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SUMMARY

We introduce a new concept for forecasting future events based on marker information.

The model is developed in the nonparametric counting process setting under the assump-

tions that the marker is of so-called high quality and with a time-homogeneous conditional

distribution. Despite the model having nonparametric parts, it is established herein that it

attains a parametric rate of uniform consistency and uniform asymptotic normality. In usual

nonparametric scenarios, reaching such a fast convergence rate is not possible, so one can

say that the proposed approach is super-efficient. These theoretical results are employed in

the construction of simultaneous confidence bands directly for the hazard rate. Extensive

simulation studies validate and compare the proposedmethodology with the jointmodelling

approach and illustrate its robustness for mild violations of the assumptions. Its use
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in practice is illustrated in the computation of individual dynamic predictions in the context

of primary biliary cirrhosis of the liver.

Some key words: Counting process; Dynamic prediction; Kernel hazard estimation; Nonparametric smoothing;

Survival analysis.

1. Introduction

This paper investigates a novel approach to understanding future survival when the

hazard depends on a developing marker process. Given some natural assumptions on the

marker process and the marker-dependent hazard, we establish herein that the proposed

technique achieves parametric rates of convergence. That is so even though the specifications

of the marker process and the marker-dependent hazard are fully nonparametric. Non-

parametric estimators with this property have been called super-efficient; see, e.g., Nielsen

(1999). This should not be mixed up with the notion of super-efficiency used in asymp-

totic parametric statistics when discussing optimality of estimators. The estimator proposed

here allows one to analyse and visualize survival forecasting using methodology related

to square-root-n-consistent mathematical statistics. In particular, we derive uniform con-

fidence bands based on approximations by Gaussian processes, proceeding similarly as in

statistical inference based on cumulative distribution functions, Kaplan–Meier estimators

or Nelson–Aalen estimators. While most of the mathematics of this paper is new, interpre-

tation of its results requires only conventional intuition. A key asymptotic requirement of

the proposed technique is that the nonparametric components involved are undersmoothed

with vanishing asymptotic bias. In this sense our approach is related to semiparametric

statistics. Implementation of the estimator in practice is facilitated via a fully automatic

smoothing methodology, also developed herein, based on an adapted version of cross-

validation. Our final approach is therefore fully data driven. Additionally, the present

research develops theory for uniform confidence bands for future development of condi-

tional hazards for individuals with a certain present marker level, thus allowing its first

practical implementation.

Development of the new methodology contained in this article requires two crucial

assumptions. The first one is that conditional hazards depend on time only through the

value of the marker process at this time point. We regard such markers as being of high

quality, a notion that goes back to Nielsen (1999); see also Nielsen (2000). Secondly, for the

marker process, we make a Markov-type assumption that allows us to predict the further

development of the marker. In our model we take a purely nonparametric view. The main

intuition behind our new approach to modelling the full survival system was already given

by Nielsen (2000) with some improved technical indications by Mammen & Nielsen (2007).

However, the practicalities and full technical consequences of this new approach were never

investigated and, as a result, the approach has never entered mainstream statistics nor has

it yet been implemented on real data.

The proposed methodology applies in many fields such as data mining or asset-liability

management; see Nielsen (2000). Below we discuss a health research example that requires

the forecast of the hazard rate function as a disease progresses. Specifically, in analysing

the primary biliary cirrhosis dataset of the Mayo Clinic (Therneau & Grambsch, 2000),

the objective is the prediction of clinical progression of patients diagnosed with primary

biliary cirrhosis, based on repeated measures of different biological markers and time to
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Future conditional hazard estimation 3

clinical progression. There exist multiple examples in the biostatistical literature with similar

modelling objectives, including, e.g., prostate-specific antigen and prostate cancer recur-

rence (Proust-Lima & Taylor, 2009) or CD4 counts and HIV infection (Fusaro et al., 1993;

Cui et al., 2023).

For the analysis of such data, individual dynamic prediction techniques have been pro-

posed, e.g., landmarking (Anderson et al., 1983; VanHouwelingen, 2007) or joint modelling

(Henderson et al., 2000; Rizopoulos, 2012). The landmarking approach uses individuals

alive at t and information on the biomarker up to t to fit a proportional hazard model and

estimate the probability of surviving up to t+ s (Ferrer et al., 2019); see Van Houwelingen

(2007) for an implementation where smoothing with respect to t has been included. The joint

modelling methodology estimates the distribution of the biomarker and the time to event,

and derives the conditional future event probability using past biomarker data (Proust-Lima

