to concentrate around the scrap-value to indicate the permanent abandonment of

the productive activity. The di�erence, even if minimal, observed between these

two types of company is entirely explained by the presence of the suspension option,

which mitigates the e�ect of the uncertainty delaying the abandonment of the market.

These considerations are consistent with the increase in the time spent by the flexible

firm in the state of suspension as the reference time horizon increases (Figure 2.4).

Furthermore, they are valid regardless of the model that describes the dynamics of the

underlying. However, it is important to stress the fact that our findings are contingent

to parameters’ values; for example, di�erent operational costs would change the level

of the optimal switching thresholds and this fact would ultimately a�ect both the
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probability of exercising the available real options and the time spent within each

operational cost. The same argument holds for di�erent price model parameters.

Table 2.2 The Table displays the current equity value of the firm - E0(x) - as well as
an estimate for such quantity at given maturities - ÊTi(x), for Ti = 3, 6, 12 months
and 10 years - with 95% confidence intervals. Each panel refers to a given model for
the underlying price process, as specified.

Panel (a): GBM

E0(x) Ê3m(x) Ê6m(x) Ê12m(x) Ê10y(x)

Rigid 21.5625 21.6546 ± 0.0484 21.7303 ± 0.0691 21.7287 ± 0.0997 24.9272 ± 0.4634
Semi-rigid 28.9350 29.1221 ± 0.0431 29.2961 ± 0.0616 29.5151 ± 0.0892 35.8642 ± 0.4409
Flexible 29.0569 29.2456± 0.0430 29.4213 ± 0.0615 29.6438 ± 0.0890 36.1430 ± 0.4405

Panel (b): IGBM

E0(x) Ê3m(x) Ê6m(x) Ê12m(x) Ê10y(x)

Rigid 13.5458 13.4778 ± 0.0478 13.5268 ± 0.0696 13.6080 ± 0.1032 12.6975 ± 0.6216
Semi-rigid 23.0751 23.1395 ± 0.0430 23.3138 ± 0.0629 23.6544 ± 0.0940 25.0072 ± 0.6107
Flexible 23.3331 23.4011 ± 0.0428 23.5786 ± 0.0627 23.9234 ± 0.0937 25.6196 ± 0.6111

Panel (c): CIR

E0(x) Ê3m(x) Ê6m(x) Ê12m(x) Ê10y(x)

Rigid 13.5458 13.5085 ± 0.0302 13.5124 ± 0.0431 13.5204 ± 0.0601 12.6767 ± 0.1715
Semi-rigid 21.0176 21.0719 ± 0.0246 21.1636 ± 0.0351 21.3428 ± 0.0488 22.6651 ± 0.1419
Flexible 21.2081 21.2673 ± 0.0244 21.3613 ± 0.0349 21.5443 ± 0.0486 23.0733 ± 0.1413

Digging deeper into GBM, we analysed the impact of di�erent values of the drift

parameter µ. The increased volatility of the underlying process linked to higher values

of µ favours the reduction of the abandonment barrier; this fact promotes a higher

percentage of time spent in the state of suspension by the flexible company, given a

reference time horizon (Figure 2.5). At the same time, a minimal reduction in the

value of the suspension option is accompanied by a significant increase in the present

value of cash flows, with a net e�ect showing a remarkable growth in the expected

equity value (Figure 2.6). In particular, comparatively higher values of µ lead the

output price to exhibit a positive trend that favours the generation of profits through
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Fig. 2.3 The Figure shows the distribution of firms’ equity values at four di�erent time
horizons - namely 3, 6, 12 months and 10 years - labelled by Ti. For the flexible firm,
switching costs are set to 0. All the other model parameters are as in Table 2.1 and
the models for the underlying output price x are GBM, IGBM and CIR.

productive activity. It is therefore reasonable to observe fewer di�erences between the

three types of company, depending on the reduced use of any real option.
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(a) GBM, Ti = 3 months (b) IGBM, Ti = 3 months (c) CIR, Ti = 3 months

(d) GBM, Ti = 6 months (e) IGBM, Ti = 6 months (f) CIR, Ti = 6 months

(g) GBM, Ti = 12 months (h) IGBM, Ti = 12 months (i) CIR, Ti = 12 months

(j) GBM, Ti = 10 years (k) IGBM, Ti = 10 years (l) CIR, Ti = 10 years

Fig. 2.4 The Figure graphically represents the percentage amount of time spent in the
active or suspended state of production out of specified horizons Ti. For the flexible
firm, switching costs are set to 0. All the other model parameters are as in Table 2.1
and the models for the underlying output price x are GBM, IGBM and CIR.
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Fig. 2.5 The Figure displays the percentage amount spent each possible production
state by the the semi-rigid and flexible firms at di�erent horizons, labelled by Ti, as
a function of the GBM drift coe�cient µ. All the other model parameters are as in
Table 2.1.

2.3.2 Flexibility and options’ implied volatility

In this section, we studied the returns distributions of the three companies focusing on

the usual four time horizons of 3, 6, 12 months and 10 years. Results, reported in Table

2.3, show that the impact of operational flexibility on the growth in the average levels

of simple returns is increasingly pronounced as the horizon enlarges. In particular, the

recurrent change of sign in the value of the expected average return as we move from

the rigid to the semi-rigid is emblematic of the added value provided by real options.

Additionally, increasing asymmetry and marked leptokurtosis have been observed for

higher maturities; this is motivated by a higher probability of generating losses (rigid

firm) and to exercise suspension and abandonment options (flexible and semi-rigid

companies, respectively).

In light of this, it is not surprising to observe a remarkable decrease in standard

deviation already in the very short term, in accordance with greater operational

flexibility and despite the enlargement in the overall variability. It is reasonable to

expect a similar outcome when analysing the implied volatility of options. Indeed,

Figure 2.7 documents an important gap between the implied volatility of a call option

written on the equity value of a rigid firm compared to the same measure calculated

for comparatively more flexible firms. For at-the-money options, we note that implied
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Fig. 2.6 The Figure shows the distribution of firms’ equity values at four di�erent time
horizons, labelled by Ti. The models for the underlying price process are three GBM
which di�er in the drift coe�cient µ. In particular, given ‡ = 0.30, the value of the
parameter µ has been chosen such that the drift of the return process dln(xt/x0) is,
respectively, negative, null and positive. For the flexible firm, switching costs are set
to 0. All the other model parameters are as in Table 2.1.

volatility is almost halved in the best case scenario and is reduced by about 20% in

the worst case; no significant variations are found for di�erent moneyness levels. In

addition, this result is maintained regardless the maturity of the option. Noticeably,

no relevant changes have been detected between the semi-rigid and the flexible firm,

once again signalling that adding the suspension option to that of abandonment has

only a marginal e�ect.
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Furthermore, it is worth noting that, in contrast to what we observed for simple

equity returns, the presence of mean-reversion in the output price process leads to

an overall reduction in the level of implied volatility. This result is contingent on the

values of the parameters used and, in particular, is due to a trend in prices towards a

lower value than the initial x0. This fact negatively a�ects the value of equity and,

therefore, the average payo� at maturity and the price of the option. Also, within

the context of GBM, Figure 2.8 emphasises that the previous results are significantly

dampened as the drift parameter increases, in line with the observations made in the

previous section.

Moreover, we turned our attention to a di�erent risk metric as is the — coe�cient

of CAPM’s equation. As a very first step, we calculated the ratio —E
—x

based on the

current level of the production output price; we immediately noticed that adding

some form of optionality remarkably decreases the risk coe�cient and that, again, the

e�ect of adding further options is marginal regardless the underlying model adopted

(Table 2.4). We stressed these results by computing the same quantity as a function

of the switching cost s and according to di�erent levels of the initial price. Although

it involves a variation in levels, using di�erent values of the starting price does not

alter the conclusions obtained so far. Similarly, the ratio between the betas is almost

insensitive to changes in switching costs. This result is absolutely consistent with the

minimal di�erences found between the semi-rigid and the flexible company (Figure

2.9).

Last, equation (2.10) highlights that the risk coe�cient of equity is a function of

the production output price and, indirectly, of the options available to the firm. Hence,

its value fluctuates stochastically and, second, is contingent to the state of production.

We provide a graphic illustration in Figure 2.10, where one can appreciate, on the
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Table 2.3 The Table collects sample summary statistics - namely, mean, standard
deviation and quartiles - for the distribution of firm’s equity returns at 3, 6, 12 months
and 10 years horizons. Each panel refers to a given model for the underlying price
process, as specified.

Panel (a): GBM

µ̂(R) ‡̂(R) q̂0.25 q̂0.5 q̂0.75

Ti = 3 m
Rigid 0.0043 0.3175 -0.2184 -0.0204 0.1966
Semi-rigid 0.0065 0.2106 -0.1426 -0.0135 0.1314
Flexible 0.0065 0.2093 -0.1417 -0.0134 0.1306

Ti = 6 m
Rigid 0.0078 0.4534 -0.3152 -0.0455 0.2741
Semi-rigid 0.0125 0.3012 -0.2044 -0.0301 0.1839
Flexible 0.0125 0.2994 -0.2031 -0.0299 0.1828

Ti = 12 m
Rigid 0.0077 0.6538 -0.4603 -0.0991 0.3561
Semi-rigid 0.0200 0.4359 -0.2948 -0.0652 0.2397
Flexible 0.0202 0.4332 -0.2928 -0.0648 0.2383

Ti = 10 y
Rigid 0.1560 3.0395 -1.3114 -0.7520 0.4323
Semi-rigid 0.2395 2.1547 -0.6890 -0.4988 0.2822
Flexible 0.2439 2.1439 -0.6903 -0.4809 0.2849

Panel (b): IGBM

µ̂(R) ‡̂(R) q̂0.25 q̂0.5 q̂0.75

Ti = 3 m
Rigid -0.0050 0.4993 -0.3602 -0.0721 0.2809
Semi-rigid 0.0028 0.2634 -0.1860 -0.0378 0.1493
Flexible 0.0029 0.2597 -0.1833 -0.0372 0.1472

Ti = 6 m
Rigid -0.0014 0.7269 -0.5185 -0.1370 0.3709
Semi-rigid 0.0103 0.3852 -0.2649 -0.0716 0.1976
Flexible 0.0105 0.3799 -0.2609 -0.0705 0.1949

Ti = 12 m
Rigid 0.0046 1.0772 -0.7302 -0.2505 0.4569
Semi-rigid 0.0251 0.5758 -0.3664 -0.1302 0.2441
Flexible 0.0253 0.5681 -0.3607 -0.1283 0.2408

Ti = 10 y
Rigid -0.0626 6.4894 -1.5968 -1.3010 -0.4302
Semi-rigid 0.0837 3.7429 -0.6100 -0.6100 -0.3496
Flexible 0.0980 3.7040 -0.6143 -0.6143 -0.2828

Panel (c): CIR

µ̂(R) ‡̂(R) q̂0.25 q̂0.5 q̂0.75

Ti = 3 m
Rigid -0.0027 0.3149 -0.2213 -0.0176 0.1983
Semi-rigid 0.0026 0.1655 -0.1143 -0.0093 0.1058
Flexible 0.0026 0.1630 -0.1125 -0.0091 0.1043

Ti = 6 m
Rigid -0.0025 0.4495 -0.3190 -0.0330 0.2810
Semi-rigid 0.0069 0.2360 -0.1632 -0.0173 0.1507
Flexible 0.0071 0.2325 -0.1606 -0.0171 0.1485

Ti = 12 m
Rigid -0.0019 0.6277 -0.4558 -0.0550 0.3896
Semi-rigid 0.0154 0.3286 -0.2298 -0.0288 0.2103
Flexible 0.0157 0.3238 -0.2261 -0.0284 0.2073

Ti = 10 y
Rigid -0.0642 1.7905 -1.4449 -0.5795 0.7764
Semi-rigid 0.0784 0.9549 -0.5718 -0.3565 0.4044
Flexible 0.0878 0.9423 -0.5757 -0.3166 0.4111
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Fig. 2.7 The Figure displays the implied volatility for a set of European call options
written on the value of firms’ equity. Di�erent maturities, labelled by Ti, have been
considered for option contracts. Black, yellow and blue lines refer to the rigid, semi-rigid
and flexible firm, respectively. For the flexible firm, switching costs are set to 0. All the
other model parameters are as in Table 2.1 and the models for the underlying output
price x are GBM, IGBM and CIR.

left-hand-side, few simulated trajectories for the price process x and the related options

exercise boundaries, and, on the right, as many corresponding trajectories of the —E
—x

ratio. Additionally, we considered the expected value of such variable, averaging across

all the simulated paths, and we noticed a decreasing trend over time. This fact once

again highlights that operational flexibility contributes to reduce the riskiness of the

firm by means of its impact on the volatility of cash-flows. In fact, the longer the

horizon the higher the probability to exercise suspension and abandonment options,
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Fig. 2.8 The Figure displays the implied volatility for a set of European call options
written on the value of firms’ equity. Di�erent maturities, labelled by Ti, have been
considered for option contracts. The models for the underlying price process are
three GBM which di�er for the drift coe�cient µ. In particular, given ‡ = 0.30, the
value of the parameter µ has been chosen such that the drift of the return process is,
respectively, negative, null and positive. For the flexible firm, switching costs are set
to 0. All the other model parameters are as in Table 2.1.

with a remarkable e�ect on the uncertainty about earnings, which is reduced; on

average, this makes investing in the firm less risky.
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Table 2.4 The Table reports the value of the ratio —E/—x for each kind of firm according
to di�erent models for the output price process x.

GBM IGBM CIR

Rigid 1.8116 1.8094 1.8094
Semi-rigid 1.1993 0.9514 0.9519
Flexible 1.1918 0.8917 0.9377
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Fig. 2.9 The Figure shows the ratio —E/—x as a function of the switching cost s given
di�erent levels of the current price x0. All the other model parameters are as in Table
2.1.
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Fig. 2.10 The Figure links stochastic price realisations to the —E/—x ratio. The
left-hand-side panel displays four simulated paths for the price process x together
with the optimal real options exercise boundaries. The panel on the right shows the
corresponding trajectories of —E/—X , calculated from equation (2.10) as well as their
expected value obtained by averaging across 20,000 paths.



70 Operational flexibility and firm risk: a real options perspective

2.4 Final remarks and future research directions

In this work, we adopted a real options model to show how operational flexibility a�ects

both the value and the riskiness of firms. We considered three kinds of firms, moving

from the absence of optionalities, passing through the opportunity of irreversibly

abandon the market, and introducing a further level of flexibility by means of reversible

suspension and resumption options. We found that the introduction of flexibility in

the form of real options has an unambiguously positive impact on both raising the

value of companies and on reducing their riskiness.

