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Separation of variables (SoV) is an extremely efficient and elegant technique for analysing physical 
systems but its application to integrable spin chains was limited until recently to the simplest 
su(2) cases. In this paper we continue developing the SoV program for higher-rank spin chains and 
demonstrate how to derive the measure for the su(3) case. Our results are a natural consequence of 
factorisability of the wave function and functional orthogonality relations following from the interplay 
between Baxter equations for Q-functions and their dual.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The key physical information contained in a quantum system is 
encoded into matrix elements of operators between Hamiltonian 
eigenstates, but computing them is not a simple task. To begin 
with one should carefully choose a coordinate system. Famously, 
in the case of the hydrogen atom the problem greatly simplifies in 
spherical coordinates – the wave function splits into six indepen-
dent one-dimensional factors which allows one to perform many 
computations analytically.

A possible price to pay for such a simple factorised form of the 
wave function could come from a complicated integration measure 
in the scalar product. In the case of the hydrogen atom it is simply 
r2 sin θ , but the problem can become rather challenging in general. 
In this paper we address it for integrable spin chains.

Like the hydrogen atom, many integrable models are believed 
to admit a separation of variables (SoV) basis, where the wave 
function becomes a product of simple factors. A particularly impor-
tant model is the su(2) Heisenberg spin chain which is a model of 
interacting particles on a one-dimensional chain of sites. In its sim-
plest realisation, its Hamiltonian is given by H = − J

∑
α �σα �σα+1, 

where �σα are the Pauli matrices acting on the site α. This model is 
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known to be integrable and the separation of variables was worked 
out by Sklyanin in [1,2].

The integrable structures of a given model greatly depend on 
the underlying symmetry of the system. In recent years, there has 
been a great interest in studying integrable systems with more 
general su(N)-symmetries and super-symmetries coming from the 
AdS/CFT correspondence and integrability in string theory. In par-
ticular, the Fishnet model [3,4] is essentially an su(4) rational spin 
chain and N = 4 SYM is tightly related to the psu(2, 2|4) inte-
grable spin chain. The challenge of computing correlation functions 
in these models provides important motivation for developing the 
SoV approach in more complicated systems. In this paper we con-
sider the case of su(3) spin chains, and many of our techniques 
can be carried over to su(N).

The general su(N) Heisenberg spin chain of length L is defined 
by means of the Hamiltonian H = ∑L

i=1 Hi,i+1 where the nearest-
neighbour Hamiltonian density Hi,i+1 is simply the permutation 
operator Pi,i+1 permuting the su(n) “spins” at each site, and one 
usually assumes periodic boundary conditions HL,L+1 = HL1. A 
more algebraic formulation of the model is in terms of the R-
operator Raq

bp(u) = (u − i
2 )δa

bδ
q
p + iδa

pδ
q
b which allows one to uncover 

the integrable structures of the model and build a tower of con-
served charges in a constructive way, as well as introduce some 
extra parameters. To this end we further build the monodromy 
matrix

T̂ a
b = Ra q1

c1 p1(u − θ1) Rc1q2
c2 p2(u − θ2) . . . RcL−1qL

b p (u − θL)zb ,

L
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where we assume summation over all repeated indices except b
and have also introduced the parameters θα , known as the in-
homogeneities, and the twist parameters z j , and without loss of 
generality we can assume z1z2 . . . zN = 1. The inhomogeneities θα

break the local structure of the Hamiltonian and the twist mod-
ifies the boundary conditions. Their benefit comes from the fact 
that they remove certain degeneracies present in the model allow-
ing for more straightforward calculations.

The monodromy matrix is a collection of N2 operators T̂ a
b(u)

each acting on the physical Hilbert space (CN )⊗L . The trace of the 
monodromy matrix, t̂(u) = tr T̂ (u), known as the transfer matrix, 
forms a family of mutually commuting operators [t̂(u), ̂t(v)] = 0, 
and so these operators are obtained as the coefficients of the 
spectral parameter u in the expansion of the matrix t̂(u). Unfor-
tunately, for su(N) this set of conserved charges is not maximal. 
To obtain more conserved charges one should take the trace of 
the monodromy matrix in other representations of su(N), in par-
ticular one can generate all conserved charges by restricting to 
antisymmetric representations of which there is only a finite num-
ber N − 1, and we denote the corresponding transfer matrices by 
t̂a(u), a = 1, . . . , N − 1. We restrict ourselves to su(3) in this paper 
which is general enough to illustrate our construction while al-
lowing for a relative clarity. In this case we have the fundamental 
representation and the twice antisymmetric one, with the corre-
sponding transfer matrices being

