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A B S T R A C T

Differential sensitivity measures provide valuable tools for interpreting complex computational models, as used
in applications ranging from simulation to algorithmic prediction. Taking the derivative of the model output
in direction of a model parameter can reveal input–output relations and the relative importance of model
parameters and input variables. Nonetheless, it is unclear how such derivatives should be taken when the model
function has discontinuities and/or input variables are discrete. We present a general framework for addressing
such problems, considering derivatives of quantile-based output risk measures, with respect to distortions
to random input variables (risk factors), which impact the model output through step-functions. We prove
that, subject to weak technical conditions, the derivatives are well-defined and we derive the corresponding
formulas. We apply our results to the sensitivity analysis of compound risk models and to a numerical study
of reinsurance credit risk in a multi-line insurance portfolio.

1. Introduction

The interpretability of complex computational models is of fundamental importance across areas of applications, with sensitivity analysis
providing tools for understanding the importance of risk factors, their interactions and their impact on a model’s output (Borgonovo & Plischke,
2016; Fissler & Pesenti, 2023; Razavi et al., 2021; Saltelli et al., 2008). In recent years, the field received renewed impetus by the widespread
adoption of machine learning and artificial intelligence models for prediction tasks, which are usually opaque and thus require additional work
to illuminate input/output relationships. Contributions in this field range from the development of general model-agnostic model interpretation
procedures (Borgonovo, Ghidini, Hahn, & Plischke, 2023; Ribeiro, Singh, & Guestrin, 2016), to those tailored to a class of models, such as tree
ensembles (Lundberg, Erion, & Lee, 2018) and neural networks (Merz, Richman, Tsanakas, & Wüthrich, 2022), or to specific applications, such
as image recognition (Chen et al., 2019) and credit scoring (Chen, Calabrese, & Martin-Barragan, 2023). Furthermore, the interest in model
interpretation is amplified by the requirement for models’ behaviour to be fair, in the sense that it does not generate discriminatory impacts
on protected groups (Frees & Huang, 2021; Kozodoi, Jacob, & Lessmann, 2022; Lindholm, Richman, Tsanakas, & Wüthrich, 2022) – such concerns
have generated further research at the interface of sensitivity analysis and algorithmic fairness (Bénesse, Gamboa, Loubes, & Boissin, 2022; Hiabu,
Meyer, & Wright, 2023).

As part of sensitivity analysis, metrics are often used to assess the importance of model inputs. A broad class of such metrics is that of differential
sensitivity measures, which rely on derivatives (of a statistical functional of) the model output, in the direction of a perturbation of a (random)
input factor. Specifically, Borgonovo and Apostolakis (2001) introduce a local sensitivity measure by considering partial derivatives normalised by
total derivatives; building on that work Antoniano-Villalobos, Borgonovo, and Siriwardena (2018) consider derivatives of expected loss functionals
with respect to statistical parameters. Furthermore, substantial work has been carried out to reconcile and compare global sensitivity analysis based
on Sobol’ indices (Sobol’, 2001) with the local view given by differentiation at a particular parameter value (Lamboni, Iooss, Popelin, & Gamboa,
2013; Rakovec et al., 2014; Sobol’ & Kucherenko, 2010).

Recent advances in sensitivity analysis pertain to perturbing quantile-based risk measures of the model output (Browne, Fort, Iooss, & Le Gratiet,
2017; Merz et al., 2022; Pesenti, Millossovich, & Tsanakas, 2021; Tsanakas & Millossovich, 2016), which gives an alternative way of obtaining
a global view of local effects. In that context, fundamental technical requirements for differential sensitivity measures include differentiability
of the model function and Lipschitz continuity of the model output in the perturbation (Broadie & Glasserman, 1996; Hong, 2009; Hong & Liu,
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2009). These requirements are stringent, as many computational models map input factors to outputs in a discontinuous manner; examples include
redit risk models (Chen & Glasserman, 2008), financial derivatives and insurance contracts (Albrecher, Beirlant, & Teugels, 2017), and tree-

based predictive models (Chen & Guestrin, 2016). One should not be cavalier about differentiability conditions, as it has been long established
hat lack of consideration in systems subject to – possibly ‘hidden’ – discontinuities can lead to integration failures and thus incorrect sensitivity
ssessments (Tolsma & Barton, 2002).

In this work, we overcome such strong conditions and derive, under rather mild assumptions, formulas for differential quantile-based sensitivity
measures, in models where the input–output relationship contains step functions. This is a general setting, since many functions with a finite
umber of jump discontinuity points can be written via a sum of step functions. We focus on the two most common quantile-based risk measures,
alue-at-Risk (VaR) and Expected Shortfall (ES), although the expressions can be generalised for the broader case of distortion risk measures and
ank dependent expected utilities. We consider two types of differential sensitivity measure, marginal sensitivities and cascade sensitivities. The
arginal sensitivity quantifies an input factor’s sole effect on a model output’s risk measure (Hong, 2009; Tsanakas & Millossovich, 2016). In

ontrast, in the cascade sensitivity setting (Pesenti et al., 2021) a perturbation of a risk factor affects other dependent risk factors, which in turn
impact the output risk measure. When the random input factors are independent, the two methods coincide. In the case of dependence, the cascade
sensitivity additionally reflects the indirect effects that a risk factor may have on the output via other inputs, implicitly interpreting their statistical
relationship as a functional (or causal) one, with the risk factor stressed being the driver. To prove the derived sensitivity formulas we use quantile
differentiation and weak convergence of generalised functions. We find that stresses propagated via step functions naturally lead to delta functions,
which in turn allow for representation as conditional expectations. Hence, our framework allows estimation of differential sensitivity measures by
standard simulation-based methods (Fu, Hong, & Hu, 2009; Glasserman, 2005; Koike, Saporito, & Targino, 2022).

Key to our framework is the choice of perturbation or stress on the random input factor. In particular, the technical conditions we require pertain
to the continuity of the stressing mechanism rather than the underlying random input factor. Consequently, our methods can also be applied to
he calculation of differential sensitivity measures with respect to discrete random inputs for a suitably chosen stress. Sensitivity to discrete or
ategorical input factors is of importance in a variety of fields, such as modelling biological systems (Gunawan, Cao, Petzold, & Doyle, 2005),
hemical processes (Plyasunov & Arkin, 2007), and insurance claims (Wüthrich & Merz, 2023).

The manuscript is organised as follows. Section 2 introduces the discontinuous loss model and discusses choices of stresses on a risk factor.
Following that, expressions are derived for differential (marginal) sensitivities, with respect to the VaR and ES risk measures. The next two sections
ontain extensions within that framework. Section 3 deals with cascade sensitivities, which reflect indirect effects via risk factors’ dependence
tructure. Section 4 provides differential sensitivities when the considered input random variables are discrete, along with an application to
ompound distributions. Finally, a detailed numerical study of a reinsurance credit risk portfolio is given in Section 5.

Additional formulas for the cascade sensitivity for the VaR are presented in Appendix A. Most of the proofs are delegated to Appendix B. Finally,
the electronic companion consists of the following Appendices. In Appendix C the differential sensitivity formulas together with their proofs for
 more general model function are recorded. Appendix D contains proofs of results related to mixture stresses, Proposition 1, and Theorem 5.

Appendix E contains additional details on the reinsurance credit risk portfolio model used in Section 5.

2. Differential sensitivity measures

2.1. Portfolio loss model

We work on a probability space (𝛺 ,,P) and consider a discontinuous model of the form

𝐿 ∶=
𝑚
∑

𝑗=1
𝑔𝑗 (𝒁)1{𝑋𝑗≤𝑑𝑗}, (1)

where:

• The random vectors 𝑿 ∶= (𝑋1,… , 𝑋𝑚), 𝒁 ∶= (𝑍1,… , 𝑍𝑛), 𝑚, 𝑛 ∈ N are model inputs or risk factors;
• 𝐿 is the (univariate) random model output, which we typically interpret as a loss;
• Discontinuities emerge at those states where elements of 𝑿 cross the thresholds 𝑑1,… , 𝑑𝑚 ∈ R;
• The functions 𝑔𝑗 ∶R𝑛 → R, 𝑗 ∈  ∶= {1,… , 𝑚} represent the (random) jump of the model output at the points of discontinuity.

We assume throughout that the marginal distribution functions of 𝑋𝑗 , 𝑗 ∈ , and 𝑍𝑘, 𝑘 ∈  ∶= {1,… , 𝑛}, denoted by 𝐹𝑗 (𝑥) ∶= P(𝑋𝑗 ≤ 𝑥) and
𝐹𝑚+𝑘(𝑧) ∶= P(𝑍𝑘 ≤ 𝑧), respectively, are absolutely continuous and strictly increasing on their support and denote their corresponding (strictly
positive, a.e. on their support) densities by 𝑓𝑗 and 𝑓𝑚+𝑘 respectively. We further denote by 𝐹 (𝑙) ∶= P(𝐿 ≤ 𝑙) the distribution of the loss 𝐿. The
functions 𝑔𝑗 ∶R𝑛 → R, 𝑗 ∈  are almost everywhere differentiable and P(𝑔𝑗 (𝒁) = 𝑑) = 0 for all discontinuity points 𝑑 of 𝑔𝑗 .

A standard example of a discontinuous loss (1) is a structural model of a credit risk portfolio (e.g. McNeil, Frey, & Embrechts, 2015, Ch. 11),
here {𝑋𝑗 ≤ 𝑑𝑗} represents the default event of obligor 𝑗 and 𝑔𝑗 (𝒁) the corresponding loss given default. Applications to credit risk modelling
re further discussed in Example 1 and Section 5. We consider these types of discontinuity sufficient for practical modelling purposes, since the
iscontinuities arising more broadly in settings such as financial derivatives, reinsurance contracts, and reliability, can typically be represented
hrough indicator functions of critical events. We note however that the model (1) is formulated such that 𝑔𝑗 are functions of 𝒁 only. We make

this assumption throughout the paper to simplify exposition but it is not an essential limitation; our methods work also for the general case of 𝑔𝑗
depending on both 𝒁 and 𝑿, i.e., for the loss 𝐿 =

∑

𝑗∈ 𝑔𝑗 (𝑿,𝒁)1{𝑋𝑗≤𝑑𝑗}, a case treated in the electronic companion, Appendix C.
The risk of a loss is assessed via a risk measure 𝜌∶1 → R, where 1 denotes the set of integrable random variables on (𝛺 ,,P). The two most

idely used risk measures in practice are the Value-at-Risk (VaR) and the Expected Shortfall (ES). The VaR at level 𝛼 ∈ [0, 1] of the portfolio loss 𝐿
is defined as the (left-) quantile function of 𝐿 evaluated at 𝛼, that is

VaR𝛼(𝐿) ∶= 𝐹−1(𝛼) = inf {𝑦 ∈ R |𝐹 (𝑦) ≥ 𝛼} ,
2 
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with the usual convention that inf ∅ = +∞ (e.g., Embrechts & Hofert, 2013). The Expected Shortfall at level 𝛼 ∈ [0, 1) of the portfolio loss 𝐿 is
efined by

ES𝛼(𝐿) ∶= 1
1 − 𝛼 ∫

1

𝛼
𝐹−1(𝑢) 𝑑 𝑢 .

While we focus on VaR and ES, the sensitivities can be generalised to other quantile-based functionals, such as rank dependent expected utilities
or spectral risk measures (Acerbi, 2002) — in the interest of concision we do not pursue this further.

In Section 2.3 we introduce the marginal sensitivity measure, and derive expressions in the context of the VaR/ES risk measures and the
discontinuous model (1). The sensitivity measure is defined via a partial derivative of a risk measure in the direction of a stressed version of a
isk factor; hence we first introduce ways of stressing risk factors.

2.2. Stressing risk factors

Throughout the paper, we fix the index 𝑖 of the risk factor with respect to which sensitivity is calculated, such that stresses are applied to either
𝑋𝑖, with 𝑖 ∈ , or to 𝑍𝑖, with 𝑖 ∈  . We define a stress on 𝑋𝑖 or 𝑍𝑖 as a deformation of the risk factor given by

𝑋𝑖,𝜀 ∶= 𝜅𝜀(𝑋𝑖) , respectively, 𝑍𝑖,𝜀 ∶= 𝜅𝜀(𝑍𝑖) ,

where 𝜅𝜀 ∶R → R is a stress function defined as follows.

Definition 1 (Stress Function). A family of functions 𝜅𝜀 ∶𝐴 → 𝐴, 𝐴 ⊆ R, where 𝜀 ∈ [0,+∞), is called a stress function, if it satisfies the following
roperties:

(𝑖) For all 𝜀 in a neighbourhood of 0, the function 𝜅𝜀(𝑥) is invertible in 𝑥 ∈ 𝐴, denoted by 𝜅−1𝜀 (⋅);
(𝑖𝑖) lim𝜀↘0 𝜅𝜀(𝑥) = 𝑥, for all 𝑥 ∈ 𝐴;
(𝑖𝑖𝑖) lim𝜀↘0 𝜅−1𝜀 (𝑥) = 𝑥, for all 𝑥 ∈ 𝐴;
(𝑖𝑣) One of the following holds:

(𝑎) for all 𝜀 in a neighbourhood of 0 and all 𝑥 ∈ 𝐴, it holds that 𝜅𝜀(𝑥) ≥ 𝑥; or
(𝑏) for all 𝜀 in a neighbourhood of 0 and all 𝑥 ∈ 𝐴, it holds that 𝜅𝜀(𝑥) ≤ 𝑥;

(𝑣) 𝜅𝜀(𝑥) is differentiable in 𝜀 at 𝜀 = 0, and we denote its derivative by

K(𝑥) ∶= lim
𝜀→0

𝜅𝜀(𝑥) − 𝑥
𝜀

, 𝑥 ∈ 𝐴 ;

(𝑣𝑖) 𝜅−1𝜀 (𝑥) is differentiable in 𝜀 at 𝜀 = 0, and we denote its derivative by

K−1(𝑥) ∶= lim
𝜀→0

𝜅−1𝜀 (𝑥) − 𝑥
𝜀

, 𝑥 ∈ 𝐴 .

We further define

𝑐(𝜅) ∶=
{

+1, if 𝜅𝜀 fulfils (𝑖𝑣) (𝑎) ,
−1, if 𝜅𝜀 fulfils (𝑖𝑣) (𝑏) .

(2)

Note that the identity stress function 𝜅(𝑥) = 𝑥 satisfies both (𝑖𝑖𝑖) (𝑎) and (𝑏), however, it is not of interest as K(𝑥) = K−1(𝑥) = 0 and thus the below
ensitivities becomes zero. The requirements on the stress function are assumptions on its continuity. First, if stressing 𝑋𝑖, we typically assume that

the domain of the stress function 𝐴 is equal to the support of 𝑋𝑖. This guarantees that 𝑋𝑖 and its stressed version 𝜅𝜀(𝑋𝑖) have the same support.
Second, properties (𝑖) to (𝑖𝑖𝑖) provide that the stressed risk factor converges P-a.s. to its unstressed form as 𝜀 ↘ 0. Property (𝑖𝑣) means that the
stress, e.g. 𝑋𝑖,𝜀, either approaches 𝑋𝑖 P-a.s. from above or below, thus excluding oscillatory behaviour. The last two properties imply that the stress
function and its inverse are differentiable, so that the sensitivities, introduced in Sections 2.3 and 3, exist.

Different stress functions may be used, depending on the context of the problem investigated and what type of deformation of a risk factor is
nterpretable within that context. Some stress functions and related quantities are summarised in Table 1.

• Additive stresses can be used when the analyst is interested in the impact of a constant shift to the risk factor. This can be interpreted
parametrically as a change in the location parameter of a distribution, for example the mean or median.

