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Abstract: For the structural design of cable domes, the determination of prestress force
distribution, the section of the structural components, and initial configuration are prerequi-
sites for the subsequent detailed design of cable and strut sizes. To solve this problem, this
paper elucidates the basic theory of the Minor Perturbation Method, introduces this theory
into the field of force finding design for cable dome structures, and develops a new design
method whose core is the comparison between the combined stress of each component
conforming to mechanical characteristics of cable-strut structure and control stress, and
meeting the convergence condition by adjusting the prestress level and cross-section of
components. A corresponding design flow chart is established and programmed with
finite element analysis software. Through the case studies of two different kinds of cable
dome, it is proven that the proposed method and software program can simply, quickly,
and effectively design the cable domes with an economic cross-section.

Keywords: cable dome; form-finding; force-finding; minor perturbation method

1. Introduction
The cable dome structure belongs to the typical tensile structure system [1]. Conduct-

ing a feasible prestress design for cable dome structures is essential for their ability to resist
loads and, therefore, determining the cross-sections area of each component and the overall
initial geometry is important. These two design-stage structures are collectively referred to
as form-finding and force-finding, or the prestress force design.

For the prestressing force design of tensile structures under given loads, but with
uncertain geometry and prestressing distribution, the primary analysis methods are the
force density method, the dynamic relaxation method, etc. [2,3]. In 1974, HJ Schek [4]
proposed the method of force density by establishing node static equilibrium matrix
equations in membrane structures. In 1988, L. Grundig [5] et al. enriched the applicable
boundary range and node external force types based on the minimum area calculation
theory. In 2006, JY Zhang et al. [6]. further studied the feasible force density set and the
corresponding non-degenerate structural configuration. Hoang Chi Tran [7] et al. found
feasible force density sets by iteratively performing the spectral decomposition of the force
density matrix and singular value decomposition of the balance matrix. Masaaki Miki [8]
and Metro R et al. contributed to the application methods and scope of the development
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force density method a great deal. Metro R et al. [9] generalized the force density method
to triangle planar elements, forming the surface density method [10].

Day [11] first proposed the dynamic relaxation method (DR) and successfully ap-
plied it to the solution of planar frames and plate structures. Barnes [12,13] and
W.J. Lewis et al. [14] applied it to the analysis of cable network and spatial membrane
structures. S. Chen [15] proposed two calculation formulas for the time step and damping
coefficient used in the calculation of the dynamic relaxation method. LU Jian-Heng [16]
established a functional relationship among time step, node damping coefficient, and node
virtual mass.

For the force finding problem of a tensegrity structure, Pellegrino and Calladine [17–19]
proposed an equilibrium equation between the internal force vector and external node force
vector, which neglects the elastic characteristics of the structure and change of configuration.
The relative advantages and disadvantages of each kind of method are listed in Table 1.

Table 1. Comparison of advantages and disadvantages of different methods.

Method
Elasticity Modulus and

Section Parameters
Considered

Speed for Finding
Reasonable

Prestress

Calculation Speed
of Economic

Cross-Section

Calculation
Accuracy

Calculation
Speed

force density no good good not good good

dynamic relaxation yes not good not good good not good

equilibrium matrix
theory no good good not good good

Combining the cable dome form-finding method with finite element software can com-
plete the cable dome prestressing design more quickly and accurately. Pagitz [20] proposed
an iterative form-finding method for any tensioned integral structure with determined pre-
stressing and external forces based on the minimum potential energy principle to achieve an
optimal topology by adjusting the lengths of the cable-bars. However, this method requires
prior knowledge of the cross-sectional areas of the components. Kai-Uwe [21] introduced
a form-finding method based on adaptive stiffness matrix regularization iteration and
a parameter update strategy, and its robustness was verified through 2D and 3D examples.
However, this method requires knowledge of the internal force distribution. Neither of
these methods conforms to engineering application scenarios. In 2007, Li Hongyu and
Liu Xiliang [22] proposed the initial displacement disturbance method, which obtained
the feasible prestressing distribution relationship of cable dome structures by applying
appropriate small displacement disturbance to the finite element truss element model of
the cable dome. Its core idea is similar to the pretension springback method proposed by
Xiang XA [23] in 2019. Due to the significant difference between the disturbance method
and the actual construction process, there is a lack of in-depth literature on the refined
application research in the design field. In 2023, Wang Hong and Guo Yanlin, et al. pro-
posed a target position forming analysis method for calculating the initial configuration,
which overlooks the changes in component internal forces and sectional stresses during the
iterative form-finding process.

