
              

City, University of London Institutional Repository

Citation: Diamantopoulos, A. & Nikandrova, A. (2025). Delegation of learning from multiple

sources of information. European Economic Review, 173, 104981. doi: 
10.1016/j.euroecorev.2025.104981 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/34637/

Link to published version: https://doi.org/10.1016/j.euroecorev.2025.104981

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Delegation of Learning from Multiple Sources of

Information*

Angelos Diamantopoulos† Arina Nikandrova‡

March 20, 2024

Abstract

A principal delegates a decision to a biased expert. Before taking the decision,

the expert may undertake incremental learning about the unknown binary state from

two alternative information sources. There are no transfers but the principal retains

the right to terminate the expert’s learning to take the decision herself. The right to

terminate learning benefits the principal when the preferences of the principal and

the expert are sufficiently misaligned but may be detrimental when the preferences

are sufficiently closely aligned.
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1 Introduction

Good decision making requires good information, but it can often be the case that

learning through information acquisition is inaccessible to the decision maker. Instead,

learning may require engaging an expert who has access to some learning technology.

The expert may be better equipped for undertaking learning due to specialist knowledge

or know-how that he has accumulated over many years or because the expert has the
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exclusive access to key information sources. If the expert and the decision maker’s in-

centives are perfectly aligned, then the latter can hire the former to learn about the state

and also to make a decision if and when the expert finds fit. However, if the interests of

the decision maker and the expert are not perfectly aligned, it is tempting to assume that

the decision maker would always benefit from retaining at least some decision-making

authority, particularly if the expert cannot misreport learning outcomes. In this paper,

we show that this intuition is not entirely correct. When the decision maker cannot pro-

vide monetary rewards for learning, limiting the expert’s decision-making authority may

influence how the expert learns to the detriment of the decision maker.

This paper studies a dynamic model of learning by an expert (he) on behalf of a princi-

pal (she). The model builds on the sequential decision problem of Che and Mierendorff

(2019) with two information sources generating signals about two mutually exclusive

states of the world. We embed the special case of this decision problem into a game

between the principal and the expert.

The players are interested in learning the prevailing binary state of the world as it

determines the optimal binary decision. Conditional on the state, both the principal and

the expert agree on the optimal decision, but in either state, the expert obtains a higher

payoff than the principal from one of the decisions; that is, the expert is biased towards

a particular decision.

The principal delegates learning and decision making to the expert. The principal

cannot undertake learning herself as only the expert has access to two alternative infor-

mation sources. Each information source generates a conclusive signal about one of the

states of the world according to a Poisson process. The expert can utilise either informa-

tion source for free1 and must decide how to divide attention between the two sources.

The principal observes the learning outcomes and also observes but cannot directly affect

how the expert splits his attention between the information sources.

The principal and the expert discount future at a common rate. Hence, while learning

is costless, it entails a costly delay to the decision. We assume that the discount rate is

not too high, so that the expert, when sufficiently uncertain about the state, finds some

learning optimal. At the same time, the discount rate is not too low, so that, left to

his own devices, when uncertain, the expert would optimally allocate all attention to

the information source that can conclusively reveal the currently less likely state — that

is, while learning, the expert seeks a refutation of his current belief. In other words,

1It is convenient to assume that the expert can access information sources for free because it circumvents
the problem of allocating the learning costs between the principal and the expert. In Section 5, we briefly
discuss the implications of adding a flow cost of learning.
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we restrict attention to the parameter values for which, in Che and Mierendorff (2019)

terminology, “own-biased learning” heuristics is optimal.

The principal can choose between two simple contracting arrangements: complete

delegation and flexible delegation. Under complete delegation, she commits to surren-

der completely the authority to make decisions; under flexible delegation, she retains

the right to interrupt the expert’s learning and make the decision herself whenever she

pleases.2

We consider only two simple contracting arrangements because they naturally arise in

real world settings. For example, in representative democracy, the government consists of

experts who have time and resources to undertake due diligence on complex decisions on

behalf of the electorate. While elected politicians are meant to represent the electorate,

they may have their own vested interest in some decisions. Consequently, the interests

of the government and electorate may not always be perfectly aligned. The electorate

has very little (if any) power to fine-tune the set of actions available to the government

or to dictate how to undertake due diligence on a particular matter. In fact, for most

matters, the electorate is committed not to interfere in the government’s learning and

decision making until the next elections. Nevertheless, typically there are also statuary

provisions for referenda — in many jurisdictions, a referendum on certain particularly

important matters can be called if there is sufficient support for it among the electorate. A

referendum takes the decision making out of the government’s hands entirely and allows

the electorate to act instead. Our model asks whether such provisions to deprive the

expert from the decision-making authority are always beneficial for the principal.

Our main result shows that when preferences of the principal and the expert are

sufficiently closely aligned, for a range of prior beliefs, the principal prefers complete

delegation, thereby completely surrendering the authority to make the final decision,

over flexible delegation, under which she retains the right to intervene. This, seemingly

counter-intuitive, result is a consequence of the expert’s strategic response when he ex-

pects the principal to intervene and terminate learning prematurely.

Under complete delegation the expert learns and acts according to his preferences.

However, since preferences of the principal and the expert are misaligned, at some beliefs

they disagree on the optimal learning policy. Inter alia, the misalignment of preferences

means that sometimes the expert finds it optimal to continue learning, while the principal

prefers to take the decision immediately; and sometimes he may prefer learning from an

2The paper compares the payoff that the principal derives from these two mechanisms for any prior.
Therefore, we are not explicit whether the principal knows her prior at the time of choosing the contracting
arrangement. We briefly discuss this further in Section 5.
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information source that is sub-optimal from the principal’s perspective.

The main benefit of flexible delegation is that it prevents the expert from prolonged

learning, thus avoiding costly delay when the principal is already sufficiently confident of

the right decision. However, flexible delegation cannot ensure that the expert undertakes

learning from the information source preferred by the principal. In fact, the threat of

early termination of learning under flexible delegation may make the expert’s choice of

information sources even more sub-optimal for the principal than it is under complete

delegation. This adverse effect on the choice of the information source constitutes the

cost of flexible delegation.

When the preferences of the principal and the expert are sufficiently closely aligned,

the principal has to weigh the benefit of flexible delegation against its cost and at times

may well find it optimal to completely surrender the decision-making authority to the

expert. In contrast, when the preferences are sufficiently misaligned, the threat of pre-

mature learning termination does not change the expert’s choice of information sources

and so, flexible delegation has only upside and no downside for the principal.

Our paper is related to various strands of the literature on delegation and dynamic

learning in environments without transfers.

The literature on optimal dynamic learning, pioneered by Wald (1947) has been

rapidly growing in recent years (see, for example, Zhong (2022), Ke et al. (2016) and Ke

and Villas-Boas (2019)). While our paper builds on Che and Mierendorff (2019), other

closely related papers are Chaimanowong et al. (2023), Mayskaya (2024) and Nikan-

drova and Pancs (2018). In contrast to our paper, other papers in this genre study deci-

sion problems.

