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We consider a dual S-matrix bootstrap approach in d ≥ 3 space-time dimensions which relies solely on
the rigorously proven analyticity, crossing, and unitarity properties of the scattering amplitudes. As a proof
of principle, we provide rigorous upper and lower numerical bounds on the quartic coupling for the
scattering of identical scalar particles in four dimensions.
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Introduction.—An optimization problem can be viewed
from either of two perspectives called, respectively, Primal
and Dual. In the revived nonperturbative S-matrix boot-
strap program of [1,2], the space of scattering amplitudes is
carved out numerically by solving an optimization problem
in its primal form: the target to optimize is a physical
observable; the constraints are the physical principles of
analyticity, crossing, and unitarity. This approach has
already been used to bound several classes of amplitudes.
For example, in relation to integrable systems in two
dimensions [3–12], and in higher dimensions for the case
of standard model physics [13–17] and quantum gravity
theories [18]. At the same time, any bootstrap scheme in
terms of the primal variables involves making an ansatz for
the amplitude and some type of truncation: as a result, the
bounds are not strictly rigorous.
Our main motivation for constructing a dual formulation

stems from the weak duality principle. Suppose we maxi-
mize an observable O over some space D. Then for any
value of the dual variables in the dual space D̄, the dual
function Ō will always provide an upper bound on O,
independently of how hard the primal problem is:

O ≤ ðO� ≡max
D

OÞ ≤ ðŌ� ≡min
D̄

ŌÞ ≤ Ō: ð1Þ

This weak duality principle allows one to construct a
bootstrap scheme for generating rigorous bounds on the
S matrix, thus placing it in a similar footing to the
conformal bootstrap [19]. In this Letter, we formulate a
dual S-matrix bootstrap problem in d ≥ 3 for the scattering
of identical scalar particles that can be efficiently solved
using SDPB [20–22]. A closely related—albeit nonlinear—
formulation was pioneered long ago in a series of papers

[24–28] and used to put rigorous bounds on the π0π0

scattering amplitude in four dimensions. Moreover, an
alternative dual formulation has been constructed recently
using the Mandelstam representation [29].
Before illustrating our strategy, we shall review the logic

behind the dual approach in a simpler example. (See Chap. 5
of Ref. [30] for a general introduction to dual problems.) We
consider the following toy problem—see Fig. 1

O� ≡max
fx;yg

fOðx; yÞjx2 þ y2 ≤ 1g; ð2Þ

with the primal objective taken to be

Oðx; yÞ ¼ axþ by: ð3Þ
The variables fx; yg are called primal variables. The starting
point to derive the dual version of problem (2) is to write the
Lagrangian function

Lðx; yjλÞ≡ ðaxþ byÞ þ λð1 − x2 − y2Þ; ð4Þ
introducing a dual variable for each constraint, as λ ≥ 0. This
Lagrangian satisfies the following identity

(a) (b)

FIG. 1. (a) The geometric solution of problem
maxfxþ yjx2 þ y2 ≤ 1g. (b) The dual function ŌðλÞ ¼
λþ 1=ð2λÞ of the same maximization problem. The minimum
value is attained for λ ¼ 1=

ffiffiffi
2

p
and coincides with the optimal

value of the maximization problem.
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min
λ
fLjλ ≥ 0g ¼

�
axþ by x2 þ y2 ≤ 1

−∞ otherwise
: ð5Þ

Combining this with the max-min inequality yields

O� ≡max
fx;yg

fmin
λ
fLjλ ≥ 0gg

≤ min
λ
fŌðλÞjλ ≥ 0g≡ Ō�; ð6Þ

where the dual function is defined as

ŌðλÞ≡max
fx;yg

L ¼ λþ ða2 þ b2Þ=ð4λÞ: ð7Þ

The last inequality in Eq. (6) proves the weak duality
principle anticipated in Eq. (1).
The dual objective in Eq. (7) is nonlinear, but it is

concave [31]. For any fixed trial value of λ ≥ 0 the dual
function provides a rigorous upper bound for the quantity
axþ by. The difference between primal and dual objective
is called duality gap and whether the duality gap is zero
depends on the nature of the primal constraints. (See
Refs. [30,32,33] for a set of sufficient conditions.)
In the following, we will apply this same logic to bound

the quartic coupling between identical massive scalar
particles in d dimensions, showing explicit numerical
results for d ¼ 4. We view our construction as a proof
of principle that may be improved in the future.
The quartic coupling problem.—We list the set of

constraints for the 2 → 2 scattering amplitude of identical
scalars. First, the analyticity of the amplitude in the cut s
plane can be imposed using dispersion relations. The
amplitude satisfies fixed-t double subtracted dispersion
relations for any real −28 < t < 4 in the s plane with two
cuts starting at s ¼ 4 and u ¼ 4, all expressed in units of the
mass, [34–36]. Once combinedwith s − u crossing, they can
be put in the following form [36] (See Supplemental
Material, Appendix A for the derivation [37].)