This paper relies on the fundamental ideas and principles of the force disturbance
method and aims to address the prestressing design problem of cable dome structures with
determined load conditions and target configurations. A new structural design method is
proposed to calculate the internal prestressing system of cable domes while synchronizing
the section design and initial configuration design. The analysis and calculation procedures
are established, and corresponding software is developed based on a finite element software
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platform. Finally, the effectiveness and practicality of this method are validated through
numerical examples.

2. Design Method Based on Minor Perturbation Method
2.1. Fundamental of Minor Perturbation Method

For a statically stable cable dome with certain geometric configuration and boundary
constraint, there is a general equilibrium force system inside the structure under pretension
load and gravity load. Gravity load is a relatively certain external load, and the pretension
load is an artificially applied variable load. Considering that the change of prestress load
obviously affects the bearing capacity and stiffness of the structure, it can be assumed that
it is a perturbation load.

In theory, behavior characteristics of a system can be understood by observing, analyz-
ing, and comparing the response of the system before and after introducing a perturbation.
Originating from this idea, Force Perturbation theory holds that, when facing certain
force perturbations that do not obviously change structure configuration within certain
boundary constraints, a certain internal force system conforming to the original geometric
configuration will come into being to resist the deformation of the structure, and the propor-
tional relationship between the internal forces of each component is also relatively stable.
This concept has been proven to be applicable to the process of finding the proportional
relationship between internal forces of cables and the structure of the strut.

By extending the above theory into the theory field of elastic cable dome structure, it
will inevitably lead to the conclusion that, when applying a pretension force perturbation
on any group of cables inside the cable dome structure, based on the stiffness character-
istics of the structure itself, a stable internal force system conforming to basic topological
characteristics will come to being. The essence of the theoretical conclusion is the devel-
opment of the node force balance theory considering the distribution characteristics of
structural stiffness.

2.2. Determination of Reasonable Prestress Level

Based on the above theory, for a symmetric numerical cable dome simulated with truss
elements, with geometric configuration and boundary constraints predetermined, both
structural internal force systems under gravity load and unit force perturbation applied to
a certain group of cables can be obtained, respectively.

The latter is multiplied by a scaling factor, then the mechanical effects by both loads
are mathematically added to obtain the combined internal force system (tension is positive
and pressure is negative). Obviously, with the gradual increasing of the scaling factor from
0, the perturbation and the corresponding internal force system also increase accordingly,
and the combined internal force in each cable of the dome structure changes from pressure
to tension successively. When the internal forces in all cables become just tension and those
of all bars are pressure, the combined internal force system conforming to the mechanical
composition idea of a cable dome structure is obtained.

The corresponding scaling factor is now the lowest applicable scaling factor, and
obviously the tension in each cable is relatively low. This paper defines the combined
internal forces stated as a reasonable mechanical state and the pretension internal force
system as a reasonable internal force system.

In the working state of a cable dome structure, there exists a generalized force balance
relationship composed of the boundary constraints of the outermost ring, gravity loads,
and the prestress system induced by tension. According to the classical theory of nodal
equilibrium, the comparison of internal forces induced in the components mainly depends
on the spatial topological geometric relationships of each component.
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Therefore, for a cable dome with a certain configuration, the internal force system
under gravity loads can be determined, as well as the internal force system under the
prestressing. By mathematically comparing the latter with the former and scaling the
latter, the resultant internal force system can be obtained by superimposing the two val-
ues mathematically (where tension is represented as positive values and compression as
negative values). When the internal forces in the individual elements are tension and the
forces in the bar elements are in compression, the internal force system conforming to the
mechanical composition principle of the cable dome structure is obtained. Currently, the
scaling coefficient and tension in the individual elements is relatively low. In this paper,
this state is defined as a relatively reasonable prestress level. Under this relatively low
resultant internal force system, the cross-sectional areas of the components are adjusted
in design to make the sectional stresses of each component close to the control stress. As
a result, the obtained cross-sections will be smaller, and the overall material consumption
will be reduced.

