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Abstract
In recent decades, analysing the progression of mortality rates has become very important for both public and private
pension schemes, as well as for the life insurance branch of insurance companies. Traditionally, the tools used in
this field were based on stochastic and deterministic approaches that allow extrapolating mortality rates beyond
the last year of observation. More recently, new techniques based on machine learning have been introduced as
alternatives to traditional models, giving practitioners new opportunities. Among these, neural networks (NNs)
play an important role due to their computation power and flexibility to treat the data without any probabilistic
assumption. In this paper, we apply multi-task NNs, whose approach is based on leveraging useful information
contained in multiple related tasks to help improve the generalized performance of all the tasks, to forecast mortality
rates. Finally, we compare the performance of multi-task NNs to that of existing single-task NNs and traditional
stochastic models on mortality data from 17 different countries.

1. Introduction
Artificial neural networks, abbreviated as neural networks (NNs), are a subfield of machine learn-
ing, commonly referred to as deep learning, that have been applied to demography in recent years for
analysing and predicting mortality rates and other mortality-related metrics. Generally speaking, an NN
can be seen as a universal function approximator, that is, a mapping that, once properly structured and
trained, can approximate any function that links a series of inputs to outputs, see Hornik et al. (1989).
Focusing on mortality forecasting, there are two advantages of using NNs instead of traditional stochastic
models such as the Lee–Carter Model and its extensions, see Lee and Carter (1992). First, they simplify
the model definition and free us from specifying how variables, such as age and calendar year, inter-
act. Second, they allow us to consider the mortality experience of several populations simultaneously.
Among the most important contributions to NNs applied to mortality forecasting, the following studies
are among the ones that stand out: Richman and Wüthrich (2021), and Perla and Scognamiglio (2023)
exploit feedforward NNs; Nigri et al. (2019), Chen and Khaliq (2022), Lindholm and Palmborg (2022),
and Euthum et al. (2024) use long short-term memory NNs; Perla et al. (2021), Wang et al. (2021),
and Schnürch and Korn (2022) utilize convolutional NNs; and Hainaut (2018) as well as Scognamiglio
(2022) apply hybrid models.

In this paper, we focus on simultaneously forecasting the mortality rates of a given set of countries.
In order to do that, we implement a methodology called multi-task NNs, consisting of several NNs
that share a certain number of parameters. In the past years, multi-task deep learning has been applied
with promising results in several fields, such as computer vision, see Girshick (2015), natural language
processing, see Collobert and Weston (2008), speech recognition, see Deng et al. (2013), and insurance,
see Lindholm et al. (2023). Finally, we recommend Zhang and Yang (2021) for a theoretical overview
of multi-task NNs.
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Specifically, we propose a hierarchical network structure for multi-population mortality forecasting.
The lower hidden layers of these multi-task NNs, which is those closer to the input layer, are shared
across all countries, capturing the general properties of mortality trends, while the higher hidden layers,
that is those closer to the output layer, are country-specific or shared only within clusters of countries
with more similar past mortality trends. The clusters are obtained by applying the k-means clustering
machine learning technique to past data for some key mortality metrics, that is, life expectancy and
lifetime standard deviation. Finally, each country has its own layer to learn its distinct property.

In this paper, we quantitatively compare multi-task NNs with pre-existing single-task NNs and
stochastic models considering mortality data of seventeen different countries. The comparison is based
of mortality rates, life expectancy, and lifetime standard deviation forecasting errors. With multi-task
NNs, we expect to improve the performance of NNs at country-specific level dedicating more parameters
to single countries.

Our main conclusions are that multi-task NNs performance compared to single-task NNs and stochas-
tic models depends on the metric, age range, and training period considered. Overall, single-task NNs
give the best results in terms of mortality rates forecasting error, while multi-task NNs and stochastic
models have the lowest forecasting error, respectively, for life expectancy and lifetime standard devi-
ation. Furthermore, implementing a weighting scheme in their training improves the multi-task NNs
performance, especially for life expectancy and lifetime standard deviation when considering wider age
ranges.

The remainder of this paper is organized as follows. Section 2 contains a general theoretical frame-
work for feedforward NNs, followed by a practical application to mortality rates forecasting. In Section 3,
we introduce feedforward multi-task NNs and present the NNs proposed by us. In Section 4, the data
used in the empirical analysis and settings for the training of the NNs are reported. In Section 5, the
numerical results are presented and discussed. In Section 6, we draw the conclusion and propose some
future outlooks.

