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ABSTRACT

In this research on-line steady state optimisation techniques 
capable of being applied to the situation where process structure is 
highly uncertain have been systematically investigated. The main 
results obtained in the research reveal that by adopting an iterative 
procedure of updating model parameter values and appropriately 
modifying model optimisation problems the model uncertainty can be 
overccme and the process optimal operating condition can be attained. 
Algorithms for solving integrated system optimisation and parameter 
estimation problems have been developed by utilizing normal Lagrange 
analysis as a basic mathematical tool. It has been shown that a very 
simple model can be employed to determine the process optimum operating 
condition using these algorithms. If any disturbances occur at any 
stage during the operation (for instance, changes in raw material 
ccmposition) the algorithms will adapt to proceed towards a new 
optimum.

This research also involves the improvement of a distributed 
computer network where new integrated system optimisation and parameter 
estimation techniques developed in the research can be studied under a 
real time environment. Problems associated with the practical imple-
mentation of the techniques have been discussed and methods for dealing 
with these problems have been suggested and tested using a 
microcomputer based system.

The author hopes that the work reported in this thesis will 
provide a useful foundation for evaluating and extending the techniques 
of on-line integrated system optimisation and parameter estimation both 
in methodology and application aspects.
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CHAPTER 1. INTRODUCTION

1.1 Systems control in industrial processes

Control systems play an ever-increasing role in improving the 

quantity and quality of manufactured products. As our manufacturing 

activities get more and more automated, the importance of using 

increasingly more refined and advanced control technology becomes 

evident. The most important technological advance that we are 

currently in the process of seeing is a revolution that is taking place 

in the processing of information and it already has a major impact on 

industrial control. More and more control functions in three basic 

categories of industrial control-direct control, supervisory control 

and sequencing control-are being taken by microprocessors because of 

the advantages of lower cost, fewer components, increased reliability 

and versatility offered by microprocessing systems.

Direct (regulatory) control is concerned with ways to keep the 

values of controlled process variables as near to their set points as 

possible. The set points are either fixed or changing according to 

seme prescribed programme which should be able to take account of the 

changing conditions in the process. As far as the direct controllers 

are concerned, the set points are seme given values. Sequencing 

control, on the other hand, is concerned with carrying out a series of 

process steps in a prescribed order, such as starting and stopping an 

industrial process. Supervisory control refers to a methodical 

quantitative approach to determine the best set points for the direct 

controllers, either as functions of time or, more generally, as 
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functions of the inputs to the system; such inputs might be raw 

material properties, product specifications, external disturbances, and 

economic factors, etc.

As microcomputers are becoming cheaper and more powerful, and as 

the continuous advance is being made in computer network theory, a 

distributed control system is not only a concept but also a reality in 

industry. Many sophisticated hierarchical decentralized techniques 

appear. The new emerging notions are subsystem, interconnection, 

decentralization, coordination, synchronization, distributed computer 

networks, etc. Despite numerous researches, refining these techniques 

and applying them to industry remains to be a widely open area. Dfeny 

researches give emphasis to distributed, hierarchical optimisation 

techniques. This is no doubt due to increasing pressure upon industry 

to improve efficiency and productivity and to reduce pollution, and due 

to the capability of computation provided by new microcomputer 

technology.

1.2 Steady-state optimisation

A typical application of supervisory control is aimed at 

optimizing a chosen performance index under changing external or 

process conditions. It is assumed that the optimal operating condition 

changes slowly as external factors change. The supervisory control 

system then finds and tracks the optimum condition. When a performance 

index has been chosen the key step in such supervisory control is to 

construct a model which relates the set points to the external and 

process conditions. Various identification techniques may be used to 
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determine model structure and model parameter values. If a model is 

obtained the problem becomes a standard linear or nonlinear programming 

problem and can readily be solved by mathematical programming methods, 

including hierarchical decomposition techniques, on computers. 

However, in general, the solution obtained, is a model optimum which may 

be far frcm the process optimum and may even violate the real system 

constraints because the model is only an approximation to the real 

process due to uncertain knowledge of the process structure and 

deliberate simplification for the sake of computation.

Seme attempts have been made to develop the techniques of direct 

on-line optimisation using measurements. Only very limited cautious 

reports of success have been heard. In practice, direct on-line 

optimisation using measurements involves severe difficulties. Firstly, 

such algorithms are very inefficient because of process dynamic 

characteristics which are often slow. Secondly, the presence of noise 

can produce erratic behaviour of the algorithms. Thirdly, during the 

optimisation procedure the algorithms may demand totally unacceptable 

operating conditions from the process.

