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Abstract

Recent developments in sequential experimental design look
to construct a policy that can efficiently navigate the design
space, in a way that maximises the expected information gain.
Whilst there is work on achieving tractable policies for ex-
perimental design problems, there is significantly less work
on obtaining policies that are able to generalise well – i.e.
able to give good performance despite a change in the un-
derlying statistical properties of the experiments. Conducting
experiments sequentially has recently brought about the use
of reinforcement learning, where an agent is trained to navi-
gate the design space to select the most informative designs
for experimentation. However, there is still a lack of under-
standing about the benefits and drawbacks of using certain
reinforcement learning algorithms to train these agents. In
our work, we investigate several reinforcement learning algo-
rithms and their efficacy in producing agents that take maxi-
mally informative design decisions in sequential experimen-
tal design scenarios. We find that agent performance is im-
pacted depending on the algorithm used for training, and that
particular algorithms, using dropout or ensemble approaches,
empirically showcase attractive generalisation properties.

1 Introduction
In experimental design, we often need to conduct experi-
ments in the most efficient way possible, minimising both
the time and costs involved (Atkinson and Donev 1992;
Ryan et al. 2016; Rainforth et al. 2024; Huan, Jagalur, and
Marzouk 2024). As it is usually impractical to conduct hun-
dreds of experiments, it is essential to extract as much infor-
mation as possible from a limited number of experiments.
The design of each experiment is crucial here; if done op-
timally, this provides scientists with a sufficient amount of
high quality data, versus large amounts of low quality data
(Foster 2022). This form of experimental design is coined
optimal experimental design, in that one performs experi-
ments optimally in an effort to maximise the information
gained from the experiments, while minimising the effort/-
cost in performing the experiments.

Given that one ought to conduct a sequence of experi-
ments optimally, Bayesian methods (Gelman et al. 2013)
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provide a natural framework for incorporating prior knowl-
edge – i.e. both domain expertise and knowledge gained
from past experimentation – into future experimental de-
sign choices. Operationally, the prior knowledge justifies
prior beliefs about model parameters of interest θ – these
parameters, together with a design choice ξ of the next ex-
periment to carry out, define a statistical model that charac-
terises the uncertainty in the outcome y from using design ξ.
So that, based on outcomes gathered from past experimen-
tation, these prior beliefs are updated into posterior beliefs
– as a consequence, some designs become good choices for
the next experiment, because they lead to more informative
experimental outcomes, while other designs become less de-
sirable choices (Rainforth et al. 2024). Prior and posterior
beliefs are formally captured as prior and posterior proba-
bility distributions of θ. When an emphasis is placed on us-
ing Bayesian methods to make optimal design choices, this
category of experimental design is known as Bayesian (opti-
mal) experimental design (BOED) (Lindley 1956; Rainforth
et al. 2024). It is typical in BOED to select designs ξ ∈ Ξ
that maximise the expected information gain (EIG) (Lindley
1956), where Ξ is the design space we can select designs
from. The EIG from experiment ξ is the expected reduction
in Shannon entropy (Shannon 1948) when prior beliefs are
updated to posterior beliefs, otherwise the mutual informa-
tion between y and θ given the design ξ,

EIG(ξ) = Ep(θ)p(y|θ,ξ)[log p(θ | y, ξ)− log p(θ)], (1)

where p(θ) is a prior distribution, p(y | θ, ξ) is the likeli-
hood function of the underlying statistical model, and p(θ |
y, ξ) is the posterior distribution. Here, θ is assumed statis-
tically independent of the design choice ξ.

The goal in BOED is to determine an optimal design-choice
strategy – adapting how the next experiment is chosen, given
the choices and outcomes of previous experiments – that en-
sures the sequence of designs ξ1, . . . , ξT chosen by the end
of the experimentation (i.e. by the T -th experiment) max-
imises the EIG from these experiments. That is, given the
sequential nature of adaptive experimental design problems,
one can seek an optimal policy to select the best designs dur-
ing experimentation (Huan and Marzouk 2016; Foster et al.
2021; Blau et al. 2022). This policy is a mapping, from past
design choices and the data collected using these designs, to
the next design selected for experimentation.



In recent years, reinforcement learning (RL) (François-
Lavet et al. 2018; Sutton and Barto 2018) has emerged as
a source of algorithms for obtaining approximately optimal
policies (Blau et al. 2022; Lim et al. 2022; Shen and Huan
2023). One approach is to train an RL agent1 to learn the
policy via offline training (using simulations of the exper-
imental design problem), then to deploy the agent online
for the real experiments to be performed. Blau et al. (2022)
demonstrates RL’s competitive performance, compared with
alternative approaches to BOED that amortise the cost of ex-
perimentation (Foster et al. 2021; Ivanova et al. 2021).

RL algorithms possess desirable properties, including the
flexibility to: 1) tradeoff exploration of the design space
and exploitation of learnt design choice patterns; 2) control
the experimentation horizon over which optimal behaviour
is sought; and 3) handle non-differentiable likelihood func-
tions and discrete design spaces (Sutton and Barto 2018;
Blau et al. 2022). However, RL algorithms can suffer from
an inability to generalise well outside of the training distri-
bution (Kirk et al. 2023).

Whilst there is work on building tractable frameworks
to solve experimental design problems (Rainforth et al.
2024), there is significantly less work aimed at dealing
with model misspecification (Walker 2013) and distribu-
tional shift (Wiles et al. 2022). In practice, the statistical
model – that generates the experimental outcomes our agent
is trained with – may differ greatly from that encountered at
deployment time2. The generalisability of policies, and the
robustness of RL algorithms for learning policies that gener-
alise well, is important for the viability of BOED. However,
to the best of our knowledge, there has not been significant
work studying the impact statistical model changes have on
the performance of RL agents used in BOED applications.
In this work, we investigate the generalisation capabilities of
several agents trained using different RL algorithms that ex-
tend the soft actor-critic (SAC) algorithm (Haarnoja et al.
2019). Here, for each algorithm considered, we pose the
problem of how well the learnt policies generalise in 2 ex-
ample BOED applications. We utilise the RL formulation by
Blau et al. (2022), and note the following contributions:

• A statistically sound assessment of the impact of using
certain RL algorithms to solve BOED problems;

• An analysis of the generalisation capabilities of RL
agents on BOED problems with statistical models that
are related to, but differ from, the models the agents were
trained on;

• The average time required to train agents under certain

1An agent learns an optimal policy over time by observing re-
wards received when actions are taken in a changing environment,
re-evaluating how good (in terms of expected future rewards) it is to
take each action in each state of the environment, and choosing to
take more of those actions that (based on the current evaluation of
goodness) maximise the expected total reward received (e.g. EIG).

2This is the setting after training, where the trained agent is
required to select maximally informative designs in actual experi-
ments. This is also referred to as evaluation time or test time.

RL algorithms;

• An improved, but costly, combination of the SUNRISE
(Lee et al. 2021) and DroQ (Hiraoka et al. 2022) algo-
rithms, that performs well across two experimental de-
sign problems.

The rest of this paper is structured as follows. Section 2 cov-
ers previous work in the area of policy-based BOED, how
our work relates to model misspecification and distribution
shift, and recent policy-based approaches for improving gen-
eralisability. Section 3 explains the setup of BOED as a se-
quential decision-making problem, which can be solved us-
ing RL. Section 4 describes the RL algorithms we investi-
gate in our work, and Section 5 provides the results of using
these algorithms on two experimental design problems. We
conclude with a discussion in Section 6.

2 Related Work
Early work in policy-based BOED uses approximate dy-
namic programming for selecting designs, requiring explicit
posteriors to be calculated (Huan and Marzouk 2016). Sub-
sequent work looks at amortising the costs at deployment
time by learning a policy network that rapidly selects de-
signs, both for explicit (Foster et al. 2021; Blau et al. 2022)
and implicit (Ivanova et al. 2021; Lim et al. 2022) likeli-
hood functions. Due to the expensive computational costs in
calculating posteriors, and in turn EIG, a contrastive lower-
bound on the EIG is optimised to avoid explicit posterior
computations (Foster et al. 2021). In the RL setting, this
lower-bound is the reward function, and is computed incre-
mentally for each experiment performed to avoid the sparse
reward problem (Sutton and Barto 2018; Blau et al. 2022).

Recent work looks at the use of variational posterior approx-
imations (Shen, Dong, and Huan 2023; Blau et al. 2024) to
form a lower-bound on the EIG instead. Alternative met-
rics to EIG have also been investigated in the amortised
setting (Huang et al. 2024). The generalisability problem
our work seeks to address is connected to model misspec-
ification (Sloman et al. 2022; Overstall and McGree 2022;
Catanach and Das 2023) and distributional shift (Kirschner
et al. 2020; Zhou and Levine 2021). The statistical model
we assume is the same one used to generate data during
agent training. Therefore, if our assumed model does not
accurately represent the true data-generative process, it is
misspecified. As a result of misspecification, a distributional
shift occurs when the data distribution during training differs
from the one observed at test time.

Shen, Dong, and Huan (2023) present a variational method-
ology for solving a range of problems within BOED, allow-
ing for the usual targeting of EIG, but also other criteria
such as those in handling model discrimination (Kleinegesse
and Gutmann 2021) and nuisance parameters (Sloman et al.
2024) – helping us tackle problems related to generalisabil-
ity. These criteria can bring us closer to generalisable agents,
but they require more complicated methods to reduce the
problem to one that can be solved with RL sequentially.

Ivanova et al. (2024) propose a method for policy refine-



ment at deployment time after offline training is performed,
extending the approaches by Foster et al. (2021) and Ivanova
et al. (2021) to allow for better generalisability. This ap-
proach is applicable when extra computational resources are
accessible at deployment time, but this is not always feasi-
ble. In contrast, we have focused on the question of selecting
the best amongst alternative algorithms for offline training to
improve generalisability.

3 Problem Formulation
We take the setting of Blau et al. (2022) and use an exten-
sion to Markov decision processes (MDPs) (Feinberg and
Shwartz 2002), known as hidden-parameter MDPs (HiP-
MDPs) (Doshi-Velez and Konidaris 2013), to formulate the
sequential BOED problem. We therefore also follow Blau
et al. (2022) by optimising a contrastive lower-bound on the
EIG, known as the sequential prior contrastive estimation
(sPCE) (Foster et al. 2020, 2021). An upper-bound on the
EIG also exists, known as the sequential nested Monte Carlo
(sNMC) (Rainforth et al. 2018; Foster et al. 2021).

