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1 Introduction

Quantum Effective Field Theory is very much universal and has a wide range of applica-
tion and flexibility. Nevertheless, the principles of unitary evolution and causality imply
constraints on the space of feasible Effective Field Theories (EFTs), that is on EFTs with
a consistent UV completion. In other words, not anything goes and the coupling strengths
of the interactions are subject to inequality constraints.

A widely known example is the positivity bound: while a priori Wilson coefficients can
take any real value, the two-to-two forward scattering amplitude satisfies the positivity
constraint ImM > 0, implying that certain Wilson coefficients are positive [1] — see also
studies in the context of the chiral Lagrangian [2–4]. Several works have since then exploited
positivity, leading to constraints on renormalization group flows and the phenomenology
of EFTs [5–17]. See also [18–35] for interesting recent developments.

Another realisation of these principles is the recent version of the S-matrix Boot-
strap [36–39]. In this approach unitarity is not linearised and it is treated non-
perturbatively. These ideas have been used in a number of theoretically and phenomenolog-
ically interesting theories such as two-dimensional flux-tube effective field theories [40, 41],
four dimensional (pseudo)-Goldstone bosons [42, 43], Majorana fermion scattering [44], and
higher dimensional supergravity [45, 46].

In this work we obtain new S-matrix Bootstrap bounds on the space of two-to-two
scattering amplitudes in d = 4 spacetime. More concretely, we consider two examples: the
two-to-two scattering amplitude of a massive scalar singlet particle, and a massive scalar
particle with internal global O(n) symmetry. These amplitudes can be characterised by
their Taylor expansion around the crossing symmetric point (s, t, u) = 4/3(1, 1, 1)m2 in
the centre of the Mandelstam triangle. For the singlet theory, the first few terms of this
expansion are given by

M(s̄, t̄, ū) = −c0 + c2(s̄2 + t̄2 + ū2) + c3(s̄t̄ū) +O(s̄4, t̄4, ū4) ; (1.1)

while the s-channel amplitude of the O(n) scalar theory is

M(s̄|t̄, ū) = −c0 + cH s̄+O(s̄2, t̄2, ū2) , (1.2)

where (s̄, t̄, ū) = (s, t, u)/m2 − 4/3(1, 1, 1). We will first show that unitarity, crossing,
and analyticity of the amplitude imply non-perturbative bounds on the ci’s. We will also
characterise these amplitudes with extremal values of the ci coefficients, and study a number
of observables such as UV/IR dominance or Low/High spin dominance.

– 1 –
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For weakly coupled EFTs we may interpret the ci’s as Wilson coefficients of operators.
For instance consider the free O(n) scalar theory perturbed by the dimension-six operator
∆L = gH∂

µ(~φ · ~φ)∂µ(~φ · ~φ)/(4Λ2). Then, cH = 2 gH m2/Λ2 + . . . at tree-level. This is a
priori very suggestive, because it is generally hard to set bounds on dimension-six operators
using positivity methods, or linearised unitarity on the imaginary part. This stems from the
Froissart-Martin bound and the fact that scattering amplitudes satisfy double subtracted
dispersion relations. The dispersive representation of the dimension six operators involve
a real subtraction constant that cannot be bounded unless we access the real part of the
amplitude too. Nevertheless dimension-six operators are of physical importance because
they parametrise at leading order generic deviations from the Standard Model predictions
(barring the Weinberg operator for neutrino masses). Therefore it is quite interesting that
using the S-matrix Bootstrap one is able to bound these dimension-six operators — as well
as to characterise the amplitudes achieving such extremal values.

However the extremal values of the ci’s are often achieved by strongly coupled am-
plitudes and therefore the weakly coupled EFT interpretation is not accurate. Namely
|cH−2 gH m2/Λ2| > O(1) and as a consequence the bound on cH does not translate simply
into a bound on gH . After finding the bounds on the ci’s, one of our main objectives
is precisely to amend this problem. That is we will show that A) the S-matrix Boot-
strap can output min/max values of Wilson coefficients for theories that are described by a
weakly coupled field theory for energies below a physical cutoff Λ, and B) this construction
provides min/max values of dimension-six operators as well.

In section 2 we set the stage by determining precisely the space of amplitudes with
maximal ci values in the singlet case. In order to get this result we introduce a number
of numerical improvements that allow us to achieve a faster convergence of the Bootstrap
algorithm. We also compare in great detail the S-matrix Bootstrap bounds with a rigorous
positivity approach. In section 3 we carve out the space of amplitudes with extremal ci’s
that are weakly coupled in the IR. In section 4 we derive new dual bounds using linearised
unitarity, and compare with the results in section 3. In section 5 we begin the exploration
of the extremal values for the O(n) theory. In section 6 we address the role of the EFT
cutoff in the bounds on the ci’s. Finally we conclude in section 7.

2 The space of QFTs in 3 + 1-dimensions

We first study the space of QFTs in 3 + 1 dimensions that contain in the IR a single stable
scalar particle of mass m, even under field parity.1 We analyse a particular slice of this
space by determining the possible values of the 2 → 2 on-shell scattering amplitude with
momenta p1 + p2 → p3 + p4.

p1

p2

p4

p3

M

1This Z2-symmetry implies poles in the amplitude below threshold 0 < s < 4m2 are forbidden because of
the absence of the trilinear coupling. Our analysis could be easily generalised by relaxing this assumption.

– 2 –
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As we shall see below this observable is very rich, containing a wealth of information about
the spectrum and properties of the theory.

It is possible to describe the 2 → 2 scattering amplitude as a function of the three
Mandelstam invariants M(s, t, u).2 Due to crossing symmetry, M is invariant under any
permutation of its arguments s↔ t↔ u. Momentum conservation s+ t+u = 4m2 further
reduces the number of independent variables to two: e.g. M(s, t) ≡M(s, t, 4m2 − s− t).

The amplitudeM(s, t) is further constrained by the two particle sector of the unitarity
condition S†S � 1 where, as usual, the 2→ 2 S-matrix is given by S = 1+ i(2π)4δ(4)(p1 +
p2 − p3 − p4)M(s, t). It is useful to diagonalise unitarity by projecting onto partial waves
f`(s) ≡ 1/(32π)

∫ 1
−1 dxP`(x)M(s, t(s, x), u(s, x)) , for ` ∈ N, and x = 1 + 2t/(s − 4m2).

The unitarity condition then takes the simpler form 2Im f`(s) >
√

(s− 4m2)/s|f`(s)|2 for
s > 4m2.3 The inequality is saturated in the elastic region 4m2 6 s < 16m2, due to the
absence of multi-particle processes.

We also assumemaximal analyticity (or Mandelstam analyticity): the scattering ampli-
tude is an analytic function in the (s, t) complex planes everywhere except on the unitarity
cuts s, t, u > 4m2, and possible bound state poles for 0 < s, t, u < 4m2.4 In our setup, we
assume the absence of bound states below threshold 0 < s, t, u < 4m2, but generalising our
results to include these cases is possible. In figure 1 we summarise the assumed analytic
structure in the complex s-plane at fixed −4m2 < t∗ < 4m2. The right-hand cut starting
at the two-particle threshold s = 4m2 is a consequence of unitarity. The left hand-cut is
due to the physical u-channel process starting at s = −t∗. The u-channel cut moves as we
move t∗, and overlaps the s-channel cut for 4m2 < s < −t∗ when t∗ < −4m2.

All in all, the 2 → 2 scattering amplitude is a function of two variables satisfying
crossing-symmetry, unitarity, and analyticity. These properties are summarised in figure 1.
Any such amplitude can be defined by its Taylor expansion around the crossing symmetric
point

M(s̄, t̄, ū) =
∞∑

n,p,q=0
c̃(npq)s̄

nt̄pūq, (2.1)

with coefficients c̃(npq) ∈ R, and with the shifted Mandelstam variables being m2x̄ = x −
4m2/3. In this new variables the crossing symmetric point is at the origin (s̄, t̄, ū) = (0, 0, 0)
and momentum conservation is given by s̄+ t̄+ū = 0. Given the values of all the coefficients
{c̃(npq)} in (2.1), we can reconstruct the whole amplitude M(s, t) by analytic continuation.
Therefore, we parametrise the space of amplitudes by the values of these Taylor coefficients.

The first few terms of (2.1) can be simply written as (1.1) after imposing s̄+ t̄+ ū = 0,
and a straightforward linear redefinition of the coefficients {c̃(npq)}.

2Recall that the Mandelstam invariants are s = (p1 + p2)2, t = (p1 − p3)2 and u = (p1 − p4)2, where pi
are Lorentz four-momenta.

3This is also consequence of real analyticity M(s∗, t) = M(s, t)∗. This is always true for the scattering
processes we are considering.

4The validity of Maximal analyticity of the scattering amplitude is a long-standing conjecture that has
resisted all the perturbative checks, see [47] for a review, and the references therein. In [48] it has been
pointed out that even for the simple case of the scattering of the lightest particles, its perturbative proof
would require the cancellation of an infinite number of intricate physical sheet Landau singularities.
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XX
4m20

M(s, t*)
M(u, t*) ≡ M(s, t*)

Crossing symmetry

Unitarity

2Imfℓ(s) ≥ s − 4m2

s
| fℓ(s) |2

s-plane, t=t* fixed

−t*

Figure 1. Analytic properties of the amplitude M(s, t) in the complex s-plane for a fixed value of
−4m2 < t∗ < 4m2. We denote in blue the crossing path continuing M(s, t∗) into M(u, t∗). The
black dashed vertical line passes through the s − u crossing symmetric point (4m2 − t∗)/2. Due
to real analyticity, the amplitude is real in between the two cuts and along the dashed line. The
right-hand cut is subject directly to the unitarity constraints.

In perturbation theory the ci’s have a simple interpretation in terms of couplings or
Wilson coefficients in the EFT. For instance, consider the field theory Lagrangian

L[∂φ, φ] = 1
2(∂µφ)2− 1

2m
2φ2− 1

24g0φ
4+ 1

2
g2
Λ4 [(∂µφ)2]2+ 1

3
g3
Λ6 (∂µ∂ρφ)(∂ν∂µφ)(∂ρ∂νφ)φ+· · ·

(2.2)
where Λ is the cutoff of the EFT, the dots · · · involve higher order corrections O(Λ−8)
in the derivative expansion and operators with more than four fields O(φ6). If the theory
is weakly coupled, i.e. pi,m � Λ with gi . O(1), it is straightforward to compute the
amplitude M(s, t) from (2.2), leading to

c0 = g0 − 4/3 g2ε
2 + . . . , (2.3)

c2 = g2ε
2 + . . . , (2.4)

c3 = g3ε
3 + . . . , (2.5)

where ε = m2/Λ2. The first term of these equations is based on standard field theory
analysis: the coupling ci = giε

i at tree level but it can be renormalised by O(g0) loops
involving marginal interactions. This explanation however is a bit too naive, which is
demonstrated by the presence of the second term 4/3g2ε

2 in (2.3). This piece also arises
from a tree-level correction because we are Taylor expanding the amplitude around the
crossing-symmetric point. Corrections to (2.3)–(2.5) are either loop suppressed or involve
further powers of ε.

A priori, the coefficients in (1.1) are only required to be real ci ∈ R. However, the
analytic, crossing, and unitarity constraints imply that the admissible values of these coef-
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ficients lie in a compact and convex subspace. This optimization problem can be addressed
with the S-matrix Bootstrap, which we will describe next.

In the first part of this work we will not make reference to perturbative physics or
effective field theory analysis. We will instead take (1.1) as our definitions of couplings
c0, c2, c3, . . . . We emphasize that we shall not expect (2.3)–(2.5) to hold for the results of
this section. In the next section we will address how to interpret the bounds on ci’s as
bounds on the Wilson coefficients of EFTs.

In the rest of the paper we work in units where m2 = 1. We will however often
reintroduce factors of m2 where it adds clarity.

2.1 S-matrix bootstrap in d = 3 + 1

An optimization problem can be viewed from two complementary perspectives, the primal
and the dual formulation. Most of the recent works on the numerical S-matrix Bootstrap
have been formulated in the primal approach, put forward in [37, 38], and later on applied
to a variety of physical systems in two [39, 49–54], in four [42–44, 55–59], and even in
higher dimensions for the case of supergravity theories [45, 46]. Alternative approaches
in two dimensions based on dispersion relations are [60, 61]. The dual approach to the
S-matrix Bootstrap has been first proposed in [62] to study two dimensional systems of
identical particles, and generalized to multi-particle systems [63], massless EFTs [41], and
in the presence of boundaries [64]. Formulating the dual S-matrix Bootstrap in higher
dimensions d > 2 has turned out to be a challenging mathematical problem. Recently,
it has been solved assuming either maximal analyticity [65], or in [66] by employing the
rigorous analyticity domain derived by Martin [67].5

For concreteness, suppose that we are interested in finding the minimal (min) and
maximal (max) values of the ci’s, under the constraint that the 2 → 2 scattering ampli-
tude M(s, t) satisfies unitarity, analyticity, and crossing-symmetry. The primal strategy
proceeds by filling the space of allowed S-matrices “from inside”, i.e. producing feasible
scattering amplitudes while extremising ci. It is thus a constructive approach. Instead, the
dual approach excludes those values of ci that cannot be attained by a unitarity, analytic
and crossing-symmetric amplitude, and therefore produces bounds on the values of ci’s.
A number of problems have been studied with both the primal and the dual [41, 62–66],
finding that both approaches lead to the same optimal values for the objectives (i.e. the
values for the min/max(ci) values in our example above).

Allowed values (Primal)Excluded values (Dual)

minimisemaximise

In this section we use the primal formulation of the S-matrix Bootstrap. Our point of
view is that if interesting min/max values of the ci’s are found by using the primal approach,
then it will be worth to nail further down those interesting bounds by developing a specific
dual formulation.

5Ref. [66] employed fixed-t dispersion relations and connected to the old literature on the subject [68–72].
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We next briefly describe the primal approach [38], with few modifications adapted to
our problem. In the primal formulation one introduces a crossing-symmetric and (real)
analytic ansatz for the amplitude, for instance

Mans(s, t, u) =
N∑

a,b,c=0
α(abc)ρ

a
sρ
b
tρ
c
u, (2.6)

where the permutation symmetry of the Taylor coefficients ensures crossing-symmetry,
and ρx is a map ensuring maximal analyticity by mapping the complex plane with a cut
(4m2,∞) into the unit disk. The ansatz depends on a parameter N counting the number of
Taylor coefficients . For each N we have a different ansatz, that defines a finite-dimensional
truncated space of amplitudes. In the limit N →∞ the ansatz (2.6) describes any analytic
and crossing-symmetric amplitude.

The coefficients in (1.1) are computed from (2.6) by taking derivatives of Mans at
the crossing-symmetric point. These coefficients are linear functionals cans

i [α(abc)] of the
ansatz’s Taylor coefficients,

cans
0 = −Mans(0, 0, 0) , cans

2 = 1
4

[
∂2

∂s̄2M
ans(s̄, 0,−s̄)

]
s̄=0

,

cans
3 = −1

2

[
∂2

∂s̄2
∂

∂t̄
Mans(s̄, t̄,−s̄− t̄)

]
s̄,t̄=0

. (2.7)

The min/max value of the ci’s is then searched for by scanning the values of the
Taylor coefficients α(abc) subject to the unitarity constraints. The unitarity constraints are
obtained by projecting the amplitude (2.6) into partial waves

fans
` (s) = 1

32π

∫ 1

−1
dxP`(x)Mans(s, t(s, x), u(s, x)) , (2.8)

and imposing |Sans
` (s)|2 ≡

∣∣∣1 + i
√
s− 4m2/

√
sfans
` (s)

∣∣∣2 6 1 , for any ` ∈ N and for any
physical value of the energy, i.e. for s > 4m2. The number of unitarity constraints is
infinite. Therefore, to set up a numerical algorithm we need to introduce two cutoffs in
order to deal with finitely many constraints: a cutoff L in spin, so that we bound all partial
waves for ` 6 L; and choose a grid of points in {s1, . . . sn} ∈ [4m2,∞) where we impose
unitarity point-wise for each spin partial wave. We denote by 1/a the density of points
in the grid, so that 1/a → ∞ corresponds to the continuum limit.6 All in all we set the
unitarity constraints

|Sans
` (si)|2 ≡

∣∣∣∣∣1 + i

√
si − 4m2
√
si

fans
` (si)

∣∣∣∣∣
2

6 1 for ` = 0, 2, . . . L and i = 1, 2, . . . n .