2. Feedforward neural networks
Feedforward neural networks (FNNs) are the most basic type of NN. Information flows in one direction,
from input neurons through hidden layers to output neurons, see Schmidhuber (2015). Cycles and loops
are not present in this type of NN. They are generally used for classification, regression, and pattern
recognition, and, in particular, they can be applied to mortality forecasting. In this context, FNNs are
especially useful for mortality forecasting when the focus is on modelling the relationship between input
features (age, calendar year, cohort year, etc.) and mortality rates.

2.1 Notation and terminology
Given a set of L input variables X = (X1, . . . , XL) that can be numerical or categorical, or a combination
of them, and the corresponding output Y , we have to focus on the hyperparameters of the NNs, that is
those settings that have to be set before the parameters are learnt in the training process, see Goldberg
(2017) and Prince (2023). These hyperparameters are

• N : number of hidden layers in the NN.
• L1, . . . , LN : numbers of neurons for each layer.
• f (1), . . . , f (N+1): activation functions of the NN. Notice: f (1) will be the activation function of the

first hidden layer, while f (N+1) will be the activation function of the output layer. Some popu-
lar activation functions, which are also used in this paper, are Sigmoid (also called Logistic),
Hyperbolic Tangent (tanh), and Rectified Linear Unit (ReLU), see Dubey et al. (2022).

Once we have specified these hyperparameters, it is possible to estimate the parameters B(1) ∈R
L1×L,

B(2) ∈R
L2×L1 , . . . , B(N) ∈R

LN×LN−1 , B(N+1) ∈R
1×LN , and c1 ∈R

L1 , c2 ∈R
L2 , . . . , cN ∈R

LN , cN+1 ∈R, that
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represent respectively weight matrices and intercept vectors. These are the parameters that are learned
during the training of the network.

The layers will be so computed, using matrix notation:

Z(1) = f (1)(c1 + B(1)X) ∈R
L1 , (2.1)

where X ∈R
L is the input vector,

Z(j) = f (j)(cj + B(j)Z(j−1)) ∈R
Lj , j = 2, . . . , N. (2.2)

Finally, for the output layer:

Ŷ = Z(N+1) = f (N+1)(cN+1 + B(N+1)Z(N)) ∈R. (2.3)

We now discuss the training of the NN during which all the weight matrices and intercept vectors are
estimated through a process called backpropagation. In order to do that, the additional hyperparameters
reported below have to be specified, see Prince (2023).

• The loss function is the criterion through which, starting from the observed value of the outputs
and the predicted output of the network, we calculate the quantity that has to be minimized when
we train the NN. In the remainder of this paper, the mean squared error (MSE) is used as loss
function:

MSE =
n∑

i=1

(Yi − Ŷi)
2, (2.4)

where n is the number of observations, Yi are the observed values of the output, and Ŷi are the
values predicted by the NN as in Equation (3).

• The optimizer is the algorithm used during the training phase to adjust the parameters of the
neural network in order to minimize the loss. In the remainder of this paper, we will utilize the
Adam optimizer (Adaptive Moment Estimation), a gradient-based optimization algorithm that
leverages first-order (gradient) and second-order (squared gradient) moment estimates to adapt
the learning rate for each parameter, see Kingma and Ba (2014).

• The number of epochs is the amount of times the optimizer runs on the training set.
• The validation set is a subset of the available data used to provide an unbiased evaluation

of a model fit identifying eventual overfitting while the training set is used to tune the NN
parameters.

• The batch size defines the number of training samples processed simultaneously before the
model’s weights are updated. It determines how many samples are passed through the network
in each forward and backward pass during training.

• The learning rate controls the size of the steps taken during the optimization process when
adjusting the weights of the model.