3.1 Sequential Experimental Design
Let hT = {(ξ1, y1), . . . , (ξT , yT )} denote the experimental
history up to time T , which captures the design ξt selected
and experiment outcome yt of using ξt for each experiment
t. We seek to optimise a policy π : H → Ξ that maps the his-
tory at time t to the next design to select, with ξt = π(ht−1).
Each selected design can be thought of as an action in the RL
setting. Our setup is in discrete-time.

According to Foster et al. (2021), the EIG under a policy π,
and over a sequence of T experiments, is given by

EIGT (π) = Ep(θ)p(hT |θ,π)

[
log

(
p(hT | θ, π)
p(hT | π)

)]
, (2)

where p(hT | θ, π) =
∏T
t=1 p(yt | θ, ξt) is the likelihood

of the history and p(hT | π) = Ep(θ)[p(hT | θ, π)] is the
marginal likelihood of the history.

Notice how EIGT (π) does not require any (expensive) pos-
terior computations (Foster et al. 2021), in contrast to the ap-
proach by Blau et al. (2024), who reformulate (2) to instead
require the posterior p(θ | hT , π) to be computed. One issue
still remains: the denominator in (2), i.e. p(hT | π), is typi-
cally intractable, and it changes with each sample of θ and
hT from the outermost expectation in (2).

Foster et al. (2021) propose the sPCE and sNMC bounds to
bound EIG, using approximations of p(hT | π) as follows.
Given a sample, say θ0 and experimental history hT from
p(θ, hT | π), we draw L independent contrastive samples
θ1:L from the prior p(θ). We estimate p(hT | π) by first
computing the likelihood of the history under each of our
contrastive samples θ1:L, then computing 1

L+1

∑L
ℓ=0 p(hT |

θℓ, π) for sPCE, or 1
L

∑L
ℓ=1 p(hT | θℓ, π) for sNMC. So, to

obtain the sPCE and sNMC bounds respectively, we either
include θ0 in our estimate, or we exclude it:

sPCE(π, L, T ) = Ep(θ0:L)p(hT |θ0,π) [g(θ0:L, hT )] , (3)

sNMC(π, L, T ) = Ep(θ0:L)p(hT |θ0,π) [f(θ0:L, hT )] , (4)

where g(θ0:L, hT ) and f(θ0:L, hT ) are defined by

g(θ0:L, hT ) = log

[
p(hT | θ0, π)

1
L+1

∑L
ℓ=0 p(hT | θℓ, π)

]
, (5)

f(θ0:L, hT ) = log

[
p(hT | θ0, π)

1
L

∑L
ℓ=1 p(hT | θℓ, π)

]
. (6)

g is bounded by log(L + 1), whilst f might be unbounded
(Foster et al. 2021). Since sPCE is bounded and more nu-
merically stable than sNMC, Foster et al. (2021) and Blau
et al. (2022) train their policies using sPCE. As L increases,
the bounds converge to EIGT , under mild conditions and at
higher computational costs (Foster et al. 2021).

3.2 Hidden-Parameter Markov Decision Process
The HiP-MDP (Doshi-Velez and Konidaris 2013) extends
the MDP (Feinberg and Shwartz 2002) by enabling rewards
and transition functions to be parameterised by the model
parameter θ of the underlying statistical model for the ex-
periments, allowing the sequential BOED setting to be cast
as a “parameterised” MDP problem. For this, because the
true parameter value is unknown, one defines a prior distri-
bution over the model parameter space Θ. At the beginning
of each training episode when solving the MDP, parameter
values θ0:L are sampled from Θ according to this prior –
these are the only parameter values used until the final ex-
periment at time T . New parameter samples are drawn for
each episode (Blau et al. 2022).

To formalise the HiP-MDP setup, along the lines of Blau
et al. (2022), the following function is required for the state
space, transition dynamics, and reward function. Let the vec-
tor of history likelihoods Ct be defined by

Ct =

[
t∏

k=1

p(yk | θℓ, ξk)

]L
ℓ=0

.

A sequential BOED problem is formalised within the HiP-
MDP framework as a tuple, ⟨S,A,Θ, T ,R, s0, γ, PΘ⟩, with
each element of the tuple being derived from the experimen-
tal design problem:

• S is the state space, which is the set of all tuples st ∈
S , where st = (ht, Ct, yt) ∀t ∈ [0, T ] and we define
s0 = (∅,1, ∅) since there is no history or experimental
outcome initially;

• A is the action space, which is the set of all possible
designs Ξ, and at ∈ A, where at−1 = ξt = π(ht−1)
∀t ∈ [1, T ];

• Θ is the model parameter space, containing all of the pos-
sible parameter values for the dynamics of the model;

• The prior distribution, PΘ = p(θ), of the model parame-
ters. For our sequential BOED problems, θ0:L

i.i.d.∼ p(θ);

• T is the transition dynamics for the model – a mapping
from the current state to a new state when an action is



taken in the current state. For ξt = π(ht−1) and state
st−1, the new state st is determined by

yt ∼ p(yt | θ0, ξt),

Ct = Ct−1 ⊙ [p(yt | θℓ, ξt)]Lℓ=0,

ht = ht−1 ∪ {(ξt, yt)},

with Hadamard product ⊙. The Markov property holds:
transition functions determine state st from st−1;

• R is the reward function, which provides a reward for
transitioning to another state by taking a certain action:

rt = R(st−1, at−1, st;θ0:L)

= log p(yt | θ0, ξt)− log(Ct · 1) + log(Ct−1 · 1) ,

where Ct · 1 is a dot product with a vector of “1”s;

• γ ∈ [0, 1] is the discount factor, determining the impor-
tance of future rewards over immediate ones.

Using the above, the state-action value function Qπ(st, at),
resulting from taking actions according to policy π, is

Qπ(st, at) = ET ,π,PΘ
[Gt | st, at] ,

where Gt =
∑T−1
u=t γ

u−tru+1 is the total discounted reward
from timestep t ∈ [0, T −1]. The optimal policy, π∗, and the
state-action value function obtained by following this policy,
Q∗, are the unique pair such that the policy chooses actions
which maximise the value function in each state; that is,

π∗(ht) = argmax
a∈A

Q∗(st, a).

In sequential BOED terms, we have

max
π

sPCE(π, L, T ) = sPCE(π∗, L, T ) = Q∗(s0, π
∗(∅)).

The optimal policy maximises the sPCE, since the definition
of the reward function and Gt (assuming γ = 1) imply the
expected total discounted rewards (from time t = 0) equals
the sPCE (Blau et al. 2022). This definition of R mitigates
the sparse reward problem in RL (Sutton and Barto 2018).

To find the optimal policy we utilise deep RL algorithms3

(François-Lavet et al. 2018). The policy is implemented as
a deep neural network that relies on a summary of ht in the
form of an encoder network. Although the definition of the
HiP-MDP satisfies the Markov property, it does so by ex-
plicitly including ht as part of st; the use of an encoder net-
work weakens this by not explicitly requiring ht to be part
of the state. Instead, the encoder network is recursively de-
fined, so that a summary representation of ht at time t only
depends on the summary representation at time t − 1 and
(ξt, yt) (Blau et al. 2022). A detailed description of the pol-
icy network, as well as more details on the HiP-MDP imple-
mentation, are given in Appendix A.

3In the experiments we conduct using these algorithms, we as-
sume γ values close to 1 (rather than γ = 1) for computational
stability; this follows Blau et al. (2022).

4 Algorithms
The (model-free) RL algorithms we employ are REDQ
(Chen et al. 2021), DroQ (Hiraoka et al. 2022), SBR (D’Oro
et al. 2022), and SUNRISE (Lee et al. 2021). These all ex-
tend the SAC algorithm (Haarnoja et al. 2019) by proposing
improvements to the training procedure. Appendix B con-
tains the full explanation and pseudocode of each algorithm.

REDQ: Randomised ensemble double Q-learning (REDQ)
(Chen et al. 2021) is a model-free algorithm that looks to
employ a higher update-to-data (UTD) ratio and the use
of a large ensemble of Q-functions. The idea here is that
model-based methods such as model-based policy optimisa-
tion (Janner et al. 2019) use a higher UTD ratio, which is the
number of updates taken by the agent compared to the num-
ber of actual interactions with the environment. This higher
UTD ratio allows for greater sample efficiency. REDQ is the
algorithm used in the approach by Blau et al. (2022).

DroQ: Dropout Q-functions for doubly efficient RL (DroQ)
(Hiraoka et al. 2022) is an algorithm that seeks to improve
on the computational costs of REDQ by introducing dropout
regularisation (Hinton et al. 2012) and layer normalisation
(Ba, Kiros, and Hinton 2016) in the Q-functions. REDQ
uses a large ensemble of Q-functions to reduce estimation
bias, which is crucial for high sample efficiency. But despite
REDQ’s advantages, it is computationally intensive due to
needing large numbers of Q-functions, and it is expensive
to update these Q-functions. Hiraoka et al. (2022) through
DroQ find empirically competitive performance with a much
smaller ensemble compared to REDQ.

SBR: Sample-efficient RL by breaking the replay ratio bar-
rier, or scaled-by-resetting (SBR) (D’Oro et al. 2022), ex-
plores how increasing the replay ratio – the number of times
an agent’s parameters are updated per environment interac-
tion – can drastically improve the sample efficiency of RL al-
gorithms. Essentially, the parameters of the neural networks
for the agent are periodically reset fully during training. This
resetting mechanism allows the agents to better handle high
replay ratios, enabling them to undergo more updates with-
out degrading their learning and generalisation capabilities.

SUNRISE: The simple unified framework for RL using
ensembles (SUNRISE) algorithm (Lee et al. 2021) ad-
dresses common challenges like instability in Q-learning
and improving exploration. It achieves this by integrat-
ing ensemble-based weighted Bellman backups, which re-
weight target Q-values based on uncertainty estimates from
a Q-ensemble, and an upper-confidence bound (UCB) based
exploration strategy that selects actions with the highest
UCB to encourage efficient exploration. SUNRISE uses an
ensemble of agents and their respective Q-functions, instead
of solely an ensemble of Q-functions like REDQ and DroQ.