• Proportional stresses can be used when the analyst is interested in the impact of a scale change, such as the exposure in a particular financial
instrument or loss. One can also see this as a stress on a scale parameter of a distribution, for example the standard deviation. An application
in the context of credit risk, where the loss given default is proportionally stressed, is given in Example 1. Proportional stresses also form the
basis of Euler-type capital allocation approaches (Tasche, 1999).

• Probability stresses are useful when one needs to modify the probability of a given – e.g., a component failure – event. For example, in a
credit risk model the probability of default is a key input. If default is implied by the event {𝑋𝑖 ≤ 𝑑𝑖} then one can consider a stressed version
of the model that specifically increases the probability of this event. The process of using a probability stress in such a context is illustrated
in Example 1.

• Mixture stresses are useful it the context of model uncertainty. Essentially, the mixture stress reflects a perturbation of the marginal distribution
𝐹𝑖 by an alternative distribution 𝐺. This is a common device in sensitivity analysis and in Bayesian and robust statistics (Glasserman, 1991;
Hampel, Ronchetti, Rousseeuw, & Stahel, 1986). We note that the mixture stress in Table 1 can be generalised to distributional stresses
by choosing 𝐹𝑖,𝜀 not as a mixture but, e.g. arising via a perturbation of densities, see e.g., Gauchy, Stenger, Sueur, and Iooss (2022) for
perturbation of densities using the Fisher Information.
3 
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Table 1
Types of stress functions and related quantities.

Type of stress 𝜅𝜀 K K−1 𝑐(𝜅)

Additive 𝑥 + 𝛽 𝜀 𝛽 −𝛽 sgn(𝛽)
Proportional 𝑥(1 + 𝛽 𝜀) 𝛽 𝑥 −𝛽 𝑥 sgn(𝛽)
Probability 𝐹 −1

𝑖

(

𝐹𝑖(𝑥) + 𝛽 𝜀) 𝛽
𝑓𝑖 (𝑥)

−𝛽
𝑓𝑖 (𝑥)

sgn(𝛽)

Mixture 𝐹 −1
𝑖,𝜀 ◦𝐹𝑖(𝑥), where 𝐹𝑖 (𝑥)−𝐺(𝑥)

𝑓𝑖 (𝑥)
𝐺(𝑥)−𝐹𝑖 (𝑥)

𝑓𝑖 (𝑥)
sgn

(

𝐹𝑖(𝑥) − 𝐺(𝑥))
𝐹𝑖,𝜀(𝑥) ∶= (1 − 𝜀)𝐹𝑖(𝑥) + 𝜀 𝐺(𝑥)

Tail 𝑥 + 𝜀 (𝑥 − 𝑡)1{𝑥≥𝑡} (𝑥 − 𝑡)+ −(𝑥 − 𝑡)+ 1
𝑥 + 𝜀 (𝑥 − 𝑡)1{𝑥≤𝑡} −(𝑡 − 𝑥)+ (𝑡 − 𝑥)+ −1

• Tail stresses may reflect risk management objectives. Regulatory capital requirements in finance and insurance are generally driven by the
tails of probability distributions (McNeil et al., 2015). Hence, a stress that specifically seeks to alter the tail behaviour of a distribution can
be suitable for a financial organisation assessing its capital requirement. We show how this approach can be applied in the numerical study
of Section 5.

In Table 1, the additive and proportional stresses with 𝛽 > 0 are such that property (𝑖𝑣) (𝑎) is satisfied and the stress stochastically increases the
risk factor; this is easily modified by choosing 𝛽 < 0. For the mixture and tail stresses both increasing ((𝑖𝑣) (𝑎)) and decreasing ((𝑖𝑣) (𝑏)) versions of
the stresses are stated. The functions K, K−1 are easily worked out; some additional detail for mixture stresses is given in the electronic companion,
Appendix D.1.

2.3. Marginal sensitivity

For a stress 𝑍𝑖,𝜀 or a stress 𝑋𝑖,𝜀, we denote the corresponding marginally stressed loss model by, respectively

𝐿𝜀(𝑍𝑖) ∶=
∑

𝑗∈
𝑔𝑗 (𝒁−𝑖, 𝑍𝑖,𝜀)1{𝑋𝑗≤𝑑𝑗} and

𝐿𝜀(𝑋𝑖) ∶=
∑

𝑗≠𝑖
𝑗∈

𝑔𝑗 (𝒁)1{𝑋𝑗≤𝑑𝑗} + 𝑔𝑖(𝒁)1{𝑋𝑖,𝜀≤𝑑𝑖} ,

where (𝒁−𝑖, 𝑍𝑖,𝜀) is the vector 𝒁 whose 𝑖th component is replaced by 𝑍𝑖,𝜀. We call 𝐿𝜀, denoting either 𝐿𝜀(𝑍𝑖) or 𝐿𝜀(𝑋𝑖), the marginally stressed
oss, since only the marginal distribution of 𝑍𝑖 or 𝑋𝑖 is altered, leaving all other input factors fixed. We denote by 𝐹𝜀(⋅) the distribution function
nd by 𝑓𝜀(⋅) the density of 𝐿𝜀 and by 𝑞𝑢(𝜀) ∶= 𝐹−1

𝜀 (𝑢), 𝑢 ∈ [0, 1], the quantile function of 𝐿𝜀 evaluated at 𝑢, for any 𝜀 ≥ 0. For 𝜀 = 0, we simply write
𝐹 ∶= 𝐹0, 𝑓 ∶= 𝑓0, and 𝑞𝛼 ∶= 𝑞𝛼(0). For the sensitivities to exist, we require two assumptions on the stressed loss model.

Assumption 1. Let 0 ≤ 𝛼 ≤ 1. For all 𝜀 in a neighbourhood of 0 the distribution function 𝐹𝜀 is continuously differentiable at 𝐹−1(𝛼).

Assumption 2. Let 0 ≤ 𝛼 ≤ 1. The quantile function at level 𝛼 of the stressed loss 𝐿𝜀, 𝑞𝛼(𝜀), is differentiable with respect to 𝜀, that is 𝜕
𝜕 𝜀 𝑞𝛼(𝜀)

xists.

Definition 2 (Marginal Sensitivity). The marginal sensitivity to the risk factor 𝑍𝑖 and 𝑋𝑖 for a risk measure 𝜌 is defined by, respectively,

𝑍𝑖 [ 𝜌 ] ∶=
𝜕
𝜕 𝜀 𝜌

(

𝐿𝜀(𝑍𝑖)
)

|

|

|𝜀=0
and 𝑋𝑖 [ 𝜌 ] ∶=

𝜕
𝜕 𝜀 𝜌

(

𝐿𝜀(𝑋𝑖)
)

|

|

|𝜀=0
, (3)

whenever the derivatives exists.
Recall that the marginally stressed loss 𝐿𝜀(𝑋𝑖) (and similarly 𝐿𝜀(𝑍𝑖)) is such that only the component 𝑋𝑖 (respectively 𝑍𝑖) is stressed, while

eaving all other risk factors unchanged. This implicitly means that an intervention on a given model input does not imply a corresponding
intervention on other variables. Such an approach is justified if the statistical dependencies between model inputs are purely due to statistical
associations and do not reflect any causal effects. Still, in a certain sense, one may consider the marginal sensitivity a ‘‘local’’ sensitivity, as it only
takes into account small perturbations in (the distribution of) a single model input. The cascade sensitivities of Section 3 are constructed differently,
y allowing a perturbation in an input to indirectly also impact all other random variables that are statistically dependent with it.

Theorem 1 (Marginal Sensitivity VaR). Let Assumptions 1 and 2 be fulfilled for a given 𝛼 ∈ (0, 1). Then, the marginal sensitivity for VaR𝛼 to input factor
𝑍𝑖 for a stress with stress function 𝜅𝜀 is

𝑍𝑖 [ VaR𝛼 ] =
∑

𝑗∈
E
[

K(𝑍𝑖)𝜕𝑖 𝑔𝑗 (𝒁)1{𝑋𝑗≤𝑑𝑗}
|

|

|

𝐿 = 𝑞𝛼
]

,

where 𝜕𝑖 𝑔𝑗 (𝒛) ∶= 𝜕
𝜕 𝑧𝑖 𝑔𝑗 (𝒛) is the partial derivative in the 𝑖th component. The marginal sensitivity to input factor 𝑋𝑖 is given by

𝑋𝑖 [ VaR𝛼 ] = 𝑐(𝜅)K−1(𝑑𝑖)
𝑓𝑖(𝑑𝑖)
𝑓
(

𝑞𝛼
) E

[(

1{𝐿≤𝑞𝛼+𝑐(𝜅)𝑔𝑖(𝒁)} − 1{𝐿≤𝑞𝛼}

)

|

|

|

|

𝑋𝑖 = 𝑑𝑖

]

.

Theorem 2 (Marginal Sensitivity ES). Let Assumptions 1 and 2 be fulfilled for a given 𝛼 ∈ (0, 1). Then, the marginal sensitivity for ES𝛼 to input factor 𝑍𝑖
for a stress with stress function 𝜅𝜀 is

𝑍𝑖 [ ES𝛼 ] =
∑

E
[

K(𝑍𝑖) 𝜕𝑖 𝑔𝑗 (𝒁)1{

𝑋𝑗≤𝑑𝑗
} ∣ 𝐿 ≥ 𝑞𝛼

]

.

𝑗∈
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The marginal sensitivity to input factor 𝑋𝑖 for a stress with stress function 𝜅𝜀 is

𝑋𝑖 [ ES𝛼 ] =
−𝑐(𝜅)K−1(𝑑𝑖) 𝑓𝑖(𝑑𝑖)

1 − 𝛼 E
[

(

𝐿 − 𝑐(𝜅)𝑔𝑖(𝒁) − 𝑞𝛼
)

+ −
(

𝐿 − 𝑞𝛼
)

+
|

|

|

𝑋𝑖 = 𝑑𝑖
]

.

The marginal sensitivity measures to 𝑍𝑖 for both the VaR and ES generalise the sensitivities derived in Hong (2009) and Hong and Liu (2009) to
oss functions 𝐿 that are not Lipschitz continuous and to general types of stresses. Related, Fu et al. (2009) proposes a conditional Monte-Carlo

approach to estimate quantile sensitivities. Note however, that their key assumption is that the perturbed distribution function of 𝐿𝜀 can be written
s 𝐹𝐿𝜀 (𝑡) = E[𝐺(𝑡, 𝜀, 𝑌 (𝜀))], where 𝐺 is P-a.s. continuous w.r.t. 𝜀 and 𝑌 (𝜀) is an arbitrary random variable. This assumption does not hold in our
etting as can be seen in, e.g., Eq. (15) of the Proof of Theorem 1. Furthermore, one could derive the marginal sensitivities of ES𝛼 – as well as those
f other spectral risk measures (Acerbi, 2002) – using its representation as the integral of VaR𝛼 . Interchanging the limit and the integral, however,
equires that the sensitivities for VaR𝛽 to exist, for all 𝛽 ∈ [𝛼 , 1). This would imply that Assumptions 1 and 2 need to hold for all 𝛽 ∈ (𝛼 , 1), which
s in contrast to Theorem 2 that requires Assumptions 1 and 2 to hold for 𝛼 only.

We now provide an expression for the marginal sensitivity of the mean. While this could be obtained as a special case of Expected Shortfall
with 𝛼 = 0, it is simpler to derive Corollary 1 as a direct consequence of Lemma 1 in Appendix B.

Corollary 1 (Marginal Sensitivity Mean). Let 𝜅𝜀 be a stress function, then the marginal sensitivity for the mean (E) to input factor 𝑍𝑖 respective 𝑋𝑖 are

𝑍𝑖 [E ] =
∑

𝑗∈
E
[

K(𝑍𝑖) 𝜕𝑖 𝑔𝑗 (𝒁)1{

𝑋𝑗≤𝑑𝑗
}

]

and

𝑋𝑖 [E ] = K−1(𝑑𝑖) 𝑓𝑖(𝑑𝑖) E
[

𝑔𝑖(𝒁) |
|

𝑋𝑖 = 𝑑𝑖
]

.

We conclude the section with an example of how the marginal sensitivity measure can be applied in the context of a standard portfolio credit
risk model, with two different analysis objectives in mind.

Example 1. Consider a credit risk setting, where 𝒁 has the same dimension as 𝑿, with 𝑔𝑗 (𝒁) = 𝑍𝑗 , 𝑗 ∈  representing the loss given default
and {𝑋𝑗 ≤ 𝑑𝑗} the default events with corresponding probabilities 𝐹𝑗 (𝑑𝑗 ). Hence we have that

𝐿 =
∑

𝑗∈
𝑍𝑗1{𝑋𝑗≤𝑑𝑗} .

A first analysis pertains to the calculation of the sensitivity of the portfolio ES with respect to the probability of the 𝑖th default event. To achieve
this, we need to formulate an appropriate stress function. Consider the probability stress from Table 1, 𝜅𝜀(𝑥) = 𝐹−1

𝑖 (𝐹𝑖(𝑥) − 𝜀), leading to
𝑋𝑖,𝜀 = 𝐹−1

𝑖 (𝐹𝑖(𝑋𝑖) − 𝜀) and

P(𝑋𝑖,𝜀 ≤ 𝑑𝑖) = P
(

𝐹𝑖(𝑋𝑖) ≤ 𝐹𝑖(𝑑𝑖) + 𝜀
)

= 𝐹𝑖(𝑑𝑖) + 𝜀.

Hence the chosen stress function gives an additive stress on the default probability, such that the sensitivity 𝑋𝑖 [ ES𝛼 ] becomes precisely the
erivative of the portfolio risk in direction of the default probability of the 𝑖th obligor. Using 𝑐(𝜅) = −1 and K−1(𝑥) = 1

𝑓𝑖(𝑥)
; Theorem 2 yields:

𝑋𝑖 [ ES𝛼 ] =
1

1 − 𝛼 E
[

(

𝐿 − (𝑞𝛼 −𝑍𝑖)
)

+ −
(

𝐿 − 𝑞𝛼
)

+
|

|

|

𝑋𝑖 = 𝑑𝑖
]

.

The resulting sensitivity can thus be understood as the difference between two expectations, each representing the excess portfolio loss over a
threshold, conditioned on the least adverse outcome of 𝑋𝑖 that gives a default of the 𝑖th obligor. The difference between the two terms lies in the
ower threshold used in the first term, which is reduced by the loss given default 𝑍𝑖.

Second, we consider the sensitivity to a proportional increase in the loss given default 𝑍𝑖, that is, using 𝜅𝜀(𝑧) = 𝑧(1 +𝜀). Application of Theorem 2
then gives us:

𝑍𝑖 [ ES𝛼 ] = E
[

𝑍𝑖1{𝑋𝑖≤𝑑𝑖} ∣ 𝐿 ≥ 𝑞𝛼
]

.

Note that this is precisely the Euler allocation of the risk ES𝛼(𝐿) to the loss 𝑍𝑖1{𝑋𝑖≤𝑑𝑖} to the 𝑖th obligor (Tasche, 1999).
Finally, within the same model, we turn our attention to assessment of the relative importance of common factors that drive dependence between

defaults. The dependence of the critical variables 𝑋𝑗 is often modelled via factor models (McNeil et al., 2015, Ch. 6.4, 11) and a question of interest
s the relative importance of underlying factors for portfolio risk. Consider the following representation

𝑋𝑗 ∶=
𝜏
∑

𝑡=1
𝛽𝑗 ,𝑡𝑊𝑡 + 𝑉𝑗 , 𝑗 ∈ ,

where 𝑊𝑡, 𝑡 = 1,… , 𝜏, 𝜏 ∈ N, are the common factors, and 𝑉𝑗 are idiosyncratic error terms. We are interested in the sensitivity of the portfolio loss
to the factor 𝑊𝑠. To that effect, define:

�̃�𝑗 ,𝜀 ∶=
∑

𝑡≠𝑠
𝛽𝑗 ,𝑡𝑊𝑡 + 𝛽𝑗 ,𝑠(𝑊𝑠 − 𝜀) + 𝑉𝑗 = 𝑋𝑗 − 𝛽𝑗 ,𝑠𝜀 ,

�̃�𝜀(𝑥) ∶= 𝑥 − 𝛽𝑗 ,𝑠𝜀 ,
�̃�𝜀 ∶=

∑

𝑗∈
𝑍𝑗1{�̃�𝜀(𝑋𝑗 )≤𝑑𝑗} .