2.2 Feedforward single-task neural network applied to mortality forecasting
In this subsection, we are going to provide a framework for forecasting of mortality rates with feed-
forward single-task NNs based on the paper of Richman and Wüthrich (2021). The input variables
considered in the NNs are calendar year t, age x, gender g, and country p, X̃ = (t, x, g, p), and they will
be treated as categorical with the single exception of calendar year, which will be treated as numeri-
cal, while the output, Y , is the central mortality rate m(g,p)

x,t at age x, year t, gender g, and population p.
In order to treat the categorical variables in the input layer, embedding layers are used, see Mikolov
et al. (2013). An embedding layer, from a mathematical point of view, is a function that maps discrete
data into continuous vector representations. So, given a categorical variable with b distinct categories
or levels (e.g., the categories ‘male’ and ‘female’ for the variable ‘gender’, the different countries for
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Table 1. Summary of the NNs DEEPi, i = 1, . . . , 6, architectures.

Model # hidden layers Activation function Skip connection
DEEP1 2 ReLU No
DEEP2 2 tanh No
DEEP3 5 ReLU No
DEEP4 5 tanh No
DEEP5 5 ReLU Yes
DEEP6 5 tanh Yes

the variable ‘country’, etc.), and a dimension d, which represents the size of the continuous embedding
space (e.g., each categorical level will be represented by a vector in R

d), the embedding layer performs
the mapping

f : {0, 1, . . . , b − 1} →R
d. (2.5)

In a NN, the embedding layer can be identified with a parametrized matrix belonging to R
b×d. The

parameters of the embedding layers, similarly to the parameters of the hidden layers, are learned as
the network is trained. Notice that if d = 1, the embedding layer becomes equivalent to the classical
treatment of categorical variables in regression models: each level of the variable is coded with a specific
value. Following Richman and Wüthrich (2021), d is set equal to 5 for all three categorical variables,
so: x → x ∈R

5, g → g ∈R
5, and p → p ∈R

5. Once embedding vectors (x, g and p) have been created,
we have the vector X = (t, x, g, p) ∈R

16 that represents the actual input that will be passed to the first
hidden layer of the NN. The number of hidden layers here considered differs by the NN considered,
N = 2 or 5; the number of neurons in each hidden layer is equal to 128 neurons, L1 = · · · = LN = 128;
the output layer that represents the mortality rate for the gender g in the country p at age x in year t has
one neuron, LN+1 = 1, with sigmoid activation function,

m(g,p)
x,t = Z(N+1) = 1

1 + e−(cN+1+B(N+1)Z(N))
. (2.6)

The NNs also differ among themselves by the type of activation function in the hidden layers,
f (1) = · · · = f (N) = tanh or f (1) = · · · = f (N) =ReLU, and by the presence or not of a direct connection,
called a skip connection, between the embedding layer and the last hidden layer. These NNs are referred
as DEEPi, i = 1, . . . , 6, and the details about their architecture are reported in Table 1 and in Figure 1.

3. Multi-task neural networks
Generally speaking, multi-task deep learning consists of different NNs (one for each task) that share
at least one layer. The shared part of the NNs can be the input layer, one or more hidden layers, or a
combination of them. It is relevant to notice that the output layer cannot be shared, as we must have one
output neuron for each task. Given that we have P different datasets, each corresponding to a distinct
country, this paper employs multi-task NNs with a multi-input, multi-output structure, see Menet et al.
(2023). Specifically, these NNs share hidden layers across tasks while maintaining P separate input and
output layers.

Let us now consider P > 1 countries and the following P tasks: Tp = “forecasting the mortality rates
for pth country”, p = 1, . . . , P. If we want to forecast the mortality rates of the P countries using a
feed-forward NN, then we have three different options. The first consists of using P different NNs with
their own input layer, hidden layers, and output layer, with the pth of them to predict the mortality
rates of the pth country. This solution can be called single-task NNs approach and is graphically repre-
sented in Figure 1(a). The second option is to use one single-task NN like those presented in Section 2
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Figure 1. Architecture of the NNs DEEPi, i = 1, . . . , 6 as described in Table 1.

https://doi.org/10.1017/asb.2025.10 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/asb.2025.10


6 Luca De Mori et al.

Figure 2. Illustrations of single and multi-task NNs for mortality prediction.

(see Figure 2(b)). The third option is to consider the P NNs sharing one or more of their hidden layers,
and in this way we will have a multi-task NN, see Figure 2(c). Generally, a multi-task NN has three
main advantages compared to using P different single-task NNs. First, it noticeably improves the train-
ing time as we optimize just one NN rather than P different NNs. Second, as the countries are likely to
share some common behaviours in their mortality evolution, such as the long-term trend of improving
mortality, there will likely be mutual benefits for all the P tasks by training them together, see Crawshaw
(2020). Third, the multi-task neural network will operate on a single large dataset rather than P smaller
datasets, thereby capturing a greater amount of information and leading to more robust predictions.

