
              

City, University of London Institutional Repository

Citation: Bao, Q., Hui, Z., Zhu, R., Ren, P., Xie, X. & Yang, W. (2024). Improving Diffusion-

Based Image Restoration with Error Contraction and Error Correction. Proceedings of the 
AAAI Conference on Artificial Intelligence, 38(2), pp. 756-764. doi: 
10.1609/aaai.v38i2.27833 ISSN 2159-5399 doi: 10.1609/aaai.v38i2.27833 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/34557/

Link to published version: https://doi.org/10.1609/aaai.v38i2.27833

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Improving Diffusion-Based Image Restoration with Error Contraction and Error
Correction

Qiqi Bao1, Zheng Hui2, Rui Zhu3, PeiRan Ren2, Xuansong Xie2, Wenming Yang1*

1Tsinghua University
2DAMO Academy, Alibaba Group

3City University, UK
bqq19@mails.tsinghua.edu.cn, zheng hui@aliyun.com, rui.zhu@city.ac.uk,

peiran r@sohu.com, xingtong.xxs@taobao.com, yang.wenming@sz.tsinghua.edu.cn

Abstract

Generative diffusion prior captured from the off-the-shelf de-
noising diffusion generative model has recently attained sig-
nificant interest. However, several attempts have been made
to adopt diffusion models to noisy inverse problems either fail
to achieve satisfactory results or require a few thousand itera-
tions to achieve high-quality reconstructions. In this work, we
propose a diffusion-based image restoration with error con-
traction and error correction (DiffECC) method. Two strate-
gies are introduced to contract the restoration error in the
posterior sampling process. First, we combine existing CNN-
based approaches with diffusion models to ensure data con-
sistency from the beginning. Second, to amplify the error
contraction effects of the noise, a restart sampling algorithm
is designed. In the error correction strategy, the estimation-
correction idea is proposed on both the data term and the prior
term. Solving them iteratively within the diffusion sampling
framework leads to superior image generation results. Ex-
perimental results for image restoration tasks such as super-
resolution (SR), Gaussian deblurring, and motion deblurring
demonstrate that our approach can reconstruct high-quality
images compared with state-of-the-art sampling-based diffu-
sion models.

Introduction
Low-level vision tasks in image restoration, such as image
denoising, image super-resolution (SR), and image deblur-
ring can be cast as inverse problems y = A(x)+n, where x
stands for the original image, A(·) is the forward measure-
ment operator and n represents the noise. The inverse prob-
lems aim to infer the underlying signal from measurements
and yield a high-quality image.

Recently, diffusion models (Song et al. 2020; Song and
Ermon 2020; Dhariwal and Nichol 2021; Ho, Jain, and
Abbeel 2020; Nichol and Dhariwal 2021; Karras et al. 2022;
Chung, Sim, and Ye 2022a; Mokady et al. 2022; Liu et al.
2023; Permenter and Yuan 2023) have shown state-of-the-
art performance in image generation compared to Convo-
lutional Neural Networks (CNNs), Generative Adversarial
Networks (GANs) and Variational Autoencoders (VAEs).
Diffusion models define a forward process by gradually
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Figure 1: An example visualization of the intermediate re-
sults for the prediction of x̂0|t in DPS (Chung et al. 2023).

adding Gaussian noise to the input data that maps data to
noise. During the reverse sampling process, diffusion mod-
els start with a pure Gaussian noise image and progressively
sample a less noisy image until reaching a clean one. Such
diffusion models use the parameterized prior of the high-
dimensional data distributions. In addition to the uncondi-
tional generative power, diffusion models have achieved re-
markable success in solving inverse problems (Wang, Yu,
and Zhang 2022; Abu-Hussein, Tirer, and Giryes 2022;
Meng and Kabashima 2022; Kawar et al. 2022b; Song et al.
2023; Fabian, Tinaz, and Soltanolkotabi 2023; Murata et al.
2023; Song et al. 2021; Chung, Lee, and Ye 2023). Chung et
al. (Chung et al. 2023) proposed a Diffusion Posterior Sam-
pling (DPS) method for solving general noisy non-linear
inverse problems. However, adapting denoising diffusion
models from the pure Gaussian noise for image restora-
tion behaves slowly in sampling. DPS requires a few hun-
dreds iterations to achieve high-quality reconstructions. De-
noising Diffusion Null-Space Model (DDNM) (Wang, Yu,
and Zhang 2022) decomposes samples into the range-space
and the null-space of the measurement. By refining the
null-space during the reverse diffusion process, DDNM as-
sures data consistency and incorporates priors from diffu-
sion models. Though DDNM ensures data consistency from
the beginning that helps reduce iterations, the ability to gen-
erate images with higher quality is constrained.