SUNRISE-DroQ: After reviewing how the trained agents
from these algorithms performed when deployed, we de-
cided to combine SUNRISE with the use of dropout Q-
functions in DroQ. Potentially, this takes advantage of the
ensemble-based SUNRISE with UCB exploration (Lee et al.



sPCE Time
K = 1 K = 2 K = 3 K = 4 K = 5 K = 2

REDQ 6.279± 0.013 11.689± 0.012 11.881± 0.013 11.507± 0.015 11.095± 0.017 13.23h
SBR 6.165± 0.012 11.362± 0.013 11.788± 0.014 11.518± 0.016 11.257± 0.017 13.52h
DroQ 6.368± 0.013 11.680± 0.013 11.902± 0.013 11.480± 0.015 11.090± 0.017 19.05h

SUNRISE 6.340± 0.013 11.837 ± 0.012 12.133± 0.013 11.846 ± 0.014 11.445± 0.016 21.44h
SUNRISE-DroQ 6.433 ± 0.012 11.770± 0.012 12.143 ± 0.013 11.831± 0.014 11.453 ± 0.016 29.77h

Random 5.057± 0.010 7.443± 0.016 8.820± 0.018 9.730± 0.019 10.346± 0.018 -

Table 1: sPCE at T = 30 computed using L = 1e6, and average agent training time for the location finding experiment. Means
and standard errors are from 20000 rollouts, spread evenly across 10 agents trained under unique random seeds. The average
training time is across these agents. T and L differ for Table 2, and the statistics are calculated in the same way.

2021), and the regularisation benefits of dropout (Hiraoka
et al. 2022).

5 Experiments
Blau et al. (2022) show empirically that their approach per-
forms better than the non-RL amortised approach by Fos-
ter et al. (2021), and offers state-of-the-art performance on
other baselines (Blau et al. 2024). For this reason, we only
compare the performance of RL algorithms and not the other
approaches. What follows is a summary of how these RL al-
gorithms performed in two experimental design problems.
Our training regimes are explained in Appendix C.

We note that our experimental design problems do not have
terminal states, and so fixing a certain budget to conduct ex-
periments is standard practice. A limited budget is often re-
quired when performing experiments in real-time, and this
also forces the agent to make informed design choices.

5.1 Location Finding
The location finding experiment was explored by Foster
et al. (2021) and Blau et al. (2022). It is known there are
2 objects placed in a 2-dimensional space, and the aim is
to determine the unknown locations of these objects; denote
the locations θ = {βi}Ki=1, for K = 2. Each object emits a
signal which obeys an inverse-square law. We need to select
designs ξ, which are coordinates in the space, in an effort to
find the locations of the objects based on the observed sig-
nals. The signal strength of a single object increases as we
select ξ closer to this object, and it decays as we choose ξ
farther away. As we have multiple objects, we instead ob-
serve the total signal intensity, which is a superposition of
the signals emitted by the individual objects. Hyperparam-
eter details can be found in Appendix C, and experiment
details can be found in Appendix D.1.

Table 1 displays the sPCE values across a number of exper-
imental setups with varying numbers of K objects to iden-
tify the locations of. See Appendix C for sNMC results. The
agents are trained to maximise sPCE in T = 30 experiments
for K = 2 objects, and do not encounter the other values
for K in Table 1 during training. This presents a set of chal-
lenging scenarios, as the agents attempt to maximally gather
information at deployment time based on their knowledge of
navigating an environment with only 2 objects. To perform
well when deployed, they need to have learnt a generalisable

policy to sensibly select designs for experimentation. Such
problems can arise in practical scenarios where a zero-shot
RL agent (Kirk et al. 2023) is required to navigate a space
with fewer or many more objects – perhaps due to an incor-
rect assumption on the number of objects during training.

Excluding SUNRISE-DroQ, SUNRISE offers the best per-
formance except when K = 1, where it falls behind DroQ.
SBR outperforms REDQ for K ∈ {4, 5}, which may point
towards better generalisation in experiments with larger
numbers of objects. SUNRISE and DroQ offer the best per-
formances, but they are relatively expensive algorithms. One
may argue that the training time is worth the wait due to the
performance increases, particularly in the case of SUNRISE.

By combining SUNRISE and DroQ, we find further per-
formance increases for K = {1, 3, 5}. The combination
slightly falls behind SUNRISE for the other values of K.
One can claim that our combined algorithm offers the great-
est performance, at the sacrifice of lower sPCE values for
K = 2 and K = 4. The training time is unfortunately the
highest as a result of combining two already expensive al-
gorithms, so one could argue against training the combined
algorithm in favour of SUNRISE. Using weighted Bellman
backups seems to be advantageous here for SUNRISE and
our combination, not least due to the UCB exploration per-
formed as a result of training more than one agent. Dropout
regularisation performs best with very small dropout prob-
abilities, meaning that dropping out many neural network
nodes during training is disadvantageous here.

Observing Figure 1, at deployment time forK = 2, which is
the same setup used during training, the agents all initially
start by collecting a similar sPCE value in the first exper-
iment. They follow the same rate, with the first agents to
deviate from the pattern being that of an agent randomly
choosing designs from the 2nd experiment, and SBR from
about the 7th experiment. The random agent ultimately fails
to capture the much higher EIG values that the other agents
collect. SUNRISE performs best on the same setup used dur-
ing training, and very well on other numbers of objects.

5.2 Constant Elasticity of Substitution
The constant elasticity of substitution (CES) experiment was
explored by Foster et al. (2019), Foster et al. (2020) and
Blau et al. (2022). We have two baskets x,x′ ∈ [0, 100]3



sPCE sNMC Time
ν = 0.005 ν = 0.01 ν = 0.005 ν = 0.01 ν = 0.005

REDQ 13.782± 0.021 12.343± 0.022 19.911± 0.155 13.433± 0.046 8.95h
SBR 13.640± 0.022 12.241± 0.023 20.567± 0.179 13.519± 0.052 9.03h
DroQ 14.090 ± 0.020 12.683 ± 0.022 21.764 ± 0.201 14.108 ± 0.058 13.18h

SUNRISE 13.725± 0.022 12.381± 0.023 21.429± 0.199 13.812± 0.058 15.11h
SUNRISE-DroQ 13.938± 0.021 12.544± 0.022 21.210± 0.165 13.875± 0.049 18.16h

Random 11.145± 0.035 9.692± 0.030 12.047± 0.056 9.796± 0.032 -

Table 2: sPCE and sNMC at T = 10 computed using L = 1e7, and average agent training time for the CES experiment.
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Figure 1: Cumulative sPCE for K = 2 objects estimated
using L = 1e6. Points are mean sPCE values, and the thick-
ness of the shaded regions at each point are standard er-
rors, all from 20000 rollouts, spread evenly across 10 agents
trained under unique random seeds. In both Figures 1 and
3, interpolations and shaded regions between experiment
points on the curves are not meaningful, and are only present
to emphasise the shading for standard errors.
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Figure 2: Trained REDQ agent selecting designs at deploy-
ment time in the location finding experiment

of goods, and a human indicates their preference of the two
baskets on a sliding 0-1 scale. The CES model (Arrow et al.
1961) with latent variables θ = (ρ,α, u), which all charac-

terise the human’s utility for the different items, is then used
to measure the difference in utility of the baskets. The goal
is to design the baskets in a way that allows for inference of
the latent variables. The baskets are 3-tuples, meaning that
we have 6 design space dimensions (ξ = (x,x′)). Hyperpa-
rameter details can be found in Appendix C, and experiment
details can be found in Appendix D.2.

Table 2 explains the sPCE and sNMC values across two dif-
ferent experimental setups, which vary according to a pa-
rameter ν in the statistical model. Here, the likelihood func-
tion used in training differs from that found at deployment
time. The training and test distributions are therefore dif-
ferent when ν is changed, which is a common scenario in
the real-world. The agents are trained to maximise sPCE in
T = 10 experiments for ν = 0.005. To generalise to an un-
seen statistical model, an agent should still be able to make
maximally informative design choices for the two baskets.

DroQ achieves the best performance on both ν = 0.005 and
ν = 0.01, noting its ability to generalise and sacrifice short-
term gains for long-term ones, which we find in Figure 3.
SUNRISE performs very well in the location finding exper-
iment, but here it lags behind DroQ. REDQ presents greater
sPCE for ν = 0.005 than SUNRISE, and so it is possible that
because SUNRISE only uses a single Q-function per agent,
it does not tackle overestimation bias (Fujimoto, Hoof, and
Meger 2018) in the CES experiment very well. For SUN-
RISE, there could be better alternatives to randomly switch-
ing between multiple agents during experimentation; see
Appendix F. The difference between REDQ and DroQ is the
use of dropout regularisation for the Q-function neural net-
work, which seems to affect performance greatly here. We
find that REDQ offers the cheapest training times by about
4 hours compared to DroQ. We also note that DroQ offers
larger standard errors for sNMC, compared to the other algo-
rithms. This is not of great concern here, since the estimated
sPCE values from DroQ are 2 orders of magnitude larger
than the corresponding standard errors, and the 95% confi-
dence intervals – based on the standard errors and centred on
the DroQ sNMC estimates – do not overlap with the analo-
gous confidence intervals from the other algorithms. How-
ever, when computing DroQ estimates of sNMC in other ap-
plications, it would be prudent to monitor for unacceptably
large standard errors.

Combining SUNRISE and DroQ does not lead to improved
performance over DroQ, but there is an improvement over



every other algorithm in terms of sPCE. This is due to us-
ing dropout Q-functions in the ensemble. The combination
requires much more training time.
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Figure 3: Cumulative sPCE for ν = 0.005 estimated using
L = 1e7.

6 Discussion
We investigated five RL algorithms in an effort to produce
agents that perform well when the distribution of experimen-
tal observations differs from the distribution that the agents
were trained under. We examined REDQ, DroQ, SBR, SUN-
RISE, and SUNRISE-DroQ, finding the best generalisation
from DroQ and SUNRISE, depending on the experimental
design problem. REDQ can be viewed as a cheap algorithm
for obtaining informative experiments, but it loses out to the
greater information gain acquired by more computationally
expensive algorithms. A scientist should determine the avail-
able computational resources for training, before making a
judgement on the algorithm they wish to employ.

Overall, the results suggest the SUNRISE-DroQ combina-
tion is a good choice for training agents (on possibly mis-
specified models) that are expected to achieve high informa-
tion gain in sequential experiments. The combination does
come with added expense determined by ensemble size and
other algorithm hyperparameters.