At this point, we pose a different question: what is the advantage of using a multi-task NN (see
Figure 2(c)) compared to a single-task NN, as presented in Section 2 (see Figure 2(b))? The primary
advantage is that a multi-task NN not only shares knowledge across related tasks through shared lay-
ers (as in single-task NNs) but also enables task-specific specialization via country-specific layers. For
instance, when a single-task NN is trained on a large set of countries, it can become dominated by
the majority countries–those with similar mortality trends–while minority countries, such as the United
States and Japan, which exhibit distinct mortality patterns, tend to be under-represented. This imbalance
often leads to poorer predictions for the minority countries. In the Results Section, among other things,
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Figure 3. Graphical representation of the multi-task NN MT1.

we will evaluate whether the multi-task structure in Figure 2(c), with its country-specific layers designed
to capture unique mortality patterns, can address this issue effectively.

3.1 Architecture of the multi-task NNs for mortality forecasting
Similarly to the NNs discussed in Section 2, the multi-task NNs will be of the feedforward type. They
will have P input layers, one for each country, where the variables are calendar year, age, country, and
gender. There are then P different embedding layers where each categorical variable, that is, age, country,
and gender, is transformed into a vector belonging to R

5 as explained in Section 2.2. These embedding
layers are fully connected to two hidden layers with 128 neurons and tanh activation function, following
Richman (2022). The second of these intermediate layers is then fully connected to a third hidden layer
with 64 neurons and tanh activation function. From the third hidden layer, there are ramifications with
P country-specific hidden layers having 32 neurons and tanh activation function. Finally, these P layers
are connected to P output layers where the activation function is of Sigmoid type. Figure 3 reports a
graphical representation of the just-described NN, which will be referred to as MT1 in the remainder of
this paper.

In more formal terms, the layers of MT1 will be computed as follows:

• Input layer:

X̃p = (t, x, g, p), p = 1, . . . , P. (3.1)

https://doi.org/10.1017/asb.2025.10 Published online by Cambridge University Press
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• Embedding layer:

Xp = (t, x, g, p) ∈R
16, p = 1, . . . , P, (3.2)

X = (X1, . . . , XP) ∈R
16×P. (3.3)

• Hidden layer 1:

Z(1) = f (1)(c(1) + B(1)X) ∈R
128, (3.4)

where c(1) ∈R
128, B(1) ∈R

128×16×P, and f (1) = tanh.
• Hidden layer 2:

Z(2) = f (2)(c(2) + B(2)Z(1)) ∈R
128, (3.5)

where c(2) ∈R
128, B(2) ∈R

128×128, and f (2) = tanh.
• Hidden layer 3:

Z(3) = f (3)(c(3) + B(3)Z(2)) ∈R
64, (3.6)

where c(3) ∈R
64, B(3) ∈R

64×128, and f (3) = tanh.
• Country specific layers:

Z(4)
p = f (4)(c(4)

p + B(4)
p Z(3)) ∈R

32, p = 1, . . . , P, (3.7)

where c(4)
p ∈R

32, B(4)
p ∈R

32×64, and f (4) = tanh.
• Output layers:

Z(5)
p = f (5)(c(5)

p + B(5)
p Z(4)

p ) ∈R, p = 1, . . . , P, , (3.8)

where c(5)
p ∈R, B(5)

p ∈R
32, and f (5) = sigmoid.

3.2 Clustering of the third hidden layer
When considering a group of countries, it is natural that some share similar mortality trends while
differing from others. These similarities and differences can stem from various social, economic, and
geographical factors. For example, the Scandinavian countries, characterised by high wealth levels,
extensive social welfare, and geographical proximity, will likely exhibit similar mortality evolutions.
To enhance the performance of the multi-task network, we propose clustering the third hidden layer.
This approach allows clusters of countries with similar mortality trends to share additional parameters,
creating a hierarchical network structure. In this design, lower layers (i.e., hidden layers 1 and 2) cap-
ture the overall mortality trend across all countries, while the higher layer (i.e., hidden layer 3) extracts
patterns shared by clusters of countries with similar trends. Finally, each country-specific layer learns
the distinct mortality pattern for its respective country. To identify countries with similar survival pat-
terns effectively, we can analyze historical mortality data using specific techniques that group countries
into homogeneous sets known as clusters. For relevant studies on clustering techniques in the context
of mortality forecasting, see Danesi et al. (2015), Nandini and Sanjjushri (2023), and Carracedo et al.
(2018).

