

City, University of London Institutional Repository

Citation: Brain, M. & Polgreen, E. (2024). A Pyramid Of (Formal) Software Verification.

Paper presented at the 26th International Symposium, FM 2024, 9-13 Sep 2024, Milan,
Italy. doi: 10.1007/978-3-031-71177-0_24

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/34357/

Link to published version: https://doi.org/10.1007/978-3-031-71177-0_24

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Pyramid Of (Formal) Software
Verification

Martin Brain1(B) and Elizabeth Polgreen2

1 City, University of London, London, England
martin.brain@city.ac.uk

2 University of Edinburgh, Edinburgh, Scotland

elizabeth.polgreen@ed.ac.uk

Abstract. Over the past few years there has been significant progress in
the various fields of software verification resulting in many useful tools
and successful deployments, both academic and commercial. However
much of the work describing these tools and ideas is written by and for
the research community. The scale, diversity and focus of the literature
can act as a barrier, separating industrial users and the wider academic
community from the tools that could make their work more efficient,
more certain and more productive. This tutorial gives a simple classi-
fication of verification techniques in terms of a pyramid and uses it to
describe the six main schools of verification technologies. We have found
this approach valuable for building collaborations with industry as it
allows us to explain the intrinsic strengths and weaknesses of techniques
and pick the right tool for any given industrial application. The model
also highlights some of the cultural differences and unspoken assumptions
of different areas of verification and illuminates future directions.

1 Introduction

Software verification is a large and diverse area of computer science research.
Topics covered range from low-level, practical issues such as understanding the
exact behaviour of various hardware and software constructs through to high-
level, theoretical issues of expressibility and the limits of what is computable. The
diversity of and connections between these areas can make it hard to understand
and appreciate the full power and applicability of the ideas. This is compounded
by the existence of several different academic traditions or schools each of which
have their own terminology and foundations.

The field also has a strong culture of tool development, leading to a range
of powerful academic and commercial tools. However potential users (both aca-
demic and commercial) are often faced with the problem of understanding how
these various tools relate to each other and their various strengths and weak-
nesses. Their problem is not which tool to pick but on what basis to make their
decision. For experienced academics and researchers, the answers are often ‘obvi-
ous’ but, again, this requires a broad and comprehensive knowledge of the dif-
ferent approaches and traditions of verification.
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 393–419, 2025.
https://doi.org/10.1007/978-3-031-71177-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_24&domain=pdf
https://doi.org/10.1007/978-3-031-71177-0_24

394 M. Brain and E. Polgreen

This paper describes our approach to bridging this gap and communicating
the ‘big-picture’ of software verification without requiring people to read many
papers, attend numerous conferences or develop multiple tools. The approach
has been developed and used in numerous industrial partnerships as well as
in undergraduate and post-graduate teaching. It has provided a simple way of
structuring the explanation of what we do and how this fits with particular
organisations’ needs. We regard this as a successful and efficient way of bridging
the (common) divide between research and practice.

As with all overviews, there are exceptions and caveats to all of the clas-
sifications we give. There are also systems which combine multiple techniques,
whose classification is debatable or ambiguous. If such exceptions and combined
techniques do not already exist, they will likely do so soon as they represent
novel research directions. In this regard, this paper should be thought of as a
guidebook or a phrase book rather than an atlas or dictionary. Our goal is to
describe the common 90% of papers in a field rather than the exceptional 10%.

We assume a base understanding of computing, but this paper is intended to
be readable by commercial developers and does not assume prior knowledge of
verification or theoretical computer science. We hope it will communicate:

• Our pyramid model, which gives a fundamental trade-off for software verifi-
cation tools (Sect. 2).

• The kinds of tools available, their intrinsic strengths and weaknesses, and
enough of the culture and terminology to communicate with and evaluate
tools from the relevant research community (Sect. 3).

• The different ways of giving specifications (Sect. 4).
• How to select the right kind of tool(s) for a particular practical problem

(Sect. 5).

2 A Pyramid of Verification

In the most general sense, verification is the process of checking the properties
of a thing against a set of criteria. In our context, we will refer to the thing
being checked as the program and the criteria as the specification. Figure 1 illus-
trates the verification process. The primary inputs are the specification and the
program plus the verification process uses an amount of compute resource and
human effort. The ideal outcome is that the system is verified but it is also possi-
ble that one or more defects are detected or that the verification is inconclusive
and the final result is unknown. From a practical point of view, unknown is
probably the worst outcome as the effort is expended without producing useful
evidence. However, as we will see, reliably avoiding the unknown outcome turns
out to be challenging.

Representing the program. Our primary focus is when the program (thing we
are verifying) is a piece of software written in an imperative language. However
many of these techniques have been successfully applied to hardware, parallel

A Pyramid Of (Formal) Software Verification 395

Fig. 1. The verification process in principle

and distributed software as well as more abstract models of computation such as
protocols, process calculi, automata, cyber-physical systems, transition systems,
etc. One common view in software verification, and that we will use in the fol-
lowing sections of the paper, is that a program is a description or representation
of a set of traces. A trace is a single execution of the program; a sequence of
states showing the step-by-step execution of the program. Running a program is
computing a single trace. For a program of any size it is infeasible to compute all
of the traces, so the set of all traces is a mathematical idea rather than something
that is ever directly computed. This viewpoint is useful as it allows the program
and the specification to be seen as the same kind of mathematical objects; sets
of traces. It also gives an idea of over-approximation and under-approximation
of a program. These are sets of traces that contain or are contained in the set of
traces of the program.

Representing the specification. The specification is the set of criteria we check
the program against. Software verification tools have traditionally focused on
universal specifications; those of the form “every execution of the program must”
or conversely “there must be no way of” rather than existential ones, “there must
be at least one trace that”. Other, more complicated, properties can be specified
that reason about the interaction of traces (hyperproperties) or the likelihood
of certain traces (probabilistic properties), but we do not discuss those here.
If the program is understood as a representation of a set of traces then the
specification can be understood as a representation of the set of all traces that
have a required property. Formal verification of a universal specification can
then be conceptually reduced to checking that the set of all program traces is
included in the set of specified traces. We give further discussion on the ways of
representing specifications in Sect. 4.

Given a program and a specification to verify it against, the ideal verification
tool would be:

Automatic (run with no human interaction),
Never miss bugs (only say verified if the system meets the specification), and

396 M. Brain and E. Polgreen

Never give false alarms (always say verified if the system meets the specifi-
cation).

Unfortunately, if the specification includes any notion of reachability (“if the
program ever . . . ”, “when the program . . . ”) then Rice’s Theorem [73], a con-
sequence of Turing’s famous result on the Halting Problem [78] means that it is
not possible to create a verification tool that has all the desired properties1 in
all cases. As almost all significant specifications include some notion of reacha-
bility or location, this gives us the fundamental trade-off at the heart of software
verification:

It is not possible to create a verification tool which can take any program
and any specification and automatically give an answer in a finite amount
of time guaranteeing no missed bugs and no false alarms.

As with all applications of theoretical results to the real world, we should
be mindful of the caveats. Turing’s result applies to a theoretical model of com-
puting which has an infinite state-space. We will assume that the state-space of
programs is so large that is effectively infinite2 and that this result applies. The
subtleties of quantification are also important. This result applies to one, or a
finite number of verification tools working on all programs and all specifications.
For a particular program and specification, there is a verification tool that can
automatically give a full answer (although writing it might require performing
the verification by hand and then writing a program that will simply print the
answer). Likewise, there are large sets of programs and specifications for which
this is possible. For example, if the specification is “the program terminates”,
then any acyclic program (no loops or recursion) can easily be automatically
verified in the time it takes to read the program and check it is acyclic.

