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Abstract: We devise two algorithms for approximating solutions of PSDisation, a problem
in actuarial science and finance, to find the nearest valid correlation matrix that is positive
semidefinite (PSD). The first method converts the PSDisation problem with a positive
semidefinite constraint and other linear constraints into iterative Linear Programmings
(LPs) or Quadratic Programmings (QPs). The LPs or QPs in our formulation give an upper
bound of the optimal solution of the original problem, which can be improved during each
iteration. The biggest advantage of this iterative method is its great flexibility when working
with different choices of norms or with user-defined constraints. Second, a gradient descent
method is designed specifically for PSDisation under the Frobenius norm to measure how
close the two metrices are. Experiments on randomly generated data show that this method
enjoys better resilience to noise while maintaining good accuracy. For example, in our
experiments with noised data, the iterative quadratic programming algorithm performs
best in more than 41% to 67% of the samples when the standard deviation of noise is 0.02,
and the gradient descent method performs best in more than 70% of the samples when
the standard deviation of noise is 0.2. Examples of applications in finance, as well as in
the machine learning field, are given. Computational results are presented followed by
discussion on future improvements.

Keywords: nearest correlation matrix; positive semidefinite; semidefinite programming

1. Introduction
A correlation matrix is a square matrix summarising correlation coefficients between

each pair of variables. This is used by many financial or insurance companies to determine
how a group of risks are dependent from each other (Pearson 1895). It is useful across
various fields to help us understand the relationship between variables. For example, in
finance, a correlation matrix is used in optimisation to build a portfolio to minimise the
volatility. It also enables efficient computation of cardinality constrained efficient frontiers
to solve mean-variance portfolio selection problems (Steuer et al. 2024). In actuarial science,
insurance companies use correlation matrices to measure insurers’ exposure to risks and
calculate the Solvency Capital Requirement (SCR) under the Solvency II Standard Formula
(Milhaud et al. 2018). Another application is to work with copulas for aggregation of risks
in a more complex capital model (Milhaud et al. 2018). In genomics science, correlation
matrices help identify relationship between genes and construct relevance networks and
association networks (Opgen-Rhein and Strimmer 2007). They also play a vital role in
genes classifications. In machine learning and data science, correlation matrices are widely
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used to identify key patterns of data through dimensionality reduction techniques such as
Principal Component Analysis (PCA) (Pearson 1901).

In all these applications, the correlation matrices are required to be symmetric and
Positive Semidefinite (PSD), with diagonal entries all equal to one. In practice, however, the
correlation matrix estimated from the empirical data is rarely PSD due to a variety of rea-
sons, including data incompleteness, noise, rounding, manual adjustment, or inconsistent
computing approaches, etc. (Cutajar et al. 2017). For example, when correlations between
variables are estimated in groups and then joined together, the resulting correlation matrix
can be non-PSD. There are many other factors that contribute to this problem. The data
collected in many scenarios can be incomplete and may need further repair. The corre-
lations may have been estimated using inconsistent approaches or have been manually
adjusted according to requirements. All of these reasons lead to an invalid estimation of
the correlation matrix (Cutajar et al. 2017). Therefore, a preprocessing method is needed to
obtain a valid PSD correlation matrix based on the empirical matrix in order to perform any
further analysis. The problem of finding such a correlation matrix nearest to an empirical
matrix is called PSDisation (Milhaud et al. 2018).

Currently most state-of-the-art PSDisation methods focus on finding the nearest corre-
lation matrix with respect to the F-norm, of which some apply to H-norm as well. Over
those algorithms, the Newton Method (NM) (Qi and Sun 2006) and the augmented La-
grangian Method (ALD) (Qi and Sun 2011) are the most efficient in producing optimal
solutions. However, depending on the industrial situations, insurance companies may
wish to measure the similarity using an alternative norm other than the F-norm, which
makes some algorithms more time-consuming or invalid. Another PSDisation method that
is widely used in industry is the shrinking method (Higham et al. 2016). It is a simple and
efficient method that can improve the result of the alternating projections algorithm (APM)
(Cutajar et al. 2017). However, a target matrix that lies inside the cone of PSD matrices is
needed for the shrinking method; therefore, its performance depends heavily on the choice
of the target matrix.

Ledoit and Wolf (2004) introduced a shrinkage method in order to improve the stability
of the estimated covariance matrix that is not positive definite or ill-conditioned. This often
happens when the matrix size is large and the number of observations is smaller than, or
comparable, to the number of variables. It achieves its goal by reducing the variance of
the estimator, and thus reducing the Mean Squared Error (MSE) via a computationally
inexpensive approach. This involves a shrinkage of the sample covariance matrix (unbiased)
towards a target matrix without variance, usually an identity matrix. The optimal shrinkage
intensity parameter can be computed analytically to minimise the MSE. The similar idea
can be used to obtain a PSD correlation matrix starting from an invalid one. Although the
shrinkage method is not defined as a PSDisation method, it has been widely used in many
applications in different fields. We will include this method in our experiments on real
datasets to compare its performance with other PSDisation methods.

Therefore, most algorithms in the current literature primarily operate under the F-norm
or the H-norm for the general PSDisation problems. However, they tend to lack flexibility
when addressing more specific needs in specialised cases. To tackle this limitation, we
propose two new methods to approximate the solution of the PSDisation problem, which
offer greater flexibility and provide robust solutions to practical real-world challenges. The
first algorithm works by solving a series of optimisations, such as Linear Programming (LP)
or Quadratic Programming (QP). Instead of solving the original problem, which requires
the correlation matrix X to be PSD, our formulation requires X = UTQU, where Q belongs
to the convex cone of diagonally dominant symmetric matrices with non-negative diagonal
entries and thus all constraints are linear. This is a rich subset of the PSD matrices set,
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but the optimisations can be solved more efficiently due to the linearity of the constraints.
The main advantage of this method is its flexibility as our formulation is adapted directly
from the original problem and is thus effective on any choice of norms, including the
F-norm, the Chebyshev norm, and the H-norm, or potentially a combination of any of
these norms above. The advantages of using these norms will be illustrated in the results
of our experiments. The second algorithm is to find the nearest correlation matrix to the
initial matrix using an iterative gradient projection method under the F-norm. This can be
achieved simply by repeatedly taking a step along the gradient of the objective function
and then projecting the matrix back to the PSD cone. This algorithm is easy to implement
and enjoys good efficiency while maintaining good accuracy.

We will compare our two proposed algorithms with the state-of-the-art NM, ALD,
and the shrinkage method. Extensive experiments demonstrate that our first iterative
algorithm could achieve results comparable to state-of-the-art methods, while showing
more flexibility in handling complex constraints or different choices of norms. Our second
gradient descent method provides slightly less accurate results but runs faster than the
first algorithm and is more resilient to noise than some state-of-the-art methods and can
therefore be more reliable in practical situations.

This paper is organised as follows. In Section 2, we introduce the notations and
formally define the PSDisation problem. Section 3 summarises some of the most popular
PSDisation algorithms that exist in the current literature, together with the shrinkage
method by Ledoit and Wolf (2004). In Section 4, we introduce our two approaches to the
PSDisation problem. Experiment results with simulated data, as well as real data, for both
algorithms are reported in Section 5 and Section 6, respectively. Finally, in Section 7, we
conclude this paper and propose some future work.

