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Abstract
We present a game-theoretic model of a polymorphic cancer cell population where the
treatment-induced resistance is a quantitative evolving trait. When stabilization of the tumor
burden is possible, we expand the model into a Stackelberg evolutionary game, where the
physician is the leader and the cancer cells are followers. The physician chooses a treatment
dose to maximize an objective function that is a proxy of the patient’s quality of life. In
response, the cancer cells evolve a resistance level that maximizes their proliferation and
survival. Assuming that cancer is in its ecological equilibrium, we compare the outcomes
of three different treatment strategies: giving the maximum tolerable dose throughout, cor-
responding to the standard of care for most metastatic cancers, an ecologically enlightened
therapy, where the physician anticipates the short-run, ecological response of cancer cells to
their treatment, but not the evolution of resistance to treatment, and an evolutionarily enlight-
ened therapy, where the physician anticipates both ecological and evolutionary consequences
of the treatment. Of the three therapeutic strategies, the evolutionarily enlightened therapy
leads to the highest values of the objective function, the lowest treatment dose, and the lowest
treatment-induced resistance. Conversely, in our model, the maximum tolerable dose leads
to the worst values of the objective function, the highest treatment dose, and the highest
treatment-induced resistance.

Keywords Stackelberg evolutionary games · Evolutionary cancer therapy · Evolutionary
game theory · Resistance · Heterogeneity · Mathematical oncology

1 Introduction

Metastatic cancer, characterized by the spread of malignant cells from its original site to
other parts of the body, remains largely incurable, with cancer death rates declining by only
1.5 percent per year between years 2001 and 2017 [37, 42, 60].

This lack of progress in metastatic cancers is, in part, due to the standard of care in
metastatic cancers, which typically applies a drug or drug combination at maximum tolerable
dose (MTD), either continuously or in predefined treatment cycles [23, 25, 27, 28, 80]. The
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same regimen continues until there is unacceptable toxicity, unambiguous evidence of tumor
progression, or cure. However, in metastatic cancers, cure is rare [21, 68, 70].

The goal of killing as many cancer cells as fast as possible may be evolutionarily
unwise [22, 24, 28, 74, 75, 86]. This is because MTD imposes a very strong selection pres-
sure for the evolution of treatment-induced resistance, which subsequently leads to treatment
failure [1, 22, 24, 36, 42, 53, 61, 84, 85, 92].

Evolutionary cancer therapies (also known as adaptive therapies) provide an alternative
to the standard of care [28, 31, 48, 56, 74, 75]. Evolutionary therapies aim to manage
treatment-induced resistance in cancer cells by anticipating and steering their ecological
and evolutionary dynamics. Such therapies integrate mathematical models, known cancer
biology, and patient-specific data to improve care. Different therapy goals lead to different
types of evolutionary therapy:

• Delaying progression or tumor burden stabilization: In situationswhere curative therapies
are too risky or unavailable, evolutionary therapies strive to prolong the time to progres-
sion (clinical trials NCT02415621, NCT03511196, NCT05393791, NCT03543969, and
NCT03630120) or, when possible, to stabilize the tumor burden by maintaining a tumor
burden that is viable for the patient (clinical trial NCT05080556). In all named trials, the
goal of treatment has shifted from “treat to eradicate” to a less ambitious but more attain-
able “treat to delay progression” or “treat to contain” [2, 17, 51, 84, 86]. The strategy of
stabilization of an incurable disease has been motivated by the success of similar strate-
gies outside of oncology, for instance, when treating human immunodeficiency virus
(HIV) [13, 18, 49] and diabetes [14, 87].

• Cure: Recently, there have been attempts to cure metastatic cancers through extinc-
tion (or first strike—second strike) evolutionary therapy (clinical trials NCT04388839,
and NCT04343365). This therapy aims at cure by applying a “first strike” treatment
to decrease the tumor burden below a critical threshold, followed by “second strike”
treatments aiming at cancer eradication [29, 32, 33].

The first and most well-known trial based on evolutionary therapy is Zhang et al.’s trial
(NCT02415621), which aimed at delaying cancer progression. In this trial, patients with
metastatic castrate-Resistant Prostate Cancer (mCRPC) were given abiraterone until their
prostate specific antigen (PSA, a blood biomarker of tumor burden) dropped below 50%
of its initial value [92, 93]. At this point, the abiraterone treatment was stopped and re-
administered only when the PSA returned to its initial value. Then a new therapy cycle
started. This led to cycles on and off abiraterone in response to the patients’ PSA levels.
While Zhang et al.’s protocol eventually fails and progression occurs, it happens much later
than with the standard of care [92, 93]. As of the time of writing, 12 of 16 patients have
progressed (median time to progression of about 30 months compared to about 14 months
for the standard of care), though after six years, four patients continue to cycle without any
indication of disease progression [93]. Zhang et al.’s adaptive protocol is currently repeated
in trial NCT05393791, with nearly 200 patients.