In this work, we depend on generative priors from pre-
trained unconditional diffusion models. Data distribution is
modeled regardless of the forward measurement operator



A(·) and can be generalized to different degradations. From
Fig. 1, we can see that predicted images contain little infor-
mation in the first line during the reverse diffusion process.
The inaccuracy of the initial prediction in the early stage
causes accumulated errors for image inverse tasks. In (Xu
et al. 2023), Xu et al. find that SDE-based samplers con-
sist of the discretization error along the trajectory. Both the
initial prediction error and the discretization error lead to
increased sampling steps to deliver higher sample quality.
Therefore, we propose an error contraction strategy by in-
troducing the accurate initial prediction and the restart sam-
pling operation. First, to rectify estimation x̂0|t to guarantee
the data consistency in the initial phase, outputs from the ex-
isting neural network for instance the Real-ESRNet (Wang
et al.) are utilized. The reverse diffusion path is reduced to T ′

steps, where T ′ < T . The priors encapsulated from the pre-
trained neural network help generate a better initial point and
contract errors in the initial phase. Second, rather than us-
ing SDE-based samplers in (Abu-Hussein, Tirer, and Giryes
2022; Chung et al. 2023; Wang, Yu, and Zhang 2022; Song
et al. 2023; Chung, Lee, and Ye 2023), ODE-based samplers
with restart sampling algorithm is involved. The determinis-
tic backward processes reduce the discretization error, while
the forward-backward restart sampling operation strength-
ens the contraction effect. Apart from the initialization error
and the discretization error, the approximation error of the
learned neural network and the natural image distribution
prediction for the conditional image generation also affect
the realness and consistency of the reconstructed images. We
design an error correction strategy to solve the optimization
problem. The error correction strategy is composed of two
iterative steps: an efficient Adam optimization of the neural
network’s prediction and one step of gradient descent ex-
tended from the DPS framework.

Contributions. The main contributions are summarized
as follows:

• We propose an error contraction strategy by integrating
existing neural network priors and harnessing the restart
sampling technique to achieve accurate reconstruction.

• We design an error correction strategy by imposing
the prior term to correct the neural estimation and re-
constructing y given the measurement model iteratively
within the diffusion sampling framework.

• Compared with state-of-the-art methods, our model
achieves superior performance on different image
restoration tasks such as image SR, Gaussian deblurring,
and motion deblurring.

Background
Score-based Generative Formulation
Let a random variable x0 with the data distribution q0 (x0) =
pdata (x0). Diffusion is the process of progressively adding
Gaussian noise to the observation x0 to transform q0 (x0) at
time 0 to a normal distribution qT (xT ) at time T . Song et
al. (Song et al. 2020) defined the forward SDE as

dx = f (t)xdt+ g (t) dwt, (1)

where wt is the standard Wiener process, and f (t), g (t) are
the drift and diffusion coefficients, respectively. The forward
process described in Eq. (1) has the corresponding reverse
process from T to 0:
dxt =

[
f (t)xt − g2 (t)∇x log qt (xt)

]
dt+g (t) dw̄t. (2)

where∇x log qt (xt) is the score function of qt (xt).
For the specific choice of f (t) = − 1

2β (t) and g (t) =√
β (t), VP SDE (Song et al. 2020) has the following form

dx = −β (t)
2

xdt+
√
β (t)dwt, (3)

where β (t) = βmin+ t (βmax − βmin) is the noise schedule
of the forward process. The corresponding reverse SDE of
Eq. (3) is

dx =

[
−β (t)

2
x− β (t)∇xt log qt (xt)

]
dt+

√
β (t)dw̄t.