(2.9)

6In practice we do not use a uniform grid with same spacing for all points. We employ a Chebyshev grid
on the boundary of the ρ disk. See also appendix A for more details on the numerics.
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We are thus left with a finite dimensional optimization problem:

cMax
i (N,L, 1/a) ≡ Max

[
cans
i (N) ; subject to (2.9)

]
, (2.10)

and analogously for the minimal values.
Finding optimal values requires taking N arbitrarily large, in order to explore the

whole space of analytic and crossing-symmetric amplitudes. It is important however to
take first the number of constraints to infinity, that is the number of spins L and the
density of points 1/a to infinity first; and only then extrapolate N → ∞. In this way we
are lead to numerically optimal min/max values of the coefficients

copt Max
i = lim

N→∞
lim
L→∞

lim
1/a→∞

cMax
i (N,L, 1/a) , (2.11)

and analogously for the minimal values.
Taking large values of both the number of unitarity constraints (2.9) and N is crucial in

order to obtain accurate results. In this work we introduce a number of numerical advances
to improve the convergence in both L and N , which are key to reproduce our numerical
results. We include in appendix A all the necessary details, and proceed now to briefly
explain these numerical advances:

• Subtracted positivity constraints. Positivity is a necessary condition that any unitary
amplitude must satisfy. Unlike unitarity, many positivity conditions can be imposed
at the level of the amplitude not requiring partial wave projections. Moreover, con-
straints imposed at the level of the amplitude involve all infinite partial wave projec-
tions, in particular those with ` > L that are not bounded. In ref. [45] it has been first
shown the power of additional positivity constraints in accelerating L convergence for
massless particles. In the gapped case we are studying, there are infinite different pos-
itivity constraints that can be implemented, since ImM(s, 0 6 t < 4m2) > 0. These
constraints can be further improved by subtracting the contributions from the spins
` 6 l that we are already bounding by unitarity, leading to the inequalities of the form

Im M̃L(s, t) = ImM(s, t)− 16π
L∑
`=0

(2`+ 1)Im f`(s)P`
(

1 + 2 t

s− 4m2

)
> 0, (2.12)

for 0 6 t < 4m2.7

• Wavelet basis. The naive ansatz (2.6) must be taken with care. Not all the terms
in the triple sum are independent because of momentum conservation, and the re-
dundant terms must be removed. Moreover, it has an unphysical triple discontinuity.
Both issues can be simply solved considering an ansatz of the form Mans(s, t, u) =
M̄(s, t) + M̄(s, u) + M̄(t, u). Instead of Taylor expanding as in eq. (2.6), we propose
a new different ansatz for M̄(s, t) inspired by the so called wavelet expansion [73]

M̄(s, t) = α0+
∑
σ∈Σ

ασ(ρs(σ)+ρt(σ))+
∑

(σ,τ)∈Σ2

ασ,τ ((ρs(σ)ρt(τ)+ρs(τ)ρt(σ))), (2.13)

7We are grateful to Harish Murali who first made this observation for the amplitude of massless parti-
cles [46].
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with α’s free coefficients, and Σ a set of points in the interval (4m2,∞). The map

ρs(σ) =
√
σ − 4m2 −

√
4m2 − s√

σ − 4m2 +
√

4m2 − s
, (2.14)

maps the complex plane excluded the cut [4m2,∞) into the unit disk, with the point
s = 8m2 − σ sent to the origin ρ = 0. We call σ the scale parameter. There exist
a one-to-one conformal transformation that maps any ρ variable into another with
different scale parameter. Indeed, each element of the new basis can be viewed as
a shifted and rescaled version of another — see appendix A.1 for more details. The
analogy with wavelets stops here. It would be interesting to explore the possibility of
making this connection more precisely as it might lead to novel improved ansatzes.

• High energy. The ansatz (2.13), goes to a constant when s goes to infinity
for fixed t. This is of course compatible with double-subtractions, but not very
general. In particular, this behavior is far from saturating the Froissart bound
ImM(s, t = 0) ∼ s log2(s) [74]. We have explored the possibility of adding growing
terms to the ansatz of the form (4m2 − s)3/2ρσ(s). We observe some improvement
in the N convergence in specific regions of the amplitude space, but we haven’t
used this improvement systematically in our numerics. The reason is because these
growing terms turn out to be numerically redundant, implying huge cancellations
among different terms of the ansatz. We think that making the construction of
growing ansatzes more systematic would be an important direction to explore,
especially in the case of d > 4 S-matrix Bootstrap studies — see also appendix A.3.

• Approximating Karplus. Finally, we have also explored the effect of imposing a
more physical domain of the double discontinuity. As reviewed in [47], analytic
continuation of elastic unitarity implies that the double discontinuity must be zero
below the so-called Karplus curve. In all gapped Bootstrap numerics, the double
discontinuity has generically support on a larger region (s, t) ∈ [4m2,∞)2. To study
the effect of the change of its domain, we have constructed an ansatz where the
double discontinuity is exactly zero in the square (s, t) ∈ [4m2, 16m2]2, with the idea
of developing a rectangle approximation of the Karplus region. However, we haven’t
observed any visible effect on the bounds of the ci’s that we have studied in this
paper. It would be interesting to understand which observables are most sensitive
to the precise form of the domain of the double discontinuity.

2.2 Filling in the space of QFTs in d = 3 + 1

In figure 2 we show the allowed space of the coefficients (c0, c2). All four dimensional scalar
amplitudes take values of (c0, c2) inside the green region whose approximate boundary is
depicted in blue. Next we discuss the numerical setup used to determine this plot, and the
physical properties of the amplitudes saturating the bounds.
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Figure 2. Allowed values of (c0, c2). The different green lines correspond to different N = 6, . . . , 12,
while N = 14 is depicted in blue. The data are obtained at fixed L = 16: the positivity constraints
we impose (2.12) are so efficient in constraining the large spin behavior that we can consider this
value asymptotic.

2.2.1 Numerical aspects of figure 2

The boundary of the allowed region has been obtained by solving a radial optimization
problem by setting λ ≡ −c0/(32π) = R cos θ and c2/(32π) = R0 + κR sin θ. For each fixed
θ, and for a suitable choice of κ and R0, we maximize R within our numerical ansatz subject
to unitarity.8 The result of each optimization problem determines a point {c0(θ), c2(θ)}
on the boundary. The collection of all these points obtained by choosing a discrete set of
values of θ ∈ [0, 2π) determines the closed regions in figure 2.

We use the wavelet ansatz in (2.13), and add to the unitarity constraints the subtracted
positivity conditions introduced in (2.12).9 In order to accelerate convergence, we add a
threshold singularity term of the form αth/(ρs−1)+. . . allowing for a square root singularity
when s→ 4m2 compatible with unitarity.10

The different green curves correspond to different values of N ranging from N = 6
to N = 12 in steps of two following the color gradient, and N = 14 is depicted in blue.
The inclusion of the positivity constraints allow us to work at fixed L = 16, where we

8It is hard to estimate a priori the values of R0 and κ as they depend on the shape of the boundary that
we can only know after solving the optimization problem. In our numerics we use κ = 1/10 and R0 = 1/10.

9We add also few growing terms such that our ansatz at fixed 0 < t < 4m2 behaves as s3/2, while in the
physical region is bounded. See appendix A for details on the parameters used in the numerics.

10In ref. [38] it was observed that allowing for this freedom helps with convergence of the maximal coupling
c0 problem.
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observe that the boundary does not change significantly by increasing or lowering the spin
cutoff. We take the bounds at N = 14 as a good approximation of the boundary of the
allowed (c0, c2) space. The position of the points around the cusp B will change mildly as
we increase N further. However, in appendix A.4 we show that this change is small, of the
order of 0.2. We have not attempted a systematic extrapolation of the whole boundary,
but it would be interesting to derive an exclusion plot using a dual formulation.

2.2.2 Properties of the amplitudes in the boundary

At each point in the boundary, the solution of the optimisation problem determines the
values of the α(abc) coefficients. The solution not only provides the min/max values of
(c0, c2) but also a non-perturbative 2 → 2 scattering amplitude of a scalar particle. We
must therefore look for observables that would help us characterise the physics along the
boundary, thus giving us information about these extremal putative QFTs.

We identify four special points. The points A and B are easily identified by looking at
figure 2 since they correspond to visible cusps. At those points we attain respectively the
maximum and minimum value of the coupling λ. The green curves show that convergence
of the optimisation algorithm towards point A is fast, while convergence is slower towards
point B. The scattering amplitudes associated to points A and B have been studied in
ref. [38]. More recently, precise numerical determinations of the maximum coupling λ,
both from the primal and a dual approach, have been obtained in ref. [65]. The error on
the minimum coupling is still quite large. By combining our primal data and the dual
bound in ref. [66], we obtain the best estimate to date:

− 8.02 6 min λ 6 −7.0 . (2.15)

It is still unclear if one can construct a physical theory with a λ close to the minimum
value and why numerical convergence is hard. It would be interesting to find some phys-
ical intuition behind this minimum coupling amplitude that might help designing a faster
converging ansatz.

The point D at the origin (c0, c2) = (0, 0) is the free theory. It is simple to show that
c2 > 0 by looking at its dispersive representation11

c2 = m4

π

∫ ∞
4m2

ImM(z, 4
3m

2)
(z − 4

3m
2)3 dz > 0 . (2.16)

The lower bound c2 = 0 is saturated when ImM(z, t) = 0, hence by the free theory.
Combining this analytic bound with our numerical results we obtain an estimate on the
allowed values of c2

0 6
c2

32π . 0.93 . (2.17)

Cusps like the points A and B must be associated to drastic discontinuities in the
behavior of the amplitude. In figure 3 on the left we plot the value of the residue at

11By using a similar dispersion relation it is easy to show that the second derivative of the amplitude
around any point in the Mandelstam triangle is positive, i.e. the amplitude is a convex function in the
Mandelstam triangle.
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Figure 3. On the left plot we show the residue of the pole at threshold αth along the boundary
of the allowed (c0, c2) values in figure 2. On the right we show the spin-zero dominance, also along
the boundary of the allowed (c0, c2) values.

threshold αth of the amplitude as a function of the radial angle θ. Unitarity at threshold
determines the allowed region of the threshold residue −32π

√
6 6 αth 6 0 depicted in

green in the figure. We clearly see that the points A and B divide the boundary in two
regions: the upper arc AB where the threshold residue αth attains its minimum value, and
the arc BA where it is zero.

An interesting observable can be defined by projecting the dispersion relation (2.16)
into partial waves, c2 = ∑∞

`=0 c
(`)
2 , where

c
(`)
2 = m4

π
(2`+ 1)16π

∫ ∞
4m2

Im f`(z)P`(1 + 8
3(z−4m2))

(z − 4
3m

2)3 dz (2.18)

is the contribution coming from the spin ` partial wave to c2. We then define the ratio
c

(0)
2 /c2, which measures the relative contribution of the spin-0 to the whole c2 value. In
figure 3 on the right we plot the ratio c(0)

2 /c2 as a function of the radial angle θ. Curves with
different colors correspond to different values of N (from N = 6 in green, to N = 14 in red).
First, we notice there is a region of the boundary where the spin-0 contribution dominates
c

(0)
2 /c2 ∼ 1: it starts on the BD arc before the free theory point, and it stretches all the
way up to maximum coupling cusp A. We use the terminology introduced in [27] and call
this region Spin-zero dominance arc. In all figures we have added a point C signalling the
starting point of the Spin-zero dominance. It is worth noticing that this is also the region
that numerically converges faster.

Following the boundary anti-clockwise from point A the Spin-zero dominance ratio
attains its minimum at the minimum coupling cusp B. The whole arc ABC is saturated
by scattering amplitudes with non trivial higher spin partial waves. We have also plotted
the relative dominance of higher spins: (c(0)

2 + c
(2)
2 )/c2 and (c(0)

2 + c
(2)
2 + c

(4)
2 )/c2. In the

region along the arc ABC the quantities c(2)
2 /c2 and c(4)

2 /c2 are appreciably larger than zero,
indicating the loss of spin-0 dominance. We do not observe a region where c(2)

2 /c2 = O(1)
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but c(4)
2 /c2 ≈ 0, instead we find that all higher spins (` > 2) become important in the

region where spin-0 dominance is lost.12,13

We conclude with a comment on the minimum coupling cusp. It is interesting to notice
that the point B maximises also the value of c2, and that features almost zero Spin-zero
dominance. This meets the intuition that the minimum coupling amplitude may be realised
by the most strongly coupled QFT in four dimensions, justifying why convergence is so
hard at point B.

2.3 Unitarity vs positivity

In this section we compare the amplitudes in the boundary of the allowed (c0, c2)-space
with the positivity bounds. Using positivity we will constrain ratios of the ci coefficients,
like for instance c3/c2. This is in contrast with the primal S-matrix Bootstrap results of
the previous section where we find the absolute allowed space e.g. for c2 in equation (2.17),
in units of m = 1.

Recently refs. [23, 24] exploited full crossing-symmetry to derive two-sided bounds
on ratios of Wilson coefficients. Inspired by these developments we will next introduce
an alternative, but equivalent, derivation of positivity constraints exploiting full crossing
symmetry. We will also need to adequate this derivation to our set up by including unitarity
cuts for all physical energies s ∈ [4m2,∞).

We start with the double-subtracted, fixed t, dispersion relation

M(s, t) = M(s0, t0) + 1
π

∫ ∞
4m2

dz [Mz(z, t)K(z, s, t; t0) +Mz(z, t0)K(z, t, t0; s0)] (2.19)

where the kernel is given by

K(z, s, t; t0) = 1
z − s

+ 1
z − 4m2 + s+ t

− 1
z − t0

− 1
z − 4m2 + t+ t0

, (2.20)

and we have defined the discontinuity

Mz(z, t) ≡
1
2idisczM(z, t) . (2.21)

This dispersion relation encodes s ↔ u crossing-symmetry and analyticity in s for fixed
t.14 The validity of the fixed-t dispersion relation (2.19) has been proved by Martin [67].
The coefficients ci in (1.1) can be obtained from (2.19) by taking suitable derivatives with

12As we will see, this phenomenon is also expected from the crossing constraints (2.29). For instance
F

(1,3)
2 (z) is not positive definite, and therefore must be compensated by even higher spin contributions
F

(1,3)
`>2 (z).
13What we observed here reminds us of a similar phenomenon in weakly coupled EFTs, where there is

no decoupling of massive higher spins, see e.g. [15].
14See for instance appendix A of ref. [66] for a recent derivation of (2.19).
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respect to s and t

−c0 = M(s, t)− 1
π

∫ ∞
4m2

dz

(
Mz(z, t)K

(
z, s, t; 4

3m
2
)

+Mz

(
z,

4
3m

2
)
K

(
z, t,

4
3m

2; 4
3m

2
))

, (2.22)

c2 = m4

π

∫ ∞
4m2

dz
Mz(z, 4

3m
2)

(z − 4
3m

2)3 > 0 , (2.23)

c3 = m6

π

∫ ∞
4m2

dz

(
3
Mz(z, 4

3m
2)

(z − 4
3m

2)4 − 2
∂
∂tMz(z, t)|t=4/3m2

(z − 4
3m

2)3

)
, (2.24)

(for convenience we reproduce again the dispersion relation for c2 in (2.16)). The sum rule
for c0 in (2.22) depends on an arbitrary analytic point (s, t), within the region of conver-
gence of the fixed-t dispersion relations. Since c0 depends on an arbitrary subtraction con-
stantM(s, t), it is impossible to extract bounds without introducing constraints on the real
parts of the amplitude. The integrand in the dispersive representation of c3 is not manifestly
positive, and it is hard to claim bounds on this coefficient without further assumptions.

We will treat crossing symmetry starting from the crossing equation

M(s, t) = M(s, 4m2 − s− t) . (2.25)

The fixed-t dispersion relation (2.19) is only s↔ u invariant and therefore must be equipped
with the explicit s ↔ t crossing-symmetry, or the equivalent t ↔ u crossing-symmetry
constraint (2.25). As first observed by Roy [75], using the fixed-t dispersion relation (2.19)
we can write the crossing equation (2.25) in a form that involves only the imaginary parts
of the amplitude ∫ ∞

4m2
dz
[
Mz(z, t)K(z, s, t; t0)−Mz(z, u)K(z, s, u; t0)

+Mz(z, t0)(K(z, t, t0; s0)−K(z, u, t0; s0))
]

= 0. (2.26)

Next we expand the last equation into partial waves∫ ∞
4m2

dz
∞∑
`=2

(2`+ 1)Im f`(z)F`(z, s, t; t0, s0) = 0 , (2.27)

where the kernel is given by

F`(z, s, t; t0, s0) = P`

(
1+ 2t

z − 4

)
K(z, s, t; t0)−P`

(
1+ 2u

z − 4

)
K(z, s, u; t0)

+P`
(

1+ 2t0
z − 4

)
(K(z, t, t0; s0)−K(z, u, t0; s0)) ,

(2.28)

in m2 = 1 units. If (s, t) are inside the Mandelstam triangle (as we are interested in) then
the partial wave expansion is convergent. Notice that the sum over spins starts at ` = 2.
This is a consequence of the double subtractions that leave the spin ` = 0 unconstrained.15

15Equation (2.27) reminds us the crossing equation used in the Conformal Bootstrap [76, 77].
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Next we can act on the crossing equation using different set of functionals, for instance,
by applying any number of derivatives, or evaluating it at different points. We choose to
take derivatives of (2.27) around the crossing symmetric point s = t = u = 4/3, and we
are lead to

F (l,k) =
∫ ∞

4m2
dz
∞∑
`=2

(2`+ 1)Im f`(z)F (l,k)
` (z) = 0. (2.29)

where F (l,k)
` (z) = ∂

∂sl
∂
∂tk
F`(z, s, t; 4

3 ,
4
3)
∣∣
s=t=4/3.