0¼Aðs;tÞ
¼Tðs;tÞ−Tðs0; t0Þ

−
1

π

Z
∞

4

dv½Tvðv;tÞKðv;s;t;t0ÞþTvðv;t0ÞKðv;t;t0;s0Þ�;

ð8Þ
where Tvðv; tÞ ¼ DiscvTðv; tÞ, and ðs0; t0Þ is an arbitrary
subtraction point. Here,

Kðv; s; t; t0Þ ¼
1

v − s
þ 1

v − 4þ sþ t
−

1

v − t0

−
1

v − 4þ tþ t0
: ð9Þ

A function that satisfies the A constraint is automatically
analytic in the cut s-plane and s − u crossing symmetric,
but not necessarily s − t symmetric. Hence, this equation
must be supplemented by the crossing constraint,

Tðs; tÞ ¼ Tðs; 4 − s − tÞ. This implies that the primal var-
iables must consist of s − t crossing symmetric functions,
which in turn supports only even spins. (Instead of imposing
crossing as a constraint, one may use the manifestly crossing
symmetric dispersion relations of Refs. [38,39].)
Unitarity is most simply expressed as the probability

conservation for fixed energy s and spin l

1 ¼
X
n

jS2→nðs;lÞj2 ≥ jS2→2ðs;lÞj2; ð10Þ

where S2→nðs;lÞ denotes the matrix element between two-
particle and n-particle states of spin l. The S2→2 amplitudes
are given by

S2→2ðs;lÞ ¼ 1þ iρ2ðsÞflðsÞ; ð11Þ
where ρ2ðsÞ ¼ ½ðs − 4Þ½ðd−3Þ=2�= ffiffiffi

s
p � is the d-dimensional

two-particle phase space factor and flðsÞ the partial wave
projection [40]

flðsÞ ¼
N d

2

Z
1

−1
dzð1 − z2Þd−42 PðdÞ

l ðzÞT½s; tðzÞ�; ð12Þ

with tðzÞ ¼ 1
2
ðs − 4Þðz − 1Þ. For later convenience, we

rephrase the unitarity constraint as the semidefinite
(SDP) condition

Ulðs > 4Þ ¼
�
1 − ρ2

2
Imfl ρRefl

ρRefl 2Imfl

�
⪰ 0: ð13Þ

The equivalence betweenEqs. (10) and (13) canbe seen by
first noting that Ul is positive iff both its determinant and
trace are positive. The positivity of the determinant is
Eq. (10). The positivity of the trace follows from that
of the determinant, as can be seen by noting that detUl ¼
2ImfltrUl − 4Imf2l − ρ2Ref2l. Finally, in the elastic region
of 4<s<16, unitarity implies a stronger equality constraint

detUlð16 > s > 4Þ ¼ 0; ð14Þ
instead of the inequality (13).
The quantity we want to bound is the quartic coupling,

defined as the value of the amplitude at the crossing
symmetric point [2]

g0 ≡ 1

2nðdÞ0

T

�
4

3
;
4

3

�
: ð15Þ

Combining all the constraints, we write the Lagrangian
(The sign � depends on whether we maximize or mini-
mize g0.)

L� ¼ g0 þ
Z Z

D
dsdtWðs; tÞAðs; tÞ

þ
X
leven

�Z
16

4

dsElðsÞ detUlðsÞ

�
Z

∞

4

dstr½ΛlðsÞUlðsÞ�
�
; ð16Þ
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where Wðs; tÞ and ElðsÞ are unconstrained dual variables
imposing the analyticity (8) and elastic unitarity (14) in
their validity domains, D and s ∈ ½4; 16�. Here, crossing
has already been solved at the level of the primal variables
by restricting to even spins only, f2nþ1ðsÞ ¼ 0. Finally,
ΛlðsÞ is a semidefinite positive matrix associated with the
unitarity inequality constraint (13) that we impose for all
energies. [A simple theorem states that the integrand
tr½ΛlðsÞUlðsÞ� is positive iff UlðsÞ ⪰ 0 for any ΛlðsÞ ⪰ 0.]
The dual variable space.—Here comes the important

advantage of the dual formulation: omitting part of the
constraints may weaker the bound, but due to the inequality
minλfŌðλÞg ≤ Ōð0Þ, it does not affect its rigor.
First, we simply set the dual variables associated with the

elastic unitarity constraint (14) to zero, ElðsÞ ¼ 0. This is
because we do not know how to put it in SDP form. In the
end, we find the elastic unitarity is satisfied in the region
where the unitarity inequality is imposed;see also the
numerical results [42].
Next, we discuss the dual function Wðs; tÞ. Its analy-

ticity properties are connected to those of its associated
constraint Aðs; tÞ and its domain of validity. We consider a
subspace of dual functions whose s-channel spin is
bounded by a fixed integer L

