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Abstract

In recent decades, analysing the progression of mortality rates has become

very important for both public and private pension schemes, as well as for the

life insurance branch of insurance companies. Traditionally, the tools used in

this �eld were based on stochastic and deterministic approaches that allow ex-

trapolating mortality rates beyond the last year of observation. More recently,

new techniques based on machine learning have been introduced as alterna-

tives to traditional models, giving practitioners new opportunities. Among

these, neural networks play an important role due to their computation power

and �exibility to treat the data without any probabilistic assumption. In this

paper, we apply multi-task neural networks, whose approach is based on lever-

aging useful information contained in multiple related tasks to help improve the

generalized performance of all the tasks, to forecast mortality rates. Finally,

we compare the performance of multi-task neural networks to that of existing

single-task neural networks and traditional stochastic models on mortality data

from seventeen di�erent countries.

1 Introduction

Arti�cial neural networks, abbreviated as neural networks (NNs), are a sub�eld of
machine learning, commonly referred to as deep learning, that have been applied to
demography in recent years for analyzing and predicting mortality rates and other
mortality-related metrics. Generally speaking, an NN can be seen as a universal
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function approximator, i.e., a mapping that, once properly structured and trained,
can approximate any function that links a series of inputs to outputs, see Hornik
et al. (1989). Focusing on mortality forecasting, there are two advantages of using
NNs instead of traditional stochastic models such as the Lee-Carter Model and its
extensions, see Lee and Carter (1992). Firstly, they simplify the model de�nition
and free us from specifying how variables, such as age and calendar year, interact.
Secondly, they allow us to consider the mortality experience of several populations
simultaneously. Among the most important contributions to NNs applied to mortal-
ity forecasting, the following studies are among the ones that stand out: Richman
and Wüthrich (2021), and Perla and Scognamiglio (2023) exploit feedforward NNs;
Nigri et al. (2019), Chen and Khaliq (2022), Lindholm and Palmborg (2022), and
Euthum et al. (2024) use long short-term memory NNs; Perla et al. (2021), Wang
et al. (2021), and Schnürch and Korn (2022) utilize convolutional NNs; and Hainaut
(2018) as well as Scognamiglio (2022) apply hybrid models.
In this paper we focus on simultaneously forecasting the mortality rates of a given
set of countries. In order to do that, we implement a methodology called multi-task
NNs, consisting of several NNs that share a certain number of parameters. In the
past years, multi-task deep learning has been applied with promising results in sev-
eral �elds, such as computer vision, see Girshick (2015), natural language processing,
see Collobert and Weston (2008), speech recognition, see Deng et al. (2013), and in-
surance, see Lindholm et al. (2023). Finally, we recommend Zhang and Yang (2021)
for a theoretical overview of multi-task NNs.
Speci�cally, we propose a hierarchical network structure for multi-population mor-
tality forecasting. The lower hidden layers of these multi-task NNs, i.e. those closer
to the input layer, are shared across all countries, capturing the general properties of
mortality trends, while the higher hidden layers, i.e. those closer to the output layer,
are country-speci�c or shared only within clusters of countries with more similar
past mortality trends. The clusters are obtained by applying the k-means clustering
machine learning technique to past data for some key mortality metrics, i.e. life
expectancy and lifetime standard deviation. Finally, each country has its own layer
to learn its distinct property.
In this paper, we quantitatively compare multi-task NNs with pre-existing single-
task NNs and stochastic models considering mortality data of seventeen di�erent
countries. The comparison is based of mortality rates, life expectancy and lifetime
standard deviation forecasting errors. With multi-task NNs, we expect to improve
the performance of NNs at country-speci�c level dedicating more parameters to sin-
gle countries.
Our main conclusions are that multi-task NNs performance compared to single-task
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NNs and stochastic models depends on the metric, age range, and training period
considered. Overall, single-task NNs gives the best results in terms of mortality
rates forecasting error, while multi-task NNs and stochastic models have the low-
est forecasting error respectively for life expectancy and lifetime standard deviation.
Furthermore, implementing a weighting scheme in their training improves the multi-
task NNs performance, especially for life expectancy and lifetime standard deviation
when considering wider age ranges.
The remainder of this paper is organized as follows. Section 2 contains a general
theoretical framework for feedforward NNs, followed by a practical application to
mortality rates forecasting. In Section 3, we introduce feedforward multi-task NNs
and present the NNs proposed by us. In Section 4, the data used in the empirical
analysis and settings for the training of the NNs are reported. In Section 5, the
numerical results are presented and discussed. In Section 6, we draw the conclusion
and propose some future outlooks.