16 The last equation is the final form of the
s↔ t crossing-symmetry constraints that we will employ.

Although powerful, these constraints are still not sufficient to bound c0, c2 or c3 sepa-
rately. Therefore we will use positivity to bound ratios of these coefficients. In particular,
we address the problem

min
{Im f`} in (2.24)

c3

subject to c2 = 1, F (l,k) = 0, Im f`(s) > 0.
(2.30)

and analogously for the maximisation problem. Equation (2.30) means minimise (min)
the coefficient c3 by varying the imaginary part of the partial waves Imfl, subject to the
constraints c2 = 1, the crossing-symmetry constraints F (l,k) = 0 and positivity Im f`(s) >
0. Since (2.30) is a linear optimisation problem, its dual version is given by

max
λ2,νn,m

−λ2

subject to (−)(λ2K
(2)
` (s) +K

(3)
` (s) +

∑
n,m

νn,mF
(n,m)
` (s)) > 0 ,

(2.31)

where the kernels are given by

K
(2)
` (s) = 16

(s− 4/3)3P`

(
1 + 8

3(s− 4)

)
(2.32)

K
(3)
` (s) = 48

P`(1 + 8
3(s−4))

(s− 4/3)4 −
(`+ 1)

(
(4−3s)P`(1+ 8

3(s−4)) + 3(s−4)P`+1(1+ 8
3(s−4))

)
4(s− 4/3)3(3s−8)

 .

The last equations can be obtained by expanding in partial waves the kernels (2.23) for c2
and c3 respectively.

We solve numerically the problem by considering all constraints with n + m 6 7.17

Even in the dual approach, like in the primal, there is an extrapolation involved since
we have to impose an infinite number of linear dual constraints. In practice, we impose

16Schematically M(s, t) ∼
∑

`
f`(s)Pl((u − t)/(u + t)), therefore u ↔ t crossing-symmetry implies that

the odd spin contributions to the amplitude vanish. Thus an equivalent way to impose crossing symmetry
is to first set to zero the odd spin contributions to the imaginary parts Mz(z, t) and Mz(z, t0) in (2.19).
Then project into partial waves the fixed t dispersion relation (2.19). This projection contains spin odd
contributions because the Kernel is not t↔ u symmetric. Imposing that these spin odd projections vanish
should be equivalent to (2.29), see ref. [66].

17Note that not all derivatives are independent, there is only one independent constraint up to n+m 6 6.
For n+m < 4 all crossing constraints vanish.
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Figure 4. On the left ratio of derivatives c3/c2 as a function of the radial angle θ used to parametrize
the boundary of the allowed region in figure 2. On the right the same plot in the (c2, c3) space, for
fixed N = 14.

constraints up to `max = 20 and check that increasing the maximum spin does not change
the bounds. The results are given in figure 4, shown as the red excluded regions defined
by the inequality

− 2.250 6
c3
c2

6 1.125 . (2.33)

Note however that the upper bound is independent of the number of crossing con-
straints imposed. Indeed, it can be obtained analytically observing that from the definition
of c3 (2.24)

c3 6
1
π

∫ ∞
4

dz
3Mz(z, 4

3)
(z − 4

3)4 6
1
π

∫ ∞
4

dz
1

(4− 4
3)

3Mz(z, 4
3)

(z − 4
3)3 = 9

8c2 , (2.34)

in m2 = 1 units. This bound is saturated by a function with ∂
∂tMz(z, t) = 0, that is only

possible when Mz(z, t) contains only a spin-0 component. The crossing constraints (2.29)
involve only partial waves with spin ` > 2, hence they cannot improve the bound.

The lower bound is sensitive to the crossing constraints. The different red lines ap-
proaching the lower bound in the left plot of figure 4 correspond to increasing values of
crossing constraints n + m, but they seem to converge fast. Our numerical result coin-
cide with the analytic lower bound c3/c2 > −9/4 derived in [78] using crossing symmetric
dispersion relations and the Geometric Function Theory.

We conclude this section by comparing the positivity bounds with the S-matrix Boot-
strap data obtained in section 2.2. The compatibility of the positivity bounds and the
Bootstrap data has also been observed in refs. [78, 79] in different systems.

The curves with different colours in figure 4, left plot, show the ratio c3/c2 as a function
of the radial angle θ used in figure 2. We notice that the maximum and minimum ampli-
tudes correspond respectively to the maximum and minimum value for this ratio. These val-
ues are close to saturate the positivity bounds, although there is still a gap. This is expected
since we are not optimizing the S-matrix Bootstrap amplitudes in the (c2, c3) space.18

18It has been checked in [59] that the bounds are saturated using the S-matrix Bootstrap. See below a
simple Quantum Field Theory that saturates the upper bound.

– 15 –



J
H
E
P
0
5
(
2
0
2
3
)
0
0
1

c2
32π

λ

λ

c2/(32π)

A

D
A

DC

B

Figure 5. Allowed values of (c0, c2) in the un-subtracted physics scenario (left). On the right plot
we show the dramatic effect of this constraint: the plot on the left is shown there by a red curve
embedded in the plot of figure 2.

In the spin-0 dominance arc (C-D-A) the ratio c3/c2 is positive, and therefore c3 is
positive. This is expected since the negativity of c3 comes from a term proportional to
∂
∂t ImMz(z, t) that does not have any spin-0 contribution. We shall see other instances of
this phenomenon in the next sections (see figure 12 below where c3 is positive along the
boundary of the EFT region).

In figure 4 on the right we show the trajectory in the (c2, c3) plane as we move along the
boundary, showing it is well inside the excluded region determined using positivity in red.

Perhaps a more interesting question is what are the theories that saturate the lin-
earised unitarity bounds vs. the theories that saturate the S-matrix bootstrap bounds.
This discussion and further analyses about the compatibility between positivity and boot-
strap bounds are presented in the sections below, where we analyse effective field theory
amplitudes using the S-matrix bootstrap.

2.3.1 Un-subtracted physics

In this section we comment on the effect of subtractions on physical observables. Let us
assume that the amplitude decays at infinity at some fixed t = t∗

lim
|s|→∞

M(s, t∗) = 0. (2.35)

We can write an un-subtracted dispersion relation and immediately see the dramatic effect
of this condition on the quartic coupling by choosing t∗ = 4

3

λ ≡ 1
32πM

(4
3 , t
∗
)

= 1
16π2

∫ ∞
4

dz
ImM(z, t∗)

z − 4
3

> 0 . (2.36)

Then, using (2.23) and (2.36) we obtain an upper bound on the ratio c2/λ

c2 6
1
π

∫ ∞
4

dz
1(
8
3

)2
ImM(s, t∗)
z − 4

3
= 9π

4 λ , (2.37)
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where we have used the inequality 1
(s−4/3)3 6 (3

8)2 1
s−4/3 . Thus, c2 is bounded by

0 6
c2

32π 6
9

128λ . (2.38)

This condition excludes negative values of λ that would be compatible with weakly coupled
V (φ) = +|g0|φ4/4! theory.

In the left plot of figure 5 we show the allowed region in the {λ, c2} plane in green. As
before, different lines correspond to different values of N . This region converges fast, so we
use N = 4, . . . , 8, and L = 12. In the right plot of figure 5 we see how this region fits inside
the full space in figure 2, showing that part of the boundary is saturated by amplitudes
that decays for large s at fixed t = 4/3.

3 Weakly coupled EFTs in 3 + 1 dimensions

So far our discussion has been non-perturbative, and based on the observation that below
the discontinuities enforced by unitarity we can represent the amplitude by (1.1).

For a limited range |c0|/(32π) � 1, the boundary of the allowed (c0, c2) values in
figure 2 can be described by the effective field theory in (2.2). However, most of the
boundary involves large values of (c0, c2), inm2 units, and thus cannot be simply interpreted
as a bound on the coefficients of the operators φ4 and (∂φ)4. The higher order corrections in
the right hand side of (2.3)–(2.5) are large; in other words, the dots in ci = gi (m2/Λ2)i+. . .
cannot be ignored.

The aim of this section is to formalise and give an answer to: what are the extremal
values of (c0, c2) in (1.1) for theories that are weakly coupled below the cutoff Λ of a putative
Effective Field Theory description? Namely, we will isolate the region inside the allowed
(c0, c2)-plane of figure 2 that at low energies can be described by a weakly coupled field
theory. In order to achieve such purpose, we need to encode the notion of mass gap
separation m2 � Λ2 into the S-matrix Bootstrap problem.

The imaginary part of the two-to-two scattering amplitude of quantum theories that
admit a weakly coupled field theory description at energies s� Λ2 looks like

EFT region

Possible UV completionsImM(s, t = 0) ∝ σtot

sΛ24m2

The imaginary part is controlled by loops. Therefore a sensible strategy is to require that
ImM(s) is small for energies below the physical cutoff. Thus we will set up a (primal)
S-matrix Bootstrap approach with extra constraints that ensure that ImM(s) � 16π2 at
low energies s 6 Λ2. We make no assumption about the physics above the cutoff scale Λ,
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and allow strongly or weakly coupled UV completions. We will be interested in unitary
amplitudes, and thus we will require unitary in the entire regime of physical values of
s > 4m2. The assumption about maximal analyticity which we employed in the previous
section is also kept unchanged. Next we describe two methods, M1 and M2, to approach
this problem.

M1 A first possible avenue is to require that the integral of the imaginary part of the
amplitude, against some kernel, is small in the low energy region 4 6 s 6 Λ2. In
particular we will impose the extra constraint

∆aIR
n ≡

∫ Λ2

4

Mans
z (z, 4/3)−MEFT

z (z, 4/3)
(z − 4/3)n+1 dz 6 0 (3.1)

where n > 2, we set m2 = 1, and MEFT is a phenomenological input based on the
low energy theory of interest. For instance, a simple minimalistic choice is to require
the g0φ

4/4! theory in the IR. In this case the leading order imaginary part of M(s, t)
is given by

MEFT
z (s, t) =

√
s− 4√
s

g2
0

32π , (3.2)

which depends on the EFT coupling g0 � 16π2. Similar variables to ∆aIR
n were

analysed in [20], there called arcs. Hence we will call (3.1) arc constraints. All in all,
M1 is a refinement of (2.10) to exclude theories featuring large cuts at low energy,
and consists in the following optimisation problem

Max
[
cans
i (N) ; subject to (2.9) and (3.1)

]
. (3.3)

M2 A perhaps more refined avenue is to impose point-wise constraints by requiring

Imfans
` (s) 6 ImfEFT

` (s) for 4 6 s 6 Λ2 . (3.4)

where ImfEFT
` (s) is the phenomenological input, computed perturbatively for the

EFT we are interested in reproducing in the IR. The real part is allowed to freely
vary in order to satisfy the unitary equations. In practice we will discretise (3.4) into
a fine grid of points in the range s ∈ [4,Λ2]. We expect that (3.1) for n = 2, 3, . . . n∗
should be equivalent to (3.4) for large values of n∗.19 In practice we will not achieve
large values of n∗, and therefore it becomes convenient to employ this second method.
All in all, M2 consists in

Max
[
cans
i (N) ; subject to (2.9) and (3.4)

]
. (3.5)

Details on the ansatz for M(s, t) that we use for M2 are provided in section 3.2.

3.1 M1: bounding arcs

By imposing the inequality (3.1) for a fixed number of modes n we make sure that the
contributions to the ci’s coming from the IR physics are small, and proportional to g2

0. The
19Our intuition is also based on numerical experiments performed in two-dimensional toy models.
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Figure 6. Allowed values for (c0, c2), using the method M1 with one arc constraint ∆aIR
2 6 0.

Different green curves correspond to different values of N = 6, 8, . . . , 14, and the black solid line is
our power law extrapolation. The bounds are obtained at fixed spin up to L = 34 for the highest
N . Unlike the numerics in figure 2 the bound in this case is more sensitive to the higher spins on
the upper boundary. The dashed red line is the prediction from one-loop g0φ

4 theory. Black dashed
vertical lines represent the coupling |g0| = 2.4 we input.

constraint depends on two phenomenological parameters the coupling g0 and the cutoff Λ.
We take g0 = 4! × 0.1 and Λ2 = (8m)2. This value of the cutoff is quite large because
the EFT corrections are controlled by powers of m4/Λ4 = 1/642. We will comment on the
cutoff dependence on sections 4 and 6.20

In figure 6 we plot the allowed region in the (c0, c2) plane for different values of N =
6, . . . , 14 with spin up to L = 34 imposing only the constraint ∆aIR

2 . In black we show an
extrapolation done with a power law fit with three free parameters.

There are two cusps A′ and B′ corresponding respectively to the maximum and mini-
mum allowed value of c0. These values turn out to be approximately equal to the effective
coupling imposed in the arc constraint g0 = 2.4. The point D corresponds to the free
theory, which is allowed by our constraints.

The lower part of the boundary corresponding to the arc B′DA′ converges fast with
N , and coincides with the lower bound in figure 2. As we will show momentarily the arc
DA′ corresponds to the EFT in (2.2) with a weakly coupled UV completion. Instead, the
segment B′D involves negative quartic coupling. Therefore the actual cutoff of the EFT
description in the B′D region might be smaller than Λ.21 On the other hand, the upper
part of the boundary, the arc A′B′, sets the maximal allowed values for c2.

20For a loose analogy with Higgs physics, recall that the ratio mh/1 TeV ≈ 1/8 and the quartic λ|H|4 is
λ ≈ 0.125.

21For a field theory intuition, consider the potential V (φ)=φ2(m2−|λ4|φ2+|λ6|/φ4/Λ2+ . . . ). Taking the
scaling λ6, λ

2
4=O(δ), with Λ2=m2, the O(λ6) corrections to ImM ∝ λ2

4 +O(δ2) are negligible yet the φ=0
vacua is stable.
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Figure 7. Spin ratios in M1, for N = 14.

In order characterise the extremal amplitudes, we analysed the spin dominance of c2
throughout the boundary of figure 6. In figure 7 we show the various spin contributions
to the c2 dispersion relation. The lower branch of figure 6 shows spin-0 dominance. As we
will see this is expected because those amplitudes can be described by a weakly coupled
effective field theory. On the other hand, the amplitudes in the upper branch shows higher
spin dominance with values of (c(0)

2 + c
(2)
2 )/c2 and (c(0)

2 + c
(2)
2 + c

(4)
2 )/c2 of order O(1). The

behaviour is qualitatively similar to what we found in figure 3: we do not observe a region
where c(2)

2 /c2 = O(1) but c(4)
2 /c2 ≈ 0, instead we find that all higher spins (` > 2) become

important in the region where spin-0 dominance is lost.
To further characterise the theories in the boundary we introduce the following ratio

r ≡ cUV
2 /c2 , (3.6)

where
cUV

2 = 1
π

∫ ∞
Λ2

ImM(s, t = 4/3)
(s− 4/3)3 ds . (3.7)

Theories that are weakly coupled in the IR and strongly coupled in the UV have r ≈ 1. The
opposite however is not true: r may be arbitrarily close to 1 for a weakly coupled UV com-
pletion as long as the contribution of IR physics into c2 is subdominant with respect to cUV

2 .
In figure 8 on the left, we plot the value of r along the boundary of figure 6, i.e. as a

function of the angle θ we used to determine the boundary of the allowed region of figure 6.
Different lines correspond to different values of N = 6, . . . , 14, showing that this observable
is nicely converged along the boundary. This observable presents an abrupt transition at
the edges A′ and B′, and shows that the upper branch of the boundary in figure 6 is UV
dominated (r ≈ 1) while the lower one is IR dominated (r ≈ 0).

In the limit of exact UV domination r = 1, the unitary cut along s ∈ [4,Λ2] can be
neglected. In this region we can get an approximate estimate of the maximal c2 measured
at the cutoff scale simply by rescaling the plot in figure 2, i.e. by reinterpreting m2 as Λ2

in that result. There we found c2 . 40 for |c0|/(32π) � 1, which roughly coincides with
the maximal value of c2 in figure 6. We remark however, that the amplitudes in figure 6
satisfy unitary in the whole range s ∈ [4,∞].

In figure 8 on the right, we plot the ratio c3/c2 as function of the radial angle θ, i.e. its
value along the boundary of figure 6. The ratio c3/c2 is well inside the bounds in (2.33).
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Figure 8. Value of r (left) and c3/c2 (right) along the boundary of figure 6. Different colours
denote different values of N ranging from N = 8 in light blue, to N = 14 in red. On the right, the
green region determined by the green dashed lines represent the region allowed by the tree-level
positivity constraints. The red dashed line is the value of the ratio c3/c2 in the g0φ

4 theory. The
red excluded region has been obtained using the UV dominance ratio extracted from the left figure
using eq. (3.12).

We remark that here we are not minimizing (or maximizing) the value of c3/c2, but only
providing a consistency check by showing that the ratio c3/c2 is within the rigorous bounds
in (2.33). The plot shows two main behaviours of the amplitude depending on whether the
value of c2 is UV (which happens for θ approximately within the range [0, π]) or c2 is IR
dominated (i.e. θ roughly in the range [π, 2π]).