Having regard to the above discussion, we aim to assess the advantages of clustering the P countries
based on their past mortality experiences and construct a new NN architecture that incorporates this
clustering. To achieve this, we implement a two-step procedure for each K = 2, 3, where K denotes the
number of clusters:

1. We use K-means clustering for grouping the P countries into K groups, see Scitovski et al.
(2021). In order to do that, we consider the observed changes, in a chosen training period, of
the following metrics:

https://doi.org/10.1017/asb.2025.10 Published online by Cambridge University Press
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• Life expectancy for a newborn, truncated at age 90, see Dickson et al. (2019):

◦
e0:90,t =

90∑
x=1

x−1p0,t

(
1 − 1

2
q0+x−1,t

)
, (3.9)

where qx,t and hpx,t are, respectively, the 1-year probability of death at age x in year t and the
probability of surviving for h years for an individual aged x in year t. These quantities can
be derived from the mortality rates mx,t using the following formulas:

qx,t = mx,t

1 + 1
2
mx,t

, (3.10)

hpx,t =
h∏

j=1

(1 − qx+j−1,t). (3.11)

• Standard deviation of the lifetime of a newborn, truncated at age 90:

SD0:90,t =
√√√√ 89∑

x=0

x|1q0,t (x − ◦
e0:90,t)2 + 90p0,t(90 − ◦

e0:90,t)2, (3.12)

where h|1qx,t represents the deferred 1-year probability of death between ages x + h and x +
h + 1 for an individual of age x in year t, and is given by

h|1qx,t = hpx,tqx+h,t. (3.13)

2. For each K , we build the NN MTK , similar to MT1 but with K clustered hidden layers instead
of hidden layer 3. These clustered hidden layers have 64 neurons and a tanh activation function
and are fully connected to hidden layer 2. Furthermore, they are connected with the country-
specific layers based on the following rule: if a country is in cluster k, with k = 1, . . . , K, then its
country-specific layer is fully connected with cluster layer k. For the remaining parts of the NN,
that is input layers, embedding layers, hidden layer 1, hidden layer 2, country-specific hidden
layers, and output layers, they are specified as in MT1. Formulas for calculating input layer,
embedding layer, and hidden layers 1 and 2 are the same of (7)–(11). For the cluster layers, we
have

Z(3)
k = f (3)(c(3)

k + B(3)
k Z(2)) ∈R

64, k = 1, . . . , K, (3.14)

where c(3)
k ∈R

64, B(3)
k ∈R

64×128, and f (3) = tanh. For the country specific layers, we have

Z(4)
p = f (4)(c(4)

p +
K∑

k=1

Ip,kB(4)
p Z(3)

k ) ∈R
32, p = 1, . . . , P, (3.15)

where c(4)
p ∈R

32, B(4)
p ∈R

32×64, f (4) = tanh, and Ip,k = 1 if country p belongs to cluster k and
Ip,k = 0 otherwise. Finally, the formula for the output layer is the same as (14).

The architectures of MT2 and MT3 can be found, respectively, in Figures 4 and 5.

4. Data, clustering, and training
The choice of the countries we consider in the quantitative analysis is based on three factors: first, they
must have data available in the HMD.1 Second, historical data series for these countries must be complete
from the year 1950 onwards. Third, each selected country must have had a population of at least 3

1Human Mortality Database: www.mortality.org.
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Figure 4. Graphical representation of the multi-task NN MT2.

million in 1950. In light of this, we consider historical mortality data for males and females from P = 17
countries: Australia, Austria, Belgium, Canada, Denmark, England & Wales, Finland, France, Italy,
Japan, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the US. For these countries, we
consider the yearly central mortality rates obtained from HMD in three different age bands: 0–89, 20–
89, and 55–89 to test the sensitivity of the different approaches with respect to the age band. Regarding
the choice of the time interval, we considered, following Richman and Wüthrich (2021), a 50-years
training period (1950–1999) and a 20-years test period (2000–2019). Finally, in order to study how the
performance of the models varies based on the length of the training period, we also considered the
following training sets: 1955–1999, 1960–1999, 1965–1999, 1970–1999, 1975–1999, and 1980–1999
(using 20–89 as reference age range).