& Taylor, 2009; Rizopoulos, 2012). In this model, the marker process is usually described

through a linear mixed model with a stochastic componentWi for individual i, and the time

to event is usually modelled via a mixed proportional hazard model that includes the same

stochastic component Wi. The two submodels for the marker and survival are linked by

sharing the same stochastic component Wi, and the marker process is thus conditionally

independent of the survival times given Wi. Both approaches have been shown as being

powerful tools in statistical inference, especially for individual dynamic prediction (Ferrer

et al., 2019). However, both methodologies do not fully capture the stochastic structure of

the data. This is so because in landmarking one has a separate model for each value of the

landmark time t with biomarker data only considered up to t so that the two processes are

not temporally and mutually linked for all times. This induces that predictions at landmark t

are not consistent (in the sense of Jewell &Nielsen, 1993) with predictions at other landmark

times (Suresh et al., 2017; Ferrer et al., 2019). In contrast, the joint model approach relies

on the joint distribution of the two processes and is thus likely to provide consistent pre-

dictions. However, in practice, joint models suffer from simplifying parametric assumptions

that highly reduce the flexibility and stochasticity of the model and association between

the two processes (Ferrer et al., 2019). For instance, the shared stochastic componentWi is

almost always limited to a vector of time-independent random effects.

This paper contains a full asymptotic study for the case of one-dimensional marker pro-

cesses. We show that, under our two assumptions, the full survival system can be estimated

with parametric rates. This has important technical consequences. For example, our result-

ing forecast of the future hazard can be estimated uniformly consistently for any individual

starting the forecasting at any value of the marker process. Extended to this methodology,

a wild bootstrap approach, see Mammen (1992), is developed and provides both point-

wise and uniform confidence bands of the entire range of the future hazard. This is very

powerful and yields a real alternative to the commonly used parametric approach. Because

of the mathematical challenges of our approach, we have developed the full mathematical

insight described above for the one-dimensional marker case only. Possible extensions to

higher-dimensional markers are briefly discussed at the end of the paper.

2. Model formulation

Consider n individuals observed in the time interval [0,T] with survival times T1, . . . ,Tn.

The methodology proposed herein is developed under the same model formulation as in

Nielsen (2000). For i = 1, . . . , n, letNi be the counting process, which indicates the observed
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event for the ith individual, and let Zi be the exposure process taking values in {0, 1}, with 1

indicating that the ith individual is at risk to encounter the event of interest. Furthermore,

additional information for every individual is available in the form of a one-dimensional

predictable càdlàg marker process Xi(t), t ∈ [0,T]. We assume that N(n) = (N1, . . . ,Nn) is

an n-dimensional counting process with respect to the increasing, right-continuous filtration

Ft = σ {N(n)(s),X (n)(s),Z(n)(s); s 6 t}, t ∈ [0,T], where Z(n) = (Z1, . . . ,Zn) and X
(n) =

(X1, . . . ,Xn). The observed data are denoted by Xn = {X (n)(t),Z(n)(t),N(n)(t); t ∈ [0,T]}.

When, for each individual i,Xi(t) = xi ∈ R for all t ∈ [0,T], the present formulation defaults

to the time-invariant covariate setting.

The following assumptions are used throughout the article. The main assumptions are

the first two.

Assumption 1 (High-quality marker information). The stochastic processes (N1,X1,Z1),

. . . , (Nn,Xn,Zn) are independent and identically distributed with predictable intensity

λi(t)dt = E{dNi(t) | Ft−} = α{Xi(t)}Zi(t)dt,

where the conditional hazard α(·) depends on time t only via marker Xi(t).

Assumption 1 expresses the fact that the conditional hazard α(·) depends only on the

marker information and, in particular, not on time. Our second main assumption is a

Markov-type condition and concerns the dynamics of the marker processes Xi(t). In what

follows, s can be seen as landmark time, i.e., the time at which the prediction is to be

computed.

Assumption 2 (Markov-type assumption on the marker process). The conditional distribu-

tion of Xi(s + t), given Fs, Ti > s + t, Zi(s + t) = Zi(s) = 1, depends only on Xi(s) and t

and, in particular, not on s.

Assumptions 1 and 2 define a setting where it is possible to use previous data for future

prediction based only on marker information. A situation, as stated in Assumption 1, where

α(·) depends only on the marker is described by Yong et al. (1997), who argued that time

since infection of AIDS has little implication on its hazard. In this particular example,

Assumption 1 is covering the fact that the count of CD4 cells in the blood is way more

important than just the time since infection. Time is still part of the model through the

time-dependent covariates Xi, Ni and Zi. Time invariance of the marker process transition

probabilities stated inAssumption 2 allows using already observed developments of patients

in the past for future predictions. Methodology for assessing the validity of Assumptions 1

and 2 before applying the proposed approach in practice is provided in §B.2 of the

Supplementary Material. The same section also contains numerical evidence on the sen-

sitivity of the approach when either assumption is violated; the results indicate that the

method is robust to mild violations of both assumptions.

For x∗ in the interior of the support of Xi(t), we make the following additional assump-

tions that are discussed in the Supplementary Material.