The e�ects of flexibility on firms’ value and risk that we observed are explained by

the reduction in the variability of firms’ cash-flows achievable through the strategic

exercise of stopping opportunities. In practice, the aforementioned outcomes are

observable in a remarkable reduction in the implied volatility curve obtained for

European equity call options, whatever the moneyness level, and in the cost of equity.

Making reference to the latter point, we highlighted how the beta coe�cient in the

CAPM equation for equity returns, traditionally considered constant, actually has a

stochastic nature. In fact, it turns out to be a function of firms’ output price, uncertain

by assumption. In addition, it also depends on the current state of production of the

company, which is the channel through which the e�ect of the exercise of any real

options propagates.

Our work aims at enriching the literature on corporate risk, traditionally dominated

by studies on default risk, by o�ering a further perspective that links a structural

feature like operational flexibility to key financial risk indicators such as options’ implied

volatility and CAPM’s —. Most important, we consider our study to o�er a promising

foundation for future empirical research endeavours seeking to unravel the intricate

connections between real options and asset prices.
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Moreover, directions for further research include the possibility to expand our model

by accounting for more firm characteristics. First, the existence of corporate debt is

disregarded in our setting. As it is established in the literature, operational flexibility

might give rise to agency costs related to the di�erent goals pursued by managers and

debt-holders; these impact negatively the returns and risk of firms. Including this

component to the model would likely shed additional light on the analysis. Second, we

assumed that all the three kinds of firms share the same model parameters, i. e. they

operate at the same costs; also, the semi-rigid and the flexible firm would obtain

the same scrap value from asset liquidation. It could be realistic to assume that

the technology adopted by such companies is di�erent and related to their degree of

flexibility. Hence, a variety of di�erent model parameters could be used. Even though

we do not expect that this changes would significantly alter our conclusions, their

magnitude could be modified. In particular, it is possible that larger di�erence will

raise between the semi-rigid and the rigid firm. Finally, particularly when referring to

mid and long-term horizons, changes in the level of flexibility could be introduced to

account for the acquisition of new and more e�cient production technologies.





Chapter 3

Flexibility and uncertainty: the

optimal management of a gas-fired

turbine

Abstract

In this paper we propose a real options model for the valuation of a gas-fired power-

generating turbine that can be switched o�-and-on many times according to the

time-varying profitability of energy production over the short-term. In this framework,

we study the e�ect of including several correlated sources of uncertainty - the spot

prices of both electricity and natural gas as well as the latter’s convenience yield - on

the value of operational flexibility, investigating also its determinants and the optimal

production decisions. Interestingly, flexibility turns out to mitigate the e�ect of the

uncertainty around gas’ convenience yield, whilst this last aspect is crucial in the

evaluation of non flexible projects. From a methodological point of view, we exploit

lattice-based valuation techniques, deriving bivariate and trivariate binomial trees for

the underlying processes calibrating the proposed models to the current European
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energy market conditions.

Keywords: Real options; gas-fired turbine; flexibility value; stochastic convenience

yield; trivariate lattice.

3.1 Introduction

An inspection of the mix of resources used for electricity generation in 2022 in the

European Union reveals that, on average, fossil fuels cover the 38.6% of production

needs, with natural gas being the most used input source. Instead, a 40% share is

attributable to renewable sources; moreover, such a percentage is more than doubled

in the last 20 years and is expected to grow as European countries committed to reach

climate neutrality by 2050.1 As a consequence, traditional power plants, in which gas

injection feeds a combustion and compression process that allows to produce electricity

through the activation of a turbine, are assumed to su�er further demand uncertainty.

This fact, together with rapidly changing macroeconomic and geopolitical scenarios,

motivates the need for flexible facilities that allow to e�ciently adjust production

as market conditions change (Glensk and Madlener, 2019; Gonzalez-Salazar et al., 2018).

In this work, we propose a real options model for a flexible gas-fired power-generating

plant that has the option to stop and resume production at multiple dates within

a finite short-term horizon. Stopping and resumption decisions are driven by the

stochastic behaviour of the input and output prices, whose di�erence contributes to the

so called spark spread. Furthermore, we account for the inventory problem implicit in

storable commodities and that is reflected in uncertainty over convenience yields; as a

consequence, we recognise and model the convenience yield of natural gas as stochastic

too.
1Data from the European Council report available here.

https://www.consilium.europa.eu/en/infographics/how-is-eu-electricity-produced-and-sold/
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We document that operational flexibility has a significant impact on the value of

the turbine, with substantial variations against a non-flexible benchmark. Moreover,

we find that ignoring the uncertainty over commodity’s convenience yield leads to

systematically underestimate project values. Additionally, we document the relevance

of the cross-correlations between the underlying state variables, which is sizeable if

compared to the usual impact observed in financial derivatives pricing. Our analysis

highlights the importance of modelling the variability of both the input and the output

in this kind of production problems.

Put into a practical perspective, these results are drawn by means of a real options

framework trying to improve over some of their most renowned critical points. Indeed,

despite several decades of research in real options, related techniques are still not much

used by practitioners; potentially, this is due to the significant degree of simplifying

assumptions on which models rely on: while needed to keep a satisfying tractability

of the model, such hypotheses can be seen as hardly realistic, determining the refuse

of models themselves. Also, the methodologies adopted, such as continuous-time

analytical solutions and Monte Carlo methods, might be perceived as “black boxes” by

managers (Lambrecht, 2017). Hence, on the one hand, we consider a model that

incorporates multiple sources of uncertainty: the input and the output prices and the

convenience yield of the input commodity. On the other hand, we make use of intuitive

lattice based techniques that allow to retain tractability being also transparent and

easy to understand.

Our work is not the first one accounting for three di�erent sources of uncertainty

(see, for example, Abadie, 2015; Elias et al., 2016), and the first contributions on a

stochastic convenience yield dates back to Gibson and Schwartz (1990). However, to the

best of our knowledge, this is one of the first attempts to merge the two points together,
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thus facing the problem of simultaneously handling not only correlated processes, but

also nested ones.

Analogously, lattice based techniques are commonly used when dealing with real

options valuations. Nevertheless, we exploit here their full potential to derive not only

the overall value of the project but also to visualise the underlying optimal strategy.

In particular, we summarise in a simple graph the optimal actions the manager should

take given the current level of state variables.

Summing up, we contribute to the literature in several ways: first, we shed light on

the valuation and of the optimal running policy of a gas-fired turbine for electricity

generation accounting for multiple realistic sources of uncertainty; second, we document

the value of operational flexibility in this environment by means of advanced lattice

based evaluation techniques; third, whilst most of the existing real options models are

related to infinite time-horizons or to long-term projects, we restrict our analysis to a

short-term maturity, looking at infra-annual decisions.

The remainder of the paper is as follows. The next section briefly reviews the

existing literature; an overview of the energy system is provided in Section 3.3, while

the model and the methodology we used are described in Section ??; Section 3.4

presents the numerical analysis; Section 3.5 summarises the results and concludes; last,

minor technicalities are deferred to the Appendix.

3.2 Literature Review

Our work is related to several branches of the literature. Structurally, it belongs to

decision models under operational flexibility and to the research investigating the

impact of alternative stochastic models for underlying variables; it also touches the

point of choosing a proper time-horizon for investment decisions; methodologically,
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it relates to the literature on lattice based algorithms and, in particular, to their

applications to the energy industry. In the following paragraphs we briefly revise the

most relevant contributions within each of these fields.

Corporate investments implicitly includes several kinds of flexibility (Cortazar and

Casassus, 1998; McDonald and Siegel, 1986; Pindyck, 1990). In particular, operational

flexibility is the possibility to switch between alternative states and, starting from

Brennan and Schwartz (1985), it is widely described throughout the whole commodity

literature. For example, the option to reversibly change the input commodity of an

electricity or of a bio-diesel production plant is the core foundation of Abadie and

Chamorro (2008) and of Brandão et al. (2013), respectively. Equivalent models can

be designed for alternative outputs, as in Bastian-Pinto et al. (2009), Dockendorf and

Paxson (2013), Dong et al. (2014) and in Detemple and Kitapbayev (2020).

Being particularly relevant as a risk management tool in presence of uncertain

cash-flows, operational flexibility requires a careful modelling of the underlying drivers

of uncertainty. For many commodity prices, mean-reversion is known to exist (Nomikos

and Andriosopoulos, 2012; Schwartz, 1997b) and to impact investment related decisions

(Sarkar, 2003; Tsekrekos, 2010). Furthermore, factor models can be used to disentangle

the e�ects of short-term shocks and long-run equilibrium, as in Schwartz and Smith

(2000); the Authors also consider the implications for managerial problems and they

highlight that short-term maturity projects are significantly sensitive to short-run

variations. If read in the spotlight of Gibson and Schwartz (1990), then this result

relates to the role played by a stochastic convenience yield.

Tsekrekos et al. (2012) finds that ignoring the stochastic behaviour of the commod-

ity convenience yield leads to significantly underestimate the value of a project with

shut-down and resumption options. Also, Tsekrekos and Yannacopoulos (2016) analyse

the impact of fast mean-reverting stochastic volatility within a similar framework,
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finding that it induce a non-negligible e�ect on the switching frequency and on the

preference of decision makers for keeping production in the active state. All these

findings are in favour of proposing models that investigate deeper not only the impact

of multiple, but also of nested sources of uncertainty.

Choosing the proper horizon for investment-related decision making processes is

a non-trivial problem. A large part of the existing real options literature focuses on

infinite time-horizons. Such a choice is motivated by the desire of getting closed-form

or semi closed-form solutions and it is not in contrast with long-term investments (see

Dixit and Pindyck, 1994 and Trigeorgis, 1996 for an introduction to the topic). However,

for short living projects a similar assumption is potentially misleading. Carmona and

Ludkovski (2008) present a numerical scheme with operational constraints to evaluate

the flexibility of switching between multiple operating regimes in the context of a gas

fired power plant; most importantly, they focus on finite and fixed expiry dates (e. g. 2

years). We make a similar reasoning here, noting that oftentimes strategic decisions

shall cover periods no longer than one year. Furthermore, we restrict our attention to

a predetermined set of monitoring dates (e. g. twice a month), assuming that decisions

are made on a regular basis rather than being taken continuously.

From a computational point of view, lattice algorithms are a powerful tool to deal

with finite life projects and can be adapted to complex valuations of both financial

derivatives (see, for example, Gambaro et al., 2020) and real options. The simplest

approaches resort to the recombining binomial model of Cox et al. (1979), which,

however, is not suitable for approximating the behaviour of mean-reverting economic

variables such as most energy prices. This obstacle is overcome by Hahn and Dyer

(2008), who develop a method based on Nelson and Ramaswamy (1990) to obtain

recombining lattices for homoskedastic mean-reverting stochastic processes. Hahn and
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Dyer (2011) further improve over their previous contribution showing how to represent

two-factor models, also finding a good computational e�ciency. Moreover, lattice

algorithms are seen as more “transparent” than simulation-regression based approaches

and can be easily linked to decision trees (Brandão et al., 2005; Brandão and Dyer,

2005; Guthrie, 2009), thus potentially meeting the favour of managers.

Recombining trees are widely used in the energy sector to manage up to three

sources of uncertainty. Elias et al. (2016) consider a model where all the clean spark

spread components (namely, electricity, gas and carbon prices) exhibit a stochastic

though correlated behaviour. They contribute to determine the value of the option to

switch among di�erent turbines in a gas-fired power plant within a very short horizon of

about 90 days. Abadie et al. (2011) and Abadie et al. (2013) also consider as stochastic

the prices of the input commodities and that of the electricity to evaluate the option

to abandon coal-fired stations in Europe and the flexibility embedded in long-term

investments, respectively. We adopt three drivers of uncertainty as well. However, we

di�erentiate from the existing works because one of our variables - the convenience

yield - is nested into another one - the price of natural gas.

Overall, we contribute to the literature by solving the switching problem of a gas-

fired turbine through a trivariate lattice algorithm that accommodates three sources

of uncertainties of which one is nested. We further di�erentiate from the majority of

the existing works as we emphasise the value of flexibility within a short-term horizon

decision process. Our approach o�ers a robust, yet easy to handle, tool to deal with

complex and more realistic problems embedded in the world of energy.
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3.3 A glimpse into the energy system

In this section we first describe the system of production and distribution of electricity

(Subsection 3.3.1); next, we focus on gas turbines, providing a scheme about the way

electricity is generated (Subsection 3.3.2). Our aim is to give the reader the taste of the

environment we are working in, capturing its main features and being conscious that,

to construct our model, we will certainly need to rely on some simplifying assumptions

over many technical aspects.

3.3.1 The electricity grid

Electricity grid is the name given to the complex network that, from generators, allows

to reach final electricity consumers by means of power transmission lines. In the first

stage, generators produce electricity out of a given fuel. Electricity is then passed

to a first transmission station, where its voltage is increased; this step is required to

counteract the dissipation of energy due to physical frictions and allow the transmission

of electricity to hundreds of kilometres away. However, high-voltage power is not

directly usable neither for industrial nor for domestic purposes, thus, before reaching

the final consumer, a certain number of transmission substation is required to reduce

voltage, making it consistent with consumers’ needs.

Observing the transmission network more closely, we find that the amount of

electricity within the network is called load; the terms base load and peak load refer,

respectively, to the minimum, stable, amount of electricity demanded over the 24 hours

and to sudden, shorter, demand spikes. Peaks are typically related to certain periods

of the day, like working hours, or to weather conditions. To prevent grid breaks, the

amount of energy demanded by consumers and that produced by generators needs to

be in equilibrium at any time instant. This fact clearly imposes restrictions on the type

of energy plants that can satisfy either base load or peak load demand. In particular,
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base load plants must be able to provide the system with a continuous amount of

energy: this is the case, for example, of nuclear plants, particularly expensive and slow

to shut-down but very e�cient while producing. On the other side of the coin, natural

gas power plants typically require lower costs to be shut-down and restarted; their

intrinsic higher flexibility makes them suitable for peak load management too.