Load conditions and prestress states are two key states in the installation and utiliza-
tion of cable dome structures. The distinction lies in the load condition encompassing not
only all structural self-weight inherent in the prestress state but also additional loads from
roofing materials and live loads. However, the pretension internal force system inherits
and equates to that of the prestress state. The resultant internal force system that meets
the feasibility criteria for cable dome structures, as previously described, is the one under
load conditions.

In the two states (hereinafter referred to as Combination 1 and Combination 2), the
former state results in maximal tensile forces in the inclined and hoop cables of the cable
dome, while the latter state places maximal forces on ridge and stabilizing cables. Therefore,
the aforementioned resultant internal force system should encompass the resultant force
systems from two conditions. For each component within these two resultant force systems,
there is a corresponding internal force value. In calculating the economic section, this paper
adopts the approach of selecting the larger of the absolute values of the corresponding
elements from the two force systems to formulate an effective resultant force system. This
method essentially employs an envelope design approach.

2.3. Determination of Initial Configuration

After updating the model by the aforementioned prestress distribution and cross-
section, the deformation values of new structure and final configuration under load Com-
bination 3 can be determined. Then, the paper adjusts the model configuration by the
values reversely until the final configuration under the Combination 3 load has almost no
deference from the target configuration.

3. Design Process
This paper divides the resolution of the pretension internal force system (also called

force-finding module) and the initial configuration (also called form-finding module) into
two consecutive steps. The design flow is shown in Figure 1 in which force-finding module
is enclosed by red dotted line.and another blue line.

F(i) =

{
max(Fa(i), Fb(i)) Suitable for cable
min(Fa(i), Fb(i)) Suitable for strut

(1)

ES(i) =

{
max(ESa(i), ESb(i)) Suitable for cable
min(ESa(i), ESb(i)) Suitable for strut

(2)
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where Fcon is the control stress vector; I is the identity vector; mean is the vector averaging
operator, and abs is the absolute value operator; abs(mean(ES./Fcon-I)) is the target values
for the force-finding module; 5% is the design target boundary value set in this paper;
∆Dz0 and ∆Dl0 are vectors representing the initial vertical and radial deformation values of
the structure’s nodes, respectively, also referred to as the initial shape basic compensation
vectors in subsequent sections. m1i and m2i are the proportion coefficients of shape basic
compensation, with allowable values ranging from 0 to 2.0. ∆Dz and ∆Dl are the vectors of
deformation differences between the final and target shapes of the structure after shape
correction under combined load case 3. ∆Dlim is the vector of deformation difference limits
between the final and target shapes.
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4. Case Study
4.1. Case 1

Academician Dong Shilin proposed the open-type bulged honeycomb four-strut Type
III cable dome structure, which has distinct features among the numerous new cable dome
systems that have emerged in recent years. This structure is statically indeterminate. The
example structure has an outer diameter of 100 m (Figure 2) and an inner diameter of
40 m. It features a 16-sided, double-layered ring cable with radii of 27 m and 42.5 m,
and a thickness-span ratio of 1/20. Geometrically, it is divided into eight symmetrical
modules, each with a circumferential angle of 1/8 of a circle (i.e., 45◦). Within a single
module, the internal honeycomb angle a is 13.5◦, and the external angle b is 22.5◦, which
are 0.3 and 0.5 times the 45◦ sector, respectively. The aforementioned dimensions are also
the target shape of this case study, with the initial finite element model established based
on this shape. In Figure 2, HS1/HS2 represent different ring cables at the lower level
and WS1/WS2/WS3/WS4 represent circumferential stabilizing cables at the upper level.
XS1/XS2 represent inner and outer radial inclined cable respectively and JS1/JS2/JS3/JS4
represent different radial ridge cables while CG1-1/CG1-2/CG2-1/CG2-2 represent
bar stays.
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Figure 2. Structure diagram of drum honeycomb cable dome.