These results are indicative, as they suggest which of these
algorithms give the best performance on these experimental
design problems. However, a number of questions remain.
How close to optimal are the policies learnt and what factors
strongly influence which policies are (not) learnt? For ex-
ample, in the location finding experiment, the different RL
algorithms appear to converge on similar policies; policies
that tend to initially choose designs close to the centre of the
experiments’ square-shaped domain. Are such policies close
to optimal, and/or are they suggestive of the influence of the
radial symmetry in the standard Gaussian prior distribution
of the unknown locations? The policy might also be influ-
enced by the radial symmetry in the standard Gaussian dis-
tribution of the initial placement of objects at unknown loca-
tions. If, instead, training used uninformative, high-entropy
distributions (e.g. uniform distributions), this might result in
learnt policies that perform better across a wider range of lo-

cation finding problems. On the other hand, the results might
confirm that radial symmetry in initial design choices is nec-
essary for optimal information gain in location finding.

Table 1 suggests that the algorithm with the best performing
agents (on K = 2 experiments) is not necessarily producing
agents that are the best under distribution drift (on K ̸= 2
experiments). The results also suggest there are experimen-
tal design problems where a validated, highly performant
agent can be expected to remain highly performant under
distribution drift. Gaining a good understanding of why, and
when, this is the case, is important for applying these al-
gorithms in practice. The SUNRISE and (more expensive)
SUNRISE-DroQ algorithms exemplify these observations.

Figures 1 and 3 show larger jumps in cumulative sPCE from
earlier experiments, compared to jumps from latter experi-
ments. Are the policies myopically gathering as much infor-
mation as possible early on, or are the averages obfuscating
more sophisticated design choice strategies? There is some
subtle evidence in Figure 3 that the DroQ agents might be
gathering less information than the other RL agents initially,
but eventually DroQ starts dominating them later.

Scientists may be able to afford to conduct additional exper-
iments at deployment time. So, seeing how the RL agents
perform over longer horizons would be worth investigating.

For the CES experiment, agents initially appear to maximise
sPCE a lot faster than the agents in the location finding
experiment (compare Figures 1 and 3). However, the CES
experiment agents appear to converge much more slowly
to the sPCE theoretical maximum for the CES experiment,
log(1e7+1), compared to the analogous convergence for the
location finding agents to log(1e6 + 1). This is likely to be
an exploration problem, given the small budget. Future work
could investigate how certain likelihood function parame-
ters, for both experimental design problems, affect the final
sPCE obtained by the agents. Another study could look at
the performance of these algorithms on higher dimensional
scenarios; e.g. 3-dimensional location finding experiments.
One could also craft utility functions that can better address
model misspecification and lead to more robust experimen-
tal design (Go and Isaac 2022; Catanach and Das 2023).

To conclude, our results showcase an important step towards
generalisable RL agents for BOED. We extend the work of
Blau et al. (2022) by considering alternative RL algorithms,
in aid of constructing generalisable policies.
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A Neural Network Architecture and the HiP-MDP
We explain how the design neural networks are constructed in our experiments and how this relates to our HiP-MDP formula-
tion.

A.1 Neural Network Architecture
The optimal policy is given by π∗ = argmax

π
sPCE(π, L, T ), which maximises the sPCE lower-bound. Recall that sPCE is

bounded by log(L+1), and so the optimal policy should achieve this (as a reward) by the end of experimentation. The approach
by Foster et al. (2021), which they coin deep adaptive design (DAD), seeks to approximate the optimal policy π∗ through a
neural network, otherwise known as the design network πϕ. This is then a policy-based approach to sequential BOED, since
we now learn and use a policy π to select designs, rather than optimising designs at the same time during experimentation.
This policy would be learnt offline using the model provided of the Bayesian experimental design problem, and would then be
deployed in the online setting for rapid live experiments.

We say that DAD amortises the cost of conducting experiments in experimental design, since we are now learning the parame-
ters ϕ of a neural network πϕ, rather than optimising designs directly during training. This approach eliminates the adaptation
costs during the live experiment, as the design network can instantly select the next design with a single forward-pass through
the neural network.

In DAD, the neural network architecture for πϕ is constructed to allow for permutation invariance, enhancing the efficiency of
learning by allowing for weight sharing (Foster et al. 2021). Using the fact that EIG is unchanged under permutation (Foster
et al. 2021), we represent the history ht with a fixed-dimensional representation by pooling representations of the distinct
design-observation pairs of the history,

Bψ,t =

t∑
k=1

Encoderψ(ξk, yk),

where Encoderψ is a neural network encoder with parameters ψ to be learnt. This pooled representation remains unchanged if
we reorder the labels 1, . . . , t.

We then construct our design network to make decisions based on the pooled representation Bψ,t by setting,

πϕ(ht) = Emitterη(Bψ,t),

where Emitterη is a learnt emitter network. The trainable parameters are ϕ = {ψ, η}. By combining simple networks in a
way that respects the permutation invariance of the problem, we enable parameter sharing (Foster et al. 2021). This allows the
network Encoderψ to be reused for each input pair and for each timestep t.

The exact architecture of our design network, including the number of nodes and hidden layers, that we use in our results is
provided in Appendix C.1.

A.2 HiP-MDP
Blau et al. (2022) explain that each state st in the state space S has the form st = (Bψ,t, Ct, yt), where

Bψ,t =

t∑
k=1

Encoderψ(ξk, yk), Ct =

[
t∏

k=1

p(yk | θℓ, ξk)

]L
ℓ=0

,

and Encoderψ is our encoder in the design network with parameters ψ, all as explained in Appendix A.1.

This summary of the history (or history summary) follows the Markov property because we can decompose this as

Bψ,t = Bψ,t−1 + Encoderψ(ξt, yt).

In other words, we do not need the whole history ht = (ξ1:t, y1:t) to compute the next summary Bψ,t+1. It is then sensible
to use Bψ,t as an input for the policy, or in other words, construct a pooled representation of the history ht, following the
Markovian representation above, and pass this through an emitter network (see Appendix A.1) to obtain the next design to
select. The initial state becomes s0 = (0,1, ∅). The transition dynamics for Bψ,t follow the Markovian representation above.

Recall that sPCE requires L contrastive samples, being different realisations of the parameter of interest θ. We can compute the
sPCE for experiment t as rt = R(st−1, at−1, st;θ0:L), where

R(st−1, at−1, st;θ0:L) = log p(yt | θ0, ξt)− log(Ct · 1) + log(Ct−1 · 1).

Ct here is a vector of history likelihoods, where each element ct,l is the likelihood of observing the history ht for true parameters
θl. 0 and 1 are vectors of zeroes and ones respectively, having the same length as Ct or Ct+1 where sensible. This reward is



generally non-zero for each timestep, and there is no need to save the entire history in memory to compute the reward (Blau
et al. 2022). Retaining the history likelihood Ct and experimental outcome yt is sufficient.

Using the above, Blau et al. (2022) prove that the expected return of the HiP-MDP is equivalent to sPCE using γ = 1. The
proof is omitted here, but can be found in Appendix A.2 by Blau et al. (2022).

B Algorithms
In this appendix, we cover our chosen RL algorithms in more detail, with their respective pseudocode.

B.1 Soft Actor-Critic
It is first sensible to cover the foundational algorithm that our explored variants are based on, the SAC algorithm (Haarnoja
et al. 2019).

SAC is an off-policy RL algorithm designed to optimise a stochastic policy in an environment, balancing exploration and ex-
ploitation (Haarnoja et al. 2019). SAC aims to maximise both the expected reward and the entropy of the policy. Higher entropy
encourages exploration by promoting more stochastic policies, preventing premature convergence to suboptimal policies. This
is important in experimental design, as we need to adequately explore the design space to find the appropriate designs that
maximise EIG.

SAC follows from maximum-entropy RL (Eysenbach and Levine 2022), with the following objective

π∗ = argmax
π

∑
t

E(st,at)∼ρπ [rt + αH(π(· | st))] ,

where α is the temperature parameter controlling the importance of the entropy term, and H is the entropy term. A higher α
value encourages more exploration by making the policy more random, whilst a lower α value leads to more exploitation by
making the policy more deterministic.

Haarnoja et al. (2019) derive soft policy iteration, which learns optimal maximum-entropy policies by alternating between
policy evaluation and policy improvement in the maximum-entropy framework. This is based on the tabular setting, and so
it is expensive to utilise on continuous settings. This brings us to SAC, which uses neural networks to approximate the soft
Q-function Qθ and the policy πϕ, with parameters θ and ϕ respectively, and optimises them using stochastic gradient descent.

The soft Q-function is updated by minimising the soft Bellman residual, using samples from a replay buffer D and a target soft
Q-function with parameters θtarg,

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ(st, at)−

(
rt + γEst+1∼T [V θtarg(st+1)]

))2]
,

where V χ(st) = Eat∼π[Qχ(st, at)− α log π(at | st)] for a Q-function with parameters χ.

The policy is updated by minimising the expected KL-divergence,

Jπ(st, ϕ) = Est∼D
[
Eat∼πϕ

[α log πϕ(at | st)−Qθ(st, at)]
]
,

where the policy is reparameterised using a neural network transformation, by setting at = fϕ(ϵt; st) for an input noise vector
ϵt.

Additionally, the temperature parameter can be automatically adjusted to control the entropy term,

J(α) = Eat∼πt
[−α log πt(at | st)− αH].

By treating the entropy as a constraint, we avoid needing to manually set the often difficult to optimise temperature. The idea
here is that the policy should explore regions where the optimal action is uncertain, and become deterministic in regions where
the optimal action is clear. J(α) ensures that the average entropy of the policy is constrained, whilst the entropy at different
states vary. The temperature eventually decays close to zero during training, making the policy close to fully deterministic.

Full algorithm and gradient details are provided by Haarnoja et al. (2019). We note that SAC employs 2 Q-functions to tackle
overestimation bias (Fujimoto, Hoof, and Meger 2018). The SAC parameter updates explained in the pseudocode below are
done similarly for the algorithms that follow this subsection.



Algorithm 1: Soft Actor-Critic

1: Initialise policy parameters ϕ, Q-function parameters θ1, θ2, and empty replay buffer D. Set target parameters θtarg,1 ← θ1,
θtarg,2 ← θ2.