2 Feedforward neural networks

Feedforward neural networks (FNNs) are the most basic type of NN. Information
�ows in one direction, from input neurons through hidden layers to output neurons,
see Schmidhuber (2015). Cycles and loops are not present in this type of NN. They
are generally used for classi�cation, regression, and pattern recognition, and, in par-
ticular, they can be applied to mortality forecasting. In this context, FNNs are
especially useful for mortality forecasting when the focus is on modelling the rela-
tionship between input features (age, calendar year, cohort year, etc.) and mortality
rates.

2.1 Notation and terminology

Given a set of L input variables X = (X1, . . . , XL) that can be numerical or categor-
ical, or a combination of them, and the corresponding output Y , we have to focus
on the hyperparameters of the NNs, i.e. those settings that have to be set before
the parameters are learnt in the training process, see Goldberg (2017) and Prince
(2023). These hyperparameters are:

� N : number of hidden layers in the NN.

� L1,. . . ,LN : numbers of neurons for each layer.
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� f (1),. . . , f (N+1): activation functions of the NN. Notice: f (1) will be the activa-
tion function of the �rst hidden layer, while f (N+1) will be the activation func-
tion of the output layer. Some popular activation functions, that are also used
in this paper, are Sigmoid (also called Logistic), Hyperbolic Tangent (tanh),
and Recti�ed Linear Unit (ReLU), see Dubey et al. (2022).

Once we have speci�ed these hyperparameters, it is possible to estimate the param-
eters B(1) ∈ RL1×L, B(2) ∈ RL2×L1 , . . . , B(N) ∈ RLN×LN−1 , B(N+1) ∈ R1×LN , and
c1 ∈ RL1 , c2 ∈ RL2 , . . . , cN ∈ RLN , cN+1 ∈ R, that represent respectively weight
matrices and intercept vectors. These are the parameters that are learned during
the training of the network.
The layers will be so computed, using matrix notation:

Z(1) = f (1)(c1 +B(1)X) ∈ RL1 , (1)

where X ∈ RL is the input vector,

Z(j) = f (j)(cj +B(j)Z(j−1)) ∈ RLj , j = 2, . . . , N. (2)

Finally, for the output layer:

Ŷ = Z(N+1) = f (N+1)(cN+1 +B(N+1)Z(N)) ∈ R. (3)

We now discuss the training of the NN during which all the weight matrices and
intercept vectors are estimated through a process called backpropagation. In order
to do that, the additional hyperparameters reported below have to be speci�ed, see
Prince (2023).

� The loss function is the criterion through which, starting from the observed
value of the outputs and the predicted output of the network, we calculate the
quantity that has to be minimized when we train the NN. In the remainder of
this paper, the mean squared error (MSE) is used as loss function:

MSE =
n∑

i=1

(Yi − Ŷi)
2, (4)

where n is the number of observations, Yi are the observed values of the output,
Ŷi are the values predicted by the NN as in equation (3).

� The optimizer is the algorithm used during the training phase to adjust the
parameters of the neural network in order to minimize the loss. In the re-
mainder of this paper, we will utilize the Adam optimizer (Adaptive Moment
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Estimation), a gradient-based optimization algorithm that leverages �rst-order
(gradient) and second-order (squared gradient) moment estimates to adapt the
learning rate for each parameter, see Kingma and Ba (2014).

� The number of epochs is the amount of times the optimizer runs on the
training set.

� The validation set is a subset of the available data used to provide an unbiased
evaluation of a model �t identifying eventual over�tting while the training set
is used to tune the NN parameters.

� The batch size de�nes the number of training samples processed simultane-
ously before the model's weights are updated. It determines how many sam-
ples are passed through the network in each forward and backward pass during
training.

� The learning rate controls the size of the steps taken during the optimization
process when adjusting the weights of the model.