The sensitivity of the portfolio risk to the factor 𝑊𝑠 can then be written as
𝜕
𝜕 𝜀ES𝛼(�̃�𝜀)

|

|

|

|𝜀=0
=

∑

𝑆𝑋𝑗 [ES𝛼] ,

𝑗∈
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where the sensitivities 𝑆𝑋𝑗 [ES𝛼] are now calculated with the stress functions �̃�𝜀 above. Applying again Theorem 2 leads to
𝜕
𝜕 𝜀ES𝛼(�̃�𝜀)

|

|

|

|𝜀=0
=

∑

𝑗∈

𝑓𝑗 (𝑑𝑗 )𝛽𝑗 ,𝑠
1 − 𝛼 E

[

(

𝐿 − (𝑞𝛼 −𝑍𝑗 )
)

+ −
(

𝐿 − 𝑞𝛼
)

+
|

|

|

𝑋𝑖 = 𝑑𝑖
]

.

Hence, intuitively, the sensitivity to the common factor 𝑊𝑠 is expressed as sum of sensitivities for each obligor, weighted by the factor loadings
𝑗 ,𝑠.

3. Measuring cascading effects

The marginal sensitivity introduced in Section 2.3 quantifies the differential impact of stressing a risk factor on the portfolio loss. Here, we
provide the first generalisation/adjustment of the framework, by considering cascade sensitivity measures, introduced in Pesenti et al. (2021). These
ensitivity measures quantify not only the sensitivity to an individual input 𝑋𝑖, but also consider (joint) perturbation of all other risk factors 𝑋𝑗 ,
𝑗 ≠ 𝑖, and 𝑍𝑘, 𝑘 ∈  , induced by their statistical dependence on 𝑋𝑖. This is achieved by using the inverse Rosenblatt transform, see e.g., Rosenblatt
(1952), Skorokhod (1977) and Rüschendorf and de Valk (1993), recalled next.

Definition 3 (Inverse Rosenblatt Transform). An inverse Rosenblatt transform of an 𝑟-dimensional random vector 𝒀 , starting at 𝑌𝑖, for fixed
∈ {1,… , 𝑟}, is given by a function 𝜳 = (𝛹 (1),… , 𝛹 (𝑟))⊤ ∶R𝑟 → R𝑟 and an (𝑟 − 1)-dimensional random vector 𝑽 = (𝑉1,… , 𝑉𝑟−1), consisting of

independent standard uniform variables, independent of 𝑌𝑖, such that

𝒀 = 𝜳
(

𝑌𝑖,𝑽
)

=
(

𝛹 (1)(𝑌𝑖,𝑽 ), … , 𝛹 (𝑟)(𝑌𝑖,𝑽 )
)

, P-a.s. .

In particular, 𝑌𝑘 = 𝛹 (𝑘)(𝑌𝑖,𝑽 ) P-a.s. for all 𝑘 ∈ {1,… , 𝑟}.

Remark 1. Before proceeding with the definition of sensitivity measures in our specific model context, we provide some comments on the
construction of Definition 3. For further references on dependency models and the Rosenblatt transform in sensitivity analysis see, e.g., Lamboni
and Kucherenko (2021), Mai, Schenk, and Scherer (2015), Mara and Tarantola (2012), Pesenti et al. (2021) and Lamboni (2022).

• The key idea is that one can represent the random vector 𝒀 as a function of an independent vector starting at 𝑌𝑖, the variable being stressed.
Therefore, Definition 3 essentially corresponds to the practical dependence models (DM) introduced by Lamboni and Kucherenko (2021) and
Lamboni (2022), who build on the foundational work of Skorokhod (1977) and present explicit formulas for various joint distributions.

• Here the assumption of 𝑽 being uniform is not material and an alternative distribution could be chosen. Assuming that 𝑽 is uniform links to the
standard construction (Rüschendorf & de Valk, 1993), where, e.g., for 𝑖 = 1, we have 𝛹 (1)(𝑌1,𝑽 ) = 𝑌1, 𝛹 (2)(𝑌1,𝑽 ) = 𝐹−1

𝑌2|𝑌1
(𝑉1|𝑌1),… , 𝛹 (𝑟)(𝑌1,𝑽 ) =

𝐹−1
𝑌𝑟|𝑌1 ,…,𝑌𝑟−1

(𝑉𝑟−1|𝑌1,… , 𝑌𝑟−1). This process is simplified for specific parametric models. For example, if 𝒀 is multivariate normal, then one can
let 𝑽 consist of independent standard normal variables and the functions 𝛹 (𝑘) are linear; see Example 3 in Pesenti et al. (2021) for more
details.

We now return to our setting, where 𝒀 = (𝑿,𝒁) with dimension 𝑟 = 𝑚+𝑛. For simplicity, we write for the inverse Rosenblatt transform starting
at 𝑋𝑖 = 𝑌𝑖, 𝑖 ∈ , such that (𝑿,𝒁) = 𝜳 (𝑋𝑖,𝑽 ), 𝑋𝑗 = 𝛹 (𝑗)(𝑋𝑖,𝑽 ), for all 𝑗 ∈ , and 𝑍𝑘 = 𝛹 (𝑚+𝑘)(𝑋𝑖,𝑽 ) for all 𝑘 ∈  . To construct the cascade
sensitivity to input 𝑋𝑖, we replace 𝑋𝑖 by 𝑋𝑖,𝜀, such that the stressed vector of risk factors becomes 𝜳 (𝑋𝑖,𝜀,𝑽 ). Thus, using the inverse Rosenblatt
transform, all other risk factors are perturbed according to their dependence on 𝑋𝑖 and the portfolio loss is transformed to:

𝐿𝜳
𝜀 (𝑋𝑖) ∶=

∑

𝑗∈
𝑔𝑗

(

{𝛹 (𝑚+𝑘)(𝑋𝑖,𝜀,𝑽 )}𝑘∈
)

1{𝛹 (𝑗)(𝑋𝑖,𝜀 ,𝑽 )≤𝑑𝑗} . (4)

Subsequently, to derive the cascade sensitivity measure, we apply the marginal sensitivity to the stressed portfolio loss 𝐿𝜳
𝜀 (𝑋𝑖). In (4),

𝛹 (𝑚+𝑘)(𝑋𝑖,𝜀,𝑽 )}𝑘∈ is the part of the stressed input vector returning 𝒁, potentially impacted by the stress on 𝑋𝑖.
When stressing 𝑍𝑖 = 𝑌𝑚+𝑖, 𝑖 ∈  , the respective transform is (𝑿,𝒁) = 𝜳 (𝑍𝑖,𝑽 ). The process of stressing 𝑍𝑖 is analogous to the case of 𝑋𝑖, with

the transformed portfolio loss now given by

𝐿𝜳
𝜀 (𝑍𝑖) ∶=

∑

𝑗∈
𝑔𝑗

(

{𝛹 (𝑚+𝑘)(𝑍𝑖,𝜀,𝑽 )}𝑘∈
)

1{𝛹 (𝑗)(𝑍𝑖,𝜀 ,𝑽 )≤𝑑𝑗}, (5)

where, similarly to the case of stressing 𝑋𝑖, we have that {𝛹 (𝑚+𝑘)(𝑍𝑖,𝑽 )}𝑘∈ returns a version of 𝒁 deformed by the stress on 𝑍𝑖.
With these building blocks in place, we can now define the cascade sensitivity measure in the specific context of this paper.

Definition 4 (Cascade Sensitivity). The cascade sensitivity to the risk factor 𝑍𝑖 and 𝑋𝑖 for a risk measure 𝜌 is defined by, respectively,

𝑍𝑖 [ 𝜌 ] ∶=
𝜕
𝜕 𝜀 𝜌

(

𝐿𝜳
𝜀 (𝑍𝑖)

)

|

|

|𝜀=0
, and 𝑋𝑖 [ 𝜌 ] ∶=

𝜕
𝜕 𝜀 𝜌

(

𝐿𝜳
𝜀 (𝑋𝑖)

)

|

|

|𝜀=0
, (6)

whenever the derivatives exist.
Note that if the cascade sensitivity exists, it is independent of the choice of Rosenblatt transform, see Prop. 3.6 in Pesenti et al. (2021). In order

to establish existence, in this section we make the assumption that the inverse Rosenblatt transforms are differentiable and locally monotone in
heir first argument. This means that stressing a model input leads to perturbation of elements of 𝑿 that makes them P-a.s. greater (or smaller)
han the original input 𝑋𝑗 .

Assumption 3. Let 𝜅𝜀 be a stress function and 𝑌 , 𝑌𝜀 be such that either 𝑌 ∶= 𝑍𝑖, 𝑌𝑖,𝜀 ∶= 𝑍𝑖,𝜀 or 𝑌 ∶= 𝑋𝑖, 𝑌𝑖,𝜀 ∶= 𝑋𝑖,𝜀. Let 𝜳 be a differentiable
inverse Rosenblatt transform starting at 𝑌 , such that (𝑿,𝒁) = 𝜳 (𝑌 ,𝑽 ). Then, for each 𝑗 ∈ , one of the following holds

(𝑎) for all 𝜀 in a neighbourhood of 0, it holds 𝛹 (𝑗) (𝑌 ,𝑽
)

≥ 𝑋 P-a.s.; or
𝑖,𝜀 𝑗
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(𝑏) for all 𝜀 in a neighbourhood of 0, it holds 𝛹 (𝑗) (𝑌𝑖,𝜀,𝑽
)

≤ 𝑋𝑗 P-a.s.

In the case (a) we denote 𝑐(𝜅; 𝑗) = 1 and in the case (b) 𝑐(𝜅; 𝑗) = −1.
With these assumptions in place, we can now obtain explicit formulas for the cascade sensitivity measure of Definition 4. In Theorems 3 and 4

below we deal with the case of ES, while formulas for VaR are given in Appendix A.1. We observe that the cascade sensitivity to both 𝑋𝑖 and 𝑍𝑖
ntails a decomposition, reflecting the indirect contribution of the vector being stressed via the other inputs 𝑋𝑗 , 𝑍𝑘.

Theorem 3 (Cascade Sensitivity ES to 𝑋𝑖). Let Assumptions 1, 2 and 3 (for 𝑌 = 𝑋𝑖) be fulfilled for the stressed model 𝐿𝜳
𝜀 (𝑋𝑖) and 𝛼 ∈ (0, 1). Denote

(𝑗)
1 (𝑥, 𝒗) ∶= 𝜕

𝜕 𝑥𝛹 (𝑗)(𝑥, 𝒗). Then, the cascade sensitivity for ES𝛼 to input 𝑋𝑖 is given by

𝑋𝑖 [ ES𝛼 ] =
∑

𝑗∈
𝑋𝑖 ,𝑋𝑗 +

∑

𝑘∈
𝑋𝑖 ,𝑍𝑘 , (7)

where, for all 𝑘 ∈  ,

𝑋𝑖 ,𝑍𝑘 =
∑

𝑗∈
E
[

K(𝑋𝑖) 𝜕𝑘 𝑔𝑗 (𝒁)𝛹 (𝑚+𝑘)
1 (𝑋𝑖,𝑽 )1{𝑋𝑗≤𝑑𝑗}

|

|

|

𝐿 ≥ 𝑞𝛼
]

,

and for all 𝑗 ∈ ,

𝑋𝑖 ,𝑋𝑗 = − 𝑐(𝜅; 𝑗)𝑓𝑗 (𝑑𝑗 )
1 − 𝛼 E

[

K−1(𝑋𝑖)𝛹
(𝑗)
1 (𝑋𝑖,𝑽 )

(

(

𝐿 − 𝑐(𝜅; 𝑗)𝑔𝑗 (𝒁) − 𝑞𝛼
)

+ −
(

𝐿 − 𝑞𝛼
)

+

)

|

|

|

|

𝑋𝑗 = 𝑑𝑗

]

.

Theorem 4 (Cascade Sensitivity ES to 𝑍𝑖). Let Assumptions 1, 2 and 3 (for 𝑌 = 𝑍𝑖) be fulfilled for the stressed model 𝐿𝜳
𝜀 (𝑍𝑖) and 𝛼 ∈ (0, 1). Then, the

ascade sensitivity for ES𝛼 to input 𝑍𝑖 is given by

𝑍𝑖 [ ES𝛼 ] =
∑

𝑗∈
𝑍𝑖 ,𝑋𝑗 +

∑

𝑘∈
𝑍𝑖 ,𝑍𝑘 ,

where, for all 𝑘 ∈  ,

𝑍𝑖 ,𝑍𝑘 =
∑

𝑗∈
E
[

K(𝑍𝑖) 𝜕𝑘 𝑔𝑗 (𝒁)𝛹 (𝑚+𝑘)
1 (𝑍𝑖,𝑽 )1{𝑋𝑗≤𝑑𝑗}

|

|

|

𝐿 ≥ 𝑞𝛼
]

,

and for 𝑗 ∈ ,

𝑍𝑖 ,𝑋𝑗 = − 𝑐(𝜅; 𝑗)𝑓𝑗 (𝑑𝑗 )
1 − 𝛼 E

[

K−1(𝑍𝑖)𝛹
(𝑗)
1 (𝑍𝑖,𝑽 )

(

(

𝐿 − 𝑐(𝜅; 𝑗)𝑔𝑗 (𝒁) − 𝑞𝛼
)

+ −
(

𝐿 − 𝑞𝛼
)

+

)

|

|

|

|

𝑋𝑗 = 𝑑𝑗

]

.

To calculate the cascade sensitivities, we need the derivative of the inverse Rosenblatt transform. This calculation is simplified by noting that the
alue of the cascade sensitivity is independent of the specific choice of Rosenblatt transform. Hence, when calculating, for example, 𝛹 (𝑗)

1 (𝑋𝑖,𝑽 ), we
can without loss of generality use the standard construction (Rüschendorf & de Valk, 1993) 𝛹 (𝑗)(𝑋𝑖,𝑽 ) = 𝐹−1

𝑗|𝑖 (𝑉1|𝑋𝑖) in Theorem 3 — analogously
f 𝑍𝑖 is being stressed (Theorem 4). As a result, it is sufficient to consider the derivatives of inverse Rosenblatt transforms corresponding to the

bivariate dependence structure of, e.g., (𝑋𝑖, 𝑋𝑗 ). If the bivariate copula between the risk factors are known, analytical expressions for the required
derivatives may be available. We also refer to Pesenti et al. (2021), where the formulas given below for the Gaussian and t copulas are derived.

For simplicity of presentation, we only provide the expressions for 𝛹 (𝑗)
1 (𝑋𝑖, 𝑉 ), where 𝑉 is a suitably defined random variable such that

𝑗 = 𝛹 (𝑗)(𝑋𝑖, 𝑉 ). The formulas for 𝛹 (𝑗)
1 (𝑍𝑖, 𝑉 ), 𝛹 (𝑚+𝑘)

1 (𝑋𝑖, 𝑉 ), and 𝛹 (𝑚+𝑘)
1 (𝑍𝑖, 𝑉 ), for 𝑗 ∈ , 𝑘 ∈  follow analogously. In particular, since only the

ivariate copula is required for the sensitivities, we make use of the fact that 𝑋𝑗 = 𝛹 (𝑗)(𝑋𝑖, 𝑉 ) = 𝐹−1
𝑗|𝑖 (𝑉 |𝑋𝑖). Following the differentiation of 𝛹 (𝑗)

nd using the expression 𝑉 = 𝐹𝑗|𝑖(𝑋𝑗 |𝑋𝑖), the derivative 𝛹 (𝑗)
1 (𝑋𝑖, 𝑉 ) can then be expressed as a function of 𝑋𝑖 and 𝑋𝑗 only.