(4)
Song et al. (Song et al. 2020) proved that the ordinary dif-

ferential equation (ODE) of Eq. (2), dubbed the probability
flow ODE, is:

dxt
dt

= f (t)xt −
1

2
g2 (t)∇x log qt (xt). (5)

To estimate∇xt
log qt (xt), Song et al. (Song et al. 2020)

trained a time-dependent score-based model sθ (xt, t) via

min
θ

Et

{
λ (t)Ex0,xt

[
∥sθ (xt, t)−∇xt log q0t (xt |x0 )∥

2
2

]}
,

(6)
where λ(t) is a positive weight coefficient, t is uniformly
sampled from [0, T ], xt ∼ q(xt|x0).

Forward and Reverse Diffusion Processes
We have the continuous version of the diffusion process for
the denoising diffusion probabilistic model (DDPM) formu-
lation (Ho, Jain, and Abbeel 2020) in Eq. (4). One forward
step of (discrete) DDPM is

xt =
√
1− βtxt−1 +

√
βtϵt−1, (7)

where ϵt−1 ∼ N(0, I). With the properties of Gaussian, we
can sample xt from x0 as

xt =
√
αtx0 +

√
1− αtϵ, (8)

where αt = 1−βt and αt =
∏t

i=1 αi. One reverse sampling
step is

xt−1 =
1
√
αt

(
xt −

βt√
1− αt

ϵθ(xt, t)

)
+ σtϵt, (9)

where sθ(xt, t) = − ϵθ(xt,t)√
1−αt

.
Song et al. (Song, Meng, and Ermon 2020) proposed de-

noising diffusion implicit model formulation (DDIM) to en-
able a faster sampling process. One reverse sampling step in
Eq. (9) is rewritten as

xt−1 =
√
αt−1x̂0|t(xt)+

√
1− αt−1 − σ2

ηt
·ϵθ(xt, t)+σηtϵt,

(10)
where σηt

controls the stochasticity of the diffusion process.
By setting σηt

= 0, the reverse process beyond the initial
randomization becomes deterministic.



Figure 2: Illustration of our proposed DiffECC method. The gray boxes present the error contraction strategy. The yellow box
presents the error correction strategy. The green arrows indicate the restart sampling operation. The blue arrows indicate the
noise correction route. The red arrows indicate the corrected route of x̂0|t.

Diffusion Models for Inverse Problems
The general form of inverse problems can be formulated as

y = A(x0) + n, x0 ∈ RD, y ∈ Rd, n ∈ Rd, (11)

where A(·) : RD → Rd is the known forward measurement
operator and n ∼ N(0, σ2

yI) is the white Gaussian noise.
The likelihood function can be written as

p(y|x0) =
1√

(2π)nσ2n
y

exp

[
−∥y −A(x0)∥

2
2

2σ2
y

]
, (12)

with mean A(x0) and variance σ2
y . The goal for the inverse

problems is to recover x̂0 ∈ RD from a degraded image y.
As in (Chung, Sim, and Ye 2022b; Chung et al. 2023;

Wang, Yu, and Zhang 2022; Zhu et al. 2023), we can use
diffusion models to solve inverse problems by replacing the
score function in Eq. (4) with the conditional score function
∇xt

log p (xt |y ). By Bayes rule, we can derive the follow-
ing equation:

∇xt
log p (xt |y ) =
∇xt

log p (xt)︸ ︷︷ ︸
unconditional score

+ ∇xt
log p (y |xt )︸ ︷︷ ︸

adversarial gradient

(((((((−∇xt
log p (y).