Assumption 3. The supportA of Xi(t) is a finite closed interval that does not depend on t.

The conditional density f (s, s+t, x, z) of {X(s),X(s+t)}, given {Z(s),Z(s+t)} = (1, 1) exists,

and is twice continuously differentiable with respect to x and z for δT 6 s 6 s+ t 6 T − δT ,

x, z ∈ A. The conditional density f (s, z) of X(s), given Z(s) = 1 and the functions
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Future conditional hazard estimation 5
∫

A

f (s, s+ t, x, z)dz,

∫

A

α(z)f (s, s+ t, x, z)dz

exist and are twice continuously differentiable with respect to x for 0 6 s 6 s+t 6 T , x ∈ A.

The conditional hazard α(x) is twice continuously differentiable for x ∈ A and bounded

away from 0. For some constantC > 0, we have |f (s, s+t1, x, z)−f (s, s+t2 , x, z)| 6 C|t1−t2|

for s, t1, t2 > 0, s+ t1, s+ t2 6 T , δT 6 t1, t2 6 T − δT , x, z ∈ A.

Assumption 4. The expectations γ (s) = E{Zi(s)} and γ (t, s) = E{Zi(t + s)Zi(s)} exist

and are continuous. For some constant C > 0, we have |γ (t1, s) − γ (t2, s)| 6 C|t1 − t2| for

s, t1, t2 > 0, s + t1, s + t2 6 T , δT 6 t1, t2 6 T − δT . Furthermore, for δT 6 t 6 T − δt,

the term Ŵ(t, x∗) is bounded from below and, for x ∈ A, the function E(x) is bounded from

below, where

Ŵ(t, x∗) =

∫ T−t

0

γ (t, s)f (s, t + s, x∗, z)dsdz, E(x) =

∫ T

0

γ (s)f (s, x)ds.

Assumption 5. Kernel K has bounded support, [−1, 1] say, and is continuously differ-

entiable on [−1, 1]. The bandwidths b1 and b2 are equal to cb,1n
−ρ1 or cb,2n

−ρ2 for some

cb,1, cb,2 > 0, 1/4 < ρ1, ρ2 < 1/3.

Assumption 6. It holds that

pr{|Xi(s+ t) − Xi(s)| 6 δ, Zi(s+ t) = 1 | Xi(s) = z, Zi(s) = 1} 6 δκ(t)

for all z ∈ A, 0 6 s < s+ t 6 T and small enough δ > 0, where κ is a positive function with
∫ T
0 κ(t)dt 6 Cκ for a constant Cκ > 0.

Assumption 7. For some constantC > 0, we haveE{|Xi(s+t1)−Xi(s+t2)|
4} 6 C|t1−t2|

2

for s, t1, t2 > 0, s+ t1, s+ t2 6 T , δT 6 t1, t2 6 T − δT .

In the sequel it is shown that, under these conditions, it is possible to estimate the marker

conditional future hazard with starting point s,

hx,s(t) = pr{Ti ∈ (s+ t, s+ t+ dt) | Xi(s) = x, Zi(s+ t) = Zi(s) = 1}/dt, (1)

where Ti is the survival time of individual i. Assumption 2 allows us to write hx,s(t) = hx(t).

We will use hx,s(t) if wewant to underline when the prediction is made, but keep the notation

hx(t) most of the time. Our main results contain limiting distributions for estimators of

process hx(t) for a fixed value of x and for the consistency of uniform confidence bands

based on wild bootstrap. Trivially, we have

hx,s(t) = hx(t) = pr{Ti ∈ (s+ t, s+ t+ dt) | Xi(s) = x, Ti > s+ t}/dt,

under the additional assumption of noninformative censoring, i.e.,

pr{Ti ∈ (s+ t, s+ t+ dt) | Xi(s) = x, Ti > s+ t}

= pr{Ti ∈ (s+ t, s+ t+ dt) | Xi(s) = x, Zi(s+ t) = Zi(s) = 1}.
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6 D. Bagkavos, A. Isakson, E. Mammen, J. P. Nielsen AND C. Proust-Lima

Under this assumption, our approach yields an estimator of the conditional survival

function, defined by simply integrating the conditional hazard estimator appropriately.

Consequently, the prediction of the future conditional hazard becomes an estimation

problem. Thus, our approach can be considered as an in-sample forecasting method. In-

sample forecasting has been introduced using structural models by Martínez-Miranda et al.

(2013) and has been used in reserving. See alsoHiabu et al. (2016), Bischofberger et al. (2019)

andMammen et al. (2021). Our framework allows us to write the marker conditional future

hazard as

hx(t) = E[α{Xi(s+ t)} | Xi(s) = x, Zi(s) = Zi(s+ t) = 1].