2. Problem Formulation
We now introduce the notations we use throughout this paper and the background

knowledge of the PSDisation problem. We denote the set of n × n real matrices by Rn×n. A
real-valued symmetric matrix Z ∈ Rn×n is Positive Definite (PD) if yTZy is positive for any
nonzero real vector y ∈ Rn. It is Positive Semidefinite (PSD) if yTZy is non-negative for
any nonzero real vector y. Equivalently, a real symmetric matrix is PSD if all its eigenvalues
are non-negative. We write Z ⪰ 0 if Z is PSD (Z ≻ 0 for PD). We use diag(Z) to denote the
vector of all diagonal entries of Z. Let I be the identity matrix and 1 be the all-ones vector.
The operator || · || over the set of real matrices represents a generic matrix norm, for which
different choices are signified by a subscript and four choices are explored in this paper;
namely, for a M ∈ Rn×n, these norms are as follows:

1. Frobenious norm (or F-norm): ||M||F =
√

∑n
i=1 ∑n

j=1 m2
ij =

√
Tr(MTM);

2. W-norm: ||M||W = ||W 1
2 MW

1
2 ||F, where W ∈ Rn×n is a square matrix with positive

entries;
3. H-norm: ||M||H =

√
∑n

i=1 ∑n
j=1 hijm2

ij;

4. Chebyshev norm (or max norm): ||M||C = maxi,j(|mij|),
where mij is the (i, j) entry of M.

The PSDisation problem we consider in this paper is defined as follows. Let A ∈ Rn×n

be a symmetric matrix that is not PSD with diagonal entries all equal to 1. It represents
an empirical correlation matrix of n random variables Y1, . . . , Yn, with standard deviations
σY1 , . . . , σYn whose (i, j) entry is given by

aij = corr(Yi, Yj) =
cov(Yi, Yj)

σYi σYj

, if σYi σYj > 0.



Risks 2025, 13, 28 4 of 25

We aim to find the nearest PSD matrix X of the same form. The problem can be written
as follows.

min
X

||A − X||2 s.t. X ⪰ 0, diag(X) = 1. (1)

As we wish to find the nearest correlation matrix X to the empirical matrix A, the choice of
the matrix norm || · || determines how “nearest” is defined.

The F-norm (Van Loan and Golub 1983) is a trivial choice for defining how close two
matrices are and is widely used in most of the PSDisation literature. However, recent
studies have explored the use of different norms in order to meet more practical demands.
The W-norm is a weighted norm commonly used in numerical mathematics (Higham 2002)
that allows us to force some elements of X to be closer to the corresponding entries in
A. Setting W to the identity matrix will retrieve the F-norm. However, when applied to
actuarial science, an insurance company may be more interested in the H-norm (Milhaud
et al. 2018). The H-norm is similar to the F-norm but allows one to assign weights to M on
an element-by-element basis. Therefore, in the situation where one has prior knowledge
on the correlation matrix, the H-norm may be preferred. For example, when one is more
confident in some entries of the estimated correlation matrix A and wants to fix them, one
can allocate more weights on those entries so that a small change results in a huge penalty
when measuring the distance between matrices. The H-norm is equivalent to the F-norm
when H is an all-ones matrix. Finally, the Chebyshev norm specifies an element-wise ceiling
for the largest difference between the entries of X and A, which can be particularly useful
and more robust to outliers when mij is large.

It is worth mentioning that the choice of norms should be determined according to
specific applications and there is no guarantee which one would work best. Therefore, we
attempt to develop a more flexible algorithm that can be generalised to work with different
norm choices.

3. Related Work
This section summarises some most popular existing solutions on PSDisation, as well

as the shrinkage method to fix the ill-conditioned covariance matrix.
One of the early algorithms to tackle the PSDisation problem is the alternating pro-

jections method (APM) (Higham 2002). It finds the nearest PSD correlation matrix by
iterative projections onto two convex sets, the PSD matrices cone S , and the set of matrices
U with diagonal values all equal to one. The alternating projections method stated that by
repeatedly projecting A onto S and then onto U , we could finally obtain the nearest matrix
X on the intersection of S and U (Boyle and Dykstra 1986). Furthermore, to achieve the
convergence to the optimal solution, a correction needs to be made according to Dykstra
(1983). In general, the alternating projections algorithm converges linearly at best (Deutsch
and Hundal 1997) and can be applied under the F-norm as well as the W-norm. It shows
good potential on the H-norm if an efficient algorithm of projection onto S can be found.

Higham (2002) suggested another way to tackle this problem, that is, to formulate the
optimisation as a Semidefinite Programming (SDP), which can then be solved using any
powerful SDP solver. For the F-norm, the object ||A − X||2 is a second-order function of
X, so a transformation into the standard SDP primal form is needed before any general
SDP solver can be applied. According to Higham (2002), the problem can be written as a
standard SDP with (n2 + n + 2)2 variables and 1

2 n4 + 1
2 3n2 + n + 1 constraints. Although

the SDP problem can be further reformulated and simplified, to our knowledge, there is
still currently no SDP solver that is efficient enough to solve such an SDP easily.

Rebonato and Jäckel (2011) introduced a method to produce a feasible correlation
matrix near A based on decomposition of a valid correlation matrix by representing it
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using angular parameters on a multidimensional unit hypersphere. The constraints on
X are therefore automatically satisfied. Then, by solving an optimisation problem over
the parameters, we expect to recover a feasible X near A under a norm of our choice.
One advantage of the Hypersphere Decomposition Method (HDM) is that this algorithm
allows us to perform PSDisation with the H-norm, so we are able to weight each entry
with more flexibility. Furthermore, the computation is efficient and the converge speed
is fast on small matrices. However, according to Milhaud et al. (2018), the hypersphere
decomposition method may suffer from local optimum, making the solution less accurate.
Several side effects are discussed in their paper. For instance, when changing the order
of the input variables, the output of this method differs, which should not happen to any
proper PSDisation algorithms theoretically.

The Spectral Decomposition Method (SDM) (Rebonato and Jäckel 2011) is a slightly
rough approach but can give an acceptable solution even faster. The idea is to set all
negative eigenvalues to zero after performing a spectral decomposition of the initial matrix.
A rescaling is then carried out to ensure the resulting correlation matrix has diagonal
elements all equal to one. The procedure is extremely fast as it contains no iterations. The
solution found by the spectral decomposition method can be an approximation of the true
optimal of the PSDisation problem, or can be used as a starting point for other PSDisation
methods (Rebonato and Jäckel 2011). However, the result cannot be considered as accurate
and it lacks the flexibility to be adapt with different choice of norms.

Qi and Sun (2006) introduced a Newton-type algorithm to find the nearest correlation
matrix under the F-norm. It is designed to work with the F-norm as well as the W-norm
using the semismooth Newton method combined with the conjugate gradient solver. It
has a quadratic convergence rate, which is superior to the APM, and is effective on data
with thousands of dimensions. Further improvements in this method were suggested by
Borsdorf and Higham (2010). Qi and Sun (2011) extended their work to the H-norm case
based on an augmented Lagrangian Dual Approach (ALD) by avoiding computing the
projection onto the PSD cone under the H-norm. An upper bound or lower bound for each
entry of the correlation matrix can also be set.