A central theme within the literature on delegation of learning is that of observability.

Much of the literature focuses on unobservable learning by a biased agent who discloses

his findings to the principal. In this context, the agent may be subject to a moral hazard

(as in Guo (2016) and Garfagnini (2011)) or may not have incentives to disclose his

findings truthfully (as in Argenziano et al. (2016), Deimen and Szalay (2019), Escobar

and Zhang (2021), Herresthal (2022)). In our model, the expert’s learning effort and

outcomes are observable, but the principal has very limited tools for inducing the biased

expert to pursue the learning policy the principal desires.

The rest of the paper is organized as follows. Section 2 describes the setup. Section

3 characterizes the expert’s optimal learning policy under complete delegation and dis-

cusses the implications of this policy for the principal. Section 4 discusses the main result

of the paper. Section 5 concludes by discussing some of the model assumptions.
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2 Model

There are two players, a principal (she) and an expert (he). Time is continuous and

indexed by t ≥ 0. The time horizon is infinite. Both players discount future exponentially

at rate r > 0.

Problem. The players are interested in taking the decision that is optimal for the un-

known state of the world. There are two states of the world,ω ∈ {A, B} and two decisions

x ∈ {a, b} .

Delegation. The expert, but not the principal, has access to an information technology

that enables learning about ω. The expert can access this technology at no cost. At

any time t > 0, the principal delegates learning as well as decision making to the expert

thereby giving the expert authority to learn aboutω and to take final decision x ∈ {a, b} .
The principal observes but cannot directly affect, either through contingent payments or

coercion, learning and the final decision taken by the expert.

We distinguish two types of delegation: complete delegation and flexible delegation.

Under complete delegation, the principal surrenders completely the authority to make

decisions to the expert. Under flexible delegation, at each time, t, while the expert has

not taken action x yet, the principal retains the right to override the expert and take

decision y ∈ {a, b} herself.

Learning. At each time t, when he is given the authority to learn, the expert may allo-

cate a unit of learning intensity between two information sources, A and B. Information

source A reveals conclusively state A; that is, when the expert learns from A with intensity

α ∈ [0, 1], source A generates a signal with a Poisson arrival rate α ifω= A and no signal

if ω= B. Symmetrically, information source B reveals conclusively state B; that is, when

the expert learns from B with intensity 1− α, source B generates a Poisson signal with

arrival rate (1−α) if ω= B and no signal otherwise. The learning process of the expert

is denoted by (αt)t∈R+ . We refer to learning exclusively from source A — that is, choos-

ing α= 1 — as A-learning and to learning exclusively from source B — that is, choosing

α= 0 — as B-learning.

At t = 0, the principal and the expert share a common prior belief p0 that the state

is A. Subsequently, the principal observes (αt)t∈R+ as well as learning outcomes. Hence,

the belief that the state is A remains common throughout the game. Let pt denote the

belief at time t. By Bayes’ rule, as long as the expert’s learning generates no signal, pt

5



evolves according to

ṗt = − (2αt − 1) pt (1− pt) . (1)

Payoffs. Let uωx and vωx denote the utility of the principal and the expert respectively,

conditional on decision x and state ω. The states are labeled so that both the principal

and the expert strictly prefer taking the decision that matches the state. Moreover, in-

dependently of the state, the expert prefers decision a relative to the principal and the

principal prefers decision b relative to the expert. In particular, for ∆ ≥ 0, the payoff

profiles
�

uωx , vωx
�

are

P, E A B

a 1, 1+∆ −1, −1+∆

b −1+∆, −1 1+∆, 1

Parameter ∆ plays a dual role in our model. First, it determines the importance

of choosing the action that matches the state. As ∆ increases, choosing the favoured

action becomes more appealing and so the value of learning for the principal and the

expert diminishes. When ∆ exceeds 2, learning has no value at all because the favoured

action delivers higher payoff irrespective of the state. Second, ∆ is a measure of the

disagreement between the principal and the expert. Throughout the paper, we assume

that ∆ is not too high because all interesting interactions between the principal and the

expert take place when the disagreement between them is relatively small.

Assumption 1. ∆≤ 1

Given belief p, let

Ux (p)≡ puA
x + (1− p)uB

x and Vx (p)≡ pvA
x + (1− p) vB

x (2)

denote the expected payoff of the principal and the expert, respectively, from taking

decision x immediately.

Aim. The aim is to compare the principal’s payoffs under complete and flexible delega-

tion.

Throughout the paper, quantities without any superscript correspond to flexible del-

egation, superscript E indicates quantities under complete delegation and superscript P

indicates principal’s individually optimal learning when the principal has access to the

same learning technology as the expert.

6



|
p=0︸ ︷︷ ︸

decision b

p∗E←←←←←
︸ ︷︷ ︸

α=1

p̌E→→→→→
︸ ︷︷ ︸

α=0

p̄∗E
︸ ︷︷ ︸

decision a

|
p=1

Figure 1: Expert’s optimal learning strategy

3 Complete Delegation

Expert’s optimal learning policy

Under complete delegation, the expert will pursue his individually optimal learning

strategy. Indeed, since the principal cannot intervene, the expert has no reason to pursue

a learning strategy different from the one he would pursue if he was facing an individual

decision problem.

Che and Mierendorff (2019) fully characterise the solution to the expert’s decision

problem and show that the uniquely optimal learning policy depends on the cost of learn-

ing. In that paper, learning is associated with two types of costs. First, while learning,

the decision maker incurs an additive flow cost. Second, learning involves a delay in

making the decision and hence in receiving the payoff from this decision which is costly

because the decision maker discounts future payoffs at an exponential rate. Our setup

is a special case of Che and Mierendorff (2019) because there are no additive costs of

learning; instead, the discount rate r constitutes the only learning cost.3

Furthermore, we restrict attention to the discount rate which is neither too high nor

too low. Lemma 1 proves that for such intermediate values of discount rate, the expert

optimally pursues contradictory learning, a learning policy that dictates devoting full at-

tention to the source which generates signal against the state that the expert currently

believes to be relatively more likely.4 That is, the expert chooses α = 0 thus learning

from source B if state A is relatively more likely, i.e., p > p̌E, and chooses α = 1 thus

learning from source A if state B is relatively likely, i.e., p < p̌E, where p̌E is an optimally

chosen reference belief.5 In the absence of a signal, the expert’s belief drifts in the di-

rection which strengthens the original belief. If no signal arrives, the belief eventually

reaches one of the optimally chosen boundary points p∗E or p̄∗E, at which the expert is

sufficiently convinced of the state to make an immediate decision without receiving a

conclusive signal. Figure 1 depicts belief updating under contradictory learning that is

3On page 2998, Che and Mierendorff (2019) note that in their setting, either additive learning cost or
discount rate can be zero, but not both.