t̂1(u) = tr T̂ (u) , t̂2(u) = tr Û (u − i) , (1)

where Ûa
b(u) = 1

2 εaa1a2ε
bb1b2 T̂ a1

b1 (u)T̂ a2 b2 (u + i). We see that 
t̂2(u) is a polynomial in u of degree 2L. However, Û contains a 
trivial factor Q θ (u − 3i

2 ) where Q θ (u) ≡ ∏L
α=1(u − θα) and so t̂2

generates only L new commuting operators. In the following we 
use

τ̂1(u) = t̂1(u) , τ̂2(u) = t̂2(u)

Q θ (u − 3i
2 )

. (2)

The same quantities without hats will denote the eigenvalues. In 
the next section we review how they can be computed using inte-
grability. Then in sections 3 and 4 we discuss the construction of 
wavefunctions in the basis of separated variables and present our 
main results.

2. Baxter Q-functions

The integrability of the model promises a number of simplifica-
tions. In particular, its spectrum can be computed relatively easily. 
The modern way of approaching the spectral problem is via Q-
functions [5–7] (also known as Baxter polynomials). We summarise 
the key results of this approach in this section, see e.g. [8,9] for a 
comprehensive review. In the next sections we will see that the 
Q-functions are also very convenient building blocks for the spin 
chain wave functions.

The basic Q-functions are the twisted polynomials q j(u), j =
1, 2, 3, i.e. polynomial functions up to an exponential prefactor, of 
the form q j(u) = ziu

j (uM j + . . .), where M j obey M1 + M2 + M3 = L. 
An alternative to the widely used nested Bethe equations and in 
many ways better method of finding the spectrum of the system is 
to impose the quantization condition

εi jkqi(u − i)q j(u)qk(u + i) ∝ Q θ (u) . (3)

The condition (3) gives L equations on the total L roots of qi(u), 
selecting the physical solutions. One advantage w.r.t. the conven-
tional Bethe ansatz is that it allows one to count solutions more 
easily. For example, when all |θi − θ j | are large, (3) reduces to 
q1q2q3 = Q θ which has 3L solutions, i.e. equal to the dimension of 
the Hilbert space. As the dependence on the parameters θα should 
be continuous, except probably for some special points, this leads 
to the completeness of the equation (3). For more detailed and 
mathematically rigorous discussion see [10,11]. In these works it 
is shown that the algebraic number of solutions to (3) is equal to 
3L for any numerical values of inhomogeneities θα .

To relate the quantisation condition (3) to conventional Bethe 
equations we also need dual functions qi introduced as

qi(u) ∝ εi jkq j(u + i
2 )qk(u − i

2 ) . (4)

The normalization coefficient in (4) is such that q j(u) =
z−iu

j (uL−M j + . . . ).

One can take any of the six choices of q j and qi such that i �= j. 
This maps to six possible nested Bethe equations for twisted spin 
chains that differ by the choice of a “ferromagnetic” vacuum: zeros 
of qi are the so-called momentum-carrying roots and zeros of q j

are the so-called auxiliary Bethe roots.
Transfer matrices τa defined in (2) can be reconstructed from 

the Q-functions using simple contractions

τ1 ∝ q j(u + 3i
2 )q j(u − i) , τ2 ∝ q j(u − 3i

2 )q j(u + i) . (5)

The last formula suggests that τi are Hermitian conjugates of one 
another which is indeed the case if the twists z j are pure phases 
and the inhomogeneities θα are real. Finally, we shall later need 
the following special values of τa(u) following from (5):

τ2(θα − i
2 ) = Q θ (θα − i)

q1(θα + i
2 )

q1(θα − i
2 )

, (6)

and

τ1(θα − i
2 )

Q θ (θα − i)
= q2(θα − i)q3(θα + i) − q3(θα − i)q2(θα + i)

q2(θα − i)q3(θα) − q3(θα − i)q2(θα)
. (7)