Ledoit and Wolf (2004) proposed a shrinkage method for estimating the covariance
matrix in order to fix the ill-conditioned sample covariance matrix calculated from observa-
tions in high-dimensional settings, which is likely to occur when the number of samples
available is smaller than the number of variables. It achieves higher accuracy and better
stability by shrinking the sample covariance matrix towards a simple structured target
matrix. This significantly reduces the variance of the estimator without introducing too
much bias. The degree of shrinkage is called shrinkage intensity and can be optimised to
minimise the MSE in a closed form. The shrinkage method has been particularly useful in
finance applications such as portfolio optimisation or risk management. It is also commonly
adopted in statistics or and machine learning fields such as genomics and bioinformatic
analysis. Higham et al. (2016) developed a shrinking method using a similar idea for
restoring positive semidefiniteness. It was designed to handle the correlation matrix, where
one wants to keep some diagonal blocks fixed. Instead of minimising MSE using the
observation data, it uses a bisection method to find the optimal solution to the PSDisation
problem that lies on the path between the initial non-PSD matrix A and a target PSD matrix.
The bisection method enjoys great simplicity and requires few iterations before achieving a
good tolerance. However, the outcome of this method depends heavily on the choice of the
target matrix. Indeed, the target matrix can be chosen as any PSD matrix that is near to A.
Therefore, the shrinking method is not considered suitable for finding the global optimal of
the PSDisation problem. Cutajar et al. (2017) explored the shrinking method as a way to im-
prove the results of the alternating projections method. Furthermore, any block-structured
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constraints that are linear can be applied in this method. We will include the more general
and widely used shrinkage method by Ledoit and Wolf (2004) in our experiments to see
how our PSDisation algorithms and other state-of-the-art methods perform on real data
applications in finance and machine learning comparing with this technique.

Overall, most algorithms may become computationally expensive when additional
constraints are introduced to the problem. To the best of our knowledge, there is currently
no algorithm that is able to solve the general PSDisation problem under the Chebyshev
norm efficiently.

4. Proposed PSDisation Methods
In this section, we propose two methods to approximate the nearest correlation matrix.

Currently most PSDisation methods are designed specifically for the F-norm. Some of them
can be adapted to work with the H-norm with the cost of a more complex formulation or a
longer computational time. We want to produce an algorithm that is more flexible with the
objective and the constraints and more efficient than traditional SDP solvers. Therefore we
propose our first proposed method, which involves iteratively solving a series of linearly
constrained quadratic optimisations or linear optimisations. We obtain an approximation of
the optimal value of the PSDisation problem by directly minimising the objective function
at each iteration, where we have the flexibility to easily choose different norms to work with.
The other approach we propose is based on iteratively taking a step along the gradient
to reduce the objective function and then projecting the resulting matrix onto the PSD
matrices set with diagonal one according to the spectral decomposition method (Rebonato
and Jäckel 2011), which is designed for solving the PSDisation problem with respect to the
F-norm. Experiments show that our gradient descent approach enjoys good efficiency and
robustness. MATLAB implements for both algorithms are made available online.

4.1. Iterative Quadratic/Linear Programming

Consider the PSDisation problem in (1), which requires X to be PSD in its constraints.
The PSD constraint can be reduced; therefore, the optimisation problem is transferred into
quadratic or linear optimisation problems with linear constraints.

A square matrix X ∈ Rn×n is called diagonally dominant if

|xii| ≥ ∑
j ̸=i

|xij| ∀ 1 ≤ i ≤ n,

where xij is the (i, j) entry of X. It is well known that a symmetric diagonally dominant
matrix with non-negative diagonal entries is PSD, which makes up a rich subset of PSD
matrices. Therefore, we could approximate the optimisation problem (1) stated above by
solving convex optimisation problems of the following form in an iterative manner,

min
X,Q

||A − X||2

s.t. diag(X) = 1,

X = UT
h QUh,

Q = QT ,

Q is diagonally dominant with non-negative diagonal.

(2)

Note that U1 = I and Uh = Chol(X∗
h−1) for h ≥ 2, where X∗

h−1 is the optimal solution from
the previous optimisation. U = Chol(X) represents the Cholesky decomposition of X such
that U is an upper triangular matrix satisfying X = UTU.
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Lemma 1. Problem (2) gives an upper bound of Problem (1).

Proof. The matrix Q is guaranteed to be PSD in (2) since it is symmetric and diagonally
dominant with non-negative diagonal entries; therefore, X = UT

h QUh is also PSD. Prob-
lem (2) minimises the objective function over a subset of PSD matrices; therefore, Lemma 1
holds.

Lemma 2. Problem (2) is feasible for iteration h (h ≥ 2) if it is feasible for iteration h − 1.

Proof. This proof is trivial as X∗
h−1 = UT

h IUh and the identity matrix I is symmetric and
diagonally dominant. Therefore, the solution of problem in iteration h − 1 is feasible for
iteration h.

Let us denote the objective function by f (·):

f (X) = ||A − X||2.

Lemmas 1 and 2 indicate that an optimal solution always exists for (2) as long as the
problem in the first problem is feasible and the optimal solution in each iteration is at least
as good as that from the previous iteration, i.e.,

f (X∗
h) ≤ f (X∗

h−1) ∀h ≥ 2.

Given that the problems are feasible and the optimal solution is PSD (which is true
when numerical computation is concerned), it can be further shown that the optimal
value of Problem (2) decreases strictly after each iteration unless it reaches the optimal
value of Problem (1) (Ahmadi and Hall 2017). In this case, the optimal objective value in
each iteration in Problem (2) will finally converge as it is monotonically decreasing and
bounded below by the true optimal value of Problem (1). In our numerical experiments,
the optimal after each iteration always finally converges to the true optimal and strong
empirical evidence shows a fast convergence. Our proposed method is shown in Figure 1
and Algorithm 1 below.

Let us take the F-norm as an example. Note that ||A − X||2F = xTx − 2aTx + aTa
where x = vec(X) and a = vec(A) and vec is the vectorisation function that transforms a
matrix into a column vector. We further rewrite the objective function and the constraint
that Q is diagonally dominant with non-negative diagonal by adding slack variables R into
the optimisation,

min
X,Q,R

1
2

xTx − aTx

s.t. diag(X) = 1,

qii ≥ ∑
j ̸=i

rij, 1 ≤ i ≤ n

− rij ≤ qij ≤ rij, 1 ≤ i ̸= j ≤ n

X = UT
h QUh,

Q = QT ,

where qij and rij are the (i, j) entries of Q and R, respectively. Now, all constraints become
linear and we obtain a series of iterative QPs. Each QP has 3n2 variables and 4n2 − n
constraints, which can be solved efficiently.
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Start

X0 = I

Uh = Chol(Xh−1)

solve QP/LP for Xh

Xh Converge

X = Xh

h = h + 1

Output X

Stop

yes

no

Figure 1. Flowchart of Algorithm 1: An iterative quadratic/linear programming algorithm to solve
PSDisation under some matrix norm.

Algorithm 1: An iterative quadratic/linear programming algorithm to solve
PSDisation under some matrix norm.

X0 = I;
while not converged do

Uh = Chol(Xh−1);
find Xh by solving

min
Xh ,Qh

||A − Xh||2

s.t. diag(Xh) = 1,

Xh = UT
h QhUh,

Qh = QT
h ,

Qh is diagonally dominant with non-negative diagonal;

h = h + 1;
end
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Similarly, if the H-norm is applied in the objective function, the iterative QPs can be
written as

min
X,Q,R

1
2

xT Diag(h)x − aT Diag(h)x

s.t. diag(X) = 1,

qii ≥ ∑
j ̸=i

rij, 1 ≤ i ≤ n

− rij ≤ qij ≤ rij, 1 ≤ i ̸= j ≤ n

X = UT
h QUh,

Q = QT .

where h = vec(H) and Diag(h) is an n2 × n2 diagonal matrix with the elements of h
on the main diagonal. This general formulation makes our method more flexible when
an insurance company wants to assign weight to each entry of the correlation matrix,
exploiting prior knowledge of the data.