2.2 Feedforward single-task neural network applied to mor-

tality forecasting

In this subsection, we are going to provide a framework for forecasting of mortality
rates with feedforward single-task NNs based on the paper of Richman and Wüthrich
(2021). The input variables considered in the NNs are calendar year t, age x, gender
g, and country p, X̃ = (t, x, g, p), and they will be treated as categorical with the
single exception of calendar year, which will be treated as numerical, while the out-
put, Y , is the central mortality rate m(g,p)

x,t at age x, year t, gender g and population
p. In order to treat the categorical variables in the input layer, embedding layers are
used, see Mikolov et al. (2013). An embedding layer, from a mathematical point of
view, is a function that maps discrete data into continuous vector representations.
So, given a categorical variable with b distinct categories or levels (e.g., the categories
"male" and "female" for the variable "gender", the di�erent countries for the vari-
able "country", etc.), and a dimension d, which represents the size of the continuous
embedding space (e.g., each categorical level will be represented by a vector in Rd),
the embedding layer performs the mapping

f : {0, 1, . . . , b− 1} → Rd. (5)

In a NN, the embedding layer can be identi�ed with a parametrized matrix belonging
to Rb×d. The parameters of the embedding layers, similarly to the parameters of
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the hidden layers, are learned as the network is trained. Notice that if d = 1,
the embedding layer becomes equivalent to the classical treatment of categorical
variables in regression models: each level of the variable is coded with a speci�c value.
Following Richman and Wüthrich (2021), d is set equal to 5 for all three categorical
variables, so: x → x ∈ R5, g → g ∈ R5, and p → p ∈ R5. Once embedding
vectors (x, g and p) have been created, we have the vector X = (t,x,g,p) ∈ R16

that represents the actual input that will be passed to the �rst hidden layer of the
NN. The number of hidden layers here considered di�ers by the NN considered,
N = 2 or 5; the number of neurons in each hidden layer is equal to 128 neurons,
L1 = · · · = LN = 128; the output layer that represents the mortality rate for the
gender g in the country p at age x in year t has one neuron, LN+1 = 1, with sigmoid
activation function,

m
(g,p)
x,t = Z(N+1) =

1

1 + e−(cN+1+B(N+1)Z(N))
. (6)

The NNs also di�er among themselves by the type of activation function in the hidden
layers, f (1) = · · · = f (N) = tanh or f (1) = · · · = f (N) =ReLU, and by the presence
or not of a direct connection, called a skip connection, between the embedding layer
and the last hidden layer. These NNs are referred as DEEPi, i = 1, . . . , 6, and the
details about their architecture are reported in Table 1 and in Figure 1.

Table 1: Summary of the NNs DEEPi, i = 1, . . . , 6, architectures.

model # hidden layers activation function skip connection

DEEP1 2 ReLU No

DEEP2 2 tanh No

DEEP3 5 ReLU No

DEEP4 5 tanh No

DEEP5 5 ReLU Yes

DEEP6 5 tanh Yes
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3 Multi-task neural networks

Generally speaking, multi-task deep learning consists of di�erent NNs (one for each
task) that share at least one layer. The shared part of the NNs can be the input layer,
one or more hidden layers, or a combination of them. It is relevant to notice that
the output layer cannot be shared, as we must have one output neuron for each task.
Given that we have P di�erent datasets, each corresponding to a distinct country,
this paper employs multi-task NNs with a multi-input, multi-output structure, see
Menet et al. (2023). Speci�cally, these NNs share hidden layers across tasks while
maintaining P separate input and output layers.
Let us now consider P > 1 countries and the following P tasks: Tp = �forecasting the
mortality rates for pth country�, p = 1, . . . , P . If we want to forecast the mortality
rates of the P countries using a feed-forward NN, then we have three di�erent op-
tions. The �rst consists of using P di�erent NNs with their own input layer, hidden
layers, and output layer, with the pth of them to predict the mortality rates of the
pth country. This solution can be called single-task NNs approach and is graphically
represented in Figure 2(a). The second option is to use one single-task NN like those
presented in Section 2 (see Figure 2(b)). The third option is to consider the P NNs
sharing one or more of their hidden layers, and in this way we will have a multi-
task NN, see Figure 2(c). Generally, a multi-task NN has three main advantages
compared to using P di�erent single-task NNs. Firstly, it noticeably improves the
training time as we optimize just one NN rather than P di�erent NNs. Secondly, as
the countries are likely to share some common behaviors in their mortality evolution,
such as the long-term trend of improving mortality, there will likely be mutual ben-
e�ts for all the P tasks by training them together, see Crawshaw (2020). Thirdly,
the multi-task neural network will operate on a single large dataset rather than P
smaller datasets, thereby capturing a greater amount of information and leading to
more robust predictions.
At this point, we pose a di�erent question: what is the advantage of using a multi-
task NN (see Figure 2(c)) compared to a single-task NN, as presented in Section 2
(see Figure 2(b))? The primary advantage is that a multi-task NN not only shares
knowledge across related tasks through shared layers (as in single-task NNs) but also
enables task-speci�c specialization via country-speci�c layers. For instance, when a
single-task NN is trained on a large set of countries, it can become dominated by the
majority countries�those with similar mortality trends�while minority countries,
such as the US and Japan, which exhibit distinct mortality patterns, tend to be
under-represented. This imbalance often leads to poorer predictions for the minor-
ity countries. In the Results Section, among other things, we will evaluate whether
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(a) Single-task NN (b) Single-task NN for multi-population