Proposition 1 (Bivariate Inverse Rosenblatt Transform). Denote by 𝛷 , 𝜙, the distribution function and density of a standard normal variable, and by
𝑡𝜈 , 𝑠𝜈 the distribution function and density of a t-distributed random variable with 𝜈 degrees of freedom.

1. Assume (𝑋𝑖, 𝑋𝑗 ) follows a Gaussian copula with correlation parameter 𝑟𝑖𝑗 and define 𝑌𝑖 ∶= 𝛷−1(𝐹𝑖(𝑋𝑖)) and 𝑌𝑗 ∶= 𝛷−1(𝐹𝑗 (𝑋𝑗 )). Then,

𝛹 (𝑗)
1 (𝑋𝑖, 𝑉 ) = 𝑟𝑖𝑗

𝑓𝑖(𝑋𝑖)
𝜙
(

𝑌𝑖
)

𝜙
(

𝑌𝑗
)

𝑓𝑗 (𝑋𝑗 )
,

2. Assume (𝑋𝑖, 𝑋𝑗 ) follows a t copula with correlation parameter 𝑟𝑖𝑗 and 𝜈 degrees of freedom and define 𝑌𝑖 ∶= 𝑡−1𝜈 (𝐹𝑖(𝑋𝑖)) and 𝑌𝑗 ∶= 𝑡−1𝜈 (𝐹𝑗 (𝑋𝑗 )).
Then,

𝛹 (𝑗)
1 (𝑋𝑖, 𝑉 ) =

(

𝑟𝑖𝑗 +
𝑌𝑖 𝑌𝑗 − 𝑟𝑖𝑗𝑌 2

𝑖

𝜈 + 𝑌 2
𝑖

)

𝑓𝑖(𝑋𝑖)
𝑠𝜈 (𝑌𝑖)

𝑠𝜈 (𝑌𝑗 )
𝑓𝑗 (𝑋𝑗 )

.

3. Assume (𝑋𝑖, 𝑋𝑗 ) follows a Archimedean copula with generator 𝜓 ∶ [0,+∞] → [0, 1], i.e., the copula is given by

C(𝑢1, 𝑢2) = 𝜓
(

𝜓−1(𝑢1) + 𝜓−1(𝑢2)
)

, 𝑢1, 𝑢2 ∈ [0, 1] ,
where 𝜓−1 denotes the inverse of the generator 𝜓 . Then, for 𝑖 ≠ 𝑗

𝛹 (𝑗)
1 (𝑋𝑖, 𝑉 ) = �̇�

(

𝜓−1(𝑈𝑗 )
)

�̇�
(

𝜓−1(𝑈𝑖)
)

(

�̇�
(

𝜓−1(𝑈𝑖) + 𝜓−1(𝑈𝑗 )
)

�̈�
(

𝜓−1(𝑈𝑖) + 𝜓−1(𝑈𝑗 )
)

�̈�
(

𝜓−1(𝑈𝑖)
)

�̇�
(

𝜓−1(𝑈𝑖)
) − 1

)

𝑓𝑖(𝑋𝑖)
𝑓𝑗 (𝑋𝑗 )

,

where 𝑈𝑖 ∶= 𝐹𝑖(𝑋𝑖), 𝑈𝑗 ∶= 𝐹𝑗 (𝑋𝑗 ), �̇�(𝑥) ∶= 𝜕
𝜕 𝑥𝜓(𝑥), and �̈�(𝑥) ∶= 𝜕

𝜕 𝑥 �̇�(𝑥).
7 
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4. Sensitivity to discrete random variables

In this section, we adapt the techniques developed so far to calculate differential sensitivities to discrete risk factors. Given the different portfolio
structure we consider here, we change notation to avoid confusion with previous sections. We consider the loss model

𝑇 ∶= ℎ (𝑊 , 𝒀 ) , (8)

where 𝒀 ∶= (𝑌1,… , 𝑌𝑑 ), the function ℎ∶R𝑑+1 → R is differentiable, and 𝑊 is a discrete random variable which sensitivity we aim to assess. Such a
ensitivity calculation presents both technical and conceptual challenges. While ℎ is differentiable, the corresponding differential (or infinitesimal

increment) in its first argument is hard to interpret, given the discreteness of 𝑊 . Indeed when assessing sensitivities to discrete random variables,
he realisations of 𝑊 are typically exogenously given, thus a stress on 𝑊 should manifests itself through perturbations on the probabilities. Here we
ropose to calculate the differential sensitivity with respect to a continuous variable, from which𝑊 is obtained via a (discontinuous) transformation.
n other words, we exchange the problem of discreteness with the one of non-differentiability, which we have established.

We assume that 𝑊 takes values 𝑤1 < ⋯ < 𝑤𝑟 with P(𝑊 ≤ 𝑤𝑘) = 𝑝𝑘, 𝑘 = 1,… , 𝑟, such that 0 =∶ 𝑝0 < 𝑝1 < ⋯ < 𝑝𝑟 = 1. As we propose to perturb
he probabilities 𝑝𝑘 of 𝑊 while keeping the realisations 𝑤𝑘 and thus the support of 𝑊 fixed, we rewrite the loss model (8) into a form analogous
o (1). For this, let 𝑉 ∼ U(0, 1) be independent of (𝑊 , 𝒀 ) and define the uniform random variable 𝑈 by

𝑈 ∶= 𝐹𝑊 (𝑊 ;𝑉 ) ,

where 𝐹𝑊 (𝑤; 𝜆) ∶= P(𝑊 < 𝑤) + 𝜆P(𝑊 = 𝑤), 𝜆 ∈ [0, 1], is the generalised distributional transform of 𝑊 (Rüschendorf & de Valk, 1993). It then
ollows that 𝑈 ∼ U(0, 1), 𝑈 is comonotonic to 𝑊 , and

𝑊 = 𝐹−1
𝑊 (𝑈 ) =

𝑟
∑

𝑘=1
𝑤𝑘1{𝑝𝑘−1<𝑈≤𝑝𝑘} , P-a.s. .

Then, following some manipulations, the loss model admits the form:

𝑇 =
𝑟
∑

𝑘=1
ℎ
(

𝑤𝑘, 𝒀
)

1{𝑝𝑘−1<𝑈≤𝑝𝑘} =
𝑟
∑

𝑘=1
𝛥𝑘 ℎ (𝑊 , 𝒀 )1{𝑈≤𝑝𝑘} ,

where 𝛥𝑘 ℎ (𝑊 , 𝒀 ) ∶= ℎ
(

𝑤𝑘, 𝒀
)

− ℎ
(

𝑤𝑘+1, 𝒀
)

, for 𝑘 = 1,… , 𝑟 − 1, and 𝛥𝑟ℎ (𝑊 , 𝒀 ) ∶= ℎ(𝑤𝑟, 𝒀 ).
We next stress the portfolio loss 𝑇 with respect to 𝑊 by applying a stress function to 𝑈 . Note that by stressing 𝑈 instead of 𝑊 , we perturb

the distribution without altering the support of 𝑊 . Moreover, as 𝑈 and 𝑊 are comonotonic, a stress on 𝑈 is by construction also a stress on 𝑊 ,
which does not change the dependence to other risk factors. Hence, we write the stressed model as

𝑇𝑊 ,𝜀 ∶=
𝑟
∑

𝑘=1
𝛥𝑘 ℎ (𝑊 , 𝒀 )1{𝜅𝜀(𝑈 )≤𝑝𝑘} . (9)

Stressing the uniform variable that generates 𝑊 allows for a cohesive stress, given the comonotonicity of (𝑊 , 𝑈 ). Next, we define the differentiable
ensitivity to 𝑊 via a stress on 𝑈 by:

̃𝑊 [ 𝜌 ] ∶= 𝜕
𝜕 𝜀 𝜌(𝑇𝑊 ,𝜀)||

|𝜀=0
.

Formulas for this sensitivity are given in the following result.

Theorem 5 (Marginal Sensitivity — Discrete). Let Assumptions 1 and 2 be fulfilled for the loss model (8) and for a fixed 𝛼 ∈ (0, 1). Then the sensitivity
for VaR to the discrete input 𝑊 is

̃𝑊 [ VaR𝛼 ] =
𝑐(𝜅)
𝑓 (𝑞𝛼)

𝑟
∑

𝑘=1
K−1(𝑝𝑘)E

[(

1{𝑇≤𝑞𝛼+𝑐(𝜅)𝛥𝑘 ℎ(𝑊 ,𝒀 )} − 1{𝑇≤𝑞𝛼}

)

∣ 𝑊 = 𝑤𝑘
]

,

where, for simplicity of notation, 𝑞𝛼 is the 𝛼-quantile of 𝑇 and 𝑓 its density. The sensitivity for ES to the discrete input 𝑊 is

̃𝑊 [ ES𝛼 ] = − 𝑐(𝜅)
1 − 𝛼

𝑟
∑

𝑘=1
K−1(𝑝𝑘)E

[(

𝑇 − 𝑐(𝜅)𝛥𝑘 ℎ(𝑊 , 𝒀 ) − 𝑞𝛼
)

+
− (𝑇 − 𝑞𝛼)+ ∣ 𝑊 = 𝑤𝑘

]

.

We now present an application of Theorem 5 for the ES-sensitivity calculation of the frequency and severity variables in a compound loss model.
ompound distributions are canonical tools in modelling insurance claims, as well as credit and operational risk losses, and the impact of the choice
f frequency distribution is well attested, see e.g., McNeil et al. (2015). To this effect, we represent by 𝑇 = ℎ(𝑊 , 𝒀 ) a compound random variable.

Specifically, we set 𝑟 = 𝑑 + 1 and assume that 𝑊 is a discrete loss frequency, taking values in {𝑤1 = 0,… , 𝑤𝑑+1 = 𝑑}, while the 𝑑 elements of
𝒀 = (𝑌1,… , 𝑌𝑑 ) are loss severities. The variable 𝑊 has distribution P(𝑊 ≤ 𝑘 − 1) = 𝑝𝑘, 𝑘 = 1,… , 𝑑 + 1. Furthermore, we assume that 𝑌1,… , 𝑌𝑑 are
i.i.d., continuously distributed with 𝑌1 ∼ 𝐹𝑌 , and independent of 𝑊 . The portfolio loss is:

𝑇 = ℎ(𝑊 , 𝒀 ) =
𝑊
∑

𝓁=1
𝑌𝓁 ,

with the understanding that for 𝑊 = 0 we have 𝑇 = 0. Our aim is to calculate the sensitivity of the portfolio’s ES to the frequency variable, i.e. to
valuate the quantity ̃𝑊 [ ES𝛼 ], and to compare this with the impact of the vector of loss severities, ̃𝒀 [ ES𝛼 ], which are defined below.

The sensitivity ̃𝑊 [ ES𝛼 ] is evaluated by application of Theorem 5. As before let 𝑊 = 𝐹−1
𝑊 (𝑈 ). To stress 𝑈 we need to specify a stress function

𝜅𝜀(𝑢) ∶ (0, 1) → (0, 1). Let 𝜅𝜀(𝑢) ∶= 𝛷
(

𝛷−1(𝑢) + 𝜀) , where 𝛷 is the standard normal distribution. This choice is consistent with the well-known Wang
Transform (Wang, 2000) in risk measure theory and satisfies the conditions of Definition 1, with 𝑐(𝜅) = 1. Then, for 𝑈𝜀 ∶= 𝛷

(

𝛷−1(𝑈 ) + 𝜀) we
btain, using Theorem 5 and after a few manipulations not documented here, that

̃𝑊 [ ES𝛼 ] =
𝑑
∑

(

𝑣(𝑝𝑘) − 𝑣(𝑝𝑘+1)
)

E
[(

𝑘
∑

𝑌𝓁 − 𝑞𝛼
) ]

,

𝑘=1 𝓁=1 +

8 
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Fig. 1. Changes in the scaled ES-sensitivity to the frequency (blue) and severity (red) of a compound Negative Binomial-Gamma distribution. The vertical dashed line in each plot
represent baseline assumptions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

where 𝑣(𝑝) ∶= 𝜙
(

𝛷−1(𝑝)
)

1−𝛼 , 𝑝 ∈ [0, 1], and 𝜙 is the density of the standard normal distribution. Hence, the sensitivity becomes a linear combination of
the stop-loss terms E[(

∑𝑘
𝓁=1 𝑌𝓁 − 𝑞𝛼)+], with the coefficient weights driven by the distribution of the loss frequency 𝑊 .

We now turn our attention to stressing the loss severities 𝒀 . We choose to stress all elements of 𝒀 at the same time, using a stress function
consistent with the one used for 𝑊 , i.e. the same 𝜅𝜀. Specifically, for 𝑈𝓁 ∶= 𝐹𝑌 (𝑌𝓁), 𝓁 = 1,… , 𝑑, we define the stressed portfolio

𝑇𝒀 ,𝜀 ∶=
𝑊
∑

𝓁=1
𝐹−1
𝑌

(

𝜅𝜀(𝑈𝓁)
)

=
𝑑
∑

𝑘=1
1{𝑊 =𝑘}

𝑘
∑

𝓁=1
𝐹−1
𝑌

(

𝜅𝜀(𝑈𝓁)
)

and calculate the sensitivity

̃𝒀 [ ES𝛼 ] ∶= 𝜕
𝜕 𝜀ES𝛼(𝑇𝒀 ,𝜀)

|

|

|𝜀=0
.

By the pointwise continuity of the mapping 𝜀↦ 𝑇𝒀 ,𝜀 we can calculate ̃𝒀 [ ES𝛼 ] by standard methods (Hong & Liu, 2009), yielding:

̃𝒀 [ ES𝛼 ] ∶=
𝑑
∑

𝑘=1
P(𝑊 = 𝑘)

𝑘
∑

𝓁=1
E
[

1{𝑇 >𝑞𝛼}
𝑣(𝑈𝓁)
𝑓𝑌 (𝑌𝓁)

∣ 𝑊 = 𝑘
]

.

Example 2. For the compound model discussed above, we now evaluate the sensitivities ̃𝑊 [ ES𝛼 ] and ̃𝒀 [ ES𝛼 ], with the following baseline
assumptions. The confidence level of the risk measure is 𝛼 = 0.95. The frequency 𝑊 follows a Negative Binomial distribution with mean E[𝑊 ] = 5
and over-dispersion Var (𝑊 )∕E[𝑊 ] = 2.5, truncated at the 99.9th percentile. The severities 𝑌𝓁 follow Gamma distributions with shape parameter
𝜃 = 5, corresponding to a skewness coefficient of 0.894. With these choices, we find that the sensitivities, scaled by the portfolio risk, take values
̃𝑊 [ ES𝛼 ]
ES𝛼 (𝑇 )

= 0.414 and ̃𝒀 [ ES𝛼 ]
ES𝛼 (𝑇 )

= 0.429. This indicates that the compound sum 𝑇 is approximately equally sensitive to the loss frequency and severity.

In Fig. 1 we depict how the scaled sensitivities change after varying the baseline assumptions, one at a time, regarding frequency mean, frequency
over-dispersion, the skewness of the severity distribution, and the confidence level of the ES risk measure. In each plot the baseline assumption
is indicated by a vertical dashed line. We observe that, as the frequency mean increases, the importance of severities dominates, given the larger
overall number of individual losses. On the other hand, when the frequency over-dispersion increases, the importance of frequency dominates,
since the variance of the frequency distribution becomes the key risk driver. Furthermore, as one would expected, the sensitivity of the severities
𝒀 increases in the skewness, which reflects a riskier loss profile. Finally, as the confidence level increases, severities become more important than
the frequency 𝑊 , representing a more pronounced impact on the extreme tail of the portfolio loss.