4Lemma 1 corresponds to a special case of case (ii) in Theorem 1 in Che and Mierendorff (2019) with
flow costs of learning switched off.

5Since ∆> 0, p̌E is less than 1/2.
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Figure 2: The parameter region in which Lemma 1 holds.

optimal for the expert.

Lemma 1. For any 1 ≥ ∆ ≥ 0, there exists a threshold r̄(∆) > 0 such that for all r ∈
[1, r̄(∆)], the expert’s optimal policy under complete delegation is contradictory learning

with belief thresholds

p∗E =
r

2(1+ r) +∆
, (3)

p̄∗E = 1−
r(1+∆)

2(1+ r)−∆
, (4)

and p̌E implicitly defined as the unique solution of gE(p) = 0, where

gE(p) := p(1+∆)

�

1−
�

p
1− p

�r �1− p̄∗E

p̄∗E

�r�

+ (1− p)

�

�

1− p
p

�r
�

p∗E

1− p∗E

�r

− 1

�

. (5)

Proof. See Appendix A.1.

Figure 2 depicts the parameter region of interest to us in which the expert optimally

pursues contradictory learning.6 The figure shows that there is one-to-one relationship

6The statement of Lemma 1 can be weakened. Indeed, for any 1 ≥ ∆ ≥ 0, there exist thresholds
1 ≥ r(∆) > 0 and r̄(∆) > 0 such that for all r ∈

�

r(∆), r̄(∆)
�

, the expert’s optimal policy under complete
delegation is contradictory learning with belief thresholds (3) and (4). The lower bound r(∆) is equal to
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between ∆ and threshold r̄(∆). Hence, instead of fixing ∆ and allowing r to vary,

Lemma 1 can be equivalently restated fixing r and letting ∆ to vary.

Corollary 1. For any r ≥ 1, there exists a threshold 1 ≥ ∆̄(r) ≥ 0 such that for all ∆ ∈
�

0, ∆̄(r)
�

, the expert’s optimal policy under complete delegation is contradictory learning.

Impact of complete delegation on the principal

Due to the symmetry in expert and principal’s payoff structures, had the principal

access to the expert’s learning technology, at any r ∈ [1, r̄(∆)], just like the expert, she

would also optimally choose to pursue contradictory learning policy — that is, the prin-

cipal would choose to devote full attention to the source which generates signal against

the state that she currently believes to be relatively more likely. 7 At a particular belief

p, due to bias ∆, the principal and the expert may disagree on the source of informa-

tion from which to learn or whether to learn at all. In particular, because irrespective

of the state, the expert prefers decision a relative to the principal, the expert’s learning

region is shifted to the left relative to the principal’s individually optimal learning region,

as Lemma 2 proves and Figure 3a illustrates. Thus, for example, the autonomous expert

optimally takes immediate decision a or b at lower p than the principal would have liked.

Similarly, for the expert, the switch of learning from one source to another is shifted to

the left relative to the principal.

Lemma 2. For any 1≥∆> 0 and all r ∈ [1, r̄(∆)], p∗E < p∗P and p̄∗E < p̄∗P and p̌E < p̌P .

Proof. See Appendix A.2.

Figure 3b compares the principal’s value under complete delegation to principal’s

value in the first-best world where the principal has access to the same learning technol-

ogy as the expert. As a result of disagreement on the optimal learning strategy at a given

p, the principal’s expected payoff when the expert undertakes learning on her behalf falls

short of his first-best expected payoff.8

1 at ∆ = 0 and decreasing in ∆. Whenever the discount rate r is below r(∆), at some beliefs, the expert
would optimally learn not to contradict but to confirm his current belief. We, however, restrict attention
to r ≥ 1 because our proof of Theorem 1 requires this assumption.

7Subject to re-labeling the states and actions, the payoffs of the principal are identical to those of the
expert. However, the contradictory learning policy that is optimal for the expert is not optimal for the
principal.

8The principal’s value function under expert’s optimal learning is discontinuous at a belief whenever
the belief process is certain to move away from that belief. The beliefs with discontinuities correspond
to thresholds where the expert switches to a different information source. In Figure 3b, the discontinuity
occurs at p = p̌E .
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(b) The principal’s value function. The red line
is the value the principal would obtain if she
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blue line is the principal’s value under com-
plete delegation; the black thin line is the prin-
cipal’s value from immediate decision.

Figure 3: The optimal learning policy for each belief.

Figure 3b also demonstrates that whenever r ∈ [1, r̄(∆)], for some not-too-low p,

delegation of learning allows the principal to obtain higher payoff than the payoff she

obtains from immediate decision. However, for sufficiently low p, the principal prefers an

immediate decision to any learning, while the expert finds it optimal to continue learning.

Hence, for low p, the principal would prefer to take over the final decision making from

the expert.

4 Main Result

Naturally, if the principal’s and the expert’s preferences are sufficiently misaligned, the

principal is always better off under flexible delegation than under complete delegation.

The main result of the paper is that, when the preferences are sufficiently closely aligned,

one type of delegation does not unambiguously dominate the other. On the one hand,

flexible delegation allows the principal to curtail expert’s learning, thus eliminating the

cost of delay in decision when she deems such delay excessive. On the other hand, the

threat of the principal’s intervention makes the expert favour the information source that

avoids early termination of learning. Consequently, flexible delegation makes the expert

switch to information source A at lower beliefs than under complete delegation, which

makes the principal worse off.

Theorem 1 states the main result formally; below we provide intuition for the result.

The statement of the theorem utilises Corollary 1 to fix the order of quantifiers.

10



Theorem 1. For any r ≥ 1, there exists a threshold 0≤∆∗(r)≤ ∆̄(r) such that

• for ∆ < ∆∗(r), there exist a subset of p for which the principal is strictly better off

under complete delegation and a subset of p for which the principal is strictly better off

under flexible delegation, the principal is indifferent between both types of delegation

otherwise;

• for ∆ ≥ ∆∗(r), the principal is strictly better off under flexible delegation for some p

and is indifferent between both types of delegation otherwise.

Proof. See Appendix A.3

Because the expert’s learning regions are shifted to the left relative to the principal’s

individually optimal learning regions, under flexible delegation, any principal’s interven-

tion is necessarily one-sided. For low p, the principal stops the expert’s learning from

source A at higher p than the expert would have liked. For high p, the principal would

like to prolong learning from source B relative to the expert. The principal, however,

cannot do anything about this as she cannot coerce the expert to learn for longer than

the expert finds optimal.

Since the principal’s interventions are necessarily one-sided, flexible delegation does

not affect the expert’s B-learning continuation strategy starting from any belief. Under B-

learning in the absence of a signal, belief p gradually increases. Hence, despite principal’s

intervention at some low p, at higher p the expert finds it optimal to pursue the same

B-learning strategy under flexible and complete delegation — in either case, the expert

optimally stops his B-learning when the posterior belief drifts to p̄∗E. Thus, the merits

of flexible delegation to the principal should be assessed on the basis of its impact on

expert’s A-learning.