Let Kb(·) = b−1K(·/b) be a kernel with bandwidth b. By Assumption 5, K is a contin-

uously differentiable function with bounded support. Estimators for α(z) and hx(t) have

been proposed by Nielsen (2000) and we use them here as well. For bandwidths b1 and b2,

define

α̂i,b1(z) =

∑

k |=i

∫ T
0 Kb1{z− Xk(s)} dNk(s)

∑

k |=i

∫ T
0 Kb1{z− Xk(s)}Zk(s)ds

and

ĥx,b1,b2(t) =

∑n
i=1

∫ T
0 α̂i,b1{Xi(t+ s)}Zi(t+ s)Zi(s)Kb2{x− Xi(s)} ds
∑n

i=1

∫ T
0 Zi(t+ s)Zi(s)Kb2{x− Xi(s)} ds

. (2)

To simplify the notation, we also write α̂i and ĥx for α̂i,b1 and ĥx,b1,b2 if dependence on

bandwidths does not need to be highlighted. Estimator α̂i is a usual leave-one-out estimator

for the hazard. Its use as an approximation of α(·) is intuitive since α̂i can be thought of

as the natural extension to the present setting of the local likelihood principle in modelling

a constant hazard rate function; see also Nielsen & Linton (1995). Also, ĥx(t) arises from

using a kernel estimator of the conditional density of Xi(s) and combining it with α̂i. For

achieving parametric rates, it is important that the bias terms arising in the smoothing are

of order o(n−1/2). This can be achieved by choosing the bandwidths b1 and b2 such that

b21, b
2
2 = o(n−1/2); again, see Assumption 5. Our estimators also work when some data are

right censored; this is controlled via the individual time-dependent exposure measuresZi(·).

3. Asymptotic theory

This section formulates the main result of the present research that states that the

proposed hazard estimator yields a parametric rate of uniform convergence and is asymp-

totically normal. On first sight this fact seems very surprising since we estimate the hazard

rate nonparametrically. For the pointwise case, this has been already observed by Nielsen

(2000); see also relatedmodels studied by Castellana&Leadbetter (1986), Kutoyants (2004),

Bosq (2012) and Aeckerle-Willems & Strauch (2022), where parametric rates show up in

nonparametric settings. Thus, these models differ from other nonparametric models where

estimators only allow a slower convergence rate compared to parametric estimation prob-

lems. The main difference lies in the fact that typically in nonparametric problems only local
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Future conditional hazard estimation 7

information can be used, whereas in our model all individuals with markers Xi(·) having

visited the neighbourhood of x at some time point s 6 T − t add information for the

estimation of hx(t).

THEOREM 1. Suppose that Assumptions 1–7 apply for an x = x∗ in the interior of the

support of Xi(t). Then, for δT > 0, it holds that

n−1/2(ĥx∗ − hx∗) → Gx∗

in distribution, weakly in ℓ∞([δT ,T−δT ]), whereGx∗ is a tight Gaussian process taking values

in ℓ∞([δT ,T−δT ])withmean 0 and covariance6(t1, t2) stated in the SupplementaryMaterial.

For the proof of Theorem 1, see the Supplementary Material. There, we also argue that

the result of the theorem also holds for the boundary points x∗ of A if in the smoothing

step (2) the convolution kernel Kb2(x− u) is replaced by a boundary-corrected kernel or if

we use local linear estimation instead of local constant smoothing. We conjecture that the

result of Theorem 1 also holds if the interval [δT ,T − δT ] is replaced by [0,T − δT ]. But

this would require additional detailed assumptions on the speed of convergence of the joint

density of {Xi(t1),Xi(t2)} to infinity for t1 − t2 → 0. Theorem 1 is used in the next section

as the basis for constructing pointwise and uniform confidence bands. Implementation of

the proposed estimator in practice requires the development of a data-driven, consistent

bandwidth selection rule that is discussed in detail in the Supplementary Material.

4. Confidence bands

We now introduce a bootstrap procedure for the construction of pointwise and uniform

confidence sets. For a critical discussion of confidence sets based on Gaussian approx-

imations, see Bie et al. (1987). Our approach is a slight modification of wild bootstrap

procedures recently proposed in counting process models (Beyersmann et al., 2013; Bluhmki

et al., 2019). Because in our case the estimation error is not a martingale, we need to adapt

this approach to our setting.We use the multiplier bootstrap, as presented by Chernozhukov

et al. (2013). Fix x∗ in the interior of the support of Xi(t). Define

Wi(t) =

∫ T

0

α̂i,b1{Xi(t+ s)}Zi(t+ s)Zi(s)Kb2{x∗,Xi(s)} ds.