Despite the success of Zhang et al.’s trial, theory tells us that one could do even better for
this target group of patients. Cunningham et al. [17] demonstrated with a variant of Zhang et
al.’s model [92] that stabilization of the tumor burden may be possible in mCRPC. Further,
they showed that even when it is unclear at what tumor burden one should stabilize, it is
often possible to reach this stable tumor burden by gradually decreasing the dose whenever
the tumor burden is decreasing, starting from the maximum tolerable dose [28]. Such a dose
reduction therapy is currently being tested in patients with relapsed Platinum-sensitive High-
Grade Serous or High-Grade Endometrioid Ovarian Cancer (clinical trial NCT05080556). In
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[17] and [77] a potentially evenmore effective approach is explored, a dose titration protocol,
where the treatment starts with a very low dose, which is gradually increased whenever the
tumor burden grows and decreased whenever it decays. These theoretical results and the
mentioned ongoing clinical trial in ovarian cancer provide motivation for our present work,
where we analyze what the best constant treatment dose is if cancer cannot be cured but can
be stabilized at a viable tumor burden.

To do so, we use an evolutionary version of the leader-follower games originally intro-
duced in economics to conceptualize interactions with an imbalance in power between firms
in oligopolisticmarkets by theGerman economist von Stackelberg [38, 73]. Indeed, the physi-
cian and the cancer cells engage in a type of leader-follower game: The physician chooses a
treatment dose to maximize an objective function expressing the patient’s quality of life and
the cancer cells adapt to this treatment, in a way that affects the physician’s objective [75].
The difference with standard leader-follower games is that cancer cells are not modeled
as rational players but as playing an evolutionary game that determines the cell types that
emerge, their population size, and their evolutionary traits [5, 11, 20, 39, 81].

The combination of these two levels of interaction (between the physician and cancer cells
and between the cancer cells themselves) results in a game that some of us have recently
termed a Stackelberg evolutionary game [45, 66, 76]. Stackelberg evolutionary game theory
applies to situations with a rational player (the physician in the case of cancer treatment)
and evolutionary followers, which can be a community of populations, species, or types that
evolve by natural selection (cancer cells in the case of cancer treatment). In these games, the
rational player can act as the leader and anticipate and steer the eco-evolutionary dynamics
of the followers, who adapt to the actions of the leader, according to the principles of natural
selection.

Here, we extend the cancer model of Pressley et al. [61], who considered a polymorphic
cancer cell population consisting of sensitive cells that do not evolve and resistant cells whose
treatment-induced resistance is a quantitative evolving trait. Pressley et al. [61] assumed
only density-dependent selection of cancer cells. Motivated by in vitro and in vivo studies
that demonstrated the cancer cells’ frequency-dependent selection [26, 43, 57, 59, 79, 93],
here we assume direct competition between the two cancer cell types, leading to frequency
dependence. Moreover, we assume that the sensitive cancer cells have a larger competitive
effect on the resistant cells than vice versa. Furthermore, as Pressley et al. [61], we assume a
cost of resistance in the growth rate of resistant cells, i.e., the growth rate of resistant cancer
cells decreases with the resistance level.

Pressley et al. [61] demonstrated that Zhang et al.’s adaptive therapy protocol prolonged
the time to progression when compared to continuous therapy at maximum tolerable dose
also in models with the treatment-induced resistance evolving as a quantitative trait. Here,
we focus on a situation when cure is impossible, but the tumor burden can be stabilized at a
viable level for the patient. For this case, we determine the optimal constant treatment dose
maximizing the objective function of the physician, which is a function depending on the
tumor burden, treatment toxicity, and the cancer cells’ level of treatment-induced resistance.
This objective function captures the patient’s quality of life.

In what follows, we: (1) develop a model for the cancer’s eco-evolutionary dynamics,
(2) expand it into a Stackelberg evolutionary game of cancer treatment, and (3) compare
three different strategies that the physician might use to treat the patient (maximum tolerable
dose, an ecologically enlightened strategy, and an evolutionarily enlightened strategy), while
assuming the tumor burden has reached its equilibrium size. We conclude by highlighting
the main outcomes and their relevance for the field of (mathematical) oncology, discussing
model limitations, and proposing future research directions.
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2 Methods

Following [61], we consider a model with two cancer cell types: sensitive cells, whose
resistance to treatment is minimal, and (potentially) resistant cells, which may adapt to
evolutionary pressures by becoming more or less resistant to treatment. However, in contrast
to Pressley et al. [61] we allow for differing magnitudes of inter- and intra-type competition
between the two types of cancer cells. Furthermore, we determine for which treatment doses
and treatment-induced resistance levels the tumor burden can be stabilized at levels viable
for the patient. Stabilization in this context refers to employing a constant treatment dose
that keeps the tumor burden at a progression-free/viable equilibrium size. When the tumor
burden can be stabilized, we adopt a Stackelberg (leader-follower) evolutionary game theory
approach [6, 66, 75, 76, 88]: The leader (physician) chooses a treatment dose with the aim
of maximizing an objective function, which is a proxy for the patient’s quality of life and
depends on the tumor burden, the resistance level of cancer cells, and the treatment dose.