In the IR dominated region, we find that the ratio is given by c3/c2 ≈ 0.6307. This
value can be explained by a simple Effective Field Theory calculation. Consider a model
with a light scalar with mass m = 1, a heavy scalar with mass M , and a potential

V (φ,Φ) = φ2(1/2 + εMΦ + αε2Φ2) +M2/2 Φ2 + βε4/4!φ4 , (3.8)

where we take α, β as O(1) numbers, and g0 ≡ βε4. One can readily compute the value of
c3 and c2 from the diagrams

+ + · · · (3.9)

by expanding each diagram in powers of momenta around the crossing-symmetric point
(s, t, u) = (4/3, 4/3, 4/3) and matching the result into the expression (1.1). Dashed lines
indicate the propagation of the light scalar, while solid thicker lines the propagation of the
heavier scalar. The first diagram represents the leading IR contribution, and the second
diagram is a contribution from the heavy scalar. Next we will discuss two interesting limits
of this simple computation, 1/M → 0 and 1/M → 2. In the limit where one decouples the
heavy physics 1/M → 0 we get

c3/c2 = 390− 459
√

2 cot−1√2
−224 + 240

√
2 cot−1√2

≈ 0.6307 (3.10)
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Figure 9. Two bottom plots: ImM(s, 4/3) for the points P1 and P2 of figure 6 indicated in the
upper left inset. In the top right corner the difference Λ4|c2 − c1-loop

2 | value along the boundary
(solid black line), two-loops perturbation theory (red dashed line) and naive dimensional analysis
(solid green line and the green region below it).

from the first diagram in (3.9). This IR contribution nicely matches the right plateau of
the right plot in figure 8, something which perhaps is not too surprising because that region
is IR dominated and can admit a weakly coupled EFT description. In the second limit
we take the heavy particle as light as possible M → 2, i.e. at threshold M2 = (2m)2 for
m = 1.22 We get

c3/c2 = 9/8 +O(ε2) (3.11)

which saturates the positivity bound (2.33) as ε → 0.23 The value 9/8 arises from the
second diagram in (3.9). It is easy to understand why this theory saturates the bound: the
first inequality of (2.34) is saturated because the second term in the integrand of (2.24)
vanishes; and the second inequality of (2.34) is saturated because the discontinuity of the
diagram is a delta function peaked at threshold s = 4.24

It is possible to derive an improved positivity bound taking into account the UV and
IR contributions to the dispersion relation of c2,

c3
c2

6
9
8(1− r) + 3

Λ2 − 4/3r . (3.12)

22For values lighter than M = 2 the second diagram would induce a pole in the 2 → 2 scattering of the
light particle, and thus one needs to modify the dispersion relations (2.22)–(2.24) accordingly.

23Note that as long as α > M2/2 the point (φ,Φ) = (0, 0) is the global minimum of V .
24A similar phenomena has been observed in ref. [24] and in other uses of positivity bounds. Positive

moment constraints are saturated by integrating at tree-level heavy states at threshold [20].
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This is an optimal inequality, it is a weighted average of IR and UV threshold contributions,
and is derived following similar steps to the derivation of (2.34). The upper bound (3.12) is
shown by the shaded red region in figure 8 on the right, by taking r from the left plot. The
amplitude that we get with the M1 method nicely agrees with the bound throughout. In
the region where the value of c2 is UV dominated the IR cuts can be neglected, and one has

− 0.1564 6 c3/c2 6 9/188 ≈ 0.0479 , (3.13)

after setting Λ = (8m)2, and m = 1. The bound is shown by the shaded green region in
figure 8. Our amplitudes in the UV dominated closely saturate the lower bound (3.13).

The notion of UV domination is quite general, and does not necessarily apply to field
theories with a weakly coupled description in the IR. We shall therefore verify that the
theories that saturate the bounds in figure 6 do behave as EFTs.

In the upper right plot of figure 9 we compute the difference Λ4|c2 − c1−loop
2 | as we

move along the boundary of the M1 region. c1−loop
2 is given in eq. (C.2), and comes from

the one-loop contribution to c2 in the g0φ
4 theory where we extract g0 from the amplitude

using (2.3). The green line is the naive dimensional analysis upper bound 4π on the UV
contributions to c2. We observe that in the UV dominance region, this bound is violated
by a factor 2 at least, suggesting that there might be other non-perturbative contributions
to c2. The dashed red line is the two-loop contribution to c2 given in (C.9). In the
IR dominance region, after subtracting the one-loop contribution, what remains matches
almost perfectly the two-loops curve, indicating that the UV terms are negligible and that
the amplitudes come from a weakly coupled UV theory.

In virtue of the above discussion, we conclude this section by comparing the imaginary
part of the amplitude ImM(s, t = 4/3) for different sample points along the boundary
— the two bottom plots in figure 9. We extract the quartic coupling by measuring the
amplitude at the crossing symmetric point, and then use it to plot the red dashed curves
using the one-loop approximation (3.2). We observe that indeed for the points P2 or
P3 laying in the IR dominance region B′DA′, the one-loop approximation is valid up to
the cutoff Λ2 = 64, and even beyond that. Instead for the points P1 or P4, the one-loop
approximation is valid in a smaller region well below the cutoff, showing that these theories
receive still important contributions from higher derivative operators, and therefore our
upper bound is too loose and could be improved. In principle this can be done by adding
further constraints ∆aIRn>4. However we will not pursue further this route in the present
work and instead next we switch to the more constraining method M2.

3.2 M2: bounding the low energy ansatz

The other possibility is to drastically approximate the amplitude in the IR in order to
match the expected EFT behavior. As we will see momentarily this approximation has to
be taken with care.

Dispersion relations encode in a compact way the analyticity and crossing properties
of the amplitude. The Mandelstam representation — see equation (B.11) in appendix B —
determines the scattering amplitude everywhere in the maximal analyticity domain once
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Figure 10. Domain of the double-discontinuity in the {s, t} plane in the one-loop approximation.
In the region s, t < Λ2 we can approximate it by setting it to zero. The region D depicted in green
is the domain used in our numerics. In red we denote the domain D′ that contributes to the higher
spins in the IR region.

we specify its single and double discontinuities, and eventually few subtraction constants
i.e. M [c0, σ(s), ρ(s, t)]. In section 2 we let these quantities vary arbitrarily constrained
solely by unitarity. Here, we discuss the possibility of bounding the single and double
discontinuity in the IR, according to the predictions of the EFT we are interested in. In
particular, these new constraints will define a region in the space of the coefficients {c0, c2},
and we will provide evidence that our prescription nails down precisely the space of EFTs.

To make contact with perturbation theory, first we observe that the single discontinuity
σ(s) of the amplitude can be expressed in terms of the spin-zero imaginary part Im f0(s),
and the double discontinuity, see (B.6). We can straightforwardly compute the spin-zero
imaginary in perturbation theory using the g0φ

4/4! interaction Lagrangian, and use it to
bound the spin-zero projection of our numerical ansatz in the IR

Im fans
0 (s) 6 1

2

√
s− 4m2

s

(
g0

16π

)2
, 4m2 < s < Λ2 . (3.14)

At the one-loop level, the imaginary part of the amplitude contains only the spin-zero
contribution. Using this fact and eq. (B.7)

Im f`>2(s) = 1
4(s− 4m2)

∫ ∞
ρ(s, y)Q`

(
1 + 2y

s− 4m2

)
dy = 0 , (3.15)

we obtain a condition on the double discontinuity in the IR that can be automatically
satisfied by setting ρans(s, t) = 0 for any fixed t > 4m2 and 4m2 < s < Λ2. Using crossing
symmetry, therefore, we shall consider the restricted support D = [Λ2,∞) × [Λ2,∞) for
the double discontinuity– see the green region in figure 10.

Of course, this is not the only option. At fixed s in the IR and t > Λ2, in principle, we
have no right to set the double discontinuity to zero. In particular, the double discontinuity
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Figure 11. On the left, allowed values for (c0, c2), using the method M2. Different green lines
correspond to different values of N ranging from N = 6 to N = 16; we keep P = 10 and Q = 3
fixed. For the highest N the spin cutoff is L = 30. On the right, comparison between the M1 and
the M2 regions using the best numerics we have.

in that region is not positive25 and the equality (3.15) might still hold for all spins by requir-
ing some nontrivial cancellations. Therefore, another option is to turn on the double dis-
continuity on the domain D′ = [4m2,Λ2)×[Λ2,∞)∪[Λ2,∞)×[4m2,Λ2) — see red region in
figure 10, and add the additional constraints Im f`>2 6 max{m4

Λ4 , λ
3}. In this paper we will

not consider this option as we will see that the allowed region for the coefficients ci obtained
using the domain D is compatible with the EFT region defined by the arc bounds in figure 6.

The ansatz we use to solve the bootstrap problem in this case is a mixed ansatz
including both dispersive and power series terms. In fact, since we effectively introduce
a separation between the IR and the UV we think that is convenient to parametrize the
two regions differently. We use the dispersive part to parametrize the single discontinuity
of the amplitude. We choose a basis of Chebyshev polynomials for 4m2 < s < Λ2, and a
simple power law series for the UV region s > Λ2

1
π
σdisp(s) = θ((s− 4)(Λ2 − s))

√
s− 4

P∑
p=1

δIRp Tp

(
2s− Λ2 − 4

Λ2 − 4

)
+ θ(s− Λ2)

Q∑
i=1

δUVi s−i/2,

(3.16)
where Tp(x) are the Chebyshev polynomials. The set of coefficients {δIRp } and {δUVi } are
subject to the constraint that σ(s) is continuous at s = Λ2. Plugging the ansatz (3.16) into
the dispersion relation in eq. (B.1) we obtain a crossing symmetric analytic continuation

Mdisp(s, t, u) =
∫ ∞

4
dxσdisp(x)

(
s− s0

(x− s)(x− s0) + t− t0
(x− t)(x− t0) + u− u0

(x− u)(x− u0)

)
.

(3.17)

25Indeed, there exists a region, called Mahoux region, where the double discontinuity is actually positive.
The integral in (3.15), however, has support over the whole domain of the double discontinuity and it is
not enough to mathematically justify our assumption.
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Figure 12. Value of r (left) and c3/c2 (right) along the boundary of figure 11. Different colors
correspond to different N ranging from N = 6 (green) to N = 16 (red). See figure 8 for a comparison
and a detailed description.

Next we introduce an ansatz for the UV region that has both single and double discontinuity
on the domain D. We introduce the generalized ρ variable

ρs(Λ, σ) =
√
σ − Λ2 −

√
Λ2 − s√

σ − Λ2 +
√

Λ2 − s
, (3.18)

and write down the ansatz in (2.13) where we replace ρs(σ)→ ρs(Λ, σ). The whole ampli-
tude will be obtained by summing this power series ansatz and Mdisp(s, t, u).

In the left plot of figure 11 we present the bound obtained by solving the problem (3.5).
We show the allowed region in the (c0, c2) plane for different values of N = 6, 8, . . . 16 and
maximum spin cutoff L = 30. As for the previous case, the coupling c0 is compatible with
the perturbative coupling we input with the EFT constraint (3.14). We identify four special
points: the points A′′ and B′′ corresponding respectively to the maximum and minimum
coupling amplitude, the edge A′′C ′′ has a nearly degenerate coupling fixed at the maximum
value c0 ∼ ginput

0 , and the point D is the free theory.
In the right plot of figure 11 we compare the two regions M2 and M1. As expected,

M2 ⊂M1, and the edge B′′DA′′ and B′DA′ of the two regions coincide. This is yet another
check that the amplitudes saturating the lower bound in both regions are insensitive to the
presence of the double discontinuity in the IR, and that the higher spins approximately
vanish f`>2 ∼ 0.

In the left plot of figure 12 we plot the UV dominance ratio cUV2 /c2 and on the right
the ratio c3/c2 as a function of the radial angle θ used to parametrize the boundary. As in
figure 8 for the M1 constraints, along the lower edge we observe IR domination. On the
upper edge A′′C ′′B′′ there is UV dominance with maximum at the cusp C ′′, but the ratio r
is not close to one. In turn, this implies that the tree-level bounds are always violated along
the boundary of the EFT region — the green strip in figure 8. Moreover, our bound implies
that along the boundary of the EFT region the coefficient of the dimension ten operator
associated to c3 > 0 is always positive. We shall optimize the coefficient c3 to make sure
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Figure 13. Lower three plots: ImM(s, 4/3) for the points P1, P2, and P5 of figure 11 indicated in
the top left inset. Comparison of the c2 value along the boundary against perturbation theory and
naive dimensional analysis.

this holds in the EFT region, but it is interesting to find such non-trivial positivity to hold
for this class of amplitudes.26

Lastly, we analyse the behaviour of the amplitude for different sample points along the
boundary scattered respectively along the IR and UV dominance regions in figure 13, top
left plot. In the right top plot we evaluate the quantity Λ4|c2− c1−loop

1 | as a function of the
radial angle θ that parametrizes the boundary (solid black line). As done in the previous
section we compare this quantity with both the naive dimensional analysis bound 4π and
the c2−loops

2 . Unlike theM1 region, here in the UV dominance region, the UV contributions
to c2 are below the 4π estimate, while in the IR dominance edge the agreement with the
two-loops expectation (dashed red line) is good, especially for c0 > 0.

In the bottom plots we show the imaginary part of the amplitude at t = 4/3 (solid-back)
for three sample points along the boundary. The dashed blue line and the depicted blue
region represent the allowed values for the amplitude compatible with the constraint (3.14).
All numerical amplitudes for 4 < s < Λ2 ≡ 642 must lie inside the blue region. In the same
plots we add the one-loop imaginary part computed using the coupling extracted from the
numerical amplitude. For EFT amplitudes we should expect to follow the red dashed line
up to the cutoff scale Λ2.

For the three sample points shown we find that the quartic extracted at the crossing
symmetric point c0 and the effective coupling entering the imaginary part (that we can see

26Looking at the dispersion (2.24), it is easy to see that in the IR the c3 is always positive if we can neglect
higher contributions than the one-loop to EFT amplitude. Only in the UV we have negative contributions
that seems to not be able to change sign of the result.
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from the non-perturbative imaginary part of amplitude at low energies) agree well. For
the point P1 we observe the EFT seems to break at energies slightly lower than the cutoff.
For the point P5 we observe a slight difference between the c0 we measure at the crossing
symmetric point and the profile of the imaginary part that saturates the bound (3.14). The
difference however is compatible with the threshold unitarity inequality g2

0 > c2
0, but there

is no saturation. This means that most of the amplitudes along the upper branch are not
perfectly elastic below s = 16m2; therefore, these are only approximate EFT amplitudes.

All the amplitudes shown in figure 13 present an instability around s = Λ2. We suspect
this is due to the crude approximation we made of setting to zero the higher spins below
the cutoff. We believe that this can be easily fixed, with the introduction of small double
discontinuity in the domain D′ as mentioned above. However, we believe the bound and
the conclusions will not change, although we plan to investigate this point in more detail
in the future.

4 Dual bounds

4.1 Linearised unitarity bounds

In this section we discuss the relation between the existence of absolute bounds on the
Wilson coefficients, and the presence of a gap in the imaginary part. The bounds derived
will use crossing and boundedness of the imaginary part of the partial waves 0 6 Im f` 6
2/ρ2(s), where ρ2(s) =

√
s− 4/

√
s.

We will also show that it is possible to derive dual bounds in presence of IR cuts using
additional constraints as the ones introduced in section 3.

4.1.1 An analytic dual bound on c2 with a gap in the imaginary part

First, we derive an analytic expression for the bound in [24] on c2 for the scattering of
massless particles in 3+1 dimensions with the assumption that ImM(s, 0) = 0 for 0 < s <

Λ2. Since Λ is the only scale in this problem, we set Λ = 1.
The problem to solve can be formulated as follows

max c2 , subject to F (n,m) = 0 , 0 6 Im f`(s) 6 2 , (4.1)

where

c2 = 1
π

∫ ∞
1

dz
Mz(z, 0)

z3 , and F (n,m) =
∫ ∞

1
dz
∞∑
`=2

n
(4)
` Im f`(z)F (n,m)

` (z) , (4.2)

where we introduce the notation n
(4)
` = 16π(2` + 1). The F

(n,m)
` (z) are computed

from (2.28) taking the limit m2 → 0, and setting s0 = t0 = 0. We can dualise this
problem by means of the Lagrangian

L = c2 +
∑
n,m

νn,mF (n,m) +
∞∑
`=0

∫ ∞
1

n
(4)
` λ`(s)Im f`(s)ds+

∞∑
`=0

∫ ∞
1

n
(4)
` µ`(s)(2− Im f`(s))ds ,

(4.3)
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where µ`(s) > 0 and λ`(s) > 0 are arbitrary positive functions. We obtain the dual
formulation by integrating out the primal variables Imf`. After a bit of algebra we are led to

min
∞∑
`=0

∫ ∞
1

2n(4)
` µ`(s)ds

subject to 1
πs3 + λ` − µ` +

∑
n,m

νn,mF
(n,m)
` (s) = 0 ,

(4.4)

The dual constraints can be recast into the inequality 1
πs3 − µ`(s) + ∑

n,m νn,mF
(n,m)
` =

−λ`(s) 6 0, which in turn implies

1
πs3 +

∑
n,m

νn,mF
(n,m)
` 6 µ`(s) . (4.5)

The last inequality can be saturated by

µ`(s) = µ̄`(s) HeavisideTheta[µ̄`(s)] where µ̄` =
(

1
πs3 +

∑
n,m

νn,mF
(n,m)
`

)
. (4.6)

Next we should plug this solution in (4.4) and minimise over the νn,m.
Consider the problem where we add only the first non-trivial null constraint

F
(1,3)
` (s) = `(`+ 1)(`2 + `− 8)

s5 . (4.7)

It is crucial to notice that F (1,3)
2 < 0, while F (1,3)

`>4 > 0. Then note that for ν1,3 < 0 we
have that µ̄2 > 0 for all s > 1, while for ν1,3 > 0 we have µ̄`>4 > 0 for all s > 1. By a
simple inspection, the choice ν1,3 > 0 gives a divergent spin sum in the dual objective and
therefore no bound on c2. Therefore we take ν1,3 < 0.