(13)

To adjust the control intensity, Classifier Guidance scales the
adversarial gradient by a γ parameter:

∇xt
log p (xt |y ) = ∇xt

log p (xt) + γ∇xt
log p (y |xt ) ,

(14)
where the first term can be approximated with the pre-
trained score function sθ(xt, t), and the second term is the
guidance term with the conditional score of pt(y|xt).

Method
Error Contraction Strategy
Accurate initial prediction. To restore the data distribution
of the high-quality image from the degraded counterpart y,

the marginal distribution can be written as

p(x0|y) =
∫
pθ (xT )

T∏
t=1

p
(t)
θ (xt−1 |xt, y )dx1:T . (15)

In Fig. 1, the predicted x̂0|t is seriously destroyed when
t is close to t = T . Since xt−1 is yield by sampling from
p(xt−1|xt, x̂0|t), the corrupted prediction for x̂0|t makes the
reverse sampling process converges slowly. The observation
indicates that decreasing the estimation errors from the ini-
tialization would improve image reconstruction with data
consistency. To satisfy the data consistency from the initial
phase, we simply modify Eq. (15) to reconstruct the diffu-
sion posterior distribution p(x0|y) by

p (x0 |y ) =
∫
pθ (xT ′ |y )

T ′∏
t=1

p
(t)
θ (xt−1 |xt, y ) dx1:T ′ ,

(16)
where T ′ < T represents the starting timestep. Pa-
rameters in the main diffusion process are defined as
the noise Schedule1. The reverse transition distribution
pθ(xt−1|xt, y) is described in the next part. Now the goal
turns to design the transition distribution of pθ (xT ′ |y).

Inspired by (Chung, Sim, and Ye 2022a; Wang et al. 2023;
Yue and Loy 2022), rather than applying the initial random-
ization, we start with more accurate initial prediction. The
transition distribution pθ (xT ′ |y) is formulated as a Gaus-
sian distribution:

pθ (xT ′ |y) = N(xT ′ ;
√
αT ′xinit, (1− αT ′)I). (17)

Via the reparameterization trick, we have the forward diffu-
sion process represented as

xinit = f(y;ψ)

xT ′ =
√
αT ′xinit +

√
1− αT ′ · ϵ, ϵ ∼ N(0, I),

(18)

where f(·;ψ) is a pre-trained image restoration network
(like Real-ESRNet (Wang et al.), MPRNet (Zamir et al.



Algorithm 1: DiffECC

Require: T, T ′, A(·), y, f(·;ψ),UNet(·), tcond, ζ,K, krestart, kskip
1: xinit = f(y;ψ) ▷ Obtain a good initial prediction via the pretrained CNN-based network
2: Respace the intervals of the diffusion process in T , and obtain the parameters in this schedule as noise Schedule1.
3: ϵ ∼ N(0, I) ▷ Sample noise
4: xT ′ =

√
αT ′xinit +

√
1− αT ′ · ϵ ▷ Starting state at time T ′

5: for t = T ′ to tcond do
6: ϵtθ = UNet(xt, t) ▷ Noise estimation
7: ϵtθ = ϵtθ + argmin

∆

(
d(ϵt+1

θ , (ϵtθ +∆))
)

▷ Error correction for the noise estimation ϵtθ at time t

8: x̂0|t =
1√
αt
(xt −

√
1− αt · ϵtθ) ▷ Calculate x̂0|t from the estimated noise

9: x̂′0|t = x̂0|t − ζ
σ2
y
· ∇xt

∥∥y −A (x̂0|t (xt))∥∥22 ▷ Error correction for the prediction of x̂0|t at time t

10: ϵ̂tθ = 1√
1−αt

(xt −
√
αt · x̂′0|t) ▷ Calculate ϵ̂tθ from the predicted reconstruction result

11: xt−1 =
√
ᾱt−1x̂

′
0|t +

√
1− αt−1 · ϵ̂tθ ▷ One deterministic step of reverse diffusion sampling

12: if t = krestart then
13: Respace the intervals of the diffusion process in K, and obtain the parameters in this schedule as noise Schedule2.
14: x̂r0 = x̂′0
15: kmax = K − kskip
16: xkmax