3.3.2 Gas-fired turbines

Gas-fired turbines are made of three main chambers: a compressor, a combustion

chamber and the turbine itself. Each one of these components plays a specific role

within a four-steps cycle. Specifically, the air is injected into the compressor and,

from there, fed into the combustion chamber, where it meets the gas. The oxidation

reaction of natural gas has as main products carbon dioxide and high temperature

steam. Hot air then expands into the turbine producing work, which is then converted

into electricity by means of a generator. The cycle ends with a cooling process. By

virtue of its non-storage capacity, the electricity produced is immediately sent to

the electricity grid according to the scheme described in the previous section. The

residual fluid is then wasted in open-cycle gas turbines (OCGT), whilst it is employed

as an input for a second turbine in more e�cient plants known as combined cycle

gas turbines (CCGT). Beside the di�erence in e�ciency, which makes CCGT more

desirable for base load production, one should also account for the lower upfront

costs required by OCGTs, which make them more suitable for small, regional grids

and for peak load energy production. Furthermore, we recall that natural gas is a

mixture of hydrocarbons within which the largest share (on average, the 97%) is given

by methane (CH4) and ethane (C2H6), which, however, represents less than 1% of

the components. Other hydrocarbons are typically present in variable but smaller

percentages and, from a chemical point of view, would absorb part of the thermal
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energy from oxidation. On the one hand, this would have an impact on the amount

of fuel required to produced 1MWh of electricity. On the other hand, di�erences

in gas composition are normally that low that they can safely be ignored from a

modelling point of view; in particular, by focusing on a short time horizon as may

be a year, we intend to minimise the likelihood that the energy producer will change

its supply source, a fact that could increase the di�erences in the quality of the gas itself.

In our analysis, we do not take a position with respect to the type of turbine used.

A case study based on real data should account for the specific costs linked to the

technical characteristics of the plant and the specific market in which it operates. Our

study aims to be more oriented to the development of a basic model that, however,

can be extended taking into account specific constraints of a technical, economic or

regulatory nature with relative ease.

3.3.3 The European market for gas and electricity

The European gas and electricity markets are complex and interdependent. Imports are

a key feature of Europe’s gas market; the primary regions of origin are Russia, Norway,

North Africa, and, increasingly, the United States via liquefied natural gas (LNG). Gas

is then distributed throughout pipelines and storage facilities. Gas’ prices are heavily

dependent on supply and demand dynamics, geopolitical influences, and energy policies.

As such, they experienced significant volatility over the last four years, mainly because

of geopolitical tensions and of the shifts in demand due to the COVID-19 pandemic.

On the other hand, Europe’s electricity market recently transitioned from national

monopolies to competitive markets in which wholesale prices are determined mainly by

demand and supply mechanisms and are a�ected by fuel prices and related generation

costs. As such, we expect to observe a positive correlation between time series of gas
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Fig. 3.1 The Figure displays the time series of weekly log-spot prices for gas and
electricity (panel 3.1a) and of their first di�erences (panel 3.1b) over a 10 years period
(March 2014 - March 2024). Gas prices are labelled by Gt, whilst Et refers to electricity.

and electricity prices.

In order to get a preliminary analysis of the price processes relevant to our study,

we observed the prices of gas and electricity over the last 10 years, i. e. from March

2014 to March 2024. We proxied spot prices with one-day ahead prices. Moreover,

our ultimate goal is the valuation of turbines and the determination of their optimal

running strategy, which we assume to happen at low frequency within the year. For

this reason, we focused on weekly time series. Gas’ data refer to the one day-ahead

contract for the Dutch TTF and have been downloaded from the Intercontinental

Exchange’s website; electricity prices refer to the average 24-hour ahead base load daily

price provided by the European Energy Exchange. We plotted the times series for the

level of log-prices and for their first di�erences in Figure 3.1.

We immediately notice that the levels time series shows a period of disruption

attributable to the e�ects of the COVID-19 pandemic as well as a sudden spike with

persistent e�ect due to the Russian-Ukrainian conflict. Furthermore, neither of the

two time series appears to be stationary, contrary to what appears to their prime



84 Flexibility and uncertainty: the optimal management of a gas-fired turbine

di�erences (Figure 3.1b). Graphic intuition is in line with the results of the Augmented

Dickey-Fuller (Said and Dickey, 1984) and of the Kwiatkowski-Phillips-Schmidt-Shin

(Kwiatkowski et al., 1992) tests, which both suggest the presence of a unit root in the

series of log-prices and the stationarity of first di�erences (see Table 3.1).

Table 3.1 The Table presents the results of the Augmented Dickey-Fuller (ADF) and
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test conducted on the time series of log-
prices for gas and electricity as well as on their first di�ernces. We recall that the ADF
test reads the presence of a unit root as null hypothesis, whilst the KPSS test works on
a trend-stationary null hypothesis. The header “c-value” refers to the “critical value” of
the test.

ADF test KPSS test

p-value Test statistic c-value p-value Test statistic c-value
lnGt 0.516 -0.371 -1.941 0.010 4.910 0.146
lnEt 0.239 -1.126 -1.941 0.010 2.681 0.146

lnGt ≠ lnGt≠1 0.001 -21.459 -1.941 0.100 0.075 0.146
lnEt ≠ lnEt≠1 0.001 -36.304 -1.941 0.100 0.004 0.146

In the remainder of this work, we are going to assume that the price dynamics of

both gas and electricity can be modelled by means of a geometric Brownian motion.

Despite our assumption being in line with most of the existing literature, we wonder

how realistic it is compared to empirical evidence. A first critical point regards the

presence of a seasonal component in energy prices, which is widely documented in the

literature. However, accounting from the observations given in Figure 3.1, it seems

that seasonality is not much pronounced for low frequency data such as weekly ones;

additionally, neglecting intra-daily variations, the behaviour of electricity and gas

prices are qualitatively similar, suggesting that treating both series as if they were

de-seasonalised ones is reasonable. Last, we claim we can “safely” omit to include the

seasonal component in our models as long as we work under the pricing measure, as we

will recall in Remark 3.3.3. However, a limitation of our study consists in not including

jump components, which are a renowned stylised feature of energy prices. Indeed, the
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sample statistics computed for the four time series of interest and collected in Table

3.2 suggest a departure of market data from normality. Nevertheless, values are not

particularly pronounced; we therefore believe that the error of not including jumps is

not too significant and we propose to incorporate them to refine the model in future

research.

Table 3.2 The Table shows the sample mean, standard deviation (Std), skewness and
kurtosis for the levels of log-prices of gas and electricity and for their first di�erences.
The kurtosis of the normal distribution is 3.

Mean Std Skewness Kurtosis

lnGt 3.1311 0.7500 0.8976 4.0125
lnEt 3.9334 0.7019 1.0840 4.3535

lnGt ≠ lnGt≠1 0.0002 0.1159 0.5171 12.5177
lnEt ≠ lnEt≠1 0.0008 0.4104 -0.4873 15.8799

3.3.4 The market model

We present below the dynamics of the input (the natural gas) and of the output (the

electricity) of our production problem. As already discussed in the introduction and in

the literature review of our work, a careful modelling of the input’s convenience yield2

is needed for appropriate investment decisions. Therefore, we first review the role of

the convenience yield within the no-arbitrage analysis of a commodities market model

(Subsection 3.3.4), then we describe a bivariate model with a constant convenience yield

for the gas price process (Subsection 3.3.4) and finally we extend this to a trivariate

model with a stochastic convenience yield (Subsection 3.3.4).
2Notice that the output of our production problem is electricity which is hardly storable. Therefore,

we can safely assume that there is no convenience yield in the output’s price process. On the contrary,
there is strong evidence (see, e.g., Volmer, 2011 and Martínez and Torró, 2023) of the need of a
convenience yield in the natural gas price process.
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Convenience yield in the modelling of commodities

In the modelling of commodities price processes, the convenience yield represents

the advantage or disadvantage that comes from holding physical inventories of the

commodity3 rather than holding a financial instrument that represents the ownership

to that commodity. The (possibly stochastic) net flow of these contributions per unit

of time and commodity is termed convenience yield, labelled by ” (or ”t).

Since the convenience yield captures extra gains (or losses) coming from the direct

ownership of the underlying, it is standard in the literature to treat it as a dividend

yield (Pindyck, 1993). We briefly review below the risk-neutral adjustment that is

needed if a commodity price process features a convenience yield.

Let X = {Xt}tØ0 be the spot price process of a generic commodity and assume

that under the physical (or historical) measure P the dynamics of X is defined by

dXt

Xt
= µtdt+‡tdW

P
t (3.1)

with S0 œ R+ and where W
P = {W

P
t }tØ0 is a standard P-Brownian motion, µt is a

deterministic function of time and of the current level of X possibly capturing the mean

reversion and/or the seasonality of the commodity spot price and ‡t is a strictly positive

deterministic function (of time and of the current level of X). For sake of simplicity

assume that the risk-free rate r is constant4 and let B = {Bt}tØ0 with Bt = e
rt be the

money market account that will serve as a numéraire. Recalling that the (possibly

stochastic) convenience yield ”t represents the proportional benefit, or cost, of holding

one unit of the commodity, the discounted total gain of holding one unit of X over an
3As such, the convenience yield was originally introduced as the price of storage according to a

demand-supply equilibrium model (Kaldor, 1939).
4As noted by Schwartz (1997b), the variability of the short-term interest rate rt is usually an order

of magnitude smaller than the one of the convenience yield ”t, when stochastic.
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infinitesimal period of time dt reads

d
3

Xt

Bt

4
+ ”t

Xt

Bt
dt = Xt

Bt
‡t

A
µt ≠ (r ≠ ”t)

‡t
dt+dW

P
t

B

.

Under an equivalent martingale measure Q this discounted gain must be a martingale;

therefore, under mild integrability assumptions on µt, ‡t and ”t, Girsanov’s Theorem

allows us to define a Q-standard Brownian motion W = {Wt}tØ0 setting

dWt = ⁄tdt+dW
P
t

where ⁄t := µt≠(r≠”t)
‡t

is the possibly time-dependent and state-contingent market price

of risk per unit of X. Therefore, under the physical measure P we can also rewrite the

dynamics of X as
dXt

Xt
= (r ≠ ”t +⁄t‡t)dt+‡tdW

P
t (3.2)

while under the equivalent martingale measure introduced before we have

dXt

Xt
= (r ≠ ”t)dt+‡tdWt. (3.3)

Notice that, by construction, we have that {Xte
≠(r≠”t)}tØ0 is a Q-martingale.

Finally, by a standard no-arbitrage argument, the T -forward5 price of X at time t,

with T Ø t, is equal to

F (t,T ) = EQ [XT |Ft] , (3.4)

where F = {Ft}tØ0 is the filtration generated by (X,”).

5As detailed in Chapter 29 of Björk (2009), if the risk-free interest rate is deterministic, forward
prices and futures prices/quotes coincide.
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It is important to stress the fact that convenience yields are not directly observable

on the market, hence their values must be proxied. Writing equation (3.4) explicitly as

F (t,T ) = Xte
(rt≠”t)(T ≠t)

and following Gibson and Schwartz (1990) and Rotondi (2024), we can obtain an

estimate for the instantaneous convenience yield ”̂t by computing

”̂t = rt ≠ 1
t+ ≠ t

ln
F

1
t, t+

2

Xt
, (3.5)

where F

1
t, t+

2
is the price of the futures contract whose maturity is the closest to t. For

example, if we consider the gas spot price at December 1, 2023, i. e. X0 = 43.940 EUR

and the futures contract with maturity date December 30, 2023, i. e. F (0,0.08years) =

43.496 EUR, and a risk-free rate rt equal to 3.5%, we obtain ”̂t = 16.20%, significantly

di�erent from zero6.

Remark 3.3.1. We highlight here that due to the peculiar change of the probability

which is needed to obtain an equivalent martingale measure, the di�usive coe�cient ‡t

in (3.2), under P, and in (3.3), under Q, stays the same.

Remark 3.3.2. Even7 when ‡t is constant, say ‡t © ‡X œ R+, a di�erent choice of

the drift term in (3.1) generates di�erent dynamics for X and di�erent parameters ‡X .

For example, if we decide to model a commodity spot price process X with a precise µ
Õ
t

and ‡
Õ
t © ‡

Õ
X and then we consider another model for X with µ

ÕÕ
t ”= µ

Õ
t and ‡

ÕÕ
t © ‡

ÕÕ
X , it

must be ‡
Õ
X ”= ‡

ÕÕ
X .

6See Rotondi (2024) to appreciate a 14-years-long time series of convenience yields empirically
obtained following equation (3.5).

7We thank an anonymous Referee for pointing out this crucial issue.
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Deterministic convenience yield

We first assume that the convenience yield of our input, namely the gas, is constant.

Let (�,F ,F = {Ft}tØ0 ,Q) be a filtered probability space, where Q is a pricing

measure. Under Q, the (spot) price processes of the gas, G := {Gt}tØ0 and of the

electricity, E := {Et}tØ0 solve

Y
__]

__[

dGt = (r ≠ ”)Gtdt+‡
bi
GGtdW

G
t

dEt = rEtdt+‡EEtdW
E
t

(3.6)

with two initial conditions G0,E0 œ R+ and where r œ R is the riskless short-term

interest rate, ” œR is the constant convenience yield of the input, ‡
bi
G œR+ and ‡E œR+

are the volatilities of the two prices and {W
G
t }tØ0 and {W

E
t }tØ0 are two standard

Brownian motions under Q with instantaneous correlation equal to flGE œ (≠1,1). In

words, we assume that under Q, G and E are two correlated geometric Brownian

motions.

Remark 3.3.3. Working with spot prices under an equivalent martingale measure

spares us from taking a stand on the seasonality and on the mean-reversion properties8

the price processes would exhibit under the historical measure9. Indeed, since under

Q both {Gte
(”≠r)t}tØ0 and {Ete

≠rt}tØ0 must be martingales, their precise drifts under

the historical measure are irrelevant.

Finally, it is worth to acknowledge that our models neglect jump components that would

be there even under a risk-neutral specification; however, the lattice-based valuation

techniques we will exploit can be extended to jump-di�usive settings following Amin

(1993).
8See, e.g., Geman (2008); Geman and Shih (2008); Lucia and Schwartz (2002); Roncoroni et al.

(2015).
9When considering forward or futures prices instead, Latini et al. (2019) and Benth et al. (2019)

show how to account for mean-reversion even under a pricing measure.
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Definition of spark spread

When switched on, our turbine produces electricity out of gas. The company’s theoret-

ical gross margin from selling one unit of electricity produced by the turbine is called

spark spread, that we label by S := {St}tØ0. At each point in time, this quantity is

defined as

St := Et ≠ Gt

÷E
. (3.7)

Notice that since the linear combination of geometric Brownian motions is not a

geometric Brownian motion itself, the dynamics followed by S is not a standard one.

The parameter ÷E œ (0,1), typically called thermal e�ciency, measures the amount

of fuel needed to generate a certain amount of work, and, consequently, of electricity

(usually, 1 MWh).