The cables are made of high-vanadium steel with an elastic modulus of 1.6 × 105 MPa
and a design strength of 1670 MPa; the struts are made of Q345B steel with an elastic
modulus of 2.0 × 105 MPa and a design strength of 315 MPa. In the Fcon control stress
vector, the control stress for cable elements is uniformly set at 400 MPa, and for strut
elements at −50 MPa. In the ∆Dlim deformation difference limit vector, all values are
uniformly set to ±10 mm. The roof is subject to an additional permanent load of 0.3 kN/m2
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and a live load of 0.5 kN/m2, which is converted into concentrated forces applied at the
ridge cable nodes. The self-weight of the cable dome structure is multiplied by a factor of
1.5 to account for the weight of the clamps.

The pretension force is achieved by applying a negative thermal load to the outer-
most inclined cable XS2. All component cross-sectional areas are uniformly input with
an arbitrary value of 10,000 mm2. Tables 2–4 show the main data of the calculation process.

Table 2. The first loop iteration process data for the force-finding module for case 1.

No. Rod A1
(mm2)

ES1
(MPa)

A2
(mm2)

ES2
(MPa)

A3
(mm2)

ES3
(MPa)

A4
(mm2)

ESa
(MPa)

ESb
(MPa)

ES4
(MPa)

Fb
(kN)

1 JS1 10,000 60 1489 286 1062 385 1021 124 403 403 411

2 JS2 10,000 69 1718 288 1233 386 1186 101 403 403 478

3 JS3 10,000 172 4294 261 2802 378 2643 337 402 402 1062

4 JS4 10,000 214 5338 261 3484 378 3289 321 403 403 1325

5 CG1-1 10,000 −18 3696 −33 2412 −47 2268 −35 −50 −50 −113

6 CG1-2 10,000 −14 2704 −42 2274 −44 2003 −51 −11 −51 −102

7 XS1 10,000 40 989 292 720 387 694 401 282 401 278

8 CG2-1 10,000 −91 18,254 −40 14,576 −48 14,104 −50 −32 −50 −705

9 CG2-2 10,000 −40 7915 −43 6770 −50 6830 −51 −29 −51 −348

10 XS2 10,000 211 5285 332 4445 385 4360 395 258 395 1722

11 WS1-1 10,000 129 3237 290 2343 386 2254 100 404 404 911

12 WS1-2 10,000 106 2640 265 1749 378 1650 344 402 402 663

13 WS3 10,000 112 2790 292 2034 386 1960 88 403 403 790

14 WS4 10,000 33 829 296 611 387 589 5 402 402 237

15 WS5 10,000 132 3308 262 2165 374 2017 256 401 401 809

16 HS1 10,000 100 2498 270 1682 387 1622 401 338 401 650

17 HS2 10,000 523 13,069 333 10,850 393 10,631 401 262 401 4263

Table 3. The first loop iteration process data for the form-finding module for case 1 (unit: mm).

Direction
Control Point

1 2 3 4 5 6

Basic compensation∆Dl0 39.08 55.97 76.21 91.61 59.39 79.04

Basic compensation ∆Dz0 296.51 306.99 325.05 312.79 316.49 334.47

Effective compensation −1.00∆Dl0 39.08 55.97 76.21 91.61 59.39 79.04

residual error ∆Dlmin 0.09 −0.06 −0.18 −0.11 −0.52 0.09

−1.00∆Dl0-∆Dlmin −39.18 −55.91 −76.03 −91.51 −58.87 −79.12

Effective compensation −1.05∆Dz0 311.34 322.34 341.31 328.43 332.32 351.19

residual error ∆Dzmin 3.85 2.55 1.68 1.83 1.04 −3.80

−1.05∆Dz0-∆Dzmin 315.19 324.88 342.98 330.25 333.36 347.39

∆Dl 1.31 2.49 3.85 3.77 3.05 3.87

∆Dz −3.37 −4.36 −5.27 −6.16 −2.39 −6.46
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Table 4. The second loop iteration process data for the force-finding module for case 1.