Under flexible delegation, the ability to override the expert enables the principal to

stop expert’s A-learning whenever the posterior belief p is sufficiently low to make im-

mediate decision b optimal. Eliminating the cost of the expert’s prolonged learning is

the main benefit of flexible delegation to the principal.

At the same time, due to the possibility of early termination, the value the expert

derives from A-learning goes down and so the expert switches to learning from source A

at a lower belief than he would have done absent the principal’s intervention. The delay

in the switch to A-learning hurts the principal as by Lemma 2, the principal wants the

expert to switch to A-learning early on, that is, at any belief in
�

p∗P , p̌P
�

, with p̌P > p̌E.

Overall, whether at some beliefs, flexible delegation makes the expert’s learning strat-

egy even more sub-optimal for the principal than it is under complete delegation depends

11
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Figure 4: Principal’s value function when∆ is low. The green line is the principal’s value
from immediate decision; the black dashed line is the principal’s value under complete
delegation; the red line is the principal’s value under flexible delegation.

on whether at p̌E, the belief at which the autonomous expert switches from A-learning to

B-learning, the principal prefers the expert’s B-learning to no learning. If so, then under

flexible delegation, the principal intervenes in the belief region where the autonomous

expert pursues A-learning, and such intervention makes the expert delay switching to

source A to the detriment of the principal. In contrast, if at p̌E the principal prefers the

immediate decision to expert’s B-learning, then principal’s intervention terminates ex-

pert’s B-learning in the belief region where the autonomous expert pursues B-learning,

and such intervention triggers no strategic response from the expert.

Figure 4 depicts the principal’s payoffs when ∆ is sufficiently low so that at p̌E, the

principal’s payoff under expert’s B-learning is higher than the payoff from the immediate

decision. In this case, the principal prefers complete delegation for initial beliefs in the

green region and flexible delegation for beliefs in the red region. In other words, when

the interests of the principal and the expert are sufficiently closely aligned, the principal’s

choice between flexible delegation and complete delegation involves a trade off between

improving payoff for sufficiently low p, at which flexible delegation allows terminating

expert’s prolonged learning, and decreasing payoffs for some higher beliefs, at which the

principal would be better off if the expert pursued his first-best A-learning policy.

In contrast, Figure 5 depicts the principal’s payoffs when∆ is sufficiently high so that

at p̌E, the principal’s payoff under the expert’s B-learning is lower than her payoff from the

12
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Figure 5: Principal’s value function when∆ is high. The green line is the principal’s value
from immediate decision; the black dashed line is the principal’s value under complete
delegation; the red line is the principal’s value under flexible delegation.

immediate decision. In this case, under flexible delegation the principal intervenes when

the expert pursues B-learning. Such intervention does not trigger a strategic response

from the expert. Since flexible delegation does not affect the expert’s learning on the

region where the principal never intervenes, flexible delegation does not have a cost, but

it still has the benefit of improving the principal’s payoff at low p; that is, in the figure,

there is no green region, but there is a red region.

Intuitively, as r increases, any delay in decision becomes costlier and so the principal

and the expert derive less value from learning. As a result, the principal and expert’s

learning regions shrink, thereby magnifying their disagreement about the information

source from which to learn. Consequently, it can be expected that as r increases, the

possibility of principal’s intervention makes expert’s learning strategy more sub-optimal

for a smaller set of ∆. Indeed, Figure 6 illustrates that threshold ∆∗(r) decreases with r.

5 Discussion and Concluding Remarks

In our model, the expert accesses information sources for free and so discount rate

r, which is common to the principal and the expert, is the only cost of learning. It is

natural to consider situations in which the expert additionally has to pay some flow cost,

c ̸= 0, for utilising an information source. In a decision problem, the impact of flow cost c

13
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Figure 6: The union of the blue and the red regions corresponds to parameters ∆ and r
that are admissible in Theorem 1. In the red region, for some p the principal is better off
under complete delegation than under flexible delegation.

and discount rate r on the optimal learning policy is qualitatively the same — both costs

reduce the value of learning, thus compressing from both sides the interval of beliefs in

which some learning is optimal. In our model, the flow cost that is borne by the expert

alone reduces the scope for the principal’s intervention under the flexible delegation. The

main benefit of the flexible delegation is that it allows the principal to curtail expert’s A-

learning when the principal is already sufficiently confident that b is the right decision to

make. With flow cost c, the autonomous expert, who bears this cost, is naturally averse

to prolonged learning — that is, the expert’s individually optimal stopping threshold p∗E

increases with c — and so, the range of beliefs at which the principal benefits from the

ability to terminate the expert’s learning shrinks. For sufficiently high c, the expert may

even want to terminate A-learning at higher beliefs than the principal, who does not

internalise c. Clearly, in this case, flexible and complete delegation are payoff equivalent

for the principal.9 We conjecture, however, that at lower c, the results from Theorem 1

remain qualitatively unchanged and when∆ is small, the strategic response of the expert

may still sometimes make the principal worse off under flexible delegation than under

complete delegation.

We did not explicitly specify whether the principal knows her prior belief when she

makes the choice between complete and flexible delegation. Our analysis provides in-

9The cost c above which p∗E ≥ p∗P can be easily derived and is given by c̄ = r(∆+2r+4)∆
2r+2−∆ .
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sights that are relevant regardless of this assumption. In some situations, the principal

may need to determine a contractual arrangement for learning about a specific issue and

so will be aware of her prior assessment at the time of contracting. For example, a client

may ask a financial consultant for an advice on whether to sell a particular stock, know-

ing the current market sentiment or the company’s latest financial statement.10 In such

situations, to avoid unnecessary delay, the principal will not engage the expert when she

is already sufficiently confident about the right decision; she will only engage the expert

if she derives some value from the expert’s learning, in which case complete delegation

is superior to flexible delegation (see green region in Figure 4). In other words, in cases

like this, the principal’s payoff from delegation of learning will be the upper envelope of

payoffs under flexible and complete delegation. In other situations, the principal may be

required to decide on a contractual arrangement before her prior belief is revealed. For

example, the government undertakes learning and has the decision-making authority on

all issues, and the electorate has little scope to fine tune the contractual arrangements

to the prior belief on each specific issue. According to Theorem 1, in situations like this,

while flexible delegation unambiguously dominates complete delegation when the dis-

agreement between the principal and the expert is large, when the disagreement is small,

the choice between the contractual arrangements is less clear cut and will generally de-

pend on the distribution of priors and the relative importance of various issues.