(c) Multi-task NN

Figure 2: Illustrations of single and multi-task NNs for mortality prediction.

the multi-task structure in 2(c), with its country-speci�c layers designed to capture
unique mortality patterns, can address this issue e�ectively.

3.1 Architecture of the multi-task NNs for mortality forecast-

ing

Similarly to the NNs discussed in Section 2, the multi-task NNs will be of the feedfor-
ward type. They will have P input layers, one for each country, where the variables
are calendar year, age, country, and gender. There are then P di�erent embedding
layers where each categorical variable, i.e. age, country and gender, is transformed
into a vector belonging to R5 as explained in Section 2.2. These embedding layers are
fully connected to two hidden layers with 128 neurons and tanh activation function,
following Richman (2022). The second of these intermediate layers is then fully con-
nected to a third hidden layer with 64 neurons and tanh activation function. From
the third hidden layer, there are rami�cations with P country-speci�c hidden layers
having 32 neurons and tanh activation function. Finally, these P layers are con-
nected to P output layers where the activation function is of Sigmoid type. Figure
3 reports a graphical representation of the just-described NN, which will be referred

9



to as MT1 in the remainder of this paper.

In more formal terms, the layers of MT1 will be computed as follows:

� Input layer:
X̃p = (t, x, g, p), p = 1, . . . , P. (7)

� Embedding layer:

Xp = (t,x,g,p) ∈ R16, p = 1, . . . , P, (8)

X = (X1, . . . ,XP ) ∈ R16×P . (9)

� Hidden layer 1:
Z(1) = f (1)(c(1) +B(1)X) ∈ R128, (10)

where c(1) ∈ R128, B(1) ∈ R128×16×P , and f (1) = tanh.

� Hidden layer 2:
Z(2) = f (2)(c(2) +B(2)Z(1)) ∈ R128, (11)

where c(2) ∈ R128, B(2) ∈ R128×128, and f (2) = tanh.

� Hidden layer 3:
Z(3) = f (3)(c(3) +B(3)Z(2)) ∈ R64, (12)

where c(3) ∈ R64, B(3) ∈ R64×128, and f (3) = tanh.

� Country speci�c layers:

Z(4)
p = f (4)(c(4)p +B(4)

p Z(3)) ∈ R32, p = 1, . . . , P, (13)

where c
(4)
p ∈ R32, B(4)

p ∈ R32×64, and f (4) = tanh.

� Output layers:

Z(5)
p = f (5)(c(5)p +B(5)

p Z(4)
p ) ∈ R, p = 1, . . . , P, , (14)

where c
(5)
p ∈ R, B(5)

p ∈ R32, and f (5) = sigmoid.
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Figure 3: Graphical representation of the multi-task NN MT1.
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3.2 Clustering of the third hidden layer

When considering a group of countries, it is natural that some share similar mor-
tality trends while di�ering from others. These similarities and di�erences can stem
from various social, economic, and geographical factors. For example, the Scandi-
navian countries, characterised by high wealth levels, extensive social welfare, and
geographical proximity, will likely exhibit similar mortality evolutions. To enhance
the performance of the multi-task network, we propose clustering the third hidden
layer. This approach allows clusters of countries with similar mortality trends to
share additional parameters, creating a hierarchical network structure. In this de-
sign, lower layers (i.e., hidden layers 1 and 2) capture the overall mortality trend
across all countries, while the higher layer (i.e., hidden layer 3) extracts patterns
shared by clusters of countries with similar trends. Finally, each country-speci�c
layer learns the distinct mortality pattern for its respective country. To identify
countries with similar survival patterns e�ectively, we can analyze historical mortal-
ity data using speci�c techniques that group countries into homogeneous sets known
as clusters. For relevant studies on clustering techniques in the context of mortality
forecasting, see Danesi et al. (2015), Nandini and Sanjjushri (2023), and Carracedo
et al. (2018).