For ` = 0, 2 we have

µ0(s) = 1
πs3 , µ2(s) = 1

πs3 + |ν1,3|
12
s5 , (4.8)

which are positive in the whole range of integration of the objective in (4.4). In-
stead for ` > 4, the quantity µ̄`(s) is negative for 1 < s < s0(`), where s0(`) =√
π`(`+ 1)(`2 + `− 8)|ν1,3|, and solves the equation µ̄`(s0) = 0. Therefore

µ`>4(s) =
( 1
πs3 − |ν1,3|F (1,3)

` (s)
)
θ(s− s0(`)) , (4.9)

The contribution of each spin ` > 4 to the dual objective is give by∫ ∞
s0(`)

µ`(s)ds = 1
4`(`+ 1)(`2 + `− 8)π2|ν1,3|

. (4.10)

All in all, the dual objective with the (1, 3) constraint is given by
∞∑
`=0

∫ ∞
1

n
(4)
` 2µ`(s)ds = 96(1− 5πν1,3) + 1

6πν1,3

(
6 log 2− 11 + 3(H 5

4−
√

33
4

+H 5
4 +
√

33
4

)
)
,

(4.11)
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where Hn are the Harmonic numbers. Taking the minimum with respect to ν1,3 yields

max c2 6
8

Λ4

(
12 +

√
5
(

6 log 2− 11 + 3
(
H 5

4−
√

33
4

+H 5
4 +
√

33
4

)))
≈ 0.7937(4π)2

Λ4 (4.12)

for ν1,3 ∼ −0.009728Λ4, where we have reintroduced Λ2 to stress that the bound is in Λ2

units.
In the language of the previous section, this bound is specially relevant for theories

where c2 is UV dominated. Next we generalise this derivation by considering a massive
particle, so that we can compare the dual bounds with the results that we derived in the
previous section.

4.1.2 A numerical bound on c2 in presence of the mass gap

Here we solve the optimization problem discussed in the previous section for the scattering
of gapped particles in 3 + 1 dimensions. Likewise we assume a gap in the imaginary part,
i.e. ImM(s, t = 4/3) = 0 for 4 < s < Λ2. For this derivation we work in units m2 = 1.
The problem of interest is

max c2, subject to F (n,m) = 0 , 0 6 Im f`(s) 6
2

ρ2(s) , (4.13)

where

c2 = 1
π

∫ ∞
Λ2

dz
Mz(z, 4/3)
(z − 4/3)3 , and F (n,m) =

∫ ∞
Λ2

dz
∞∑
`=2

n
(4)
` Im f`(z)F (n,m)

` (z) , (4.14)

with ρ2(s) =
√
s− 4/

√
s the two-particle phase space. The problem (4.13) is formally

identical to (4.1), therefore we can write down immediately the Lagrangian

L=
∫ ∞

Λ2
ds
∑
`

n(4)
` Imf`(s)

P`(1+ 8
3(s−4))

π(s−4/3)3 +λ`−µ`+
∑
n,m

νn,mF
(n,m)
` (s)

+ 2
ρ2(s)n

(4)
` µ`(s)

ds
(4.15)

and the dual formulation

min
∞∑
`=0

∫ ∞
Λ2

2
ρ2(s)n

(4)
` µ`(s)ds,

subject to
P`(1 + 8

3(s−4))
π(s− 4/3)3 + λ` − µ` +

∑
n,m

νn,mF
(n,m)
` (s) = 0.

(4.16)

Once more, the dual problem admits the formal solution

µ`(s) = µ̄`(s) HeavisideTheta[µ̄`(s)] where µ̄` =

P`(1 + 8
3(s−4))

π(s− 4/3)3 +
∑
n,m

νn,mF
(n,m)
`

 .

(4.17)
which we should plug in (4.16) and minimise over the νn,m’s.
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Figure 14. Numerical solution of (4.16) (Λ/m = 8) with a single crossing constraint (1, 3) as a
function of the spin cutoff (left). Corresponding optimal value of ν13 as a function of the spin cutoff
(right). Black lines represent the extrapolated values for L→∞.

Consider first the problem with just one crossing constraint (n,m) = (1, 3). The steps
we follow are similar to the analytic solution we discussed in section 4.1.1. For ` = 2 we
take µ̄2(s) > 0 for all s > Λ2, which is true when ν1,3 6 3Λ4−16

18π . Then, for ` > 4 we have
that µ̄`(s) < 0 for Λ2 < s < s0(`), and positive otherwise.

Unlike the gapless case, s0(`) here is the root of a generic polynomial of degree `. We
solve this problem numerically: for each value of ν1,3 we determine the point s0(`), which
we then use to compute the dual objective (4.16). The optimal dual bound is obtained by
minimizing numerically with respect to ν1,3 . The dual objective (4.16) contains an infinite
sum, and in practice we must introduce a numerical cutoff L, and minimize the quantity

dLΛ2(ν1,3) =
L∑
`=0

∫ ∞
Λ2

2
ρ2(s)n

(4)
` µ̄`[ν1,3](s)θ(µ̄`[ν1,3](s))ds, (4.18)

with µ̄`[ν13](s) =
P`(1+ 8

3(s−4) )
π(s−4/3)3 + ∑

n,m νn,mF
(n,m)
` . To obtain a dual bound we have to

minimize dLΛ2(ν1,3) for different values of L, and then extrapolate.
In figure 14 we summarize the results of our numerical procedure for Λ = 8. On the

left we plot the minν1,3 d
L
Λ2 as a function of L, and on the right the corresponding optimal

value of ν1,3 (denoted by the red dots). We extrapolate to L→∞ using a simple power law
ansatz f(L) = a+ b

Lc (the solid red line), and report the extrapolated value of the bound
minν1,3 d

∞
Λ2 and the optimal ν1,3 with a black line. Both quantities show a very smooth

behavior in L, and the extrapolation is stable.
Repeating the same exercise for different values of Λ, we obtain the left plot in figure 15.

The data can be nicely fit by a simple function of the form a + b
Λ2−4 + c

(Λ2−4)2 . When
Λ/m → 2 the dual objective is unbounded: the constraints of linearized unitarity are not
strong enough to bound any theory with a cut starting from threshold at s = 4. When
Λ/m → ∞ we recover precisely the analytic bound in (4.12). This limit is equivalent to
sending the mass to zero fixing the cutoff Λ. Indeed, in the limit of m → 0 in units of Λ
the two problems are equivalent.

We conclude this section by exploring the effect of multiple crossing constraints on the
bound on c2. In principle, we could still try to employ the ansatz method that works for
one single constraint. In practice, however, the method is not very stable when we have
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Figure 15. On the left plot we show the dual bound as a function of the cutoff Λ2 with one crossing
constraint (blue dots). The solid blue line is our fit of the data. The black line is the extrapolation
of the bound for Λ2 →∞ agreeing with the bound obtained in the massless limit at fixed cutoff. On
the right plot we show the double extrapolation of the relaxed problem in the spin cutoff L and the
truncation cutoff N at fixed Λ/m = 8 (the green arrow). The black dots are the data, the blue curves
the fit used to extrapolate the data for N →∞, the red curve is the final extrapolation for L→∞.

more than one dual variable: depending on the values of νn,m the root s0(`) can become
complex, and the value of the function dΛ2

L ({νn,m}) suddenly jumps.
To overcome this issue, we propose a simple relaxed version of the original problem,

that can be easily solved using linear optimization. At fixed L, we introduce a set of
auxiliary variables x`(s) for any ` 6 L, and replace the objective (4.18) with

DL,N
Λ2 =

L∑
`=0

∫ ∞
Λ2

2
ρ2(s)n

(4)
` x`(s)ds,

subject to x`(s) > 0, and x`(s)− µ̄`(s) > 0, for s > Λ2,

(4.19)

where N is the number of terms in the ansatz for x`(s).27 The new objective satisfies
the inequality DL,N

Λ2 > dLΛ2 that is saturated when x`(s) = µ̄`(s)θ(µ̄`(s)). To obtain dual
rigorous bound we have to minimize DL,N

Λ2 and perform a double extrapolation — see
right plot in figure 15: for fixed L we extrapolate in N , and only after that we can safely
extrapolate in L. In this example we use all crossing constraints F (n,m) up to n+m 6 7.

We compare the effect of multiple crossing constraints at Λ = 8

Λ4c2 6 144.7 nconstraints = 1, Λ4c2 6 136.3 nconstraints = 7. (4.20)

We do not expect the bounds with infinitely many crossing constraints to change signifi-
cantly, but it would be worth improving upon our analysis.

4.2 Dual EFT bounds

So far in this section, we have assumed a gap in the imaginary part: ImM(s, 4/3) = 0 for
4 < s < Λ2. Next we will show that it is possible to obtain dual bounds when we remove
the gap, provided that in the IR region we impose additional constraints on the imaginary
part. In particular we shall impose the M1 and M2 constraints discussed in section 3.

27We expand x`(s) in a basis of Chebyshev polynomials, and truncate the basis to degree N .
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Figure 16. Dual bound c2 6 minν1,3 Λ4d∞Λ4 as a function of the cutoff Λ2 with the gap in the
imaginary part and using linearized unitarity (solid blue). The red solid line represent the dual
bound in presence of the IR cut bounded by the M2 constraint (3.4). The horizontal black line is
the bound for the scattering of gapless particles in (4.12).

4.2.1 A dual bound on c2 in presence of the M2 constraint

We first solve the problem of maximizing c2 with the extra constraint on the IR cut given
by the M2 bounds explained in section 3.2,

Im f0(s) 6 1
2

√
s− 4m2

s

(
g0

16π

)2
≡ Im fEFT

0 (s), Im f`>2(s) = 0, for 4m2 < s < Λ2 .

(4.21)
The problem is identical to the one we solved in the previous section, except for adding
few new terms to the Lagrangian. Namely the Lagrangian is LM2 = L + ∆LM2 where L
is given in (4.15) and

∆LM2 = 1
π

∫ Λ2

4

Mz(s, 4/3)
(z − 4/3)3 dz +

∫ Λ2

4
σ0(z)(Im fEFT

0 (z)− Im f0(z))dz

=
∫ Λ2

4
σ0(z)Im fEFT

0 (z) +
∫ Λ2

4
Im f0(z)

( 16
(z − 4/3)3 − σ0(z)

)
,

where σ0(z) > 0.28

After taking σ0(z) = 16/(z − 4/3)3 > 0, we see that the only effect of M2 is to add a
constant contribution to the dual objective of the previous problem (4.16)! All in all, the
solution of this dual problem is given by

max c2 6 (min
ν1,3

d∞Λ2(ν1,3)) + dM2
Λ2 = (min

ν1,3
d∞Λ2(ν1,3)) +

∫ Λ2

4

16
(s− 4/3)3 Im fEFT0 (s)ds. (4.22)

In figure 16, in red we plot the bound (4.22) for g0 ∼ 2.4, in blue the bound obtained in
the previous section with no IR cut. It is worth noticing that adding the IR cut does not

28In general one should add the IR cuts for the crossing and unitarity constraints. In our set up however
the one-loop bound automatically satisfies linearised unitarity; and the crossing constraints are trivially
satisfied

∑
`=0 n

(4)
` Im f`(s)Fn,m` = 0, because Fn,m0 , f`>0 = 0.
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improve the bound obtained with the gap in the imaginary part. This is expected, and the
larger is the IR contribution the worst the bound becomes.

At Λ2 = 64, the best dual bound we obtain with linearized unitarity is c2Λ4 6 138.8
to be compared with the primal estimate max c2Λ4 . 8.

4.2.2 A dual bound on c2 in presence of the M1 constraint

Maximising c2 in presence of the bound M1 in the IR requires more effort than the corre-
sponding M2 dual problem. We consider the constraint in the Lagrangian form

∆LM1 = −
∑
n>2

σn∆aIR
n =

∑
n>2

σn

∫ Λ2

4

MEFT
z (z, 4/3)

(z − 4/3)n+1 dz −
∑
n>2

σn

∫ Λ2

4

Mz(z, 4/3)
(z − 4/3)n+1dz,

(4.23)
with σn > 0. The Lagrangian for the full problem then reads

LM1=c2+
∑
n,m

νn,mF (n,m)+
∞∑
`=0

∫ ∞
4
n

(4)
`

(
λ`(s)Imf`(s)+µ`(s)

( 2
ρ2(s)−Imf`(s)

))
ds+∆LM1,

(4.24)
where we reintroduce the IR cuts in the following definitions

c2 = 1
π

∫ ∞
4

dz
Mz(z, 4/3)
(z − 4/3)3 , and F (n,m) =

∫ ∞
4

dz
∞∑
`=2

n
(4)
` Im f`(z)F (n,m)

` (z). (4.25)

Unlike the M2 case in section 4.2.1, the dual problem we derive from (4.24) has both
a modified objective and modified constraints:

min
∞∑
`=0

∫ ∞
4

2
ρ2(s)n

(4)
` µ̄`(s)θ(µ̄`(s))ds+

∑
n

σn

∫ Λ2

4

MEFT
z (z,4/3)

(z−4/3)n+1 dz

with µ̄`(s) =
P`(1+ 8

3(s−4))
π(s−4/3)3 +

∑
n,m

νn,mF
(n,m)
` (s)−

∑
n>2

σn
P`(1+ 8

3(s−4))
(s−4/3)n+1 , for 4<s<Λ2

and µ̄`(s) =
P`(1+ 8

3(s−4))
π(s−4/3)3 +

∑
n,m

νn,mF
(n,m)
` (s), for s>Λ2. (4.26)

Even with one crossing constraint this problem is not simple to solve directly, and we
employ here the relaxation trick used in (4.19).

We study the bound for Λ = 8, the results are in the left plot of figure 17. By performing
a double extrapolation we estimate the dual bound for M1 at this cutoff c2Λ4 6 283.3 that
must be compared with the primal extrapolation c2Λ4 . 45.

Finally, we summarise the primal and dual bounds on the max c2 in the right plot of
figure 17: in green the primal allowed region, in red the dual excluded. The duality gap
(distance between red and green boundaries in right plot of figure 17) was not expected
to close because for the dual we are using a subset of the unitarity constraints of the ones
used in the primal bootstrap. It would be interesting to efficiently implement the full dual
problem in [66] or [65] and shrink the duality gap.
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Figure 17. On the left, the double extrapolation procedure to determine the dual bound on c2 in
presence of the IR cut and the constraint M1. On the right, the comparison between the primal
results and the dual exclusion bounds. We expect the gap should close once the constraints on the
real parts are included.

5 Dimension-six operators

In this section we begin the analysis of the space of theories with O(n) symmetry by
finding the extremal values of the two-to-two amplitude — a thorough analysis is reported
in ref. [80]. We scatter two scalars which transform as vectors under the O(n) internal
symmetry a+ b→ c+ d. The amplitude is

M cd
ab (s, t, u) = M(s̄|t̄, ū)δabδcd +M(t̄|ū, s̄)δ ca δ db +M(ū|s̄, t̄)δ da δ cb . (5.1)

Taylor expanding the s-channel amplitude around (s̄, t̄, ū) = (0, 0, 0) we have

M(s̄|t̄, ū) = −c0 + cH s̄+O(s̄2, t̄2, ū2) , (5.2)

A particular interesting aspect of this generalisation is the presence of dimension-six oper-
ators.

The coefficients in (5.2) can be interpreted in terms of the field theory

L = 1
2
(
∂µ~φ · ∂µ~φ−m2~φ · ~φ

)
− g0

4 (~φ · ~φ)2 + 1
4
gH
Λ2 ∂

µ(~φ · ~φ)∂µ(~φ · ~φ) + . . . (5.3)

When the EFT is weakly coupled we can readily compute

c0 = 2g0 − 8/3 gH m2/Λ2 + · · · , cH = 2 gH m2/Λ2 + · · · , (5.4)

where · · · involve loop corrections. For n = 4 this particular model is very interesting from
the phenomenological point of view. Equation (5.3) describes the Standard Model (SM)
Higgs sector in the custodial symmetric limit,29 after neglecting SU(2)L interactions. In a
second step it is possible to relax this assumption and add to this set up gauge and Yukawa
interactions.

29See appendix C of ref. [81] for the transformation properties of all the SM dimension-six operators
under custodial symmetry.
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The dimension-six operator

OH = ∂µ(~φ · ~φ)∂µ(~φ · ~φ) (5.5)

is the leading corrections to SM Higgs two-to-two scattering. The current data from ATLAS
and CMS at the LHC are compatible with the SM and therefore constrain this operator
to be |gH × (5 TeV)2/Λ2| . 50. The exact bound mildly depends on the exact underlying
assumptions of the fit or SM EFT, see for instance HEPfit [82] or SMEFIT [83].

In the same spirit as in section 2, we begin by exploring the space of theories with
O(n) symmetry by making no assumption of weak coupling or reference to a possible EFT
description. That is we define couplings through (5.2) and ask what is their allowed values
compatible with analyticity and unitarity of the S-matrix. In figure 18 we plot the allowed
values of (c0, cH), in m2 = 1 units, and for n = 4.