WL½s; tðzÞ� ¼
N d

2
ð1 − z2Þd−42

XL
l¼0

wlðsÞPðdÞ
l ðzÞ; ð17Þ

where the sum runs over all spins, even and odd. Note that
although we have solved the crossing constraint at the level
of the primal variables by setting f2nþ1ðsÞ ¼ 0, the odd
spins dual variables w2nþ1ðsÞ impose nontrivial constraints.
This is because the kernel in Eq. (8) is not s − t symmetric.
At this point, we shall specify the domain D of WL

where we impose the A constraint. The larger this domain
is, the more constraints we are imposing, hence the stronger
the bound we get. The regime of validity of A is −28 <
t < 4 and any s. In addition, we demand the integral of
Wðs; tÞTðs; tÞ in Eq. (16) to be diagonal in spin. This is
achieved by letting z run over the range z ∈ ½−1; 1�.
Combining the two conditions above implies that

0 < s < 32. All in all, we take the integration domain
to be Dμ ¼ fðs; zÞjz ∈ ½−1; 1� ∧ s ∈ ½4; μ2�g, where 4 <
μ2 < 32 is a free parameter that we will tune later when
solving the dual problem numerically. Later we will also
comment about the possibility of enlarging further this
integration domain—see the dual problem.
With these choices, the A term in the Lagrangian (16)

takes the form

ZZ
Dμ

dsdtWLðs;tÞAðs;tÞ¼
XL
l¼0

Z
μ2

4

dswlðsÞalðsÞ; ð18Þ

where

alðsÞ≡N d

2

Z
1

−1
dzð1 − z2Þd−42 PðdÞ

l ðzÞA½s; tðzÞ�

¼ ReflðsÞ −
δl;0

nðdÞ0

Tðs0; t0Þ

−
Z

∞

4

dv
X
Jeven

kl;Jðv; sÞImfJðvÞ; ð19Þ

with the kernels kl;J given by

kl;Jðv; sÞ≡N dn
ðdÞ
J

2π

Z
1

−1
dzð1 − z2Þd−42 PðdÞ

l ðzÞ

×

�
PðdÞ
J

�
1þ 2t

v − 4

�
Kðv; s; t; t0Þ

þ PðdÞ
J

�
1þ 2t0

v − 4

�
Kðv; t; t0; s0Þ

�
: ð20Þ

In Eq. (19) we used the fact that the imaginary part of theA
constraint is automatically satisfied for real s > 4. The even
spin constraints a2nðsÞ ¼ 0 are also known as Roy equa-
tions [36]. They relate the real part of each partial amplitude
to the absorptive parts that can be measured experimentally
and they have been used in low energy QCD phenom-
enology; see Ref. [44] for a review. Notice also that the odd
constraints a2nþ1ðsÞ ¼ 0 do not contain the odd spin real
parts as we set Ref2nþ1ðsÞ ¼ 0 by the choice of the primal
variables.
The dual problem.—By plugging Eq. (18) into Eq. (16),

and choosing conveniently the subtraction point at
s0 ¼ t0 ¼ 4=3, the Lagrangian becomes

L� ¼ g0

�
1− 2

Z
μ2

4

w0ðsÞds
�
þ
XL
l¼0

Z
μ2

4

dswlðsÞReflðsÞ

−
Z

∞

4

dv
X
J even

w̄JðvÞImfJðvÞ

�
Z

∞

4

dv
X
J even

tr½ΛJðvÞUJðvÞ�; ð21Þ

where

w̄JðvÞ≡
XL
l¼0

−
Z

μ2

4

dswlðsÞkl;Jðv; sÞ: ð22Þ

Before moving to the dual problem, we observe that
using the symmetry z → −z of the even spin partial waves
f2nðsÞ, we can extend the integration domain of the w2n in
the definition of Eq. (22) up to μ2e ≤ 60. This is achieved by
integrating over half of the angles z ∈ ½0; 1� in Eq. (19) and
compensating by an overall factor of 2. The region of
integration for the odd spins is kept up to μ2o ≤ 32. In the
next section we will find that having w2nðs > 12Þ ≠ 0 and
w2nþ1ðs > 8Þ ≠ 0 is not feasible, so in practice one is
forced to take μ2e ≤ 12 and μ2o ≤ 8. Yet, the z → −z