The results of clustering using the approach described in Section 3.1 are reported in Table 2. Looking
at the composition of the clusters obtained, we notice that Japan and Spain are clustered together in both
cases. We also have a group of European countries, that is, Austria, Belgium, Finland, France, Italy,

https://doi.org/10.1017/asb.2025.10 Published online by Cambridge University Press
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Figure 5. Graphical representation of the multi-task NN MT3.

and Portugal that are clustered together, and another one with Australia, Canada, Denmark, England &
Wales, Netherlands, Norway, Sweden, Switzerland, and the USA.

Regarding the training of the multi-task NNs, we used the following hyperparameters: 150 epochs
when using 55–89 age band, and 250 epochs when using 20–89 and 0–89 age bands, batch size equal
to 32, learning rate equal to 0.0005, Adam optimizer, and mean squared error as loss function:

L =
P∑

p=1

1

np

np∑
j=1

w(p)
j (m(p)

j − m̂(p)
j )2 (4.1)

https://doi.org/10.1017/asb.2025.10 Published online by Cambridge University Press
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Table 2. Results of clustering.

MT1 MT2 MT3
Country Cluster Country Cluster Country Cluster
Australia Japan Australia
Austria Portugal 1 Canada
Belgium Spain Denmark
Canada Australia England & Wales
Denmark Austria Netherlands 1
England & Wales Belgium Norway
Finland Canada Sweden
France Denmark Switzerland
Italy 1 England & Wales USA
Japan Finland Japan2 2
Netherlands France Spain
Norway Italy Austria
Portugal Netherlands Belgium
Spain Norway Finland 3
Sweden Sweden France
Switzerland Switzerland Italy
USA USA Portugal

where np is the total number of observations for country p, and w(p)
j is the relative weight. We set w(p)

j = 1
in the unweighted case and w(p)

j = 1

m(p)
j

in the weighted case. In the following, results obtained using multi-
task NNs are denoted by MT1, MT2, and MT3, in the unweighted case, and by MT1 w, MT2 w, and
MT3 w, in the weighted case. Finally, we repeated the training of each NN 10 times in order to ensure
robustness towards the effects of randomness in the training process.

5. Results
In this section, we compare goodness of the forecasts obtained using multi-task NNs, MT1, MT2, and
MT3 (both in the weighted and unweighed case), the single-task NNs DEEP1, DEEP2, DEEP3, DEEP4,
DEEP5, and DEEP6, and 3 widely used stochastic mortality models from the literature – the single
population version of the Lee-Carter model (LC), see Lee and Carter (1992),

ln (m(g,p)
x,t ) = α(g,p)

x + β (g,p)
x κ (g,p)

t , (5.1)

the single population version of the Cairns-Blake-Dowd model (CBD),2 see Cairns et al. (2006),

ln (m(g,p)
x,t ) = κ (1,g,p)

t + κ (2,g,p)
t (x − x̄), (5.2)

and a version of the Augmented Common Factor model (ACF), see Chen and Millossovich (2018), used
for modelling simultaneously both gender and a set of different countries,

ln (m(g,p)
x,t ) = α(g,p)

x + BxKt + β (g)
x k(g)

t + β (g,p)
x k(g,p)

t . (5.3)

Here α(g,p)
x , β (g)

x , β (g,p)
x , and Bx are age-dependent parameters, x̄ = 72, the average over the population age

range 55–89, while k(g)
t , k(g,p)

t , k(1,g,p)
t , k(2,g,p)

t and Kt are time-dependent stochastic factors. Here k(g,p)
t (in

the LC model), k(1,g,p)
t , k(2,g,p)

t , and Kt are modelled as a random walk with drift, while k(g)
t and k(g,p)

t (in the
ACF model) are modelled as an AR(1). Notice that unlike the ACF model, the LC and CBD models treat

2CBD model is only tested in the 55–89 age range, for which it was designed.
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Figure 6. Comparison of MAFE for mortality rates, life expectancy, and standard deviation. Age range:
55–89.

different countries independently. Both the fitting and the forecasting of these three models are obtained
using the StMoMo package, see Villegas et al. (2018).