2: for each episode do
3: Take one action at ∼ πϕ(· | st). Observe reward rt, new state st+1.
4: Add data to buffer: D ← D ∪ {(st, at, rt, st+1)}
5: for each gradient step do
6: Sample a mini-batch B = {(st, at, rt, st+1)} from D
7: Compute the Q-target y for the Q-functions by

y = rt + γ

(
min
i=1,2

Qθtarg,i(st+1, ãt+1)− α log πϕ(ãt+1 | st+1)

)
, ãt+1 ∼ πϕ(· | st+1)

8: for i = 1, 2 do
9: # Perform the following update below θi ← θi − λQ∇θi ĴQ(θi)

10: Update θi with gradient descent using

∇θi
1

|B|
∑

(st,at,rt,st+1)∈B

(Qθi(st, at)− y)
2

11: Update target networks with θtarg,i ← τθi + (1− τ)θtarg,i
12: end for
13: # Perform the following update below ϕ← ϕ− λπ∇ϕĴπ(ϕ)
14: Update policy parameters ϕ with gradient ascent using

∇ϕ
1

|B|
∑
st∈B

(
min
i=1,2

Qθi(st, ãϕ(st))− α log πϕ(ãϕ(st) | st)
)
, ãϕ(st) ∼ πϕ(· | st)

15: # Perform the following update below α← α− λ∇αĴ(α)
16: Update temperature parameter α by

∇α
1

|B|
∑
st∈B

(−α log πϕ(ãϕ(st) | st)− αH)

17: end for
18: end for

B.2 Randomised Ensembled Double Q-Learning

REDQ extends SAC through employing various adjustments. This includes a higher UTD ratio (by allowing for G updates as
in the algorithm below), the use of an ensemble of Q-functions, and in-target minimisation over a random subset M of the N
Q-functions (Chen et al. 2021).

Here, we can use M Q-functions when computing the Q-target, which makes use of our ensemble of N Q-functions. We could
set M = N as in SAC, although here we have the advantage of a large ensemble of Q-functions instead of always having 2
Q-functions. Using a small value of M , such as M = 2, has been found to work well (Chen et al. 2021). Following from the
SAC algorithm presented above, our Q-target is computed by,

y = rt + γ

(
min
i∈M

Qθtarg,i(st+1, ãt+1)− α log πϕ(ãt+1 | st+1)

)
, ãt+1 ∼ πϕ(· | st+1),

where M is a (random) set of indices of size M for the ensemble of Q-functions. The difference here from SAC is taking
mini∈M over the Q-target functions instead of mini=1,2.

Chen et al. (2021) find that REDQ maintains stable and near-uniform bias under high UTD ratios due to its ensemble and
in-target minimisation components. Blau et al. (2022) likely use REDQ for this reason. Where Chen et al. (2021) recommend
using 10 Q-functions, Blau et al. (2022) instead use 2 Q-functions as in SAC. We assume this choice is due to the computational
costs of using a larger ensemble of 10 Q-functions, which we confirm through our empirical tests.



Algorithm 2: Randomised Ensembled Double Q-learning

1: Initialise policy parameters ϕ, N Q-function parameters θi, and empty replay buffer D. Set target parameters θtarg,i ← θi.
All for i = 1, . . . , N .

2: for each episode do
3: Take one action at ∼ πϕ(· | st). Observe reward rt, new state st+1.
4: Add data to buffer: D ← D ∪ {(st, at, rt, st+1)}
5: for G updates do
6: Sample a mini-batch B = {(st, at, rt, st+1)} from D
7: Sample a setM of M distinct indices from {1, 2, . . . , N}
8: Compute the Q-target y (same for all of the N Q-functions) by

y = rt + γ

(
min
i∈M

Qθtarg,i(st+1, ãt+1)− α log πϕ(ãt+1 | st+1)

)
, ãt+1 ∼ πϕ(· | st+1)

9: for i = 1, . . . , N do
10: Update θi with gradient descent using

∇θi
1

|B|
∑

(st,at,rt,st+1)∈B

(Qθi(st, at)− y)
2

11: Update target networks with θtarg,i ← τθi + (1− τ)θtarg,i
12: end for
13: Update policy parameters ϕ with gradient ascent using

∇ϕ
1

|B|
∑
st∈B

(
1

N

N∑
i=1

Qθi(st, ãϕ(st))− α log πϕ(ãϕ(st) | st)

)
, ãϕ(st) ∼ πϕ(· | st)

14: Update temperature parameter α by

∇α
1

|B|
∑
st∈B

(−α log πϕ(ãϕ(st) | st)− αH)

15: end for
16: end for

B.3 Dropout Q-Functions for Doubly Efficient Reinforcement Learning

DroQ is an algorithm that seeks to improve on the computational costs of REDQ by making use of both dropout regularisation
(Hinton et al. 2012) and layer normalisation (Ba, Kiros, and Hinton 2016) in the deep Q-functions. A much smaller ensemble
of Q-functions can be used due to the inclusion of dropout, such as N = 2. The main difference here is the use of dropout
Q-functions, which we denote by QDr in the algorithm below. There is no in-target minimisation as in REDQ, so we compute
the Q-targets using every Q-function in the ensemble.



Algorithm 3: Dropout Q-Functions for Doubly Efficient Reinforcement Learning

1: Initialise policy parameters ϕ, N Q-function parameters θi and empty replay buffer D. Set target parameters θtarg,i ← θi.
All for i = 1, . . . , N .

2: for each episode do
3: Take action at ∼ πϕ(· | st). Observe reward rt, next state st+1.
4: D ← D ∪ {(st, at, rt, st+1)}.
5: for G updates do
6: Sample a mini-batch B = {(st, at, rt, st+1)} from D.
7: Compute the Q-target y for the dropout Q-functions by

y = rt + γ

(
min

i=1,...,N
QDr,θtarg,i(st+1, ãt+1)− α log πϕ(ãt+1 | st+1)

)
, ãt+1 ∼ πϕ(· | st+1)

8: for i = 1, . . . , N do
9: Update θi with gradient descent using

∇θi
1

|B|
∑

(st,at,rt,st+1)∈B

(QDr,θi(st, at)− y)
2

10: Update target networks with θtarg,i ← τθi + (1− τ)θtarg,i
11: end for
12: Update policy parameters ϕ with gradient ascent using

∇ϕ
1

|B|
∑
st∈B

(
1

N

N∑
i=1

QDr,θi(st, ãϕ(st))− α log πϕ(ãϕ(st) | st)

)
, ãϕ(st) ∼ πϕ(· | st)

13: Update temperature parameter α by

∇α
1

|B|
∑
st∈B

(−α log πϕ(ãϕ(st) | st)− αH)

14: end for
15: end for

B.4 Scaled-by-Resetting

SBR (D’Oro et al. 2022) explores how increasing the replay ratio, the number of times an agent’s parameters are updated per
environment interaction, can drastically improve sample efficiency. Essentially, the parameters of the neural networks for the
agent are periodically reset, either partially or fully, during training. It is fully reset for SAC (D’Oro et al. 2022), and so we
employ the same in our work.

In more detail, the Q-functions and policy networks are reset, meaning that the neural network parameters are back to their
untrained state. We only retain the replay buffer, and after a reset, the agent is again trained as normal, this time updating its
parameters using the previously gathered experiences stored in the replay buffer. This is close to the offline RL setting, where
a dataset of experiences is already made available, though here we are also collecting experiences online at the same time.

Our implementation of SBR is built over REDQ, as seen in the pseudocode below.



Algorithm 4: Scaled-by-Resetting

1: Initialise policy parameters ϕ, N Q-function parameters θi, and empty replay buffer D. Set target parameters θtarg,i ← θi.
All for i = 1, . . . , N . Set fixed reset interval ψ.

2: for each episode do
3: Take one action at ∼ πϕ(· | st). Observe reward rt, new state st+1.
4: Add data to buffer: D ← D ∪ {(st, at, rt, st+1)}
5: for G updates do
6: Sample a mini-batch B = {(st, at, rt, st+1)} from D
7: Sample a setM of M distinct indices from {1, 2, . . . , N}
8: Compute the Q-target y (same for all of the N Q-functions) by

y = rt + γ

(
min
i∈M

Qθtarg,i(st+1, ãt+1)− α log πϕ(ãt+1 | st+1)

)
, ãt+1 ∼ πϕ(· | st+1)

9: for i = 1, . . . , N do
10: Update θi with gradient descent using

∇θi
1

|B|
∑

(st,at,rt,st+1)∈B

(Qθi(st, at)− y)
2

11: Update target networks with θtarg,i ← τθi + (1− τ)θtarg,i
12: end for
13: Update policy parameters ϕ with gradient ascent using

∇ϕ
1

|B|
∑
st∈B

(
1

N

N∑
i=1

Qθi(st, ãϕ(st))− α log πϕ(ãϕ(st) | st)

)
, ãϕ(st) ∼ πϕ(· | st)

14: Update temperature parameter α by

∇α
1

|B|
∑
st∈B

(−α log πϕ(ãϕ(st) | st)− αH)

15: if number of gradient steps exceeds ψ then
16: Reset ϕ, θi, . . . θN , θtarg,1, . . . , θtarg,N as done initially, keeping the replay buffer
17: ψ ← ψ + ψ
18: end if
19: end for
20: end for

B.5 Simple Unified Framework for Reinforcement Learning Using Ensembles
SUNRISE is a method designed to enhance off-policy RL algorithms by addressing common challenges like instability in Q-
learning (Lee et al. 2021). It achieves this by integrating ensemble-based weighted Bellman backups, which re-weight target
Q-values based on uncertainty estimates from a Q-ensemble, and a UCB exploration strategy that selects actions with the
highest UCB to encourage efficient exploration.

We explain the UCB exploration strategy (Chen et al. 2017; Lee et al. 2021) in full, which is an important component of our
policy ensemble-based algorithm. The UCB exploration formula used in the SUNRISE framework (Lee et al. 2021) is designed
to balance exploration and exploitation through using the N candidate actions generated by our N policies. The UCB formula
is as follows,

at = argmax
a
{Qmean(st, a) + λQstd(st, a)}.

In this formula, at is the action selected at timestep t, which maximises the sum of the mean and a scaled standard deviation
of the Q-values. Qmean(st, a) represents the average estimated value of taking action a in state st, derived from an ensemble of
Q-functions. Qstd(st, a) denotes the uncertainty or variance in these Q-value estimates. λ controls the weight of the uncertainty
term, thus modulating the level of exploration.

Consider an ensemble of N SAC agents, {Qθi , πϕi
}Ni=1, where θi and ϕi denote the parameters of the i-th soft Q-function and

policy, respectively. Conventional Q-learning is based on the Bellman backup, and so it can be affected by error propagation.