Efforts have been focused on developing optimisation techniques 

which are based on a mathematical model and use measurement feedback to 

improve the model based solution. For example, in the large-scale 

system case Findeisen and co-workers (1980) gave a variety of methods 

which employ a (fixed) model and measurement feedback to form an. 

iterative procedure. While the solution obtained using these methods 

is often better than the purely model based solution it is, in general, 

not the real optimum solution.
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Other techniques attempt to overccxne the model uncertainty by 

employing an iterative procedure between model parameter estimation and 

model optimisation (for example, Durbeck,1965; Foord,1974; Youle and 

Duncanson, 1970). However, simply combining tw separate optimisation 

and estimation steps does not guarantee that the real optimum operating 

condition will be achieved as will, be shown in the following chapters.

1.3 Scope of the research

A fundamental question which has to be answered by any on-line 

process optimisation technique is that under what conditions the 

solution given by the optimisation technique is also the solution of 

the real process optimum. Durbeck (1965) and Foord (1974) formulated 

sufficient conditions for a model based optimisation solution to give 

the correct process optimum. Part of the conditions demands that the 

derivatives of model outputs with respect to the controller set points 

match exactly the corresponding derivatives in the real process at the 

solution of model optimisation. This demand, in general, requires that 

the model structure (kind and nonlinear degree of equations, etc.) is 

the same as that of the real process. For many industrial processes 

their structures are highly uncertain and, hence, such a requirement is 

obviously unrealistic.

Foberts (1978) introduced, the modified two-step method which 

involves an iterative procedure of updating model parameters and 

modifying the model optimisation problem. The main characteristic of 

the method is that the optimisation objective index is modified by an 

extra term which contains a comparison between model and process output 
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derivatives with respect to controller set points. Therefore, by 

measuring the differences of these two sets of derivatives, the real 

optimal steady-state operating condition can be achieved in spite of 

model inaccuracies, or at least the solution obtained is very close to 

the real optimum if the derivatives are poorly approximated.

The modified two-step method has been successfully applied to many 

example problems, for example, using computer simulation to study its 

application in the steady-state optimisation control of a chemical 

reactor (Roberts, 1979; Roberts and Williams, 1981; Ellis and 

Roberts, 1981). However, four main aspects concerned with this method 

remained to be exploited and further studies were needed. Firstly, it 

can be shown that the optimality of the original method given in 

(Roberts, 1978, 1979; etc.) is restricted to a class of problems 

where process inequality constraints do not depend on process outputs. 

Examples can be found to demonstrate that if inequality constraints 

depend on process outputs the original method may fail to have a 

feasible solution (Brdys, Chen and Roberts, 1984). Secondly, the 

convergence conditions needed to be derived, which was a difficult task 

due to the complex adaptive nature of the method. Thirdly, the method 

is very sensitive to noise measurements because it uses the real output 

derivatives, and the differentiation amplifies the errors in 

measurements. The question of how to attenuate the influence of 

measurement noise naturally arises. Finally, could the method be 

extended to solve the interconnected large-scale system problems? If 

the answer is yes a new useful tool to tackling complex large-scale 

system problems will be provided.
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This thesis is aimed at a study of these aspects. An extension to

the original method, proposed by Brdys, Chen and Roberts (1984),

removes the restriction on inequality constraints. Global convergence

conditions, at least for a class of problems where the inequality

constraints do not involve the process outputs, have been derived

(Brdys and Roberts, 1984b). Brdys suggested, in a manuscript, the

original idea of a two-level method which does not require the

knowledge of the real output derivatives and satisfies the optimal

conditions in a similar manner to that of the modified two-step method.

This idea was later developed into a two-level algorithm and was

compared, with the modified two-step algorithm (Chen, Roberts and Brdys, 

1984). Michalska, Ellis and Roberts (1985) presented an algorithm for 

interconnected subsystems by combining the modified two-step algorithm 

with the price correction mechanism. They had difficulties in dealing 

with inequality constraints and made sone assumptions which actually 

require that the inequality constraints do not depend on the process 

outputs. Brdys and Roberts (1984a) removed these unnecessary 

assumptions and developed a group of hierarchical adaptive optimal 

algorithms. One of these algorithms was incorporated with a double 

iterative technique based on previous work of Shao and Roberts (1983) 

to achieve the benefits of reducing the time for determining the 

optimal operating condition (Chen, Brdys and Roberts, 1985).

This research not only concentrates on the formulation and study 

of several on-line integrated system optimisation and parameter 

estimation methods but is also involved with the development of a 

distributed computer network where the methods can be tested under a 

real-time environment (Chen, Wadhwani and Roberts, 1985). A new
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integrated system optimisation and parameter estimation technique 

developed in the research has been implemented using part of the 

network and encouraging results have been obtained (Chen, Roberts and

Wadhwani, 1985; Chen, Wadhwani and Roberts, 1986). The purpose of 

this experiment is to study 

application of the technique and 

experience gained will benefit

problems associated with real-time 

to develop counter measures. The 

the application of the technique to

industrial processes.