3. Separation of variables

3.1. SoV basis

Let us summarize some of the known results concerning the 
implementation of the SoV approach for quantum spin chains. Mo-
tivated by the SoV construction in the classical limit [12], Sklyanin 
realised in [13] that the operator

B̂(u) = T̂ 2
3(u)Û3

1(u − i) − T̂ 1
3(u)Û3

2(u − i) (8)

should play an important role in quantum separation of variables 
for the model. However, the precise understanding of how the SoV 
procedure should work was only recently obtained in [14], where 
several important observations were made: Firstly, Sklyanin’s con-
struction remains intact under the replacement T̂ → T̂ g ≡ g−1 T̂ g , 
where g is some constant SL(3) matrix. This replacement makes 
B̂(u) diagonalisable for generic enough g1 and so its spectrum and 
eigenvalues become interesting quantities to consider. Secondly, 
the spectrum of B̂g(u) is non-degenerate and has the follow-
ing remarkably regular structure. Namely, for B̂g = � ̂Bg , where 
� = �0 Q θ (u − 3i/2) is a trivial scalar factor that does not depend 
on the state, the eigenvalues of B̂g are given by

Bg(u) =
L∏

α=1

2∏
a=1

(u − θα − i
2 + imα,a) , (9)

1 For definiteness one can take gpq = 1 except for g21 = g32 = 0. A similar obser-
vation for a model with su(2) symmetry was also made in [15].
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where the integers mα,a satisfy 0 ≤ mα,1 ≤ mα,2 ≤ 1.

The operators B̂(u) commute with each other for different val-
ues of u [13]. The same holds true for B̂g(u) and thus eigenstates 
of B̂g(u) do not depend on u. We denote its left eigenstates as 〈x|, 
labelling them by the values of mα,a . One can then unambiguously 
define 2L commuting operators X̂α,a such that B̂g(u) = ∏

α(u −
X̂α,1)(u − X̂α,2) with eigenvalues being Xα,a = θα − i

2 + i mα,a .
Finally, it was observed in [14] that the eigenstates of transfer 

matrices can be constructed using the operator B̂g(u) as follows

|	n〉 = B̂g(u1) . . . B̂g(uM1)|
〉 , (10)

where ui are the roots of the twisted polynomial q1(u) and |
〉 =
δ

p1
1 δ

p2
1 . . . δ

pL
1 is a “ferromagnetic vacuum” of the model.

By combining (10) with the definition of X̂α,a we get a factor-
ized representation of the wave function [14]

	n(x) ≡ 〈x|	n〉 =
L∏

α=1

q1(Xα,1)q1(Xα,2) , (11)

and so 〈x| form an SoV basis. In (11) we impose the following 
normalization for 〈x| s.t. 〈x|
〉 = ∏

a,α z
−iXα,a
1 .

While some of the observations of [14] were conjectured based 
on numerical evidence or for short spin chains or small number 
of magnons, they received a complete analytical proof in [16,17]. 
In particular, it became clear that the spectrum of B̂g given in (9)
originates from the structure of the Gelfand-Tsetlin algebra [17]. It 
would be interesting to examine if such a structure is also present 
in the separated variables considered in [18].

An important observation can be made about the action of the 

transfer matrices at special values: 
τ̂2(θα− i

2 )

Q θ (θα−i) . Due to the relation 
(6) it is clear that acting on the state 〈x| they would replace one 
factor of q1(θα − i

2 ) by q1(θα + i
2 ) in the r.h.s. of (11) and thus 

they play the role of the creation operators for the basis 〈x| [19]. 
More precisely

〈x| = 〈0|
L∏

α=1

⎛⎝ τ̂2

(
θα − i

2

)
Q θ (θα − i)

⎞⎠mα,1+mα,2

, (12)

where 〈0| is the eigenstate of B̂g with all mα,a = 0. This obser-
vation demonstrates the equivalence with a more recent approach 
of [20], where an analog of (12) was taken as the starting point, 
and it generalises beyond fundamental representation [17]. In the 
approach of [20] one can avoid discussing completeness of the 
quantization conditions, such as Bethe equations. While for orig-
inal Bethe equations completeness is a notorious obstacle, using 
the elegant condition (3) instead removes this difficulty.