This essentially means that errors in the previous Q-function induce “noise” to the true Q-value of the current Q-function.
Therefore, for each agent i, a weighted Bellman backup (Lee et al. 2021) is used instead of JQ from SAC (Haarnoja et al.
2019), given by,

JWQ(τt, θi) = w(st+1, at+1)
(
Qθi(st, at)− rt − γV θtarg,i(st+1)

)2
,

where τt = (st, at, rt, st+1) is a transition, at+1 ∼ πϕi(at | st), V is the value function, defined as in SAC, and w(st, at) is a
confidence weight based on an ensemble of target Q-functions.

The confidence weight w(st, at) (Lee et al. 2021) is defined as,

w(st, at) = σ
(
−Qstd(st, at) · δ

)
+ 0.5,

where δ > 0 is a temperature, σ is the sigmoid function, and Qstd(st, at) is the empirical standard deviation of all target
Q-functions {Qθtarg,i}Ni=1.

Algorithm 5: Simple Unified Framework for Reinforcement Learning Using Ensembles

1: InitialiseN policy parameters ϕi,N Q-function parameters θi, and empty replay bufferD. Set target parameters θtarg,i ← θi
and initial temperature parameters αi. All for i = 1, . . . , N .

2: for each episode do
3: for each timestep t do
4: Collect N action samples: At = {at,i ∼ πϕi(a | st) | i ∈ {1, . . . , N}}
5: Choose the action that maximises UCB by

at = argmax
at,i∈At

(Qmean(st, at,i) + λQstd(st, at,i))

6: Collect state st+1 and reward rt from the environment by taking action at
7: Sample bootstrap masks Mt = {mt,i ∼ Bernoulli(β) | i ∈ {1, . . . , N}}
8: Store transitions τt = (st, at, st+1, rt) and masks in replay buffer D ← D ∪ {(τt,Mt)}
9: end for

10: for G updates do
11: Sample random minibatch {(τj ,Mj)}Bj=1 ∼ D
12: for each agent i do
13: # JWQ as found above
14: Update the Q-function by minimising

∇θi
1

|B|

B∑
j=1

mj,i · JWQ(τj , θi)

15: Update target networks with θtarg,i ← τθi + (1− τ)θtarg,i
16: # Jπ as found in SAC
17: Update the policy by minimising

∇ϕi

1

|B|

B∑
j=1

mj,i · Jπ(sj , ϕi)

18: # J(α) as found in SAC
19: Update temperature parameter by minimising

∇αi

1

|B|

B∑
j=1

mj,i · J(αi)

20: end for
21: end for
22: end for

Our implementation of SUNRISE slightly differs from the default algorithm above, where the only difference is that we do not
sample any bootstrap masks, which is simply the equivalent of β = 1 (where the binary masks would all be equal to 1). Lee
et al. (2021) find that β = 1 performs the best, making this a sensible adjustment to the algorithm that can also reduce the
overall agent training time. See Appendix F for how we decided to deploy our SUNRISE agents at deployment time.



C Training Regimes
In this section, we explain our training regimes used to obtain our results in more detail. This includes our exact neural network
architectures and any hyperparameter optimisation.

C.1 Neural Network, Training, Environment, and Evaluation Details
Neural Networks In all of our experiments, the (trained) policies are neural networks that consist of an encoder network and
an emitter network, as we explain in Appendix A.

Our encoder network, which takes the observation space dimensions as its input, consists of two hidden layers, each with 128
nodes, and the rectified linear unit (ReLU) activation function is used to introduce nonlinearity between the layers. The final
pooled representation from the encoder consists of 128

2 = 64 nodes, without any activation function. Our emitter network,
which takes as input the encoded representation from the encoder, consists of two hidden layers, each with 128 nodes, and the
rectified linear unit (ReLU) activation function is used to introduce nonlinearity between the layers. This is evaluated as usual
as a TanhNormal policy in SAC (Haarnoja et al. 2019), and we obtain a (stochastic) distribution over the design space as output.

The Q-functions follow the same structure as the policies, and depending on whether dropout and layer normalisation are used,
they have the same architecture in every experiment. If dropout and layer normalisation are required, they are deployed before
the activation function, starting with dropout. The Q-functions each output a Q-value for all actions.

Training We use the Adam (Kingma and Ba 2017) optimiser for the policy, the Q-functions, and for controlling α (the
exploration parameter) during training. All agents are trained using 20000 iterations. We train with L = 1e5 contrastive
samples for every agent on the sPCE objective. We sample 4096 transitions from the replay buffer for a single optimisation step
(mini-batch size). 10 agents are trained under unique random seeds for each algorithm, which we use for our evaluation later.

Environment In RL, it is possible to normalise/scale the actions, observations, and rewards in the environment (our experi-
mental design problem). Since we want the exact sPCE, we do not perform reward scaling. Actions are scaled to be in range
[-1, 1], and observations are scaled to be in range [0, 1].

Evaluation RL is known to not be very robust to random seeds, so measuring the average performance across agents trained
with unique random seeds is a sensible approach to statistically evaluating our algorithms (both during training and at deploy-
ment time) (Colas, Sigaud, and Oudeyer 2022). At deployment/evaluation time, we take the average performance of each agent
across 2000 rollouts, meaning 2000 different choices of θ in our Bayesian experimental design problem. Bear in mind that
this is for a single agent that has been trained with a particular random seed, and so we do the same for all 10 agents trained
with unique random seeds, and take the average performance of this. Since we have 10 agents, our final average performance
for each metric would be based on 2000 · 10 = 20000 different choices of θ in our experimental design problem. This is a
reasonably large number of scenarios to consider, much larger than that by Blau et al. (2022), making our results robust.

C.2 REDQ Hyperparameters
Blau et al. (2022) perform some hyperparameter optimisation on the target update rate τ , policy learning rate, critic (or Q-
function) learning rate, replay buffer size, and discount factor γ. Their best set of hyperparameters are listed in the table below
as ‘REDQ’. This is the same set of hyperparameters we used for the results explained in the main body of this paper, for a fair
comparison to Blau et al. (2022).

We additionally test on our own accord a discount factor of 0.99 (REDQ-Disc-0.99), ensemble of 10 Q-functions as done by
Chen et al. (2021) (REDQ-Ens-10), and a target update rate of 0.01 (REDQ-Tau-0.01).

Parameter REDQ REDQ-Disc-0.99 REDQ-Ens-10 REDQ-Tau-0.01
N 2 2 10 2
M 2 2 2 2
γ 0.9 0.99 0.9 0.9
τ 0.001 0.001 0.001 0.01

UTD Ratio G 64 64 64 64
Policy Learning Rate 0.0001 0.0001 0.0001 0.0001
Critic Learning Rate 0.0003 0.0003 0.0003 0.0003

Buffer Size 10000000 10000000 10000000 10000000

Table 3: REDQ Hyperparameter Combinations

The sPCE and sNMC results at deployment time from using these hyperparameters are explained in the tables below:



sPCE Time
K = 1 K = 2 K = 3 K = 4 K = 5 K = 2

REDQ 6.279± 0.013 11.689± 0.012 11.881± 0.013 11.507± 0.015 11.095± 0.017 13.23h
REDQ-Disc-0.99 6.328± 0.012 11.536± 0.013 11.685± 0.014 11.250± 0.015 10.825± 0.017 13.41h

REDQ-Ens-10 6.423 ± 0.013 11.744 ± 0.013 11.884± 0.013 11.419± 0.015 10.989± 0.017 38.91h
REDQ-Tau-0.01 6.286± 0.013 11.651± 0.013 11.919 ± 0.013 11.516 ± 0.015 11.177 ± 0.016 13.38h

Table 4: sPCE at T = 30 computed using L = 1e6, and average agent training time for the location finding experiment. Means
and standard errors are from 20000 rollouts, spread evenly across 10 agents trained under unique random seeds. The average
training time is across these 10 agents.

sNMC
K = 1 K = 2 K = 3 K = 4 K = 5

REDQ 6.282± 0.013 12.323± 0.019 13.215± 0.029 12.726± 0.030 12.190± 0.030
REDQ-Disc-0.99 6.331± 0.012 12.071± 0.018 12.704± 0.025 12.170± 0.027 11.653± 0.028

REDQ-Ens-10 6.425 ± 0.013 12.427 ± 0.019 13.140± 0.028 12.513± 0.029 11.943± 0.029
REDQ-Tau-0.01 6.289± 0.013 12.270± 0.019 13.261 ± 0.028 12.755 ± 0.030 12.332 ± 0.031

Table 5: sNMC at T = 30 computed using L = 1e6 for the location finding experiment. Means and standard errors are from
20000 rollouts, spread evenly across 10 agents trained under unique random seeds.

For the location finding experiment, REDQ-Ens-10 is the most expensive to train, and only provides the best results for K ∈
{1, 2}. REDQ-Tau-0.01 provides the best results for K ≥ 3, in a much cheaper amount of time.

sPCE sNMC Time
ν = 0.005 ν = 0.01 ν = 0.005 ν = 0.01 ν = 0.005

REDQ-Blau 13.782 ± 0.021 12.343± 0.022 19.911± 0.155 13.433± 0.046 8.95h
REDQ-Disc-0.99 13.723± 0.021 12.317± 0.023 20.240± 0.164 13.494± 0.049 10.69h

REDQ-Ens-10 13.781± 0.021 12.304± 0.021 18.989± 0.138 13.192± 0.042 24.75h
REDQ-Tau-0.01 13.763± 0.022 12.413 ± 0.023 22.116 ± 0.216 14.034 ± 0.061 10.67h

Table 6: sPCE and sNMC at T = 10 computed using L = 1e7, and average agent training time for the CES experiment. Means
and standard errors are from 20000 rollouts, spread evenly across 10 agents trained under unique random seeds. The average
training time is across these 10 agents.

For the CES experiment, REDQ-Blau is best in terms of sPCE when evaluated on the same statistical model used during
training. It falls behind REDQ-Tau-0.01 when the model is changed. REDQ-Tau-0.01 provides the greatest sNMC values,
suggesting that τ = 0.01 may be sensible to train agents with.