Next, we consider the situation where we optimise with respect to the Chebyshev
norm. According to Cutajar et al. (2017), PSDisation over the F-norm is likely to result in
a correlation matrix X in which some entries differ significantly from the initial matrix A,
while other entries have relatively smaller deviations, giving the minimum F-norm optimal.
However, this is not preferred by some insurance companies as they aim to minimise the
maximum discrepancy between corresponding entries from the valid correlation matrix
X and the initial matrix A. In this case, minimising over the Chebyshev norm becomes
an alternative choice. With our iterative approximating method, this can be obtained by
solving a series of LPs of the following form:

min
X,Q,R,t

t

s.t. − t ≤ aij − xij ≤ t, 1 ≤ i ̸= j ≤ n

diag(X) = 1,

qii ≥ ∑
j ̸=i

rij, 1 ≤ i ≤ n

− rij ≤ qij ≤ rij, 1 ≤ i ̸= j ≤ n

X = UT
h QUh,

Q = QT .

Note that in this formulation, minimising ||A − X||2C can be equivalently accomplished by
minimising ||A − X||C; thus, only LPs instead of QPs need to be solved.

Experiments show that our iterative algorithm proposed for approximating optimal
solutions for PSDisation problems offers great flexibility under different norms while
maintaining a good accuracy. Details are offered in Section 5.

4.2. Gradient Descent

Next we propose our second algorithm, where we will focus on working under the
F-norm only as there is currently no known method that could project X onto the PSD set
under the H-norm. This method is therefore less flexible in the choice of norms. However,
it works more efficiently and provides more steady results on real data with noise.

Consider the objective in (1) and note that the gradient of its objective function under
the F-norm is ∂

∂X ||A − X||F = X−A
||A−X||F

. To project a matrix X onto the PSD cone Sn
+, first

perform the eigendecomposition such that X = QΛQ−1, where Q ∈ Rn×n is the square
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matrix whose columns are eigenvectors of X, and Λ = Diag(λ) is the diagonal matrix whose
diagonal elements are the corresponding eigenvalues λi of X. Define Λ+ = Diag(λ+),
where λ+i = max(λi, 0). Next, in order to ensure that the resulting matrix has diagonal 1,
we calculate the scaling matrix T = Diag(t), where the weighting parameter ti is given by

ti =

(
n

∑
m=1

q2
imλ+m

)−1/2

.

Then, X+ = TQΛ+Q−1T is the projection of X onto the cone of PSD matrices.
Our proposed method is shown in Figure 2 and Algorithm 2 below. X is updated

iteratively by taking a gradient step followed by a projection onto the PSD cone until
converged. According to our experiments, the gradient step γ can be initialised as a large
value to speed up the convergence, and it will quickly decrease during iterations.

Start

X0 = I

Xi+1 = Xi − γGi

Xi+1 = PS+(Xi+1)

Ci+1 = ||A − Xi+1||F

Ci+1 < Ci

γ = γ ∗ (1 + δ) γ = γ/2

Xi Converge

X = Xi+1

i = i + 1

Output X

Stop

yes no

yes

no

Figure 2. Flowchart of Algorithm 2: The gradient descent algorithm for PSDisation under the F-norm.
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Algorithm 2: The gradient descent algorithm for PSDisation under the F-norm

X0 = I;
while not converged do

Xi+1 = Xi − γGi;
Xi+1 = PS+(Xi+1);
Ci+1 = ||A − Xi+1||F;
if Ci+1 < Ci then

γ = γ ∗ (1 + δ);
else

γ = γ/2;
end
i = i + 1;

end

5. Experimental Results on Simulated Data
To illustrate the robustness and flexibility of our algorithms in different settings, we

designed a series of tests based on both simulated and real datasets. In this section, we ex-
plain and show the experimental results on simulated data and compare our methods with
the state-of-the-art methods. In the next section, we give examples of some practical appli-
cations. All experiments were run using MATLAB R2023a Prerelease (9.14.0.2137306) with
Financial Toolbox v6.5, Optimization Toolbox v9.5, and Statistics and Machine Learning
Toolbox v12.5, and Gurobi Optimizer 10.0.1.

5.1. Experiments on Iterative Quadratic/Linear Programming Algorithm with Simulated Data

To test our iterative quadratic/linear programming algorithm, we randomly generate
the initial matrix A of different dimensions (i.e., with dimensions of 5, 10, 25, 50, and 75)
that is not PSD. For A generated from each dimension settings, we solve for the nearest
valid correlation matrix X using our method under the F-norm and the Chebyshev norm,
which lead to iterative quadratic programming (IQP) and iterative linear programming
(ILP), respectively. The stopping criteria is set to achieve a solution with error less than
0.1% in each iteration. We calculate the Frobenius distance and the Chebyshev distance
between X and A from the IQP and ILP and compare with those given by the APM, the
Newton method and the SDM, which are all designed for minimising the F-norm. The
APM and the Newton method work very fast and can both achieve solutions with accuracy
tolerance far lower than 0.0001; therefore, the experiment settings have no big impact on
testing results. We just use the default settings by the authors here (Higham 2002; Qi and
Sun 2006). The results are shown in Tables 1 and 2 for the F-norm and the Chebyshev norm,
respectively. The best performances in each group are shown in bold.

Table 1. The F-norm ||A − X||F obtained from different algorithms on different dimensions of the
initial matrix A. (Best performances are marked in bold).

Dimension of A 5 10 25 50 75

Newton 0.3420 0.8341 5.0057 13.0331 20.6889

APM 0.3420 0.8341 5.0057 13.0331 20.6889

SDM 0.3537 0.8602 5.1716 13.5887 21.5025

IQP 0.3420 0.8352 5.0245 13.2406 21.2224

ILP 0.3819 1.0815 7.6554 15.9193 24.9860
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Table 2. The Chebyshev norm ||A − X||C obtained from different algorithms on different dimensions
of the initial matrix A. (Best performances are marked in bold).

Dimension of A 5 10 25 50 75

Newton 0.1313 0.2128 0.6473 0.7605 0.8313

APM 0.1313 0.2128 0.6473 0.7605 0.8313

SDM 0.1416 0.2265 0.6225 0.7278 0.7512

IQP 0.1304 0.2131 0.6245 0.7314 0.8397

ILP 0.0854 0.1375 0.4293 0.4310 0.4805

To give a clearer view on how these algorithms compare with each other, we use
the Frobenius distance and the Chebyshev distance obtained via the Newton method
as a benchmark and calculate the relative change of the two distances obtained from
other algorithms in percentage. For example, the relative change of the Frobenius dis-
tance obtained from the IQP algorithm compared to the Newton method is given by
||A−XIQP||F−||A−XNewton||F

||A−XNewton||F
× 100%. In Tables 3 and 4, a negative percentage means that the

optimal solution obtained from this method is better than that from the Newton method in
the corresponding norm, while a positive percentage represents a worse result.

Table 3. Relative change in the F-norm ||A − X||F compared with the Newton method as a percentage.
(Best performances are marked in bold).

Dimension of A 5 10 25 50 75

Newton 0 0 0 0 0

APM 0 0 0 0 0

SDM 3.43 3.13 3.31 4.26 3.93

IQP 0.02 0.14 0.3763 1.59 2.58

ILP 11.67 29.66 52.93 22.15 20.77

Table 4. Relative change in the Chebyshev norm ||A − X||C compared with the Newton method as a
percentage. (Best performances are marked in bold).

Dimension of A 5 10 25 50 75

Newton 0 0 0 0 0

APM 0 0 0 0 0

SDM 7.79 6.45 −3.84 −4.30 −9.64

IQP −0.70 0.16 −3.52 −3.82 1.01

ILP −34.98 −35.37 −33.68 −43.33 −42.21

Furthermore, we report the computing time of each run in Table 5. The lowest running
times are shown in bold.