3.2. Dual SoV basis

Now that we have reviewed the results previously established 
in the literature we come to our new findings. Since our main ob-
jective in this work is the computation of scalar products 〈	|	〉 in 
the SoV framework, the next ingredient we need is an SoV repre-
sentation of the left eigenstates 〈	|. Let us describe its realization, 
which is one of our main new results. Naively, one could try to 
use the right eigenstates |x〉 of B̂g but unfortunately this does 
not work as the resulting wave function 〈	|x〉 does not factorise. 
To circumvent this problem it proves fruitful to perform duali-
sation of the monodromy matrix instead. This is done by using 
the so-called antipode map which sends the monodromy matrix 
considered as a 3 × 3 matrix with non-commutative entries T̂ a

b

to its inverse. To explicitly compute the inverse we notice that 
Û T looks like the adjunct matrix for T̂ and, indeed, it satisfies a 
quantum analog of the Cramer’s formula Ub

a(u − i)T b
c(u + i) =

Q θ (u + 3i
2 )Q θ (u − i

2 )Q θ (u − 3i
2 )δac . Employing it we compute how 

B̂(u) transforms under the antipode map and obtain, with conve-
nient adjustment of normalisation and shift of u, a new operator

Ĉ(u) = T̂ 2
3(u − i

2 )Û3
1(u − i

2 ) − T̂ 1
3(u − i

2 )Û3
2(u − i

2 ) (13)

which is one of the main results of this paper.2 Remarkably, the 
only difference between Ĉ(u) and B̂(u) is in the shifts of the spec-
tral parameter, meaning that there is no difference in the classical 
limit where shifts are ignored.

We found that essentially the same facts are true for Ĉ(u) as 
for B̂(u). We again perform the replacement trick Ĉ(u) → Ĉg(u)

and introduces Cg by removing the trivial non-dynamical factor, 
Cg(u) ∝ Ĉg(u)/Q θ (u − i). Due to the commutativity [Ĉg(u), ̂Cg(v)]
= 0, Ĉg(u) has u-independent eigenvectors dubbed |y〉. Further-
more, this right basis |y〉 does indeed factorise the left eigenfunc-
tions 〈	| of the transfer matrices.

The spectrum of Ĉg(u) is of the form

Cg(u) =
L∏

α=1

(
u − θα − inα,2

) (
u − θα + i − inα,1

)
, (14)

where 0 ≤ nα,1 ≤ nα,2 ≤ 1.
The eigenstates |y〉 can also be built in the spirit of (12) but in 

a slightly modified form, similar to the construction of [17] for a 
spin chain in the anti-fundamental instead of fundamental repre-
sentation. Indeed, we found that the results of [17] apply but for 
the right eigenstates

|y〉 =
L∏

α=1

τ̂1

(
θα − i

2

)nα,2−nα,1
τ̂2

(
θα − i

2

)nα,1

[Q θ (θα − i)]nα,2
|0〉 , (15)

where |0〉 is the eigenvector of Ĉg with nα,a = 0. Since the proof is 
technical and identical to that of [17] we do not reproduce it here.

We then introduce another set of separated variables Ŷα,a by 
specifying their eigenvalues on the above states, namely by

Ĉg(u) =
∏
α

(u − Ŷα,1)(u − Ŷα,2) , (16)

where Yα,1 = θα − i + inα,1, Yα,2 = θα + inα,2. With these variables 
at hand, we factorise the transfer matrix eigenstates 〈	| exactly as 
it was done for |	〉 in [17] for the anti-fundamental representa-
tion. By computing the overlap 〈	|y〉 and using (15) we obtain

〈	|y〉 =
L∏

α=1

τ1

(
θα − i

2

)nα,2−nα,1
τ2

(
θα − i

2

)nα,1

[Q θ (θα − i)]nα,2
〈	|0〉 . (17)

Next, normalizing the states 〈	| so that

〈	|0〉 =
L∏

α=1

[
q2(θα − i)q3(θα) − q3(θα − i)q2(θα)

]
(18)

and using (6) and (7), we conclude

〈	|y〉 =
L∏

α=1

[
q2(Yα,1)q

3(Yα,2) − q3(Yα,1)q
2(Yα,2)

]
. (19)

2 Curiously, a similar operator also denoted C(u) appears at an intermediate step 
of a technical calculation in [13]. However, none of its crucial properties that we 
describe here were discussed there.
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3.3. SoV-charge operator