The cancer cells adapt to treatment in two ways, which are easiest to conceptualize as
a short-run and a long-run response (though, technically, our model does not assume a
separation of time scales). In the short-run (ecological time scale), only the absolute and
relative abundances of the two types of cancer cells evolve. In the longer-run (evolutionary
time-scale), the resistance level of the resistant cells evolves as well. This resistance level
may be seen as their (evolutionary) strategy. The function mapping a given treatment dose to
the resistance level that evolves in response can be perceived as the cancer cells’ evolutionary
response function, which is somewhat analogous to the best-response function of the follower
in a standard Stackelberg game, in that it defines the response of the followers maximizing
their objective with respect to their strategy. Drawing on this analogy, we call this function
the cancer cells’ best-response function.

We consider three possible cases, leading to three potentially different therapeutic out-
comes. In the first case, the physician just uses the maximum tolerable dose (MTD) of
treatment. In the second case, the physician can observe the current resistance level of cancer
cells. After a potential phase of “tatônnement”, where the physician adjusts the treatment
dose based on the actual resistance level of cancer cells and the cancer cells evolve resistance
in response to this updated treatment dose, this is expected to lead to a stable situation: the
resistance level of resistant cells is a best response to the current treatment dose, and this
treatment dose is a best response to the resistant cells’ current resistance level.

We refer to this stable situation as the (static) Nash equilibrium of the game. The corre-
sponding strategy of the physician is called the Nash strategy.

In the third case, the physician also anticipates the evolutionary response of the cancer
cells, meaning the physician knows in advance the best response of the cancer cells in terms
of their resistance to all possible treatment doses that the physician can apply. This can lead
to a stable outcome corresponding to a Stackelberg equilibrium of the leader-follower game,
where the followers’ strategy is at an eco-evolutionary equilibrium, with respect to their
strategy and population size. The corresponding strategy of the physician is their Stackelberg
strategy, in accordance with the literature on Stackelberg games and our recent work [9, 45,
66, 69, 76]. The Stackelberg strategy fully exploits the leadership role of the physician and
is, by construction, the leader’s best strategy [45, 75, 76].

When the tumor may be stabilized, we compare the outcomes corresponding to these
three strategies: maximum tolerable dose, the ecologically enlightened/Nash strategy, and
the evolutionarily enlightened/Stackelberg strategy.
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2.1 Model of Cancer Eco-Evolutionary Dynamics

We consider two distinct cancer cell populations: sensitive and resistant. We introduce
frequency-dependent interactions between these two cell types by varying the intra- and
inter-type competition coefficients. The treatment-induced resistance is modeled as a quan-
titative trait, meaning that this resistance exists on a continuum, and the resistant cells can
exhibit some level of resistance uR(t) ≥ 0 that evolves over time t in response to therapy.
While we assume that the sensitive cells do not evolve resistance (uS(t) = 0 for all t), we
retain both uS and uR in our model, even though uS = 0 in the current scenario. This is done
to allow for future extensions of this model where uS may reach different values. We model
the eco-evolutionary dynamics of the cancer cells using a fitness-generating function, also
known as a G-function [83]. The G-function defines how the fitness of a focal cancer cell
using strategy v is influenced by the environment and the strategies and population sizes of
the resident types. In particular, the G-function is crucial for determining the evolutionary
dynamics for how the resistant strategy evolves over time. The resistance level evolves in
the direction of the fitness gradient ∂G

∂v
, with respect to the focal individual’s strategy v [83].

This derivative is then evaluated at the current resident strategy uR, leading to an equation
defining the evolutionary dynamics for the resident strategy itself [61, 83]. The rate at which
the resistance strategy changes is scaled by an evolutionary speed term σ, which we assume
constant for simplicity. The exact value of σ does not influence the equilibrium outcomes
presented in this paper.

The eco-evolutionary dynamics of the two populations of cancer cells are as follows:

dxR
dt

= xR G (v,u, x,m)

∣
∣
∣
∣
v=uR

, (1)

duR

dt
= σ

∂G (v,u, x,m)

∂v

∣
∣
∣
∣
v=uR

, (2)

dxS
dt

= xS

(

r(uS)

(

1 − αSS xS + αSR xR
K

)

− d − m

k + buS

)

, (3)

uS = 0, (4)

where we assume that the G-function has the following form:

G(v,u, x,m) = r(v)

(

1 − αRS xS + αRR xR
K

)

− d − m

k + bv
, (5)

and that the vectors u = (uR, uS)� and x = (xR, xS)� capture the resistance strategies
and population sizes of the two cancer cell populations, respectively. Treatment-induced
resistance may come at a cost [74], which may make resistant cells less fit in the absence of
treatment. In (5), we assume a cost of resistance in the intrinsic growth rate.More specifically,
r(v) = rmaxe−g v , where g determines the magnitude of the effect of resistance on the growth
rate. The intra-type competition effects are given by αSS and αRR , while αRS and αSR are
the inter-type competition coefficients. Parameter K denotes the carrying capacity of cancer
cells, while parameter d is the natural death rate of cancer cells. In our model, we assume
that the physician applies a treatment dose m(t) ∈ [0, 1] at time t ≥ 0, where m(t) = 0
corresponds to no dose and m(t) = 1 to MTD. We assume that drug efficacy increases with
m and decreases with the focal cell’s resistance strategy v, its innate resistance k, and the
benefit b of the resistance level.
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Table 1 Variables and parameter values of the game [61, 93]

