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We introduce the notion of jets, states of collinear flux-tube excitations. We argue for the analyticity,
crossing, and unitarity of the multiparticle scattering of these jets and, through the S-matrix bootstrap, place
bounds on a set of finite-energy multiparticle sum rules. Such bounds define a matrioska with a smaller and
smaller allowed regions as we impose more constraints. The Yang-Mills flux tube, as well as other
interesting flux-tube theories recently studied through lattice simulations, lie inside a tiny island hundreds
of times smaller than the most general space of allowed theories.
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Introduction—Scatter at high energies and particles you
shall produce. Such is life; 2 → n amplitudes exist. And
yet, we are often afraid of them, and rightfully so. Even the
number of variables required to describe their kinematics is
intimidating, not to speak of their intricate analytic struc-
ture, and it is perhaps not surprising that within the recent
resurgence of the S-matrix bootstrap only 2 → 2 ampli-
tudes have been constrained thus far. In this Letter, we give
a first step toward improving this state of affairs and delve
into the m → n world. We will do so within the physics of
long one-dimensional flux tubes.
The transverse fluctuations of long flux tubes are

described by massless particles, Goldstone bosons of the
nonlinearly realized Poincaré symmetry [1–4]. We call
them branons. The flux-tube S-matrix bootstrap [5–7] aims
at studying these flux tubes by constraining the possible S
matrices of these branons. We will focus on flux tubes in
three space-time dimensions so that we have a single
Goldstone particle.
Its two-to-two scattering at low energies is given by

S11→11ðsÞ ¼ eisl
2=4 × eiγl

6s3=768 × ½1þOðs4Þ�; ð1Þ

wherel is the string length (set to 1 henceforth), s is the center
of mass energy squared, and we separated the amplitude into
three parts: (a) a “gravitational” dressing [8–10]whichwould
arise from the Nambu-Goto (NG) string action, (b) the first

deviation from NG action parametrized by the Wilson
coefficient γ, and (c) all higher corrections that UV complete
this amplitude. The existence of such UV completion with
jSj ≤ 1 for all positive energies together with the assumption
of polynomial boundness in the upper half plane leads to a
nontrivial bound on the first Wilson coefficient as [5]

γ ≥ −1: ð2Þ

Here we suggest the use of multibranon processes to further
constrain the dynamics of quantum flux tubes [11]. We will
produce the first S-matrix bootstrap bounds involving multi-
particle processes.
The key player in our construction is what we denote as a

“branon jet,” a multiparticle state with n particles moving
collinearly, each with a fraction αi of the total energy P,

jα1;…;αn; Pin ≡ jα1P⃗; α2P⃗;…; αnP⃗i; ð3Þ

where α1 þ � � � þ αn ¼ 1.
The jet can be a left mover or right mover and within a

(left) right-mover jet all constituents are (left) right movers.
It is important to stress that the possibility of making sense
of such a state of collinear massless particles is quite
nontrivial. It is well defined due to the absence of collinear
divergences for these Goldstone particles [33]. In fact, the
scattering of any number of left movers (or right movers)
among themselves is trivial,

SRR0 ¼ SLL0 ¼ 1; ð4Þ

since we can boost such processes to arbitrarily low energy
when they become effectively free. This is true for R
and R0 being jets of any number of right movers or simply

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 134, 041601 (2025)

0031-9007=25=134(4)=041601(6) 041601-1 Published by the American Physical Society

https://orcid.org/0000-0003-3370-3135
https://orcid.org/0000-0003-1326-2766
https://ror.org/013m0ej23
https://ror.org/00240q980
https://ror.org/0021fvv57
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.134.041601&domain=pdf&date_stamp=2025-01-27
https://doi.org/10.1103/PhysRevLett.134.041601
https://doi.org/10.1103/PhysRevLett.134.041601
https://doi.org/10.1103/PhysRevLett.134.041601
https://doi.org/10.1103/PhysRevLett.134.041601
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


fundamental right-moving individual branons. These cru-
cial properties allow us to cross jets of multiple particles
from past to future, argue for the all-loops analyticity of
their scattering amplitudes, and treat them effectively as
new massless fundamental particles; their internal compo-
sition can be simply thought as a new flavor index; see
Secs. S1–S3 of Supplemental Material [12].
For jets of two particles (and similarly for jets of

many particles) we define a discrete complete basis by
averaging over the energy fraction α at fixed total energy P
according to

jn;Pi≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ1

p Z1

0

dα
Pnð2α−1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8παð1−αÞp jα;ð1−αÞ;Pi2 ð5Þ

with n even since branons are identical bosons; see Sec. S3
of Supplemental Material [12] for the general treatment of
N particle jets. The precise normalization and choice of
Legendre polynomials for jet wave functions in (5) is tuned
so that these jets are nicely normalized as one-particle
states,

hm;Qjn; Pi ¼ 4πP0δn;mδðQ⃗ − P⃗Þ:

We can now decompose a multiparticle amplitude into
infinitely many scattering amplitudes involving these jets.
We can scatter one jet against a fundamental branon, for
instance, to get two possible S matrices, S1n→1nðsÞ and
S1n→n1ðsÞ corresponding to the forward and backward
scattering of the jet.
At low energies, all of these S matrices are again given

by a gravitational dressing part eil
2PLPR=4, where PL=PR is

the total left (right) momenta of the incoming (or outgoing)
state together with the first deviation from this Nambu-
Goto behavior, governed by γ and captured concisely by
the generating function [10]

Lγ ¼
γ

3 × 213
ð∂2þxÞ2ð∂2−xÞ2ð16l6 þ 24l8ð∂þxÞð∂−xÞ

þ 21l10ð∂þxÞ2ð∂−xÞ2 þ � � �Þ; ð6Þ

where x in this equation indicates the transverse coordinate
to the flux tube. Combining both factors we can read off the
low-energy behavior of all scattering processes involving
two-particle jets and fundamental particles as detailed in
Sec. S4 of Supplemental Material [12].
The behavior of all these S matrices at energies s ∼ l−2 is

nontrivial. For most flux-tube theories of interest, such as
pure Yang-Mills theory, their dynamics is expected to be
strongly coupled at those energies. In this short Letter, we
will place bounds on the simplest possible multiparticle
observables capturing the dynamics at the string scale. For
that we will consider only the fundamental branon—for
which we use the label 1—together with the first branon jet

given by n ¼ 0 in (5)—which we will henceforth indicate
by the label 2.
This nomenclature, where we now have two effective

particles with labels 1 and 2, is quite convenient. Indeed,
note that we now have a simple S-matrix bootstrap setup
with two particles and Z2 symmetry (with 1 being the odd
particle and 2 the even one) and four independent ampli-
tudes for which a great deal of technology has been
developed in [34–36].
A triplet of finite-energy observables—Any S-matrix

bootstrap study starts with the choice of wise observables
to bootstrap. We suggest

ðX; Y; ZÞ≡ ðS11→11ðiÞ; S22→22ðiÞ;Re½S11→22ðiÞ�Þ ð7Þ

as an interesting triplet of physical observables, a finite-
energy section of the infinite-dimensional space of two-
dimensional S matrices.
The amplitudes SAB→CDðsÞ are analytic in the upper half

plane, so a natural observable measuring their strength can
be defined as the value of these amplitudes somewhere in
this upper plane; here we pick an energy s ¼ i.
Let us note that ðX; Y; ZÞ can be measured from simple

sum rules probing scattering at all energies. For example,
we can write

X ¼
Z

R

ds
πðs2 þ 1Þ S11→11ðsÞ ð8Þ

and similarly for Y and Z [37].
A flux-tube experimentalist might like this sum rule:

from several scattering outcomes at various energies s,
one simply adds them up to produce a nice approximation
to (8). Of course, depending on the quality and quantity
of such scattering data for different energy ranges, such
experimentalist could also prefer other sum rules. Indeed,
in (8) we considered a single subtraction s0, which is
always enough for one dimension; we could write infinitely
many equivalent sum rules for X, Y, or Z with more
subtractions such as

Z ¼ SRn ≡ Re
Z

R

ds
πðs2 þ 1Þ

�
3i

sþ 2i

�
n
S11→22ðsÞ: ð9Þ

All these integrals must evaluate to the same thing,
although they weigh the real s regions very differently.
For large n we suppress high energy but the low-energy
contribution becomes highly enhanced, while for small n
one needs good high-energy data but the low-energy data
need not be resolved so much. An intermediate n could be
ideal for an experimentalist with reasonable but not ideal
low- and high-energy data.
To conclude: our triplet choice ðX; Y; ZÞ can be thought

as a measure of the various contact multipoint couplings of
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the theory at some nonperturbative finite (complex)
energy as well as a set of sum rules probing scattering
across all (real) energy scales. We now turn to the allowed
ðX; Y; ZÞ space.
The branon matrioska—What values can ðX; Y; ZÞ take?

If we impose very little, we will get that ðX; Y; ZÞ must
leave inside a big (albeit compact) three-dimensional
“rock.” If we impose more conditions, we will obtain a
smaller rock inside that one. And so on. We call this
sequence of allowed regions—one inside the other—the
“branon matrioska.”Wewill now describe a matrioska with
three such regions.
The first physical constraint we will impose is unitarity.