Since the operators Bg(u) and Cg(u) only differ by shifts in 
their definitions (8) and (13), they become related at large u. In 
particular, their first two terms of the large-u expansion are exactly 
the same. While the leading term is proportional to the identity 
matrix, the subleading coefficient defines the SoV-charge operator Ŝ

Ĉg(u) � B̂g(u) � u2L + u2L−1

[
L∑

α=1

(2θα − i) + iŜ

]
. (20)

Ŝ commutes with both B̂g(u) and Ĉg(u) by construction, and it 
counts the number of “excitations” in the SoV states:

S =
∑
α,a

nα,a =
∑
α,a

mα,a (21)

which will be a useful observation later.

3.4. Scalar product in the SoV basis

Our goal is to express the scalar product in SoV variables in a 
closed form. For any two bases |y〉 and 〈x| one can write

〈�|�′〉 =
∑

x

∑
y

Mx,y〈�|y〉〈x|�′〉 , (22)

where the measure Mx,y is the inverse transposed matrix of the 
overlaps 〈x|y〉. Without making any calculation, we can make an 
important observation about the matrix 〈x|y〉 – the existence of 
the SoV-charge operator Ŝ implies that only the matrix elements 
with the same excitation numbers 

∑
nα,a = ∑

mα,a can be non-
zero. In particular, the ground state 〈0| should be also an eigen-
state of C(u), and, as the spectrum of C(u) is non-degenerate, this 
means that 〈0|y〉 ∝ δ0,y and similarly 〈x|0〉 ∝ δx,0, which also im-
plies that Mx,0 ∝ δx,0 and M0,y ∝ δ0,y .

When τ̂1 and τ̂2 (as operators) can be diagonalised their joint 
spectrum must be non-degenerate [10] and then their joint left 
and right eigenstates are orthogonal 〈	A |	B〉 = N 2

AδAB . Using the 
SoV basis, we then have

N 2
AδAB =

∑
x,y

Mx,y

L∏
α=1

qA
1 (Xα,1)q

A
1 (Xα,2) (23)

×
L∏

α=1

[
q2

B(Yα,1)q
3
B(Yα,2) − q3

B(Yα,1)q
2
B(Yα,2)

]
,

where qA
j and q j

B are the Q-functions corresponding to the eigen-
state 	A and 	B .

4. Functional orthogonality relation

Now we shall consider the orthogonality question and repro-
duce (23) following the method of [21,22]. The starting point is 
the two Baxter TQ-relations. With the help of the finite difference 
operator

O = 1

Q −
θ

D−3 − τ2

Q +
θ Q −

θ

D−1 + τ1

Q +
θ Q −

θ

D − 1

Q +
θ

D+3 , (24)

where D ≡ ei/2∂u , both Baxter relations are written in a unified 
way

−→
O qi = 0 , and qi

←−
O = 0 ,

where arrows indicate the direction in which the shift operator 
acts: 

−→
D f = f (u + i/2) and g

←−
D = g(u − i/2).
The orthogonality conditions shall be now built using the fol-
lowing simple fact 

∮
μ(u)( f

−→
O g)du = ∮

μ(u)( f
←−
O g), where the 

measure μ(u) is an i-periodic analytic function, f and g are an-
alytic and the contour is a large enough circle which is easily 
demonstrated by shifting the contour of integration. In particular 
we have

0 =
∮

qA
i

←−
O Aq j

B e2πuβdu =
∮

qA
i

−→
O Aq j

B e2πuβdu , (25)

where β ∈ Z and the indices A and B indicate the eigenstates of 
the transfer matrix. Note that the finite difference operator O B

itself depends on these states through the eigenvalues τa of the 
transfer matrices. The integrand has 2L poles at θi ± i

2 . These poles 
are cancelled by the trigonometric polynomial 

∏L
i (e2πuβ + e2πθiβ)

(defined in such a way that it has zeros at these points and is an 
i-periodic function of u), meaning that there are only L linearly in-
dependent exponents one can insert and thus one can restrict β =
1, . . . , L. From (25) we obtain 

∮
qA

i

[−→
O B − −→

O A

]
q j

B e2πuβdu = 0, or

∮
qA

i

�τ2q j
B(u − i

2 ) + �τ1q j
B(u + i

2 )