5. Application to reinsurance credit risk modelling

Reinsurance credit risk modelling represents a prominent example where credit risk exposures are non-granular and inhomogeneous. Insurers
buy reinsurance products in order to transfer some of the risk of (typically) higher than expected claim amounts to a third party. By taking on
insurers’ excess liabilities, the reinsurance market thus operates as an industry-wide risk pooling arrangement (Albrecher et al., 2017). Credit risk
then arises from the possibility that, in the event of high (industry) losses, reinsurers will not be able to make good on their obligations to insurers.

Reinsurance credit risk has two features particularly relevant to our setting. First, dependence is of primary importance. Different reinsurers’
ability to fulfil obligations is highly dependent on each other, given the systemic impact of overall (re)insurance market conditions and industry
shocks. As a result, reinsurers’ default indicators should also be considered dependent on insurers’ gross (i.e. before-reinsurance) losses; hence
one needs to account for the event that reinsurers default precisely at those times when insurers need them most. Second, reinsurance credit risk
9 
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Table 2
Name of Lines of business (LoB) and Coefficient of variation (CoV) (Source: (Lloyd’s, 2022)).

LOB name LoB CoV

Direct and Proportional Motor Vehicle Liability 𝑍1 0.1
Direct and Proportional Other Motor 𝑍2 0.08
Direct and Proportional Marine, Aviation and Transportation 𝑍3 0.15
Direct and Proportional Fire & Other Damage to Property 𝑍4 0.08
Direct and Proportional General Liability 𝑍5 0.14
Direct and Proportional Credit & Suretyship 𝑍6 0.19
Direct and Proportional Legal Expenses 𝑍7 0.083
Direct and Proportional Assistance 𝑍8 0.064
Direct and Proportional Miscellaneous Financial Loss 𝑍9 0.13
Non-Proportional Casualty Reinsurance 𝑍10 0.17
Non-Proportional Marine, Aviation and Transportation Reinsurance 𝑍11 0.17
Non-Proportional Property Reinsurance 𝑍12 0.17

Fig. 2. Histogram of the insurer’s total reinsurance credit risk loss conditional on a positive loss, i.e., 𝐿|𝐿 > 0. Vertical lines are the unconditional VaR and ES at level 𝛼 = 0.975.

exposures are highly inhomogeneous. Different reinsurers often reinsure different lines of business at different levels of extreme loss. Furthermore,
the credit rating of reinsurers varies and insurers typically transfer the most extreme layers of their gross losses to a small number of highly rated
einsurers — while this is a rational strategy, it creates non-trivial concentration effects. The concern with the risk of reinsurance defaults, and

particularly with their dependence, has been thoroughly reflected in actuarial modelling practice (Britt & Krvavych, 2009; Ter Berg, 2008).
Here we present a numerical example of differential sensitivity analysis to reinsurance defaults, working with an illustrative model of reinsurance

credit risk. In Eq. (1), we interpret the terms as follows:

• 𝐿 is the total reinsurance credit risk loss for an insurer.
• 𝒁 = (𝑍1,… , 𝑍𝑛) are the gross losses of the insurer, from its 𝑛 = 12 lines of business (LoB).
• 𝑔𝑗 (𝒁), 𝑗 ∈  are the reinsurance recoveries expected from each of 𝑚 = 8 reinsurers.
• {𝑋𝑗 ≤ 𝑑𝑗} is the event that the 𝑗th reinsurer defaults.

The 12 LoB are marginally Lognormal distributed with the same mean and coefficient of variation (CoV) given in Table 2, and which are consistent
ith the Solveny II standard formula parameters (Lloyd’s, 2022). In specifying the form of the 𝑔𝑗s we make the simplifying assumption that all

reinsurance contracts bought consist of reinsurance layers on the gross losses 𝑍1,… , 𝑍12.
We assume that each of the first 6 reinsurers covers a layer from two LoBs, with deductibles 𝑠𝑗 ,𝑘 and limit 𝑡𝑗 ,𝑘. Each of reinsurers 7 and 8 covers

 higher layer from 6 LoBs. Specifically, we have:

𝑔𝑗 (𝒁) =
2𝑗
∑

𝑘=2𝑗−1
min

{

(

𝑍𝑘 − 𝑠𝑗 ,𝑘
)

+ , 𝑡𝑗 ,𝑘
}

, for 𝑗 = 1,… , 6 ,

𝑔7(𝒁) =
6
∑

𝑘=1
min

{

(

𝑍𝑘 − 𝑠7,𝑘
)

+ , 𝑡7,𝑘
}

, and 𝑔8(𝒁) =
12
∑

𝑘=7
min

{

(

𝑍𝑘 − 𝑠8,𝑘
)

+ , 𝑡8,𝑘
}

.

The deductibles and limits are such that the first six reinsurers cover losses between the 55% and 85% quantile, whereas the last two reinsurers
over the losses between the 85% and the 95% quantile, i.e.,

𝑠𝑗 ,𝑘 = 𝐹−1
𝑍𝑘

(0.55) and 𝑡𝑗 ,𝑘 = 𝐹−1
𝑍𝑘

(0.85) − 𝑠𝑗 ,𝑘 , for 𝑗 = 1,… , 6 ,

𝑠𝑗′ ,𝑘 = 𝐹−1
𝑍𝑘

(0.85) and 𝑡𝑗′ ,𝑘 = 𝐹−1
𝑍𝑘

(0.95) − 𝑠𝑗 ,𝑘 , for 𝑗′ = 7, 8 .
Finally, the default probabilities are set at 1.5% for the first 6 reinsurers and 1% for reinsurers 7 and 8. We assume that the random vector (𝑿,𝒁)
s dependent with a t-copula with 4 degrees of freedom, such that the correlation matrix of 𝒁 satisfies Solvency II assumptions (Lloyd’s, 2022),
hile the random vector 𝑿 has a homogeneous correlation matrix such that Cor r (𝑋𝑖, 𝑋𝑗 ) = 0.05. The joint dependence of (𝑿,𝒁) is effected via a

-distribution factor model; further details are given in the electronic companion, Appendix E.
The distribution of the total credit risk loss 𝐿 is evaluated by Monte-Carlo simulation. Specifically, since almost all scenarios of (𝑿,𝒁) result in

 credit loss of zero, i.e., a realisation {𝐿 = 0}, we generated a dataset of size 500,000 (keeping track of the total number of simulations), in which
10 
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Fig. 3. Marginal sensitivity to 𝑍𝑖s of VaR (left; with 𝛿 = 0.005) and ES (right) with 𝛼 = 0.975.

Fig. 4. Marginal sensitivity to 𝑋𝑖s of VaR (left; with 𝛿 = 0.005) and ES (right; with 𝛿 = 0.005) with 𝛼 = 0.975.

all realisations satisfy 𝐿 > 0. The probability that 𝐿 > 0 is 5.044% in our dataset. Fig. 2 depicts a histogram of the insurer’s total credit risk loss
𝐿 conditional that a loss occurred. We also report the unconditional VaR and ES at level 𝛼 = 0.975. The skewness and multimodality of the loss
istribution, driven by the portfolio’s lack of homogeneity, are apparent.

We apply stresses on each of the risk factors 𝑋𝑖 and 𝑍𝑖. Specifically, we apply left-tail stresses (see Table 1) on the risk factors driving defaults,
.e., 𝑋𝑖,𝜀 ∶= 𝑋𝑖 + 𝜀

(

𝑋𝑖 − 𝐹−1
𝑋𝑖

(0.2)
)

1{𝑋𝑖≤𝐹−1
𝑋𝑖

(0.2)}, 𝑖 = 1,… , 8. These stresses increase the probability of reinsurance defaults, though in a more

omplex way compared to Example 1. For each LoB, we consider a right-tailed stress 𝑍𝑖,𝜀 ∶= 𝑍𝑖 + 𝜀
(

𝑍𝑖 − 𝐹−1
𝑍𝑖

(0.8)
)

1{𝑍𝑖≥𝐹−1
𝑍𝑖

(0.8)}, 𝑖 = 1,… , 12,
hich increases the loss quantiles of 𝑍𝑖, beyond its 80% quantile.

We calculate the sensitivities with respect to the VaR and ES risk measures at level 𝛼 = 0.975, according to Theorems 1 and 2. To calculate the
sensitivities to 𝑍𝑖s, we require estimates of expectation conditioned on the event {𝐿 = 𝑞𝛼} and {𝐿 ≥ 𝑞𝛼}. For estimating the expectation conditional
on the event of zero probability {𝐿 = 𝑞𝛼}, we use the 𝛿-estimator (Glasserman, 2005), though more sophisticated methods such as quasi-Monte
Carlo Methods could be employed, see e.g., Basu and Owen (2016) and Cambou, Hofert, and Lemieux (2017) for convergence rates. Specifically,
for 𝛿 > 0 with 0 < 𝛼 − 𝛿, and 𝛼 + 𝛿 < 1, we approximate the sensitivity of VaR to 𝑍𝑖 by

̂𝑍𝑖 [ VaR𝛼 ] =
1
2𝛿

8
∑

𝑗=1
E
[

K(𝑍𝑖)𝜕𝑖 𝑔𝑗 (𝒁)1{𝑋𝑗≤𝑑𝑗}1{𝐿∈(𝐹−1(𝛼−𝛿), 𝐹−1(𝛼+𝛿))}

]

.

Mathematically, we replace the conditioning event {𝐿 = 𝑞𝛼} by an event of probability 2𝛿, i.e. by {𝐿 ∈ (𝐹−1(𝛼−𝛿), 𝐹−1(𝛼+𝛿))}. A value of 𝛿 = 0.005
as used throughout. We use our sample of (𝑿,𝒁, 𝐿 ∣ 𝐿 > 0), which contains 500,000 simulated scenarios, and estimate the sensitivities using
ootstrap with replacement and a bootstrap size of 450,000. The reported sensitivities are averaged over 100 bootstrap estimates.

For estimating the sensitivities to each 𝑋𝑖, a different dataset is simulated. Specifically, for each 𝑗 = 1,… , 8, we generate a dataset of size 500,000,
in which all realisations of (𝑿,𝒁) satisfy 𝑋𝑗 ∈

(

𝐹−1
𝑗 (𝑑𝑗 − 𝛿), 𝐹−1

𝑗 (𝑑𝑗 + 𝛿)
)

, for small 𝛿 > 0. Again, sensitivities were estimated by bootstrapping 100
times with replacement and bootstrap size 450,000. Figs. 3 and 4 display box plots of the sensitivities to 𝑍𝑖 and to 𝑋𝑖 for both VaR and ES. Again
 value of 𝛿 = 0.005 is used as a baseline; the effect of this choice on sensitivity estimates is discussed in the sequel (Fig. 6).

In Fig. 3, where the sensitivities to the 𝑍𝑖s are plotted, we observe that business line 6 has a large sensitivity for VaR, the LoB with the largest
CoV, see Table 2. In the right panel we observe that for ES the sensitivities are ordered similarly to the CoV of the business lines, but with a
arger spread compared to the case of VaR — this could be attributed to the higher tail-sensitivity of the ES measure. Indeed, LoB 6 has the largest
ensitivity, followed by 10, 11, and 12, which all have the same, second largest, CoV. Furthermore, LoB 2, 4, 7, and 8, which have the smallest
oVs, have small sensitivities for both VaR and ES.

In Fig. 4, we depict the sensitivities to the 𝑋𝑖s. A similar picture emerges, with the sensitivities for VaR (left panel) being very close together
nd for ES (right panel) being more spread-out. For ES, we observe that reinsurer 3, which has a layer on LoBs 5 and 6, and reinsurer 6, which has
 layer on LoBs 11 ad 12, have the largest sensitivities. These LoBs have large sensitivities for ES, as seen in Fig. 3 (right panel). Thus, a default of
hese reinsurers would naturally lead to a large impact on the ES of the total loss. We also see that reinsurers 7 and 8 have large sensitivities for
S. This is in line with expectations, since reinsurer 7 and 8 take on the highest layers (between the 85% and 95% quantile) of 6 business lines
11 
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Fig. 5. Marginal sensitivities of ES and different choices of 𝛼 between 0.955 and 0.99. Left: sensitivity to 𝑍𝑖s. Right: sensitivity to 𝑋𝑖s.

Fig. 6. Marginal sensitivities to 𝑋𝑖 and their sample standard deviations for different choices of 𝛿. Top panels: Marginal sensitivity for VaR (left) and for ES (right) both with
𝛼 = 0.975. Bottom panels: Sample standard deviation of the sensitivity estimators for VaR (left) and ES (right).

each. Nonetheless, this concentration effect is not picked up by the VaR sensitivity, as in the left panel the sensitivities to 𝑋7, 𝑋8 are rather low.
This points to the importance of selecting an appropriately tail-sensitive risk measure.

Fig. 5 depicts the sensitivities of ES for different choices of 𝛼, from 0.955 to 0.99. The left panel contains the sensitivities to the LoBs (𝑍𝑖) and
the right panel the sensitivities to the reinsurers (𝑋𝑖). We observe that the ordering of the risk factors is mostly consistent with respect to changes
in confidence level. An exception to this are the sensitivities to 𝑋7 and 𝑋8 which increase faster (relative to others) with 𝛼, as seen by the line
crossings on the right panel. Once again this demonstrates the increased impact of default risk concentration at high loss quantiles.

Finally, in Fig. 6 top panels, we show the sensitivities to 𝑋𝑖s for VaR (left panel) and ES (right panel) with 𝛼 = 0.975, using different choices of
for approximating the expectation conditional on {𝑋𝑖 = 𝑑𝑖}. We observe that the estimates are very stable for different choices of 𝛿. Furthermore,

in the bottom panels of Fig. 6 we plot the standard deviation of the sensitivity estimators, thus choosing 𝛿 = 0.005 provides a suitable bias and
variance trade-off.

6. Conclusion

Taking derivatives of model outputs in the direction of inputs is a foundational process for interpreting complex computational models. However,
ifferential sensitivity measures typically require stringent assumptions on differentiability and Lipschitz continuity of the model function. This
everely limits the scope of current methods of differential sensitivity analysis. We address the problem by noting that, when inputs are uncertain
 as is the case in settings ranging from Monte Carlo simulation to algorithmic prediction – a global view can be more appropriate than a local
ne. For a global assessment, differentiation is required across the entire input space; but then, it is not the derivative of the model function as
12 
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such that is of primary interest, but rather the derivative of a statistical functional of the output. Still, extant literature on sensitivity analysis of
isk measures typically requires differentiability of the model aggregation function.

In this paper, we overcome current limitations in the literature and derive expressions for derivatives of quantile-based risk measures of model
outputs, in a general setting where aggregation functions contain step functions and thus are not Lipschitz continuous. The conditions we require
are rather weak and the sensitivity measures obtained admit representations as conditional expected values, which allows their estimation by
tandard methods. There are multiple potential applications of our methodology. We demonstrate applications in the area of credit risk modelling,
ut also in assessing sensitivity with respect to discrete random inputs. While our work is applicable in principle to discontinuous (e.g., tree-based)
redictive models, addressing the idiosyncratic challenges of such exercises remains a topic for future work.
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Appendix A. Additional sensitivity formulas

Here we provide additional results for marginal and cascade sensitivities, which are omitted from the main body of the text for reasons of
oncision. In Appendix A.1 we deal with cascade sensitivities of VaR, while in Section C of the electronic companion we present results and proofs

for a more general model than (1), that is for the loss 𝐿 =
∑

𝑗∈ 𝑔𝑗 (𝑿,𝒁)1{𝑋𝑗≤𝑑𝑗}.