Then

n−1
n

∑

i=1

Ŵ̂(t, x∗)
−1Wi(t) = ĥx∗(t),

where Ŵ̂(t, x) = n−1
n

∑

i=1

∫ T−t

0

Zi(t+ s)Zi(s)Kb2{x,Xi(s)} ds.
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8 D. Bagkavos, A. Isakson, E. Mammen, J. P. Nielsen AND C. Proust-Lima

In the proof of Theorem 1 it is shown that ĥx∗(t) = A(t) + B(t) + oP(n−1/2), where

A(t) = n−1
n

∑

i=1

∫ T

0

gt,x∗{Xi(s)} dMi(s),

B(t) = n−1
n

∑

i=1

∫ T

0

[α{Xi(t+ s)} − hXi(s)(t)]Zi(t+ s)Zi(s)Kb2{x∗,Xi(s)} ds

and

gt,x(z) =

∫ T−t
0 γ (t, s)f (s, t+ s, x, z)ds

∫ T
0 γ (s)f (s, z)ds

.

Our bootstrap estimator of the distribution of the process ĥx∗(·) − hx∗(·) is the conditional

distribution of h̄x,B(·) = AB(·) + BB(·), given all observations Xn = {Ni(t),Zi(t),Xi(t) : 1 6

i 6 n, 0 6 t 6 T with Zi(t) = 1}, where

AB(t) = n−1/2
n

∑

i=1

∫ T

0

ĝi,t,x∗{Xi(s)}Vi[dNi(s) − α̂i{Xi(s)}Zi(s)ds],

BB(t) = n−1/2
n

∑

i=1

Vi{Ŵ̂(t, x∗)
−1Wi(t, x∗) − ĥx∗(t)}.

Here the Vi are independent and identically distributed normal random variables inde-

pendent of (Ni,Xi,Zi) with expectation 0 and variance 1. Furthermore, we have used the

following leave-one-out estimator of gt,x(z):

ĝi,t,x(z) = n−1
n

∑

j=1, j |=i

∫ T−t

0

Êj{Xj(t+ s)}−1Kb2{z,Xj(t+ s)}Zj(t+ s)

× Zj(s)Kb2{x,Xj(s)} ds.

We apply the bootstrap to get an approximation for the quantiles of the distribution

of the random variables σ−1
Gx∗

(t){ĥx∗(t) − hx∗(t)} for fixed t and for the supt∈[δT ,T−δT ]

σ−1
Gx∗

(t)|ĥx∗(t) − hx∗(t)|. Denote the asymptotic distributions of the random variable by

prG
∗
x(t) and of the supremum by pr

G
∗
x,M . Here, σ 2

Gx∗
(t) is the variance of ĥx∗(t) − hx∗(t). The

bootstrap estimators of these quantities are given by the conditional distribution pr
h∗
x∗,B

(t)

of

h∗
x∗,B

(t) = σ̂Gx∗
(t)−1{AB(t) + BB(t)},

and of the conditional distribution pr
h∗
x∗,B,M of supδT6t6T−δT

|h∗
x∗,B

(t)|. Here σ̂ 2
Gx∗

(t) is an

estimator of the variance of ĥx∗(t) and is equal to E{h̄x∗,B(·)2 | Xn}. In the proof of

Theorem 2 below, which is provided in the Supplementary Material, we argue that σ̂ 2
Gx∗

(t)

converges to the variance σ 2
Gx∗

(t) of the limiting Gaussian process. The consistency of the

bootstrap approach is established in the next theorem.
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THEOREM 2. Under the assumptions of Theorem 1, h∗
x∗,B

(t) approximates the distribution

of G∗
x∗

(t) pointwise and uniformly, i.e., in the pointwise case it holds that

dK(pr
h∗
x∗,B

(t)
, prG

∗
x∗

(t)) → 0

in probability for all t ∈ (0,T) and in the uniform case it holds that

dK(pr
h∗
x∗,B,M , pr

G
∗
x∗,M ) → 0

in probability, where dK(·, ·) denotes the Kolmogorov distance.

Implementation details for the 1−α pointwise bootstrap confidence intervals and uniform

bootstrap confidence bands are provided in the Supplementary Material.

5. Numerical examples

5.1. Simulation study

The simulation study in this section assesses the performance of the proposed estimator

and the accuracy level of the associated confidence sets. We generated data according to the

high-quality marker (HQM) model described in § 2 with a univariate marker. We consid-

ered three different functional shapes for the marker-only hazard, α1(x) = exp (2x− 2)/15,

α2(x) = 4(x − 0.3)4 and α3(x) = 4[1 + exp {−4(x− 1)}]−1, displayed in Fig. 5 in the

Supplementary Material. These hazards are dependent only on a marker measurement x

and, thus, satisfy Assumption 1. Marker X is simulated in the following way: first, we

simulate a Gaussian random walk G(tg) with jump sizes that vary according to a nor-

mal distribution N(0, 0.072) on the grid {td/10: td = 0, . . . , 100} ∋ tg and with uniform

randomly chosen starting points G(0) = x0 = 0.1, 0.2, . . . , 0.9. The resulting continuous

process, marker X(t) for all t ∈ [0, 10], was derived via linear interpolation between the

values G(tg). To mimic cohort follow-ups, we then considered that this marker was only

observed at individual-specific discrete follow-up visits t̃ = a + D, where a = 1, . . . , 9

and D ∼ N(0, 0.072). Since the Gaussian random walk is a homogeneous Markov process,

Assumption 2 is also satisfied.