Q +
θ Q −

θ

e2πuβdu = 0 , (26)

where �τa = (−1)a(τ A
a − τ B

a ) = ∑
α �Ia,αuα−1. We take i = 1 and 

j = 2, 3, which gives∑
a,α

�Ia,α

∮
qA

1 (u)uα−1q1+b
B (u + 3i

2 − ia)

Q θ (u + i
2 )Q θ (u − i

2 )
e2πuβdu = 0 , (27)

where b = 1, 2 and β = 1, . . . , L, giving in total 2L equations. Con-
sider it as a linear system on �Ia,α . To have a non-trivial solution 
it must be degenerate, meaning that if A and B are different states 
we have det M = 0, where

M(a,α),(b,β) =
∮

qA
1 (u)uα−1q1+b

B (u + 3i
2 − ia)

Q θ (u + i
2 )Q θ (u − i

2 )
e2πuβdu . (28)

The equation det M = 0 (for A �= B) is the functional orthogonal-
ity relation. To relate it to our operatorial SoV construction we 
compute the integral by residues. If one first performs a simple lin-
ear transformation e2πuβ → ∏

γ �=β

(
e2πu + e2πθγ

)
, which changes 

M → M̃ but does not affect the determinant value, the new i-
periodic factor would cancel all the poles except the ones at 
u = θβ ± i

2 and the result of integration is M̃(a,α),(b,β) equal to

+qA
1 (θβ + i/2)

(θβ + i/2)α−1∏
γ (θβ − θγ + i)

q1+b
B

(
θβ − ai + 2i

)
+qA

1 (θβ − i/2)
(θβ − i/2)α−1∏
γ (θβ − θγ − i)

q1+b
B

(
θβ − ai + i

)
.

Let us see that det M̃(A, B) has exactly the form of the r.h.s. of 
(23)! Indeed, we are guaranteed to get a sum of terms each con-
taining a product of 2L factors qA

1 (θβ ± i/2). Now, if we fix some 
combination of 2L ± signs, we are left with a determinant con-
taining q1+b

B (θβ ± i) and q1+b
B (θβ) with dependence on b contained 

only in the index of the Q-function, meaning that the final expres-
sion will be anti-symmetrized in b for each given β , but the only 
antisymmetric in b combinations of qB ’s are the factors of the type 
q2

B(Yβ,1)q3
B(Yβ,2) −q3

B(Yβ,1)q2
B(Yβ,2). The remaining coefficients are 

some combinations of θ ’s.
Now we show that

det M̃(A, B) = 〈	A |	B〉 , (29)

up to an overall rescaling of M̃ .
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To this end consider the equation (23) for A �= B as a set of 
3L × (3L − 1) linear equations on 3L × 3L quantities Mx,y . Further-
more, we can fix 3L variables Mx,0 = cδx,0, making the number 
of unknowns and equations to be the same. This means that, as-
suming independence of the equations, there should be a unique 
solution for Mx,y up to an overall rescaling, parametrized by the 
constant c. Coefficients of the expansion of det M̃ over the SoV 
wave functions (11) and (19) construct this solution for us. Finally, 
to fix the overall constant c we can take (23) for 	A = 	B = 
. Us-
ing that the l.h.s. for this state is 1 and all Q-functions are trivial, 
one can find the constant c too.

We conclude that by using the orthogonality relations following 
from the Baxter TQ-equations we can completely fix the measure 
and thus obtain the scalar product in separated variables (29).3

Note that (29) would hold even when both states are “off-shell” 
that we define as states (11) and (19) but for qa and qa not satis-
fying the quantisation condition (3).

5. Conclusions

In this paper we constructed SoV bases for both bra and ket 
states, with a relatively simple overlap, providing a measure for 
the scalar product. We also showed how to find the SoV measure 
based on the method of [21], which bypasses an explicit operato-
rial computation and allows us to extract the result from a simple 
determinant. In a similar way one can compute matrix elements of 
a large class of operators such as B(u), C(u) and t̂a(u), which are 
expected to generate the full algebra of observables. Further gener-
alisations of our results will be reported in [23] (in particular, the 
general su(N) case can be addressed using the same techniques). 
Finally, it would be interesting to understand the relation between 
(29) and Gaudin norms [24] and recent results involving Gaudin 
matrices [25].
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