1.4 Outline of the thesis

In Chapter 2 the multilayer approach is employed to decompose an 

industrial control system into a multilayer hierarchy. Two irrportant 

aspects—the model-reality differences and the complexity of the 

control system are emphasized. The analysis in this chapter provides a 

broad background where the research reported in this thesis is based 

on.

Interdependence of system optimisation and parameter estimation 

revealed in the analysis of Chapter 2 gives rise to the necessity of 

integrated system, optimisation and parameter estimation (ISOPE). In 

Chapter 3 a class of ISOPE problems are defined, and basic definitions 

and theories related with ISOPE problems are presented.

A systematic formulation of the modified two-step method is 

presented in Chapter 4. The extension to the original formulation (for 

example, Roberts, 1978, 1979) is emphasized, inpiementation aspects of 

this method are discussed and computer off-line simulation results are
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presented.

Optimality and global convergence conditions of the modified 

two-step algorithm are investigated in Chapter 5. The convergence

/ 
theories in this chapter are based on the paper (Brdys and Roberts, 

1.984b) . It is shown that there are advantages of using simpler 

(linear) models when solving the nonlinear steady-state optimal control 

problems by the modified two-step algorithm.

In Chapter 6 a two-level ISOPE method is investigated. Due to its 

structure, the convergence rate of this algorithm is slower than that 

of the previous modified two-step algorithm. However, this algorithm 

does not require real process output derivatives, and consequently, it 

may be preferred when the process measurements are contaminated with 

noise. Both the modified two-step algorithm and the two-level type 

algorithm can be viewed as two modified versions of the basic two-step 

method given in Chapter 3.

The techniques presented in Chapter 3 (two-step algorithm), 

Chapter 4 (modified two-step algorithm) and Chapter 6 (two-level type 

algorithm) can be combined with a price correction mechanism to yield a 

group of adaptive algorithms for hierarchical control of steady-state 

systems. To demonstrate this, following from the ideas of Michalska, 

Ellis and Roberts (1985) and Brdys and Roberts (1984a), in Chapter 7 a 

hierarchical structure is formulated by combining price coordination 

and the modified two-step techniques. It is important to note that 

this is by no means the only structure that can be derived by combining 

price coordination and the modified two-step methods (see, Michalska,
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Ellis and Roberts, 1985; Brdys and Roberts, 1994a). The structure 

given in this thesis has shown a fast convergence rate in computer 

simulation studies. One of the important results revealed in this 

research is that by using a double iterative scheme (Shao and Roberts, 

1983) the time for determining the optimum steady-state condition of a 

large-scale process can be significantly reduced..

In Chapter 8, a distributed computer network and its applications 

to systems control are briefly described. Serial data communication 

between a DEC LSI11/23 minicomputer and an Acorn BBC microcomputer is 

discussed.

A real-time simulation study of the algorithms formulated in 

Chapter 7 is presented in Chapter 9. The experiment was conducted on a 

small distributed computer system where an analogue computer simulated 

two interconnected subsystems, a LSI11/23 minicomputer served as the 

coordinator and two BBC microcomputers played the roles of local 

control units.

Chapter 10 contains seme final conclusions of this research and 

suggestions for further research in the area of integrated system 

optimisation and parameter estimation.
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CHAPTER 2. CONTROL OF INDUSTRIAL PROCESSES

2.1 Introduction

During the last two decades considerable advances have been made 

in the field of process control. There is an increasing interest in 

maintaining an industrial process at its optimal operating condition 

efficiently. This may be due to the increasing limitations on natural 

resources and rising costs of energy and raw materials. Furthermore, 

the improvement in microcomputer technology has a great impact on this 

subject.

The traditional concept of control, vben applied to industrial 

systems, concerning the problem of how to manipulate inputs to the 

process so that (a) output variables follow the predetermined time 

trajectories or (b) the system state is transferred (optimally) frcm 

some initial value to a specified final value, has been broadened to 

include all aspects of decision-making applied to industrial systems 

operating in real time.

In this chapter we study seme basic elements of the industrial 

process and utilize the multilayer concept (Lefkowitz, 1966, 1977) to 

split the task of determining control into a multilayer hierarchy. The 

interdependence between the twin problems of process optimisation and 

parameter estimation arises naturally within the hierarchical 

structure, which indicates the need for joint treatment of these two 

problems.
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2.2 Seme elements of the industrial control system

Control is a means of influencing an object to behave in a desired 

way. The common characteristic of the control function, hence, is the 

basing of responses, decisions, actions, etc. on information describing 

the state of the system (and its environment) interpreted through the 

medium of appropriate models relevant to system performance. The term 

controller, therefore, is used to denote the agent by which the control 

functions are carried out.