=
√
αkmax

· x̂r0 +
√
1− αkmax

· ϵ ▷ Starting state for restart operation
17: for k = kskip−1, ..., 0 do
18: ϵkθ = UNet(xk, k)
19: x̂0|k = 1√

αk
(xk −

√
1− αk · ϵkθ)

20: xk−1 =
√
ᾱk−1x̂0|k +

√
1− αk−1 · ϵkθ ▷ One deterministic sampling step in the restart sampling process

21: end for
22: xt−1 =

√
αt−1 · x̂0 +

√
1− αt−1 · ϵ

23: end if
24: end for
25: for t = tcond − 1 to 0 do
26: ϵtθ = UNet(xt, t) ▷ Noise estimation
27: x̂0|t =

1√
αt
(xt −

√
1− αt · ϵtθ) ▷ Predicted x̂0|t

28: xt−1 =
√
ᾱt−1x̂0|t +

√
1− αt−1 · ϵtθ ▷ One deterministic step of reverse diffusion sampling

29: end for

2021), MIRNet (Zamir et al. 2020, 2022)) with parameter ψ.
Instead of employing Real-ESRGAN (GAN-based), we re-
sort to Real-ESRNet (CNN-based trained with MAE loss).
The principal intention is to rely on diffusion reverse sam-
pling to synthesize image detail information. In addition, the
CNN-based solution is more common and simpler.
Restart sampling algorithm. In the DDIM fashion, we can
get the final one-step sampling expression as

xt−1 =
√
αt−1x̂0|t(y)+

√
1− αt−1 − σ2

ηt
·ϵθ(xt, t)+σηt

ϵt.

(19)
In our case, since the noise term σηt

may not be strong
enough and can cause the discretization error, we set σηt

=
0. Instead, we extend the idea in (Xu et al. 2023) and pro-
pose the restart sampling operation to amplify the error con-
traction effects of the noise in a deterministic backward pro-
cesses to reduce the discretization error simultaneously.

In the restart sampling algorithm, the back-and-forth step
is performed in a new time interval. We respace the inter-
vals of the diffusion process in K. Parameters in the restart
process are defined as the noise Schedule2. The amount of
added noise in the restart forward process is larger than the

small single-step noise in Eq. (19), thus amplifying the error
contraction effect. We set the predicted x̂′0 at time krestart
as x̂r0, being the input to the restart sampling algorithm. In
the restart forward process, a substantial amount of noise is
added to transit the x̂r0 from k = 0 to k = kskip,

x̂r0 = x̂′0
kmax = K − kskip
xkmax

=
√
αkmax

· x̂r0 +
√

1− αkmax
· ϵ,

(20)

where kskip represents the number steps to skip during the
restart diffusion process. A restart backward process runs the
backward ODE.

Error Correction Strategy

Using the ODE-based sampler, we can derive a general up-
date formula for the conditional diffusion as

xt−1 =
√
αt−1x̂

′
0|t(y) +

√
1− αt−1 · ϵ̂tθ, (21)



where the following forms are iteratively used for x̂′0|t(y)
and ϵ̂tθ:

x̂′0|t =

x̂0 (xt)−
ζ

σ2
y

· ∇xt
∥y −A (x̂0 (xt))∥22

fx0|ϵθ (xt, ϵ
t
θ),where ϵtθ = ϵtθ + ∆,

(22)

ϵ̂θ =


ϵtθ + argmin

∆

(
d(ϵt+1

θ , (ϵtθ +∆))
)

fϵθ|x0
(xt, x̂

′
0|t),where x̂′0|t = x̂0|t −

ζ

σ2
y

· ∇xt
l(x̂0|t),

(23)
where fx0|ϵθ (·) represents the function of predicting x0 from
ϵθ and fϵθ|x0

(·) represents the function of predicting ϵθ from
x0.