10This example fits well our model. For the most part, it is reasonable to expect that the consultant wants
to make the right decision given the current sentiment of the stock market. Nevertheless, he may have
a bias towards one of the two actions, stemming perhaps from the risk exposure of his overall portfolio.
Furthermore, such financial advice is often provided for free to retail bank clients who do not necessarily
have to heed this advice.
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Appendix A Technical Appendix

A.1 Proof of Lemma 1

Under complete delegation, the expert solves an optimal control free-boundary problem. Let
V denote the expert’s value function. By the dynamic programming principle, wherever it is
differentiable, V can be characterized through the Hamilton-Jacobi-Bellman (HJB) equation:

rV (p)≥max
α

�

pα
�

vA
a − V (p)
�

+ (1− p) (1−α)
�

vB
b − V (p)
�

− (2α− 1) p (1− p)V ′ (p)

�

, p ∈ (0,1) (A.1)

subject to the boundary condition11

V (p) = Va (p)∨ Vb (p) . (A.2)

Since the HJB equation is linear in α, the optimal policy is a bang-bang solution α(p) ∈ {0, 1},
except for posteriors where the derivative of the objective vanishes.

Theorem 1 in Che and Mierendorff (2019) shows that the expert’s value function is the upper
envelope of values from no learning, A-learning, B-learning as well as a learning policy that we
call confirmatory learning.12 In what follows, we provide functional forms for the quantities
characterising the optimal learning policy which we require for the subsequent analysis.

Contradictory A-learning

Setting α= 1 corresponds to A-learning. Value derived from A-learning satisfies the ordinary
differential equation

rV1(p) = p
�

vA
a − V1(p)
�

− p(1− p)V ′1(p) (A.3)

The solution to this ODE with boundary condition V1(q) = v is well-defined for q ∈ (0,1) and is
given by

V1(p; q, v) =
1

1+ r

�

pvA
a +

1− p
1− q

�

q(1− p)
p(1− q)

�r

((1+ r)v − qvA
a )
�

. (A.4)

Let p∗E denote the belief at which the expert optimally chooses to terminate A-learning. At
p∗E , the expert is sufficiently pessimistic about state A that he makes the immediate decision b.

11Operator ∨ is the binary max operator.
12Che and Mierendorff (2019) refer to this learning policy as opposite-biased learning.
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Value matching and smooth pasting at p∗E pins down the boundary belief:

p∗E =
rvB

b

vA
a − vA

b + r
�

vB
b − vA

b

� , (A.5)

which, upon substituting the expert’s payoffs, is equivalent to (3). Hence, the value from the
optimally terminated A-learning is

V ∗1 (p) =
1

1+ r

�

pvA
a + (1− p)vB

b

�

1− p
p

�r
�

p∗E

1− p∗E

�r�

. (A.6)

By direct computations, function V ∗1 (p) is strictly convex on
�

p∗E , 1
�

.

Contradictory B-learning

By setting α = 0 and going through the similar steps, we can derive the value from the op-
timally terminated B-learning. In particular, value derived from B-learning satisfies the ordinary
differential equation

rV0(p) = (1− p)
�

vB
b − V0(p)
�

+ p(1− p)V ′0(p). (A.7)

The solution to this ODE with boundary condition V0(q) = v is well-defined for q ∈ (0,1) and is
given by

V0(p; q, v) =
1

1+ r

�

(1− p)vB
b +

p
q

�

(1− q)p
(1− p)q

�r

((1+ r)v − (1− q)vB
b )
�

. (A.8)

The expert optimally terminates B-learning at belief p̄∗E , at which he is sufficiently optimistic
about state A to make decision a. By smooth pasting and value matching,

p̄∗E = 1−
rvA

a

r(vA
a − vB

a ) + vB
b − vB

a

, (A.9)

which, upon substituting the expert’s payoffs, is equivalent to (4). Hence, the value from the
optimally terminated B-learning is

V ∗0 (p) =
1

1+ r

�

(1− p)vB
b + pvA

a

�

p
1− p

�r
�

1− p̄∗E

p̄∗E

�r�

. (A.10)

By direct computations, function V ∗0 (p) is strictly convex on
�

0, p̄∗E
�

.
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Confirmatory learning

Under confirmatory learning policy the expert focuses all his attention on the source capable
of generating a conclusive signal about state he thinks to be more likely. If no signal arrives,
beliefs converge to the absorbing belief, p∗E , where α = 1/2 and the expert does not take an
action unless a signal arrives. We denote the value of the learning policy with α= 1/2, by V ∗(p).
It is immediate that

V ∗(p) = pE
�

e−rτvA
a |ω= A
�

+ (1− p)E
�

e−rτvB
b |ω= B
�

(A.11)

=
pvA

a + (1− p)vB
b

1+ 2r
(A.12)

Further, by smooth pasting and value matching of the above equation and either (A.3) or (A.7)
we can derive the absorbing belief p∗E:

p∗E =
vB

b

vB
b + vA

a

(A.13)

Taking V ∗(p∗E) as a boundary condition, the value from confirmatory learning for the expert
is:

V E
c f (p) =















1
1+r

�

(1− p)vB
b +

1
1+2r (1− p)−r p1+r vA

a

�

vA
a

vB
b

�r�

p < p∗P

2vA
a vB

b

(vA
a+vB

b )(1+2r) p = p∗P

1
1+r

�

pvA
a +

1
1+2r

�

(1− p)1+r p−r vB
b

�

vB
b

vA
a

�r��

p > p∗P

(A.14)

Optimal learning policy

Let r̄E (∆) denote the smallest discount rate r such that at any prior belief, the expert prefers
making decision immediately to some learning. The expected payoff from the immediate decision
is the lowest when the expert is indifferent between decisions a and b — that is, at a belief p̂
such that

Va (p̂) = Vb (p̂) =⇒ p̂ =
vB

b − vB
a

vA
a − vA

b + vB
b − vB

a

=
2−∆

4
(A.15)

At this belief, equating the expected value of immediate decision to the value from learning for
δ→ 0 units of time and only then making the decision yields

r̄E (∆) =

�

vB
b − vB

a

� �

vA
a − vA

b

�

vB
b vA

a − vB
a vA

b

=
4−∆2

2∆
. (A.16)

Note that
lim
∆→0+

r̄E (∆) =∞.

That is, for very small bias ∆ the expert prefers some learning for any discount rate r.
Let rE (∆) denote the highest discount rate at which the optimal learning policy features
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confirmatory learning. According to Che and Mierendorff (2019), confirmatory learning is part
of the optimal policy if and only if at p∗E it is optimal to pursue the confirmatory strategy.

In order to characterize rE (∆), we make the following observation.

Lemma A.1. V ∗0 (p
∗E)> V ∗1 (p

∗E) for ∆> 0.

Proof. By direct computations,

V ∗0 (p
∗E)− V ∗1 (p

∗E) =
1+∆

(1+ r)(2+∆)

��

r
2−∆+ r(1−∆)

�r

−
�

r(1+∆)
2+ r +∆

�r�

. (A.17)

For 1>∆> 0 and r > 0, the expression above is positive because

r
2−∆+ r(1−∆)

>
r(1+∆)
2+ r +∆

.