From a strictly technical viewpoint, turbines’ actual e�ciency is related to the

general features of the plant - for example, a CCGT would be more e�cient than

an OCGT - as well as to the materials used in its construction and to the chemical

composition of gas. As such, thermal e�ciency could be regarded as a time-varying

quantity. However, in spark spreads’ market quotations, ÷E has much an economic

than a physical meaning; indeed, it is a Country specific constant. Data from ICE

(Intercontinental Exchange) show that the reference value of ÷E is set 50% for Dutch,

German and Italian spark spreads and to 49.13% for the UK. In what follows, we will

adopt this line keeping ÷E fixed across the whole analysis; nevertheless, should it be

desired, time-dependency is a�ordable, as it will be pointed out in Remark 3.3.6.

Finally, we acknowledge that some value is potentially dismissed when a turbine

that has been stopped for a while needs to be restarted because the inertial benefit of

residual heat is wasted: we will let this loss to be conveyed into the so called switching

cost.
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Stochastic convenience yield

We now extend the input-output model described in the previous subsection removing

the assumption of a constant convenience yield in the input price process. Following

the seminal works of Gibson and Schwartz (1990) and Casassus and Collin-Dufresne

(2005) we assume that under Q the convenience yield ” := {”t}tØ0 follows a mean

reverting Ornstein-Uhlenbeck process. Therefore, the stochastic di�erential equations

driving this extended market models read

Y
______]

______[

dGt = (r ≠ ”t)Gtdt+‡
tri
G GtdW

G
t

d”t = –

1
”̄ ≠ ”t

2
dt+‡”dW

”
t

dEt = rEtdt+‡EEtdW
E
t

(3.8)

with an extra initial condition ”0 œ R. The meaning of the parameters for G and E

remains unchanged from the previous subsection while – œ R+ represents the speed of

mean reversion of the stochastic convenience yield towards its long-run mean ”̄ œ R

and ‡” œ R+ is its volatility. Moreover, we assume that the instantaneous correlation

between W
” and W

G (resp. W
E) is equal to flG” œ (≠1,1) (resp. fl”E œ (≠1,1)).

We point out here that, according to Remark 3.3.2, the volatility parameter of G in

this augmented model, ‡
tri
G , di�ers from the one in the previous simplified model, ‡

bi
G.

In particular, in this augmented model part of the observed variability of G is due to

the variability of ”t, which impacts G’s drift term. On the contrary, according to the

previous version of the model, the constant ” contributes in no way to the variability

of G. Following this consideration, if G and ” have a positive correlation, we expect

data to support ‡
bi
G > ‡

tri
G .
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3.3.5 The valuation problem

The optimal production problem faced by the manager of the turbine is a one-

dimensional optimal switching problem. In particular, the manager has to decide

when let the turbine operate balancing the costs of the input (the natural gas) and the

output (the electricity) and the fixed costs that she bears when the turbine is operating

and when it is not.

Fix a time horizon T . Inspired by the notation of Bayraktar and Egami (2010) let

I := {It}tœ[0,T ] œ {0,1} be a right-continuous switching process defined by10

It = J0 +
ÿ

nœN0

Jn1(·n Æ t < ·n+1) (3.9)

where {Jn}nœN œ {0,1} is a discrete time stochastic process such that Jn+1 = 1≠ Jn

for all n œ N and · := {·n}nœN is an increasing sequence of (controlled) F-stopping

times on [0,T ]. Here, process I represents the status of the turbine at time t: if It = 1

the turbine is operating at time t if It = 0 it is not; process J represents the status

of the turbine right after the n
th switching decision; the sequence of stopping times ·

represents the switching times decided by the manager of the turbine.

The operating cash-flow X(St,It) generated by the turbine is equal to

X(St,It) :=

Y
__]

__[

(St ≠ c11) if It = 1

(≠c00) if It = 0
(3.10)

where c11 œ R+ (resp. c00 œ R+) is the fixed cost of the turbine if operating (resp.

suspended).
101(A) denotes the indicator function of the event A.
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The immediate switching costs H(Jn,Jn≠1) are equal to

H (Jn,Jn≠1) :=

Y
__]

__[

c10 if Jn ≠Jn≠1 = ≠1

c01 if Jn ≠Jn≠1 = 1
(3.11)

where c10 œ R+ (resp. c01 œ R+) is the switching cost of turning o� (resp. on) the

turbine, moving from Jn≠1 = 1 to Jn = 0 (resp. from Jn≠1 = 0 to Jn = 1).

Given the initial value of the spark spread S0 and the initial status of the turbine

J0 = I0, the optimal value of the turbine (possibly) operating from time zero to time T

is

sup
·

E
S

U
⁄ T

0
e

≠rt
X(St,It)dt≠

ÿ

nœN0

e
≠r·nH (Jn,Jn≠1)

------
S0,J0

T

V (3.12)

where functions X and H, defined in (3.10) and (3.11), depend on the state variable S,

defined in (3.7), and on the · -controlled processes I and J , defined in (3.9).

Finding the optimal value of the problem in (3.12) where the state variable (which

is here the spark spread S) is not a “standard” process (like a generalised/geometric

Brownian motion) is quite challenging. Moreover, it is not realistic to assume that

the manager can/will switch the turbine’s status infinitely many times over a fixed

time horizon [0,T ]. On the contrary, it might be reasonable to assume that the man-

ager decides on the turbine’s status on a regular basis, like at the beginning of each

week/month, observing the evolution of the prices of the natural gas and of electricity.

Following this realistic approach to the optimal switching problem in (3.12), we restrict

the possible switching times to a set of monitoring dates and we solve the resulting

problem by dynamic programming.
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Given the time interval [0,T ], consider its uniform partition � := {ti}i=0,...,m, with

ti := i�t and where m œ N is the number of time steps and �t := T
m . Restrict now

the sequence of stopping times · to �, namely consider ·̃ := {·n}nÆm, an increasing

sequence of (controlled) F-stopping times on �. As a consequence of this restriction,

the manager can change the status of the turbine only at the beginning of each period:

if Iti = 1 (resp. Iti = 0), with ti œ �, the turbine will operate (resp. will not operate)

over the interval [ti, ti+1[. Accounting for this restriction, the optimal value of the

turbine reads

sup
·̃

E
S

U
ÿ

tiœ�\{T }
e

≠rti
1
X(Sti ,Iti)�t≠ c011(Iti ≠ Iti≠1 = 1)≠ c101(It ≠ Iti≠1 = ≠1)

2
------
S0,I0

T

V .

(3.13)

Remark 3.3.4. While it is straightforward to account for instantaneous switching costs

c10 and c01 when moving from the continuous time problem (3.12) to its discretised

counterpart in (3.13), it is less so for operating cash-flows X. Given the uniform

partition � of [0,T ], we can write
s T
0 e

≠rt
X(St,It)dt = qm≠1

i=0
s ti+1
ti

e
≠rt

X(St,It)dt.

Then, it is necessary to proxy each continuous integral
s ti+1
ti

e
≠rt

X(St,It)dt. We decide

to do this in a simple way and we approximate each integral by e
≠rtiX(Sti ,Iti)�t,

which implies an accounting of the profit/loss that is going to be generated from ti

to ti+1 as of the market values of input/output at time ti. While the input must be

purchased at the beginning of the production period at the ti-price, the output is likely

to be sold at the end of it at the ti+1-price. However, given also the relatively small �t

we consider, we assume here that the output is sold forward at the ti-price. Numerical

tests in Appendix C.2 show that a slightly more sophisticated approximation rule for
s ti+1
ti

e
≠rt

X(St,It)dt, like a trapezoidal rule, delivers almost identical results while being

a little less straightforward to justify at an economic level.
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We acknowledge that the optimal value of (3.13) converges to the one of (3.12) only

as �t æ 0 and that any choice of a finite �t delivers a discretisation bias. However,

our goal here is to evaluate the turbine assuming a realistic finite set of switching dates

and not to find the best numerical approximation to the continuous time problem in

(3.12). Anyway, the numerical experiments collected in Appendix C.2 show that the

optimal values of (3.13) are quite stable after a relatively small number of monitoring

dates m; moreover, they also show that in the only case in which (3.12) can be evaluated

almost perfectly (which happens for static turbine when the convenience yield of natural

gas is assumed to be constant, see below) the approximated value we get solving (3.13)

is comparable even using a relative small number of steps.

One of the main goal of this study is to asses whether flexibility has a relevant

(economic) value in this production problem. Here we define “flexibility” as the

possibility of switching on/o� the turbine.

The manager of a flexible turbine can switch it on-and-o� timely, sticking to the

optimisation problem in (3.13). The manager of a static turbine can not intervene

on its status, which is assumed to be always operating, even when generating a loss

(namely, when the net spark spread is negative).

The value of a static turbine reduces to

V
S

0 (S0,1) = E
S

U
ÿ

tiœ�\{T }
e

≠rtiX(Sti ,1)�t

T

V =
ÿ

tiœ�\{T }
e

≠rti�tE [Sti ≠ c11] . (3.14)

If the convenience yield of the gas price process is constant (namely, if we consider the

bivariate model described in Subsection 3.3.4), the expected value at time ti of the

spark spread can be computed explicitly and we get

V
S,bi

0 (S0,1) =
ÿ

tiœ�\{T }
e

≠rti�t

A

E0e
rti ≠ G0e

(r≠”)ti

÷E
≠ c11

B

. (3.15)
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If the convenience yield of the gas price process is stochastic (namely, if we consider the

trivariate model described in Subsection 3.3.4), the expected value at time ti can not

be computed explicitly but V
S

0 (S0,1) in (3.14) can be computed by standard Monte

Carlo techniques.

The valuation of a flexible turbine is more challenging and relies on dynamic

programming techniques.

3.3.6 The dynamic programming algorithm

We solve the problem in (3.13) by backward induction. For all ti œ � let Vti(Sti ,Iti)

denote the optimal (i.e. the one obtained sticking to the optimal switching policy)

value of the turbine whose current status is Iti and when the spark spread is equal to

Sti .

At T = m�t there is no decision to take nor any profit to account for.

At T ≠�t the manager decides whether to let the turbine operate between dates

T ≠�t and T based on the turbine’s status at time T ≠�t. If the turbine is already

producing (IT ≠�t = 1), the manager compares the cash-flow (evaluated at the T ≠�t-

prices) from keeping the production on ((ST ≠�t ≠ c11)�t) to the cash-flow from the

switching and leaving the turbine o� (≠c10 ≠c00). On the contrary, if the turbine is not

producing already (IT ≠�t = 0), the manager compares what she would get switching the

turbine on and paying the related operating and switching costs ((ST ≠�t ≠c11)�t≠c01)

to what she would get leaving the turbine o� (≠c00). In formulae, we have:

VT ≠�t(ST ≠�t,IT ≠�t) =

Y
__]

__[

max{(ST ≠�t ≠ c11)�t,≠c00 ≠ c10} if IT ≠�t = 1

max{(ST ≠�t ≠ c11)�t≠ c01,≠c00} if IT ≠�t = 0
(3.16)

At each other monitoring date ti, depending on the status of the turbine at ti, the

manager decides whether to let the turbine operate between dates ti and ti+1. She



3.3 A glimpse into the energy system 97

does so accounting on the one hand for the immediate profit/loss of this action as of

the market values of input/output at time ti and on the other hand for the discounted

expected value of the optimally run turbine given the status in which it will be left

at ti+1. The recursive relationship (i.e. the Bellman equation) between the value

functions at two generic dates ti and ti+1, i = 0, ...,m≠2, reads

Vti(Sti ,Iti) =

Y
__________]

__________[

max
Ó
(Sti ≠ c11)�t+ e

≠r�tE
Ë
Vti+1(Sti+1 ,1)

---Fti

È
,

≠c00 ≠ c10 + e
≠r�tE

Ë
Vti+1(Sti+1 ,0)

---Fti

ÈÔ
if Iti = 1

max
Ó
(Sti ≠ c11)�t≠ c01 + e

≠r�tE
Ë
Vti+1(Sti+1 ,1)

---Fti

È
,

≠c00 + e
≠r�tE

Ë
Vti+1(Sti+1 ,0)

---Fti

ÈÔ
if Iti = 0

(3.17)

where

Sti+1 = Eti exp
AA

r ≠ ‡
2
E

2

B

�t+‡E

1
W

E
ti+1 ≠W

E
ti

2B

+

≠Gti

÷E
exp

AA

r ≠ ‡
2
G

2

B

�t≠
⁄ ti+1

ti

”tdt+‡G

1
W

G
ti+1 ≠W

G
ti

2B

.

Remark 3.3.5. Several constraints can be added to the original problems in (3.12)

and (3.13). For example, conditional on a given set of values of the state variables,

the manager of the turbine could be forced to always produce electricity (even if facing

a negative spark spread) to satisfy a large demand. This or other restrictions to the

switching policy can be implemented in the recursive step in (3.17) and would yield a

value of the turbine lower than the one obtained sticking to an optimal unconstrained

policy.

From a practical point of view, we implement the backward recursion described

in (3.17) along a bivariate (resp. trivariate) lattice discretisation of the market model

described in Subsection 3.3.4 (resp. 3.3.4). As the dynamics of the spark spread
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(defined by 3.7) is not standard, we first discretise the primary processes E and G (and

”) and then we compute the values of S, node by node.

The lattice discretisations we use are derived following Hahn and Dyer (2008) that

extend the lattice approximation of di�usions described by Nelson and Ramaswamy

(1990) to the bivariate case. All the related formulae and technical details are deferred

to Appendix C.1.

Remark 3.3.6. One of the many advantages of our lattice-based valuation approach is

that it allows for a straightforward extension to time-dependent and state-contingent

parameters. Since the valuation algorithm works backward, node by node, all the

parameters (like the thermal e�ciency ÷E or the fixed/switching costs cij, i,j = 0,1)

could also depend on the current time and/or the current value of the state variables.

This would neither complicate nor slow down the valuation algorithm.

3.4 Numerical Illustration

In the following, we first calibrate our market models to current market conditions

(Subsection 3.4.1), then, using realistic parameters, we compute a benchmark value

of the turbines (Subsection 3.4.2); we then proceed with an extensive analysis of the

sensitivity of our benchmark values to changes: in the level (Subsection 3.4.3) of the

convenience yield and of its uncertainty (Subsection 3.4.4); in the market parameters

(Subsection 3.4.5) and, in particular, in the correlations between state variables (Sub-

section 3.4.6). Finally, we inspect the optimal switching policy (Subsection 3.4.7).

Across our study, we always compute the quantity

V
k,tri

V k,bi ≠1, (3.18)
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with k œ {S,F}, to measure how much the value of the projects varies when accounting

for the uncertainty over the convenience yield (trivariate model, tri) compared to the

case when it is constant (bivariate model, bi). We recall that the static firm (k = S) is

committed to operate all time, whereas the flexible (k = F ) can switch production o�

and resume it when convenient.