Extended the idea in DPS (Chung et al. 2023) and
ΠGDM (Song et al. 2023), data consistency in our method
is imposed as

x̂′0 ← x̂0 − γ · ∇xtl(x̂0 (xt)), (24)
where ∇xtl(x̂0 (xt)) represents the computation of the gra-
dient. Specifically, we use the Jensen approximation from
DPS (Chung et al. 2023) as

p(y|xt) ≃ p(y|x̂0). (25)
Using the likelihood function in Eq. (12), we get the correct-
ing step under the Gaussian measurement model as

∇xt
log p(y|xt) ≃ −

1

σ2
n

∇xt
∥y −A (x̂0 (xt))∥22 . (26)

The update of x̂′0 is calculated as

x̂′0 = x̂0 −
ζ

σ2
y

· ∇xt ∥y −A (x̂0 (xt))∥22 . (27)

An efficient Adam optimizer (Kingma and Ba 2014) is
implied to correct the neural estimation. As for a clean im-
age, the backward diffusion is expected to reach the fixed
point at each time step with ϵθ(xt, t) = ϵ. For image restora-
tion tasks, the initial inputs are contaminated with unknown
degradations. In this way, we design the neural estimation
correction by combining the current denoiser output with the
previous denoiser output as the regularization term. We form
the optimization as

ϵtθ = ϵtθ + argmin
∆

(
d(ϵt+1

θ , (ϵtθ +∆))
)
, (28)

where the l1 loss is used for the distance metric d(·, ·).
Based on the above discussion, we summarize the detailed

algorithm of our proposed method namely DiffECC in Al-
gorithm 1. The overall framework of our sampling method
is demonstrated in Fig. 2.

Experiments
We test our proposed method on image SR, Gaussian de-
blurring and motion deblurring. In particular, the forward
measurement operator for image SR is performed with bicu-
bic down-sampling. For Gaussian deblurring, the kernel has
the size of 61× 61 with a standard deviation of 3.0. The mo-
tion deblurring is with the kernel size of 61× 61 and the in-
tensity value being 0.5. All tasks can be formulated by con-
volving the kernels with ground truth images.

Experimental Setup
Dataset. For vision tasks using face images, we test our
experiment on the Flickr Faces High Quality (FFHQ)
dataset (Karras, Laine, and Aila 2019). We sample 1k im-
ages for evaluation, which are of size 256×256 pixels. For
vision tasks using natural images, we evaluate quantitative
results on the ImageNet test dataset (Deng et al. 2009)
as (Kawar et al. 2022a), with 1k validation images of size
256×256 pixels. All images are normalized to the range
[0, 1]. Problem-specific pre-trained diffusion models for face
images and natural images are taken from (Choi et al. 2021)
and (Dhariwal and Nichol 2021) respectively.
Quantitative metrics. For quantitative comparison, we
evaluate different methods with the standard distortion met-
rics Peak Signal Noise Ratio (PSNR) (dB) and Structural
Similarity Index (SSIM) (Wang et al. 2004) (higher is bet-
ter), as well as widely-used perceptual metrics Learned Per-
ceptual Image Patch Similarity (LPIPS) (Zhang et al. 2018)
and Frechet Inception Distance (FID) (Heusel et al. 2017)
(lower is better). PSNR and SSIM measure the faithfulness
of reconstructed images, which is not important but neces-
sary for image restoration tasks. LPIPS measures the percep-
tual similarity between the generated image and the orig-
inal high-quality image. FID evaluates the quality and di-
versity between generated distribution and data distribution.
The sampling time is measured by the number of function
evaluations (NFE).

Experimental Results
We perform comparisons with four state-of-the-art meth-
ods, including DPS (Chung et al. 2023), denoising dif-
fusion restoration models (DDRM) (Kawar et al. 2022a),
DDNM (Wang, Yu, and Zhang 2022) and denoising dif-
fusion models for plug-and-play IR (DiffPIR) (Zhu et al.
2023). The same pre-trained diffusion models, degradation
kernels, and validation datasets are employed for all meth-
ods in comparisons for fairness.