Although theoretical computer science shows that it is not possible to build
a universal verification tool, it is easy to get surprisingly close:

• ‘Automatic’ and ‘no missed bugs’ can be achieved by over-approximating the
set of invalid traces (traces of the program that do not meet the specification).
A tool that prints verification failed for all inputs would be the simplest
example.

1 We avoid the terms “sound” and “complete” as there is a cultural bias for authors to
claim that their technique is “sound but not complete”. This leads to two, opposite
definitions of these terms. Some authors use “sound/complete (for proof)” while
others use “sound/complete (for refutation)”. No missed bugs is “sound for proof”
and “complete for refutation” while no false alarms is “complete for proof” and
“sound for refutation”.

2 Clearly, any individual computer has physical limits on the number of bits that can
be stored and thus has a limit on the state-space of a program running on it. However,
the state-space of a program running on a processor with 640KB of memory (up to
25242880 states) may be regarded as practically infinite as it contains more states
than particles in the universe.

A Pyramid Of (Formal) Software Verification 397

• ‘Automatic’ and ‘no false alarms’ can be achieved by under-approximating
the set of invalid traces. A tool that prints verification succeeded for all
inputs would be the simplest example.

• Finally ‘no missed bugs’ and ‘no false alarms’ can be achieved by getting a
human to create a formal proof of the verification and checking it.

As it is easy to achieve two of the three criteria, we can view verification
tools as starting with up to two of these and then trading computational effort
to achieve the third for an ever-increasing set of programs and specifications. For
example, over-approximate tools (automatic and no missed bugs) use computa-
tion to reduce the number of false alarms. Under-approximate tools (automatic
and no false alarms) use computation to reduce the number of missed bugs.
Human-assisted tools (no missed bugs and no false alarms) use computation to
reduce the amount of human effort required.

Fig. 2. The software verification pyramid with the six schools.

Figure 2 illustrates this trade-off with a three-sided pyramid (viewed from
above). Each base edge of the pyramid represents one of the three attributes;
automatic, no missed bugs and no false alarms. Corners on the base of the
pyramid represent each of the three approaches; over-approximate, under-
approximate and human-assisted. The top of the pyramid, in the centre of
the diagram, represents the ideal system with all three attributes. Computa-
tion effort is then used to ‘climb’ the pyramid towards the top, with different
techniques giving different routes up their chosen edge (or face).

There are many other dimensions on which software verification techniques
can be classified, and many other trade-offs that are necessarily made by different
tools. For instance, one could also consider how properties are specified, the
categories of systems that are analysed, and the usability of the system and
specification language. Our pyramid model is not intended to be exhaustive, but
it is intended as a useful starting point when making the initial choices about
how to solve a verification problem.

398 M. Brain and E. Polgreen

Table 1. Cultural attributes of the six schools.

Over-Approximate Under-Approximate Human-Assisted

Static
Analysis

Abstract
Interpretation

Testing &
Symbolic
Execution

Model Checking Deductive
Verification

Functional
Verification

Program Procedural or
O.O.

Procedural Procedural or
O.O.

Procedural or
O.O.

Subsets of
procedural

Functional

Commmon
Means of

Specification

Builtin Annotation
linked to the
abstraction

Generally
annotation

Annotation or
external

Annotation Type as
annotation

Common
Type of

Specification

Data flow,
aliasing, type,
shape, taint

Value, shape,
resource, data

flow

Value,
WCET,
resource

Value,
temporal,

modal, liveness

Value, shape,
termination,

resource

Type,
termination

Mathematical
Foundations

Ad-hoc /
operational
semantics

Order theory Ad-hoc /
transition
systems

Transition
systems

Logic Type theory

User Skill
Required

Minimal Low/Medium Low Medium High Very high

Compute
Required

Minimal Low/Medium
upwards

Medium
upwards

Medium/High
upwards

Low/Medium Low

Typical
Output

Algorithm
dependent

Alarms or
abstract
domains

Error traces Error traces Proof or local
counter-
examples

Type-checking
errors

Major
Systems

Lint[55],
Coverity[1],
Fortify[5],

FindBugs[4],
CPPCheck[2]

Astrée[33],
Polyspace[7],

Infer[57],
Code

Contracts[66]

CREST[3],
JPF[50],
Pex[77],

KLEE[18]

CBMC[60],
Blast[51],
*SMV[22],

CPAchecker[13]

SPARK[8],
Dafny[64],

Frama-C[34],
Malpas[6],

Esc/Java[45]

Coq[12],
PVS [70],
Agda[69],

Isabelle/Hol[68]

3 Six Schools of Verification

Our pyramid model allows us to compare and contrast the different academic
traditions in and aligned with software verification. Each of these represents a
separate lineage of thought, approach and community, although there is inter-
action, overlap and cross-fertilisation between them. This section surveys them
and attempts to give a qualitative assessment. Of the six schools, not all would
regard themselves as software verification but all have an important impact on
the field. As with all qualitative assessments, there is an element of subjectivity
and no doubt researchers and practitioners from each of the fields have different
views; the aim of this document is to provide an overview rather than a definitive
assessment. There are also exceptions to most of the distinctions and classifica-
tions and our statements should be taken as normative or cultural observations
rather than hard limits.

Table 1 gives the six schools with various cultural attributes. The kinds of
programs verified, and the kind of specification (see Sect. 4) normally considered
are given along with the mathematical formalisation used to express theoretical
results and algorithms. It also gives quantitative valuation for the level of user
skill required to apply the tools effectively and the computational requirements
of the tools. Finally, it gives a few of the prominent or significant tools from each

A Pyramid Of (Formal) Software Verification 399

of the areas. Many tool suites include tools from several of the different schools.
These are listed under the school for their main tool or general approach.

As well as the traditional approaches of the six schools, there are also a
significant number of combined techniques and tools. The simplest of these are
pipe-lines that run different tools in sequence (or sometimes in parallel), feeding
the results of one into the next. More sophisticated, synergistic combinations
also exist and will likely form a major part of the future of software verification.

Fig. 3. The running example program. The specifi-
cation we wish to check is in the form of 3 assertions.

Figure 3 gives an example
program in a C-like language.
The specification is given as
three assertions (an example
of what Sect. 4 describes as
an annotation specification).
They express:

1. All array accesses are in
bounds, at line 6

2. last is in a at end at
line 13

3. If found is non zero at end
then a[last] == target
at line 14.

Try working out which of
these can be verified. If they
can be verified, what knowl-
edge about the program is
required to show this? If not,

how would you provide a counter-example? Answers can be found here3.

3.1 Static Analysis

One of the oldest fields of program analysis and verification is static analysis.
Unfortunately, this term is used in at least two ways. In the general sense,
it refers to program analysis performed without running the program (hence
static). In this sense, the majority of the techniques of software verification can
be regarded as static analysis. In the narrow sense, it refers to a specific set
of algorithms and techniques that are explicitly referred to as static analysis
(as opposed to any other name), and are often developed with and to serve
the needs of compilers, both in improving their warnings (verification against a
specification) and optimising the code they generate.
3 Assertion 1 always holds (i.e., is always true) as the initial assignment to i is 0,

it is only ever incremented and the assertion appears immediately after the loop
condition checks that i < a.length(). Assertion 2 can fail, as if the array does not
contain the target, last will still have its initial -1 value. Assertion 3 always holds
as the only place last is assigned guarantees this property, although some non-trivial
reasoning about reachability is required.

400 M. Brain and E. Polgreen

The traditional focus of this area has been on over-approximate techniques.
Spurious warnings are fine if not too numerous, likewise missing an optimisation
is much more acceptable than miscompiled code based on a flawed assump-
tion. The need to keep compilation fast and robust has meant the field has
focused on fast and robust techniques for common problems such as finding
uninitialised variables, eliminating possible aliasing between pointers and data
flow for scheduling and optimisation rather than more complex specifications.