It can be easily concluded from Table 3 (and also see Table 5 for efficiency) that both the
APM and the Newton method give solutions with the minimum Frobenius distance, which
they aim to minimise, while the Newton method works slightly faster in high dimensions.
(Further experiments show that the ALD approach also gives the same optimal solutions,
which we omit in the above tables.) The SDM, on the other hand, is not as accurate as the
Newton method and the APM but is the fastest algorithm overall as it does not require
iterations. The IQP method gives solutions slightly worse than the Newton method in terms
of the F-norm, but the difference is not significant, especially in low dimensions. These
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results from the IQP can be improved by setting a lower tolerance and hence increasing
the number of iterations but will cost more time to converge. The ILP method is designed
to minimise with respect to the Chebyshev norm and therefore does not give solid results
in the F-norm as other algorithms mentioned above. However, the nearest correlation
matrix generated by the ILP method has a much lower Chebyshev distance than by the
Newton method which intends to minimise the F-norm (see Table 4). This result indicates
that minimising over the Chebyshev norm can indeed be a good alternative for PSDisation
since considering the F-norm will potentially result in huge deviations in some entries
of X, which are not favoured by some insurance companies (Cutajar et al. 2017). It is
worth mentioning that both the IQP and ILP methods take a long time to run when the
dimension of A is high, this could potentially be improved by optimising the QP and LP
solvers in the future work. For example, possible improvements could be to carefully track
the optimisations and keep an active set to significantly reduce the number of constraints
or to manually set a starting point for each optimisation based on the solution from the
previous iteration.

Table 5. Running time of different algorithms on different dimensions of the initial matrix A (in
seconds). (Best performances are marked in bold).

Dimension of A 5 10 25 50 75

Newton 0.0024 0.0038 0.0058 0.0062 0.0350

APM 0.0005 0.0010 0.0068 0.0281 0.0615

SDM 0.0001 0.0001 0.0003 0.0008 0.0025

IQP 0.0315 0.1260 3.84 546 8180

ILP 0.0206 0.0937 2.35 719 5661

To illustrate the flexibility of our IQP algorithm and its potential to achieve good
accuracy, our next step is to test when weights are assigned to each coefficient, i.e., to
work under the H-norm. Similarly as before, we generate the initial matrix A of different
dimensions. This time, we apply the ALD method and our IQP algorithm to find the
nearest correlation matrix to A under the F-norm and the H-norm, respectively, where
each entry of the weight matrix H is randomly generated from a uniform distribution. We
also test these methods on PSDisation problems with constraints; that is, we let xij = 0 if
|aij| < 0.1, and we also request xij > 0 if aij > 0.5 and xij < 0 if aij < −0.5. Table 6 shows
the optimal values under different settings.

It can be concluded that both ALD and IQP work effectively on constrained or un-
constrained PSDisation problems based on the F-norm or the H-norm. Our IQP algorithm
runs slowly when dimension is high and produces slightly worse results than ALD, but the
optimal values are still competitive. For example, when working under the F-norm with
dimension 10, IQP gives optimal solutions of 2.5060 and 2.5411 in the unconstrained and
constrained PSDisation tasks, respectively, which are close to those given by ALD, 2.5032
and 2.5401. On the other hand, IQP gives slightly better results than ALD in constrained
problems with the H-norm when the dimension is low. For example, in the constrained task
under the H-norm with dimension 10, the optimal solution given by IQP is 1.6501, which is
better than 1.6631 by ALD. In addition, our iterative algorithm shows more flexibility when
problem settings are combined with the H-norm (IQP) and the Chebyshev norm (ILQ),
where the ALD method becomes infeasible.
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Table 6. Optimal solution by ALD and IQP for constrained and unconstrained PSDisation problems
under the F-norm and the H-norm on different dimensions of the initial matrix A. (Best performances
are marked in bold).

Dimension of A 10 20 40 70

# of equality constraints (=0) 4 19 74 263

# of inequality constraints (<0/>0) 25 92 367 1208

Optimal solution

Unconstrained

F-norm
ALD 2.5032 6.2625 14.8958 30.2514

IQP 2.5060 6.2789 15.1565 30.7230

H-norm
ALD 1.6149 3.9136 10.0493 20.3044

IQP 1.6188 3.9360 10.2596 20.8868

Constrained

F-norm
ALD 2.5401 6.4399 15.2334 30.8318

IQP 2.5411 6.4562 15.3771 31.2218

H-norm
ALD 1.6631 4.0789 10.4666 20.9562

IQP 1.6501 4.0707 10.4355 21.1677

5.2. Experiments on Gradient Descent Method with Simulated Data

In order to test the performance of the gradient descent method on PSDisation prob-
lems, we compare ALD, IQP, GD, and SDM on unconstrained problems of different dimen-
sions under the F-norm. SDM is a trivial method that projects the matrix onto the PSD cone
directly and can therefore be considered as a baseline for this experiment. Table 7 compares
the convergence times and optimal solutions of all four algorithms.

Table 7. Convergence time and optimal solution by ALD, IQP, GD, and SDM for unconstrained PSDi-
sation problems under the F-norm on different dimensions of the initial matrix A. (Best performances
are marked in bold).

Dimension of A 10 20 40 70 100 200

Convergence time
(unconstrained, F-norm)

ALD 0.0029 s 0.0027 s 0.0120 s 0.0076 s 0.0163 s 0.0364 s

IQP 0.17 s 1.52 s 2 min 19 s 2 h 29 min - -

GD 0.03 s 0.06 s 0.16 s 0.07 s 0.08 s 0.26 s

SDM 0.0003 s 0.0004 s 0.0007 s 0.0011 s 0.0017 s 0.0047 s

Optimal solution
(unconstrained, F-norm)

ALD 2.5032 6.2625 14.8958 30.2514 44.9199 96.3681

IQP 2.5060 6.2789 15.1565 30.7230 - -

GD 2.5316 6.2754 15.0992 30.8536 46.0570 98.7712

SDM 2.5667 6.5599 15.5756 31.3282 46.5758 99.3325

As shown in Table 7, GD provides comparable results to ALD. Though slightly slower
than ALD, GD works much more efficient than general SDP solvers. Furthermore, we
want to illustrate the advantages of the Gradient Descent (GD) method over the ALD
algorithm. Consider the situation where in practice, the correlation matrices obtained by
some insurance companies are usually inaccurate. We expect our PSDisation algorithm to
work better when error exists in the input matrix according to the testing results.

In the following experiment, we randomly generate a correlation matrix A that is not
PSD. Noise from normal distribution is then added to each non-diagonal entry of A and
A′ represents the estimated correlation matrix. We use GD, ALD, and IQP to calculate
the nearest PSD correlation matrix X to A′ under the F-norm and compare ||A − X||F, the
distance between X, and the actual initial matrix A.

Table 8 shows the average results of the three algorithms tested on 100 different initial
matrices of dimension 40 with noise of standard deviation 0.2. It can be concluded that



Risks 2025, 13, 28 15 of 25

while GD provides slightly inaccurate solutions to the PSDisation optimisation problem,
it is less influenced by noise and thus leads to better results than ALD overall. In all 100
testing examples, GD gives matrix X, which is closer to the initial matrix A. In practice, GD
can be more resilient to noise, with a larger standard deviation than ALD. Details of the
experimental results are given in Figure 3.