No. Rod A1
(mm2)

ES1
(MPa)

A2
(mm2)

ES2
(MPa)

A3
(mm2)

ESa
(MPa)

ESb
(MPa)

ES3
(MPa)

Fb
(kN) (A3 − A1)/A1

1 JS1 1021 285 1068 382 1018 120 399 399 406 −0.27%

2 JS2 1186 287 1240 382 1183 97 399 399 472 −0.28%

3 JS3 2643 261 2818 376 2642 334 398 398 1052 −0.03%

4 JS4 3289 261 3503 376 3288 317 398 398 1309 −0.03%

5 CG1-1 2268 −33 2425 −47 2268 −35 −50 −50 −113 0.02%

6 CG1-2 2003 −42 2280 −49 2047 −50 −9 −50 −102 2.15%

7 XS1 694 292 723 385 695 400 280 400 278 0.07%

8 CG2-1 14,104 −40 14,627 −48 14,109 −50 −32 −50 −705 0.04%

9 CG2-2 6830 −43 6790 −50 6829 −50 −28 −50 −341 −0.02%

10 XS2 4360 331 4460 384 4359 393 255 393 1713 −0.01%

11 WS1-1 2254 290 2357 384 2255 94 399 399 900 0.03%

12 WS1-2 1650 265 1759 376 1649 341 398 398 656 −0.05%

13 WS3 1960 292 2046 384 1958 83 399 399 781 −0.12%

14 WS4 589 295 615 383 587 1 399 399 234 −0.36%

15 WS5 2017 262 2177 371 2017 252 397 397 801 0.02%

16 HS1 1622 270 1689 385 1622 400 335 400 649 0.01%

17 HS2 10,631 332 10,888 391 10,628 401 260 401 4262 −0.03%

The force-finding module computation is performed first. As can be seen from Table 2
above, after three iterations the maximum stresses (ES4) in the cable and strut elements are
around 400 MPa and −50 MPa, respectively, with the design target value reduced to 0.47%,
which is below the limit value of 5%. Consequently, the operation of the force-finding
module is ceased. The cross-sectional areas of the components are as shown in column
A4 of Table 2, with the corresponding prestressed state component stresses and internal
forces displayed in the last two columns of the table. By applying the negative thermal
load obtained from the final iteration step (corresponding to a pretension force of 1722 kN)
to the outer inclined cable XS2, stress distribution contour maps under two combinations
are obtained (Figure 3). These maps show complete agreement with the corresponding
data in Table 2, where the inclined cables and ring cables under Combination 1, and the
ridge cables and stabilizing cables under Combination 2, all have sectional stresses around
the control stress of 400 MPa, indicating good economic efficiency.

Building upon the inherited cross-sectional areas and pretension thermal loads, the
structural configuration under Combination 3 is verified. Displacements for six control
nodes (Figure 4) are measured in the vertical and radial directions (Table 3, first two rows of
data, indicating deviation from the initial configuration, also known as the basic compensa-
tion vector). The maximum vertical rise is 334.47 mm, and the maximum horizontal radial
displacement is 79.04 mm. The form-finding module calculation commences with key data
presented in Table 3. It is evident that, when the coordinates of each node of this tensegrity
honeycomb dome structure example deviate from the target configuration according to the
data in rows 5 and 8, respectively, under the effects of load Combination 3, the maximum
absolute displacements of the deformed structure from the target configuration are 3.87 mm
and −6.46 mm, respectively, which are less than the allowable deformation difference limit
of 10 mm. The initial and target configurations of the form-finding structure are depicted
by the solid red and dashed black lines in Figure 5, respectively.
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Following the first loop form-finding process, the nodes of the adjusted cable dome
(excluding the outermost ring nodes) settled by varying amounts between 315–347 mm,
with minor changes occurring in the angular relationships between components. Under the
original negative temperature load, the maximum tensile stresses within the components
under Combinations 1 and 3 experienced a slight overall decrease (approximately 20 MPa).
Consequently, in accordance with the design process requirements, a second loop of
iterative calculations for the force-finding module was conducted based on the current
structural configuration and component cross-sections. The data from this computational
process are shown in Table 4. The calculations converged after two iterations. By comparing
the final columns of data in Tables 2 and 4, it is observed that, aside from a 2.15% increase
in the cross-sectional area of the sensitive component CG1-2, there were virtually no
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changes to the cross-sectional areas or prestress levels of the other components. The
cross-sectional areas, stress levels, and configurations of the structure are now very stable,
and the calculations meet convergence criteria, terminating the program’s operation and
completing the design. The theoretical steel usage is calculated at 13.52 kg/m2 (excluding
the support ring beams).