3.4.1 Estimation of the models

In order to get realistic parameters for our numerical investigations and to understand

which specification of the convenience yield for the natural has works better, we perform

a simple but e�ective calibration of the models in Subsection 3.3.4 to current market

data. In particular we calibrate the models as of t0 = December 1, 2023.

First of all, we need to identify a reliable proxy for the spot price processes of the

natural gas G and of electricity E within the European energy market. For both these

commodities we decide to proxy spot prices by one-day ahead prices. As our ultimate

goal is to value a static/flexible turbine, we neglect infra-day movements and consider

only daily settlement prices. As far as the natural gas is concerned, we consider the

one day-ahead contract for the Dutch TTF11 as provided by ICE (Intercontinental

Exchange). For electricity, we consider the average 24-hour ahead base load daily price

provided by EEX (European Energy Exchange). As of t0 = December 1, 2023, we have

G0 = 43.94 EUR/MWh and E0 = 116.41 EUR/MWh.

Since the convenience yield of natural gas is not directly observable, we have to

retrieve it from futures prices using (3.4). Therefore, we collect also the settlement

price of futures contracts on natural gas (as provided by ICE) with residual maturity

less than one year (which is our investment horizon).
11The TTF (Title Transfer Facility) is a virtual trading point for natural gas in the Netherlands,

which has become one of the most important hubs for natural gas trading in Europe.
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Calibration of the deterministic convenience yield model

Since spot prices are observed under the physical measure P, we first have to map

the risk-neutral expression of the deterministic convenience yield model in Subsection

3.3.4 to its physical counterpart. Following the arguments in Subsection 3.3.4, the

risk-neutral SDEs in (3.6) become

Y
__]

__[

dGt =
1
r ≠ ” +⁄

G
‡

bi
G

2
Gtdt+‡

bi
GGtdW

P,G
t

dEt =
1
r +⁄

E
‡E

2
Etdt+‡EEtdW

P,E
t

(3.19)

where ⁄
G and ⁄

E are the constant market prices of risk of natural gas and electricity.

For any given �t, the t-conditional log solutions of these SDEs read

Y
____]

____[

ln Gt+�t

Gt
=

A

r ≠ ” +⁄
G

‡
bi
G ≠ (‡bi

G)2

2

B

�t+‡
bi
G

1
W

P,G
t+�t ≠W

P,G
t

2

ln Et+�t

Et
=

A

r +⁄
E

‡E ≠ ‡
2
E

2

B

�t+‡E

1
W

P,E
t+�t ≠W

P,G
t

2

where r
G
t := ln Gt+�t

Gt
and r

E
t := ln Et+�t

Et
are the log returns of G and E. This implies

that we can estimate ‡
bi
G, ‡E and flEG as

‡̂
bi
G =

Ú
V̂

Ë
r

G
t

È
�t

‡̂E =
Ú

V̂

Ë
r

E
t

È
�t

fl̂EG = ˆCorr

Ë
r

E
t ,rG

t

È

where V̂ [·] and ˆCorr [·] are the sample variance and the sample correlation. As

highlighted in Remark 3.3.1, the volatility coe�cients of G and E are formally the same

under P and under Q and, therefore, in our numerical experiments, we are going to rely

on the sample estimates described above. We acknowledge that we could also consider
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implied volatilities. However, this alternative approach would require an analysis of the

natural gas/electricity option markets, which is out of the scope of the present work12.

Using the last four13 years of data we obtain ‡̂
bi
G = 1.1044, ‡̂E = 1.9689 and fl̂EG =

0.4015. As expected the natural gas and the electricity markets are extremely volatile

and exhibit a positive correlation.

Unfortunately, it is impossible to identify ” and ⁄
G from the sample mean of r

G
t .

Therefore, in order to estimate ”, we rely on futures prices. When the convenience

yield is deterministic, futures prices in (3.4) simplify to

F (t,T ) = Gte
(r≠”)(T ≠t).

Once a proxy for the risk-less rate r is chosen, we can retrieve an estimate of ”

minimising the mean squared pricing error, namely setting

”̂ = argmin
”œR

ÿ

i

1
F

mkt(0,Ti)≠G0e
(r≠”)Ti

22
(3.20)

where {Ti}i is the set of maturities of the futures contracts of interest and {F
mkt(0,Ti)}i

are their t0-market prices. Setting r = 0.0350, computed as the average spot rate of

the AAA-rated European Government bonds with maturity less than one year, and

considering the twelve monthly future contracts with delivery dates from January 2024

to December 2024 we get ”̂ = 0.0571. The residual mean squared pricing error is equal

to 38.31. Considering that this calibration exercise involves twelve futures prices, only

one parameter (”) and that the variance of the squared residual pricing errors is equal
12Moreover, unless there exists a derivative written on both G and E that would allow to retrieve an

estimate of implied flEG, we should always rely on an historical estimate for the correlation between
the two spot price processes.

13We opted for a lengthy time series to mitigate to some extent the significant disruption caused by
the unprecedented turmoil in the energy markets stemming from the Ukraine-Russia war that began
in 2022.
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to 55.66, the classical information criteria for this model are equal to: 4.19 (Akaike

IC), 4.43 (Schwarz Bayesian IC), 4.17 (Hannan-Quinn IC).

Calibration of the stochastic convenience yield model

If the convenience yield is stochastic, working out the log solution for G under the

physical measure P is of no help. Indeed, following what we did in the previous

subsection, we get

ln Gt+�t

Gt
=

A

r +⁄
G

‡
tri
G ≠ (‡tri

G )2

2

B

�t≠
⁄ t+�t

t
”sds+‡

tri
G

1
W

P,G
t+�t ≠W

P,G
t

2

and the sample variance of r
G
t is not an estimator for ‡

tri
G anymore. Indeed, the

theoretical (t-conditional) variance of r
G
t now reads

V

5
ln Gt+�t

Gt

6
= V

C⁄ t+�t

t
”sds

D

+
1
‡

tri
G

22
�t+

+2‡
tri
G Cov

C⁄ t+�t

t
”sds,WP,G

t+�t ≠W
P,G
t

D

since, as already pointed out in Remark 3.3.2, the variability of G is now partially due

to the variability of ”t. Nevertheless, we can retrieve ‡
tri
G (along with the parameters

of ”t) from futures prices. When the convenience yield is stochastic, the expected value

in (3.4) rewrites as

F (0,T ) = G0E
C

exp
AA

r ≠ (‡tri
G )2

2

B

T ≠
⁄ T

0
”sds+‡

tri
G W

P,G
T

BD

(3.21)

and if ”t follows an Ornstein-Uhlenbeck we can adapt the computations in Schwartz

and Smith (2000) and obtain

F (0,T ) = G0e
rT +A(T )≠B(T )”0
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where

B(T ) = 1
–

1
1≠ e

≠–T
2

A(T ) = –”̄ +‡
tri
G ‡”flG”

–2
1
1≠ e

≠–T ≠–T

2
+ ‡

2
”

–3
1
2–T ≠3+4e

≠–T ≠ e
≠2–T

2
.

Fitting the market futures curve with (3.21), we can retrieve an estimate of the

parameters � = {‡
tri
G ,flG”,”0, ”̄,–,‡”} as

�̂ = arg min
�œD

ÿ

i

1
F

mkt(0,Ti)≠G0e
rTi+A(Ti)≠B(Ti)”0

22
(3.22)

where D is a six dimensional domain for �14.

In the same framework of the calibration performed in the previous section, we

obtain: ‡̂
tri
G = 0.5814, fl̂G” = 0.9261, ”̂0 = 0.0971, ˆ̄

” = ≠0.0597, –̂ = 0.0735 and ‡̂” =

0.6968. The residual mean squared pricing error is equal to 2.49. Considering that this

calibration features now six parameters and that the variance of the squared residual

pricing errors is equal to 0.0431, the three information criteria for this model are equal

to: -1.97 (Akaike IC), -0.25 (Schwarz Bayesian IC), -2.08 (Hannan-Quinn IC).

As it appears from these measures, the stochastic convenience yield model outper-

forms the deterministic convenience yield one even when accounting for the increased

number of parameters. This fact can be also visualised graphically in Figure 3.2, where

we plotted the futures market prices alongside the forward curves obtained from the

estimated values of ” - namely, ”̂, resulting from (3.20) - and of the set of parameters

�̂ - obtained after solving (3.22).

Indeed, this model is able to capture the variability of the time-varying convenience

yield, which, over a one year time horizon, is expected to even change sign, moving
14In particular we set D = ((0,2), (≠1,1), (≠1,1), (≠1,1), (0,50),(0,2)). Since (3.22) is high-

dimensional, when solving it we draw uniformly from D many di�erent initial guesses �0 in order to
reach the global minimum and not one of the many local minima.
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Fig. 3.2 The Figure displays futures market prices against the forward curve obtained
as a function of the convenience yield in the bivariate (panel 3.2a) and in the trivariate
model (panel 3.2b with the values of ˆdelta and ”̂t resulting from the minimisation
problems in (3.20) and (3.22), respectively.

from a positive ”0 towards a negative ”̄. This behaviour depends of course on the

seasonality of the natural gas market. This calibration exercise is carried out at the

beginning of December, when the demand for natural gas is at its peak. This is clearly

an advantage for the holders of the physical commodity and it translates into a positive

convenience yield. Moving forward towards the next spring and summer, the demand

for natural gas will probably slow down, making storage costs overcome the benefits of

a physical possession of the commodity. This situation will lower the convenience yield

making it negative. Moreover, it is interesting to notice how the hypothesis made at

the end of Subsection 3.3.4 about ‡
tri
G < ‡

bi
G is verified in the data.

The nature of the convenience yield of natural gas does not impact the estimation

of ‡E , for which we use again the square of the sample variance of r
E
t . As for the

remaining parameters of the trivariate model, flGE and flE”, there is no formal way

to retrieve them without bringing in derivatives written on both G and E. Therefore,

we keep using the sample correlation between r
G
t and r

E
t for flGE and we claim that
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flE” is slightly smaller than flGE since the correlation between E and ” is most likely

channelled through G.

Table 3.3 collects the parameters that we are going to use for our numerical

experiments. Market parameters are a simple rounding of the ones obtained through the

calibrations described above while operational parameters are adapted from Tsekrekos

et al. (2012).

Table 3.3 The Table summarises the benchmark parameters of the numerical exercises
of Section 3.4.

Notation Value Description
E0 115 EUR/MWh Initial electricity price
‡E 2 Volatility of the electricity price
G0 45 EUR/MWh Initial natural gas price
‡

bi
G 1.1 Volatility of the natural gas price in the bivariate model

‡
tri
G 0.6 Volatility of the natural gas price in the trivariate model
” 0.05 (Deterministic) convenience yield in the bivariate model
”0 0.1 Initial convenience yield value in the trivariate model
‡” 0.7 Volatility of the convenience yield
– 0.1 Speed of mean-reversion of the conv. yield towards ”̄

”̄ -0.05 Long-run mean level of the convenience yield
flEG 0.4 Correlation coe�cient between W

E and W
G

flE” 0.1 Correlation coe�cient between W
E and W

”

flG” 0.9 Correlation coe�cient between W
G and W

”

c11 5 EUR/MWh Costs related to the production of electricity
c00 0 EUR/MWh Maintenance costs paid when the turbine is o�
c01 150 EUR Cost of switching-o� the turbine
c10 150 EUR Cost of switching-on the turbine
÷E 0.5 Coe�cient of electrical e�ciency
T 1 year Horizon
m 24 Number of monitoring dates
r 0.035 Risk-less interest rate
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3.4.2 Turbines valuation

Our starting point is the computation of the value of the static and flexible turbines

according to the set of parameters in Table 3.3. We report our preliminary results,

rounded to the unit, in Table 3.4.

At first glance we appreciate that, for each kind of turbine, the bivariate model

returns a value lower than that produced by the trivariate one. The di�erence is highly

significant for the static turbine (36.8%), but it becomes considerably lower when

flexibility comes into play, reaching a variation of about 1.3%. Furthermore, within

each model we can measure the value added by flexibility as the percentage variation

in the value of the flexible turbine over that of the static one. Noticeably, the value of

the flexible turbine is 3.87 times that of the static one in the bivariate case and 2.60 in

the trivariate scenario, thus signalling how impactful is operational flexibility as a real

option.

These findings are of utmost importance. First, they suggest that neglecting the

existing uncertainty over the convenience yield of gas leads to underestimate the value

of the project, coherently with Tsekrekos et al. (2012), regardless the presence of

embedded options. Second, and perhaps most important, they tell us that the error is

larger in absence of operational flexibility. In the following we investigate how sensitive

are these quantities to changes in the main model parameters by means of some

comparative analyses and keeping the numerical results in Table 3.4 as benchmarks.

Table 3.4 The Table summarises the (rounded) present values of the Static/Flexible
turbine within the bivariate/trivariate market models introduced in the previous
section conditional on the turbine operating at time zero. Parameters as in Table 3.3.

V (S0,1)S/F ,bi/tri
bi tri

S 174’575 218’857
F 475’518 490’782
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Fig. 3.3 The Figure displays the value of each turbine as a function a constant
convenience yield ” (a) and of the long-run mean of the stochastic stochastic convenience
yield ”̄ (b). Panels c and d show the impact of adopting a stochastic convenience yield
rather then keeping it constant.

3.4.3 The impact of the convenience yield

We consider the sensitivity of the value of the turbines to changes in the convenience

yield implied in gas prices. According to expectations, Figure 3.3 shows that the value

of any turbine is substantially increasing with the level of this parameter when we

keep it constant (3.3a), as well as with its equilibrium level ”̄ when we let it fluctuate

stochastically (3.3b).

Moreover, the e�ect is more pronounced for the static turbine, consistently with the

fact that the convenience yield enters with a negative sign in the drift of the gas price
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process, thus reducing its expected value, ceteris paribus. The natural implication is a

larger expected spark spread, which also decreases the probability to switch between

states as well as the value of flexibility - proved by the flexible curve being flatter than

the static one. In a mirror, if the convenience yield converges to a negative level in the

long-run, then the variance of the gas process is increased and flexibility has greater

value. In fact, the option to switch production o�-and-on is more valuable when the

uncertainty over the project cash-flows is larger. Consequently, as shown in 3.3c, the use

of a richer model that includes a stochastic convenience yield is increasingly beneficial

with the average level of the parameter ”̄, as it avoids to significantly mis-estimate the

value of the turbine, particularly that of the static one. Noticeably, such a conclusion

holds true independently of the long-run mean value of the convenience yield being set

equal with the initial one (3.3d).