We can understand the mechanism behind the bound on cH by means of a sim-
ple sum rule. The coefficient cH can be extracted from e.g. the singlet channel cH =

1
(N−1)

∂
∂s̄M

sing(s̄, t̄)
∣∣
s̄=t̄=0, where M

sing = N M(s̄|t̄, ū) +M(t̄|ū, s̄) +M(ū|s̄, t̄), and it satis-
fies the following sum rule

cH = C(s, t). ~M(s, t) + 1
π

∫ ∞
4m2

[D1(z, s, t). ~Mz(z, t) +D2(z, t). ~Mz(z, 4/3)]dz , (5.6)

which follows from a doubly subtracted fixed-t dispersion relation.30 The row vectors C and
Di are rational functions given in appendix D. The key qualitative feature of this sum rule is
that it involves both the integral over the absorptive part of the amplitudeMz(z, t), and the
real subtraction constants ~M(s, t). This structure is similar to the sum rule of c0 in (2.22).
Therefore bounding only the imaginary part of the amplitude Mz(z, t) along the unitarity
cuts does not produce a bound on cH . One needs to go beyond the first approximation of
linearised unitarity 0 6 Im f` 6 2/ρ2(s), depicted with the red thick dashed lines below,

Im fℓ

Re fℓ

and bound the real parts of the partial waves as well. This could be done by including higher
order linear approximations to unitarity (depicted above with red thinner dashed lines). It
would be interesting in the future to derive dual bounds taking into account these higher
order approximations. In the S-matrix Bootstrap approach the real parts of the amplitude
are bounded by means of the exact two-particle unitarity equation, and because of the sum
rule (5.6) this strategy leads to a two-sided bound on cH . This is a mechanism similar to
the bound on c0 for the singlet case — see (2.22) and the discussion there.

The next important point to clarify is the physics along the boundary of the oyster-
shaped region in figure 18. Two interesting observables are the spin dominance and the

30The un-subtracted dispersion relation for cH was studied in ref. [6].
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Figure 18. Allowed space of (λ, cH), for the O(4) model. Different curves correspond to different
values of the ansatz cutoff N ranging from N = 2 (the inner curve) to N = 6 (the boundary).

UV/IR dominance of cH along the boundary of the oyster [80]. From our experience with
the singlet in section 3, we speculate that, in the scenario of UV dominance cUV

H /cH ≈ 1, we
can re-interpret the maximum/minimum value of cH in figure 18 as the maximum/minimum
value of cH or gH measured at the cutoff scale Λ. In this case the maximum/minimum val-
ues of cH ∼ 2gHε from figure 18, roughly gH ∈ [−10, 20], are of very much physical relevance
for the Higgs precision programme at the LHC and future high energy colliders. Perhaps
unsurprisingly, this bound is compatible with naive dimensional analysis for strongly cou-
pled UV completions O(1)×|gH | . (4π)2. We do not know however the smallest value that
gH can take for negative values, or sharp bounds on this quantity. The approach we are
taking will establish a precise two sided bound on gH , and help us understanding better
the space of theories and their spectrum for maximally strongly coupled UV completions.

6 Cutoff dependence, In medio stat virtus

What is the cutoff dependence of the bounds on the ci’s? To answer this question,
consider the two extreme limits that one can take in the M1/M2 methods: Λ2 → 4m2 or
Λ2/m2 →∞.

In the first limit, the answer to what is the maximal value of c2 is provided by figure 2.
The upper branch of that plot is saturated by amplitudes with a pole at threshold s = 4m2,
i.e. with non vanishing residue αth (see left plot in figure 3). These amplitudes correspond
to theories maximally strongly coupled all the way to the IR s = 4m2.

The other limit Λ2/m2 � 1, also admits an interesting interpretation, in terms of the
EFT Lagrangian (2.2). Recall that the coefficient c2 is related to the Wilson coefficient g2
through c2 = g2m

4/Λ4 + β0g
2
0 + . . . , where β0 is a calculable IR one-loop contribution. If

g0 is sent to zero first and then the m2 → 0 limit is taken, we are left with a single scale Λ2
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in the problem. It is then natural to normalize ci’s in terms of the new cutoff scale Λ. This
is the limit of exact UV dominance cUV

2 /c2 = 1. In this limit the scale Λ2 sets the units of
the problem and the bound on c2 is trivially independent of Λ2. The limit Λ2 → ∞ with
g0 . O(1) and m2 held fixed, is described by the IR domination regime cUV

2 /c2 = 0, and
the single-scale in the problem is m2. See for instance the region θ ∈ [π, 2π] of figures 8, 12
where the IR s ∼ O(m2) is described by the g0φ

4 theory.
As for the UV domination regime when Λ2 � m2, see for instance figure 16: the blue

curve shows that as the cutoff is increased (in units of m2 = 1) we approach the massless
limit bound of the single-scale Λ2 problem, shown with a black horizontal line. In red,
the M2 dual bound shows that if IR physics (controlled by g2

0) is non-negligible, then the
bound is loosened; while if IR physics goes to zero faster than m2/Λ2, then we reach the
UV domination scenario of the blue curve — i.e. the minimum of the blue curve moves
to higher values of Λ2 as g2

0 is decreased in comparison to m2/Λ2. Note however that for
phenomenologically reasonable cutoffs like for instance Λ/m & O(10) and moderately weak
IR couplings g0 . O(1), the bounds for c2 are close to the asymptotic regime m2 → 0 and
show a mild cutoff dependence.

The analyses that we presented in this work bridge between these two limits. That
is the construction that we presented allows to ask precise questions for EFTs that, on
one hand feature non-negligible IR physics, but on the other hand are maximally strongly
coupled at energies above a physical cutoff Λ.

7 Conclusions

We have studied in detail the space of QFTs in 3 + 1 dimensions with unprecedented
precision due to a number of novel numerical improvements that we have introduced. In
addition we have constructed a new observable to measure the low spin dominance, and
we have found that along the boundary of the (c0, c2) space there exist an arc around the
free theory point where spin-0 dominance is realized.

We have also introduced a simple formulation to obtain positivity bounds and applied
it to the ratio of coefficients c3/c2, and compared them with the numerical S-matrix re-
sults, finding a nice agreement — and observed that in the low spin dominance region the
coefficient c3 > 0.

The notion of the cutoff Λ2 in an EFT is tightly related to the presence of resonances
in the low energy spectrum. Ideally, it would be enough to impose some analyticity in
the second sheet of the Mandelstam s-plane to make sure that no resonances would ap-
pear for energies below the cutoff s < Λ2. In two dimensional theories there have been
already promising explorations in this direction [64], and it would be interesting to find a
generalization to higher dimensions.31

Here we have taken a direct approach. We have introduced additional constraints on
the absorptive part of the amplitude. The intuition comes from dispersion relations (or
the Cauchy theorem): once we specify the crossing and analytic structure, the amplitude

31This property seems also be related to real analytic functions studied with the Geometric Function
Theory [78].
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depends only on its discontinuities. Introducing suitable physical constraints on the dis-
continuities is enough to carve out a region in the amplitude space that behave as expected
for the EFT amplitude space!

We have proposed two methods to introduce such constraints.
Firstly, using the definition of arc variables in [20], we bound arcs of the amplitude

in the IR region. We study the effect of a single arc constraint and determine the space
of QFTs consistent with it. These theories define a region in the (c0, c2) place which we
call M1 region. We introduce the notion of UV dominance and show that the tree-level
positivity bounds are valid when UV dominance is realized, but violated otherwise.

Secondly, we bound point-wise the imaginary part of the amplitude using a one-loop
EFT computation up to the cutoff scale. We call the region in the (c0, c2) obtain through
this method M2 region. The region defined by this stronger set of constraints nicely agrees
inside the M1 region, and its boundary overlap when there is IR dominance. By increasing
the number of arc constraints we do expect theM1 region to collapse on theM2 region (this
is also suggested by two-dimensional toy models). We have also employed linearised positiv-
ity to place dual bounds on c2 and compared those with the S-matrix Bootstrap approach.

Our construction is general and applies to other theories such as O(n) scalar field
theory. In this context we have shown that the S-matrix Bootstrap is able to bound
dimension-six operators of EFTs, and leave for ref. [80] a more detailed study of the physics.

All in all the construction that we have presented opens up new avenues to study
accurately EFTs with extremal values of the Wilson coefficients due to UV physics above
the EFT cutoff scale.
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A The numerical setup

In this appendix we explain in detail the numerical setup used to obtain the results of this
paper.

A.1 The wavelet ansatz

The problem of designing ansatzes for the scattering amplitude that would span efficiently
the amplitude space, thus improving the N convergence, was first addressed in the pioneer-
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ing paper [38]. There it was shown that adding all allowed singularities compatible with
unitarity would improve the convergence to the optimal bound in one specific example.
Sometimes, however, the problem is more subtle, and the convergence rate in N is related
to the appearance of resonances (or zeros) in the complex plane, and in particular to their
position in the plane. In fact, a long lived resonance, would show up as a zero relatively close
to the physical cut, therefore close to the boundary of the convergence region in the ρ plane.

Intuitively, one should expect that inputting degrees of freedom locally in the resonance
region would improve the convergence. A simple way to do it is to tune the centering
parameter of the ρ map. The conformal map ρ from the cut plane to the unit disk depends
on a scale parameter σ defined as the point where ρσ(σ) = i, or equivalently ρσ(8m2−σ) = 0

ρs(σ) =
√
σ − 4m2 −

√
4m2 − s√

σ − 4m2 +
√

4m2 − s
. (A.1)

All features of the amplitude that appear at scales of order s ∼ σ will be well captured by
an ansatz centered at σ. A priori, however, it is hard to predict where resonances or virtual
particles will appear as a result of the bootstrap. To overcome this problem, we propose
an alternative ansatz, where we scatter ρσ variables around trying to capture particles
wherever they appear in the complex Mandelstam s plane.

Our proposal is the following: choose a set of scale parameters σ ∈ ΣN ⊂ [4,∞), where
N denotes a measure of the number of points, and write down the ansatz

M̄(s, t, u) = α0 +M (1)(s, t, u) +M (2)(s, t, u) = α0 +
∑
σ∈ΣN

ασ(ρs(σ) + ρt(σ) + ρu(σ))

+
∑

(σ,τ)∈Σ2
N

ασ,τ ((ρs(σ)ρt(τ) + ρs(τ)ρt(σ)) + (t↔ u) + (s↔ u)). (A.2)

The two functions M (1), and M (2) contain terms that only contribute to the single discon-
tinuity, and terms that contribute to the double discontinuity. This separation makes more
manifest the equivalence of this ansatz with the double-subtracted Mandelstam represen-
tation in (B.1).

We refer to this ansatz with the term wavelet ansatz, where the analogy comes from
the following simple idea. We can view the ρσ map as function of the scale parameter σ. If
we map the cut s-plane onto the unit disk using some map ρσ(s), then the transformation
ρτ can be written as

ρτ (ρσ) = ρσ − w
1− ρσw

, w =
√
σ − 4−

√
τ − 4√

σ − 4 +
√
τ − 4

< 1, for σ, σ0 > 4, (A.3)

in other words ρτ is a Möbius transformation mapping the disk into itself. Inspired by the
wavelet representation of a signal (though we will not attempt any rigorous connection),
we can sample the space of analytic functions in the unit disk using the basis of all possible
Möbius transformations. In the limit of infinite N the ansatz (2.6) and the wavelet one are
equivalent since ρτ has a convergent Taylor expansion in ρσ, but at finite N we do expect
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Figure 19. Real part (on the right) and imaginary part (on the left) of the ρτ map as a function
of φ = arg(ρσ). From the figure it is clear that tuning the scale parameter we can zoom in different
region of the boundary of the disk.

it might improve convergence. We find experimentally that either improves convergence,
or it works as well as the usual ρ expansion.32

In practice, a critical point is the choice of a grid for the scaling parameters Σ. In our
numerics we employ the following procedure. First, we choose a mother wavelet: the map
we will use to tune all other wavelets. For a cut starting at 4 we choose the value σ∗ = 20

3
(corresponding to a ρ map centered at the crossing symmetric point). At each fixed value
of n, we define a Chebyshev grid

~φ =
{
π

2

(
1 + cos

(
kπ

n+ 1

))
|k = 1, . . . , n

}
, (A.4)

then using the inverse map ρ−1
σ∗ = sσ∗ , we take sσ∗(ei~φ) and obtain a set of points for s > 4

that we call Σn. The grid at cutoff N is defined by taking the union of all these sets of
points with n 6 N

ΣN =
N⋃
n=1

Σn. (A.5)

The number of terms in M (1) scales like N2, while the number of terms in M (2) like N3.
For instance, when N = 14, as in many examples in this paper, the number of free variables
is 551.33

A.2 Unitarity and positivity constraints

In the S-matrix Bootstrap unitarity is imposed at the level of the partial waves 2Im f`(s) >
ρ2(s)|f`(s)|2. This inequality can be written in an equivalent semi-definite positive condi-
tion introducing the matrix

U` =
(

1− ρ2

2 Im f` ρRe f`
ρRe f` 2Im f`

)
� 0. (A.6)

32On a more technical level: if the projections of the ansatz onto partial waves are computed analytically,
then one needs to compute only the projection of ρσ(t) and ρσ(t)ρτ (u) for each spin.

33We have tested the possibility of distributing the scale parameters in the complex plane, but we haven’t
observed any improvement.
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We impose unitarity U`(s) � 0 for each spin up to some cutoff ` 6 L, and for a set of points
in the interval (4,∞). In our numerics we choose for each spin a fixed number of points
npts = 300, distributed on a Chebyshev grid on the boundary of the unit disk (A.4) of the
standard ρσ∗ map with scale parameter σ∗ = 20/3.

Computing the partial wave projection of the ansatz for large values of L and for many
points s is a computationally expensive task. However, there is a simple consequence of
unitarity, i.e. positivity of the imaginary part, that can be imposed at the level of the
ansatz without projecting. Usually, it is written as

ImM(s, t = 0) = 16π
∞∑
`=0

(2`+ 1)Im f`(s) > 0, (A.7)

that is positive because separately each partial wave is positive Im f` > 0. In the numerical
bootstrap with fixed cutoff L this sum is not automatically positive, unless we take L “large
enough”. By adding positivity constraints as (A.7) we bound this sum from below, though
it can still be negative

∞∑
`=L+2

(2`+ 1)Im f`(s) > −
L∑
`=0

(2`+ 1)Im f`(s) > −(L+ 1)(2L+ 1)
√
s√

s− 4
. (A.8)

Although this condition has proved to help convergence in the massless case [45], in the
gapped case we can and we need to do better. The reason is that by looking at the large
spin expansion of the partial wave projections using the Froissart-Gribov representation

Im f`(s) =
∫ ∞
t0(s)

Q`

(
1 + 2 t

s− 4

)
ImMt(s, t)dt, (A.9)

the integral for large ` is dominated by the region close to the boundary t0(s), that in the
usual S-matrix Bootstrap ansatz is t0(s) = 4.

One should expect that imposing constraints in the region close to t = 4 will have the
most effect on the higher spins ` > L. Indeed, another consequence of the positivity of the
imaginary part of the partial waves is that

ImM(s, 0 6 t < 4) = 16π
∞∑
J=0

Im fJ(s)P`
(

1 + 2 t

s− 4

)
> 0, (A.10)

that follows from the fact that P`(x) > 0 for x > 1. Therefore, by considering different
values of 0 6 t < 4 we have access to a number of positive sum rules that help bounding
from below the sum over the imaginary parts for ` > L, and by taking t ∼ 4 we are sure
these sum rules are dominated by asymptotically large values of `� L.

Since we are bounding numerically all partial waves for ` 6 L, we can recycle the same
numerical integrals to improve further the positivity constraints (A.10)

ImM(s,06 t< 4)−16π
L∑
`=0

Imf`(s)P`
(

1+2 t

s−4

)
≡

∞∑
`=L+2

Imf`(s)P`
(

1+2 t

s−4

)
> 0.

(A.11)
imposing also positivity of the sum of the remaining spins in eq. (A.8).
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In our numerics we impose the constraint (A.11) for any s of the unitarity grid. In t
we choose ten points between 0 6 t < 4, and twenty points for 3.999 < t < 4. Indeed, we
observe these constraints become more important as we approach t→ 4.

We conclude this section with two final observations. In the fixed-t dual formula-
tion [66] it has been shown that it is possible to obtain dual rigorous bounds by imposing
nonlinear unitarity up to some spin ` 6 L, and positivity of the imaginary part for any `.
In this paper, we observe that the improvements obtained by imposing the positivity con-
straints at fixed cutoff L are consistent with the existence of such fixed L bounds. It would
be interesting to further explore this direction and prove it starting also from the Mandel-
stam representation [65]. Finally, note that so far we have exploited the discontinuity in s to
boost convergence. However it is been shown in [47] that discontinuity in t and its threshold
expansion puts further constraints on the problem, we leave it for future investigations.

A.3 High energy improvement

As we will see in the next section, the assumptions on the high energy behaviour of the
amplitude can have big impact on the bounds on physical observables. In the original
S-matrix Bootstrap formulation, the ansatz proposed has the property that

lim
|s|→∞

M(s, t) = M∞, (A.12)

compatible with a subtracted dispersion relation. As observed already in [38], allowing for
a more general high energy behaviour could improve the convergence of the bounds.

Our simple proposal is to add few terms of the form34

Mans
∞ (s, t, u) =

∑
σ

α′σ(ρσ(s)(4− s)3/2 + ρσ(t)(4− t)3/2 + ρσ(u)(4− u)3/2) (A.13)

+
∑
σ,τ

β′(σ,τ)(((4− s)3/2 + (4− t)3/2)ρσ(s)ρτ (t) + (s↔ u) + (t↔ u)).