Unitarity can be stated as positive semidefiniteness of two
simple matrices. One is obtained by constructing all
possible scalar products of even in and out states so that

0
BBBB@

1 S11→11 0 S11→22

S�11→11 1 S�22→11 0

0 S22→11 1 S22→22

S�11→22 0 S�22→22 1

1
CCCCA
≽0 ð10Þ

for any s > 0. The other condition, for the odd sector, takes
a similar form with 11 and 22 replaced by 12 and 21,
respectively. These two unitarity conditions talk to each
other through crossing [34] since S11→22 ¼ S�12→21. It is this
interplay between crossing and unitarity that leads to
nontrivial bounds.
The positivity conditions (10) are imposed numerically

using SDPB [38]. In the primal formulation we explore a
(truncated version of an) ansatz [5],

SAB→CD ¼
X∞
m¼0

cðAB→CDÞ
m

�
s − i
sþ i

�
m

ð11Þ

subject to unitarity and optimize over the constants cðAB→CDÞ
m

to explore the allowed ðX; Y; ZÞ space. The truncation
amounts to replacing ∞ by a large nmax cutoff. For a
dual formulation, see Secs. S7 and S8 of Supplemental
Material [12].
For the outer doll of the matrioska, this is all we impose:

unitarity and crossing symmetry (plus analyticity implic-
itly). Importantly, we do not impose any low-energy
behavior. We call this problem the “blue” problem as we
will present its results in a blue 3D plot. Note right away
that a particular obvious consequence of unitarity is that
jXj < 1, jYj < 1, and jZj < 1 since these are all proba-
bilities, and as such the blue rock must be a compact shape
inside a cube of length 2 centered at the origin of the
ðX; Y; ZÞ space; indeed, this is what we find numerically,
see blue shape in Fig. 1.
The “red” problem is the setup where we impose

unitarity together with the leading universal effective field
theory (EFT),

Sab→ab¼ eis=4þOðs2Þ; Sother components¼Oðs2Þ; ð12Þ

imposing dominance of the elastic components over the
reflection and creation amplitudes at low energies. This
is the universal behavior predicted by the leading EFT
given by Nambu and Goto and is agnostic about the first
correction to it governed by γ. Imposing a low-energy
behavior can dramatically improve our finite-energy
bounds as reviewed in a few simple analytic examples in

FIG. 1. The branon matrioska: allowed space of ðX; Y; ZÞ for various two-dimensional theories where jets make sense. The blue shape
assumes only unitarity and analyticity. Inside it is a much smaller red surface where we also impose nonlinearly realized Lorentz by
fixing the low-energy behavior of the S matrices. Inside it, in a yet much smaller green region, is the space of such S matrices with first
Wilson coefficient γ ≲ 0.8, a conservative upper bound that should contain most of the interesting flux-tube theories according to the
recent lattice estimates. In this figure, we use Sn→m to denote the processes involving in total n and m particles in the initial and final
states; S4→4, for instance, refers to the scattering of two jets (each with two particles) in the past yielding two jets in the future, that is,
S4→4 ¼ S22→22 ¼ Y and so on. In each matrioska doll, some directions can be bounded from analytic single-component Schwarz-type
arguments, see Sec. S9 of Supplemental Material [12].
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Sec. S5 of Supplemental Material [12]. Indeed, it does. We
immediately obtain a red rock about 10 times smaller than
the blue rock once we impose these extra constraints, see
middle panel in Fig. 1.
We know the behavior of all flux-tube S matrices a few

orders further in the low-energy expansion up to the terms
governed by the leading Wilson correction γ; see Sec. S4 of
Supplemental Material [12]. The reader could wonder
whether imposing that subleading behavior would generate
another rock inside the red rock. We have indeed tried that
but all numerical evidence we found is that it does not
improve the bounds further; the resulting rock seems to
converge to the very same red rock as we increase our
primal truncation nmax. This is fine: not all pointwise
constraints lead to bound improvements, as explained in
the toy examples of Sec. S5 of Supplemental Material [12].
This seems to be one more such example—as long as we do
not commit to any value for γ.
On the other hand, if we also supplement our conditions

with an upper bound on the Wilson coefficient γ the
situation dramatically improves. This is what we did in
what we call the “green” problem. Here we imposed the
constraint γ < 0.768, which we expect should include
SUðNÞ Yang-Mills theory with at least N ≤ 3 according
to various recent lattice estimates [39].
Once we impose this upper bound on γ we see that the

allowed space shrinks by several orders of magnitude,
leading to a tiny green rock, the smallest rock in our branon
matrioska; see right panel in Fig. 1.
Discussion—What class of string theories govern the

flux tube of pure three-dimensional Yang-Mills theories?
What is the world sheet physics of this two-dimensional
theory at finite energies? We still do not know.