Hence, the confirmatory learning policy will not be part of the individually optimal strategy
for the expert if and only if V ∗0 (p

∗E)≥ V ∗(p∗E) or, equivalently,

�

rvA
a

vA
a − (1+ r)vA

b

�r

−
1

1+ 2r
≥ 0. (A.18)

The value of r that makes the above condition hold with equality is the threshold value rE (∆).
We require that rE (∆)≤ 1 for all ∆. After substituting the expert’s payoffs, the left-hand side of
(A.18) becomes

f (r) :=
�

r
2−∆+ r(1−∆)

�r

−
1

1+ 2r
. (A.19)

At ∆= 0,

f (r) =
� r

2+ r

�r
−

1
1+ 2r

, (A.20)

which is equal to zero if r = 1 and is strictly positive if r > 1. Thus, for ∆= 0, inequality (A.18)
is satisfied for all r ≥ 1. Furthermore, by inspection, f (r) is increasing in ∆ and so inequality
(A.18) is also satisfied for all ∆> 0 and all r ≥ 1.

Upper envelope of contradictory A- and B-learning

Since V ∗1 (p
∗E) > V ∗0 (p

∗E), V ∗0 (p̄
∗E) > V ∗1 (p̄

∗E), V ∗1 intersects V ∗0 at least once. Lemma A.2
shows that the intersection is unique.

Lemma A.2. For r ≥ 1, V ∗1 intersects V ∗0 once and from above.

Proof. The argument follows closely the proof of Lemma 2 in Che and Mierendorff (2019). If at
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p, V ∗0 (p) = V ∗1 (p) = V (p), then summing (A.3) and (A.7) yields:

V ′0(p)− V ′1(p) =
1

p(1− p)

�

(1+ 2r)V (p)−
�

pvA
a + (1− p)vB

b

��

(A.21)

=
1+ 2r

p(1− p)
(V (p)− V ∗(p)) , (A.22)

where V ∗ is the value of the learning policy with α= 1/2 defined in (A.12).
Since whenever r ≥ 1, V lies above V ∗, whenever V ∗1 and V ∗0 intersect, V ′0 > V ′1 . Consequently,

V ∗1 intersects V ∗0 once and from above.

Function V ∗1 intersects V ∗0 at belief p̌E implicitly defined as the unique solution in
�

p∗E , p̄∗E
�

to gE(p) = 0, where function
gE(p) := V ∗1 (p)− V ∗0 (p), (A.23)

which, upon substituting the expert’s payoffs, is equivalent to (5).

A.2 Proof of Lemma 2

Following similar steps as in the proof of Lemma 1, we can derive the belief p∗p at which the
principal would terminate A-learning if she had access to the same information technology as the
expert:

p∗p =
ruB

b

uA
a − uA

b + r(uB
b − uA

b)
=

r(1+∆)
2(1+ r)−∆

(A.24)

Similarly, the principal would terminate her individually optimal B-learning at belief

p̄∗p = 1−
ruA

a

ruA
a − uB

a − ruB
a + uB

b

= 1−
r

2(1+ r) +∆
(A.25)

Given the analytical expressions for the thresholds, by direct computation:

p∗P − p∗E =
∆r(∆+ 4+ 2r)
4(1+ r)2 −∆2

> 0 (A.26)

since by assumption, 1>∆> 0 and r > 0.
Similarly, by direct computation:

p∗P − p∗E =
∆r(∆+ 4+ 2r)
4(1+ r)2 −∆2

> 0 (A.27)

as above.
At∆= 0, the payoffs of the principal and the expert coincide and so p̌E = p̌P . By Lemma A.3,

which is stated below, p̌E is decreasing in ∆. Since subject to re-labeling the states and actions,
the payoffs of the principal are identical to those of the expert, an equivalent argument can be
used to show that p̌P is increasing in ∆. Hence, for any ∆> 0, p̌E < p̌P .
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Lemma A.3. Let p̌E ∈
�

p∗E , p̄∗E
�

be implicitly defined as the unique solution of gE(p) = 0, where
gE(p) is given in (5). Then, p̌E is decreasing in ∆.

Proof. By the implicit function theorem,

∂

∂∆
p̌E = −

∂ gE/∂∆

∂ gE/∂ p

�

�

�

�

p=p̌E

. (A.28)

By Lemma A.2, at p = p̌E , ∂ gE/∂ p < 0 and so the sign of the derivative ∂ p̌E/∂∆ is the same as
the sign of the derivative ∂ gE/∂∆ at p = p̌E , where gE(p) = 0.

It will be convenient to change variables to

ρ :=
p

1− p
, ρ :=

p∗E

1− p∗E
, and ρ̄ :=

p̄∗E

1− p̄∗E
. (A.29)

After the change of variables, function gE(p) is equal to (1− p)h(ρ), where

h(ρ) := ρ(1+∆)
�

1−
�

ρ

ρ̄

�r�

+
�ρ

ρ

�r

− 1. (A.30)

Consequently, the requirement that gE(p) = 0 is equivalent to h(ρ) = 0. Since p̌E ∈
�

p∗E , p̄∗E
�

,

the solution of h(ρ) = 0 must belong to the interval
�

ρ, ρ̄
�

. Furthermore, the derivative ∂ gE/∂∆

has the same sign as the derivative

∂ h
∂∆
= ρ

�

1−
�ρ

ρ

�1+r

−
�

1+
3+ 2r
1+∆

1
ρ̄

��

ρ

ρ̄

�r
�

. (A.31)

When ∆= 0, after substituting in ρ and ρ̄,

h(ρ) = ρ
�

1−
� rρ

2+ r

�r�

+
�

r
(2+ r)ρ

�r

− 1, (A.32)

and so the unique solution of h(ρ) = 0 is ρ = 1. Then, the derivative

∂ h
∂∆

�

�

�

� ∆=0,
h(ρ)=0

= 1− (1+ 2r)
� r

2+ r

�r
< 0 (A.33)

for all r ≥ 1.
When ∆= 1, after substituting in ρ and ρ̄,

∂ h
∂∆

�

�

�

�

∆=1

= ρ

�

1−
�

r
(3+ r)ρ

�1+r

− 2r(1+ r)(1+ 2r)(rρ)r
�

. (A.34)
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Evaluating this derivative at ρ = ρ,

∂ h
∂∆

�

�

�

�∆=1,
ρ=ρ

= −
2r

r
(1+ r)(1+ 2r)

�

r2

3+ r

�1+r

< 0 (A.35)

for all r ≥ 1. Furthermore, the derivative of ∂ h
∂∆

�

�

∆=1 with respect to ρ is negative at ρ = ρ and
decreasing for all r ≥ 1:

∂

∂ ρ

�

∂ h
∂∆

�

�

�

�

∆=1

��

�

�

�

ρ=ρ
= 1+ r − 2r(1+ 2r)(1+ r)2

�

r2

3+ r

�r

< 0 (A.36)

and

∂ 2

∂ ρ2

�

∂ h
∂∆

�

�

�

�

∆=1

�

= −
r(1+ r)
(3+ r)ρ2

�

r
�

r
(3+ r)ρ

�r

+ 2r(1+ r)(3+ r)(1+ 2r)ρ(rρ)r
�

< 0.