Variables Meaning Feasible values

x Cancer cell population [0, K ]
xS Sensitive population [0, K ]
xR Resistant population [0, K ]
uS Resistance strategy of sensitive cells 0

uR Resistance strategy of resistant cells R+
v Resistance strategy (focal individual) R+
m Treatment dose [0, 1]
Parameters Values

rmax Intrinsic growth rate of the cancer cells 0.45

d Intrinsic death rate 0.01

K Carrying capacity 10000

g Magnitude of cost of resistance 0.8

k Innate cell immunity 2

b Magnitude of resistance benefit 10

σ Evolutionary speed of resistant cells 1

δ Progression threshold (fraction of K ) 0.7

αRS Inter-type competition coefficient 0.9

αSR Inter-type competition coefficient 0.15

αSS Intra-type competition coefficient 1

αRR Intra-type competition coefficient 1

Parameter values, except the cost of resistance’s magnitude g and inter-type competi-
tion coefficients αRS and αSR , are taken from [61]. The ratio of the inter-type competition
coefficients is taken from [93]. Parameters and their values are summarized in Table 1.

2.2 Viability Analysis of the Eco-Evolutionary Equilibria of Cancer Dynamics

The time to progression corresponds to the moment when the tumor burden exceeds a pre-
defined fraction δ ∈ (0, 1] of the carrying capacity. We set this δ to 0.7 as in [61]. Our first
objective is to identify treatment doses and treatment-induced resistance levels for which it
is possible to maintain the tumor burden below the progression threshold δK .

The sizes of sensitive and resistant cancer cell populations at the ecological equilibria
x∗
R(m, uR) and x∗

S(m, uR) at any given resistance level are found by solving dxR
dt = 0 and

dxS
dt = 0, respectively. The tumor burden x∗(m, uR) is defined as x∗(m, uR) = x∗

R(m, uR)+
x∗
S(m, uR). The extinction, stabilization, and progression regions are defined as follows:

• Extinction region: all (m, uR)-pairs for which the cancer population eventually goes
extinct, i.e., where the tumor burden at equilibrium x∗(m, uR) is zero (shown in green
in Fig. 1):

G = {(m, uR) ∈ [0, 1] × R+ : x∗(m, uR) = 0}.
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Fig. 1 The equilibrium population size. We identify three possible regions: The green area G corresponds to
combinations of m and uR for which x∗(m, uR) = 0, i.e., the region where cancer is cured; the red area Rδ

corresponds to combinations ofm and uR for which x∗(m, uR) > δK , i.e., the region where the tumor burden
is too high, and the disease progresses; the yellow area Yδ corresponds to combinations of m and uR for
which the tumor burden stabilizes at a nonzero but viable level, and the corresponding values of the objective
function will matter. Parametrization: δ = 0.7, rmax = 0.45, g = 0.8, K = 10000, d = 0.01, k = 2, b = 10,
αSS = αRR = 1, αSR = 0.15, αRS = 0.9 (Color figure online)

• Stabilization region: all (m, uR)-pairs for which the tumor burden at equilibrium
x∗(m, uR) is positive, but does not exceed δK (shown in yellow in Fig. 1):

Yδ = {(m, uR) ∈ [0, 1] × R+ : 0 < x∗(m, uR) ≤ δK }.

• Progression region: all (m, uR)-pairs for which the tumor burden progresses, i.e., for
which the tumor burden at equilibrium x∗(m, uR) is higher than the progression threshold
δK (shown in red in Fig. 1):

Rδ = {(m, uR) ∈ [0, 1] × R+ : x∗(m, uR) > δK }.

Fig. 1 shows different values of the ecological equilibrium x∗(m, uR) for different m and uR

values, determining the three regions G, Yδ, and Rδ for the particular parametrization of the
model.

According to (2), the treatment-induced resistance uR under a particular treatment dose
m eventually evolves towards an evolutionarily stable strategy (ESS) u∗

R = u∗
R(m). At eco-

evolutionary equilibrium, the cancer population is at its ecological equilibrium and uR = u∗
R .