The first static analysis tools began to emerge in the 1970 s, beginning with
Lint [55], developed at Bell Labs in 1978, which flagged suspicious constructs
in code that could be suggestive of a bug in the code. There have been many
versions of lint developed for many C and C++ compilers, and “linter” is some-
times used as a generic term for static analysis tools based on this paradigm
of flagging patterns indicative of programming errors, bugs, stylistic errors and
suspicious constructs. For example, Lint would flag this if statement as a suspi-
cious construct since it always evaluates to true, which is probably not what the
programmer intended:

1 unsigned x;

2 if(x < 0) ...

These static analysis tools can be broadly described as lexical scanners that
look for patterns in code that are likely to be defects or vulnerabilities. Static
analysis tools do not treat the process of finding bugs in software as a logical
problem; none of the analyses performed by these static-analysis tools involves
constructing proof objects, and, as a result, these static analysis tools are not
able to discover many of the complex bugs that can be discovered by other
verification tools. That said, there is a broad range of types of bugs that can be
discovered through this kind of code analysis, many of which represent serious
vulnerabilities, for example, potential buffer overflows.

To mitigate the large numbers of false alarms typically produced by most
static analysis algorithms, modern static analysis tools may categorise the bugs
into ranks by seriousness [4] (i.e., the likelihood of the bug being a serious vul-
nerability), or by applying filtering algorithms to the results [24,76].

Industry: Static analysis tools like the commercial Coverity [1] and open-source
CPPCheck [2] are commonly used in industry and have been used to find bugs
in projects like Mozilla [35].

Running Example: Static Analysis cannot check the specifications given in
the running example. It could, however, flag simpler properties. For instance,
in a typed program, it could flag if the comparison i < a.length() compares
an integer with an unsigned integer.

3.2 Abstract Interpretation

The field of abstract interpretation started with a series of papers [30–32] on the
theory underpinning a range of static analyses. These proposed using the tools of

A Pyramid Of (Formal) Software Verification 401

order theory (partially ordered sets, lattices and Galois connections) to separate
the analysis into two components: domains which track the information required
for the specific analysis and abstract algorithms describing how the analysis is
performed.

The domain describes a data-structure that is used to represent an over-
approximate summary of the state of the program at a given point. Traditionally
there will be an instance of the domain for every program location. For example,
the constant domain contains a map from variables to constant values (plus flags
for “not a constant” and “no value assigned”). If the map has found → 0 then
we know that every time that location is reached, found will be 0. The interval
domain stores a map from variables to intervals (plus a “no value assigned” flag).
If i → [0, 10], then we have a bound for the possible values for i. This can rep-
resent all the cases that a constant domain can and also represent things it can’t
so we say it is a more precise representation (i.e. less of an over-approximation).
Domains have been created for a wide range of different analyses; data flow anal-
ysis, constant propagation, pointer analysis, etc. [21,74,81]. Creating a new kind
of analysis can be as simple as specifying an appropriate domain.

The choice of domain depends on several factors. Using a more detailed
domain (i.e. less of an overapproximation) can reduce the number of false alarms
but requires additional computation. Often it is necessary to choose a domain
that can precisely express the specification and the reasons why it is true. For
example, if the specification includes proving bounds on variables then an inter-
val domain is a good choice. However, if the specification includes proving the
equality of variables, then intervals are unlikely to be very useful as they cannot
represent the relationship between variables. The mathematics of abstract inter-
pretation allows domains to be combined in various ways. Selecting the right
combination of domains for a particular program and specification is one of the
more advanced skills that can boost the effectiveness of abstract interpretation.

The second part of abstract interpretation is the analysis algorithms. These
are stated in terms of mathematical operations on the domain, typically:

JoinCombines two instances of the domain to create a new instance that over-
approximates both. For example, if one instance has x → [1, 4] and the other
has x → [6, 8] then in the join x → [1, 8] – the smallest interval that contains
both inputs.

TransformTakes one instance and an instruction and creates a new instance
which over-approximates the effects of the instruction. For example if an
instance contains x → [1, 8] and y → [−4, 4] then the transformer for z = x
+ y would create a new domain containing z → [−3, 12] and all other variables
mapped to the same as in the original instance.

WidenCreates an instance of the domain that over-approximates the fix-point
of a series of instances. For example given a loop for (i = 0; i < n; ++i)
the widen operator might create an instance with i → [0,MAX].

Using abstract operations such as these allows the analysis algorithms to be spec-
ified and implemented independently of the domain, giving another ‘orthogonal’

402 M. Brain and E. Polgreen

space of possibilities. Analysis algorithms are often characterised by sensitivity
to various program constructs:

Flow Sensitive:the order of instructions in the program is followed.
Path Sensitive:the branch conditions are applied to improve precision.
Context Sensitive:the calling context of functions is considered.

By using a more sensitive algorithm, the amount of over-approximation can be
reduced and the set of specifications that can be automatically verified, with
no false alarms, is increased. Of course, this can only be achieved by increasing
the amount of computation required, so the more sensitive the algorithm the
more expensive it will be to use. One of the practical strengths of abstract
interpretation is modularity; assuming that variables or parts of a program are
independent of each other is an over-approximation. This fits naturally within
abstract interpretation. It is also the basis of many techniques for improving
scalability.

Industry: Abstract interpretation has been used in industry to prove the absence
of bugs in flight control software [56], and to analyse worst-case execution time
for microprocessors [42]

Table 2. Table showing the result of abstract interpretation on the running example,
using an interval domain.

Line found last i Assertion result

L4 found = 0

L4 last = -1 [0,0]

L4 i = 0 [0,0] [-1,-1]

L5 i < a.length() [0,x] [-1, x-1] [0,x]

L6 0 ≤ i < a.length() [0,x] [-1, x-1] [0,x] pass

L7 a[i]=target [0,x] [-1, x-1] [0,x]

L8 found=found+1 [0,x] [-1, x-1] [0,x]

L9 last=i [1, x+1] [-1, x-1] [0,x]

L11 i=i+1 [0, x+1] [-1, x] [0,x]

L13 0 ≤ last ≤ a.length() [0,x] [-1, x-1] [0,x] unknown

L14 found �=0 =⇒ a[last]=target [0,x] [-1, x-1] [0,x] unknown

Running Example: Table 2 shows the result of abstract interpretation being
applied to the running example, using the interval domain. Abstract interpre-
tation can prove assertion 1 is always true, but cannot prove that assertion 2
fails or that assertion 3 is always true.

A Pyramid Of (Formal) Software Verification 403

3.3 Testing and Symbolic Execution

Testing compiling and executing code on some concrete input(s), has a dual role
in development. It is both a verification tool (does the test give a result allowed
by the specification) and a validation tool (does the test do what I expected). In
its verification role, testing is most suitable for existential specifications (things of
the form “The software must be able to ...”) because it is an underapproximate
technique, only exploring a subset of possible traces of the program. Dijkstra
famously described this situation [37] by saying: “Program testing can be used
to show the presence of bugs, but never to show their absence!” . Showing the
absence of bugs is the same as saying that every trace of the program does not
trigger any bugs; a “universal” specification (Sect. 2).

One pragmatic option is to try to explore a ‘sufficient’ set of traces so that
if there are bugs there is a high probability they will be found. This is the
motivation behind coverage metrics which have a notion of a set of traces that
is ‘sufficient’ and likely include at least one example of each kind of program
behaviour. Coverage metrics are widely used and give a base level of certainty,
even for universal specifications. Testing and coverage metrics are a large topic
and [49,71] give a summary of the current-state-of-the-art. Test inputs can be
defined manually by developers or automatically generated using fuzz testing to
try to increase these coverage metrics.