Table 8. Average Frobenius distance from X to A and A′ by different algorithms over 100 tests in
experiment settings. (Best performances are marked in bold).

||A′ − X||F ||A − X||F
ALD 4.43 5.70

IQP 4.45 5.72

GD 4.60 5.49

Figure 3 plots the percentages of the best performance each PSDisation algorithm
achieves with different dimensions of the correlation matrix and different standard devia-
tions of noise. The best performance is decided by giving the shortest distance between X
and A, where X is calculated by applying different PSDisation algorithms on the noised
matrix A′. The tests are repeated 100 times for matrices of different dimensions and noise
of different levels.

Figure 3. Percentage of best performances by ALD, GD, and IQP versus the standard deviation of the
noise in PSDisation tests with different dimensions of the initial matrix A.

It can be concluded that despite the fact that ALD performs best on accurate initial
matrices (when noise does not exist), IQP and GD can be good alternatives when the input
comes with noise, especially for matrices with large dimension. IQP works well when the
noise is small; e.g., in 67% of our tests, IQP gives the smallest ||A − X||F for matrices with
dimension 30 and noise with standard deviation 0.02. When the noise becomes slightly
larger (for a standard deviation between 0.1 and 0.2), GD performs significantly better.

5.3. Experiments with Simulated Data Rounded to Multiples of 25%

We present results of comparisons between ALD, IQP, GD, and SDM on PSDisation
problems under the F-norm in practical settings where entries of the correlation matrix
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are rounded. Without knowing the actual correlations, the way the European Commis-
sion creates the correlation matrix for the solvency capital requirement insurance models
is by picking the best possible choices for the correlation matrix entries from the set
{−75%, −50%, −25%, 0%, 25%, 50%, 75%}. The correlation matrix A estimated this
way is usually not PSD, but certain entries of A can be expected to be positive or neg-
ative as actuaries expect some risks to be positively or negatively correlated based on
domain knowledge.

Inspired by the above practical scenario, our experiment is designed as follows. First,
a PSD matrix At is generated, which we assume is the true correlation matrix. Then
250 observations are generated from the t-distribution with three degrees of freedom and
are used to calculate the sample correlation matrix As. We obtain our estimated correlation
matrix A′

s by rounding each entry of the sample correlation matrix As to 25%. We also
round the true correlation matrix At to 25% to obtain A′

t. Now, A′
s and A′

t are not PSD. We
perform an unconstrained PSDisation on A′

s under the F-norm, and the solution is denoted
as X. We also test constrained PSDisation by ALD and IQP. The constraints are set so that
the entries of X have the same signs as As, which we assume are available to actuaries as
domain knowledge.

The tests are conducted repeatedly on matrices of dimensions 10, 20, 30, and 40.
The unconstrained PSDisations are conducted using ALD, IQP, GD, and SDM. In our
experiment settings, only around 85% to 89% of the non-diagonal entries of X have the
same sign as As. In the constrined settings, both ALD(con) and QP(con) can 100% satisfy
the same sign constraints, either strictly or to some small tolerance. The results are shown
in Tables 9 and 10.

It can be easily concluded from Table 9 that ALD is the best in terms of minimising the
objective, ||A′

s − X||F, while IQP could produce very similar results. On the other hand, GD
gives slightly worse solutions than ALD and IQP, but still better than the baseline method
SDM. Comparing ||As − X||F, unsurprisingly, we see that constrained PSDisation shows its
advantages if prior information is available. While ALD allows restrictions on upper or
lower bounds of entries of X, IQP could potentially allow for any linear constraints and
thus can be more flexible. Nonlinear constraints can also be set if efficiency is not the main
focus. For example, we could restrict the entries of X to be multiples of 25%. This leads to
iterative mixed-integer programming, which is beyond the scope of this paper.

Table 9. Average Frobenius distance from X to A′
s and A′

s by different algorithms over 500 tests in
experiment settings. (Best performances are marked in bold).

n 10 20 30 40

||A′
s − X||F ALD 0.1387 0.3940 0.6991 1.0320

IQP 0.1388 0.3945 0.7003 1.0347

GD 0.1453 0.4198 0.7512 1.1252

SDM 0.1462 0.4247 0.7633 1.1479

ALD(con) 0.1421 0.4081 0.7262 1.0735

IQP(con) 0.1421 0.4086 0.7276 1.0760

||As − X||F ALD 0.6429 1.2817 1.8862 2.4612

IQP 0.6429 1.2820 1.8870 2.4633

GD 0.6433 1.2837 1.8910 2.4796

SDM 0.6440 1.2887 1.9019 2.5017

ALD(con) 0.6351 1.2499 1.8217 2.3611

IQP(con) 0.6350 1.2501 1.8223 2.3624
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Table 10. Average Frobenius distance from X to A′
t and A′

t by different algorithms over 500 tests in
experiment settings. (Best performances are marked in bold).

n 10 20 30 40

||A′
t − X||F ALD 1.6960 3.5396 5.2255 7.0881

IQP 1.6960 3.5398 5.2261 7.0896

GD 1.6851 3.4839 5.1133 6.8849

SDM 1.6814 3.4640 5.0635 6.7970

ALD(con) 1.6923 3.5240 5.1953 7.0412

IQP(con) 1.6923 3.5240 5.1959 7.0425

||At − X||F ALD 1.5294 3.2316 4.7367 6.4601

IQP 1.5294 3.2318 4.7373 6.4617

GD 1.5169 3.1710 4.6136 6.2364

SDM 1.5128 3.1499 4.5599 6.1427

ALD(con) 1.5252 3.2135 4.7015 6.4052

IQP(con) 1.5252 3.2138 4.7022 6.4067

On the other hand, comparing ||A′
t − X||F and ||At − X||F in Table 10, SDM and GD

constantly give PSD matrix X, which is closer to the true correlation matrix At. Therefore,
we draw the conclusion that although relatively inaccurate in minimising the objective
function, ||A′

s − X||F, in practice, SDM and GD are more resilient to noise generated in real
data, which coincides with our observations in the previous section.

6. Experiments Results on Real Datasets
The potential of our two proposed PSDisation methods has been illustrated with

synthetic/simulated data. In this section, we test them with real-life data with applications
in (financial) portfolio construction and dimension (data) reduction. We compare our
IQP/ILP and GD with other state-of-the-art PSDisation algorithms. The shrinkage method
is also included as it is widely used in finance, econometrics, and statistics to tackle the
ill-conditioned or non-PSD matrix problem.

6.1. Experiments with Assets Daily Return Data

We now present an example of PSDisation applications with real-life financial data
that consist of 50 public companies from the NASDAQ stock market that started to be listed
in this marker at different points in time, i.e., assets have different observation periods
that depend on the first trading day of each asset. That is, we use the daily asset returns
since 2010 to calculate the pairwise correlation. This is useful when building a portfolio
and calculating the portfolio’s (aggregate) risk position measured through risk measures
such as Value at Risk (VaR) and Conditional Value at Risk (CVaR). However, the resulting
correlation matrix A is non-PSD and has negative eigenvalues since (i) missing values exist
for each stock at certain periods of time, and (ii) each asset pair has different overlapping
observation period. A solution to this issue is to use PSDisation algorithms as portfolio
construction means, computing weights for each asset, and such computation requires
PSD empirical correlation matrix. Alternatively, we can use some imputation techniques
to replace the missing data with substituted values, but this does not guarantee a PSD
empirical covariance matrix due to (ii). Imputation techniques are statistically based that
require no domain knowledge, or one may rely on imputation methodologies that are
specific to financial applications; e.g., one may replace the missing returns with risk-free
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returns, which is the rate of the 10-year rated government Treasury note. Such imputations
are the last resort solution with an unknowable impact on the application in hand.