By definition, when the population is at the eco-evolutionary equilibrium, the ESS strategy
maximizes G [3, 83] and the first order condition applies:

∂G(v,u∗, x∗,m)

∂v

∣
∣
∣
∣
v=u∗

R

= 0, (6)

whenever this derivative exists.
We assume that it is possible to cure or contain the disease with a constant treatment dose

if values ofm exist for which the pair (m, u∗
R(m)) lies in the extinction or stabilization region,

respectively. Otherwise, progression under a constant treatment dose is inevitable.
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2.3 Expanding theModel into a Stackelberg Evolutionary Game

In the previous section, we introduced an evolutionary game between different types of cancer
cells. Here, we extend this game into a Stackelberg evolutionary game, where the physician
as the leader maximizes the patient’s quality of life through selecting a particular treatment
dose. This quality of life is captured in an objective function, defined for treatment doses
and resistance levels where cure is unachievable but stabilization is possible. By maximizing
such an objective function with respect to the treatment dose, we determine which of the
treatment strategies leading to a viable tumor burden is the most desirable for the patient.
Our objective function depends on the cancer cell population, the toxicity due to the treatment
dose, and the treatment-induced resistance of the cancer cells. We assume that the objective
function decreases when the tumor burden increases, as the patient might experience pain
or other side effects [41, 52]. Similarly, the objective function decreases with the treatment
dose, because of the increased treatment-induced toxicity. Moreover, we assume that the
objective function declines with cancer’s resistance level, as more resistant cells might give
rise to secondary tumors and side effects [54, 82], which decrease the patient’s quality of
life. Besides, the resistance level could be associated with the Warburg effect, which may
alter the micro-environment to be more suitable for cancer cell proliferation [47]. Here, we
introduce the following objective function Q:

Q(m, uR, x∗(m, uR)) =
{

Qmax − c1
( x∗(m,uR)

K

)2 − c2u2R − c3m2, (m, uR) ∈ Yδ,

undefined, elsewhere.
(7)

In (7), Qmax represents the maximum value of the objective function, while the weights
c1, c2, and c3 (where c1 + c2 + c3 = 1, c1, c2, c3 ∈ [0, 1]) determine the impact of tumor
burden, treatment-induced resistance level, and treatment toxicity on the patient’s quality of
life, respectively.

Figure 2 depicts the objective function (7) for a particular parametrization.

Fig. 2 The physician’s objective function as a function of the tumor burden, the treatment dose and the resis-
tance level (7). Thewhite space illustrates the regionwhere the objective function is undefined. Parametrization:
δ = 0.7, rmax = 0.45, g = 0.8, K = 10000, d = 0.01, k = 2, b = 10, αSS = αRR = 1, αSR = 0.15,
αRS = 0.9, σ = 1, Qmax = 1, c1 = 0.5, c2 = 0.25, c3 = 0.25
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Table 2 Four notions of equilibria utilized in this paper

Ecological equilibrium The populations of sensitive and resistant cancer cells
are not changing (ẋS = 0 and ẋR = 0) given the
current resistance level uR and the current treatment
dose m.

Eco-evolutionary equilibrium The cancer cells are at the ecological equilibrium, and
the resistance level of the resistant cells is not
changing (u̇ R = 0).

(static) Nash equilibrium The cancer cells are at an eco-evolutionary equilibrium
while the treatment dose is at the best response to the
current resistance level.

Stackelberg equilibrium Cancer cells are at an eco-evolutionary equilibrium, and
the physician maximizes the objective function
knowing the evolutionary response of cancer cells.

In those caseswhere the tumor burden can be stabilized, but cure is impossible,we compare
the following treatment strategies and their effects on the physician’s objective function (see
also Table 2):

• Ecologically enlightened strategy (or Nash strategy): The physician considers the eco-
logical but not the evolutionary effects of treatment.
For a fixed resistance level uR , the best response of the physician would be the treatment
dose:

m∗(uR) = argmax
m

Q(m, uR, x∗(m, uR)). (8)

Besides, for a given treatment dose m, the cancer cells’ resistance evolves to their ESS
given by (6). We refer to the stable situation this may lead to as the Nash equilibrium of
the game (meaning the Nash equilibrium of the underlying simultaneous-move game).
It lies at the intersection of the cancer cells’ evolutionary response (ESS strategy) curve
u∗
R(m) and the physician’s best response curve m∗(uR). This Nash equilibrium is only

meaningful if these curves intersect within the stabilization region. When this is the case,
we denote by mN the physician’s Nash strategy and by u∗

R(mN ) the cancer cells’ Nash
strategy.

• Evolutionarily enlightened strategy (or Stackelberg strategy): The physician anticipates
the ecological and evolutionary response of the cancer cells to therapy. It is defined as

mS = argmax
m

Q(m, u∗
R(m), x∗(m, u∗

R(m))). (9)

The cancer cells’ strategy at the Stackelberg equilibrium is given by their ESS u∗
R(mS).

For some parametrizations of our model, the MTD, i.e., m = 1, can also stabilize the tumor
burden. In such a case, the physician’s objective function (7) is defined for m = 1 as well. If
that is the case, we can compare the outcomes of ecologically and evolutionarily enlightened
treatment strategies with the physician’s objective function under MTD.

3 Results

We first calculate the ecological equilibria of cancer cells. We then calculate the physician’s
Nash and Stackelberg strategies and the game’s corresponding outcomes in terms of the
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objective function of the physician (7). When the equilibrium population size lies in the
patient’s stabilization region, we compare the MTD, Stackelberg and Nash outcomes of the
game. In Appendix A, we illustrate the basins of attraction of these equilibria. Competition
coefficients αSS and αRR are set to 1 as in [61], which is a common assumption in the ecology
literature [12, 26, 40, 83].