C.3 DroQ Hyperparameters
Hiraoka et al. (2022) find empirically that smaller dropout rates provide better performance over larger ones. We compare the
performance between dropout rates of 0.01 and 0.1. There are no resets for DroQ and so these are left blank in Table 7 below:

Parameter DroQ-0.01 DroQ-0.1 SBR-300000 SBR-430000
N 2 2 2 2
M 2 2 2 2
γ 0.9 0.9 0.9 0.9
τ 0.001 0.001 0.001 0.001

UTD Ratio G 64 64 64 64
Dropout Probability 0.01 0.1 - -

Reset Interval - - 300000 430000
Policy Learning Rate 0.0001 0.0001 0.0001 0.0001
Critic Learning Rate 0.0003 0.0003 0.0003 0.0003

Buffer Size 10000000 10000000 10000000 10000000

Table 7: DroQ and SBR Hyperparameter Combinations



For the location finding finding experiment we use 0.01, and for the CES experiment we use 0.1. These are the best hyperpa-
rameter combinations as explained in the tables below:

sPCE Time
K = 1 K = 2 K = 3 K = 4 K = 5 K = 2

DroQ-0.01 6.368 ± 0.013 11.680 ± 0.013 11.902 ± 0.013 11.480 ± 0.015 11.090 ± 0.017 19.05h
DroQ-0.1 6.333± 0.013 11.176± 0.013 11.708± 0.014 11.384± 0.016 11.090± 0.017 19.63h

Table 8: sPCE at T = 30 computed using L = 1e6, and average agent training time for the location finding experiment. Means
and standard errors are from 20000 rollouts, spread evenly across 10 agents trained under unique random seeds. The average
training time is across these 10 agents.

sNMC
K = 1 K = 2 K = 3 K = 4 K = 5

DroQ-0.01 6.371 ± 0.013 12.349 ± 0.020 13.231 ± 0.028 12.669 ± 0.029 12.147± 0.030
DroQ-0.1 6.336± 0.013 11.626± 0.019 12.980± 0.029 12.594± 0.030 12.232 ± 0.031

Table 9: sNMC at T = 30 computed using L = 1e6 for the location finding experiment. Means and standard errors are from
20000 rollouts, spread evenly across 10 agents trained under unique random seeds.

sPCE sNMC Time
ν = 0.005 ν = 0.01 ν = 0.005 ν = 0.01 ν = 0.005

DroQ-0.01 13.902± 0.020 12.427± 0.021 19.904± 0.140 13.479± 0.043 12.65h
DroQ-0.1 14.090 ± 0.020 12.683 ± 0.022 21.764 ± 0.201 14.108 ± 0.058 13.18h

Table 10: sPCE and sNMC at T = 10 computed using L = 1e7, and average agent training time for the CES experiment.
Means and standard errors are from 20000 rollouts, spread evenly across 10 agents trained under unique random seeds. The
average training time is across these 10 agents.

Using a dropout rate of 0.01 is clearly more competitive than using a dropout rate of 0.1 for the location finding experiment.
This is reversed for the CES experiment.

C.4 SBR Hyperparameters
One hyperparameter set looks at 2 resets of the neural network parameters during training, and the other looks at 4 resets during
training. These are represented as reset intervals x in the algorithm, where we perform a reset every x amount of gradient
steps. Table 7 displays the SBR hyperparameter combinations. There is no dropout involved, and so these are left blank (or
equivalently set to 0).

We use SBR-430000 for both experimental design problems, due to the explained performance provided in the tables below:

sPCE Time
K = 1 K = 2 K = 3 K = 4 K = 5 K = 2

SBR-300000 6.020± 0.012 11.178± 0.013 11.773± 0.014 11.608 ± 0.015 11.436 ± 0.016 13.30h
SBR-430000 6.165 ± 0.012 11.362 ± 0.013 11.788 ± 0.014 11.518± 0.016 11.257± 0.017 13.52h

Table 11: sPCE at T = 30 computed using L = 1e6, and average agent training time for the location finding experiment. Means
and standard errors are from 20000 rollouts, spread evenly across 10 agents trained under unique random seeds. The average
training time is across these 10 agents.

sNMC
K = 1 K = 2 K = 3 K = 4 K = 5

SBR-300000 6.021± 0.012 11.515± 0.016 12.960± 0.027 12.991 ± 0.031 12.826 ± 0.032
SBR-430000 6.168 ± 0.013 11.793 ± 0.017 13.043 ± 0.028 12.886± 0.032 12.571± 0.032

Table 12: sNMC at T = 30 computed using L = 1e6 for the location finding experiment. Means and standard errors are from
20000 rollouts, spread evenly across 10 agents trained under unique random seeds.



For the location finding experiment, we do note that the results for K ≥ 4 suggest that SBR-300000 is better for this setting.
SBR-430000 is otherwise the strongest performer for K < 4, which is the reason why we choose this as our main hyperparam-
eter combination.

sPCE sNMC Time
ν = 0.005 ν = 0.01 ν = 0.005 ν = 0.01 ν = 0.005

SBR-300000 13.047± 0.026 11.688± 0.026 18.248± 0.134 12.586± 0.044 9.02h
SBR-430000 13.640 ± 0.022 12.241 ± 0.023 20.567 ± 0.179 13.519 ± 0.052 9.03h

Table 13: sPCE and sNMC at T = 10 computed using L = 1e7, and average agent training time for the CES experiment.
Means and standard errors are from 20000 rollouts, spread evenly across 10 agents trained under unique random seeds. The
average training time is across these 10 agents.

SBR-430000 performs best for both sPCE and sNMC on the two statistical models considered.

C.5 SUNRISE Hyperparameters
We perform hyperparameter optimisation on the Bellman temperature δ, rather than on the UCB weight λ. To avoid heavy com-
putation, we stick toN = 2 agents, making the algorithm comparable to the others explored. We explore δ = 10 (SUNRISE-10)
and δ = 20 (SUNRISE-20). There is no dropout involved, and so these are left blank (or equivalently set to 0).

Parameter SUNRISE-10 SUNRISE-20 Ours-Location Ours-CES
N 2 2 2 2
γ 0.9 0.9 0.9 0.9
τ 0.001 0.001 0.01 0.01

UTD Ratio G 64 64 64 64
UCB λ 1 1 1 1

Dropout Probability - - 0.01 0.1
Bellman Temperature δ 10 20 20 10
Policy Learning Rate 0.0001 0.0001 0.0001 0.0001
Critic Learning Rate 0.0003 0.0003 0.0003 0.0003

Buffer Size 10000000 10000000 10000000 10000000

Table 14: SUNRISE and SUNRISE-DroQ Hyperparameter Combinations

We use SUNRISE-20 for the location finding experiment and SUNRISE-20 for the CES experiment, due to the results explained
in the tables below:

sPCE Time
K = 1 K = 2 K = 3 K = 4 K = 5 K = 2

SUNRISE-10 6.355 ± 0.012 11.782± 0.012 12.094± 0.013 11.837± 0.014 11.407± 0.016 21.17h
SUNRISE-20 6.340± 0.013 11.837 ± 0.012 12.133 ± 0.013 11.846 ± 0.014 11.445 ± 0.016 21.44h

Table 15: sPCE at T = 30 computed using L = 1e6, and average agent training time for the location finding experiment. Means
and standard errors are from 20000 rollouts, spread evenly across 10 agents trained under unique random seeds. The average
training time is across these 10 agents.

sNMC
K = 1 K = 2 K = 3 K = 4 K = 5

SUNRISE-10 6.358 ± 0.012 12.477± 0.019 13.662 ± 0.030 13.397 ± 0.032 12.765± 0.032
SUNRISE-20 6.342± 0.013 12.555 ± 0.019 13.656± 0.029 13.345± 0.030 12.823 ± 0.032

Table 16: sNMC at T = 30 computed using L = 1e6 for the location finding experiment. Means and standard errors are from
20000 rollouts, spread evenly across 10 agents trained under unique random seeds.

SUNRISE-20 performs best for all K, bar K = 1 on the location finding experiment in terms of sPCE. We note that the sNMC



values are higher for SUNRISE-10 under certain values of K. Since sPCE is our main metric of interest, ensuring that the true
EIG is at least equal to or higher than a certain value, we choose to stick with SUNRISE-20.

sPCE sNMC Time
ν = 0.005 ν = 0.01 ν = 0.005 ν = 0.01 ν = 0.005

SUNRISE-10 13.725 ± 0.022 12.381 ± 0.023 21.429 ± 0.199 13.812 ± 0.058 15.11h
SUNRISE-20 13.633± 0.022 12.261± 0.023 19.815± 0.130 13.344± 0.042 15.20h

Table 17: sPCE and sNMC at T = 10 computed using L = 1e7, and average agent training time for the CES experiment.
Means and standard errors are from 20000 rollouts, spread evenly across 10 agents trained under unique random seeds. The
average training time is across these 10 agents.

For the CES experiment, SUNRISE-10 stands out as the best performer across all evaluated statistical models and metrics.

C.6 SUNRISE with Dropout Q-Functions Hyperparameters
There is no hyperparameter optimisation involved for SUNRISE-DroQ. We use our own intuition for selecting the hyperpa-
rameters to train with based on the results from the previous algorithms. Our final chosen hyperparameters are presented in
Table 14, where Ours-Location is the set used for the location finding experiment, and Ours-CES is the set used for the CES
experiment.

The following tables are for Ours-Location and Ours-CES, respectively (note that the deployment sPCE and sNMC results
below are for the same trained agents, so the training time displayed is equal):

Time
K = 1 K = 2 K = 3 K = 4 K = 5 K = 2

Ours-sPCE 6.433± 0.012 11.770± 0.012 12.143± 0.013 11.831± 0.014 11.453± 0.016 29.77h
Ours-sNMC 6.436± 0.012 12.476± 0.019 13.664± 0.028 13.340± 0.031 12.813± 0.032 29.77h

Table 18: sPCE and sNMC at T = 30 computed using L = 1e6, and average agent training time for the location finding
experiment. Means and standard errors are from 20000 rollouts, spread evenly across 10 agents trained under unique random
seeds. The average training time is across these 10 agents.

Time
ν = 0.005 ν = 0.01 ν = 0.005

Ours-sPCE 13.938± 0.021 12.544± 0.022 18.16h
Ours-sNMC 21.210± 0.165 13.875± 0.049 18.16h

Table 19: sPCE and sNMC at T = 10 computed using L = 1e7, and average agent training time for the CES experiment.
Means and standard errors are from 20000 rollouts, spread evenly across 10 agents trained under unique random seeds. The
average training time is across these 10 agents.

D Experimental Design Problems
This appendix explains the experimental design problems in more detail, including their probabilistic models and parameters
used in our experiments.