3.4.4 The e�ect of convenience yield uncertainty

In Figure 3.4, we further look at the e�ect on the turbines value of the parameters

driving the uncertainty over the convenience yield. Qualitatively, converging towards

higher levels of ”̄ - unconstrained from ”0 - positively a�ects the value of any turbine.

The impact is observable across all the speed of mean-reversion, though being more

pronounced for the highest ones (3.4a); this fact can be explained by the joint increase

in the mean and reduction in the variance of the convenience yield linked to the increase

in ”̄ and –, respectively.

Instead, altering the variance of the convenience yield process has substantially

no e�ect on the static turbine, whilst it causes appreciable variations in the value of

the flexible one, as shown in 3.4c. A lower speed of mean reversion, together with a

higher level of the volatility parameter ‡”, increases the variance of the convenience

yield, suggesting higher uncertainty also over the gas price and the profit generated
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Fig. 3.4 The Figure displays the value of each turbine and the impact of including
a stochastic convenience yield as functions of the speed of mean reversion – and of
the long-run mean ”̄ (panels a and b) as well as functions of – and of the volatility
parameter ‡” (panels c and d).
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by the turbine. From a theoretical perspective, operational flexibility smooths out

increasing uncertainties, which, instead, have great impact on static assets. Our

findings, displayed in Panels 3.4b and 3.4d, are consistent with this prescription, as

we notice that the value of the flexible turbine is comparatively less sensitive to the

passage from a bivariate to a trivariate model than that of the static one, for which

we have that the higher the variance of the convenience yield, the larger the error

committed if assuming it is constant over time.

3.4.5 The influence of main market parameters

According to the definition of spark spread introduced in (3.7) and to the value function

of the turbine from (3.13), the higher the initial electricity price compared to that of gas,

the higher the value of the turbine. This is easy to observe in the left panels of Figure

3.5, where the value of the flexible turbine monotonically increases with E0 for any

given value of G0; however the e�ect is more pronounced for lower gas prices, as proved

by the variation in the slope of the surface moving along the G0-axis. Furthermore,

there are no qualitative di�erences neither when moving from the bivariate (3.5a) to

the trivariate (3.5c) model, nor when looking at the static turbine (for the sake of

readability, the corresponding plots have been omitted). The right panels provide

a valuation of flexibility for both the bivariate (3.5b) and trivariate (3.5d) model,

respectively. Comparing each entry in the two matrices, we notice that the bivariate

model is slightly more sensitive to operational flexibility.

Figure 3.6 shows that the value of the static turbine is insensitive to changes the

volatility of electricity and gas in the bivariate case (3.6a), consistently with the closed

formula for V
S,bi

0 (S0,1) in (3.15). Instead, flexibility is particularly valuable when the

operating cash-flows are significantly uncertain, particularly because of highly volatile

electricity prices and regardless the assumption over convenience yield. Despite being
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Fig. 3.5 The left-hand-side panels (a, c) show the value of the flexible turbine as a
function of the initial prices for gas (G0) and electricity (E0). Right panels provide a
numerical map of the value of flexibility as a percentage increase of the value of the
flexible turbine over that of the static one. Upper panels refer to the bivariate model,
whilst bottom panels derive from the trivariate one. The value of the static turbine in
a and c mimics that of the flexible one, hence it has been omitted for readability. For
the same reason, percentage values larger than 500% have not been reported in b and
d should be thought as belonging to the black region.
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(a) (b)

Fig. 3.6 The Figure shows the value of each turbine in the bivariate (a) and trivariate
(b) model as a function of the volatility parameters of the electricity and gas prices.

qualitatively similar in the bivariate and in the trivariate models, also in this case the

flexible turbine is systematically undervalued if the uncertainty in the convenience yield

is neglected; the error is larger for highly volatile electricity prices, whilst it reduces for

jointly low volatility parameters of electricity and gas, potentially resulting negligible

for highly volatile gas prices combined with less uncertain electricity prices.

These findings highlight the importance of letting both the leading prices to be

uncertain15: if we assumed the value of the turbine to depend only on gas prices,

then we would observe only a limited variation in the value of the flexible turbine

conditional on a fixed ‡E = 2; instead, the maximum variation we observe on the whole

surface, accounting for the uncertainty of both gas and electricity prices, is remarkably

significant.

3.4.6 The role of correlation

In the EU, the price of electricity is determined by that of the last source used to

produce energy, which typically means gas (so called merit order principle). Hence,
15For example, Tsekrekos et al. (2012), which is the work closer to ours, let profits depend on the

price of a single commodity and on its stochastic convenience yield only.
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Fig. 3.7 Panel a shows the values of the turbines as functions of the correlation between
the gas and electricity price processes. The impact of including a stochastic convenience
yield is measured and plotted in panel b.

beside empirical evidence, there also exists a theoretical foundation to presume that

positive correlation exists among the two price processes. We capture such correlation

through the parameter flGE ; for the sake of completeness, we let it variate over the

range (≠0.9,0.9) even though the far right side of this interval is the most representa-

tive. Figure 3.7 shows that, in the bivariate model, the value of the flexible turbine

monotonically decreases as the correlation gets higher. This fact could be explained

by the need of switching the turbine multiple times, thus reducing cash inflows in

favour of negative or null ones (3.7a). Further, we observe that, when we introduce

randomness on the convenience yield, the value of the flexible turbine is increasing in

the correlation between the G and E(3.7b).

Within the trivariate setting we observe the same decreasing behaviour of the

flexible turbine value as flGE enlarges, whereas the static one remains constant, as

shown in Figure 3.8.

Similarly, the correlations between the main price processes and the convenience

yield imply significant changes in the value of the turbine (3.8e), with flG” seeming to

be the most important driver, compared to flE” (3.8c, 3.8d, 3.8e, 3.8f). Great attention
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.8 The left-hand-side panels show the values of turbines as functions of pairs of
cross-correlations between the price processes and the convenience yield. In the right
panels the impact of including a stochastic convenience yield is plotted.
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should be paid to the magnitude of the mis-valuation committed when considering a

constant convenience yield: the value of the static turbine is mis-priced by 30% on

average, with peaks up to 60% in the worst case scenarios (3.8b, 3.8f).

Finally, it is interesting to highlight that the striking relevance of the correlations

is peculiar to this real option framework. If “standard” financial options - like Euro-

pean/American call/put options - are considered instead, the impact of the correlation

between the underlying’s spot price and the stochastic interest rate that drives the

underlying’s drift is of second order (for example, see Battauz and Rotondi, 2022).

3.4.7 The optimal switching policy

The lattices exploited for the evaluations of the turbines allow us to keep track of the

strategic switching decisions made at each node and, consequently, to get the optimal

“switching boundary” of the (flexible) turbine. This boundary separates the region in

which it is optimal to let the turbine operate from the one in which it is optimal to

suspend production. Within the bivariate (resp. trivariate) model, this boundary can

be defined as the set of points (t,G,E) (resp. (t,G,”,E)) for which the manager is

indi�erent between keeping the turbine in a given status or switching it to the other

one.

This output is of primary relevance for the manager of the (flexible) turbine: indeed,

given the current t-value of the state variables (Et, Gt and ”t, if considering the

trivariate model), the manager can look for the corresponding point in the (t,G,E) (or

(t,G,”,E)) space and retrieve right away the optimal action she should take.

Assuming that the turbine is operating at t, the indi�erence condition reads

�t (St ≠ c11) = ≠�tc00 ≠ c10
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which is equivalent to

Gt = Et

2 ≠“10

where “10 is a constant that depends on c11, c00 and c10 (considering the benchmark

parameters in Table 3.3 we have “10 = 2.2758). Assuming on the contrary that the

turbine is suspended at t, the indi�erence condition reads

≠�tc00 = �t (St ≠ c11)≠ c01

which is equivalent to

Gt = Et

2 ≠“01

where “01 depends on c11, c00 and c01 (“01 = 2.7242 in the benchmark scenario).

As a consequence, the optimal switching boundaries can be represented as planes

in the (t,G,E) (or (t,G,”,E)) space as we verify empirically in Figure 3.9 for the

boundaries from the operating status (A) to the suspended one (S)16.

In the case of the trivariate model, 3.9b has been obtained conditioning on the

lattice’s nodes for which ”t = ”0. Conditioning on di�erent values of ” would deliver

always the same plane as, indeed, ”t does not enter the expressions of the planes

derived above. Therefore, as far as the optimal switching decisions are concerned, the

manager can ignore the current value of the convenience yield, that will impact only

the evaluation of the turbine.

3.5 Conclusion

The real options literature traditionally pays attention to the stochastic behaviour of

those variables that directly a�ect the cash-flows of investments, such as the prices of
16The boundaries from S to A look similar to the ones in Figure 3.9 and the related plots have been

omitted for sake of brevity.
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(a) (b)

Fig. 3.9 The Figure shows the optimal switching boundaries for the flexible turbine
according to the bivariate (a) and trivariate (b) model conditional on ”t = ”0. This
representation of the boundaries cover only the nodes of the bivariate/trivariate lattices
and this is the reason of the triangular shape propagating from (t0,E0,G0) = (0,115,45).

output goods, of input resources, or of additional sources of profits and costs. However,

there are several parameters that can a�ect the value of a project through a sort of

second-order e�ect. For example, it is well established that stochastic volatility and

stochastic interest interest rates are relevant value-drivers for financial derivatives

contracts. On the contrary, the research on corporate financial management is still

quite scarce on that.

In this paper we consider the valuation problem of a turbine for electricity generation

that faces uncertain input costs and output prices and we study the e�ect of introducing

a stochastic convenience yield in the price dynamics of the input commodity (namely,

natural gas). We look upon two kinds of facilities, of which one, called static, is

committed to continuous production whereas the other has the operational flexibility

to be switched-o�-and-on multiple times within a one year horizon.

We show that ignoring the existing uncertainty in the convenience yield process

leads to systematically mis-price the value of the turbines. However, whilst the

error committed in valuing the flexible plant is steadily lower than 2% and can be
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“safely” ignored, in the static case it raises to an average 36%, even hitting 60% if the

leading price processes are strongly correlated. The e�ect seems to be more pronounced

when the equilibrium level and the variance of the convenience yield are higher, but

also when the leading price processes of the project are highly volatile. Therefore, we

consider it essential that, in the absence of operational flexibility, convenience yield

is included as an additional source of risk. On the contrary, operational flexibility

makes it possible to mitigate the greater uncertainty that weighs on profits overall,

regardless of whether it derives from a primary source, such as the commodity price, or

secondary, as a drift parameter. As a result, the added value of operational flexibility

is remarkably high in greatly turbulent markets.

Overall, our findings are consistent with the results of Tsekrekos et al. (2012), with

respect to whom we improve by adding a further source of uncertainty. By means of

this choice, we can perform a wider analysis including market parameters that are

of utmost importance in practice, such as multiple mutual correlations. Additionally,

we provide a detailed description of the lattice algorithm we implemented. Given the

intrinsic simplicity of the intuition behind lattice algorithms, that make them suitable

also for being presented to corporate boards, we believe that our contribution can help

to enhance the use of accurate real options models by professionals.

Additionally, more complex models can be designed: from the market-side per-

spective, di�erent or more complex dynamics can describe the relevant sources of

uncertainty - for example, Gambaro and Secomandi (2021) warns about the implica-

tions of using non-Gaussian processes on operational variables and policies; focusing on

plant-specific characteristics, one could account for further strategic options as well as

for a di�erent scheme of exercise conditions; overall, some constraints can be added to

our optimisation problem to account for exogenous requirements, such as grid, market,

or even political restrictions.
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Appendix A

A.1 Proof of Proposition 1.3.1

We adopt a widely used approach which consists into reducing our equations of interest

into a form for which the solution is known (see, for example, Tsekrekos, 2010). In

particular, we refer to the general confluent di�erential equation, whose solution is

given in the form of hypergeometric functions of the first and second kind.

Let f ,h,V be twice di�erentiable functions of x. Consider the general confluent

di�erential equation

V
ÕÕ +

C
2A

x
+2f

Õ + “h
Õ

h
≠h

Õ ≠ h
ÕÕ

hÕ

D

V
Õ+

+
S

U
A

“h
Õ

h
≠h

Õ ≠ h
ÕÕ

hÕ

B3
A

x
+f

Õ
4

+ A(A≠1)
x2 + 2–f

Õ

x
+f

ÕÕ +
Ë
f

Õ
È2

≠ a [hÕ]2

h

T

VV

= 0 (A.1)

whose solution is known to be (see Abramowitz and Stegun (1972), eqns. 13.1.36 and

13.1.37)

c1e
≠f �(–,“;h)x

≠A + c2e
≠f �(–,“;h)x

≠A (A.2)
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where

�(–,“;h) :=
Œÿ

k=0

(–)kx
k

(“)kk! , |h| < Œ,– œ C,“ œ C\Z≠

is a confluent hypergeometric function of the first kind and

�(–,“;h) = �(1≠“)
�(1+– ≠“)�(–,“;h)+

�(“ ≠1)
�(–) [h]1≠“�(1+– ≠“,2≠“;h) (A.3)

is a confluent hypergeometric function of the second kind.

Replace (A.3) in (A.2) to get

pe
≠f �(–,“;h)x

≠A + qe
≠f �(1+– ≠“,2≠“;h)x

1≠“≠A (A.4)

with p = c1 + c2
�(1≠“)

�(1+– ≠“) and q = c2
�(“ ≠1)

�(–) .

IGBM, CIR and CEV with µ ”= 0 and — > 0

The homogeneous part of the ordinary di�erential equations obtained from the IGBM,

CIR and CEV (assuming µ ”= 0) processes is

‡
2

2 x
2
V

ÕÕ +Ÿ(◊ ≠x)V Õ ≠ rV = 0 for IGBM (A.5)

‡
2

2 xV
ÕÕ +Ÿ(◊ ≠x)V Õ ≠ rV = 0 for CIR (A.6)

‡
2

2 x
2—+2

V
ÕÕ +µxV

Õ ≠ rV = 0 for CEV (A.7)
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and it can be rewritten as

xV
ÕÕ +

C
2Ÿ◊

‡2x
≠ 2Ÿ

‡2

D

V
Õ ≠ 2r

‡2x
V = 0 for IGBM (A.8)

xV
ÕÕ +

C
2Ÿ◊

‡2 ≠ 2Ÿx

‡2

D

V
Õ ≠ 2r

‡2 V = 0 for CIR (A.9)

x

|—|V
ÕÕ + 2µ‡

‡2|—|x2— V
Õ ≠ 2r

‡2|—|x2—+1 V = 0 for CEV (A.10)

Then, equations from (A.8) to (A.10) are in the form of a general confluent di�erential

equation for some specific function h. In particular,

h =

Y
________]

________[

2Ÿ◊

‡2x
for IGBM

2Ÿx

‡2 for CIR
µ

|—|‡2x2— for CEV.