Nonetheless, we find it quite remarkable that the green
region is so small that we can already predict finite-energy
sum rules up to a few digits for any reasonable confining
gauge theory such as SU(3) pure glue. While the matrios-
kas in Fig. 1 were generated through primal numerics, the
power of the bootstrap in constraining these sum rules can
be seen analytically as well; in Sec. S9 of Supplemental
Material [12], we derive several simple single-component
analytic bounds including, for example, the sum rule bound

0.7778 ≤ X ≤ 0.7796;

for the width of the smallest branon matrioska. As far as we
know, the S-matrix bootstrap is the only available machi-
nery that allows us to quantitatively address such interest-
ing Lorentzian quantities.
In Fig. 2 we looked for the probability for various

production in the even and odd channels for the optimal S
matrices on the boundary of the two-dimensional section of
the red region. On the left (even) panel we observe
something rather cute, albeit unsurprising, while on the
right (odd) panel we observe something rather striking and
unexpected (based on all previous S-matrix bootstrap
studies). We find that, after some critical energy, unitarity
is not saturated. The probability of finding an odd branon
plus an even jet in the final state moving as in the initial
state (P12→12) or reflected with respect to the initial state
(P12→21) does not add up to 1. Something else is being
produced. It would be fascinating—albeit probably far
fetched—if they could be thought of as glue balls emitted
from the flux tube when the branons reach a critical energy
roughly corresponding to their mass. Even if they turn out

FIG. 2. At very low energy, the diagonal processes 11 → 11 and 12 → 12 dominate since the theory is free in the IR. As we crank up
the energy, jet production kicks in. On the even sector depicted on the left we see that around s ¼ 4 the jet production 11 → 22 even
starts dominating for this rightmost point of the red matrioska. The solid curve on the left panel at P ¼ 1 is simply the sum over the two
possible even outcomes. On the right, we have the odd sector and that same sum no longer adds up to 1. That means that around s ¼ 1
the optimal S matrices at this point of the matrioska choose to produce some odd state outside the 12 branon-jet system. It would be
fascinating to find out what these states are in case they have a physical meaning. This is the first instance of an S-matrix bootstrap
where unitarity is perfectly saturated in a finite-energy interval after which it is not. In all other examples we know of unitarity
wants to converge to 1. Note that, in these plots we depicted two very different values of (very large) nmax to be sure that
there is no convergence issue.
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to be more exotic objects or to have no simple physical
interpretation, it is still mathematically fascinating that
unitarity is not saturated along the boundary [40]. What is
going on? Could something like this also happen in higher-
dimensional scattering [42]? We conjecture that the answer
is yes and that with a similar Z2 scattering problem
involving an odd and an even particle in higher dimensions
we should observe similarly striking dips if we choose to
probe the scattering in this system by a similar triplet kind
of effective coupling; it would be fascinating to check that
this is the case.
However, even in two dimensions, there is still much

to do.
We could consider infinitely many more jets, explore

other directions in the infinite-dimensional space of multi-
particle S matrices, and check whether the matrioska
shrinks further. We could also study flux tubes in
higher-dimensional confining theories. In D ¼ 4—the real
world—jets could be made out of any combination of the
two branons corresponding to the two transverse directions
to the flux tube. In [5], when exploring the allowed space of
leading Wilson coefficients, it was found that the boundary
of the allowed space of flux-tube S matrices in D ¼ 4 is
much more interesting than in D ¼ 3; the extremal S
matrices contain a world sheet axion resonance whose
mass and coupling match both the lattice measurements
and the estimate coming from integrability [47]. In [7], it
has been conjectured that the axion contributes nonpertur-
batively to cancel the universal particle production induced
by the Polchinski-Strominger term, thus enhancing
approximate low-energy integrability [48]. It would be
interesting to check this mechanism by employing the full
nonperturbative multiparticle bootstrap. It is thus only
natural to expect that the D ¼ 4 branon matrioska will
probably be even richer than the D ¼ 3 matrioska stud-
ied here.
What about higher dimensions? Can we attack multi-

particles there? We must. Otherwise, how can we hope for
the nonperturbative S-matrix bootstrap to rise to the
standards of perturbative quantum field theory? A key tool
in the two-dimensional explorations we initiated here was
the introduction of jets, which allowed us to derive bounds
on the multiparticle S matrix through exploring single
variable analyticity and crossing, thus evading having to
deal with the intricate analytic structure of the full multi-
particle amplitude. In higher dimensions, can we develop a
jet-effective field theory where we expand around highly
aligned particles that will have a small effective mass and
might possibly be treated as effective single particles [49]?
This seems like a direction worth exploring.
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