A.1. Cascade sensitivities to VaR

Here we report the cascade sensitivity formulas for VaR.

Theorem 6 (Cascade Sensitivity VaR to 𝑋𝑖). Let Assumptions 1, 2 and 3 (for 𝑌 = 𝑋𝑖) be fulfilled for the stressed model 𝐿𝜳
𝜀 (𝑋𝑖) and given 𝛼 ∈ (0, 1).

hen, the cascade sensitivity for VaR𝛼 to input 𝑋𝑖 is given by,

𝑋𝑖 [ VaR𝛼 ] =
∑

𝑗∈
𝑋𝑖 ,𝑋𝑗 +

∑

𝑘∈
𝑋𝑖 ,𝑍𝑘 ,

where for all 𝑘 ∈  ,

𝑋𝑖 ,𝑍𝑘 =
∑

𝑗∈
E
[

K(𝑋𝑖) 𝜕𝑘𝑔𝑗 (𝒁)𝛹 (𝑚+𝑘)
1 (𝑋𝑖,𝑽 )1{𝑋𝑗≤𝑑𝑗}

|

|

|

𝐿 = 𝑞𝛼
]

,

and for 𝑗 ∈ ,

𝑋𝑖 ,𝑋𝑗 =
𝑐(𝜅; 𝑗)𝑓𝑗 (𝑑𝑗 )

𝑓
(

𝑞𝛼
) E

[

K−1(𝑋𝑖)𝛹
(𝑗)
1 (𝑋𝑖,𝑽 )

(

1{𝐿≤𝑞𝛼+𝑐(𝜅; 𝑗)𝑔𝑗 (𝒁)} − 1{𝐿≤𝑞𝛼}

)

|

|

|

|

𝑋𝑗 = 𝑑𝑗

]

.

Theorem 7 (Cascade Sensitivity VaR to 𝑍𝑖). Let Assumptions 1, 2 and 3 (for 𝑌 = 𝑍𝑖) be fulfilled for the stressed model 𝐿𝜳
𝜀 (𝑍𝑖) and given 𝛼 ∈ (0, 1).

hen, the cascade sensitivity for VaR𝛼 to input 𝑍𝑖 is given by,

𝑍𝑖 [ VaR𝛼 ] =
∑

𝑗∈
𝑍𝑖 ,𝑋𝑗 +

∑

𝑘∈
𝑍𝑖 ,𝑍𝑘 ,

where for all 𝑘 ∈  ,

𝑍𝑖 ,𝑍𝑘 =
∑

𝑗∈
E
[

K(𝑍𝑖) 𝜕𝑘𝑔𝑗 (𝒁)𝛹 (𝑚+𝑘)
1 (𝑍𝑖,𝑽 )1{𝑋𝑗≤𝑑𝑗}

|

|

|

𝐿 = 𝑞𝛼
]

,

and for 𝑗 ∈  ,

𝑍𝑖 ,𝑋𝑗 =
𝑐(𝜅; 𝑗)𝑓𝑗 (𝑑𝑗 )

𝑓
(

𝑞𝛼
) E

[

K−1(𝑍𝑖)𝛹
(𝑗)
1 (𝑍𝑖,𝑽 )

(

1{𝐿≤𝑞𝛼+𝑐(𝜅; 𝑗)𝑔𝑗 (𝒁)} − 1{𝐿≤𝑞𝛼}

)

|

|

|

|

𝑋𝑗 = 𝑑𝑗

]

.

Appendix B. Proofs

This section contains proofs of Theorems 1–4, 6, and 7.
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B.1. Proofs of marginal sensitivity: Theorems 1 and 2

For the proof of the marginal sensitivities to VaR and ES, we need the following lemma concerning sequences of functions that converge weakly
to a Dirac delta function. For this, we first write the marginally stressed portfolios as

𝐿(𝑍𝑖,𝜀) ∶= 𝐿 +
𝑚
∑

𝑘=1
𝛥𝜀𝑔𝑘 and 𝐿(𝑋𝑖,𝜀) ∶= 𝐿 + 𝑔𝑖(𝒁)

(

1{𝑋𝑖,𝜀≤𝑑𝑖} − 1{𝑋𝑖≤𝑑𝑖}

)

,

where we define 𝛥𝜀𝑔𝑘 ∶= (𝑔𝑘(𝒁−𝑖, 𝜅𝜀(𝑍𝑖)) − 𝑔𝑘(𝒁))1{𝑋𝑘≤𝑑𝑘}. When the stress is clear from the context, we write 𝐿𝜀 = 𝐿(𝑍𝑖,𝜀) and 𝐿𝜀 = 𝐿(𝑋𝑖,𝜀).

Lemma 1. For fixed 𝑑 ∈ R, define the family of functions

𝛿𝜀(𝑥) =
|

|

|

1{𝜅𝜀 (𝑥)≤𝑑}−1{𝑥≤𝑑}
|

|

|

𝜀 , 𝑥 ∈ R , 𝜀 > 0.

Then, 𝛿𝜀 converges weakly to a scaled Dirac delta function at 𝑑 for 𝜀 ↘ 0. Moreover, for any family of measurable functions ℎ𝜀 ∶R𝑚+𝑛 → R such that
im𝜀↘0 E

[

|ℎ𝜀(𝑿,𝒁)|
]

<∞, the following holds:

lim
𝜀↘0

E
[

𝛿𝜀(𝑋𝑖)ℎ𝜀(𝑿,𝒁)
]

= −𝑐(𝜅)K−1(𝑑) 𝑓𝑖(𝑑) E
[

ℎ0(𝑿,𝒁) ∣ 𝑋𝑖 = 𝑑
]

,

where 𝑐(𝜅) is given in (2), and ℎ0(𝒙, 𝒛) = lim𝜀↘0 ℎ𝜀(𝒙, 𝒛).

Proof of Lemma 1. First note that
|

|

|

1{𝜅𝜀(𝑥)≤𝑑} − 1{𝑥≤𝑑}
|

|

|

= −𝑐(𝜅)
(

1{𝜅𝜀(𝑥)≤𝑑} − 1{𝑥≤𝑑}

)

. (11)

Let 𝜉 be an infinitely often differentiable function. Using the change of variable 𝑦 = 𝜅𝜀(𝑥), we obtain

∫

+∞

−∞
𝜉(𝑥)𝛿𝜀(𝑥) 𝑑 𝑥 = − 𝑐(𝜅)

𝜀 ∫

+∞

−∞
𝜉(𝑥)

(

1{𝜅𝜀(𝑥)≤𝑑} − 1{𝑥≤𝑑}

)

𝑑 𝑥

= − 𝑐(𝜅)
𝜀 ∫

+∞

−∞

𝜉(𝑧)
𝜕
𝜕 𝑥𝜅𝜀(𝑧)

|

|

|𝑧=𝜅−1𝜀 (𝑦)
1{𝑦≤𝑑} 𝑑 𝑦 − 1

𝜀 ∫

𝑑

−∞
𝜉(𝑥) 𝑑 𝑥 .

Letting 𝛯 be a primitive of 𝜉 vanishing at −∞, then

∫

+∞

−∞
𝜉(𝑥)𝛿𝜀(𝑥) 𝑑 𝑥 = − 𝑐(𝜅)

𝜀

(

∫

𝑑

−∞

𝑑
𝑑 𝑦𝛯(𝜅

−1
𝜀 (𝑦)) 𝑑 𝑦 − 𝛯(𝑑)

)

= − 𝑐(𝜅)
𝜀

(

𝛯(𝜅−1𝜀 (𝑑)) − 𝛯(𝑑)) .

Taking the limit as 𝜀→ 0, we obtain that

lim
𝜀↘0∫

+∞

−∞
𝜉(𝑥)𝛿𝜀(𝑥) 𝑑 𝑥 = −𝑐(𝜅) 𝜉(𝑑)K−1(𝑑) .

For the second part of the statement, note that

lim
𝜀↘0

E
[

𝛿𝜀(𝑋𝑖)ℎ𝜀(𝑿,𝒁)
]

= lim
𝜀↘0 ∫R𝑚+𝑛

𝛿𝜀(𝑥𝑖)ℎ𝜀(𝒙, 𝒛) 𝑓𝑿,𝒁 (𝒙, 𝒛) 𝑑𝒙 𝑑𝒛

= −𝑐(𝜅)K−1(𝑑)∫R𝑚+𝑛−1
ℎ𝜀(𝒙−𝑖, 𝑑 , 𝒛) 𝑓𝑿,𝒁 (𝒙−𝑖, 𝑑 , 𝒛)

𝑓𝑖(𝑑)
𝑓𝑖(𝑑)

𝑑𝒙−𝑖 𝑑𝒛

= −𝑐(𝜅)K−1(𝑑) 𝑓𝑖(𝑑)E
[

ℎ0(𝑿,𝒁) ∣ 𝑋𝑖 = 𝑑
]

. □

Lemma 2. For fixed 0 < 𝛼 < 1 and 𝒛 ∈ R𝑛, define the sequence of functions

𝛿𝜀(𝑙) =
1{

𝑙≤𝑞𝛼−
∑𝑚
𝑘=1 𝛥𝜀𝑔𝑘

}−1{𝑙≤𝑞𝛼}

𝜀 𝑙 ∈ R , 𝜀 > 0.

where 𝛥𝜀𝑔𝑘 = (𝑔𝑘(𝒛−𝑖, 𝜅𝜀(𝑧𝑖)) − 𝑔𝑘(𝒛))1{𝑥𝑘≤𝑑𝑘}, 𝒛 ∈ R𝑛, and 𝑙 ≥ 0. Then, 𝛿𝜀 converges weakly to a scaled Dirac delta function at 𝑞𝛼 for 𝜀 ↘ 0. Moreover,
for any family of measurable functions ℎ𝜀 ∶R𝑚+𝑛 → R such that lim𝜀↘0 E

[

|ℎ𝜀(𝑿,𝒁)|
]

<∞, the following holds:

lim
𝜀↘0

E
[

𝛿𝜀(𝐿)ℎ𝜀(𝑿, 𝐿)
]

= −𝑓 (𝑞𝛼)
𝑚
∑

𝑘=1
E
[

K(𝑍𝑖)𝜕𝑖 𝑔𝑘(𝒁)1{𝑋𝑘≤𝑑𝑘} ℎ0(𝑿, 𝐿)
|

|

|

𝐿 = 𝑞𝛼
]

. (12)

Proof of Lemma 2. Let 𝜉(⋅) be an infinitely often differentiable function. Applying Taylor’s Theorem of 𝑔𝑘 around 𝑧𝑖, and using 𝜅𝜀(𝑧𝑖) =
𝑖 + 𝜀K(𝑧𝑖) + 𝑜(𝜀), we obtain for all 𝑘 = 1,… , 𝑛, that

𝑔𝑘(𝒛−𝑖, 𝜅𝜀(𝑧𝑖)) − 𝑔𝑘(𝒛) =
(

𝜅𝜀(𝑧𝑖) − 𝑧𝑖
)

𝜕𝑖 𝑔𝑘(𝒛) + 𝑜
(

𝜅𝜀(𝑧𝑖) − 𝑧𝑖
)

= 𝜀K(𝑧𝑖) 𝜕𝑖 𝑔𝑘(𝒛) + 𝑜 (𝜀) , (13)

where 𝜕𝑖 𝑔𝑘(𝒛) = 𝜕
𝜕 𝑧𝑖 𝑔𝑘(𝒛) is the derivative in the 𝑖th component. Thus, we have that for all 𝒛 ∈ R𝑛, using the Mean Value Theorem for some

𝑙∗ ∈ (𝑞𝛼 , 𝑞𝛼 − 𝛥𝜀𝑔 ] (or 𝑙∗ ∈ (𝑞𝛼 − 𝛥𝜀𝑔 , 𝑞𝛼]) in the second equation, and then (13) that

∫

+∞

−∞
𝜉(𝑙)𝛿𝜀(𝑙) 𝑑 𝑙 = 1

𝜀 ∫

𝑞𝛼−
∑𝑚
𝑘=1 𝛥𝜀𝑔𝑘

𝑞𝛼
𝜉(𝑙) 𝑑 𝑙 = −1

𝜀

𝑚
∑

𝑘=1
𝛥𝜀𝑔𝑘 𝜉(𝑙∗)

= −
(

𝑚
∑

K(𝑧𝑖) 𝜕𝑖 𝑔𝑘(𝒛)1{𝑥𝑘≤𝑑𝑘} + 𝑜 (1)
)

𝜉(𝑙∗) .

𝑘=1
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Taking the limit for 𝜀 ↘ 0, we have

lim
𝜀↘0∫

+∞

−∞
𝜉(𝑙)𝛿𝜀(𝑙) 𝑑 𝑙 = −K(𝑧𝑖)

𝑚
∑

𝑘=1
𝜕𝑖 𝑔𝑘(𝒛)1{𝑥𝑘≤𝑑𝑘}𝜉

(

𝑞𝛼
)

.

Eq. (12) follows using a similar argument as in Lemma 1. □

Proof of Theorem 1 (Marginal Sensitivity VaR). By Proposition 2.3 in Embrechts and Hofert (2013) it holds for all 𝜀 ≥ 0 that 𝐹𝜀
(

𝑞𝛼(𝜀)
)

= 𝛼.
Setting 𝐻(𝜀, 𝑥) ∶= 𝐹𝜀(𝑥) the equation becomes 𝐹𝜀

(

𝑞𝛼(𝜀)
)

= 𝐻(𝜀, 𝑞𝛼(𝜀)) = 𝛼. Taking derivative with respect to 𝜀 and evaluating at 𝜀 = 0 (note that
Assumptions 1 and 2 are fulfilled and that 𝜕

𝜕 𝑥𝐻(0, 𝑥) = 𝑓 (𝑥) and 𝜕
𝜕 𝜀𝐻(𝜀, 𝑥) = 𝜕

𝜕 𝜀𝐹𝜀(𝑥)), we obtain

𝑓
(

𝑞𝛼
) 𝜕

𝜕 𝜀 𝑞𝛼(𝜀)
|

|

|𝜀=0
+ 𝜕

𝜕 𝜀𝐹𝜀(𝑞𝛼)
|

|

|𝜀=0
= 0 and thus 𝜕

𝜕 𝜀 𝑞𝛼(𝜀)
|

|

|𝜀=0
= − 1

𝑓(𝑞𝛼)
𝜕
𝜕 𝜀𝐹𝜀(𝑞𝛼) , (14)

whenever 𝜕
𝜕 𝜀𝐹𝜀(𝑞𝛼) exists. Next, we show that the derivative of 𝐹𝜀 with respect to 𝜀 exists.

Part 1: We first consider the case of stressing 𝑋𝑖 and calculate

𝐹𝜀(𝑞𝛼) − 𝐹 (𝑞𝛼) = P
(

𝐿𝜀 ≤ 𝑞𝛼
)

− P
(

𝐿 ≤ 𝑞𝛼
)

(15a)

= E
[

1{

𝐿≤𝑞𝛼−𝑔𝑖(𝒁)
(

1{𝜅𝜀 (𝑋𝑖 )≤𝑑𝑖}−1{𝑋𝑖≤𝑑𝑖}
)} − 1{𝐿≤𝑞𝛼}

]

(15b)

= E
[

|

|

|

1{𝜅𝜀(𝑋𝑖)≤𝑑𝑖} − 1{𝑋𝑖≤𝑑𝑖}
|

|

|

(

1{𝐿≤𝑞𝛼+𝑐(𝜅)𝑔𝑖(𝒁)} − 1{𝐿≤𝑞𝛼}

)]

, (15c)

where the last equality follows from (11). Invoking Lemma 1 we obtain
𝜕
𝜕 𝜀𝐹𝜀(𝑞𝛼) = −𝑐(𝜅)K−1(𝑑𝑖) 𝑓𝑖(𝑑𝑖) E

[ (
1{𝐿≤𝑞𝛼+𝑐(𝜅)𝑔𝑖(𝒁)} − 1{𝐿≤𝑞𝛼}

)

|

|

|

|

𝑋𝑖 = 𝑑𝑖

]

.

