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We use the S-matrix bootstrap to carve out the space of unitary, crossing symmetric and supersymmetric
graviton scattering amplitudes in ten dimensions. We focus on the leading Wilson coefficient α controlling
the leading correction to maximal supergravity. The negative region α < 0 is excluded by a simple dual
argument based on linearized unitarity (the desert). Awhole semi-infinite region α≳ 0.14 is allowed by the
primal bootstrap (the garden). A finite intermediate region is excluded by nonperturbative unitarity (the
swamp). Remarkably, string theory seems to cover all (or at least almost all) the garden from very large
positive α—at weak coupling—to the swamp boundary—at strong coupling.

DOI: 10.1103/PhysRevLett.127.081601

At large distances gravity is universal. At short distances
it is UV completed. The first hints of such completions
come from the Wilson coefficients (WCs) governing the
low energy effective action. String theory leads to some
values of the WCs: other theories to other values. As we
will illustrate, the S-matrix bootstrap is a powerful quanti-
tative tool to carve out the allowed space of such WCs and
thus learn about the potential UV completions of gravity
(the application of the S-matrix bootstrap to the study of
EFT has been initiated in [1,2] for the simpler study of 2D
flux tubes and 4D massless pions, respectively). To kick off
this program we focus on a simpler setup and set out to
study the space of 10-dimensional gravitational theories
with maximal supersymmetry. In d ≥ 5 dimensions gravity
is IR finite. The main simplification here is however
supersymmetry as it allows us to relate scattering of
gravitons to the much simpler scattering of its scalar
superpartners. The two-to-two scattering amplitude of
the graviton multiplet for any 10D theory with maximal
SUSY takes the following form [see, e.g., Eq. (7.4.57)

in [3] and [4] for a simple general argument. For
N ¼ ð2; 0Þ—as in type IIB superstring theory—there is
a manifestly supersymmetric representation of this prefac-
tor as R4 ¼ δðQÞ [5] while for N ¼ ð1; 1Þ—as in type IIA
—such SUSY rewriting is not known as reviewed in [6].
Nonetheless, in both cases (1) holds. See [7] for a covariant
representation of this prefactor in the pure spinor formal-
ism]:

A2→2 ¼ R4Aðs; t; uÞ: ð1Þ

By extracting different components of the R4 prefactor
sitting in front we get access to the various scattering
processes. At low energy Aðs; t; uÞ ∼ 1=stu is the universal
gravity behavior. In N ¼ ð2; 0Þ we can scatter the charged
axidilaton, for instance, by picking an s4 factor from theR4

prefactor thus getting an amplitude

Tðs; t; uÞ≡ s4Aðs; t; uÞ ¼ −8πGN

�
s2

t
þ s2

u

�
þ…; ð2Þ

where in the last equality we used sþ tþ u ¼ 0. There are
t and u channel poles corresponding to massless graviton
exchanges between the charged scalars; there is no s
channel pole since these scalars are charged and thus
can not annihilate. The combination T is very important
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and will be the central object in this Letter since unitarity
for the super amplitude turns out be equivalent to usual
unitarity for this component as explained in the
Supplemental Material [8], Appendix A, which includes
Refs. [9–11].
The Wcs are in the dots in (2). More precisely [12],

Tðs; t; uÞ
8πGN ¼ 64π7l8

P
¼ s4

�
1

stu
þ αl6

P þOðsÞ
�
; ð3Þ

where the OðsÞ term is a universal one loop contribution,
which we work out in the Supplemental Material [8],
Appendix B, which contains Ref. [13]. At higher orders in s
there are subleading WCs and higher loop contributions.
Nicely, the first Wilson coefficient α appears at order s0 and
can thus be cleanly separated from the 1-loop contribu-
tion [14]. The coefficient α controls the (SUSY completion
of the) Riemann4 term in the effective action [15]. The
purpose of this Letter is to study the allowed space of α
compatible with the S-matrix bootstrap principles of
analyticity, crossing and unitarity of the 2 to 2 scattering
amplitude.
In type IIB superstring theory, we have [16–19]