(A.37)
Hence, ∂ h

∂∆

�

�

∆=1 < 0 at h(ρ) = 0 for all r ≥ 1.
Given that when ∆= 0 and ∆= 1, ∂ h

∂∆ evaluated at h(ρ) = 0 is negative for all r ≥ 1, if this
derivative never changes its sign, it is negative everywhere. By contradiction, suppose that there
exit ρ and ∆ that satisfy h(ρ) = 0 and

∂ 2h
∂∆2

= r(1+ r)
ρ2

r2

�

�ρ

ρ

�r+2

−
(3+ 2r)2

(1+∆)3ρ3

�

ρ

ρ̄

�r+2
�

= 0. (A.38)

After some algebraic manipulations, requiring that h(ρ) = 0 and ∂ 2h
∂∆2 = 0 hold simultaneously is

equivalent to solving the system of non-linear equations:

ρ(1+∆) =
1−
�

ρ/ρ
�r

1− (ρ/ρ̄)r
(A.39)

ρ(1+∆) = (3+ 2r)2/3
�

ρ/ρ̄

ρ/ρ

�
r+2

3

(A.40)

Define new variables

x =
ρ

ρ
and x̄ =

ρ

ρ̄
, (A.41)

where 0< x ≤ x̄ < 1. Expressing ρ and ∆ in the new variables yields13

∆=
−r(r + (2+ r) x̄ x) +

Æ

r4 + 2r2(r2 − 2) x̄ x + (2+ r)4 x̄2 x2

2(1+ r) x̄ x
(A.42)

13∆ is a solution to a quadratic equation. One root of that equation is always negative and so can be
discarded.
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Figure 7: Numerical solution to system (A.44)-(A.45).

and
ρ =

r
(2+ r +∆)x

. (A.43)

In new variables, system (A.39)-(A.40) is

ρ(1+∆) =
1− x r

1− x̄ r
(A.44)

ρ(1+∆) = (3+ 2r)2/3
�

x̄
x

�
r+2

3

. (A.45)

Numerical methods yield a unique solution (x , x̄) satisfying the requirement that 0< x ≤ x̄ < 1
(see Figure 7a). However, at this solution,∆ is negative for all r ≥ 1 (see Figure 7b). Since there
is no admissible solution to system (A.44)-(A.45), derivative ∂ h

∂∆ evaluated at h(ρ) = 0 never
changes its sign and is negative for all admissible parameter values.

A.3 Proof of Theorem 1

Preliminary observation

Lemma A.4 proves that for r ∈ [1, r (∆)], under flexible delegation, the expert would never
pursue the confirmatory learning policy. This observation reduces the types of effects flexible
delegation can have on the expert’s learning strategy.

Lemma A.4. If 1≤ r (∆)≤ r (∆), then V ∗0 (p)⩾ V E
c f (p) for all p.

Proof. Since, 1 ≤ r (∆) ≤ r (∆), under complete delegation, the expert uses only contradictory
learning policy for any p. Hence, V ∗0

�

p̌E
�

= V ∗1
�

p̌E
�

⩾ V E
c f

�

p̌E
�

. In addition, V ∗0 (p) ⩾ V E
c f (p) for

any belief p ⩾ p̌E , since contradictory B-learning is the expert’s optimal learning strategy under
complete delegation for these beliefs.

23



From Lemma A.1, we know that p̌E ⩽ p∗E , which implies that V ∗0
�

p∗E
�

> V E
c f

�

p∗E
�

. For any
belief p < p∗E both V E

c f (p) and V ∗0 (p) have identical learning policies with α = 0. Since the
confirmatory strategy at p∗E has a continuation utility that is dominated by the contradictory
B-learning, V ∗0 (p)⩾ V E

c f (p) for p < p∗E , which concludes the proof.

Lemma A.5 implies that if, under flexible delegation, at some p, the principal finds allowing
the expert to pursue B-learning optimal, she also finds it optimal to allow B-learning at all higher
beliefs at which the autonomous expert optimally learns.

To state the result, recall that Ub(p) is the value the principal derives from immediate decision
b and is given in (2). The value that the principal derives from B-learning is the solution to the
principal’s equivalent of the HJB equation (A.7). When boundary condition is U0(q) = v, the
solution is well-defined for q ∈ (0,1) and is given by the principal’s equivalent of (A.8):

U0(p; q, v) =
1

1+ r

�

(1− p)uB
b +

p
q

�

(1− q)p
(1− p)q

�r

((1+ r)v − (1− q)uB
b)
�

. (A.46)

Lemma A.5. There exits a threshold ∆̃< 1 such that for all ∆≤ ∆̃, equation

Ub(p) = U0(p; p̄∗E , Ua(p̄
∗E)) (A.47)

has a unique solution pind ∈
�

0, p̄∗E
�

and for all∆> ∆̃, equation (A.47) has no solution in
�

0, p̄∗E
�

.
When it exists, the solution pind is increasing in ∆.

Proof. The second derivative of U0(p; q, v) with respect to p is

∂ 2U0

∂ p2
=

r
(1− p)2pq

�

(1− q)p
(1− p)q

�r
�

(1+ r)v − (1− q)uB
b

�

. (A.48)

The sign of this derivative depends on the sign of the bracket
�

(1+ r)v − (1− q)uB
b

�

, which does
not depend on p. Hence the function is either globally convex or globally concave in p. In either
case, the linear function Ub(p) can cross U0(p, p̄∗E , Ua(p̄∗E)) at most twice.

At p = 0,

Ub(0) = 1+∆>
1+∆
1+ r

= U0(0; p̄∗E , Ua(p̄
∗E)) (A.49)

At p = p̄∗E ,

Ub(p̄
∗E) = p̄∗EuA

b + (1− p̄∗E)uB
b =
(3+ 4r −∆)∆− 2

2+ 2r −∆
(A.50)

and
U0(p̄

∗E; p̄∗E , Ua(p̄
∗E)) = Ua(p̄

∗E) = p̄∗EuA
a + (1− p̄∗E)uB

a =
2−∆− 2r∆
2+ 2r −∆

. (A.51)

Hence, from (A.50) and (A.51) it follows that Ub(p̄∗E)≤ U0(p̄∗E; p̄∗E , Ua(p̄∗E)) iff

∆2 − (4+ 6r)∆+ 4≥ 0. (A.52)
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Equation ∆2 − (4+ 6r)∆+ 4= 0 has two solutions for ∆ but only one in [0,1]:

∆̃= 2+ 3r −
Æ

3r(4+ 3r). (A.53)

Consequently, on
�

0, p̄∗E
�

, Ub(p) crosses U0(p; p̄∗E , Ua(p̄∗E)) once and from above when ∆ ≤ ∆̃
and Ub(p) either crosses U0(p; p̄∗E , Ua(p̄∗E)) twice or not at all when ∆> ∆̃.