Given the hazard αj, j = 1, 2, 3, and markerX , we then simulate n independent one-jump

counting processes, each with intensity αj{X(t)} before a jump and 0 after. If a jump did not

happen before 10, the survival time T was right censored by 10.

We evaluated six settings based on samples of size n = 300, 600 and the three marker-

only hazards. In each setting we calculated 1000 realizations of estimator ĥx(t) defined

in (2) together with local and uniform confidence bands; see also (A1) and (A2) in the

Supplementary Material. This was done for marker values x equal to q0.1, q0.25, q0.5, q0.75,

q0.9, where qz is the empirical z quantile of all observed marker values. We compared ĥx(t)

with the true hazard hx(t) defined in (1). Since the true hazard hx(t) does not have a closed

form, it was numerically approximated using the relation hx(t) = ∂/∂t{− logSx(t)}, where

Sx(t) was approximated through simulations. The bandwidths were set to b1 = b2 = b with

b chosen as a minimizer of the mean integrated squared error

mise(hx, ĥx,b,b) = E

[ ∫ 10

0

{ĥx(t) − hx(t)}
2 dt

]

.
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Different values of b are selected for each combination of x, n and α. We did not simulate

the cross-validation bandwidths as proposed in the Supplementary Material because, due

to the large number of settings, such a calculation would be computationally too complex.

Under the aforementioned settings, we performed extensive simulations to quantify the

relative bias of ĥx(t) and the coverage rates of the associated pointwise and uniform confi-

dence bands. Because of space restrictions, graphical illustrations of the results are deferred

to the Supplementary Material. In summary, the simulations indicate that the methodology

generally provides a very small bias, which decreases as the sample size increases. Further-

more, the standard deviation is much larger compared to the bias, which aligns with the

theoretical findings. Nevertheless, for marker-only hazards with a very low value, the rela-

tive bias is substantial. This is not surprising, as a low marker-only hazard value leads to a

smaller number of observed events that do not allow for accurate estimations. Increased bias

is also observed at boundary values of time, e.g., at the first or last year that affect the cov-

erage rates of the 95% pointwise and uniform confidence bands, as can indicatively be seen

in Fig. 1. The figure suggests that boundary effects in combination with small marker-only

hazard values increase the coverage error of the proposed technique. In the Supplementary

Material we argue that increasing the sample size slightly improves the coverage error (see

Fig. 10 therein); nevertheless, effective treatment of the issue necessitates the use of a local

linear estimator, i.e., estimator h̃x(t) that is defined in the Supplementary Material.

Additional simulations were performed for a smaller sample size of n = 50 patients.

The estimator captured the key elements of the marker-only hazard and gave reasonable

predictions, but the quality of inference was not perfect (results not shown). In the perspec-

tive of proposing prediction tools, we encourage the use of large enough sample sizes, as

recommended in the literature (e.g., Riley et al., 2020). Indeed, too small samples may pro-

vide inaccurate individual predictions, in particular, in the case of complex relationships

with the marker.

5.2. Comparison with the joint modelling methodology

In biomedical research, the joint modelling methodology of the longitudinal marker

and the time to event have been proposed to compute dynamic individual predictions

(Rizopoulos, 2012; Ferrer et al., 2019). Here we compare the HQM estimator and joint

modelling estimators when data are generated according to the framework described in § 5.1.

The comparison is based on the values of the model’s estimatedMISE, area under the curve

and Brier score metrics. The future conditional survival function (given the information Fs

up to s) is estimated by

STRUE
⋆ (s+ t | Fs) = pr{T⋆ > s+ t | X⋆(s),T⋆ > s}, (3)

where X⋆(s) is the marker history of an individual ⋆ before landmark time s.

The joint modelling estimator consists of two parametric submodels that are linked by

a shared latent structure. We consider here the classical specification with a linear mixed

model for the longitudinal marker measurements and a proportional hazard model for the

time to event:

Xi(t) = mi(t) + εi(t) = Fi(t)
Tβ + Ri(t)

TBi + εi(t),

λi(t) = λ0(t) exp{WT
i γ +mi(t)η}.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/2/asaf008/7994460 by guest on 30 April 2025

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf008#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf008#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf008#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf008#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf008#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf008#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf008#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asaf008#supplementary-data