Symbolic Execution [58] is a verification technique that was developed in the
context of testing. It aims to build a logical expression that describes all of the
traces that have taken the same path through the control flow graph. Rather
than test a single trace it covers a subset of traces whose behaviour is similar. The
subset of traces is then tested against the specification by testing the satisfiability
of the logical expression representing the subset of traces and the negation of
the specification, using a satisfiability solver.

A symbolic execution tool keeps a set of symbolic states. Each of these con-
tains its current location in the program, a map from variables to expressions
(describing the space of value it could take) and a path condition which is a set
of expressions giving the conditions that must hold for that path to be taken.
The set initially contains a single symbolic state, at the start of the program,
with every program variable mapped to set to a fresh logical variable and an
empty path condition. The analysis proceeds as follows:

Assign: Assign symbolic variables to each variable in the program state. Evaluate
program statements using the symbolic variables until you reach a branching
condition

Branch: On reaching a branching condition, e.g., an if statement, choose a fork
to explore. This places a constraint over the symbolic variables, e.g., in the
case of an if statement, if we explore the path when the if condition evaluates
to true.

Check: When the path reaches an assertion, pass the constraints over the sym-
bolic variables to the solver along with a constraint representing the violation
of the assertion.

404 M. Brain and E. Polgreen

Treating the memory as fully symbolic does not scale in practice, so symbolic
execution engines typically implement a partial memory model in which writes
are concretized, but reads are modelled as reads from symbolic memory, up to
a certain finite size of memory, and beyond that are concretized [29].

A limitation of symbolic execution is the path explosion problem: the number
of paths in a program typically grows exponentially with the program size (and
in the case of unbounded loops may be infinite). This means that the larger the
program, the less likely it is symbolic execution will manage to find a subset of
paths that exercises a particular bug. There are several heuristics the community
has developed to try to mitigate this problem, including merging paths [61],
exploring paths in parallel [79], and use of different heuristics to control the order
in which paths are explored. In addition, combined approaches exist: concolic
testing is a successful combination of symbolic execution combined with testing
(or concrete execution), which treats program variables as symbolic, but inputs
as concrete. It is used in conjunction with constraint solvers to generate new
concrete inputs with the aim of maximising code coverage. A good survey on
symbolic execution techniques is [20]

Industry: Testing is ubiquitous in industry, and needs no specific citation. Sym-
bolic execution is the underlying technique in many popular tools used in indus-
try, for example, KLEE [18] has been used for a variety of applications including
wireless sensor networks and exploit generation [19], JPF has been used at NASA
on the Orion control software [72], and Microsoft’s SAGE, using a combination
of fuzzing and symbolic execution, is used to find bugs in Windows applica-
tions [48].

Table 3. Table showing the result of symbolic execution for one arbitrarily choosen
path on the running example. α and t are symbolic variables, and the path constraints
are constraints inferred from choosing a branch at each branching condition.

path constraints symbolic environment

L0 (assign) true a �→ α, target �→ t

L4 (assign) true . . . , found �→ 0, last �→ −1, i �→ 0

L5 (branch) 0 < α.length() . . . , found �→ 0, last �→ −1, i �→ 0

L7 (branch) 0 < α.length() ∧ α[0] �= t . . . , found �→ 0, last �→ −1, i �→ 0

L11 (assign) 0 < α.length() ∧ α[0] �= t . . . , found �→ 0, last �→ −1, i �→ 1

L13 (check) 0 < α.length() ∧ α[0] �= t ∧ 0 ≤ −1 < α.length() . . . , found �→ 0, last �→ −1, i �→ 1

Running Example: Table 3 shows a single path of symbolic execution being
applied to the running example. We are able to prove that assertion 2 fails if
the target is not in the array. No path in the graph is able to show assertion
1 or assertion 3 always hold.

A Pyramid Of (Formal) Software Verification 405

Algorithm 1: Fixpoint
Result: Reachable states R
R = I;
while 1 do

if R == R ∧ T then
return R;

else
R = R∧T ;

end

end

Algorithm 2: BMC
Result: Reachable states R
R = I;
i=0 ;
while i < k do

R = R∧T ;
i++ ;

end
return R ;

3.4 Software Model Checking

Model checking involves constructing transition systems, and checking that these
systems are models of given logical specifications. Originally, the field focused
on specifications written in temporal logic [9], and systems that were manually
specified using a process calculus giving a labelled transition system (LTS), an
automata-like structure with states corresponding to states of programs and
transitions to the possible developments of the system. Verification could be
reduced to showing that the system’s LTS was a model of the logic, giving rise
to the name of the field.

Explicit State Model Checking explores the states of the LTS one at a time,
using graph algorithms such as depth-first search, until either a counter-example
for the property has been found or all reachable states have been explored.
This is limited by the number of states so tends to be used on protocols, high-
level designs and abstraction of software systems. SPIN [53], FDR [47] and the
TLA [83] tools are example of this style.

Symbolic Model Checking uses boolean formulae to represent sets of states in
the system, the transition relation and the properties we wish to check. For
instance, a formula representing the initial states of the running example is
found = 0∧last = −1∧i = 0. The most basic symbolic model checking algorithm
for systems with finite-states computes a formula that represents the total set
of reachable states (R) by starting with the initial state (I) and “unrolling”
the transition relation (T) repeatedly until a fixed-point is reached, as shown
in Algorithm 1. The formula can then be checked to see whether it satisfies the
specification. Critical to the performance of these systems is the use of compact
and efficient data structure to manipulate Boolean formulae. A form of decision
trees known as Binary Decision Diagrams (BDDs) are a popular choice [17,23].

Algorithms which compute the fix-point are able to find all bugs provided
computing the fix-point is possible (i.e., the system does not contain any
unbounded loops) and the representation of the system as a transition rela-
tion is precise enough to capture any bugs (for instance, memory models are

406 M. Brain and E. Polgreen

often approximate). If the system contains unbounded loops, the algorithm will
never find a fix-point, and so approximations must be introduced in order to
deal with these scenarios.

Bounded Model Checking (BMC) [14] is an under-approximate technique which,
instead of computing the fix-point, unwinds a transition system to a finite bound
k, and then checks for violations of the property within the states reachable in
k steps. BMC thus only guarantees the absence of bugs that can be reached in
k steps. For some systems, a completeness-threshold [25] can be computed such
that it is guaranteed that, if no bugs exist within k steps, no bugs exist at all.

Fig. 4. BMC applied to the example program.
The loop is unwound 2 times. The assertion
at line 23 checks whether the loop is unrolled
sufficiently for the input values

However, computing complete-
ness thresholds for unbounded
loops amounts to solving the Halt-
ing problem and so the technique
remains, in general, on the under-
approximate corner of the pyra-
mid. BMC in its original presen-
tation begins by unwinding the
transition system 1 step and look-
ing for violations of the specifi-
cation within 1 step, and then it
unwinds the transition system 2
steps, and so on until it reaches
k steps. However, many popular
tool implementations will instead
unroll the entire system minus any
loops and recursion to their lim-
its, and then unwind the loops to
k steps, as shown in Fig. 4.

A significant development in
BMC was the use of SAT-
solvers [15] instead of BDDs. Once
the formula representing reach-
able states has been constructed,
a SAT solver can efficiently check
whether a counterexample exists
using this formula. This is similar
to symbolic execution, but instead
of formulae representing subsets of
paths, we have one formula that
represents all of the paths. Mod-
ern software model checking tools

typically take as input either source code, or some intermediate compiled repre-
sentation of the source code such as LLVM [63], and convert this into an LTS, and
then use SAT-based model checking to check this LTS against the specification.