αIIB ¼ 1

26
E3

2
ðτ; τ̄Þ ≥ 1

26
E3

2
ðeiπ=3; e−iπ=3Þ ≈ 0.1389; ð4Þ

where the nonholomorphic Eisenstein series depends on the
complexified string coupling τ ¼ χs þ ði=gsÞ. In fact, it is
always larger than a finite positive value (see the
Supplemental Material [8], Appendix D, which contains
Ref. [20] for more details). In type IIA superstring theory,
we have (see, e.g., [17,18,21,22])

αIIA ¼ ζð3Þ
32g3=2s

þ g1=2s
π2

96
≥
π3=2ðζð3ÞÞ1=4

24
ffiffiffi
3

p ≈ 0.1403; ð5Þ

where the string coupling gs ≥ 0. We conclude that the
values realized in string theory are

α ≥ αSTmin ≡ 1

26
E3

2
ðeiπ=3; e−iπ=3Þ ≈ 0.1389: ð6Þ

Our goal is to use the bootstrap to find out the allowed
possible values of α. How big is the space of allowed
quantum gravity UV completions and does string theory fit
in this space?
First of all, we can show that α can not be negative.

Indeed, in the Supplemental Material [8], Appendix C,
which contains Refs. [23,24], we employ the usual contour
manipulation arguments [25]—see also [26–29]—to show
that

α ¼ 1

32π8l14
P

Z
∞

0

ds
s5

ImTðsþ iϵ; t ¼ 0Þ: ð7Þ

The optical theorem then implies

α ≥ 0: ð8Þ

This is a prototypical example of a rigorous dual
exclusion bound. No matter how hard we scan over putative
Ansätze for T—as we do in the primal formulation—we
will never encounter an amplitude with a negative Wilson
coefficient α. Beautifully, both type IIA and IIB coefficients
reviewed above are indeed always positive.
The optimal bound must therefore be somewhere

between the dual bound (8) and the string theory realization
(6). To look for it we turn to the primal S-matrix bootstrap
formulation and construct the most general amplitude
compatible with maximal SUSY, Lorentz invariance, cross-
ing, analyticity and unitarity following [2,30–34]. The key
representation is given by

T
8πGN

¼ s4
�

1

stu|{z}
SUGRA

þ
Y

A¼s;t;u

ðρAþ1Þ2
X0

aþbþc≤N
αðabcÞρasρbt ρcu

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
UVcompletion

�
;

ð9Þ

which follows the notation introduced in those references
and is discussed in detail in the Supplemental Material [8],
Appendix E (also Appendices F and G).
We minimize α for any fixed N (related to the number of

parameters in a primal ansatz) and L (maximum spin up to
which we impose unitarity of the partial waves) using a
semidefinite program solver for the conformal bootstrap
(SDPB) solver [35,36]. We run SDPB on 80 cores: the
running time scales linearly with L and quadratically with
N. We assume the optimal solution is found when the
duality gap is Δ < 10−16 [the Ansatz (9) is a polynomial of
high degree, in general we observe large cancellations

FIG. 1. Minimum αminðN;LÞ. We see that the curves nicely
converge towards a plateau whenever L is large enough. The
larger N is, the further we need to go in L to reach this plateau.
For each value of N we extrapolate these plateaus to estimate
αminðN;∞Þ, which we plot in the next figure.
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among the various terms, therefore we work at fixed high
precision (∼103 binary digits)].
Figure 1 depicts various curves for the minimum value of

α for various N as a function of L—see Supplemental
Material, Appendix E for details. We see that as N grows
the primal Ansatz is capable of minimizing α better and
better as expected. But we also see that for each N it is
crucial to impose unitarity up to very large spin L to
observe convergence of the bound. For the N ¼ 24, for
instance, we see that we only converge for spin L around
220; for lower L there are important violations of unitarity
in partial waves with spin greater than L. For each N we
extrapolate the curves in Fig. 1 to estimate the result at
L ¼ ∞. Next we fit in N to estimate the N ¼ ∞ final value
as depicted in Fig. 2.
Note that these fits introduce error bars. More precisely,

fitting these curves is a bit of an art as we can a priori pick
different number of fitting points and different fit Ansätze.
We took a large family of plausible fits and weight them by
how well they approximate the various numerical points
(see the Supplemental Material [8], Appendix H for
details). The spread is an estimate of the final error. In
this way we estimate that the L → ∞ extrapolation leads to
error bars attached to the points in Fig. 2 and those error
bars, in turn lead to the uncertainty window in the large N
extrapolation denoted by the green shaded region in this
figure. In this way, we estimate that