Having regard to the above discussion, we aim to assess the advantages of clus-
tering the P countries based on their past mortality experiences and construct a new
NN architecture that incorporates this clustering. To achieve this, we implement a
two-step procedure for each K = 2, 3, where K denotes the number of clusters:

1. We use K-means clustering for grouping the P countries into K groups, see
Scitovski et al. (2021). In order to do that, we consider the observed changes,
in a chosen training period, of the following metrics:

� Life expectancy for a newborn, truncated at age 90, see Dickson et al.
(2019):

e̊0:90 ,t =
90∑
x=1

x−1p0,t

(
1− 1

2
q0+x−1,t

)
, (15)

where qx,t and hpx,t are respectively the 1 year probability of death at age
x in year t and the probability of surviving for h years for an individual
aged x in year t. These quantities can be derived from the mortality rates
mx,t using the following formulas:

qx,t =
mx,t

1 + 1
2
mx,t

, (16)
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hpx,t =
h∏

j=1

(1− qx+j−1,t). (17)

� Standard deviation of the lifetime of a newborn, truncated at age 90:

SD0:90 ,t =

√√√√ 89∑
x=0

x|1q0,t (x− e̊0:90 ,t)
2 + 90p0,t(90− e̊0:90 ,t)

2, (18)

where h|1qx,t represents the deferred 1 year probability of death between
ages x+ h and x+ h+ 1 for an individual of age x in year t, and is given
by

h|1qx,t = hpx,tqx+h,t. (19)

2. For each K, we build the NN MTK, similar to MT1 but with K clustered
hidden layers instead of hidden layer 3. These clustered hidden layers have
64 neurons and a tanh activation function, and are fully connected to hidden
layer 2. Furthermore, they are connected with the country-speci�c layers based
on the following rule: if a country is in cluster k, with k = 1, . . . , K, then its
country-speci�c layer is fully connected with cluster layer k. For the remaining
parts of the NN, i.e. input layers, embedding layers, hidden layer 1, hidden
layer 2, country-speci�c hidden layers, and output layers, they are speci�ed
as in MT1. Formulas for calculating input layer, embedding layer and hidden
layers 1 and 2 are the same of (7)-(11). For the cluster layers, we have

Z
(3)
k = f (3)(c

(3)
k +B

(3)
k Z(2)) ∈ R64, k = 1, . . . , K, (20)

where c
(3)
k ∈ R64, B(3)

k ∈ R64×128, and f (3) = tanh. For the country speci�c
layers, we have

Z(4)
p = f (4)(c(4)p +

K∑
k=1

Ip,kB
(4)
p Z

(3)
k ) ∈ R32, p = 1, . . . , P, (21)

where c
(4)
p ∈ R32, B(4)

p ∈ R32×64, f (4) = tanh, and Ip,k = 1 if country p belongs
to cluster k and Ip,k = 0 otherwise. Finally, the formula for the output layer is
the same as (14).

The architectures of MT2 and MT3 can be found respectively in Figures 4 and 5.
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Figure 4: Graphical representation of the multi-task NN MT2.
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Figure 5: Graphical representation of the multi-task NN MT3.
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4 Data, clustering and training

The choice of the countries we consider in the quantitative analysis is based on three
factors: �rstly, they must have data available in the HMD1. Secondly, historical data
series for these countries must be complete from the year 1950 onwards. Thirdly, each
selected country must have had a population of at least 3 million in 1950. In light of
this, we consider historical mortality data for males and females from P = 17 coun-
tries: Australia, Austria, Belgium, Canada, Denmark, England & Wales, Finland,
France, Italy, Japan, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland,
and the US. For these countries, we consider the yearly central mortality rates ob-
tained from HMD in three di�erent age bands: 0-89, 20-89, and 55-89 to test the
sensitivity of the di�erent approaches with respect to the age band. Regarding the
choice of the time interval, we considered, following Richman and Wüthrich (2021), a
50-years training period (1950-1999) and a 20-years test period (2000-2019). Finally,
in order to study how the performance of the models varies based on the length of
the training period, we also considered the following training sets: 1955-1999, 1960-
1999, 1965-1999, 1970-1999, 1975-1999, and 1980-1999 (using 20-89 as reference age
range).
The results of clustering using the approach described in Section 3.1 are reported
in Table 2. Looking at the composition of the clusters obtained, we notice that
Japan and Spain are clustered together in both cases. We also have a group of Euro-
pean countries, i.e. Austria, Belgium, Finland, France, Italy and Portugal that are
clustered together, and another one with Australia, Canada, Denmark, England &
Wales, Netherlands, Norway, Sweden, Switzerland, and the USA.
Regarding the training of the multi-task NNs, we used the following hyperparame-
ters: 150 epochs when using 55-89 age band, and 250 epochs when using 20-89 and
0-89 age bands, batch size equal to 32, learning rate equal to 0.0005, Adam optimizer,
and mean squared error as loss function:

L =
P∑

p=1

1

np

np∑
j=1

w
(p)
j (m

(p)
j − m̂

(p)
j )2 (22)

where np is the total number of observations for country p, and w
(p)
j is the relative

weight. We set w
(p)
j = 1 in the unweighted case and w

(p)
j = 1

m
(p)
j

in the weighted

case. In the following, results obtained using multi-task NNs are denoted by MT1,
MT2, and MT3, in the unweighted case, and by MT1 w, MT2 w, and MT3 w, in

1Human Mortality Database: www.mortality.org.
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the weighted case. Finally, we repeated the training of each NN 10 times in order to
ensure robustness towards the e�ects of randomness in the training process.

Table 2: Results of clustering.

MT1 MT2 MT3

Country Cluster Country Cluster Country Cluster

Australia

1

Japan

1

Australia

1

Austria Portugal Canada

Belgium Spain Denmark

Canada Australia

2

England & Wales

Denmark Austria Netherlands

England & Wales Belgium Norway

Finland Canada Sweden

France Denmark Switzerland

Italy England & Wales USA

Japan Finland Japan
2

Netherlands France Spain

Norway Italy Austria

3

Portugal Netherlands Belgium

Spain Norway Finland

Sweden Sweden France

Switzerland Switzerland Italy

USA USA Portugal

5 Results

In this section, we compare goodness of the forecasts obtained using multi-task NNs,
MT1, MT2 and MT3 (both in the weighted and unweighed case), the single-task
NNs DEEP1, DEEP2, DEEP3, DEEP4, DEEP5 and DEEP6, and 3 widely-used
stochastic mortality models from the literature - the single population version of the
LC model, see Lee and Carter (1992),

ln(m
(g,p)
x,t ) = α(g,p)

x + β(g,p)
x κ

(g,p)
t , (23)

the single population version of the CBD model2, see Cairns et al. (2006),

ln(m
(g,p)
x,t ) = κ

(1,g,p)
t + κ

(2,g,p)
t (x− x̄), (24)

and a version of the ACF model, see Chen and Millossovich (2018), used for modelling
simultaneously both gender and a set of di�erent countries,

ln(m
(g,p)
x,t ) = α(g,p)

x +BxKt + β(g)
x k

(g)
t + β(g,p)

x k
(g,p)
t . (25)

2CBD model is only tested in the 55-89 age range, for which it was designed.
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Here α
(g,p)
x , β(g)

x , β(g,p)
x , and Bx are age-dependent parameters, x̄ = 72, the average

over the population age range 55-89, while k(g)
t , k(g,p)

t , k(1,g,p)
t , k(2,g,p)

t and Kt are time-
dependent stochastic factors. Here k(g,p)

t (in the LC model), k(1,g,p)
t , k(2,g,p)

t and Kt are
modelled as a random walk with drift, while k

(g)
t and k

(g,p)
t (in the ACF model) are

modelled as an AR(1). Notice that unlike the ACF model, the LC and CBD mod-
els treat di�erent countries independently. Both the �tting and the forecasting of
these three models are obtained using the StMoMo package, see Villegas et al. (2018).

The comparison of models results is based on three metrics: mean absolute fore-
casting error (MAFE) for individual yearly death rates, for life expectancy and for
standard deviation of the lifetime. Figures 6, 7, and 8 report the three metrics re-
spectively for the 55-89, 20-89, and 0-89 age ranges while using 1950-1999 as training
period and 2000-2019 as test period. Figures 10-18 extend this analysis by showing
the three metrics for individual countries. Figure 9 shows the evolution of the three
metrics using di�erent lengths for the training period using 20-89 as age range. Fi-
nally, Table 3 summarises the total number of parameters in each approach for the
three age ranges considered here.3

We observe that there is variability in the di�erent approaches performance based
on the metric and age range considered. In Figure 6, we notice how multi-task NNs
show noticeable results in the 55-89 age range both with and without the weighting
scheme. Indeed, they outperform all other approaches for life expectancy MAFE.
Multi-task NNs with weighting scheme results appear to be the best ones for mor-
tality rates MAFE, while in standard deviation MAFE they are outperformed only
by Lee-Carter and ACF models.