A Pyramid Of (Formal) Software Verification 407

There are many model checking algorithms beyond those mentioned, such as
IC3/PDR [16] and k-induction [39], as well as techniques for reducing the size
of the state space, such as program slicing [82] and predicate abstraction [10],
and many hybrid techniques that use combinations of symbolic and explicit
representations for different elements of the program. We refer the reader to [40,
54] for a comprehensive survey.

Industry: Bounded model checkers for software, such as CBMC [60] have been
applied to automotive software [75], verifying bootcode [28] and other industrial
software at Amazon Web Services [27].
Running Example: BMC will be able to find a counterexample to assertion
2 with a bound of k = 1, which will show that if the array is size 1 and does
not contain the target, last remains set to −1. It cannot prove assertion 1
and assertion 3 are true, although it can say that they hold up to a bound k.

3.5 Deductive Verification

Robert Floyd (working on flow-charts [46]) and Tony Hoare (working on pro-
grams [52]) developed equivalent approaches for manually constructing proofs
of program correctness. Tony Hoare’s presentation of the ideas as a logic was
more widely adopted, leading the approach to be known as Hoare logic. Their
approach contained two key ideas. First logical formulae are used to represent
sets of states at a particular point in the program. The set contains all of the
states that make the formula true. This gives the fundamental building block of
Hoare logic; the triple:

{Pre} Program {Post}
where Pre and Post are formulae and Program is a part of a program. The triple
denotes the statement “If the state of the program meets the precondition (Pre
is true) then after Program has been run the state will meet the postcondition
(Post is true)”. Hoare logic gives a series of proof rules for how these triples can
be constructed. One of these proof rules is the second key idea; that an inductive
argument about an invariant set can be used to prove properties of loops:

{Inv ∧ Cond} Body {Inv}
{Inv} while (Cond) Body {Inv ∧ ¬Cond}

This rule formalises the argument : if the body of a loop takes a state in (the
set described by) Inv to another state in Inv, and Inv is true before the loop,
then it must be true after the loop. Inv is referred to as an inductive invariant.
Inductive invariants are both the main strength of Hoare logic and its main cost.
They allow a finite, small proof to reason about the behaviour of an unbounded
number of traces. However, invariants often have to be created by humans as
there is no way of creating suitable invariants automatically for all programs and
specifications. This is why deductive verification is on the human assisted corner

408 M. Brain and E. Polgreen

of the pyramid. Once the candidate invariants have been provided both they
and the specification can be checked automatically. Tools such as Daikon [41]
and Houdini [44] have had some success in suggesting routine invariants. The
choice of loop invariant is dependent on both the program and the specification.
If the invariant is too weak (describes a set with too many elements), it may not
be sufficient to prove parts of the specification after the loop. If it is too strong
(describes a set with too few elements) then it may not hold before the loop or
may not be inductive. Devising a suitable loop invariant is a skilled task and is
one of the reasons for the higher skill rating in Table 1.

Dijkstra [36] contributed various ideas to the field of deductive verification.
He showed that some of Hoare’s rules for constructing tuples could be replaced
with an algorithm that transformed one formula into the other. The best known
of these predicate transformers are the strongest postcondition which use the
Pre condition and Program to compute the most precise Post and the weakest
precondition which uses the Post condition and Program to compute the least
restrictive Pre condition. Dijkstra also showed that these techniques could be
used to build software from a specification so that it was provable correct and
argued forcefully that these formal methods4 were the only professional approach
to software engineering. In doing so he provided not only the means but also the
motivation for Hoare logic to be used as a verification technology rather than a
purely theoretical construct.

Table 4. Verification conditions generated to check the verification conditions in Fig. 3,
using the inductive invariant given in Sect. 3.5. For readability, we do not include the
formulae that reason about variables which do not change.

found = 0 ∧ last = −1 ∧ i = 0 strongest post condition

(found �= 0 =⇒ a[last] = target) check invariant

(found �= 0 =⇒ a[last] = target) invariant

i < a.length() loop body run

a[i] = target ⇒ found′ = found + 1 ∧ last′ = i execute body

i′ = i + 1 loop counter update

0 ≤ i < a.length() check assertion 1

(found′ �= last′ =⇒ a′[last′] = target′) check invariant

(found �= 0 =⇒ a[last] = target) invariant

¬(i < a.length()) loop exit

0 ≤ last < a.length() check assertion 2

(found �= 0 =⇒ a[last] = target) check assertion 3

4 Software verification is a technique that is used by some formal methods. However
there are formal methods which do not use it and uses of software verification in
development methodologies which are not traditionally considered formal.

A Pyramid Of (Formal) Software Verification 409

Early uses of Hoare logic were proving the correctness of algorithms. How-
ever, there are now many tools in existence that apply deductive verification to
actual software. The early tools, such as SPARK [8], were labour intensive and
required manual annotations to write pre- and post-conditions. Later tools, such
as ESC/Java [45], use weakest precondition/strongest postcondition alongside
Hoare’s inductive rule for loops to generate assertion s, and then deployed inde-
pendent theorem provers [45] or SMT solvers [11,43] to check the conditions.

Industry: SPARK [8] has been used in civil and military avionics, railway sig-
nalling and cryptographic solutions; Why3 has been used for proof of smart
contracts [67]; Boogie [11] is developed and maintained by Microsoft, and has,
amongst other things, been used for smart contract verification [80].

Running Example: The first thing we need to do is provide a loop invariant
for the loop. We will use (found �= 0 =⇒ a[last] = target) (this is the same
as assertion 3, and often invariants may be guessed from the properties we
wish to prove). We then generate the verification conditions in Table 4, which
correspond to the path from the start of the function to the invariant at the
top of the loop, the path from the invariant around the loop once, and the
path from the invariant exiting the loop via the loop condition. Assertions
that cannot be proven mean either the specification is not met or that the
invariant is too weak. However, there is no automatic technique that can tell
the difference between the two in all cases. In this instance, it is possible to
prove assertion 3 always holds but not that assertion 2 fails or assertion 1
always holds. But, if we make the invariant stronger, and use (found �= 0 =⇒
a[last] = target) ∧ i > 0, we can now prove assertion 1 always holds as well.

3.6 Functional Verification

Functional verification comprises techniques that use mathematical reasoning
to show equivalence between functional programs and constructive proofs. The
result that it builds on is the connection between function application (β-
reduction) in typed lambda calculus and modus ponens in intuistic logic:

t : A λx.E : A → B
E[x := t] : B

A A ⇒ B
B

This can be seen as giving a logical character to programs; showing that a
function f : A → B is well-typed is equivalent to proving that if t meets the
precondition (is of type A), then f(t) meets the postcondition (is of type B).
This allows type checking and type inference algorithms to be used as verification
tools.

This school of verification is a branch of functional programming as it is
limited to programming languages and type systems that have an equivalence

410 M. Brain and E. Polgreen

with a suitable logic. These languages tend to be functional as the logical equiv-
alent of mutable state and pointers remain open research questions. As a result,
functional verification is most effectively applied to build code that is correct
by construction rather than to verifying code that already exists. Types play a
similar role to annotations in deductive verification systems, giving the specifi-
cation to be proven and the intermediate steps used to assist the verification tool
/ type checker. From this point of view, inductive invariants in loops are equiva-
lent to type declarations for recursive functions and the repetition between proofs
and programs found in deductive verification is avoided. However, the tight link
between types and logic means that the specification must be expressible in the
type system. It also requires a high level of skill as both the program and proof
must be constructed simultaneously.

Culturally aligned with functional verification but with distinct foundations,
there are a number of approaches to verification that use Interactive Theorem
Provers (ITPs). The user constructs a mathematical proof that the program
meets the specification and the ITP then checks this proof.

Industry: Despite the high skill level required, functional verification has been
used for various projects with complex functional specifications that required
non-trivial proof, e.g., the seL4 project [59] and the CompCert C Compiler [65].