Adjustments to angles a and b resulted in changes to the steel usage of the structure,
as shown in Table 5. It is evident that the steel usage per unit area of the structure monoton-
ically increases with the incremental enlargement of angles a and b. This is primarily due
to the large number and cross-sectional area of the struts in this system, which account for
a significant proportion of the total steel usage, making angles a and b the main influencing
factors on the overall steel consumption.

Table 5. Economic steel consumption statistics table for structures under different conditions of a and
b (Unit: kg/m2).

a
b

13.5◦ 18.0◦ 22.5◦ 27.0◦ 31.5◦ 36.0◦

9.0◦ 12.03 10.14 11.32 12.73 13.07 14.01

13.5◦ - 13.46 13.52 12.45 13.84 15.85

18.0◦ - - 15.36 15.95 16.72 17.93

22.5◦ - - - 18.15 17.83 18.76

27.0◦ - - - - 20.07 20.41

31.5◦ - - - - - 24.61

Based on empirical findings, when the single-unit control stress in this case is set at
420 MPa, the post-shape-finding module operation typically results in single-unit stress
levels fluctuating around 400 MPa, thereby obviating the need for a second iteration
of calculations.

4.2. Case 2

Figure 6 depicts a 30-m span Geiger-type cable dome with an outer diameter of
30 m, an inner diameter of 6 m, and a thickness-span ratio of 1: 10. Material properties,
control stress levels, load values, and loading methods are consistent with Case Study
1. Computational process data are presented in Table 6. the Letters HS1/HS2 and so on
represent the same meaning as in the case 1 and 1⃝– 6⃝ represnt the key point in the dome
for deformation monitoring.
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Table 6. The first loop iteration process data for the force-finding module.

No. Rod
A1 ES1 A2 ES2 A3 ES2 A3 ESa ESb ES4 Fb

(mm2) (MPa) (mm2) (MPa) (mm2) (MPa) (mm2) (MPa) (MPa) (MPa) (kN)