Future conditional hazard estimation 11

89.19% 94.09%

96.89% 97.29%

90.80% 97.90%

85.47% 90.08%

82.77% 87.47%

73.40% 83.40%

88.20% 91.60%

85.97% 94.59%

91.70% 94.70%

76.80% 82.60%

82.50% 92.50%

88.89% 95.20%

90.60% 91.30%

91.30% 92.40%

88.60% 91.40%

a1 a2 a3
q

0
.1

q
0
.2

5
q

0
.5

q
0
.7

5
q

0
.9

0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

Year

C
o
v
er

ag
e 

ra
te

Fig. 1. Coverage rate of the pointwise (red) and uniform (blue) confidence bands for the marker-only hazards
αj, j = 1, 2, 3, for n = 300 individuals and marker values x at the 0.1, 0.25, 0.50, 0.75 and 0.90 quantiles of
the empirical marker distribution. The exact rates for the uniform confidence band computed on the total time
window (blue) or computed while ignoring the first and last year (green) are also reported. The confidence bands

are based on 1000 realizations and a bootstrap with 1000 repetitions.

Here Fi(t) and Ri(t) are covariate vectors, including functions of time, that are associ-

ated with the vector of fixed effects β ∈ R
p and the vector of individual random effects

Bi ∼ N(0,D) with unknown D, respectively. The measurement errors εi(t) ∼ N(0, σ 2)

and are independent of Bi. The instantaneous risk of event is defined according to the

baseline hazard λ0, and a linear predictor that includes covariates Wi and a function of
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the marker trajectory, in this example mi(t), the underlying true current marker level of

individual i. In this specific setting, the baseline hazard λ0 is approximated by cubic splines

with five internal knots, and considered a linear regressionwith time, i.e.,Fi(t) = t,Ri(t) = t,

and no adjustment for covariates, i.e.,Wi = 0. The joint model is fitted on all the longitu-

dinal and survival information within the maximum joint likelihood framework using the

JM package (Rizopoulos, 2010) in R (R Development Core Team, 2025). The numerical

integration involved in the loglikelihood computation is performed by a pseudo-adaptive

Gauss–Hermite quadrature with nine knots, and optimization of the loglikelihood was

achieved by an expectation-maximization algorithm. See Rizopoulos (2012) and Ferrer et al.

(2019) for further details.

The two methodologies were trained on samples of n = 300, 600 individuals and the

marker-only hazards α1,α2,α3, corresponding to a total of six scenarios. Their predictive

performance was then compared on an external sample of 100 new individuals. Once the

joint modelling was fitted, the future conditional survival function (3) was computed at

different landmark times s and for different horizons t, using the parametric fit described

above. For the HQM estimator, we used

Ŝ
HQM
⋆ (s+ t | Fs) = exp

{

−

∫ t

0

ĥx⋆(u)du

}

,

where x⋆ is the last marker measurement X⋆(s) of an individual ⋆ before landmark time s.

Note that, since the marker is Markov and the marker-only hazards do not directly depend

on time, the future conditional hazard hx(t) is independent of the landmark time s. For

comparing the predictive performances of the two approaches, we considered three differ-

ent landmark times, 1.5, 3.5 and 5.5, leading to 18 cases. For each case, we computed 100

realizations of the conditional survival estimate of each individual ⋆ based on their marker

data up to the landmark time s. Implementation details for all three metrics are provided in

the Supplementary Material, along with graphical illustrations of all simulation results.

In summary, in all cases of the MISE and the area-under-the-curve simulations (36

instances in total) the HQM model systematically outperformed the joint modelling

approach. This is probably due to the parametric specification of the joint modelling that

assumes a log-linear form for the hazard that is not compatible with the α2 and α3 cases.

For α1, although both approaches yield close MISES, the HQM model performs slightly

better than joint modelling in all instances. This might be due to the misspecification of

the parametric model for the marker that was generated as a random walk rather than an

individual-specific linear trajectory. The HQM model is better than joint modelling in the

Brier score simulations too; however, in this case, their Brier score metric values are very

close to each other and, especially for α2, they can be regarded as equivalent.

6. Application

The methodology developed in the previous sections is applied for predicting the clinical

progression of patients diagnosed with primary biliary cirrhosis (PBC) of the liver, based

on the publicly available dataset pbc2 of the Mayo Clinic (Therneau & Grambsch, 2000).

The dataset contains information on a randomized clinical trial of the D-penicillamine

versus placebo for a total of 312 patients who met certain eligibility criteria. The patients

were followed up for a maximum of 13 years between 1974 and 1984. Repeated measures of
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Fig. 2. The HQM estimator (solid) with pointwise (red dashes) and uniform (blue dashes) confidence bands for
the future, conditional on bilirubin, (a) hazard and (b) survival function for the next 10 years.
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Fig. 3. The HQM estimator (solid) with pointwise (red dashes) and uniform (blue dashes) confidence bands for
the future, conditional on albumin, (a) hazard and (b) survival function for the next 10 years.
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different biological markers were collected over time, including albumin, bilirubin and alka-

line phosphatase along with time to clinical progression defined as the minimum date of

death or transplantation.