Running Example: As our example program in Figure 3 is written in C
we cannot directly demonstrate this style of verification. However, we can
consider what would be needed to verify a functional implementation of the
same system. To show that all of the array accesses were in bounds we would
need an array type that included the length (i.e. (array 10) could be a valid
type) and we would need an integer type that could express bounds, or a type
inference algorithm that could determine them automatically.

4 Specifications

The specification is the set of criteria we check the program against. If you are
building or maintaining a system then you need a specification – an understand-
ing of what the system should do. Otherwise, you have no way of saying if the
system is working as intended!

In this paper we are interested in specifications that are or can be formalised,
i.e., expressed in a language with formal semantics.

There are many different kinds of specifications (“the program must be able
to”, “the program must always”, “the program must never”, etc.) and the dif-
ficulty of verifying them can vary significantly. Tools and techniques for formal
verification are often only applicable or are most suitable for certain kinds or
parts of specifications. For example, showing that the program has a print fea-
ture is (hopefully!) fairly simple and testing may give sufficient evidence for the
verification case. On the other hand, showing that there are no executions of the
program with buffer over-runs is harder and will likely need software verification
tools to achieve a reasonable degree of certainty.

A Pyramid Of (Formal) Software Verification 411

4.1 Ways of Expressing Specifications

Which specifications can be used and how they are represented depends on the
verification tool.

Builtins. One approach is to have a number of specifications built in to the tool
and to have the user pick which one(s) they wish to verify against, for example,
“no trace executes undefined behaviour”. This approach is the easiest from the
point of view of the user, setting the specification is ticking a few boxes or setting
command-line flags. It is also convenient for tool developers as the verification
tool can be specialised to handle the particular specifications supported. How-
ever, it is limited; if the tool does not support a relevant specification then it
will be of little use, even if the core analysis that it is performing is relevant to
the task.

Annotation. Another approach to specification is annotation. Annotations are
statements in the program that describe a set of traces with reference to the
location of the annotation. These may be written in comments, library calls
(such as assert) or specific language constructs (such as pragmas). One way of
classifying annotations is by how they describe the set of traces. They can refer
to the state of the program when(ever) it reaches the annotation, for example
giving constraints on values (0 <= i && i < n). These describe all of the traces
that have the required state when they reach the annotation. They can refer
to the future behaviour of the traces after they have reached the annotation,
for example, termination. They can refer to the past behaviour of the traces
before reaching the annotation, for example, taint (this parameter must not
be influenced by user input). Implicit in the idea of annotations is a notion of
reachability; annotations only apply when a trace reaches their location. This
means that the verification tool must determine which parts of the program can
be executed and so Rice’s Theorem applies (see Sect. 2).

Annotations are more flexible than fixed specifications, they can be devel-
oped and maintained in parallel with the software and they can be used in a
modular fashion and re-used along with the software. They can also be used
to assist the verification tool by providing predicates that the tool can use for
modular reasoning (see Sect. 3.5). Some tools such as Dafny [64] make a distinc-
tion between annotations that express specifications and those for assisting the
proof. Describing specifications by annotations has some disadvantages. It inter-
leaves the specification and implementation, meaning that they often have to be
developed together or at least by teams who understand both aspects. They are
also harder to review independently of the implementation.

External Objects. A third popular way of providing a specification is an exter-
nal object, written in some formal language. Examples of this include providing
another program as a specification and verifying the equivalence of the two (the
specification should represent the same set of traces as the program) or provid-
ing a more abstract program as a specification and showing that the concrete

412 M. Brain and E. Polgreen

program is a refinement of it (the traces in the program are a subset of the
traces permitted by the specification). These approaches can be very useful if
a reference model, protocol or implementation is available or in a hierarchical
development approach where one language is used to create a series of progres-
sively more detailed implementations by showing that each is a refinement of
the previous one. One recent and promising direction in verification is to use
a previous version of the software as the specification. This is differential ver-
ification [62] and allows us to check specifications about the changes between
versions; “this modification does not introduce new bugs”, “the change only
affects a bounded amount of the program” or even “this patch definitely blocks
a given exploit”. Specifications as a separate object allow the most flexibility
and reuse as well as giving a good separation between the development of the
program and the specification. However, it may require significant extra devel-
opment (differential verification is the notable exception to this requiring almost
no extra effort) potentially as much as developing the program itself.

5 Using the Pyramid

The pyramid model allows us to classify and contrast techniques by which of
the three key properties they guarantee and which they use computation to
work towards. It is also a useful model for designing verification work-flows and
selecting and evaluating appropriate tools.

For a particular project, there will only be a small (finite) number of programs
and specifications of interest, thus Turing’s result is not directly applicable. It
would be possible (in theory) to create a verification tool that could achieve all
three properties for the programs and specifications in that project. Developing
such a project-specific tool is not financially viable for most organisations, so a
process needs to be created using existing (or customised) tools. Given a partic-
ular program and specification, the key question is whether a reasonable amount
of computation will reduce the missing attribute (false alarms, unexplored areas
or human effort) by an acceptable amount. This question can only be answered
by considering the wider context of the project; what role does the verification
of the software play in the correctness, safety, security or performance of the sys-
tem? What happens if the system is wrong? How much software already exists
and how much can it be modified?

For example, if the verification is used to make a claim of code quality then
using an over-approximate technique might be fine if the number of defects
(including false alarms) is below the required threshold. An under-approximate
technique might be suitable for a component with redundancy or fail-safe mecha-
nisms as software defects will cause a loss of service rather than failure. Reducing
the number of these is clearly beneficial but it is not necessary to remove all of
them as low probability defects have a small impact. If defective software would
cause a catastrophic system failure then a human-assisted technique might be
most appropriate as a proof of correctness of the software can strengthen the
system-wide verification case.

A Pyramid Of (Formal) Software Verification 413

By prioritising the three attributes (automatic, no missed bugs, no false
alarms) with respect to the project’s goals and the need for software verification,
the pyramid model can help select the right kind of tool.

5.1 Process

The human side of using software verification tools covers three aspects; develop-
ing the software, developing the specification and dealing with the missing third
attribute. The first two of these are common to all approaches and are covered
by both formal and non-formal development methodologies. The pyramid model
can help inform the third area:

• If an over-approximate technique is used, then human effort will be required
to deal with the output which will be a mix of false alarms and genuine
defects. This was widely regarded as tedious but tractable.
Unfortunately there is evidence [38] that even skilled developers are not able
to reliably distinguish between false and real alarms.

• If an under-approximate analysis is used then any defects that are found are
definitely real. Most tools of this kind will produce a trace or test-case that
demonstrates the issue. These are often of considerable value for develop-
ers in fixing the problem [26]. For these approaches the missing attribute is
‘no missed bugs’ and so effort has to be put into increasing coverage. One
way of achieving this is to create more fine-grained specifications; similar
to unit tests. If checking the whole program leaves areas of the state-space
unexplored, these can be used to increase the coverage. For example, if a
monolithic under-approximate analysis does not check a particular function,
the function can be checked independently. To do this requires a specification
that includes the range of values of input variables over which the function is
to be verified. The developer experience is likely to be similar to writing unit
tests but using constraints to describe a space of possible inputs rather than
fixed values.

• Finally if a human-assisted tool is used then the human effort in the process
will be in producing the parts of the proof the tool is unable to directly
infer. These will typically be pre and post-conditions for functions and loop
invariants (see Sect. 3.5) or types (see Sect. 3.6). This requires developers with
relevant training or experience.