Our code is adapted from the repository by Blau et al. (2022), which consists of experimental design problems built under the
Pyro probabilistic programming language (Bingham et al. 2018). All experimental design problems now allow for generalis-
ability testing.

D.1 Location Finding
There are K objects on a d-dimensional space, and in this experiment we need to identify their locations θ = {βi}Ki=1 based
on the signals that the objects emit. We select designs ξ, which are the coordinates chosen to observe the signal intensity, in
an effort to learn the locations of the objects. Our spaces are restricted in ξ ∈ [−4, 4]d to make the problem more tractable.
T = 30 experiments are conducted both during training and during deployment time, which means that agents can only afford
to perform 30 experiments to achieve the highest information gain possible.



The total intensity at point ξ is the superposition of the individual intensities for each object,

µ(θ, ξ) = b+

K∑
i=1

α

m+ ||βi − ξ||2
,

where α is a constant, b > 0 is a constant controlling the background signal, and m > 0 is a constant controlling the maximum
signal. The total intensity is then used in the likelihood function calculation.

For an object βi ∈ Rd, we use a standard normal prior given by

βi ∼ Nd(0, I),

where 0 is the mean vector, and I is the covariance matrix, an identity matrix, both with dimension d.

The likelihood function is the logarithm of the total signal intensity µ(θ, ξ) with Gaussian noise σ. For a given design ξ, the
likelihood function is given by

y | θ, ξ ∼ N (logµ(θ, ξ), σ2).

The parameters we used are provided in the table below, and we note that K differs at deployment time for our generalisability
tests:

Parameter Value
K 2
d 2
α 1
b 0.1
m 0.0001
σ 0.5

Table 20: Location Finding Parameters

D.2 Constant Elasticity of Substitution
We have two baskets x,x′ ∈ [0, 100]3 of goods, and a human indicates their preference of the two baskets on a sliding 0-1 scale.
The CES model (Arrow et al. 1961) with latent variables (ρ,α, u), which all characterise the human’s utility or preferences for
the different items, is then used to measure the difference in utility of the baskets. We select the two baskets x,x′ in a way that
allows us to infer the human’s preferences. T = 10 experiments are conducted both during training and deployment time.

The CES model (Arrow et al. 1961) defines the utility U(x) for a basket of goods x as,

U(x) =

(∑
i

xρiαi

) 1
ρ

,

where ρ and α are latent variables defined with the prior distributions explained below. This utility function, which is a measure
of satisfaction in economic terms, is then used in the likelihood function calculation.

To formulate our CES experiment in the Bayesian framework, we need to define a prior distribution for each of the latent
variables. We follow the lead of Foster et al. (2020) and Blau et al. (2022) by using the following priors for (ρ,α, u),

ρ ∼ Beta(1, 1)
α ∼ Dirichlet([1, 1, 1])

u ∼ Log-Normal(1, 32).

The likelihood function is the preference of the human on a sliding 0-1 scale, which is based on U(x) − U(x′). For a given
design ξ, the likelihood function is given by,

µη = u · (U(x)− U(x′))

ση = νu · (1 + ∥x− x′∥)
η ∼ N (µη, σ

2
η)

y = clip(s(η), ϵ, 1− ϵ),



where ν = 0.005, ϵ = 2−22, and s(x) = 1
1+e−x is the sigmoid function. Notice that the normally distributed η is passed through

the sigmoid function, bounding η ∈ [0, 1]. Censoring/clipping is applied, which limits the distribution by setting values above
u = 1− ϵ to be equal to 1− ϵ, and values below l = ϵ to be equal to ϵ.

The only parameter that changes for our generalisability tests is ν, where we test for ν = 0.01 too. Other parameters remain
the same during training and deployment.

E Training Performance Plots
The plots that follow are the training performance of each agent under the hyperparameter combinations explained in Appendix
C. They all explain the rewards, or sPCE, that the agents are able to achieve (on average) at a particular point in training. These
are averaged across 10 agents trained under unique random seeds, as done in all of the statistics presented in this paper.
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Figure 4: sPCE at T = 30 training performance, under several hyperparameter combinations and algorithms, for the location
finding experiment. sPCE is computed using L = 1e5, displayed as a dotted line on the plots.
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Figure 5: sPCE at T = 10 training performance, under several hyperparameter combinations and algorithms, for the CES
experiment. sPCE is computed using L = 1e5, displayed as a dotted line on the plots.

F SUNRISE Tweaks
We explain how we tweaked the SUNRISE algorithm at deployment time, in an effort to offer more informative design choices.

One major change from our SUNRISE implementation and that explored by Lee et al. (2021) is how we use our ensemble of
agents at deployment time. Lee et al. (2021) choose to average the means of the TanhNormal distributions modelled by each
ensemble policy, and use this average as the next design to select. We empirically find that performance severely falls behind
that of the other algorithms through this evaluation method, at least for the location finding experiment. We therefore propose
two alternatives to evaluating the agents:

1. Randomly selecting a policy to sample an action from;



2. Forming a new TanhNormal distribution to sample actions from based on the average means and average variances of the
ensemble policies. The average of the means is used as the mean, and the average of the variances is used as the variance for
the new TanhNormal distribution.

In the results tables displayed for each experimental design problem, SUNRISE-20-A is the agent that follows the evaluation
method by Lee et al. (2021) using δ = 20. A similar naming convention is used for the other evaluation methods of SUNRISE-
20. SUNRISE-20-B are two distinct agents that randomly select a policy to sample an action from at deployment time, our first
alternative method. SUNRISE-20-C uses the average means and average variances to formulate a new policy to sample actions
from, our second alternative method. The underlying trained agent here is SUNRISE-20. The only change is how we deploy
SUNRISE-20 at deployment time through the methods explained.

F.1 Location Finding

We find that the first evaluation method yields superior performance for both sPCE and sNMC, since we are sampling an action
from a real distribution learnt during training, and not one that was combined through simply constructing a new distribution
based on averaging. Of course, other methods could be explored instead of averaging, or by forming an alternative distribution.
The results presented in the main body of this paper, and before this appendix, follow the first evaluation method we propose.

SUNRISE-20-A performs the worst across the board, as we find empirically. We can safely conclude that, at least in our
investigated approach, that the evaluation method proposed by Lee et al. (2021) does not offer the impressive results that
SUNRISE seeks to deliver. SUNRISE-20-C, while it performs slightly better, also fails to achieve useful values of sPCE.
SUNRISE-20-B offers performance comparable to the other algorithms investigated.

sPCE
K = 1 K = 2 K = 3 K = 4 K = 5

SUNRISE-20-A 5.947± 0.011 8.761± 0.019 8.533± 0.020 7.972± 0.020 7.539± 0.020
SUNRISE-20-B 6.340 ± 0.013 11.837 ± 0.012 12.133 ± 0.013 11.846 ± 0.014 11.445 ± 0.016
SUNRISE-20-C 6.125± 0.010 9.563± 0.019 9.597± 0.020 9.393± 0.021 9.110± 0.021

Table 21: sPCE results for different SUNRISE evaluation methods at T = 30 computed using L = 1e6, for the location finding
experiment. Means and standard errors are from 20000 rollouts, spread evenly across 10 agents trained under unique random
seeds.

sNMC
K = 1 K = 2 K = 3 K = 4 K = 5

SUNRISE-20-A 5.949± 0.011 8.896± 0.021 8.695± 0.023 8.074± 0.022 7.625± 0.021
SUNRISE-20-B 6.342 ± 0.013 12.555 ± 0.019 13.656 ± 0.029 13.345 ± 0.030 12.823 ± 0.032
SUNRISE-20-C 6.126± 0.010 9.792± 0.022 10.070± 0.027 9.919± 0.029 9.600± 0.029

Table 22: sNMC results for different SUNRISE evaluation methods at T = 30 computed using L = 1e6, for the location
finding experiment. Means and standard errors are from 20000 rollouts, spread evenly across 10 agents trained under unique
random seeds.

F.2 Constant Elasticity of Substitution

For the CES experiment, the first method performs slightly worse than the evaluation method by Lee et al. (2021), at least in
terms of sPCE. sNMC is largest for our first evaluation method, suggesting that the true EIG falls within a larger range between
the bounds – and can potentially be greater than the true EIG under the other two methods. The sNMC standard errors are the
largest for our evaluation method, though not significantly.

Whilst our second proposed method is consistent between both the location finding and CES experiments, the other two are not
in terms of sPCE. One may argue in favour of our first method, as we do, since we achieve the best sPCE and sNMC performance
on the location finding experiment, and only fail to achieve the highest sPCE for the CES experiment. To stay consistent, we
stick to our first evaluation method across both experimental design problems tackled in this paper, unless otherwise stated.



sPCE sNMC
ν = 0.005 ν = 0.01 ν = 0.005 ν = 0.01

SUNRISE-20-A 13.806 ± 0.022 12.277 ± 0.022 17.715± 0.092 12.851± 0.032
SUNRISE-20-B 13.633± 0.022 12.261± 0.023 19.815 ± 0.130 13.344 ± 0.042
SUNRISE-20-C 11.252± 0.035 10.062± 0.032 13.816± 0.066 10.418± 0.036

Table 23: sPCE and sNMC results for different SUNRISE evaluation methods at T = 10 computed using L = 1e7, for the CES
experiment. Means and standard errors are from 20000 rollouts, spread evenly across 10 agents trained under unique random
seeds.

G Source Code and Hardware
In this appendix, we explain how to find our source code, and the hardware we used in our experiments.

G.1 Source Code
Our code is publicly available as a GitHub repository at https://github.com/yasirbarlas/RL-BOED. As done by Blau et al.
(2022), we utilise Pyro (Bingham et al. 2018), Garage (The Garage Contributors 2019), and PyTorch (Paszke et al. 2019). Our
repository is built over that by Blau et al. (2022), which can be found at https://github.com/csiro-mlai/RL-BOED. Any additions
and changes are noted in the README.md file of our repository.

G.2 Hardware
All experiments were run on the Hyperion High-Performance Computer at City, University of London. A single NVIDIA A100
80GB PCIe GPU or NVIDIA A100 40GB PCIe GPU (only the VRAM differs) was used for each experiment, through the
SLURM Workload Manager. 4 CPU cores and 40GB of RAM were assigned to each agent for training. An Intel(R) Xeon(R)
Gold 6248R CPU @ 3.00GHz was used.