Naively,Mans
∞ (s, t(s, x), u(s, x)) ∼ s3/2 for large s in the physical region. However, it is pos-

sible to expand at large s and for fixed spin the partial wave projection of Mans
∞ and impose

a finite number of linear constraints among the α′ and β′ coefficients such that for large s∫ 1

−1
P`(x)Mans

∞ (s, t(s, x), u(s, x))dx ∼ O(1) (A.14)

Furthermore, we need to cancel the leading O(s3/2) growth for t = 0 as it would violate
the Froissart-Martin bound ImM(s, t = 0) 6 cs log2(s), and therefore violate unitarity for
asymptotically large energies. After imposing these conditions the ansatz will still grow as
M∞(s, t, 4 − s − t) ∼ s3/2 at fixed-t, in particular at t = 4/3, allowing for a more flexible
high energy behaviour.

34The growing terms we chose to add to our numerics are redundant in the physical region where we
impose the constraints. Increasing the number of terms would introduce zero modes in the ansatz and make
the numerics unstable. Therefore, we keep few growing terms (to specify) to limit this issue. We observe
anyway an improvement in the convergence.
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Figure 20. On the left, set of data points for the problem min c0 as a function of L. Different
colors correspond to different values N ranging from N = 2 (light green) to N = 14 (red). On the
right, asymptotic values of min c0 (black dots) after spin extrapolation as function of N . The red
region is excluded by the dual problem [66], the solid black line is a power law fit starting at N = 6,
and the green region is the allowed region given our extrapolation.

In many contexts the S-matrix Bootstrap has reached a stage where the high energy
behavior of the ansatz has become relevant as in the case of gravitational interactions,
or even for scalar amplitudes in dimensions d > 4. It would be important to study this
problem more systematically as it might allow to construct an ansatz compatible with the
Froissart bound, or an ansatz able to accommodate the exchange of higher spin particles.
We leave this problem to future explorations.

A.4 Minimum coupling cusp in more details

In this section we study the hardest problem along the boundary of figure 2, namely the
minimum coupling cusp. In figure 20 on the left we show the data obtained for min c0(N,L)
at fixed N as a function of L. The different colors correspond to the values of N ranging
from N = 2 (light green) to N = 14 (red). The dots are our numerical data, the solid
colored curves our fits used to extrapolate for L =∞. Although it is clear that for L = 16
even for the highestN we consider we are almost asymptotic, and the extrapolation does not
improve the bound much. We stress the power of the positivity constraints we impose since
the number of free variables for N = 14 is 552 and the plateau appears already at low spins.

In figure 20 on the right we show the extrapolated values of min c0(N,∞) that we
try to fit using a power law. However, this fit must be taken as indicative only, since the
behavior for small N can be hardly taken into account with a simple function like a power
law, and because the result changes slightly by changing the starting point of the fit from
N = 5 and above (starting at lower values of N the fit is hard).

Taking into account the extrapolation, we determine a primal estimate of c0 > −7.24,
still far from the dual bound, but reasonable looking at the rate of convergence in N .
This number should be compared with the asymptotic value for N = 14 which is instead
min c0(14,∞) = −7.0. Therefore, in the worst case scenario, we should think that the blue
boundary of figure 2 has a maximum uncertainty of order ∼ 0.2 on the position of the B
cusp.
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B Review of Mandelstam representation and partial waves

The useful Mandelstam representation expresses the amplitude as a function of its double
discontinuity. In general, due to the Froissart-Martin bound, we have to consider double-
subtracted dispersion relations

M(s, t, u) = c0 +
∫ ∞

4
σ(x)K1(x; s, t, u) +

∫∫
D
ρ(x, y)K2(x, y; s, t, u), (B.1)

where
K1 = s− s0

(x− s)(x− s0) + t− t0
(x− t)(x− t0) + u− u0

(x− u)(x− u0) , (B.2)

and

K2 = (s− s0)(t− t0)
(x−s)(x−s0)(y−t)(y−t0) + (s− s0)(u− u0)

(x−s)(x−s0)(y−u)(y−u0) + (t− t0)(u− u0)
(x−t)(x−t0)(y−u)(y−u0) .

(B.3)
That is the reason why in the above representation depends on a subtraction constant, and
also on the single discontinuity.

The imaginary part in the s-channel of the amplitude can be read off by using the
standard identity 1

x−s−iε = P 1
x−s − iπδ(x− s) yielding

ImM = πσ(s) + π

∫ ∞
ȳ(s)

ρ(s, y)
(

t− t0
(y − t)(y − t0) + u− u0

(y − u)(y − u0)

)
dy, (B.4)

where ȳ(s) is the starting point of the support of the double discontinuityρ(s, y) at fixed-s
(for physical amplitudes is a point on the Karplus curve). Projecting this equation into
partial waves we obtain the expression

ImfJ(s) = σ(s)
16 δJ,0 + 1

32

∫ ∞
ȳ(s)

ρ(s,y)
( 8
s−4QJ

(
1+ 2y

s−4

)
−2δJ,0

( 1
y− t0

+ 1
y−u0

))
dy,

(B.5)
where the QJ are the usual Legendre functions of second kind such that 1

2idiscxQJ(x) =
PJ(x) for −1 < x < 1. The above relation for J = 0 allows us to replace the single
discontinuity σ with

σ(s) = 16Im f0(s)−
∫ ∞
ȳ(s)

ρ(s, y)
( 4
s− 4Q0

(
1 + 2y

s− 4

)
−
( 1
y − t0

+ 1
y − u0

))
dy. (B.6)

The higher spins, on the other hand, depend only on the double discontinuity

Im fJ>2(s) = 1
4

∫ ∞
ȳ(s)

ρ(s, y)
QJ(1 + 2y

s−4)
s− 4 dy ≡

∫ ∞
ȳ(s)

ρ(s, y)KI
J(s, y)dy. (B.7)

For completeness we write down also the projection onto partial waves of the real part
of the amplitude

Re fJ(s) = c0
16πδJ,0 +

∫ ∞
4

Im f0(x)K1
J(x; s)dx+

∫∫
D
ρ(x, y)K2

J(x, y; s)dxdy, (B.8)
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where

K1
J(x; s) = δJ,0

π

( 1
x− s

− 1
x− s0

− 1
x− t0

− 1
x− u0

)
+ 4
π(s− 4)QJ

(
1 + 2x

s− 4

)
, (B.9)

and

K2
J(x,y;s)= 1

32π
s−s0

(x−s)(x−s0)

( 8
s−4QJ

(
1+ 2y

s−4

)
+2δJ,0

( 1
(x−t0)(y−u0)−

1
y−t0

− 1
y−u0

))
+ 1

32π
4
s−4

( 1
s−4+x+y

(
QJ

(
1+ 2x

s−4

)
+QJ

(
1+ 2y

s−4

))
− 1
x−t0

QJ

(
1+ 2y

s−4

)
− 1
y−u0

QJ

(
1+ 2x

s−4

))
− 1

32π

( 4
x−4Q0

(
1+ 2y

x−4

)
− 1
y−t0

− 1
y−u0

)
(2πK1

J(x;s)). (B.10)

All in all, the double-subtracted Mandelstam representation depending only on the
spin zero imaginary part and the double discontinuity takes the form

M(s, t, u) = c0 + 16
∫ ∞

4
Im f0(x)K1(x; s, t, u) (B.11)

+
∫∫
D
ρ(x, y)

(
K2(x, y; s, t, u)−

( 4
x− 4Q0

(
1 + 2y

x− 4

)
−
( 1
y − t0

+ 1
y − u0

)))
dxdy.

C g0φ
4 theory perturbatively

It is possible to compute the imaginary part of the amplitude, Im M , up to O(g3
0) pertur-

batively in g0φ
4 theory. In this section we are going to review this computation. Finally

we extract contributions into c2 and c3 coefficients up to O(g3
0).

C.1 One-loop contributions

Remember that the one-loop imaginary part of the amplitude can be obtained by a phase
space integration of tree-level amplitudes. At leading order, it is given by

Mz(z, t) = 1
2
g2

0
16π

√
z − 4
z

, (C.1)

in m2 = 1 units. Plugging this into dispersion integrals (2.23) and (2.24) enables us to
compute the contributions to the coefficients c2 and c3 up to O(g2

0).

c
O(g2

0)
2 = 9g2

0
8192π2

(
14− 15

√
2 arctan 1√

2

)
≈ 1.05 · 10−4 g2

0 , (C.2)

c
O(g2

0)
3 = 27g2

0
131072π2

(
−130 + 153

√
2 arctan 1√

2

)
≈ 0.66 · 10−4 g2

0 . (C.3)

We can also calulate the ratio c3/c2 through these numbers, giving us (3.10).
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C.2 Two-loop contributions

Analogously, the two-loop imaginary part can be obtained by a phase space integration in-
volving tree-level and one-loop amplitudes. For this reason, we need not just the imaginary
part, but also the full one-loop amplitude M1-loop(s, t).

Fortunately, fixed-t dispersion relation (2.19) enables us to obtain the full amplitude
from the knowledge of one-loop discontinuity and a subtraction constant M(s0, t0). Plug-
ging in (C.1) and choosing M(4/3, 4/3) = −g0 gives us

M1-loop(s, t) = g2
0

16π2

[
f(s) + f(t) + f(4− s− t)

]
(C.4)

where f(s) =
(
√

2 arctan 1√
2
−
√

4− s√
s

arctan
√
s√

4− s

)
. (C.5)

A separate computation with the Feynman diagrams confirms above result.
Notice that f(s > 4) has a non-zero imaginary part as expected andM1-loop(4/3, 4/3) =

0 such that constant piece of the total amplitude corresponds to −g0.
Now it is time to use the unitarity equation to get the two-loop imaginary part. We

consider the two particle unitarity cuts of two-loop Feynman diagrams35 and we express
the equation in terms of partial-wave coefficients f`

2 ImM(s, t) =
∑
`

n
(4)
` 2Imf`(s)P`

(
1+ 2t

s−4

)
= ρ2(s)

∑
`

n
(4)
` |f`(s)|

2P`

(
1+ 2t

s−4

)
+O(g4

0)

= ρ2(s)
(
g2

0
16π −g0 2Ref1-loop

0 +O(g4
0)
)

(C.6)

where ρ2(s) =
√
s− 4/

√
s is two-particle phase space factor, and n(4)

` = 16π(2`+ 1). The
first term gives us the leading contribution as mentioned in (C.1), and the second term is
what we need at O(g3

0), so plug in the following:

Re f1-loop
0 = 1

32π

∫ 1

−1
dx

g2
0

16π2

[
Re f(s) + f(t′) + f(u′)

]
(C.7)

t′ = (s− 4)(−1 + x)/2 , u′ = (s− 4)(−1− x)/2 (C.8)

Notice that f(t′) and f(u′) are purely real functions in the region s > 4, which is the same
interval as in the dispersion integrals for c2 and c3. For the real part of the first term, we
used the following nice formula: arctan y = 1/(2i) log [(1 + iy)/(1− iy)].

After analytically obtaining Im M given above, we can plug it in the dispersion inte-
grals (2.23) and (2.24), then evaluate them numerically. This will give us

c
O(g3

0)
2 ≈ 1.16 · 10−7 g3

0 , c
O(g3

0)
3 ≈ −1.25 · 10−7 g3

0 . (C.9)
35There exists a three particle cut diagram, but its support on the phase space for physical external

particles is zero and therefore we don’t consider it.
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D Subtracted dispersion relations for the O(n) theory

In this appendix we provide further details for the derivation of the sum rule (5.6). The
starting point is the fixed-t doubly-subtracted dispersion relation of Roy [75] adapted to
global O(n) symmetry. After blowing up the contour s2

2πi
∮
dz 1

z2
1
z−s
−→
M(z, t), we are lead to

−→
M(s, t) = Cst.

[
~c(t) + (s− u)~d(t)

]
+ 1
π

∫ ∞
4

dzK(z; s, u).−→M z(z, t) (D.1)

where the kernel is a matrix given by

K(z; s, u) = 1
z2

(
s2

z − s
1 + u2

z − u
Csu

)
. (D.2)

and recall that we are working in m2 = 1 units, and that Mz(z, t) ≡ disczM(z, t)/(2i).
The vector −→M = (M sing,M sym,Manti) is given by the irreps

M sing = nM(s̄|t̄, ū) +M(t̄|ū, s̄) +M(ū|s̄, t̄) , (D.3)
M sym = M(t̄|ū, s̄) +M(ū|s̄, t̄) , (D.4)
Manti = M(t̄|ū, s̄)−M(ū|s̄, t̄) . (D.5)

The crossing matrices are given by

Cst =


1
n

n2+n−2
2n

n−1
2

1
n

1
2 −

1
n −1

2
1
n −

n+2
2n

1
2

 , Csu =


1
n

n2+n−2
2n

1−n
2

1
n

1
2 −

1
n

1
2

− 1
n

1
n + 1

2
1
2

 , (D.6)

and satisfy C2
st = C2

su = 1. The dispersion relation in (D.1) is composed of the integral
over the discontinuity −→M z(z, t) and the subtraction functions

~c(t) =

c
sing(t)
csym(t)

0

 , ~d(t) =

 0
0

danti(t)

 . (D.7)

This form of the vectors are dictated by the explicit s↔ u symmetry property of (D.1).
Next we would like to eliminate these subtraction functions in (D.1) in favour of the

amplitude −→M(s0, t0) and the integrals over the discontinuities −→M z(z, t). In order to do so we
follow Roy’s strategy [75]. Using first crossing-symmetry −→M(t0, t) = Cst.

−→
M(t, t0) we have

Cst.
[
~c(t) + (2t0 − 4 + t) ~d(t)

]
=
[
~c(t0) + (2t− 4 + t0) ~d(t0)

]
+
∫

absorptive pieces (D.8)

the second term schematically denotes an integral of the absorptive part of the amplitude
Mz(z, t) or Mz(z, t0) against various kernels. The second piece ~c(t0) + (−4 + 2t+ t0)~d(t0)
can be expressed in terms of absorptive pieces and ~M(s0, t0) using (D.1)

~c(t0) + (t0 − 4 + 2s0)~d(t0) = −→M(t0, s0) +
∫

absorptive pieces (D.9)
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Because the components of the vectors (D.7) do not mix we can easily solve for
them. Namely, we plug the last equation into (D.8) leading to csing, csym, danti ∼−→
M(t0, s0) +

∫
absorptive pieces. Plugging this solution in (D.1) we arrive to a dispersion

relation expressed in terms of an arbitrary subtraction point M(s0, t0), i.e. −→M(s, t) ∼
C ′.
−→
M(s0, t0) +

∫
absorptive pieces, where C ′(s, t; s0, t0) is a matrix easy to determine.

Having outlined the logic, it is now a matter of algebra to derive (5.6) from ~M(s, t) ∼
C ′.
−→
M(s0, t0) +

∫
absorptive pieces and cH = 1

(n−1)
∂
∂s̄M

sing(s̄, t̄)
∣∣
s̄=t̄=0. We find that the

vectors and integration kernels in (5.6) are given by

C(s, t) = 1
2n

(3s−4)
(3t−4)

1
(s−u)

(
−1 , n+2

2 ,
n(9s+6t−20)

2(3s−4)

)
, (D.10)

D1(z,s, t) = 1
2n

(3s−4)
(3t−4)

(3s+3t−8)
(3t+3z−8)

1
(z−s)(z−u)

(
1,−n−2

2 ,−n(6t+9z−20)
2(3z−4)

)
, (D.11)

D2(z, t) = 3
n

(3t−4)2

(3z−4)2
1

(t−z)(3t+3z−8)

(
1 , −n−2

2 ,
n

2

)
. (D.12)

In terms of crossing-symmetry matrices we find that the cH sum rule is given by following
vector-like dispersion relation

cH

n− 1
−1
1

 = F2(t).F1(s, t).−→M(s, t) +
∫ ∞

4

dz

π

[
K1(z, t).−→M z(z, t) +K2(z, t).−→M z(z, 4/3)

]
,

(D.13)
where

K1(z, s, t) = F2(t). [K(z; 4/3, 8/3− t)− F1(s, t).K(z; 4− s− t)] ,
K2(z, t) = K ′(z)− F2(t).Cst.K(z; t, 8/3− t) ,

and K ′(z) = ∂sK(z; s, 4− t− s)
∣∣
t,s=4/3 and

F1(s, t) = 1 + 4/3− s
s− u

(1− Csu) , F2(t) = 1
2

1
t− 4/3Cst.(1− Csu) . (D.14)

E A toy model

In this section we develop the ideas presented in the main text in a simplified setting where
we scatter massive particles in a line, i.e. in d = 1 + 1 spacetime dimensions. The theory is
invariant under a spacetime parity transformation and there is no scattering angle, therefore
there is a single kinematical invariant given by the Mandelstam variable s = (p1 + p2)2.
We assume a Z2 symmetry under which the particle we scatter is odd, thus forbidding the
triple vertex interaction.