In the following, we assume that — > 0; we will treat the case — < 0 separately. Set

f(x) = 0,› = ≠A and replace in (A.1) the proper h(x) for each process to get,

for IGBM

V
ÕÕ +

C

2≠“ ≠2› + 2Ÿ◊

‡2x

D

V
Õ +

C
“› ≠2› + ›(1+ ›)

x
≠ 2Ÿ◊(– + ›)

‡2x2

D

V = 0; (A.11)

for CIR

V
ÕÕ +

5
“ ≠2› ≠ 2Ÿx

‡2

6
V

Õ +
C

≠2(– ≠ ›)Ÿ
‡2 ≠ ›

(“ ≠1≠ ›)
x

D

V = 0; (A.12)

and for CEV

x

—
V

ÕÕ +
C

2(1≠“)+ 1≠2›

—
+ µ

—‡2x2—

D

V
Õ +

C
≠2›(1≠“)

x
+ ›

2

—x
≠4 µ

—‡2x2—+1

D

V = 0.

(A.13)
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For equations (A.8)-(A.10) to be equal to (A.11)-(A.13), the coe�cients of V
ÕÕ,V Õ

and V must be the same. Hence, a system of three equations for each process under

consideration arises; we get, for IGBM

Y
________]

________[

2≠“ ≠2› = ≠2Ÿ

‡2

“› ≠2› + ›(1+ ›) = ≠2r

‡2

≠2Ÿ◊(– + ›)
‡2x2 = 0,

that returns

›1,2 =
‡

2 +2Ÿ±
Ò

(‡2 +2Ÿ)2 +8r‡2

2‡2 ;

“1,2 = 2≠2›1,2 + 2Ÿ

‡2 ; (A.14)

–1,2 = ≠›1,2;

for CIR Y
________]

________[

“ ≠2› = 2Ÿ◊

‡2

≠2–Ÿ

‡2 + 2›Ÿ

‡2 = ≠2r

‡2

≠“› + ›
2 + › = 0,

that returns

›1 = 0; ›2 = 1≠ 2Ÿ◊

‡2 ;

“1 = 2Ÿ◊

‡2 ; “2 = 2≠ 2Ÿ◊

‡2 ; (A.15)

–1 = r

Ÿ
; –2 = ≠2Ÿ

2
◊ +‡

2(Ÿ+ r)
‡2Ÿ

;
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and, last, for CEV

Y
_________]

_________[

≠2›

—
≠2“ + 1

—
+2 = 0

›
2

—x
+ 2›“

x
≠ 2›

x
= 0

≠4–µx
≠2—≠1

‡2 ≠ 2›µx
≠2—≠1

—‡2 + 2rx
≠2—≠1

—‡2 = 0,

(A.16)

which yields

›1 = 1; ›2 = 0;

“1 = ≠1≠2—

2—
; “2 = ≠≠2— ≠1

2—
; (A.17)

–1 = ≠µ≠ r

2—µ
; –2 = r

2—µ
.

Then equations (A.11) to (A.13), have solutions of the form (A.4) for the appropriate

set of parameters {›1,“1,–1}; the second set of parameters {›2,“2,–2} enters in the

solution accordingly as

–2 = 1+–1 ≠“1

“2 = 2≠“1

›2 = 1≠“1 ≠ ›1.

CEV with µ ”= 0 and — < 0

We now focus on the CEV process and, specifically, we consider the case with negative

—. The proof conceptually follows the same steps from (A.10) to (A.16), but setting

f = h in (A.1). Then, the parameters characterising the hypergeometric functions in
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(A.4) are

›1 = 1; ›2 = 0;

“1 = ≠1≠2—

2—
; “2 = ≠≠2— ≠1

2—
; (A.18)

–1 = ≠r ≠2—µ

2—µ
; –2 = ≠r ≠2—µ≠µ

2—µ
.

CEV with µ = 0

So far, we worked under the hypothesis that µ ”= 0. It is particularly simple to solve

the case of CEV when µ = 0 following Davydov and Linetsky (2001), who showed

how to reduce equation (A.7) to a modified Bessel equation, leading to two linearly

independent solutions x
1/2

I‹(z) and x
1/2

K‹(z), with I‹(z),K‹(z) being modified Bessel

functions, z =
Ô

2rx≠—

‡|—| and ‹ = 1
2|—| . We exploit the relationships between modified

Bessel and hypergeometric functions (see eqns. 9.13.14 and 9.13.15 in Lebedev et al.

(1972)):

I‹(z) = (z/2)‹

�(‹ +1)e
≠z�

3
‹ + 1

2,2‹ +1;2z

4
|argz| < fi (A.19)

K‹(z) =
Ô

fi(2z)‹
e

≠z�
3

‹ + 1
2,2‹ +1;2z

4
|argz| < fi (A.20)

and the relation between hypergeometric functions of the first and second kind given

in (A.3) to claim that the solution to (A.7) under µ = 0 is of the form in (A.4). The

proof at this point is purely algebraic and stems from substituting (A.19), (A.20) and

(A.3) into the following

V (x) = aI‹(z)x1/2 + bK‹(z)x1/2
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to get

V (x) =
Ë
p�(–1,“1;2z)x

›1 + q�(–2,“2;2z)x
›2

Èz
e

≠z

where

›1 = 1; ›2 = 0;

“1 = 2‹ +1; “2 = 2≠2‹; (A.21)

–1 = 1
2 +‹; –2 = 1

2 ≠µ;

with z =
Ô

2rx
≠—

‡|—| ,‹ = 1
2|—| .

GBM

Last, the solution for the GBM process can be obtained from that of IGBM considering

that

dx = Ÿ(◊ ≠x)dt+‡xdW

converges to

dx = ≠Ÿxdt+‡xdW

that is, to a GBM with drift ≠Ÿ as ◊ æ 0. Similarly, the ordinary di�erential equation

‡
2

2 x
2
V

ÕÕ +µxV
Õ ≠ rV = 0

can be seen as a particular case of (A.5) for ◊ æ 0 and µ = ≠Ÿ. Consequently, it has

solution of the form given by (A.4). Then, since

lim
◊æ0

2Ÿ◊

‡2x
= 0 and lim

‰æ0
�(–,“;‰) = 1,
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the final solution for GBM reduces to

V (x) = px
›1 lim

◊æ0
�

A

–1,“1; 2Ÿ◊

‡2x

B

+ qx
›2 lim

◊æ0
�

A

–2,“2; 2Ÿ◊

‡2x

B

= px
›1 + qx

›2

with

›1,2 =
‡

2 ≠2µ±
Ò

(‡2 ≠2µ)2 +8r‡2

2‡2 . (A.22)

A.2 Proof of Proposition 1.3.2

The proof follows immediately under the condition lim
xæ+Œ

V1(x) < Œ and accounting

for the fact that lim
xæ+Œ

�(a,b;x) = �(b)
�(a)e

x
x

a≠b and lim
xæ0

�(–,“;‰) = 1.

Moreover, to prove that only the presence of mean-reversion is discriminant in

determining the particular solution Â(x), we observe that cash-flows F (x) in equation

(1.3) are a linear function of x. Hence, we look for a particular solution of the form

y(x) = Ax + B, which implies y
Õ(x) = A and y

ÕÕ(x) = 0. Consequently, the form of

the di�usion is irrelevant and only the expression of the drift triggers a di�erence to

get y(x). But the drift, in our models, is the same across mean-reverting and non

mean-reverting processes, respectively, with at most the degenerate case of GBM. Then,

for mean-reverting processes we have

Ÿ(◊ ≠x)A≠ r(Ax+B) = ≠(x≠ c)

∆ ≠A(Ÿ+ r)x+Ÿ◊A≠ rB = ≠x+ c
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from which

A = 1
r +Ÿ

B = Ÿ◊

(Ÿ+ r)r ≠ c

r
.

Hence,

Â
MR(x) = x

r +Ÿ
+ Ÿ◊

(Ÿ+ r)r ≠ c

r

is the particular solution to (1.3) - and the expected present value of (x ≠ c) - when

the output price follows a mean-reverting process. This expression is equivalent to eq.

(15) in Bhattacharya (1978) as the time horizon is infinite.

Similarly, for non mean-reverting processes, one gets

µxA≠ r(Ax+B) = ≠(x≠ c)

∆ A(µ≠ r)x≠ rB = ≠x+ c

from which

A = 1
r ≠µ

B = ≠c

r
.

Hence,

Â
M̄R(x) = x

r ≠µ
≠ c

r

is the particular solution to (1.3) - and the expected present value of (x ≠ c) - when

the output price does not follow a mean-reverting process.
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A.3 Value-matching conditions: flexible firm

We follow the two-steps procedure given in Dixit and Pindyck (1994) to obtain constant

coe�cients from value-matching conditions. To simplify the reproducibility of our

analysis, we recall it here with the application to the IGBM case; the other processes

follow accordingly.

First, work at suspension and resumption boundaries imposing

Y
___]

___[

V1(xs) = V0(xs)≠ s10

V0(xr) = V1(xr)≠ s01

which yield

Y
____]

____[

p1�
A

–1,“1; 2Ÿ◊

‡2xs

B

x
›1
s +(p2 ≠ q2)�

A

–2,“2; 2Ÿ◊

‡2xs

B

x
›2
s = f

r
+Â

MR(xs)+ s10

p1�
A

–1,“1; 2Ÿ◊

‡2xr

B

x
›1
r +(p2 ≠ q2)�

A

–2,“2; 2Ÿ◊

‡2xr

B

x
›2
r = f

r
+Â

MR(xr)≠ s01.

It is immediate to notice that the above is a linear system, so it can be written as

Ax = b, where

A =

S

WWWWU

�
A

–1,“1; 2Ÿ◊

‡2xs

B

x
›1
s �

A

–2,“2; 2Ÿ◊

‡2xs

B

x
›2
s

�
A

–1,“1; 2Ÿ◊

‡2xr

B

x
›1
r �

A

–2,“2; 2Ÿ◊

‡2xr

B

x
›2
r

T

XXXXV

x =

S

WWU
p1

(p2 ≠ q2)

T

XXV

b =

S

WWU

f

r
+Â

MR(xs)+ s10
f

r
+Â

MR(xr)≠ s01

T

XXV
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and for which the unique solution is x = A
≠1

b, provided that A is non-singular.

Next, known p1 and (p2 ≠q2), it is easy to exploit the remaining boundary condition

V0(xa) = ÷I;

in fact, we have

p1�
A

–1,“1; 2Ÿ◊

‡2xa

B

x
›1
a +p2�

A

–2,“2; 2Ÿ◊

‡2xa

B

x
›2
a ≠ f

r
= ÷I

that returns

q2 =
÷I + f

r ≠p1�
A

–1,“1; 2Ÿ◊

‡2xa

B

x
›1
a ≠ (p2 ≠ q2)�

A

–2,“2; 2Ÿ◊

‡2xa

B

x
›2
a

�
A

–2,“2; 2Ÿ◊

‡2xa

B

x
›2
a

;

p2 = (p2 ≠ q2)+ q2.

To extend the above procedure to any price di�usion model addressed in this work,

it is su�cient to properly change the entries of A,x and b.

A.4 Smooth-pasting conditions: flexible firm

Mirroring the procedure in A.3, smooth-pasting conditions are first used to get the

suspension and resumption boundaries xs and xr simultaneously, and, next, to find the

abandonment barrier xa proceeding iteratively. Again, we detail the procedure for the

IGBM process only, recalling that similar considerations apply to the other models too.
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Recall that smooth-pasting conditions read

Y
___]

___[

V
Õ

1(xs) = V
Õ

0(xs)

V
Õ

0(xr) = V
Õ

1(xr),

from which Y
___]

___[

p1„1(xs)+(p2 ≠ q2)„2(xs)≠Â
MR(xs) = 0

p1„1(xr)+(p2 ≠ q2)„2(xr)≠Â
MR(xr) = 0

(A.23)

where „j(x),j = {1,2}, is the first-order derivative of �
A

–j ,“j ,
2Ÿ◊

‡2x

B

x
›j , i. e.

„j(x) =
C

›j�
A

–j ,“j ,
2Ÿ◊

‡2x

B

≠ 2–jŸ◊

“j‡
2x

�
A

–j +1,“j +1, 2Ÿ◊

‡2x

BD

x
›j≠1.

Indeed, the confluent hypergeometric function is di�erentiable m times1 (Lebedev

et al., 1972); furthermore, the real-valued function h(x) = 2Ÿ◊
‡2x is di�erentiable infinitely

many times within its domain, hence, by the chain-rule:

d

dx
�

A

–,“; 2Ÿ◊

‡2x

B

= ≠–

“
�

A

– +1,“ +1; 2Ÿ◊

‡2x

B
2Ÿ◊

‡2 x
≠2.

By solving the system in (A.23) one gets the optimal suspension and resumption

boundaries xs and xr. Next, given xs and xr, one proceeds iteratively to find xa such

that V
Õ

0(xa) = 0, i. e.

p1„1(xa)+p2„2(xa) = 0.

1Provided that it is defined.
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B.1 Details on path-dependent equity valuation and

option pricing

In the following, we detail the procedure that allows to assess the equity value of firms

and to price financial option contracts accounting for the path-dependency due to the

potential exercise of real options.