3.1 Ecological Equilibria of Cancer Cells

The ecological equilibria of the cancer cells can be found by setting dxR
dt and dxS

dt to zero.
With

x̂S(m, uR)
def= K

rmax(1 − αSRαRS)

(
αSR m eg uR

k + b uR
− m

k
+ αSR d eg uR

)

+ K (rmax − d − αSR rmax)

rmax(1 − αSRαRS)
,

x̂R(m, uR)
def= K

rmax(1 − αSRαRS)

(

− m eg uR

k + b uR
+ αRS m

k
− d eg uR

)

+ K (rmax − αRSrmax + αRS d)

rmax(1 − αSRαRS)
,

we obtain the following ecological equilibria (x∗
S(m, uR), x∗

S(m, uR)):

(x∗
S(m, uR), x∗

R(m, uR))
def=

⎧

⎪⎪⎨

⎪⎪⎩

(0, 0), if x̂S ≤ 0, x̂R ≤ 0,
(max{x̄S, 0}, 0) , if x̂S ≥ 0, x̂R ≤ 0,
(0,max{x̄R, 0}) , if x̂S ≤ 0, x̂R ≥ 0,
(

x̂S, x̂R
)

, if x̂S > 0, x̂R > 0,

(10)

with

x̄S = K

(

1 − d + m
k

rmax

)

,

x̄R = K

(

1 − d + m
k+b uR

rmax
eg uR

)

.

In Fig. 3, we illustrate the areas in the (m, uR)-plane with different types of ecological
equilibria (10).

Extending the Pressley et al. [61] model to include competition coefficients creates a
non-monotonic relation between the total population size at the ecological equilibrium and
treatment dose. In Pressley et al. [61] model, the total equilibrium population size decreases
as the treatment dose increases, which means that lower constant treatment doses will also
fail if MTD fails. Therefore, we consider the extended model more realistic for many cancers
and treatments. The cell population is considered extinct in areas where x∗

S = 0 and x∗
R = 0.
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Fig. 3 The x∗
S(m, uR) and x∗

R(m, uR) values corresponding to different m and uR values. We identify three
possible regions: The black area corresponds to (m, uR) ∈ [0, 1]×[0, 1]where x∗

S(m, uR) = x∗
R(m, uR) = 0,

the dashed area corresponds to (m, uR) ∈ [0, 1] × [0, 1] where x∗
S(m, uR) = 0, x∗

R(m, uR) > 0, and the
gray area indicates the region (m, uR) ∈ [0, 1] × [0, 1] where both populations coexist, i.e., x∗

S(m, uR) > 0,
x∗
R(m, uR) > 0. Parametrization: δ = 0.7, rmax = 0.45, g = 0.8, K = 10000, d = 0.01, k = 2, b = 10,

αSS = αRR = 1, αSR = 0.15, αRS = 0.9

3.2 The Best Response Curves of Cancer and the Physician

The best response curve of the resistant cancer cell population (ESS curve) is determined

using (6). With û R(m)
def= − k

b
− m

2bd
+

√

m2

4b2d2
+ m

bdg
,

u∗
R(m) =

{

0, if û R(m) < 0,
û R(m), otherwise.

(11)

Note that û R(m) increaseswithm. The best response curvem∗(uR)of the leader is determined
bymaximizing their objective function Q(m, u∗

R(m), x∗(m, u∗
R(m)))with respect tom. Note

that the objective function is differentiable and concave in m, and, therefore, m∗(uR) is
calculated by setting the first derivative of the objective function to zero and projection on
[0, 1]whenever the result falls outside of this interval. Letting A = (1−αSR)eguR

k+buR
+ 1−αRS

k and

m̂(uR)
def= c1A (rmax(2 − αRS − αSR) − (1 − αRS)d − (1 − αSR)deguR )

c1 A
2 + c3 r

2
max(1 − αSRαRS)

2 ,

the leader’s best response then reads as

m∗(uR) =
⎧

⎨

⎩

0, if m̂(uR) < 0,
m̂(uR), if m̂(uR) ∈ [0, 1],
1, otherwise.

(12)
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Fig. 4 The outcomes of the MTD, ecologically enlightened (Nash), and evolutionarily enlightened (Stackel-
berg) strategies of the physician in the SEG against cancer: The yellow and red regions represent combinations
of uR and m leading to tumor stabilization and progression, respectively. A Illustration of the outcomes of the
Stackelberg, Nash, and MTD treatment strategies and corresponding values of the objective function. B The
level curves of the objective function and outcomes of the Nash, Stackelberg, and MTD treatment strategies.
Parametrization: δ = 0.7, rmax = 0.45, g = 0.8, K = 10000, d = 0.01, k = 2, b = 10, αSS = αRR = 1,
αSR = 0.15, αRS = 0.9, Qmax = 1; c1 = 0.5, c2 = 0.25, c3 = 0.25 (Color figure online)

The parameter c2 (determining the impact of treatment-induced resistance on the objective
function) has no effect on the leader’s best response curve and, therefore, does not influence
the Nash solution. However, the parameter c2 affects the Stackelberg solution.