We perform PSDisation on the calculated correlation matrix A to obtain X. The testing
algorithms include IQP, ILP, GD, ALD, and SDM. The shrinkage method (Ledoit and
Wolf 2004) is not designed to work with missing data. Therefore, we impute the data
before applying the shrinkage method. We use two methods to fill the missing entries,
namely, replacing them with mean observed values of each variable and filling using the
multivariate imputation by chained equations method (MICE). Replacing with mean value
is a simple approach to handling missing data but may not be appropriate for estimating
correlations when there are too many missing entries. MICE uses a sequence of conditional
models for imputation such that each variable is modelled conditionally on other variables.
The shrinkage method is then used to estimate the correlation matrix X, and we call them
Shrinkage-Mean and Shrinkage-MICE for the two different imputation strategies. We
calculate the Frobenius distance and the Chebyshev distance between A and X, and the
results are shown in Table 11.

Table 11. Frobenius distance and Chebyshev distance between A and X by different algorithms on
NASDAQ stocks return correlation matrix. (Best performances are marked in bold).

||A − X||F ||A − X||C
ILP 1.0836 0.0236

IQP 0.3765 0.0872

ALD 0.3764 0.0886

GD 0.3958 0.0836

SDM 0.4085 0.0931

Shrinkage-Mean 2.5625 0.4025

Shrinkage-MICE 2.3884 0.4367

The same experiment was also carried out with mixed choices of top 25 SP500 compa-
nies and 25 NASDAQ stocks, where the correlation matrix calculated is invalid. The results
are shown in Table 12.

Table 12. Frobenius distance and Chebyshev distance between A and X by different algorithms on a
mixture of NASDAQ and SP500 stocks return correlation matrix. (Best performances are marked in bold).

||A − X||F ||A − X||C
ILP 0.5605 0.0121

IQP 0.2269 0.0542

ALD 0.2268 0.0547

GD 0.2488 0.0602

SDM 0.2534 0.0620

Shrinkage-Mean 2.4080 0.3935

Shrinkage-MICE 1.8739 0.3142

It can be concluded from Tables 11 and 12 that the optimal minimum Frobenius
distance solution by our IQP method is very close to the state-of-the-art ALD method, while
maintaining an even lower Chebyshev distance. This ensures that the maximum deviation
of correlation for each pair of stocks by IQP is smaller than that by ALD. We also noticed
that in this real financial data experiment, the speed of convergence of IQP is faster, and
the optimal solution is closer to ALD compared with those in previous simulated data,
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providing evidence that IQP is potentially suitable for dealing with real dataset. In addition,
GD performs slightly better than the baseline method SDM in this stocks data experiment
in terms of both the F-norm and the Chebyshev norm. In Table 11, GD achieves an even
better Chebyshev norm with NASDAQ stocks than ALD, IQP, and SDM, although this
is not guaranteed in all experimental settings. ILP gives a much lower Chebyshev norm
than other methods as expected, since it is designed to do so. The shrinkage method is
not designed to minimise any of the norms and thus does give comparable results under
these criteria. However, it aims to give a more stable and well-conditioned estimate of the
correlation matrix. We now evaluate how the above methods perform in the application of
portfolio optimisation.

We divide the above assets return data into two parts. Data since January 2010 until
June 2021 serve as historical observations from which to estimate the correlation matrix
using either PSDisation algorithms or the shrinkage method after imputation. We then build
a minimum variance portfolio with the correlation matrix from each method and test how it
performs in the following 20 months. The annualised average return, annualised standard
deviation, and the Sharpe ratio for the NASDAQ stock portfolio and the mixed portfolio
are shown in Tables 13 and 14. An equal weight portfolio is provided as a benchmark.

Table 13. Annualised average return, annualised standard deviation, and Sharpe ratio of NASDAQ
stocks minimum variance portfolios based on correlation matrices estimated using different methods.
(Best performances are marked in bold).

Method Average Return (%) Standard Deviation (%) Sharpe Ratio

ALD −15.6085 19.7047 −0.7921

GD −14.7107 19.3380 −0.7607

ILP −13.6843 20.6439 −0.6629

IQP −15.6040 19.7084 −0.7917

SDM −14.6754 19.3006 −0.7604

Shrinkage-Mean −11.5543 18.0076 −0.6416

Shrinkage-MICE −12.9444 18.7709 −0.6896

Equal weight −18.9210 31.2105 −0.6062

Table 14. Annualised average return, annualised standard deviation, and Sharpe ratio of a mixture of
NASDAQ and SP500 stocks minimum variance portfolios based on correlation matrices estimated
using different methods. (Best performances are marked in bold).

Method Average Return (%) Standard Deviation (%) Sharpe Ratio

ALD 6.5146 15.1593 0.4297

GD 6.5242 15.1410 0.4309

ILP 7.0063 15.2558 0.4593

IQP 6.5072 15.1598 0.4292

SDM 6.5160 15.1395 0.4304

Shrinkage-Mean 3.4394 15.1660 0.2268

Shrinkage-MICE 6.1097 15.3055 0.3992

Equal weight −2.6196 24.7886 −0.1057

Judging from annualised standard deviation, we see that all minimum variance port-
folios have much lower volatility compared to the equal weight portfolio. In the NASDAQ
portfolio (Table 13), the portfolios built with the shrinkage method achieve both higher
annualised return and lower standard deviation. Portfolios with GD and SDM also have
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comparable results. However, since the annualised return is negative, it is not easy to
determine which is the best. In the mixed portfolio (Table 14), SD achieves the lowest
standard deviation, while the portfolio with ILP gives the best return and Sharpe ratio. We
would like to point out that the shrinkage method only works without missing values in the
data. Therefore, different data imputation methods can influence its performance. Table 14
gives a good example of this where Shrinkage-Mean and Shrinkage-MICE portfolios show
a significant difference in their returns. Another note to make is that in this experiment, all
portfolios are built with correlation matrices estimated using historical data and are then
fixed for 20 months. The results might be different if the correlation matrices are estimated
based on moving windows and the portfolios are updated over time.

6.2. Experiments with Machine Learning Data for Applications in PCA

Principal Component Analysis (PCA) (Pearson 1901) is a popular statistical tool to
reduce the dimension of the dataset while maintaining as much information as possible
from the data, which helps visualising the data or performing further actions in different
fields of studies. The covariance matrix of the features is calculated before it turns into an
eigenvalue problem (Jolliffe 2002). A standardisation of the data is usually needed when the
features are in different scales; or alternatively, the correlation matrix can be used instead
of the covariance matrix. If missing values are present in the dataset, a standard solution is
to delete all instances that contain missing values and then calculate the correlation matrix.
However, ignoring such instances means that less information can be used from the whole
dataset, which may lead to a decrease in the quality of the PCA. We seek to use as much
information as possible from the dataset by calculating the correlation between attributes
in a pairwise manner. This may cause the resulting correlation matrix to be non-PSD;
therefore, a PSDisation process is needed.

We use the wine data available from the UCI Machine Learning Repository (Dua
and Graff 2017) as an example to show the advantages of using PSDisation on pairwisely
calculated correlation matrix. The data consist of 13 attributes of chemical analysis of
wines from different cultivars in Italy. The target is categorical with three classes. The
features are in different scales so it makes sense to use the correlation matrix in PCA.
We first drop 20% of the values from the dataset randomly so that it has missing values.
We calculate the pairwised correlation matrix which is non-PSD and thus invalid. Then,
PSDisation is performed on the invalid correlation matrix, after which eigenvectors are
calculated to transfer the standardised data with missing values. The variance of each
principal component of the transformed data is reported in Table 15. We use IQP algorithm
for PSDisation in this example. We also perform PCA according to the correlation matrix
calculated by omitting all instances that have missing values. Figure 4 shows the cumulative
sum of the variance for each principal component of the transformed data by different
methods, where all PCA stands for PCA performed with all instances with missing values
omitted, and pairwise PCA stands for PCA using the pairwise correlation matrix with
PSDisation. Since PCA aims to capture as large a variance in the data via the top several
principal components as possible, a curve that increases faster within the first several
principal components indicates a better PCA result.