Combining with Eq. (14) concludes the first part.
Part 2: Next, we consider the case of stressing 𝑍𝑖. For this, it holds that

𝐹𝜀(𝑞𝛼) − 𝐹 (𝑞𝛼) = E
[(

1{

𝐿≤𝑞𝛼−
∑𝑚
𝑘=1 𝛥𝜀𝑔𝑘

} − 1{𝐿≤𝑞𝛼}
)]

.

Applying Lemma 2 and Eq. (14) conclude the proof. □

Proof of Theorem 2 (Marginal Sensitivity ES). We first calculate the sensitivity to 𝑋𝑖, and in a second step to 𝑍𝑖.
Part 1: To calculate the sensitivity to 𝑋𝑖, we observe that

ES𝛼(𝐿𝜀) − ES𝛼(𝐿)
𝜀

= 1
𝜀(1 − 𝛼)E

[(

𝐿𝜀 − 𝑞𝛼(𝜀)
)

+ −
(

𝐿 − 𝑞𝛼
)

+
]

+ 𝑞𝛼 (𝜀)−𝑞𝛼
𝜀

= 1
𝜀(1 − 𝛼)E

[(

𝐿𝜀 − 𝑞𝛼(𝜀)
)

+ −
(

𝐿𝜀 − 𝑞𝛼
)

+
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝐴(𝜀)

+E
[

(

𝐿𝜀 − 𝑞𝛼
)

+ −
(

𝐿 − 𝑞𝛼
)

+

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝐵(𝜀)

+ 𝑞𝛼 (𝜀)−𝑞𝛼
𝜀

⏟⏟⏟
∶=𝐶(𝜀)

. (16)

To calculate the expectation in 𝐴(𝜀), we use integration by parts in the third equation, and interpret ∫ 𝑎𝑏 ℎ(𝑥) 𝑑 𝑥 = − ∫ 𝑏𝑎 ℎ(𝑥) 𝑑 𝑥, if 𝑎 < 𝑏.
𝐴(𝜀) 𝜀(1 − 𝛼) = ∫

+∞

𝑞𝛼 (𝜀)

(

𝑦 − 𝑞𝛼(𝜀)
)

𝑑 𝐹𝜀(𝑦) − ∫

+∞

𝑞𝛼
(𝑦 − 𝑞𝛼) 𝑑 𝐹𝜀(𝑦)

= ∫

𝑞𝛼

𝑞𝛼 (𝜀)
𝑦 𝑑 𝐹𝜀(𝑦) − 𝑞𝛼(𝜀) (1 − 𝛼) + 𝑞𝛼

(

1 − 𝐹𝜀(𝑞𝛼)
)

= 𝑞𝛼𝐹𝜀(𝑞𝛼) − 𝑞𝛼(𝜀) 𝛼 − ∫

𝑞𝛼

𝑞𝛼 (𝜀)
𝐹𝜀(𝑦) 𝑑 𝑦 − 𝑞𝛼(𝜀) (1 − 𝛼) + 𝑞𝛼

(

1 − 𝐹𝜀(𝑞𝛼)
)

=
(

𝑞𝛼 − 𝑞𝛼(𝜀)
)

− ∫

𝑞𝛼

𝑞𝛼 (𝜀)
𝐹𝜀(𝑦) 𝑑 𝑦 .

Next, we collect parts 𝐴(𝜀) and 𝐶(𝜀), and use the Mean Value Theorem, that is there exists a 𝑞∗ ∈ (𝑞𝛼(𝜀), 𝑞𝛼] (or 𝑞∗ ∈ (𝑞𝛼 , 𝑞𝛼(𝜀)], if 𝑞𝛼 < 𝑞𝛼(𝜀)) such
hat ∫ 𝑞𝛼𝑞𝛼 (𝜀) 𝐹𝜀(𝑦) 𝑑 𝑦 = (𝑞𝛼 − 𝑞𝛼(𝜀))𝐹𝜀(𝑞∗). Thus,

𝐴(𝜀) + 𝐶(𝜀) = 1
𝜀(1 − 𝛼)

(

(𝑞𝛼 − 𝑞𝛼(𝜀)) (1 − 𝐹𝜀(𝑞∗))
)

+
𝑞𝛼(𝜀) − 𝑞𝛼

𝜀

=
(𝑞𝛼(𝜀) − 𝑞𝛼)

𝜀
(

1 − 1 − 𝐹𝜀(𝑞∗)
1 − 𝛼

)

.

Talking the limit for 𝜀 ↘ 0, and noting that the derivative of the quantile function with respect to 𝜀 exists by Theorem 1, we obtain
lim𝜀↘0 𝐴(𝜀) + 𝐶(𝜀) = 0. For part 𝐵(𝜀) we obtain using (11)

𝐵(𝜀) = 1
𝜀(1−𝛼)E

[(

𝐿 + 𝑔𝑖(𝒁)
(

1{𝑋𝑖,𝜀≤𝑑𝑖} − 1{𝑋𝑖≤𝑑𝑖}

)

− 𝑞𝛼
)

+
−
(

𝐿 − 𝑞𝛼
)

+

]

= 1
𝜀(1−𝛼)E

[

|

|

|

1{𝑋𝑖,𝜀≤𝑑𝑖} − 1{𝑋𝑖≤𝑑𝑖}
|

|

|

(

(

𝐿 − 𝑐(𝜅)𝑔𝑖(𝒁) − 𝑞𝛼
)

+ −
(

𝐿 − 𝑞𝛼
)

+

)]

.

Applying Lemma 1, we obtain

lim
𝜀↘0

𝐵(𝜀) = −𝑐(𝜅)K−1(𝑑𝑖) 𝑓𝑖(𝑑𝑖)
1 − 𝛼 E

[

(

𝐿 − 𝑐(𝜅)𝑔𝑖(𝒁) − 𝑞𝛼
)

+ −
(

𝐿 − 𝑞𝛼
)

+ ∣ 𝑋𝑖 = 𝑑𝑖
]

.
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Part 2: For the sensitivity to 𝑍𝑖, we write similarly to part 1, 1
𝜀

(

ES𝛼(𝐿𝜀) − ES𝛼(𝐿)
)

= 𝐴(𝜀) +𝐵(𝜀) +𝐶(𝜀), where 𝐴(𝜀) and 𝐶(𝜀) are the same as in
16), while 𝐵(𝜀) is

𝐵(𝜀) = 1
𝜀(1−𝛼) E

[(

𝐿 +
𝑚
∑

𝑘=1
𝛥𝜀𝑔𝑘 − 𝑞𝛼

)

+ −
(

𝐿 − 𝑞𝛼
)

+
]

(17a)

= 1
𝜀(1−𝛼) E

[(

𝐿 − 𝑞𝛼
)

(

1{𝐿≤𝑞𝛼} − 1{𝐿≤𝑞𝛼−
∑𝑚
𝑘=1 𝛥𝜀𝑔𝑘}

)

+
𝑚
∑

𝑘=1
𝛥𝜀𝑔𝑘1{𝐿≥𝑞𝛼−

∑𝑚
𝑘=1 𝛥𝜀𝑔𝑘}

]

, (17b)

where in the last equality we used that 1{𝐿>𝑞𝛼} = 1 − 1{𝐿≤𝑞𝛼}. Note that the argument that 𝐴(𝜀) + 𝐶(𝜀) converges to 0 for 𝜀 ↘ 0 only depends on
the fact that 𝐹𝜀 converges to 𝐹 for 𝜀 ↘ 0. Thus, also here, it holds that lim𝜀↘0 𝐴(𝜀) +𝐶(𝜀) = 0. To calculate the limit of 𝐵(𝜀), we apply Lemma 2 to
he first term, which turns out to be equal to zero. For the second term, note that 1

𝜀𝛥𝜀𝑔𝑘 converges to K(𝑍𝑖)𝜕𝑖 𝑔𝑘(𝒁)1{𝑋𝑘≤𝑑𝑘} P-a.s. for 𝜀 ↘ 0, see
lso Eq. (13). Thus,

lim
𝜀↘0

𝐵(𝜀) = 1
1 − 𝛼

𝑚
∑

𝑘=1
E
[

K(𝑍𝑖)𝜕𝑖 𝑔𝑘(𝒁)1{𝑋𝑘≤𝑑𝑘}1{𝐿≥𝑞𝛼}

]

=
𝑚
∑

𝑘=1
E
[

K(𝑍𝑖)𝜕𝑖 𝑔𝑘(𝒁)1{𝑋𝑘≤𝑑𝑘} ∣ 𝐿 ≥ 𝑞𝛼
]

. □

B.2. Proof of Cascade Sensitivity: Theorems 3, 4, 6, and 7

For the proofs of the cascade sensitivities to VaR and ES, we need the following lemmas concerning sequences of functions that converge weakly
o Dirac delta functions. For this, we first provide a representation of the stressed loss, when stressing 𝑋𝑖. For a stress function 𝜅𝜀 and a Rosenblatt

transform 𝛹 , we define for all 𝑗 ∈  and fixed 𝐯,

𝑎𝜀,𝑗 (𝑥) ∶= |1{𝜂𝜀,𝑗 (𝑥)≤𝑑𝑗} − 1{𝑥≤𝑑𝑗}| ,

where 𝜂𝜀,𝑗 (𝑥) ∶= 𝛹 (𝑗) (𝜅𝜀
(

𝛹 (𝑗),−1(𝑥, 𝐯)
)

, 𝐯
)

and 𝛹 (𝑗),−1 denotes the inverse in the first component of 𝛹 (𝑗). Further, we let 𝐴𝜀,𝑗 ∶= 𝑎𝜀,𝑗 (𝑋𝑗 ), where it is
implicit that 𝐯 is replaced by 𝑽 . Note that 𝑋𝑗 = 𝛹 (𝑗)(𝑋𝑖,𝑽 ) P-a.s., and therefore

𝛹 (𝑗) (𝑋𝑖,𝜀,𝑽
)

= 𝛹 (𝑗) (𝜅𝜀(𝑋𝑖),𝑽
)

= 𝛹 (𝑗) (𝜅𝜀
(

𝛹 (𝑗),−1(𝑋𝑗 ,𝑽 )
)

,𝑽
)

= 𝜂𝜀,𝑗 (𝑋𝑗 ) P-a.s. .

Lemma 3 (Stressed Portfolio Loss). For a stress 𝑋𝑖,𝜀, the stressed portfolio admits representation

𝐿𝜳 (𝑋𝑖,𝜀) = 𝐿 +
𝑚
∑

𝑘=1
𝛥𝜀𝑔𝑘 −

𝑚
∑

𝑗=1
𝑐(𝜅; 𝑗)𝑔𝑗 (𝒁)𝐴𝜀,𝑗 ,

where 𝛥𝜀 𝑔𝑘 =
(

𝑔𝑘
(

𝛹 (𝒁)(𝑋𝑖,𝜀,𝑽 )
)

− 𝑔𝑘(𝒁)
)

1{𝛹 (𝑘)(𝑋𝑖,𝜀 ,𝑽 )≤𝑑𝑘}.

Proof of Lemma 3. We obtain

𝐿𝜳 (𝑋𝑖,𝜀) = 𝐿 +
𝑚
∑

𝑘=1
𝛥𝜀𝑔𝑘 +

𝑚
∑

𝑗=1
𝑔𝑗 (𝒁)

(

1{𝜂𝜀,𝑗 (𝑋𝑗 )≤𝑑𝑗} − 1{𝑋𝑗≤𝑑𝑗}

)

= 𝐿 +
𝑚
∑

𝑘=1
𝛥𝜀𝑔𝑘 −

𝑚
∑

𝑗=1
𝑐(𝜅; 𝑗)𝑔𝑗 (𝒁)𝐴𝜀,𝑗 ,

since by Assumption 3 it holds that 1{𝜂𝜀,𝑗 (𝑥)≤𝑑𝑗} − 1{𝑥≤𝑑𝑗} = −𝑐(𝜅; 𝑗)𝑎𝜀,𝑗 (𝑥) for all 𝑗 ∈ . □

Lemma 4. Let  ⊂ and its complement ∁ = ∕ and define the sequence of functions

𝛿𝜀 (𝒙) = 1
𝜀

∏

𝑘∈
𝑎𝜀,𝑘(𝑥𝑘)

∏

𝑙∈∁

𝑎∁𝜀,𝑙(𝑥𝑙), 𝜀 > 0,

where 𝑎∁𝜀,𝑘(𝑥) = 1 − 𝑎𝜀,𝑘(𝑥).
Then, for all functions ℎ𝜀 ∶R𝑚+𝑛 → R such that lim𝜀↘0 E

[

|ℎ𝜀(𝑿,𝒁)|
]

<∞, the following holds:

(𝑖) if  contains one element,  = {𝑘}, then

lim
𝜀↘0

E
[

𝛿𝜀 (𝑿)ℎ𝜀(𝑿,𝒁)
]

= −𝑐(𝜅; 𝑘) 𝑓𝑘(𝑑𝑘) E
[

K−1 (𝑋𝑖
)

𝛹 (𝑘)
1 (𝑋𝑖,𝑽 )ℎ0(𝑿,𝒁) ||

|

𝑋𝑘 = 𝑑𝑘
]

.

(𝑖𝑖) if  contains two or more elements, then

lim
𝜀↘0

E
[

𝛿𝜀 (𝑿)ℎ𝜀(𝑿,𝒁)
]

= 0 .

Proof of Lemma 4. First, let  = {𝑘} and note that lim𝜀↘0 𝑎∁𝜀,𝑗 (𝑥) = lim𝜀↘0 1 − 𝑎𝜀,𝑗 (𝑥) = 1, for all 𝑗 ∈  and 𝑥 ∈ R. Next, we calculate the inverse
of 𝜂𝜀,𝑘(𝑥) in 𝑥, which is given by

𝜂−1𝜀,𝑘(𝑥) = 𝛹 (𝑘) (𝜅−1𝜀
(

𝛹 (𝑘),−1(𝑥, 𝐯)
)

, 𝐯
)

= 𝛹 (𝑘) (𝜅−1𝜀 (𝑥), 𝐯
)

.

Its derivative is, noting that 𝜂0,𝑘(𝑥) = 𝜂−10,𝑘(𝑥) = 𝑥,

lim 1
(

𝜂−1(𝑥) − 𝑥
)

= 𝛹 (𝑘) (𝑥, 𝐯)K−1(𝑥) .

𝜀↘0 𝜀 𝜀,𝑘 1
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Using similar arguments as in the proof of Lemma 1, replacing 𝜅−1𝜀 with 𝜂−1𝜀,𝑘, we obtain that

lim
𝜀↘0

E[𝛿𝑘𝜀 (𝑿)ℎ𝜀(𝑿,𝒁)] = −𝑐(𝜅; 𝑘)𝑓𝑖(𝑑𝑘) E
[

K−1(𝑋𝑖)𝛹
(𝑘)
1

(

𝑋𝑖,𝑽
)

ℎ0(𝑿,𝒁) ∣ 𝑋𝑖 = 𝑑𝑘
]

.