1. For a given set of model parameters, get the real options’ optimal boundaries

x̄a,xa,xs,xr

2. Simulate M trajectories of the price process x for the time horizon T . Discretise

the time interval [t0, tn+1], t0 = 0, tn+1 = T , using n steps of size dt = T
n

3. Assume the firm is active at t0. Then, for all tk,k = 1,2, . . . ,n+1, and along each

j-th trajectory j = 1 =, . . . ,M , determine the state of the firm

I. The rigid firm is always active. Its instantaneous cash-flows are x
(j)
tk

≠ c

II. The semi-rigid firm:

A. is active and generates instantaneous cash-flows x
(j)
tk

≠ c at tk if it was

active at tk≠1 and x
(j)
tk

> x̄a
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B. irreversibly ceases production if it was active at tk≠1 and x
(j)
tk

Æ x̄a;

equity-holders gets a unique cash-flow SV

C. is abandoned and has no cash-flows if abandonment occurred at tk≠1

or before

III. The flexible firm:

A. is active and generates instantaneous cash-flows x
(j)
tk

≠ c at tk if it was

active at tk≠1 and x
(j)
tk

> xs > xa

B. is suspended and generates instantaneous outflows ≠f at tk if x
(j)
tk

> xa

and

B1. it was active at tk≠1 and x
(j)
tk

Æ xs

B2. it was suspended at tk≠1 and x
(j)
tk

Æ xr

C. irreversibly stops production if it was either active or suspended at tk≠1

and x
(j)
tk

Æ xa; equity-holders gets a unique cash-flow SV

D. is abandoned and has no cash-flows if abandonment occurred at tk≠1

or before

4. Set a maturity Ti Æ T . For every j-th simulated trajectory, calculate the equity

value of each firm according to eqns. (2.2.1), (2.2.1) and (2.2.1) at point x
(j)
Ti

;

then compute Ê(xTi) = 1
M

qM
j=1 E

(j)
xTi of the equity value at such horizon

5. Use equity values from the previous point as inputs to determine the payo� of a

European call option and get an estimate for its price

6. Last, recover the implied volatility of the option contractfrom the Black-Scholes’

formula.
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C.1 Details of the lattice discretisations

We collect here a few technical details about the discretisations of the models defined

by the systems of stochastic di�erential equations in (3.19) and (3.8).

C.1.1 Bivariate binomial trees

As pointed out in Hahn and Dyer (2008), the starting point of the lattice discretisation

of the bivariate process (G,E) defined by (3.19) is the lattice discretisation of two

generic di�usions, e�ectively described in Section 3.2.1 of Prigent (2003) that build on

the limit theorems in Section 11.3 of Stroock and Varadhan (1997).

Let (X,Y ) := {(Xt,Yt)}tœ[0,T ] be two di�usions defined by

Y
__]

__[

dXt = µXdt+‡XdW
X
t

dYt = µY dt+‡Y dW
Y
t

(C.1)
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with some initial conditions X0,Y0 œ R and where coe�cients µX and µY might depend

on t, Xt and Yt while ‡X , ‡Y are two positive constants1 and the instantaneous

correlation between the two Brownian motions W
X and W

Y is equal to fl œ (≠1,1).

Consider a uniform partition {i�t}i=0,...,n of the time interval [0,T ], where n œ N

is the number of time steps chosen and �t := T
n . Then, the discrete time stochastic

process (X̃, Ỹ ) := {(X̃ti , Ỹti}{i�t}i=0,...,n with (X̃0, Ỹ0) = (X0,Y0) and

1
X̃ti+1 , Ỹti+1

2
=

Y
__________]

__________[

1
X̃ti +�X, Ỹti +�Y

2
with probability quu

1
X̃ti +�X, Ỹti ≠�Y

2
with probability qud

1
X̃ti ≠�X, Ỹti +�Y

2
with probability qdu

1
X̃ti ≠�X, Ỹti ≠�Y

2
with probability qdd

where

�X = ‡X

Ô
�t, �Y = ‡Y

Ô
�t

quu = µXµY �t+µX�Y +µY �X +(1+fl)‡X‡Y

4‡X‡Y

qud = ≠µXµY �t+µX�Y ≠µY �X +(1≠fl)‡X‡Y

4‡X‡Y

qdu = ≠µXµY �t≠µX�Y +µY �X +(1≠fl)‡X‡Y

4‡X‡Y

qdd = µXµY �t≠µX�Y ≠µY �X +(1+fl)‡X‡Y

4‡X‡Y
.

(C.2)

converges in distribution to (X,Y ) as the time step �t shrinks or, equivalently, as the

number of steps n grows to infinity.

Unfortunately, the bivariate process (G,E) defined by (3.19) is not of the form of

(X,Y ) in (C.1) as the two volatility coe�cients, ‡GGt and ‡EEt, are not constant but
1As argued in Nelson and Ramaswamy (1990), constant volatility parameters are necessary to

retain computational feasibility of the resulting lattice. Time-dependent and/or state-contingent
volatility parameters would result in a non-recombining tree that would still converge in distribution
to the desired continuous-time process but would also feature an exponentially increasing (and thus
not feasible) number of nodes.
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depend on the level of the variables. To solve this issue we discretise (logG, logE) since

Y
__]

__[

d(logGt) =
3

r ≠ ” ≠ ‡2
G
2

4
dt+‡GdW

G
t

d(logEt) =
3

r ≠ ‡2
E
2

4
dt+‡EdW

E
t

is precisely of the form of (X,Y ) in (C.1) with µX = r ≠” ≠ ‡2
G
2 , ‡X = ‡G, µY = r ≠ ‡2

E
2 ,

‡Y = ‡E and fl = flGE . Notice that since these µX and µY are constant, the four

transition probabilities in (C.2) are constant across the lattice. Finally, we build the

lattice discretisation of (G,E) taking the exponential2 of the nodes of the one for

(logG, logE) while leaving unchanged the transition probabilities.

C.1.2 Trivariate binomial trees

Generalising the scheme outlined in the previous subsection, now the starting point is

the lattice discretisation of (X,Y ,Z) := {(Xt,Yt,Zt)}tœ[0,T ] defined by

Y
______]

______[

dXt = µXdt+‡XdW
X
t

dYt = µY dt+‡Y dW
Y
t

dZt = µZdt+‡ZdW
Z
t

(C.3)

with some initial conditions X0,Y0,Z0 œ R and where, as before, drift coe�cients

{µi}iœ{X,Y ,Z} might depend on t, Xt, Yt and Zt while volatility coe�cients {‡i}iœ{X,Y ,Z}

are positive constants. Finally, the instantaneous correlations between the three Brow-

nian motions are flXY , flY Z and flXZ .
2Namely, inverting the functions that map (G,E) into (logG, logE).
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Given the usual uniform partition of [0,T ], the discrete time stochastic process

(X̃, Ỹ , Z̃) := {(X̃ti , Ỹti , Z̃ti}{i�t}i=0,...,n with (X̃0, Ỹ0, Z̃0) = (X0,Y0,Z0) and

1
X̃ti+1 , Ỹti+1 , Z̃ti+1

2
=

Y
__________________________]

__________________________[

1
X̃ti +�X, Ỹti +�Y , Z̃ti +�Z

2
with probability quuu

1
X̃ti +�X, Ỹti +�Y , Z̃ti ≠�Z

2
with probability quud

1
X̃ti +�X, Ỹti ≠�Y , Z̃ti +�Z

2
with probability qudu

1
X̃ti +�X, Ỹti ≠�Y , Z̃ti ≠�Z

2
with probability qudd

1
X̃ti ≠�X, Ỹti +�Y , Z̃ti +�Z

2
with probability qduu

1
X̃ti ≠�X, Ỹti +�Y , Z̃ti ≠�Z

2
with probability qdud

1
X̃ti ≠�X, Ỹti ≠�Y , Z̃ti +�Z

2
with probability qddu

1
X̃ti ≠�X, Ỹti ≠�Y , Z̃ti ≠�Z

2
with probability qddd

where

�X = ‡X

Ô
�t, �Y = ‡Y

Ô
�t, �Z = ‡Z

Ô
�t

quuu = 1
8

1
1+flXY +flXZ +flY Z +

Ô
�t

1
µX
‡X

+ µY
‡Y

+ µZ
‡Z

22

quud = 1
8

1
1+flXY ≠flXZ ≠flY Z +

Ô
�t

1
µX
‡X

+ µY
‡Y

≠ µZ
‡Z

22

qudu = 1
8

1
1≠flXY +flXZ ≠flY Z +

Ô
�t

1
µX
‡X

≠ µY
‡Y

+ µZ
‡Z

22

qudd = 1
8

1
1≠flXY ≠flXZ +flY Z +

Ô
�t

1
µX
‡X

≠ µY
‡Y

≠ µZ
‡Z

22

qduu = 1
8

1
1≠flXY ≠flXZ +flY Z +

Ô
�t

1
≠µX

‡X
+ µY

‡Y
+ µZ

‡Z

22

qdud = 1
8

1
1≠flXY +flXZ ≠flY Z +

Ô
�t

1
≠µX

‡X
+ µY

‡Y
≠ µZ

‡Z

22

qddu = 1
8

1
1+flXY ≠flXZ ≠flY Z +

Ô
�t

1
≠µX

‡X
≠ µY

‡Y
+ µZ

‡Z

22

qddd = 1
8

1
1+flXY +flXZ +flY Z +

Ô
�t

1
≠µX

‡X
≠ µY

‡Y
≠ µZ

‡Z

22

(C.4)

converges in distribution to (X,Y ,Z) as the time step �t shrinks.

As before, it is necessary to manipulate the trivariate process (X,Y ,Z) defined

by (3.8) to obtain constant volatility parameters. As the convenience yield ” features

already a constant volatility, we discretise (logG,”, logE) which, as before, is of the

form of (C.3) with µX = r ≠Yt ≠ ‡2
G
2 , µY = –

1
”̄ ≠Yt

2
, µZ = r ≠ ‡2

Z
2 , ‡X = ‡G, ‡Y = ‡”,
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‡Z = ‡E , flXY = flG”, flY Z = fl”E and flXZ = flGE . Notice that now both µX and µY

are state contingent as they depend on the current value of Y (namely, of ”). This

implies that transition probabilities in (C.4) are not constant anymore but they do

change from one node of the lattice to another. Finally, taking the exponential of the

first and the third variable, we map this trivariate lattice to the one of our interest for

(G,”,E).

C.2 Validation of the numerical algorithm and fur-

ther details

We collect here a number of additional numerical tests for the validation of the numerical

algorithm described in Subsection 3.3.6 and for the assessment of its performances in

terms of accuracy and computational e�ciency.

C.2.1 Static turbine

We first consider the static turbine within the bivariate market model introduced in

Subsection 3.3.4. As already mentioned, in this case the turbine can be valued explicitly

by expression (3.14). Setting a large number of monitoring dates (e.g., m = 105) we

can get a precise estimate for the value of the continuous time problem 3.12. The

evaluation of this formula with m = 105 for the benchmark parameters in Table 3.3

delivers V (S0,1)S,bi = 179Õ066 which is only 2.51% larger than the figure in Table 3.4.

Indeed, as we can see from Figure C.1, the relative errors of the values obtained by our

lattice-based algorithm from the “true” value are almost negligible even after a small

number of monitoring dates m.
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Fig. C.1 Value of the static turbine in the bivariate model computed with the proposed
numerical algorithm as a function of the number of monitoring dates m with respect
to the “true” value obtained with (3.14).

As mentioned in Remark 3.3.4, although sound from an economic point of view,

the approximation of each integral
s ti+1
ti

e
≠rt

X(St,It)dt by e
≠rti�tX(Sti ,Iti) might

look too rough. This choice has the great advantage that when Sti is Fti-measurable

and, therefore, the computation of the value function at ti is straightforward. Using a

trapezoidal rule for the integral we would get

e
≠r

ti+1≠ti
2

E[X(Sti+1 ,Iti)|Fti ]+X(Sti ,Iti)
2 �t

since the decision about the status of the turbine is taken at time ti and any ti+1

variable should be considered in expected value terms. If Iti = 0, the operating cash-

flow is ≠c00 and the trapezoidal rule would simply imply a slightly di�erent discount

factor (e≠r(ti+1≠ti)/2 vs. e
≠rti). It Iti = 1, then X(Sti ,Iti) = Sti ≠ c11. Recalling that

{Ste
≠(r≠”)t}tØ0 is a Q-martingale, using the trapezoidal rule instead we would get

E
Ë
X(Sti+1 ,Iti)

---Fti

È
+X(Sti ,Iti)

2 =
E

Ë
Sti+1

---Fti

È
≠ c11 +Sti ≠ c11

2

=Stie
(r≠”) �t

2 +Sti

2 ≠ c11,
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but since (r ≠ ”)�t/2 is rather small, the numerical di�erence with respect to Sti ≠ c11

is very limited. As an illustrative example, the benchmark value of the static turbine

we would get using this correction reads 174’511, which is only 0.03% smaller than the

value in Table 3.4.

As already mentioned, a closed formula for V (S0,1)S,tri is not available. However,

since the switching policy prescribes to let the turbine operate no matter what, the

valuation problem can be tackled by standard Monte Carlo techniques. The average of

the point estimates of V (S0,1)S,tri and of their related 95% confidence radius (obtained

out of 10 independent Monte Carlo simulations each entailing 105 simulated paths) are

216’245 and 902.31 respectively. The relative error of this point estimate with respect

to the value in 3.4 is equal to 1.19%, which is remarkably small.

C.2.2 Limit parameters

We now consider the flexible turbine valuation problem changing a few parameters to

either make it equivalent to the static one or to make the trivariate model equivalent

to the bivariate one.

We first set switching costs c10 and c01 equal to 105 and then we value the flexible

turbine within the two market models. As expected, since the switching of the turbine is

now indefinitely expensive, the value of the flexible turbine collapses into the static one

and we numerically verify V (S0,1)F ,bi = V (S0,1)S,bi and V (S0,1)F ,tri = V (S0,1)S,tri.

Then, we consider the trivariate model with – = 0 and ‡” = 10≠5. With this

choice of parameters, the stochastic convenience yield becomes deterministic, ”t © ”0.

As expected, we numerically verify that in this case V (S0,1)S,tri = V (S0,1)S,bi and

V (S0,1)F ,tri = V (S0,1)F ,bi.
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C.2.3 Computational e�ciency

Finally, we assess the precision of our algorithm and its computational e�ciency.

As already pointed out in Remark 3.3.4, the optimal value of (3.13) converges to

the one of (3.12) only as �t æ 0 or, equivalently, as m æ +Œ. Although we have

already motivated why we are focusing on the discrete time problem rather than on

the continuous time one, it is interesting to study by how much they di�er. Panels (a)

and (c) of Figure C.2 shows the value of the flexible turbine within the two models

as a function of the number m of time steps. As we can see, the values obtained

through our algorithm using di�erent m’s are converging relatively fast to the con-

tinuous time counterparts. Therefore, our restriction to the discrete time problem

is not really influencing the value of the turbine even if a continuous switching is allowed.

As far as computational times are concerned, we acknowledge that lattice-based

methods are usually slow and they can be hardly parallelised. However, sticking to a

relatively small value of m makes the valuation feasible and does not entail a huge bias.
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Fig. C.2 The left-hand-side panels (a, c) of the Figure show on the left axis the value
of the flexible turbines across the two models as a function of the number m of steps of
the uniform partition of [0,T ]. The computational time (expressed in seconds) of our
algorithm for each value of m is plotted against the right axis. The right-hand-side
panels (b, d) show the relative error as a function of m of the value of the flexible
turbine with respect to the value obtained setting m = 120 and m = 68.
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