5.2 Understanding Tool Evaluation

The pyramid model also helps understand how tools are evaluated in academia
and industry. If tools are viewed as having two of the three attributes then
evaluation is a question of measuring or approximating how each unit of compu-
tational effort reduces the number of missed bugs, false alarms or the amount of
human-written proof across the set of all programs. As discussed earlier in this
section, most tool users only care about the specific programs and specifications
that they have. Combined with the obvious difficulty of running experiments

414 M. Brain and E. Polgreen

over the (infinite) set of all programs and specifications means that most evalua-
tions are conducted with benchmarks, sets of programs and specifications which
are claimed to be representative.

Experimental evaluations of over-approximate tools tend to focus on the
relative alarm rates or the relative difference between approximations given by
different techniques. Underapproximate techniques tend to compare the speed
at which different tools solve the same problem(s) (i.e., finding known bugs) or
the number solved with given human effort. This is because measuring missed
bugs is hard. Human-assisted tools use proxies to estimate the amount of effort
needed, for example number of lines of proof, or ratio of lines of proof to lines
of code, or the number of human-hours it takes to produce. Note that many of
these tools take very different inputs, so it is very hard to compare directly and
measuring effort/expertise is very subjective.

6 Conclusion

We have found the pyramid of verification to be an invaluable framework for
classifying and choosing verification techniques, for teaching, and for bridging
the gap between academics and potential users of verification tools. We hope
that this paper enables the reader to do the same.

References

1. Coverity Scan: Static analysis. https://scan.coverity.com/. Accessed 10 Apr 2024
2. Cppcheck: A tool for static C/C++ code analysis. https://cppcheck.sourceforge.

io/. Accessed 10 Apr 2024
3. CREST: Concolic test generation tool for C. https://www.burn.im/crest/.

Accessed 20 July 2020
4. FindBugs. http://findbugs.sourceforge.net/. Accessed 22 July 2020
5. Fortify static code analyzer. https://www.opentext.com/products/fortify-static-

code-analyzer. Accessed 10 Apr 2024
6. MALPAS software static analysis toolset. http://malpas-global.com/. Accessed 10

Apr 2024
7. PolySpace Code Prover. https://www.mathworks.com/products/polyspace-code-

prover.html. Accessed 22 July 2020
8. SPARK. https://www.adacore.com/about-spark. Accessed 10 Apr 2024
9. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)

10. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: Burke, M., Soffa, M.L. (eds.) Proceedings of the
2001 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), Snowbird, Utah, USA, June 20-22, 2001, pp. 203–213. ACM
(2001)

11. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a mod-
ular reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387.
Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

https://scan.coverity.com/
https://cppcheck.sourceforge.io/
https://cppcheck.sourceforge.io/
https://www.burn.im/crest/
http://findbugs.sourceforge.net/
https://www.opentext.com/products/fortify-static-code-analyzer
https://www.opentext.com/products/fortify-static-code-analyzer
http://malpas-global.com/
https://www.mathworks.com/products/polyspace-code-prover.html
https://www.mathworks.com/products/polyspace-code-prover.html
https://www.adacore.com/about-spark
https://doi.org/10.1007/11804192_17

A Pyramid Of (Formal) Software Verification 415

12. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Berlin, Heidelberg (2013). https://doi.org/
10.1007/978-3-662-07964-5

13. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

14. Biere, A.: Bounded model checking. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and
Applications, vol. 185, pp. 457–481. IOS Press (2009)

15. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of BDDs. In: Irwin, M.J. (ed.) Proceedings of the
36th Conference on Design Automation, New Orleans, LA, USA, June 21-25, 1999,
pp. 317–320. ACM Press (1999)

16. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

17. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 10̂ 20 states and beyond. In: Proceedings of the Fifth Annual Symposium
on Logic in Computer Science (LICS ’90), Philadelphia, Pennsylvania, USA, June
4-7, 1990, pp. 428–439. IEEE Computer Society (1990)

18. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic genera-
tion of high-coverage tests for complex systems programs. In: OSDI, pp. 209–224.
USENIX Association (2008)

19. Cadar, C., et al.: Symbolic execution for software testing in practice: preliminary
assessment. In: ICSE, pp. 1066–1071. ACM (2011)

20. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (2013)

21. Cassé, H., Féraud, L., Rochange, C., Sainrat, P.: Using the abstract interpretation
technique for static pointer analysis. SIGARCH Comput. Architect. News 27(1),
47–50 (1999)

22. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

23. Cavada, R., et al.: The NUXMV symbolic model checker. In: Biere, A., Bloem, R.
(eds.) Computer Aided Verification - 26th International Conference, CAV 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-
22, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8559, pp. 334–342.
Springer (2014). https://doi.org/10.1007/978-3-319-08867-9 22

24. Chen, D., Huang, R., Qu, B., Jiang, S.: Improving static analysis performance using
rule-filtering technique. In: Reformat, M. (ed.) The 26th International Conference
on Software Engineering and Knowledge Engineering, Hyatt Regency, Vancouver,
BC, Canada, July 1-3, 2013, pp. 19–24. Knowledge Systems Institute Graduate
School (2014)

25. Clarke, E., Kroening, D., Ouaknine, J., Strichman, O.: Completeness and com-
plexity of bounded model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004.
LNCS, vol. 2937, pp. 85–96. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-24622-0 9

https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-540-24622-0_9
https://doi.org/10.1007/978-3-540-24622-0_9

416 M. Brain and E. Polgreen

26. Clarke, E., Veith, H.: Counterexamples revisited: principles, algorithms, appli-
cations. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol.
2772, pp. 208–224. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39910-0 9

27. Cook, B.: Formal reasoning about the security of amazon web services. In: Chock-
ler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 38–47. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 3

28. Cook, B., Khazem, K., Kroening, D., Tasiran, S., Tautschnig, M., Tuttle, M.R.:
Model checking boot code from AWS data centers. Formal Methods Syst. Des.
57(1), 34–52 (2021)

29. Coppa, E., D’Elia, D.C., Demetrescu, C.: Rethinking pointer reasoning in symbolic
execution. In: Rosu, G., Penta, M.D., Nguyen, T.N. (eds.) Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering, ASE
2017, Urbana, IL, USA, October 30 - November 03, 2017, pp. 613–618. IEEE
Computer Society (2017)

30. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977)

31. Cousot, P., Cousot, R.: Static determination of dynamic properties of generalized
type unions. In: Language Design for Reliable Software, pp. 77–94. ACM (1977)

32. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL, pp. 269–282. ACM Press (1979)

33. Cousot, P., et al.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS,
vol. 3444, pp. 21–30. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31987-0 3

34. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015).
https://doi.org/10.1007/s00165-014-0326-7

35. D’Abruzzo Pereira, J., Vieira, M.: On the use of open-source C/C++ static analysis
tools in large projects. In: 2020 16th European Dependable Computing Conference
(EDCC), pp. 97–102 (2020)

36. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453-457 (1975)

37. Dijkstra, E.W.: EWD 1308: What Led to “Notes on Structured Programming”. In:
Broy, M., Denert, E. (eds.) Software Pioneers, pp. 340–346. Springer, Heidelberg
(2002). https://doi.org/10.1007/978-3-642-59412-0 19

38. Dillig, I., Dillig, T., Aiken, A.: Automated error diagnosis using abductive infer-
ence. In: PLDI, pp. 181–192. ACM (2012)

39. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software verification using
k -induction. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 351–368. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23702-7 26

40. D’Silva, V.V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 27(7), 1165–1178 (2008)

41. Ernst, M.D., et al.: The Daikon system for dynamic detection of likely invariants.
Sci. Comput. Program. 69(1–3), 35–45 (2007)

42. Ferdinand, C.: Worst case execution time prediction by static program analysis.
In: IPDPS. IEEE Computer Society (2004)

43. Filliâtre, J.C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

https://doi.org/10.1007/978-3-540-39910-0_9
https://doi.org/10.1007/978-3-540-39910-0_9
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/978-3-642-59412-0_19
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1007/978-3-642-37036-6_8