By the implicit function theorem,

∂

∂∆
pind = −

∂ Ub/∂∆− ∂ U0/∂∆

∂ Ub/∂ p− ∂ U0/∂ p

�

�

�

�

p=pind

(A.54)

Consider p = pind at which Ub(p) crosses U0(p; p̄∗E , Ua(p̄∗E)) from above. Then,

∂ Ub

∂ p
−
∂ U0

∂ p

�

�

�

�

p=pind

= −
r(1− 2pind +∆)

pind(1− pind)
< 0, (A.55)

and the sign of the derivative (A.54) is the same as the sign of

∂ Ub

∂∆
−
∂ U0

∂∆

�

�

�

�

p=pind

=
1

1+ r

�

r + p+
p

p̄∗E

�

(1− p̄∗E)p
(1− p)p̄∗E

�r

w(r,∆)

�

, (A.56)

where

w(r,∆) :=

�

(1+ r)(2+ r)2

2+ r(1−∆)−∆
−

4+ r(5+ 2r)
2+ 2r −∆

−
r(1+ r)
1+∆

− r

�

. (A.57)

The derivative (A.56) is positive if w(r,∆) is positive. The derivative

∂ w
∂∆
=

r(1+ r)
(1+∆)2

−
4+ r(5+ 2r)
(2+ 2r −∆)2

+
(1+ r)2(2+ r)2

(2+ r(1−∆)−∆)2
(A.58)

is equal to 0 at r = 0 and is increasing in r. Indeed, the first term r(1+ r)/(1+∆)2 is increasing
in r by inspection. The second term is also increasing in r:

∂

∂ r

�

−
4+ r(5+ 2r)
(2+ 2r −∆)2

�

=
6+ 5∆+ r(2+ 4∆)
(2+ 2r −∆)3

> 0. (A.59)

The derivative of the third term

∂

∂ r

�

(1+ r)2(2+ r)2

(2+ r(1−∆)−∆)2

�

=
2(1+ r)(2+ r)3 − 2(1+ r)3(2+ r)∆

(2+ r(1−∆)−∆)3
(A.60)

is also positive because it decreases with ∆ and is 2(1+ r)(2+ r)(3+ 2r) > 0 at ∆ = 1. Hence,
w(r,∆) is increasing in ∆ for all r > 0. At ∆ = 0, w(r,∆) = r/(2+ 2r) > 0 and so w(r,∆) > 0
for all r > 1 and 0 ≤ ∆ ≤ 1. Hence, ∂ pind/∂∆ > 0 and so, when ∆ > ∆̃, Ub(p) does not cross
U0(p; p̄∗E , Ua(p̄∗E)) on

�

0, p̄∗E
�

.
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Lemma A.5 is the key step in the proof of Theorem 1. Lemma A.5 implies that, when ∆ is
sufficiently small, there exists a unique threshold pind such that for p < pind , the principal prefers
the immediate decision b to letting the expert learn from source B until stopping at p̄∗E and
taking action a upon stopping. Furthermore, when ∆ is sufficiently large, the principal prefers
the immediate action b to expert’s optimal B-learning at any p ∈

�

0, p̄∗E
�

.

Proof of the theorem

The proof proceeds in three steps. First, it is argued that any principal’s intervention at p ≥ p̌E

does not change the experts learning strategy compared to the optimal strategy of an autonomous
expert. Second, it is argued that any intervention at p < p̌E makes the principal worse off. In the
final step, it is argued that there exists a unique threshold∆∗ such that under flexible delegation,
the principal intervenes at p < p̌E if and only if ∆<∆∗.

STEP 1: By Lemma A.5, if min
�

pind , p̄∗E
	

≥ p̌E , at p̌E the principal prefers action b to expert’s
optimal B-learning. Consequently, under flexible delegation, the principal optimally intervenes to
terminate expert’s B-learning at beliefs p > p̌E . Because under B-learning in the absence of signal,
belief moves towards higher p, the principal’s intervention at some low p ∈

�

p̌E , min
�

pind , p̄∗E
	�

does not change expert’s B-learning continuation strategy at any higher belief compared to his
strategy under complete delegation. Hence, the intervention does not change the principal’s
continuation payoff relative to her continuation payoff under complete delegation.

STEP 2: If pind < p̌E , the principal intervenes at beliefs q ∈ (p∗E , p̌E) at which the autonomous
expert would have pursued A-learning. When the principal terminates A-learning at some belief
q ∈ (p∗E , p̌E) and takes action b, the expert’s value from A-learning is V1(p; q, Vb(q)), where V1 is
defined in (A.4) and Vb is defined in (2).

For q(p∗E , p̌E), V1(p; q, Vb(q)) is bounded above by V1(p; p∗E , Vb(p∗E)) = V ∗1 (p), where V ∗1 (p)
is defined in (A.6), because, by construction, V ∗1 (p) is the value the expert derives from the
optimally terminated A-learning. Since by Lemma A.2, V ∗1 (p) crosses V ∗0 (p) only once and from
above, V1(p; q, Vb(q)) cannot cross V ∗0 (p) at p > p̌E; it either crosses V ∗0 (p) at some bp ∈ [q, p̌E)
or not at all. Consequently, the expert switches to information source A at a lower belief bp than
under complete delegation, if at all. Switching to A-learning at a lower belief bp < p̌E makes the
principal worse off because by Lemma 2, at p̌E the principal prefers A-learning.

STEP 3: There exists a unique threshold ∆∗ such that inequality pind < p̌E holds for all
0 ≤ ∆ < ∆∗ and does not hold otherwise. Indeed, pind is implicitly defined as a solution to
Ub(p) = U0(p; p̄∗E , Ua(p̄∗E)), and by Lemma A.5, ∂ pind/∂∆> 0; threshold p̌E is implicitly defined
as a solution to V ∗1 (p) = V ∗0 (p) and by Lemma 2, ∂ p̌E/∂∆ < 0. When ∆ = 0, the principal and
the expert derive the same value from learning and so pind < p̌E by construction of the optimal
learning policy. When∆= ∆̄, pind > p̌E because p∗E = p̄∗E < p∗P = p̄∗P and the principal derives
no value from expert’s learning. Then, monotonicity of the derivatives ∂ pind/∂∆ > 0 and ∂ p̌E/

∂∆< 0 implies that there exists a unique 0≤∆∗ ≤ ∆̄ that solves pind = p̌E .
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