3.3 Identifying the Nash and Stackelberg Equilibria

TheNash equilibrium lies at the intersection of the best response curves of cancer cells and the
physician, defined by (11) and (12), respectively. The Stackelberg equilibrium is calculated
numerically through (9). It corresponds to the point on the cancer’s best response curve that
maximizes the physician’s objective function.

Figure 4Ashows aparticular parametrization of themodel forwhich theMTDand theNash
and Stackelberg equilibria all lie in the stabilization region. The physician’s best response,
calculated through (12), is shown as a dashed line. Figure4B shows that for this parametriza-
tion, the evolutionarily enlightened (Stackelberg) strategy leads to the highest value of the
objective function, followed by the ecologically enlightened (Nash) strategy, while MTD
leads to the lowest value of the objective function. Moreover, the evolutionarily enlight-
ened (Stackelberg) strategy corresponds to both a lower treatment dose/toxicity and lower
treatment-induced resistance than the ecologically enlightened (Nash) strategy and MTD.

The Nash and Stackelberg equilibria of a Stackelberg evolutionary game can coincide
under certain conditions, for instance, if the leader’s strategy does not affect the evolution
of the resistance level of the cancer cells, as proven by [76].1 Fig. 5 illustrates the case
where the Nash and Stackelberg solutions coincide, due to the fact that the objective function
does not include treatment-induced resistance [76]. However, even in this situation, theMTD
results in a lower value of the objective function than the Nash and Stackelberg strategies.

1 The analogy with a standard leader-follower game is that if the follower has a strictly dominant action, then
the outcomes of the subgame perfect equilibrium of the leader-follower game and of the Nash equilibrium of
the simultaneous move game coincide.
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Fig. 5 The outcomes of the MTD, ecologically enlightened (Nash) and evolutionarily enlightened (Stackel-
berg) strategies of the physician in the SEG against cancer: The yellow and red regions represent tumor burden
stabilization at a safe level and progression, respectively. A The Nash and Stackelberg strategies coincide. B
The values of the physician’s objective function coincide with the Nash and Stackelberg strategies and are
better than that of MTD. Parametrization: δ = 0.7, rmax = 0.45, g = 0.8, K = 10000, d = 0.01, k = 2,
b = 10, αSS = αRR = 1, αSR = 0.15, αRS = 0.9, Qmax = 1; c1 = 0.67, c2 = 0, c3 = 0.33 (Color figure
online)

In appendix A, the local stability of the eco-evolutionary equilibria is determined through
numerical analysis of the Jacobian matrix. Furthermore, in this appendix, we illustrate the
domain of attraction of the Nash equilibrium.

4 Discussion

Cancer treatment is a Stackelberg (or leader-follower) evolutionary game. Recent works,
including [45, 75, 76, 88], suggested that physicians should exploit the advantages of their
leadership role in this game. This is because the physician, unlike the cancer cells, can
anticipate and steer the cancer’s eco-evolutionary response to treatment, while the cancer cells
can only adapt to the current and past physician’s actions. Staňková et al. [75] proposed that
in order to utilize their leadership role fully, the physician needs to (i) set the treatment goal,
as different treatment goals will correspond to different treatment strategies, (ii) introduce
a resistance management plan, and (iii) perform after-action reports, adjusting assumptions
and parameters based on how different patients respond to the treatment (see also [93]).

In this work, we focused on a specific treatment goal, finding the constant treatment
dose maximizing the physician’s objective function once the tumor burden can be stabilized
at a level viable for the patient. We did so by utilizing the Stackelberg evolutionary game
framework where cancer is modeled as an evolutionary game, extending the polymorphic
cancer model by Pressley et al. [61]. In their paper, Pressley et al. compared the time to
progression of Zhang et al. [92]’s protocol to that of the maximum tolerable dose. They
demonstrated that, while the adaptive protocol always extended the time to progression, in
some cases, this improvement was rather small.

Rather than analyzing the transient phase of controlling the tumor burden and prolonging
the time to progression [16, 17, 35, 61], here we have focused on finding a constant treatment
dose maximizing the physician’s objective function when the tumor burden can be stabi-
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lized [8]. This physician’s objective function depends on the tumor burden, the treatment
toxicity, and the treatment-induced resistance in cancer cells. The weights in this objective
function can be adjusted to capture the importance of the tumor burden, resistance level,
and treatment toxicity for each patient, in line with patient-centered care [65]. Subsequently,
we analyzed the impact of different treatment strategies in terms of this objective function:
MTD, an ecologically enlightened therapy, and an evolutionarily enlightened therapy.

We have shown that the evolutionarily enlightened therapy leads to at least as high values
of the objective function as the ecologically enlightened therapy, while the MTD leads to
the lowest objective function values. For most parametrizations, the ecologically enlightened
therapy leads to a higher treatment dose than the evolutionarily enlightened therapy, while
both are less toxic than MTD.