Table 15. Variance of each principal component in the transformed wine data. (Higher variance in
each row is marked in bold).

Principal Component All PCA Pairwise PCA

1 3.1258 3.2692

2 1.5018 1.6485
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Table 15. Cont.

Principal Component All PCA Pairwise PCA

3 0.7359 1.0723

4 0.6901 0.7908

5 0.7454 0.7164

6 0.5511 0.5894

7 0.7294 0.5543

8 0.4103 0.3897

9 0.4756 0.3526

10 0.3532 0.2875

11 0.3712 0.2895

12 0.3508 0.2604

13 0.3436 0.1637

Figure 4. Cumulative sum of the variance of each principal component in the transformed wine data.

Table 15 indicates that with the use of pairwised correlation, the transformed data
have higher variance in the first several principle components than all PCA. Therefore,
more important information can be captured by the first few principal components via
pairwise PCA.

Furthermore, Table 16 summarises the weight of each feature that the first and second
principle components contain via PCA on full data and pairwise PCA and all PCA on
data with missing values. The weights of the first three features with the highest weights
are marked in bold. Since PCA is calculated from the full dataset, we want the results of
pairwise PCA or all PCA to stay as close to the results of PCA as possible so that it captures
more information; i.e., we want the first and second principal components in pairwise
PCA or all PCA to both assign similar weights to each feature as those assigned by PCA.
According to Table 16, the weights assigned by pairwise PCA and PCA are very close to
each other. In contrast, while all PCA selects the same feature with highest weights as
original PCA, the weights of the other features it gives are generally much further away
than pairwise PCA. We may conclude that pairwise PCA preserves as much information
as possible from data with missing values and thus produces more similar results to PCA
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from the full dataset than all PCA. This indicates that pairwise PCA works better than all
PCA on datasets with missing entries, and PSDisation helps to achieve this.

Table 16. Weights of each feature assigned by the first and second principal components in the wine
data via PCA, pairwise PCA, and all PCA. Top: weights of features in the first principal component;
bottom: weights of features in the second principal component. (Top three weights in each column
are marked in bold).

Features PCA Pairwise PCA All PCA

Top

Flavanoids 0.4229 0.4212 0.3793

Total phenols 0.3947 0.3753 0.3494

OD280/OD315 of diluted wines 0.3762 0.3633 0.3334

Proanthocyanins 0.3134 0.3046 0.1521

Nonflavanoid phenols 0.2985 0.2872 0.2453

Hue 0.2967 0.3090 0.2823

Proline 0.2868 0.3022 0.3558

Malic acid 0.2452 0.2237 0.2489

Alcalinity of ash 0.2393 0.2685 0.3481

Alcohol 0.1443 0.1886 0.3408

Magnesium 0.1420 0.1640 0.1399

Color intensity 0.0886 0.0550 0.0809

Ash 0.0021 0.0010 0.0893

Bottom

Color intensity 0.5300 0.5522 0.5696

Alcohol 0.4837 0.4429 0.2506

Proline 0.3649 0.3603 0.2577

Ash 0.3161 0.3533 0.3538

Magnesium 0.2996 0.2679 0.3946

Hue 0.2792 0.2824 0.3146

Malic acid 0.2249 0.2240 0.0492

OD280/OD315 of diluted wines 0.1645 0.1697 0.2766

Total phenols 0.0650 0.0788 0.0717

Proanthocyanins 0.0393 0.0280 0.2065

Nonflavanoid phenols 0.0288 0.0769 0.0902

Alcalinity of ash 0.0106 0.0287 0.1363

Flavanoids 0.0034 0.0049 0.1147

To further show the impact of missing values on the data and different methods of
imputation data before PCA, we perform the following classification experiment. We split
the dataset into 70% training set and 30% testing set. For the training set, we randomly drop
20% of the data so that the correlation matrix estimated in a pairwise manner is not PSD.
We use different PSDisation methods to obtain the PSD correlation matrix and then perform
PCA. In comparison, we use all instances without missing values to perform all PCA. We
also include PCA using the correlation matrix estimated by the shrinkage method with the
two data imputation strategies as explained previously in our test. As a benchmark, PCA
is performed directly on data where the missing entries are replaced with mean values. For



Risks 2025, 13, 28 23 of 25

each of these PCA methods, the first three principle components are chosen to build a k
Nearest Neighbours (kNN) model. We then use the kNN model to predict the labels with
PCA-transformed data in the testing set and calculate the prediction accuracy. The test is
repeated 50 times, and average testing accuracies are shown in Table 17. In each model, k is
tuned using leave-one-out cross-validation.

Table 17. Average testing accuracy of kNN models built on data after PCA using different correlation
matrix estimating methods. (Best performance is marked in bold).

Testing Accuracy

all PCA 0.9143

pairwise PCA with ALD 0.9581

pairwise PCA with IQP 0.9581

pairwise PCA with ILP 0.9589

pairwise PCA with GD 0.9581

pairwise PCA with SDM 0.9581

PCA with Shrinkage-Mean 0.9555

PCA with Shrinkage-MICE 0.9585

PCA on data filled with mean values 0.9558

According to Table 17, all PCA performs the worst in the classification task, indicating
that dropping too much data in the training set may lead to undesirable behaviours of the
model. Pairwise PCA, on the other hand, gives better predictions, of which ILP achieves
the best prediction accuracy. This shows that in some scenarios, optimising under the
Chebyshev norm instead of the F-norm can practically be a better choice. The shrinkage
method performs similarly to pairwise PCA, and it also depends on data imputation
methods. However, there is not enough evidence to judge between pairwise PCA and PCA
using the shrinkage method.

7. Conclusions
In this paper, we proposed two new approaches, the iterative quadratic/linear pro-

gramming method and the gradient descent method, to tackle the PSDisation problem for
actuarial analysis in order to find the nearest correlation matrix.

IQP/ILP is a flexible algorithm that approximates the nearest correlation matrix
by solving a series of optimisations with linear constraints. Despite being more time-
consuming than traditional methods, the IQP method can achieve optimal solutions that
are comparable to the APM, Newton, or ALD method when working with the F-norm.
There is currently no efficient PSDisation algorithm in the literature that minimises the
Chebyshev norm as ILP does. In our experiments, the ILP and IQP methods produce good
results under the Chebyshev norm and the H-norm, respectively. In addition, it is crucial to
understand that our formulation of the problem is very flexible and thus can handle norms
of any choice. It is also possible to combine different norms in our formulation (e.g., to
minimise α||A−X||2F + (1− α)||A−X||2C, where α is a weighting parameter). Future works
can be undertaken to increase the speed of solving the quadratic or linear optimisation
problem in each iteration to increase the efficiency in order to cope with larger problems.

The GD method repeats the following: taking a step in the opposite direction of the
gradient, projecting the matrix onto the PSD cone via spectral decomposition, and scaling
the matrix such that the diagonal is 1. This method is effective in unconstrained PSDisation
problems with respect to the F-norm. Experiments show the efficiency and robustness of
the algorithm; it is more resilient to noise and shows good potential in practical scenarios.
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Future attempts to modify the GD algorithm can be considered in order that it can be
applied under different choices of norms or to solve problems with more constraints. For
example, one possible extension of this could be to explore a subgradient approach or to
use smooth approximation to work with norms that are not differentiable.
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