PHYSICAL REVIEW LETTERS 127, 251601 (2021)

251601-3



symmetry is what allows the even spins bound to be larger
than the odd one.
As in the toy problem (2), we define the dual functional

by maximizing (minimizing) Lþ (L−) over the primal
variables. The Lagrangian is linear in the primal variables
and the extremization straightforward—see Supplemental
Material, Appendix B for the details [37]. The final result is

min
Λ�
J ⪰0

�w̄JðsÞ≥0

�D� ≡ min
Λ�
J ⪰0

�w̄JðsÞ≥0

XbL=2c
n¼0

Z
μ2e

4

dsX2nðsÞ; ð23Þ

with J even. Here, XJ ¼ ðΛJÞ11, with ΛJ being the dual
matrix that is associated with the unitarity constraint. It is
given by

Λ�
J ¼

� XJ ∓ wJ
2ρ

∓ wJ
2ρ

1
4
ðρ2XJ � 2w̄JÞ

�
⪰ 0: ð24Þ

In Eq. (23) this constraint is imposed for 4 < s < μ2e and
0 ≤ J ≤ L. In the complementary set, the following linear
constraints are imposed

�w̄J≤Lðs > μ2eÞ ≥ 0; �w̄J>Lðs > 4Þ ≥ 0: ð25Þ
Finally, the dual variable w0 shall be normalized to

Z
μ2e

4

dsw0ðsÞ ¼
1

2
: ð26Þ

Numerical results.—We have implemented the dual
problem (23)–(26) in d ¼ 4 numerically. The summary of
this investigation together with the one for the primal
problem is plotted in Fig. 2. In red we depict the rigorously
excluded region for g0. In green, the allowed region obtained
using primal numerics is indicated for comparison.
Primal.—We solve the primal problem by considering a

manifestly crossing symmetric ansatz of the form

Tprimalðs;t;uÞ¼ c
ρs−1

þ
X

aþb≤Nmax

cðabÞρasρbt þ symm; ð27Þ

with ρx ¼ ð ffiffiffiffiffiffiffiffi
8=3

p
−

ffiffiffiffiffiffiffiffiffiffiffi
4 − x

p Þ=ð ffiffiffiffiffiffiffiffi
8=3

p þ ffiffiffiffiffiffiffiffiffiffiffi
4 − x

p Þ and by
imposing unitarity numerically up to some spin Lmax on
a grid of points. For the maximum coupling case, con-
vergence is remarkably fast. Conversely, the minimum
coupling convergence is terrible: the different green lines in
Fig. 2 correspond to increasing values of Nmax indicating
that primal convergence is far from being attained.
Dual.—The functional constraints (23)–(26) are imple-

mented as follows. The dual variables X2n and wl for
n ¼ 0;…; bL=2c and l ¼ 0;…; L are parametrized using a
basis of functions, Chebyschev polynomials, for instance.
We then choose a grid of points where we impose Eqs. (24)
and (25); see Supplemental Material, Appendix G for
details [37].

The set of constraints (25) on the sign of w̄J>L is, however,
infinite because the spin is unbounded. To implement them
numerically, we first trivialize them at large J. This leads to a
bound on the integration domain μ2e ≤ 12, μ2o ≤ 8—see
Supplemental Material, Appendix E for details [37]. We
then introduce a spin cutoff Jmax on the set (25) and
gradually increase it. At intermediate spins larger than
Jmax we have also implemented the sign constraint near
the two-particle threshold, see Supplemental Material,
appendix F [37]. For the maximal coupling problem, we
observe that beyond a certain value there are no dual
constraint violations. For the minimal coupling problem,
we always have some tiny violations at some J > Jmax,
whose effect on the bound is negligible.
For the dual maximum coupling the simplicity of the

primal mirrors into the dual. An almost optimal bound is
attained using just L ¼ 0; adding further dual variables wl
does not improve significantly the bound. For the minimum
coupling, the dual numerical convergence is relatively
slower as in the primal case. The red lines in Fig. 2 are
obtained adding multipliers from L ¼ 0 up to L ¼ 6. We
stress again that for any fixed L the bounds obtained with
large Jmax convergence are rigorous. Increasing further L
will possibly make the gap smaller. (See Supplemental