For some parametrizations, the evolutionarily enlightened treatment corresponding to the
Stackelberg strategy of the Stackelberg evolutionary game of cancer treatment leads to an
outcome that is at the boundary of the progression region (Fig. 4). This means that a small
deviation in estimating the cancer cells’ response would lead to growth of the tumor burden.
However, upon observation of this cancer growth, the treatment dose could be increased a
little, and the cancer would be stabilized again; thus, aiming at the Stackelberg strategy is
still the best option.

In general, reaching any equilibrium requires frequent measurements of the tumor volume
and its composition and depends on many factors, such as the speed of the cancer’s response
to treatment. However, the physician may still be able to find the Stackelberg equilibrium
by dose de-escalation, meaning starting from the MTD and applying small adjustments to
the dose until the desired equilibrium is reached, as suggested by, among others, Enriquez-
Navas et al. [23] and Cunningham et al. [17]. Another effective strategy may be starting from
a minimal effective dose and gradually increasing it until an equilibrium is reached, which
seems even more effective in a model similar to that of Zhang et al. [92]. This strategy has
not yet been tested in clinical trials but may have potential [17, 78].

The model that we studied included treatment-induced resistance as a quantitative trait.
Another option is to model resistance as a qualitative trait [4, 7, 10, 11, 35, 43, 55, 67,
71, 91]. Our model can be also extended to include several quantitative traits, evolving in
response to multiple drugs and therapeutics [45, 64, 76]. Of interest in such models are cross-
sensitivities [89, 90], co-resistance [58], and more possible effective treatment strategies
available in a multi-drug setting, such as evolutionary double bind therapy [15, 30, 50].

In ourmodel, the cost of resistance is associatedwith the growth rate of the resistant cancer
cell type. Alternatively, one could consider models where either the carrying capacity [61]
or the competition coefficients [83] explicitly depend on the resistance level.

In accordance with some parametrizations of the model presented here, there are cancers
for whichMTD can effectively stabilize tumors [6, 34, 44]. Also, there are metastatic cancers
where we may be able to aim for a more ambitious treatment goal than tumor stabilization,
namely for cure [22, 32]. For example, in multiple myeloma, there is a discussion on when to
aim for a cure instead of containment. Strategies for these two goals differ substantially [19,
62, 63] and game-theoretic models fitted with patient data may help us to find a suitable
treatment goal, corresponding evolutionary therapy, and predict the patient/tumor response
to such therapy.

Our future research, therefore, will focus on the analysis of the properties of a wider class
of game-theoretical models based on classical dynamics [34, 46], extended into a game-
theoretic setting, and validating these models through in-vitro and in-vivo data, similarly
to how it was done for other cancer models [44, 71, 72]. The ultimate goal is to analyze
multiple dynamics that fit the data well, evaluate alternative hypotheses and models, and
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propose suitable treatment goals and evolutionary therapies to improve patient quality of life
and survival.

Appendix A: Basins of Attraction of Eco-Evolutionary Equilibria

The determination of the local stability of the eco-evolutionary equilibria involves the analysis
of the Jacobian matrix at these equilibria. We confirm the local stability of the equilibria
for treatment dosage m within 0.6 to 0.8 numerically, through analysis of the eigenvalues
of the corresponding Jacobian matrix. We employ numerical modeling to demonstrate the
domain of attraction for the Stackelberg and Nash equilibria (Fig. 5). Similarly, we can
investigate the basins of attraction for other derived equilibria, such as those in Fig. 4. The
sensitive and resistant populations (xS and xR) are normalized (assuming K = 1), to make
the visualizations more informative. We consider initial values xS(0), xR(0), uR(0) as points
in the grid � × � × � where � = {0.1, 0.2, 0.3, . . . , 1}, and xS(0) + xR(0) < 1. The model
converges to the eco-evolutionary equilibrium for all initial conditions within this grid. As
an example, we illustrate this convergence to the equilibria from 3 different initial values. In
Fig. 6, we illustrate how cancer eco-evolutionary dynamics starting in the stabilization region
remain in the same region when reaching the Nash equilibrium. As we have not proven this
for all possible parametrizations, there may be parametrizations with which the evolutionary
dynamics leave the stabilization region before reaching equilibrium.

Fig. 6 Eco-evolutionary dynamics of cancer while applying the Nash strategy dose (mN = 0.723), starting
from 3 different initial conditions, with (xS(0), xR(0), uR(0)) equal to (0.5, 0.1, 0.2), (0.3, 0.4, 0.5), and
(0.2, 0.2, 0.7), respectively. The eco-evolutionary dynamics starting from these three initial conditions are
denoted in red, blue, and purple, respectively. We see how the eco-evolutionary dynamics starting at these
initial conditions evolve in time and converge to the Nash equilibrium. A The eco-evolutionary dynamics. B
The ecological dynamics. Parametrization: δ = 0.7, rmax = 0.45, g = 0.8, K = 10000, d = 0.01, k = 2,
b = 10, αSS = αRR = 1, αSR = 0.15, αRS = 0.9, σ = 1 (Color figure online)
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