We consider two high-quality markers for the prediction of clinical progression in PBC.

These are bilirubin (normal range 0.2 to 1.2 mg/dl) and albumin (normal range 3.4 to

5.4 g/dl). Both are produced by the liver and according to Lammers et al. (2015) and

Hirschfield et al. (2018) are known to correlate with death. A high concentration of biliru-

bin and a low concentration of albumin indicates a liver dysfunction. Under Assumption 1,

the risk of clinical progression is independent of time, given the current marker level.

Assumption 2 expresses the fact that the future level of either marker depends on its current

level and the time elapsed in between the patient’s evaluations. For our methodology to be

applicable, we need (a) to assume that the markers are observed without measurement error

and (b) to interpolate between the marker measurements and extrapolate linearly at the last

measurement. This is necessary as we assume marker X to be continuous. More details are

discussed by Fusaro et al. (1993) andNielsen (1999). Furthermore, we assume that the expo-

sure Z for patient i is Zi(s) = I(s < ti), where ti is the time of clinical progression of patient

i and I(·) is the indicator function.

Our model predictions based on each marker are illustrated in Figs. 2 and 3 with four

different marker values: 1, 4, 7, 10 mg/dl for bilirubin, and 2, 3, 4, 5 g/dl for albumin. The

values are chosen evenly based on the range of around 90% of the respective marker data,

which is 0.1–10 mg/dl for bilirubin and 1.5–5 g/dl for albumin. Both the future conditional

hazard and the future conditional survival function are predicted for 10 years with the 95%

pointwise and uniform confidence bands. In each example, hx(t) is estimated by ĥx,b1,b2(t),

given in (2) with bandwidths determined by cross-validation; full details on obtaining the

bandwidths for each example are provided in the Supplementary Material. The predicted

hazard of clinical progression and the progression-free survival do not seem to change

with the bilirubin level. For albumin though, we highlight a higher risk of clinical progres-

sion in patients with lower concentrations of albumin. For instance, the predicted five-year

progression-free survival decreases from approximately 0.85 for an albumin concentration

of 5 g/dL to 0.48 for an albumin concentration of 2 g/dL. Because right censoring is present,

the study is not completely run off and, thus, the survival function does not go all the way

to zero.

For the albumin marker, the first level considered, x = 2 g/dl, corresponds to the first

percentile of the marker’s distribution and therefore lies on the boundary. Consequently, the

confidence bands of the estimator are wider than those of the rest marker levels, due to the

underperformance of the local constant estimator on the boundary. This issue has also been

demonstrated in the coverage rate simulations in the SupplementaryMaterial where it is also

shown that boundary correction remedies this deficiency. Finally, see the Supplementary

Material for a simultaneous application of the HQM and joint modelling methodologies

using the pbc2 dataset.

7. Conclusion

This paper is a first piece of work integrating the super-efficient approach into main-

stream theory of mathematical statistics. The estimation procedure along with confidence

bands and a bandwidth selection rule is implemented in the R package HQM (Bagkavos et al.,

2022) together with an estimation example based on time-invariant covariates. We showed
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in an illustration and a comparative simulation study that our new method is already of

practical use in some important applied problems such as the dynamic individual predic-

tion of health events. However, further extensions are needed so that the method becomes

fully operational in applied statistics.

First, an immediate and unproblematic extension would be to allow for categorical vari-

ables driving either the marker process or the marker-dependent hazard or both. Second,

an extension of the present methodology to multi-dimensional markers may help in some

contexts to achieve the high-quality property, i.e., the assumption that the hazard depends

only on the marker process. However, this would require a quite different and much more

complex mathematical theory that needs very careful modelling of the marker process. An

interesting alternative where a large part of the mathematical theory of this paper could

be used would be based on one-dimensional marker indices. In such an approach one firstly

reduces the markers to a one-dimensional composite indicator defined as a weighted sum of

the markers where weights are internally estimated, and secondly applies the super-efficient

methodology as described here to the one-dimensional composite indicator. This would

thus lead to a semiparametric extension of the super-efficient model for multi-dimensional

markers. Another semiparametric extension multiplies the fully nonparametric marker-only

hazard model by a parametric dependency on time. Extending our modelling framework to

such a semiparametric marker-dependent hazard would still result in a parametric rate of

convergence allowing uniform confidence bands based on transformed Gaussian processes.

Finally, we assumed that the marker was measured without error and in continuous time,

with the latter assumption being achieved by interpolation. Extending the methodology to

handle noisy and intermittently missing marker observations, as done in the parametric

joint modelling approach with an underlying latent marker process (Rizopoulos, 2012), is

another direction of future research.

Supplementary material

The Supplementary Material includes additional simulation results and illustrations,

discussion of the assumptions, auxiliary lemmas, and proofs of Theorems 1 and 2.
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