Quantitative evaluations on FFHQ and ImageNet
256×256-1k validation datasets are provided in Table 1
and Table 2 respectively. The qualitative comparisons for
image 4× SR with σn = 0.05 are shown in Fig. 3. The
results demonstrate that DiffECC achieves superior perfor-
mance compared to other methods. We provide extended
quantitative and qualitative results with different scaling
factors and noise values in the supplementary. Comparison
results for real-world image restoration where the forward
measurement operator A(·) is unknown are given in the
supplementary.

Ablation Studies
Effects of xinit. For inverse problems, we perform abla-
tion studies analyzing the effectiveness of starting from dif-
ferent initial predictions in the reverse process. First, we take
Real-ESRNet and MPRNet on motion deblurring and ob-
tain PSNR scores with 29.27 and 29.64 respectively. Though
the predicted error using the CNN model for pre-processing
different degradations is contracted less than 1 after trans-
formed to xT ′ after multiplying a factor of

√
αT ′ , the ac-

curacy of the predicted regressed image affects the result



Figure 3: Visual comparisons of ×4 image SR (σn = 0.05) on FFHQ and ImageNet 256×256-1k validation datasets.

Table 1: Quantitative results (PSNR, SSIM, LPIPS, and FID) of solving inverse problems: super-resolution, Gaussian deblur
and Motion deblur with σn = 0.05 on FFHQ 256×256-1k validation dataset. Black colors in bold indicate the best scores.

FFHQ Super-resolution (×4) Deblur (Gaussian) Deblur (motion)
Method NFEs ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
DiffECC 58 28.47 0.9140 0.1843 24.08 26.23 0.8789 0.2455 27.17 27.06 0.8922 0.2465 23.67
DiffPIR 100 26.73 0.8812 0.2571 25.36 24.85 0.8670 0.2838 28.27 26.98 0.8887 0.2477 24.98
DDRM 100 27.52 0.8758 0.2455 45.84 25.50 0.8427 0.2813 52.10 - - - -

DPS 1000 24.02 0.8333 0.3034 34.56 25.34 0.8424 0.2581 28.37 21.61 0.7961 0.3266 30.83

Table 2: Quantitative results (PSNR, SSIM, LPIPS, and FID) of solving inverse problems: super-resolution, Gaussian deblur
and Motion deblur with σn = 0.05 on ImageNet 256×256-1k validation dataset. Black colors in bold indicate the best scores.

ImageNet Super-resolution (×4) Deblur (gaussian) Deblur (motion)
Method NFEs ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
DiffECC 58 23.88 0.7815 0.3470 43.04 22.35 0.7667 0.3961 55.14 24.04 0.8045 0.3470 48.32
DiffPIR 100 22.99 0.7045 0.4157 55.45 21.71 0.7246 0.4286 60.7 13.55 0.2877 0.6899 162.06
DDRM 100 22.36 0.7221 0.3869 56.54 22.84 0.7092 0.4290 75.37 - - - -

DPS 1000 21.07 0.7213 0.4612 67.46 19.76 0.5990 0.4342 65.62 19.18 0.6772 0.4647 66.88

of the diffusion model. Since Real-ESRNet obtains coarse
blind restoration results, in general, the output obtained by
Real-ESRNet can be used as the initial value. We further
perform 4× noisy SR (σn = 0.03) experiment on images.
Quantitative comparisons are listed in Table 3.

model-1 denotes that x′T is calculated as

T ′ = T = 50, x′T =
√
αT ′x0 +

√
1− αT ′ · ϵ. (29)

model-2 denotes that x′T is calculated as

T = 100, T ′ = 50, x′T =
√
αT ′x0 +

√
1− αT ′ · ϵ. (30)

model-3 denotes that the initialization is constructed by
the DDIM sampling inversion technique. DDIM inversion
procedure is the inverted scheduler of DDIM (Song, Meng,
and Ermon 2020) scheduler. The reversed ODE process in
the limit of small steps is calculated as

xt+1 =

√
αt+1

αt
xt+

(√
1

αt+1
− 1−

√
1

αt
− 1

)
·ϵθ(xt, t).