Next, assume that  = {𝑘, 𝑗} contains two indices and let 𝜉 ∶R2 → R be an infinitely often differentiable function. Then, using (11) and the
following change of variable 𝑦𝑗 = 𝜂𝜀,𝑗 (𝑥𝑗 ) in the first equation

∫

+∞

−∞ ∫

+∞

−∞
𝜉(𝑥𝑗 , 𝑥𝑘)𝛿𝜀 (𝑥𝑗 , 𝑥𝑘) 𝑑 𝑥𝑗𝑑 𝑥𝑘 = −𝑐(𝜅) 1

𝜀 ∫

+∞

−∞ ∫

+∞

−∞
𝜉(𝑥𝑗 , 𝑥𝑘)

(

1{𝜂𝜀,𝑗 (𝑥𝑗 ) ≤ 𝑑𝑗} − 1{𝑥𝑗≤𝑑𝑗}

)

𝑑 𝑥𝑗 𝑎𝜀,𝑘(𝑥𝑘)
∏

𝑙≠𝑗 ,𝑘
𝑎∁𝜀,𝑙(𝑥𝑙) 𝑑 𝑥𝑘

= −𝑐(𝜅)∫
+∞

−∞

(

1
𝜀

(

∫

+∞

−∞

𝜉(𝜂−1𝜀,𝑗 (𝑦𝑗 ), 𝑥𝑘)
𝜂′𝜀,𝑗 (𝜂

−1
𝜀,𝑗 (𝑦𝑗 ))

1{𝑦𝑗≤𝑑} 𝑑 𝑦𝑗 − ∫

𝑑𝑗

−∞
𝜉(𝑥𝑗 , 𝑥𝑘) 𝑑 𝑥𝑗

))

𝑎𝜀,𝑘(𝑥𝑘)
∏

𝑙≠𝑗 ,𝑘
𝑎∁𝜀,𝑙(𝑥𝑙) 𝑑 𝑥𝑘 .

Define the function 𝛯(𝑥, 𝑦), such that 𝑑
𝑑 𝑥𝛯(𝑥, 𝑦) = 𝜉(𝑥, 𝑦), so that

1
𝜀 ∫

+∞

−∞

𝜉(𝜂−1𝜀,𝑗 (𝑦𝑗 ), 𝑥𝑘)
𝜂′𝜀,𝑗 (𝜂

−1
𝜀,𝑗 (𝑦𝑗 ))

1{𝑦𝑗≤𝑑} 𝑑 𝑦𝑗 − ∫

𝑑

−∞
𝜉(𝑥𝑗 , 𝑥𝑘) 𝑑 𝑥𝑗 = 1

𝜀

(

𝛯(𝜂−1𝜀,𝑗 (𝑑 , 𝑥𝑘)) − 𝛯(𝑑 , 𝑥𝑘)
)

. (18)

The limit of (18) for 𝜀 ↘ 0 exists, moreover 𝑎𝜀,𝑘(𝑥) converges to 1, for 𝜀 ↘ 0, while 𝑎∁𝜀,𝑙(𝑥), 𝑙 ≠ {𝑗 , 𝑘}, converge to 0 for 𝜀 ↘ 0. Thus, we obtain that
𝛿𝜀 (⋅) converges weakly to 0, for 𝜀 ↘ 0.

The cases when  contains more than two indices follow analogous. □

Lemma 5. Define the sequence of functions

𝛿𝜀(𝑙) =
1{

𝑙≤𝑞𝛼−
∑𝑚
𝑘=1 𝛥𝜀𝑔𝑘

}−1{𝑙≤𝑞𝛼}

𝜀 ,

where 𝛥𝜀𝑔𝑘 =
(

𝑔𝑘
(

𝛹 (𝒁)(𝜅𝜀(𝑥𝑖), 𝒗)
)

− 𝑔𝑘(𝒛)
)

1{𝛹 (𝑘)(𝜅𝜀(𝑥𝑖),𝒗)≤𝑑𝑘}, 𝒛 ∈ R𝑛, 𝑥𝑖 ∈ R, and 𝑙 ≥ 0. Then, 𝛿𝜀 converges weakly to a scaled Dirac delta function at 𝑞𝛼
for 𝜀 ↘ 0. Moreover, for any function ℎ𝜀 ∶R𝑚+𝑛 → R such that lim𝜀↘0 E

[

|ℎ𝜀(𝑿,𝒁)|
]

< ∞, the following holds:

lim
𝜀↘0

E
[

𝛿𝜀(𝐿)ℎ𝜀(𝑿, 𝐿)
]

= −𝑓 (𝑞𝛼)
𝑚
∑

𝑘=1

𝑛
∑

𝑙=1
E
[

K(𝑋𝑖)𝜕𝑙 𝑔𝑘(𝒁)𝛹 (𝑚+𝑙)
1 (𝑋𝑖,𝑽 )1{𝑋𝑘≤𝑑𝑘} ℎ0(𝑿, 𝐿)

|

|

|

𝐿 = 𝑞𝛼
]

.

Proof of Lemma 5. This proof follows along the lines of the proof of Lemma 2. Note that 𝑧𝑙 = 𝛹 (𝑚+𝑙)(𝑥𝑖, 𝒗), and that the Taylor approximation of
𝑔𝑘

(

𝛹 (𝒛)(𝜅𝜀(𝑥𝑖), 𝒗)
)

around 𝜀 = 0, becomes, using first an approximation of 𝑔𝑘 around 𝒛, then of 𝜳 (𝑚+𝑙) around 𝑥𝑖, for all 𝑙 = 1,… , 𝑛, and finally for
𝜀 around 𝜀 = 0

𝑔𝑘
(

𝛹 (𝒁)(𝜅𝜀(𝑥𝑖), 𝒗)
)

− 𝑔𝑘(𝒛) =
𝑛
∑

𝑙=1
𝜕𝑙 𝑔𝑘(𝒛)

(

𝛹 (𝑚+𝑙)(𝜅𝜀(𝑥𝑖), 𝒗) − 𝑧𝑙
)

+ 𝑜
(

𝛹 (𝑚+𝑙)(𝜅𝜀(𝑥𝑖), 𝒗) − 𝑧𝑙
)

=
𝑛
∑

𝑙=1
𝜕𝑙 𝑔𝑘(𝒛)𝛹

(𝑚+𝑙)
1 (𝑥𝑖, 𝒗) (𝜅𝜀(𝑥𝑖) − 𝑥𝑖) + 𝑜

(

𝜅𝜀(𝑥𝑖)
)

= 𝜀
𝑛
∑

𝑙=1
𝜕𝑙 𝑔𝑘(𝒛)𝛹

(𝑚+𝑙)
1 (𝑥𝑖, 𝒗)K(𝑥𝑖) + 𝑜 (𝜀) .

The reminder of the proof follows analogous steps to those in the proof of Lemma 2. □

Proof of Theorem 6 (Cascade Sensitivity VaR to 𝑋𝑖). Analogous to the proof of Theorem 1, we use Eq. (14) and, thus, we only need to calculate
𝜕
𝜕 𝜀𝐹𝜀(𝑞𝛼)|𝜀=0. Using Lemma 3, we obtain

𝐹𝜀(𝑞𝛼) − 𝐹 (𝑞𝛼) = E
[

1{

𝐿≤𝑞𝛼−
∑𝑚
𝑘=1 𝛥𝜀𝑔𝑘+

∑𝑚
𝑗=1 𝑐(𝜅; 𝑗)𝑔𝑗 (𝒁)𝐴𝜀,𝑗

} − 1{𝐿≤𝑞𝛼}
]

,

where we recall that 𝐴𝜀,𝑗 = |1{𝜂𝜀,𝑗 (𝑋𝑗 )≤𝑑𝑗} − 1{𝑋𝑗≤𝑑𝑗}| and denote its complement by 𝐴∁
𝜀,𝑗 , i.e., 𝐴∁

𝜀,𝑗 = 1 − 𝐴𝜀,𝑗 . Next, as 𝐴𝜀,𝑗 are indicators, we can
ewrite the expectation and split it into multiple sums, as follow: The first expectation corresponding to all 𝐴∁

𝜀,𝑗 (19a), and then we sum over all
possible combinations of 𝐴𝜀,𝑗 and 𝐴∁

𝜀,𝑘.

𝐹𝜀(𝑞𝛼) − 𝐹 (𝑞𝛼) = E
[

𝑚
∏

𝑖=1
𝐴∁
𝜀,𝑖

(

1{

𝐿≤𝑞𝛼−
∑𝑚
𝑘=1 𝛥𝜀𝑔𝑘

} − 1{𝐿≤𝑞𝛼}
)]

(19a)

+
𝑚
∑

𝑘=1

𝑚
∑

𝑖1 ,…,𝑖𝑘=1
𝑖1<⋯<𝑖𝑘

E

[ 𝑘
∏

𝑗=1
𝐴𝜀,𝑖𝑗

𝑚
∏

𝑙=1
𝑙∉{𝑖1 ,…,𝑖𝑘}

𝐴∁
𝜀,𝑙

(

1{

𝐿≤𝑞𝛼−
∑𝑚
𝑟=1 𝛥𝜀𝑔𝑟+

∑𝑘
𝑗=1 𝑐(𝜅; 𝑗)𝑔𝑖𝑗 (𝒁)

} − 1{𝐿≤𝑞𝛼}

)

]

.

For the first expectation above (Eq. (19a)), we apply Lemma 5 and that lim𝜀↘0 𝐴∁
𝜀,𝑘 = 1 for all 𝑘 = 1,… , 𝑚. For the other terms, we apply Lemma 4.

Specifically, we observe that only the summands that contains exactly one 𝐴𝜀,𝑘 do not converge to 0. Thus, we obtain the limit, noting that for all
𝑘 = 1,… , 𝑚, 𝛥𝜀 𝑔𝑘 converges to 0, for 𝜀 ↘ 0,

lim
𝜀↘0

𝐹𝜀(𝑞𝛼) − 𝐹 (𝑞𝛼)
𝜀

= −
𝑚
∑

𝑗=1

𝑛
∑

𝑙=1
𝑓 (𝑞𝛼)E

[

K(𝑋𝑖)𝜕𝑙 𝑔𝑗 (𝒁)𝛹 (𝑚+𝑙)
1 (𝑋𝑖,𝑽 )1{𝑋𝑗≤𝑑𝑗}

|

|

|

𝐿 = 𝑞𝛼
]

−
𝑚
∑

𝑗=1
𝑐(𝜅; 𝑗)𝑓𝑗 (𝑑𝑗 )E

[

K−1(𝑋𝑖)𝛹
(𝑗)
1 (𝑋𝑖,𝑽 )

(

1{

𝐿≤𝑞𝛼+𝑐(𝜅; 𝑗)𝑔𝑗 (𝒁)
} − 1{𝐿≤𝑞𝛼}

)

∣ 𝑋𝑗 = 𝑑𝑗
]

.

Combining with Eq. (14) concludes the proof. □
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Proof of Theorem 3 (Cascade Sensitivity ES to 𝑋𝑖). We write analogous to the proof of Theorem 2
lim
𝜀↘0

1
𝜀

(

ES𝛼(𝐿𝜀) − ES𝛼(𝐿)
)

= lim
𝜀↘0

𝐴(𝜀) + 𝐵(𝜀) + 𝐶(𝜀) = lim
𝜀↘0

𝐵(𝜀) .

For part 𝐵(𝜀), we proceed similar to the proof of Theorem 6 and write, using the notation from the proof of Theorem 6 and Lemma 3

𝐵(𝜀)(1 − 𝛼)𝜀 = E
[(

𝐿 +
𝑚
∑

𝑟=1
𝛥𝜀𝑔𝑟 −

𝑚
∑

𝑘=1
𝑐(𝜅; 𝑘)𝑔𝑘(𝒁)𝐴𝜀,𝑘 − 𝑞𝛼

)

+
−
(

𝐿 − 𝑞𝛼
)

+

]

= E
[

𝑚
∏

𝑖=1
𝐴∁
𝜀,𝑖

(

(

𝐿 +
𝑚
∑

𝑟=1
𝛥𝜀𝑔𝑟 − 𝑞𝛼

)

+ −
(

𝐿 − 𝑞𝛼
)

+

)]

(20a)

+
𝑚
∑

𝑘=1

𝑚
∑

𝑖1 ,…,𝑖𝑘=1
𝑖1<⋯<𝑖𝑘

E
[

𝑘
∏

𝑗=1
𝐴𝜀,𝑖𝑗

𝑚
∏

𝑙=1
𝑙∉{𝑖1 ,…,𝑖𝑘}

𝐴∁
𝜀,𝑙

(

(

𝐿 +
𝑚
∑

𝑟=1
𝛥𝜀𝑔𝑟 −

𝑘
∑

𝑗=1
𝑐(𝜅; 𝑗)𝑔𝑖𝑗 (𝒁)𝐴𝜀,𝑖𝑗 − 𝑞𝛼

)

+ −
(

𝐿 − 𝑞𝛼
)

+

) ]
. (20b)

To calculate the limit of the expectation in Eq. (20a), we rewrite similar to (17)
(

𝐿 +
𝑚
∑

𝑟=1
𝛥𝜀𝑔𝑟 − 𝑞𝛼

)

+ −
(

𝐿 − 𝑞𝛼
)

+ =
(

𝐿 − 𝑞𝛼
)

+
(

1{𝐿≤𝑞𝛼} − 1{𝐿≤𝑞𝛼−
∑𝑚
𝑘=1 𝛥𝜀𝑔𝑘}

)

(21a)

+
𝑚
∑

𝑟=1
𝛥𝜀𝑔𝑟1{𝐿≥𝑞𝛼−

∑𝑚
𝑘=1 𝛥𝜀𝑔𝑘}

. (21b)

For (21a) we apply Lemma 5, noting that 𝐴∁
𝜀,𝑘 converges to 1, for all 𝑘 = 1,… , 𝑚, as 𝜀 ↘ 0. For (21b), we note that for all 𝑘 = 1,… , 𝑚, it holds

-a.s. (see the Proof of Lemma 5) that

lim
𝜀↘0

𝛥𝜀𝑔𝑘
𝜀 =

𝑛
∑

𝑙=1
𝜕𝑙 𝑔𝑘(𝒁)𝛹 (𝑚+𝑙)

1 (𝑋𝑖,𝑽 )K(𝑋𝑖)1{𝑋𝑘≤𝑑𝑘} .

For all the other summands in Eq. (20b) we apply Lemma 4. Collecting, we obtain that

(1 − 𝛼) lim
𝜀↘0

𝐵(𝜀) =
𝑚
∑

𝑘=1

𝑛
∑

𝑙=1
𝑓 (𝑞𝛼)E

[

K(𝑋𝑖)𝜕𝑙 𝑔𝑘(𝒁)𝛹 (𝑚+𝑙)
1 (𝑋𝑖,𝑽 )1{𝑋𝑘≤𝑑𝑘}

(

𝐿 − 𝑞𝛼
)

+
|

|

|

𝐿 = 𝑞𝛼
]

(22a)

+
𝑚
∑

𝑗=1

𝑛
∑

𝑙=1
E
[

𝜕𝑙 𝑔𝑗 (𝒁)𝛹 (𝑚+𝑙)
1 (𝑋𝑖,𝑽 )K(𝑋𝑖)1{𝑋𝑗≤𝑑𝑗}1{𝐿≥𝑞𝛼}

]

−
𝑚
∑

𝑗=1
𝑐(𝜅; 𝑗)𝑓𝑗 (𝑑𝑗 )E

[

K−1(𝑋𝑖)𝛹
(𝑗)
1 (𝑋𝑖,𝑽 )

(

(

𝐿 − 𝑐(𝜅; 𝑗)𝑔𝑗 (𝒁) − 𝑞𝛼
)

+ −
(

𝐿 − 𝑞𝛼
)

+

)

∣ 𝑋𝑗 = 𝑑𝑗
]

.

Due to the conditioning event, (22a) is equal to 0. □

Proof of Theorems 7 and 4 (Cascade Sensitivities to 𝑍𝑖). The proofs follow by as the stressed portfolio for a stress on 𝑍𝑖, admits an analogous
representation as when stressing 𝑋𝑖, with the difference that the inverse Rosenblatt transform starts at 𝑍𝑖 instead of 𝑋𝑖, see Eqs. (4) and (5). □

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.ejor.2024.12.008.
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