αBootmin ≡ lim
N→∞

L→∞
αminðN;LÞ ≈ 0.13� 0.02: ð10Þ

Comparing with (6) suggests that string theory realizes all
values of α compatible with the S-matrix bootstrap

principles. It would be useful to increase our numerical
precision to check if indeed αBootmin ¼ αSTmin or if there is some
allowed space not realized in superstring theory. It would
also be fascinating to develop a dual S-matrix bootstrap
problem (see, e.g., [37–39]), which would extend the
simple red excluded region derived above—the desert—
into the swamp, which currently separates it from the green
garden included by the primal problem as summarized
in Fig. 3.
As usual with primal problems, it is fascinating to see

what physical features the optimal solutions have. In this
case, how do phase shifts for theories of quantum gravity
living at the boundary of the garden look like? We are
investigating this in more detail and hope to report on a
more extensive study soon but two fascinating features
seem to be robust: (i) there are infinitely many resonances
(for large spin they seem to lie on a curved Regge trajectory
with s� ¼ m2� ∼ l3=2 as predicted by unitarity, see the
Supplemental Material [8], Appendix F), (ii) the lightest
resonance is a spin zero resonance which we show in Fig. 4.
This scalar resonance is reminiscent of the graviball
recently found in [40] using an approximate method to
unitarize perturbative amplitudes (see the Supplemental
Material, Appendix I, which contains Refs. [41,42], for a
similar approach in our setup). In a strongly coupled string
theory with gs ∼ 1 we expect excited states to show up at
the scale ∼l−1

P . It is therefore tempting to identify the
graviball as the first excited string state.
We explored here the one dimensional space of α, the

leading Wilson coefficient. Would be fascinating to explore
combined space of the first two leadingWilson coefficients.
What structures do we find in this richer two-dimensional

FIG. 2. Minimum αminðN;∞Þ obtained by extrapolating the
various plateaus in Fig. 1. We estimate the error bars here by
scanning over a large number of such fits as explained in the
SupplementalMaterial [8], AppendixH.We then extrapolate these
points to estimate αBootmin ¼ αminð∞;∞Þ ≃ 0.13with an uncertainty
represented by the green strip. It nicely embraces the strong
coupling string prediction depicted by the solid blue line. FIG. 3. String theory covers all or almost all the allowed

quantum gravity theory space.
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space? Is closed superstring theory again in a privileged
position? Would be interesting to investigate open strings
as well (and possible UV completions of Yang-Mills theory
in higher dimensions).
At high energy we expect black holes in any theory of

quantum gravity. It would be very nice to see how they fit in
our analysis. The Wilson coefficients will likely not be
affected dramatically by modifying the high energy inelas-
ticity to the expected behavior but other quantities such as
the positions of the various resonances alluded to above
might change more significantly.
It would also be instructive to see how all this fits in

AdS=CFT. The analog of the supergraviton scattering
amplitude is the four-point function of the stress tensor
multiplet in the dual super conformal field theory. This has
been studied in the large N expansion with maximal
supersymmetry [43–48]. The analog of our nonperturbative
S-matrix bootstrap is the superconformal bootstrap [49–
54]. It would be interesting to explore this connection in
detail.
It would also be very interesting to repeat our analysis in

other dimensions. In 11 dimensions we should make
contact with M theory whose scattering amplitudes have
no free parameters. It would also be fascinating to consider
less or even no supersymmetry. In that case we have to deal
with all the pain and glory of gravitons as spinning particles
(onewill need to generalize the recent work [32] from 4D to
higher dimensions. The formalism developed in [55,56]
should also be useful). It would be amazing if the theory of
quantum gravity describing our Universe would be at a
premium location, identifiable through the S-matrix
bootstrap.
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