A Pyramid Of (Formal) Software Verification 417

44. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45251-6 29

45. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for java. In: PLDI, pp. 234–245. ACM (2002)

46. Floyd, R.W.: Assigning meanings to programs. In: Colburn, T.R., Fetzer, J.H.,
Rankin, T.L. (eds) Program Verification. Studies in Cognitive Systems, vol. 14.
Springer, Dordrecht (1993). https://doi.org/10.1007/978-94-011-1793-7 4

47. Gibson-Robinson, T.: FDR3: the future of CSP model checking. In: Welch, P.H.,
Barnes, F.R.M., Broenink, J.F., Chalmers, K., Pedersen, J.B., Sampson, A.T.
(eds.) 35th Communicating Process Architectures, CPA 2013, Edinburgh, Scot-
land, UK, August 25, 2013, pp. 321–322. Open Channel Publishing Ltd. (2013)

48. Godefroid, P.: Software model checking improving security of a billion computers.
In: Păsăreanu, C.S. (ed.) SPIN 2009. LNCS, vol. 5578, pp. 1–1. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02652-2 1

49. Gopinath, R., Jensen, C., Groce, A.: Code coverage for suite evaluation by devel-
opers. In: Jalote, P., Briand, L.C., van der Hoek, A. (eds.) 36th International
Conference on Software Engineering, ICSE ’14, Hyderabad, India, May 31 - June
07, 2014, pp. 72–82. ACM (2014)

50. Havelund, K.: Java PathFinder a translator from Java to Promela. In: Dams, D.,
Gerth, R., Leue, S., Massink, M. (eds.) SPIN 1999. LNCS, vol. 1680, pp. 152–152.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48234-2 11

51. Henzinger, T.A., Jhala, R., Majumdar, R.: The BLAST software verification sys-
tem. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 25–26. Springer,
Heidelberg (2005). https://doi.org/10.1007/11537328 4

52. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

53. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

54. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4),
21:1–21:54 (2009)

55. Johnson, S.C.: Lint, a C program checker, pp. 78–1273 (1978)
56. Kästner, D., Wilhelm, R., Ferdinand, C.: Abstract interpretation in industry -

experience and lessons learned. In: In: Hermenegildo, M.V., Morales, J.F. (eds)
Static Analysis. SAS 2023. Lecture Notes in Computer Science, vol 14284. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-44245-2 2

57. Kettl, M., Lemberger, T.: The static analyzer infer in SV-COMP (competition
contribution). In: TACAS 2022. LNCS, vol. 13244, pp. 451–456. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-99527-0 30

58. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

59. Klein, G., Elphinstone, K., et al.: seL4: formal verification of an OS kernel. In:
SOSP, pp. 207–220. ACM (2009)

60. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 26

61. Kuznetsov, V., Kinder, J., Bucur, S., Candea, G.: Efficient state merging in sym-
bolic execution. In: Vitek, J., Lin, H., Tip, F. (eds.) ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’12, Beijing, China,
June 11 - 16, 2012, pp. 193–204. ACM (2012)

https://doi.org/10.1007/3-540-45251-6_29
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-3-642-02652-2_1
https://doi.org/10.1007/3-540-48234-2_11
https://doi.org/10.1007/11537328_4
https://doi.org/10.1007/978-3-031-44245-2_2
https://doi.org/10.1007/978-3-030-99527-0_30
https://doi.org/10.1007/978-3-642-54862-8_26

418 M. Brain and E. Polgreen

62. Lahiri, S.K., Vaswani, K., Hoare, C.A.R.: Differential static analysis: opportunities,
applications, and challenges. In: FoSER, pp. 201–204. ACM (2010)

63. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program
analysis and transformation. In: CGO, pp. 75–88. IEEE Computer Society (2004)

64. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

65. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

66. Logozzo, F.: Practical specification and verification with code contracts. In: HILT,
pp. 7–8. ACM (2013)

67. Nehäı, Z., Bobot, F.: Deductive proof of industrial smart contracts using Why3.
In: Sekerinski, E., et al. (eds.) FM 2019. LNCS, vol. 12232, pp. 299–311. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-54994-7 22

68. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

69. Norell, U.: Dependently typed programming in Agda. In: Koopman, P., Plasmei-
jer, R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 230–266. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04652-0 5

70. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

71. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y.L., Harman, M.: Chapter six
- mutation testing advances: an analysis and survey. Adv. Comput. 112, 275–378
(2019)

72. Pasareanu, C.S., et al.: Combining unit-level symbolic execution and system-level
concrete execution for testing NASA software. In: ISSTA, pp. 15–26. ACM (2008)

73. Rice, H.G.: Classes of recursively enumerable sets and their decision problems.
Trans. Am. Math. Soc. 74, 358–366 (1953)

74. Schmidt, D.A.: Data flow analysis is model checking of abstract interpretations.
In: MacQueen, D.B., Cardelli, L. (eds.) POPL ’98, Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Diego, CA, USA, January 19–21, 1998, pp. 38–48. ACM (1998)

75. Schrammel, P., Kroening, D., Brain, M., Martins, R., Teige, T., Bienmüller, T.:
Successful use of incremental BMC in the automotive industry. In: Núñez, M.,
Güdemann, M. (eds.) FMICS 2015. LNCS, vol. 9128, pp. 62–77. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19458-5 5

76. Shen, H., Fang, J., Zhao, J.: EFindBugs: effective error ranking for findBugs. In:
Fourth IEEE International Conference on Software Testing, Verification and Vali-
dation, ICST 2011, Berlin, Germany, March 21-25, 2011, pp. 299–308. IEEE Com-
puter Society (2011)

77. Tillmann, N., de Halleux, J.: Pex–white box test generation for .NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79124-9 10

78. Turing, A.M.: On computable numbers, with an application to the entschei-
dungsproblem. Proc. London Math. Soc. s2-42(1), 230–265 (1937)

79. Vernier-Mounier, I.: Symbolic executions of symmetrical parallel programs. In: 4th
Euromicro Workshop on Parallel and Distributed Processing (PDP ’96), January
24-26, 1996, Portugal, pp. 327–335. IEEE Computer Society (1996)

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-030-54994-7_22
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-319-19458-5_5
https://doi.org/10.1007/978-3-540-79124-9_10

A Pyramid Of (Formal) Software Verification 419

80. Wang, Y., et al.: Formal verification of workflow policies for smart contracts in
Azure Blockchain. In: Chakraborty, S., Navas, J.A. (eds.) VSTTE 2019. LNCS,
vol. 12031, pp. 87–106. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
41600-3 7

81. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
In: Deusen, M.S.V., Galil, Z., Reid, B.K. (eds.) Conference Record of the Twelfth
Annual ACM Symposium on Principles of Programming Languages, New Orleans,
Louisiana, USA, January 1985, pp. 291–299. ACM Press (1985)

82. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing.
ACM SIGSOFT Softw. Eng. Notes 30(2), 1–36 (2005)

83. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48153-2 6

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-41600-3_7
https://doi.org/10.1007/978-3-030-41600-3_7
https://doi.org/10.1007/3-540-48153-2_6
http://creativecommons.org/licenses/by/4.0/

	A Pyramid Of (Formal) Software Verification
	1 Introduction
	2 A Pyramid of Verification
	3 Six Schools of Verification
	3.1 Static Analysis
	3.2 Abstract Interpretation
	3.3 Testing and Symbolic Execution
	3.4 Software Model Checking
	3.5 Deductive Verification
	3.6 Functional Verification

	4 Specifications
	4.1 Ways of Expressing Specifications

	5 Using the Pyramid
	5.1 Process
	5.2 Understanding Tool Evaluation

	6 Conclusion
	References