FIG. 2. Bounds on the quartic coupling g0. On the left, we show
in green the region determined by solving the primal problem, in
red the one excluded by solving the dual (23). The bound on the
maximum coupling converges fast both in the primal and dual
problem and the gap is relatively small—right-top inset. The
bound on the minimum coupling is hard to study using primal:
the different green lines denote the numerical coupling for
Nmax ¼ 5, 8, 11, 14, 17, 20. On the contrary, the red lines for
L ¼ 0;…; 6 show that dual convergence is achieved faster—
right-bottom inset. In dashed black we report the best values
of [28].
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Material, Appendix G for a detailed analysis of the dual
numerics, which includes Ref. [45].)
The different convergence rate of the two problems can

be understood as follows. The quartic coupling g0 can be
measured using the dispersion relation Að4; 0Þ in Eq. (8)
subtracting at s0 ¼ t0 ¼ 4=3

32πg0 ¼ ReTð4; 0Þ − 1

π
−
Z

∞

4

dv½Tvðv; 0ÞKðv; 4; 0; 4=3Þ

þ Tvðv; 4=3ÞKðv; 0; 4=3; 4=3Þ�: ð28Þ

The integrand on the right-hand side is positive since
Tvðv; t0Þ ≥ 0 for any t0 ≥ 0. From Eq. (28) it is evident that
maximizing the coupling is equivalent to minimizing the
imaginary part (or the total cross section). On the other
hand, when we minimize g0 the optimal solution will have a
total cross section that is as big as possible compatibly with
unitarity. It is not surprising that primal convergence for the
minimum coupling case is so hard since the imaginary part
of our ansatz (27) does not grow at fixed Nmax.

In Fig. 3 we compare the primal and dual spin-0 phase
shift for the maximum and minimum coupling problem.
The phase shifts tend to differ less as the duality gap
shrinks. The threshold behaviors for primal and dual agree:
the amplitude saturating the maximum coupling has a
threshold singularity; the one saturating the minimum
coupling a negative scattering length; see Supplemental
Material, Appendix H for further details [37].
Discussion and outlook.—In this Letter, we proposed a

dual approach to the S-matrix bootstrap based solely on the
proven analyticity properties of scattering amplitudes. Our
strategy consists of decomposing both crossing and uni-
tarity into simpler constraints that can be systematically
added to improve the bounds.
Still, there are some important questions to address. The

first one concerns the duality gap. The dual problem we
optimized numerically (23) is not the “mathematical dual”
of the primal problem we solved following Ref. [6] and the
duality gap does not necessarily close. In particular, in the
dual, we imposed full unitarity up to s ¼ 12. This limitation
follows from the dispersion relations we assumed in
Eq. (8). (Several authors have tried to further extend the
domain of validity of the Roy equations [39,46,47], see
Refs. [48,49] for recent studies.) It might be interesting to
use more refined dispersions [50] and check whether the
gap can be further shrunk. In particular, it would be
interesting to extend the applicability of the dual
method beyond s ¼ 16, where nonelasticity is expected
to kick in.
Although not proven, maximal analyticity is a typical

working assumption made in bootstrap studies. It would be
worth repeating our analysis under such a hypothesis and
compare it with our rigorous bounds. It would also be
interesting to extend the dual formulation to the case of
massless particles. Clearly, in that case, the validity regime
of our formulation shrinks to zero and some assumptions
are needed in order to make progress. Related to that, it
would be important to generalize the dual problem we
formulated to bound Wilson coefficients in EFTs that
recently have received a lot of attention [51–58].
Finally, one of the hardest challenges in the S-matrix

bootstrap program concerns the inclusion of multiparticle
processes. The proliferation of Mandelstam invariants is the
bottleneck of manifestly crossing symmetric approaches.
Single variable dispersion relations can overcome this
issue. Whether the dual technology developed in this
Letter can be used to tackle such challenging problems
is an open question we think it will be important to
address.

We thank M. Correia, J. Elias-Miró, A. Homrich, J.
Penedones, A. Raclariu, P. Vieira, and A. Zhiboedov for
useful discussion. We thank P. Vieira for comments on
the draft. A. G. was supported by The Israel Science
Foundation (Grant No. 2289/18). A. S. was supported by
the Israel Science Foundation (Grant No. 1197/20).

FIG. 3. The spin-0 phase shifts, δ0 ¼ ð1=2iÞ log S0, as a
function of the center of mass energy s for the maximum
(top) and minimum coupling (bottom). We plot in dashed-green
and solid-red the phase shifts obtained respectively from the best
primal and dual numerics. In the bottom figure, the dashed lines
in grayscale correspond to increasing values of Nmax up to
Nmax ¼ 20 (in green); the solid lines in grayscale are obtained
from the dual for different values of L, up to L ¼ 6 (in red).
Although primal and dual results still differ, the physical content
they describe is the same.
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