The comparison of models results is based on three metrics: mean absolute forecasting error (MAFE)
for individual yearly death rates, for life expectancy, and for standard deviation of the lifetime. Figures 6,
7, and 8 report the three metrics, respectively, for the 55–89, 20–89, and 0–89 age ranges while using
1950–1999 as training period and 2000–2019 as test period. Figures 10–18 extend this analysis by show-
ing the three metrics for individual countries. Figure 9 shows the evolution of the three metrics using
different lengths for the training period using 20–89 as age range. Finally, Table 3 summarises the total
number of parameters in each approach for the three age ranges considered here.3

We observe that there is variability in the different approaches performance based on the metric and
age range considered. In Figure 6, we notice how multi-task NNs show noticeable results in the 55–89
age range both with and without the weighting scheme. Indeed, they outperform all other approaches

3Notice that MT1 w, MT2 w, and MT3 w have the same number of parameters of respectively MT1, MT2, and MT3.
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Figure 7. Comparison of MAFE for mortality rates, life expectancy, and standard deviation. Age range:
20–89.

for life expectancy MAFE. Multi-task NNs with weighting scheme results appear to be the best ones for
mortality rates MAFE, while in standard deviation MAFE they are outperformed only by Lee–Carter
and ACF models.

Focusing on 20–89 age range in Figure 7, we notice a big difference with respect to the 55–89 age
range case. First, multi-task NNs without a weighting scheme turn out to be the worst ones for all three
the metrics considered here. In contrast, multi-task NNs with a weighting scheme still show good results.
Indeed, they are among the best ones for mortality rate MAFE, alongside DEEP5 and DEEP6, for life
expectancy MAFE, alongside DEEP3, and for standard deviation, where they are outperformed only by
Lee-Carter and ACF models. The reason for such a big difference between the performance of multi-task
NNs with and without weighting scheme, especially for life expectancy and standard deviation, is likely
due to the training of the NNs. Indeed, mortality rates at lower ages are underestimated, due to their
lower magnitude, during the training process which tends to place more emphasis on observations with
higher magnitude, such as the ones at older ages. As a consequence, the NNs will produce poor forecast
for lower ages mortality rates and, as a consequence, bigger errors for life expectancy and standard
deviation, which are heavily influenced by mortality at early ages.
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Figure 8. Comparison of MAFE metrics for mortality rates, life expectancy, and standard deviation.
Age range: 0–89.

Finally, focusing on Figure 8, we observe a similar pattern also when considering the 0–89 age range.
Indeed, the multi-task NNs trained without a weighting scheme result in the poorest performance for all
the three metrics considered. Also multi-task NNs with a weighting scheme have a weaker performance
compared to the other two cases considered previously. In fact, we notice how Lee–Carter and ACF
models, and DEEP1, DEEP3, and DEEP5 single-task NNs have better performance compared to them.
Nevertheless, the advantage of using a weighting scheme is still important for multi-task NNs, especially
when considering life expectancy and standard deviation. Finally, here we can notice the benefit of
clustering the third hidden layer in multi-task NNs (notice that the clustering is based on historical
values of life expectancy and standard deviation in the age range 0-89). Indeed, both MT2 and MT3
show an improvement to MT1 in all the metrics considered here. We also observe that when introducing
a weighting scheme in the training of the NNs this benefit tends to disappear.

In Figures 10–18, the MAFEs by country and approach are shown. Specifically, the filled black dot
(and the corresponding vertical black line) represents the global MAFE (i.e. the same metric showed in
Figures 6–8), while the coloured dots represent the MAFE for individual countries. Focusing on the US
and Japan, that is two countries with particular pattern in the evolution of mortality in the last decades,
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Figure 9. Minimum MAFE for single-task NNs, multi-task NNs, and stochastic models by training
period and metric considered.

we notice how the multi-task NNs with a weighting scheme provide generally better results with respect
to single-task NNs if we consider the 55–89 age range. When widening the age range to 20–89 and 0–89,
the advantage of multi-task NNs on the two countries tends to disappear, with their MAFE being often
above the one of single-task NNs. Overall when considering all countries, we notice how in the 55–89
age range case, multi-task NNs tend to have lower dispersion across the countries’ MAFEs compared
to single-task NNs.
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Table 3. Number of parameters and data points by approach and age range.