(31)
We formulate the trajectory from x0 to xT ′ , where T =



Table 3: Quantitative evaluation of the image with different
initialization strategy from ImageNet validation.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
model-1 22.38 0.7244 0.3838 49.52
model-2 24.39 0.7937 0.3394 43.48
model-3 24.55 0.8002 0.3983 96.20
model-4 24.68 0.8004 0.3079 35.52

Table 4: Quantitative evaluation of the restart sampling strat-
egy.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
wo restart 23.97 0.7764 0.3187 37.59
w restart 24.68 0.8004 0.3079 35.52

100, T ′ = 50.
model-4 indicates that the output of the simple Real-

ESRNet model is used as the initial prediction. The formu-
lation is calculated as:

T = 100, T ′ = 50, xT ′ =
√
αT ′f (y;ψ) +

√
1− αT ′ϵ.

(32)
From Table 3 we can see that combining the generally

pretrained neural network Real-ESRNet with the diffusion
model attributes to an error contraction. Visualization of dif-
ferent starting points are shown in Fig. 4.

Figure 4: Visualization of restoration results with different
initialization process.

Effects of restart sampling algorithm. To investigate
the effect of restart sampling algorithm, we perform two
experiments: without restart sampling algorithm (T’=58,
NFEs=58) and with restart sampling algorithm (T’=50,
NFEs=58). It is evident from Table 4 that the restart strategy
harnesses and enhances the reconstruction ability by provid-
ing error contraction effects. To illustrate the effects of the
hyperparametersK and kskip in restart strategy, we show the
reconstructed images of SR samples in Fig. 5. Hyperparam-
eters are fixed as K = 40, kskip = 32 since the generated
images tend to be more stable.

Effects of components in error correction strategy. To
analyze the impact of the iteratively corrected x̂′0|t and ϵ̂θ in

Figure 5: Effect of hyperparameters K and kskip.

Table 5: Quantitative evaluation of the error correction strat-
egy.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
Model-1 23.43 0.7179 0.3615 54.61
Model-2 23.91 0.7763 0.3192 38.24
Model-3 24.68 0.8004 0.3079 35.52

error correction strategy, we show in Table 5 how quantita-
tive results change with different operations.

In Model-1, the reverse diffusion process is calculated as

x̂′0|t = x̂0 (xt)−
ζ

σ2
y

· ∇xt ∥y −A (x̂0 (xt))∥22

xt−1 =
√
αt−1x̂

′
0|t +

√
1− αt−1 · ϵtθ.

(33)

In Model-2, the reverse diffusion process is calculated as

x̂′0|t = x̂0 (xt)−
ζ

σ2
y

· ∇xt
∥y −A (x̂0 (xt))∥22

ϵ̂tθ = fϵθ|x0
(xt, x̂

′
0|t)

xt−1 =
√
αt−1x̂

′
0|t +

√
1− αt−1 · ϵ̂tθ.

(34)

In Model-3, the reverse diffusion process is calculated as

ϵtθ = ϵtθ + argmin
∆

(
d(ϵt+1

θ , (ϵtθ +∆))
)

x̂0|t = fx0|ϵθ (xt, ϵ
t
θ)

x̂′0|t = x̂0|t −
ζ

σ2
y

· ∇xt

∥∥y −A (x̂0|t (xt))∥∥22
ϵ̂tθ = fϵθ|x0

(xt, x̂
′
0|t)

xt−1 =
√
αt−1x̂

′
0|t +

√
1− αt−1 · ϵ̂tθ.

(35)

Conclusion
In this paper, we introduce a diffusion model-based sam-
pling technique with error contraction and error correction
strategies for image restoration, referred to as DiffECC.
Specifically, by integrating existing neural network tech-
niques and interweaving a restart diffusion sampling pro-
cess, the error contraction method improves the visual qual-
ity for inverse problems. In the error correction method, we
incorporate the denoiser into optimization algorithms with
iterative correction in the backward sampling process. Ex-
tensive experimental results highlight the superior perfor-
mance of DiffECC in comparison to other methods.
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