The analytic structure of M is sketched in figure 21. Crossing symmetry implies
M(s− 2m2) = M(2m2 − s), and there is a unitary branch-cut starting at s = (2m)2 (and
its crossed starting at s = 0) and extending all the way to s = ∞ (and s = −∞). The
scattering matrix element M is assumed to be analytic everywhere in the complex plane
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XX
4m20

M(s)

M(u) ≡ M(s)

Crossing symmetry

Unitarity

2Ms(s) ≥
1

2 s s − 4m2
|M(s) |2

s-plane

Figure 21. Sketch of the analytical structure of the two-dimensional amplitude.

away from the real axis and in the segment s ∈ (0, 4m2). In particular, it is analytic in the
crossing-symmetric point s− 2m2 = 0, and thus we can represent the amplitude in terms
of a series around this point. Due to crossing-symmetry, this series involves even powers
of s− 2m2 only. It is convenient to define

2m2s̄ ≡ s− 2m2 and ε ≡ 2m2

Λ2 , (E.1)

with Λ an additional scale. With these two definitions, we can represent the scattering
amplitude by

M(s̄) = m2
(
−c0 + c2(εs̄)2 + c4(εs̄)4 + c6(εs̄)6 + . . .

)
. (E.2)

where we have factored out m2 to account for the dimensions — recall that the two-to-two
scattering amplitude has energy dimension 4−d. The coefficients ci are in general functions
ci(ε); and we have factored out suitable powers of ε to match the power of s̄, (εs̄)n. As
we show below, this power counting is useful in order to interpret the amplitude (E.2) in
terms of an Effective Field Theory.

The S-matrix36 is given by S(s̄) = 1 + 1
4
√

1−s̄2

[
−c0 +∑∞

i=1 c2i(εs̄)2i ]. In order to
encode the analytic structure of M(s) it is convenient to map the complex s-plane into the
unit disk using the following map

ρ(s̄) = i−
√
s̄+ 1

√
s̄− 1

i+
√
s̄+ 1

√
s̄− 1

. (E.3)

The map is crossing-symmetric (s̄ → −s̄), and thus maps only the upper half plane into
the unit disk. This transformation opens the s-plane branch cuts and map them into the
boundary of the unit disk, it has the fixed point ρ(s̄ = 0) = 0, and the thresholds of
physical scattering energy map to ρ(s̄ = ±1) = 1. Now, upon expanding the S-matrix in

36The S-matrix operator is given by Ŝ(s) = 1 + (2π)dδ(d)(p1 + p2 − p3 − p4)M(s), where as usual
1 = 〈p1, p2|p3, p4〉 =

∏
i=1,2((2π)(d−1)2Ei)(δ(d−1)(~k1 − ~k3)δ(d−1)(~k2 − ~k4) + [~k1 ↔ ~k2]). In d = 2, using the

relation δ(x)δ(y) = δ([x+ y]/2)δ([x− y]/2), we can relate the total momentum conservation delta function
δ(d)(p1 + p2 − p3 − p4) to the identity operator 1 and obtain Ŝ(s) = 1S(s) = 1(1 + 1

2
√
s
√
s−4m2

iM(s)).
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the unit disk around ρ = 0 we have

S(ρ) = (1− c0/4) +
(
c2ε

2 − c0/2
)
ρ+

(
4c4ε

4 − c0/2
)
ρ2

+
(
c2ε

2 − 8c4ε
4 + 16c6ε

6 − c0/2
)
ρ3 +O(ρ4) .

(E.4)

Note that the expansion in (E.4) has even and odd powers in ρ, because we have solved
for crossing-symmetry through the map (E.3). Unitarity of the S-matrix implies

|S|2 6 1 (E.5)

for physical energies s ∈ [4m2,∞); or equivalently in the ρ-plane for arg ρ ∈ [0, π) and
|ρ| = 1.

The amplitudeM(s) looks like a higher dimensional amplitude in the forward limit (t =
0). This is true regarding the analytic and crossing-symmetry properties of M . However,
unitarity is much simpler in the d = 1 + 1 setting, see (E.5). The large simplification of
this toy model can be summarised by noting that the system of equations we are studying
is as if we had a single partial wave (E.5). In higher dimensions the presence of infinitely
many partial waves37 makes crossing symmetry and the corresponding unitarity equations
— |S`(s)|2 6 1 with ` = 0, 1, 2, . . . — much harder to analyse.

E.1 Bounds on LECs

In this appendix, we shall call the parameters ci in (E.4) low energy constants (LECs).
Clearly, in perturbation theory the LECs are identified with couplings and Wilson coeffi-
cients of a putative Effective Field Theory Lagrangian, we comment more on this identifi-
cation later on in section E.2.

The low energy couplings ci in (E.4) can be optimally bounded as in ref. [40].38 The
idea is to exploit the nice rigidly-smooth shape that holomorphic functions have, which we
will now briefly review.

The function S(ρ) is holomorphic in the unit disk ρ ∈ D, therefore it is equal to
the average of neighbouring points S(z) =

∮
|w−z|=ε

dw
2πi

S(w)
z−w =

∫ 2π
0

dθ
2πS(z + εeiθ), for z ∈ D.

Thus, the modulus |S(z)| is bounded in the region of analyticity by the value of the function
at the boundary ∂D. This is the content of the Maximum Modulus Principle. In our case,
the modulus of S(z) is bounded by one at the boundary of the unit disk (E.5) and therefore
S(z) is bounded everywhere inside the disk by one. In particular it implies

|S(ρ = 0)| = |1− c0/4| 6 1 . (E.6)

for our S-matrix (E.4). The bound in (E.6) is often interpreted as a bound on the maximal
coupling, defined precisely as the value of M at the crossing-symmetric point. A similar
analysis can be done in the presence of bound states, in order to constrain the maximal
residue at the pole [37, 84].

37Often defined by projecting with Legendre polynomials P`, S` ≡ 1 +
i
√

s−4
s

∫ 1
−1 dxP`(x)M(s, t)|t→(s/2−2)(x−1).

38We emphasise that ref. [40] considered the EFT of massless goldstones (associated to transverse fluc-
tuation of a relativistic flux tube) while here we are interested in the EFT of massive particles.
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It turns out that the derivatives |∂nρS(ρ)|ρ=0 are also bounded as a consequence of the
Schwarz-Pick multi-point lemmas. The basic logic goes as follows. Consider the function
of z

S[1](z|w) = S(z)− S(w)
1− S∗(w)S(z)

(
z − w

1− w∗z

)−1
(E.7)

with w ∈ D. Clearly, S[1](z|w) is a holomorphic function of z ∈ D. As a function of z (and
for w ∈ D), it is bounded |S[1](eiφ|w)|2 6 1 in the boundary ∂D. Therefore we can apply
the Maximum Modulus Principle, and conclude |S[1](z|w)|2 6 1 for z ∈ D. Upon taking
the limit w → z → 0 on the last inequality we get∣∣∣ c2ε

2 − c0/2
1− (1− c0/4)2

∣∣∣ 6 1 , (E.8)

for the S-matrix in (E.4). Clearly one can now recurse over this construction and define the
function S[n](z|w1, . . . , wn) out of S[n−1](z|w1, . . . , wn−1), which is a holomorphic function
of z ∈ D (with wi ∈ D) and bounded in the boundary |S[n−1](eiφ|w1, . . . , wn−1)| 6 1. The
content of the multi-point Schwarz-Pick lemma is the bound on |S[n]|, which implies a
bound on the n-th derivative of S(z). See section E.3 for a summary of the Schwarz-Pick
formulas we use in this section. Further details on the theory of Schwarz-Pick applied to
S-matrices can be found in ref. [40].

In figure 22, left plot, we show the allowed region of the first two LECs (c0, c2ε
2). The

boundary of the blue region is described by two parabolas and saturates (E.8). At the
cusps (0,0) and (8,4) both of inequalities (E.6) and (E.8) are saturated. The boundary in
figure 22 is saturated by the LECs of the following functions

Sup(ρ, ρ0) = ρ− ρ0
1− ρρ0

and Slow(ρ, ρ0) = − ρ+ ρ0
1 + ρρ0

, (E.9)

with ρ0 ∈ [−1, 1], parametrising the upper and lower branch respectively.39 Indeed, after
matching the lowest LEC of our S-matrix (E.4) with ρ0 = (c0/4− 1), we have

Sup(ρ, c0/4− 1) = (1− c0/4) +
(

1− (c0/4− 1)2 + c0/2︸ ︷︷ ︸
c2ε2

−c0/2
)
ρ+O(ρ2) , (E.10)

and similarly for the lower branch. The upper branch has a resonance at Sup(ρ0, ρ0) = 0,
while the lower branch at Slow(−ρ0, ρ0) = 0.40 Varying ρ0 parametrises the edges
connecting the two cusps along the upper and lower branch. The cusp at the origin
Sup/low(ρ,−1) = 1 is a free bosonic theory, and the other one Sup/low(ρ, 1) = −1 is a
free fermionic theory.

Approaching the lower cusp at (0, 0) through the upper branch can be described by
an Effective Field Theory of a single massive scalar because, for a small positive δ,

Sup(0, δ − 1) = 1− δ +O(δ) , (E.11)
39These functions are called CDD-factors (for Castillejo-Dalitz-Dyson) in the two-dimensional S-matrix

literature or Blaschke products in the context of the Schwarz-Pick theorems.
40See for instance ref. [49] for a discussion of resonances.
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Figure 22. Left plot: in blue the allowed region in the c0 − c2ε2 plane. In orange and green we
plot the values of the T T̄ S-matrix in (E.12) and the Roaming Trajectories S-matrix, respectively,
as they approach the EFTs of a massive free boson and massive free fermion on the lower and upper
cusp. Right plot: regions of allowed values for {c4ε4, c6ε6}.

the resonance of Sup is at ρ = δ−1, which corresponds to a resonance at s =∞ as δ → 0. If
instead we approach the cusp at the origin from the lower branch Slow(0, δ−1) = 1+O(δ),
the resonance is at ρ = 1−δ, thus at threshold ρ(ŝ = 1) = 1 as δ → 1. A particular Effective
Field Theory example touching the cusp at the origin is provided by the T T̄ deformation
of a free massive boson [85–87]. In terms of the ρ variable, the S-matrix is given by

S(ρ) = e
− ε4

√
(1−ρ)2
(1+ρ)2 . (E.12)

The coefficients c0(ε) and c2(ε)ε2 can be read from the last equation after performing
the Taylor series around ρ = 0 and matching with equation (E.4). In figure 22, left, we
plot with a dashed orange curve the values of {c0(ε), c2(ε)ε2} as we vary the parameter
ε ∈ [0,∞). When the cutoff is increased (i.e. ε decreased) the values of {c0(ε), c2(ε)ε2} get
close to the origin monotonically.

A similar analysis holds for the upper cusp (8,4): if approached through the lower
branch it is described by an EFT of a massive fermion, while if approached from the
upper branch the scattering of the almost free fermions features a resonance at threshold
ŝ = (s − 2m2)/(2m2) = 1. We can identify a theory approaching the (8, 4) cusp from
the lower branch: the Roaming Trajectories S-matrix [88], which is in fact given by
Sup(ρ, ρ0) with ρ0 restricted to the range ρ0 ∈ (−1, 0]. For these values of the parameter
ρ0, the S-matrix features a resonance at purely imaginary values, and thus ρ0 increases
monotonically as ε decreases. In figure 22, left, we plot with a dashed green curve the
values of {c0(ε), c2(ε)ε2} for this S-matrix as ε is varied. The values ρ0 ∈ [0, 1) corresponds
instead to a resonance in the range [0, 4m2) in the Mandelstam s-plane, and thus it is
identified with the Sinh-Gordon S-matrix.

In the right plot of figure 22, we show allowed values of {c4ε
4, c6ε

6} for fixed values of
c0 and c2ε

2. Each region A, B and C of the right plot corresponds to the points A, B and
C shown on the left plot. As we approach the boundary of the c0− c2ε

2 allowed region, i.e.
as we move along the line C → B → A, the region shrinks, and reduces to a point when
hitting the boundary. At the boundary of the allowed region in the c0 − c2ε

2 plane, the
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Figure 23. We show in black the bounds from the positivity constraint (E.15), while with dashed
lines we show the bounds that follow from the exact 2 → 2 unitarity constraints (E.5), a.k.a. S-
matrix bootstrap.

values of {c4ε
4, c6ε

6} are fixed by the S-matrices in (E.9). These values are shown by the
gray and black curve, which correspond to Slow and Sup, respectively.

E.2 Positivity constraints and the space of effective field theories

Next we compare the optimal bounds on the LECs just obtained with positivity. We use
the so-called arc variables [20]

an(x) ≡ 1
m2

2
π

∫ ∞
x

du
ImM(u)

(2m2u)2n+3 , n > 0 , (E.13)

and define an ≡ an(1). The following optimal constraints are satisfied(
a0 a1
a1 a2

)
> 0 , a1 > 0 , a0 > ŝ2a1 , a1 > ŝ2a2 , (E.14)

as a consequence of positivity
ImM > 0 . (E.15)

The last equation follows from the 2 → 2 S-matrix unitarity equation (E.5). Next we
modify the contour of integration and relate the arc variables to the LECs

an = c2n+2(ε/(2m2))2n+2 (E.16)

where recall that ε/(2m2) = 1/Λ2. In d = 3 + 1 the convergence of (E.13) at high energies
is justified thanks to the Froissart-Martin bound, proved for theories with a mass gap. In
the set up we are discussing, d = 1+1, the convergence of (E.13) is a simple consequence of
the unitary equation (E.5), and is valid in the massless limit. We summarise the positivity
bounds (E.14) in figure 23: all theories consistent with the positivity constraint must take
values inside the solid black region (with a0, a1 > 0).
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An interesting question is to compare these constraints with the optimal bounds that
follow from the exact 2→ 2 unitary equation that we showed in figure 22. Clearly the boot-
strap bounds in figure 22 are in general more constraining than the positivity bounds (E.14),
and thus the allowed values in figure 22 lie inside the black solid line of figure 23.

We also note that deep inside the region of validity of the EFT the positivity bounds
are not saturated, and the theory obeys stronger bounds, namely the bootstrap bounds.
In order to show this, it is convenient to define

C4 ≡
c4ε

4

c2ε2
= a1
a0

(2m2)2 and C6 ≡
c6ε

6

c2ε2
= a2
a0

(2m2)4 . (E.17)

These variables are singular as we take the weak coupling limit c2ε
2 −→ 0. In this limit,

we approach the origin in the c4ε
4 − c6ε

6 plane. The regions inside the positivity plot of
figure 23 depend on the angle at which we approach the origin of the c0 − c2ε

2 plane, i.e.
the free theory. We define the angle by the β ≡ c2ε

2/c0. In figure 23 we plot with dashed
lines the allowed regions for different values of β. Interesting cases are the extremal values:
β = 0 filling completely the banana region and β = 1 shrinking to the origin. Both cases
can be understood by analysing the Schwarz-Pick inequalities in (E.23) and (E.24). For
β −→ 1 these inequalities are given by

1 > |1 + 2C4/(β − 1) +O(c0, β − 1)| and 1 > | − 1 +O(c0, β − 1)| , (E.18)

which implies C4 = 0 and thus C6 = 0; instead, the limit β −→ 0 leads to

1 > |1− 2C4 +O(c0, β)| and 1 > |(C4 + C2
4 − 2C6)/(C2

4 − C4) +O(c0, β)| , (E.19)

which are equivalent to the arc inequalities C4 > C6 and C2
4 < C6, and therefore to the

region plotted in black in figure 23.
Our observations provide a new interpretation of (E.14) in terms of d = 1 + 1 S-

matrices. These equations were analysed in ref. [20] in the context of d = 3 + 1. On one
hand, there it was observed that theories in the far IR flow to the origin of the c0 − c2ε

2

plane along trajectories compatible with the positivity bounds (i.e. by flowing in the reverse
direction pointed by the arrows of figure 2, left, in ref. [20]). This corresponds to our limit
in (E.18). Interestingly as we approach the free theory along various directions in the
c0− c2ε

2 plane we can place tighter bounds than the positivity bounds. On the other hand
it was observed that tree-level theories with resonances at threshold of the lower limit of
the arc integrations do saturate the bounds. This corresponds to our second limit in (E.19).
Here however we are not working at tree-level, but with exact S-matrices. As we approach
the free theory though the lower branch of the left plot in figure 22, the S-matrix Slow
in (E.9) features a bound state that goes to threshold, giving ImMlow ∝ δ(s− 4m2 + 0+).

E.3 Schwarz-Pick inequalities

Let f(z) be a real analytic function defined inside the unit disk |z| 6 1 with real Taylor
coefficients αi ∈ R.

f(z) = α0 + α1z + α2z
2 + . . . (E.20)

– 55 –



J
H
E
P
0
5
(
2
0
2
3
)
0
0
1

If f(z) is bounded along the boundary of the disk i.e. |f(z)| 6 1 for |z| = 1, its Taylor
coefficients obey the following inequalities

1 > |α0| (E.21)

1 >
∣∣∣ α1

1− α2
0

∣∣∣ (E.22)

1 >
∣∣∣ α0α

2
1 + α2 − α2

0α2
1− 2α2

0 + α4
0 − α2

1

∣∣∣ (E.23)

1 >
∣∣∣ 2α0α1α2 − 2α3

0α1α2 + α1α
2
2 + α2

0(α3
1 − 2α3) + α3 + α4

0α3 − α2
1α3

−1− 3α4
0 + α6

0 + 2α2
1 − α4

1 + 2α0α2
1α2 + α2

2 − α2
0(−3 + 2α2

1 + α2
2)
∣∣∣ (E.24)

These are obtained from the Maximum Modulus Principle, and the 1st, 2nd, 3rd Schwarz-
Pick inequalities, respectively.
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