3Notice that MT1 w, MT2 w, and MT3 w have the same number of parameters of respectively

MT1, MT2, and MT3.
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(a) MAFE - Mortality Rates

(b) MAFE - Life Expectancy

(c) MAFE - Standard Deviation

Figure 6: Comparison of MAFE metrics for Mortality Rates, Life Expectancy, and
Standard Deviation. Age range: 55-89.
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Focusing on 20-89 age range in Figure 7, we notice a big di�erence with respect
to the 55-89 age range case. Firstly, multi-task NNs without a weighting scheme
turn out to be the worst ones for all three the metrics considered here. In contrast,
multi-task NNs with a weighting scheme still show good results. Indeed, they are
among the best ones for mortality rate MAFE, alongside DEEP5 and DEEP6, for
life expectancy MAFE, alongside DEEP3, and for standard deviation, where they
are outperformed only by Lee-Carter and ACF models. The reason for such a big
di�erence between the performance of multi-task NNs with and without weighting
scheme, especially for life expectancy and standard deviation, is likely due to the
training of the NNs. Indeed, mortality rates at lower ages are underestimated, due
to their lower magnitude, during the training process which tends to place more
emphasis on observations with higher magnitude, such as the ones at older ages. As
a consequence, the NNs will produce poor forecast for lower ages mortality rates and,
as a consequence, bigger errors for life expectancy and standard deviation which are
heavily in�uenced by mortality at early ages.
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(a) MAFE - Mortality Rates

(b) MAFE - Life Expectancy

(c) MAFE - Standard Deviation

Figure 7: Comparison of MAFE metrics for Mortality Rates, Life Expectancy, and
Standard Deviation. Age range: 20-89.
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Finally, focusing on Figure 8, we observe a similar pattern also when considering
the 0-89 age range. Indeed, the multi-task NNs trained without a weighting scheme
result in the poorest performance for all the three metrics considered. Also multi-task
NNs with a weighting scheme have a weaker performance compared to the other two
cases considered previously. In fact, we notice how Lee-Carter and ACF models, and
DEEP1, DEEP3, and DEEP5 single-task NNs have better performance compared to
them. Nevertheless, the advantage of using a weighting scheme is still important for
multi-task NNs, especially when considering life expectancy and standard deviation.
Finally, here we can notice the bene�t of clustering the third hidden layer in multi-
task NNs (notice that the clustering is based on historical values of life expectancy
and standard deviation in the age range 0-89). Indeed, both MT2 and MT3 show
an improvement to MT1 in all the metrics considered here. We also observe that
when introducing a weighting scheme in the training of the NNs this bene�t tends
to disappear.
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(a) MAFE - Mortality Rates

(b) MAFE - Life Expectancy

(c) MAFE - Standard Deviation

Figure 8: Comparison of MAFE metrics for Mortality Rates, Life Expectancy, and
Standard Deviation. Age range: 0-89.
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In Figures 10-18, the MAFEs by country and approach are shown. Speci�cally,
the �lled black dot (and the corresponding vertical black line) represents the global
MAFE (i.e. the same metric showed in Figures 6-8), while the coloured dots represent
the MAFE for individual countries. Focusing on the US and Japan, i.e. two countries
with particular pattern in the evolution of mortality in the last decades, we notice
how the multi-task NNs without a weighting scheme provide good results, the MAFEs
are lower than the average across countries, when the age range is large (20-89 an
0-89). On the other hand, notice how the best performing ST NNs tend to have
a notably higher MAFE for the US when considering life expectancy and standard
deviation. When introducing a weighting scheme in the training of the multi-task
NNs, the bene�ts on the two countries tend to disappear, with their MAFEs being
often above the global MAFE. Overall when considering all countries, we notice how
in the 55-89 age range case, multi-task NNs tend to have lower dispersion across the
countries' MAFEs compared to single-task NNs.