1 JS1 10,000 17 426 225 240 394 236 26 402 402 95

2 JS2 10,000 23 583 203 295 392 288 39 401 401 115

3 JS3 10,000 44 1098 171 468 389 455 237 401 401 182

4 XS1 10,000 7 167 137 57 379 54 223 400 400 22

5 XS2 10,000 25 613 174 266 373 247 403 259 403 100

6 XS3 10,000 80 2009 204 1031 400 1042 378 197 378 394

7 CG1 10,000 −3 520 −21 223 −48 213 −28 −50 −50 −11

8 CG2 10,000 −9 1782 −25 893 −49 879 −48 −30 −48 −42

9 CG3 10,000 −26 5255 −26 2768 −49 2711 −49 −24 −49 −133

10 WS1 10,000 17 424 225 238 395 234 2 402 402 94

11 HS1 10,000 6 145 137 50 379 47 222 400 400 19

12 HS2 10,000 22 554 176 244 363 221 407 263 407 90

13 HS3 10,000 75 1884 205 963 411 986 381 199 381 376

The initial step involved force-finding module computations. As indicated in the
table above, after three iterations, the maximum stresses for the cables and struts were
approximately 400 MPa and −50 MPa, respectively, with the design target value reduced to
1.53%, which is below the limit value of 5%, leading to the termination of the force-finding
module. The cross-sectional areas of the components are as listed in column A4 of the said
table, with corresponding prestress state component stresses and internal forces presented
in the last two columns of the same table. The negative temperature load obtained from the
last iteration step (corresponding to a pretension force of 394 kN) was applied to the outer
ring inclined cable XS3, resulting in the sectional stress distribution cloud maps under
two combinations as shown in Figure 7. These match perfectly with the corresponding
data in Table 5, where the section stresses of the inclined cables and hoop cables under
Combination 1, as well as the ridge cables and stabilizing cables under Combination 2, are
all around the control stress of 400 MPa, indicating favorable economic efficiency.
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Building upon the previously defined cross-sectional areas and pretension temperature
loads, the structure’s configuration under Combination 3 was validated (Figure 8).



Buildings 2025, 15, 114 12 of 13

Buildings 2025, 15, 114 11 of 13 
 

 
(a) Combination 1 (b) Combination 2 

Figure 7. Axial stress contour maps of components under two combinations. 

  

Figure 8. Structural deformation contour map for Combination 3 (magnified 5 times). 

Deformation values at control nodes, both vertical and radial, were obtained as basic 
compensation vectors. Then, the first loop form-finding process commences and minor 
changes occurred in the angular relationships between components, resulting in slight 
fluctuations in component stresses and internal force systems. In compliance with the de-
sign workflow, a second loop force-finding module iteration computations was conducted 
until meeting convergence criteria. 

5. Conclusions 
The practical application of the force perturbation method in the field of tensegrity 

dome structures has been extensively studied through theoretical exposition and case 
study verification. The following conclusions are drawn: 

(1) Based on the basic principles of the force perturbation method, a design methodology 
for the internal force system and component cross-sections of tensegrity dome struc-
tures was proposed, targeting economical material usage and feasible prestress force 
distribution. This was done under predetermined target configurations and load con-
ditions. An analysis workflow was established, and corresponding software was de-
veloped. 

(2) The program was applied to the structural analysis and design of a Honeycomb 
tensegrity dome and a Geiger-type tensegrity dome. The results validate the pro-
posed design methodology as conceptually sound, well organized, and simple to ex-
ecute, with the derived data satisfying target requirements. 

In summary, the approach presented in this paper can aid engineers in the rapid de-
sign of tensegrity domes that are material-efficient, with a suitable level of prestress and 
feasible initial configurations. In addition to the sphere of tensegrity domes, this method 
also has significant implications for other tensile structural systems. 

Figure 8. Structural deformation contour map for Combination 3 (magnified 5 times).

Deformation values at control nodes, both vertical and radial, were obtained as basic
compensation vectors. Then, the first loop form-finding process commences and minor
changes occurred in the angular relationships between components, resulting in slight fluc-
tuations in component stresses and internal force systems. In compliance with the design
workflow, a second loop force-finding module iteration computations was conducted until
meeting convergence criteria.

5. Conclusions
The practical application of the force perturbation method in the field of tensegrity

dome structures has been extensively studied through theoretical exposition and case study
verification. The following conclusions are drawn:

(1) Based on the basic principles of the force perturbation method, a design methodol-
ogy for the internal force system and component cross-sections of tensegrity dome
structures was proposed, targeting economical material usage and feasible prestress
force distribution. This was done under predetermined target configurations and
load conditions. An analysis workflow was established, and corresponding software
was developed.

(2) The program was applied to the structural analysis and design of a Honeycomb
tensegrity dome and a Geiger-type tensegrity dome. The results validate the proposed
design methodology as conceptually sound, well organized, and simple to execute,
with the derived data satisfying target requirements.

In summary, the approach presented in this paper can aid engineers in the rapid
design of tensegrity domes that are material-efficient, with a suitable level of prestress and
feasible initial configurations. In addition to the sphere of tensegrity domes, this method
also has significant implications for other tensile structural systems.
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