0–89 20–89 55–89
LC model 7820 6460 4080
CBD model – – 3400
ACF model 8240 6820 4335
DEEP1 20,386 20,286 20,111
DEEP2 20,386 20,286 20,111
DEEP3 71,458 71,358 71,183
DEEP4 71,458 71,358 71,183
DEEP5 73,506 73,406 73,231
DEEP6 73,506 73,406 73,231
MT1 108,354 106,654 103,679
MT2 116,866 115,166 112,191
MT3 125,378 123,678 120,703
#data points 153,000 119,000 59,500

In Figure 9, the minimum MAFE by approach, training period (while keeping fixed the age range
20–89), and metric is reported. The minimum MAFEs for single-task NNs, multi-task NNs without
weighting scheme, multi-task NNs with weighting scheme, and stochastic models are obtained as the
minimum among DEEP1-DEEP6, MT1-MT3, MT1 w-MT3 w, and LC-ACF, respectively. We can
observe how for mortality rates MAFE, single-task NNs generally give the best results with the exception
of three training periods: in 1970–1999 and 1955–1999, they are outperformed by multi-task NNs with
a weighting scheme, and in 1975–1999, they are outperformed by stochastic models. Although the gap
with stochastic models narrows when considering shorter training periods, multi-task NNs performance
appears to be less steady, and results to be the best one only in one case. Nevertheless, the benefit of
using a weighting scheme is noticeable in all the training periods considered here. Finally, the stochas-
tic models outperform NNs in all cases considered while focusing on lifetime standard deviation. They
always have the lowest minimum MAFE, despite the gap with NNs getting more narrow in the longest
training period, showing a similar trend also found in the mortality rates MAFE. With regard to the
NNs, single-task and multi-task alternate with each other in terms of best performance with a consistent
result that using a weighting scheme improves the forecasting accuracy of multi-task NNs.

In conclusion, Table 3 provides the details on the number of parameters and data points considered,
categorized by approach and age range, for the training period 1950–1999. We can notice how the
number of parameters for stochastic models, DEEP1, and DEEP2 is definitely lower than the number of
data points in all the age ranges considered. The remaining single-task NNs, MT1, and MT2 exceed the
number of data points when the age range is 55–89 but stay below it for wider age ranges. Finally, MT3
has a number of parameters lower than the number of data points only when considering the 0–89 age
range.

6. Conclusion
The results show that using a 50-year training period, the performance of multi-task NNs compared to
single-task NNs and traditional stochastic models depends on the metric considered and, especially on
the age range. More specifically, the out-of-sample precision of multi-task NNs is good with a shorter age
range but tends to deteriorate when this age range is increased. This is likely due to the underestimation
of lower ages mortality rates that happen in the training period. Adding a weighting scheme to multi-
task NNs, markedly improves their performance, especially for life expectancy and standard deviation.

https://doi.org/10.1017/asb.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2025.10


18 Luca De Mori et al.

Finally, it is noticeable that multi-task NNs with clustering based on past life expectancy and standard
deviation show better results only when a weighting scheme is not considered.

When testing the models on shorter training periods, we arrive at a similar conclusion with respect
to the 1950–1999 training period case. What is worthy to point out is that traditional stochastic models
tend to perform relatively better compared to NNs when considering a short training period.

In terms of future research on multi-task NNs, at least five straightforward developments could be
considered: first, implementing multi-task NNs where the generic task is based on a categorical variable
such as age and gender, rather than, or alongside, country. Second, using a different machine learning
technique, such as one specifically designed for time series, to cluster the countries based on past mortal-
ity experience. Third, a penalization could be added to the loss function of the NNs to ensure that female
and male mortality do not diverge, or even that the mortality of different populations does not diverge,
achieving some degree of coherence. Fourth, multi-task NNs of the same type as those proposed in this
paper could be applied in a different context, such as forecasting mortality rates by cause of death within
a single population. Fifth, further analysis aiming to study the question of explainability of multi-task
NNs could be conducted, see Perla et al. (2024).

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/asb.2025.10.
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