In Figure 9, the minimum MAFE by approach, training period (while keeping
�xed the age range 20-89), and metric is reported. The minimum MAFEs for single-
task NNs, multi-task NNs without weighting scheme, multi-task NNs with weighting
scheme, and stochastic models are obtained as the minimum among DEEP1-DEEP6,
MT1-MT3, MT1 w-MT3 w, and LC-ACF, respectively.
We can observe how for mortality rates MAFE, single-task NNs generally give the
best results with only two exceptions. Although the gap with stochastic models nar-
rows when considering shorter training periods, multi-task NNs performance appears
to be less steady, and results to be the best one only in one case. Nevertheless, the
bene�t of using a weighting scheme is noticeable in all the training periods considered
here.
Finally, the stochastic models outperform NNs in all cases considered while focusing
on lifetime standard deviation. They always have the lowest minimum MAFE, de-
spite the gap with NNs getting more narrow in the longest training period, showing
a similar trend also found in the mortality rates MAFE. With regards to the NNs,
single-task and multi-task alternate each other in terms of best performance with a
consistent result that using a weighting scheme improves the forecasting accuracy of
multi-task NNs.

6 Conclusion

The results show that using a 50-year training period, the performance of multi-task
NNs compared to single-task NNs and traditional stochastic models depends on the
metric considered and, especially, on the age range. More speci�cally, the out-of-
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Figure 9: Minimum MAFE for single-task NNs, multi-task NNs and stochastic mod-
els by training period and metric considered.
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Table 3: Number of parameters by approach and age range.

0-89 20-89 55-89

LC model 7,820 6,460 4,080

CBD model - - 3,400

ACF model 8,240 6,820 4,335

DEEP1 20,386 20,286 20,111

DEEP2 20,386 20,286 20,111

DEEP3 71,458 71,358 71,183

DEEP4 71,458 71,358 71,183

DEEP5 73,506 73,406 73,231

DEEP6 73,506 73,406 73,231

MT1 108,354 106,654 103,679

MT2 116,866 115,166 112,191

MT3 125,378 123,678 120,703

sample precision of multi-task NNs is good with a shorter age range but tends to
deteriorate when this age range is increased. This is likely due to the underestimation
of lower ages mortality rates that happen in the training period. Adding a weighting
scheme to multi-task NNs, markedly improves their performance, especially for life
expectancy and standard deviation. Finally, it is noticeable that multi-task NNs
with clustering based on past life expectancy and standard deviation show better
results only when a weighting scheme is not considered.
When testing the models on shorter training periods, we arrive at a similar conclu-
sion with respect to the 1950-1999 training period case. What is worthy to point out
is that traditional stochastic models tend to perform relatively better compared to
NNs when considering a short training period.
In terms of future research on multi-task NNs, at least �ve straightforward develop-
ments could be considered: �rstly, implementing multi-task NNs where the generic
task is based on a categorical variable such as age and gender, rather than, or along-
side, country. Secondly, using a di�erent machine learning technique, such as one
speci�cally designed for time series, to cluster the countries based on past mortality
experience. Thirdly, a penalization could be added to the loss function of the NNs
to ensure that female and male mortality do not diverge, or even that the mortal-
ity of di�erent populations does not diverge, achieving some degree of coherence.
Fourthly, forecasting mortality rates in a di�erent context, such as by cause of death
within a single population. Fifthly, further analysis aiming to study the question of
explainability of multi-task NNs could be conducted, see Perla et al. (2024).
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A Results by country

Figure 10: Mean absolute forecasting error by country and approach. Metric con-
sidered: mortality rate. Age range: 55-89.
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Figure 11: Mean absolute forecasting error by country and approach. Metric con-
sidered: life expectancy. Age range: 55-89.

31



Figure 12: Mean absolute forecasting error by country and approach. Metric con-
sidered: standard deviation. Age range: 55-89.
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Figure 13: Mean absolute forecasting error by country and approach. Metric con-
sidered: mortality rate. Age range: 20-89.
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Figure 14: Mean absolute forecasting error by country and approach. Metric con-
sidered: life expectancy. Age range: 20-89.
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Figure 15: Mean absolute forecasting error by country and approach. Metric con-
sidered: standard deviation. Age range: 20-89.
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Figure 16: Mean absolute forecasting error by country and approach. Metric con-
sidered: mortality rate. Age range: 0-89.
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Figure 17: Mean absolute forecasting error by country and approach. Metric con-
sidered: life expectancy. Age range: 0-89.
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Figure 18: Mean absolute forecasting error by country and approach. Metric con-
sidered: standard deviation. Age range: 0-89.
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