A deeper understanding of the basic elements of a control system— 

their functions and their relationship to each other, will certainly 

help to design a better control system. Referring to Fig. 2.1., some 

basic elements of a control system are defined based on previous work 

of Lefkowitz (1977).

2.2.1 Plant

The term plant is usually referred to the controlled system or 

means of production. It may be a processing unit like a topping,unit 

in the crude distillation process, a whole chemical factory, etc. The 

fundamental assumptions are that the plant can be described (in 

principle) by a set of input-output relations and some of its inputs 

are free to be selected by a decision-maker or controller so as to

influence the plant's behaviour in a desired way. The variables

associated with these relations (or with the plant) then can be

classified as follows:

(1) Disturbance inputs (disturbances) z. These are inputs which
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represent the effects of interactions of the plant with its 

environment, and which are beyond, our influence. Disturbances should 

essentially be considered random variables. In general, a disturbance 

input causes the plant outputs to deviate from desired behaviour and 

hence motivates control action.

(2) Contol inputs w. These are the results of the decision-making by 

the controller which are intended to compensate for the undesired 

influence of disturbances z or to change the outputs to follow the 

order r from seme higher level organisation.

(3) Outputs y. These are the plant's response to the inputs. Apart 

from functionally dependent on the inputs, we would prefer the plant, 

outputs to be available explicitly either through direct measurement or 

through inference (via a model) from the measurement of other 

variables, and to be relevant with respect to the evaluation of plant 

performance so that they can be used by the controller in determining 

its decisions or control actions and in observing the effectiveness of 

a control policy or action.

(4) State variables s. These are variables associated with the memory 

characteristics of the plant such as the status of energy or material 

storages in the plant. In the dynamic case, the state vector compacts 

the past history of the plant, such that, knowing the inputs to the 

plant over a given time interval, the outputs are determined uniquely 

over that same period. Tn a steady-state condition, the state vector 

is one of the main factors which define the structure of the 

input-output relations of the plant, i.e., at different static states 

the input-output relations may have different forms.

Through the above discussion we may write the general form of the
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(2.1)

plant input-output relations 

y = Fg (w, z),

where y, w and z denote output, control and disturbance vectors, 

respectively. The dependence on the state vector is indicated by the

* 
index s. If the state vector changes, the functional relation Fg may 

also change. Because of technical limitations and because of the

limitations imposed by the environment, the values of w and y cannot be 

arbitrary, rather, they are likely to be limited in some set of values. 

In most cases these limitations can be described by a. set of inequality 

constraints

* A *
(w, y) € WY = f (w, y) : G (w, y) (?). (2.2)

Thus, we adopt, a plant is represented, by the rel ations (2.1) and 

(2.2). On the other hand, our understanding of the plant is referred 

to as the plant model. Consequently, we may write the plant model

y = F(w, z, a), (2.3)

A
(w, y) £ WY = {(w, y): G(w, y) 0), (2.4)

where a is a parameter vector which has been determined by seme 

technique. Usually, the constraints imposed on the plant are known 

explicitly, therefore, it may be reasonable to assume that (2.^) is 

exactly the same as (2.2). however, our knowledge of the plant 

input-output relations cannot be perfect due to the nature of 

time-varying unknown disturbances and inaccurate knowledge of the state 

vector. As the result, differences between (2.1) and (2.3) inevitably 

exist. We refer to this as model-reality differences. Throughout our 

discussion we will continuously emphasize the existence of such 

differences.
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2.2.2 Environment

The plant can be viewed, as a subsystem of a larger system which we 

term the environment, i.e., all aspects of the external war Id that 

interact with the plant. The interactions, in general, are mutual. 

While the environment, affects the plant through disturbances z and 

order r (which affects the objectives or the constraints to be applied 

by the controller acting on the plant) the plant's responses (outputs) 

also have influence on the environment. As far as the controller 

acting on the plant is concerned, only the performance of the plant is 

of importance. How the outputs affect the environment (the higher 

decision-making units may be concerned about this) is beyond its 

interests.

For example, a controller in charge of keeping constant the level 

of fluid within a tank (Fig. 2.2.) may try to change 0Qut as fast as 

possible responding to a sudden change in 0-n. The decision-maker in 

charge of the whole process, however, may worry about the influence of 

the quick changing rate in 0Qut to the dcwn-stream units and lienee 

imposes seme constraints on the changing rate. Tn the view of the whole 

process, 0out is considered as an interaction input to the down-stream 

units.

2.2.3 Performance index

Since control decisions aim at achieving a certain goal it is 

necessary to define seme criterion for measuring the degree that the 

goal is achieved. The practical criterion will be based generally on
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the approximation

economic demands.

and simplification of technological requirements and

Such an approximation and simplification is

motivated by the limited capability of computational tools, the form

and accuracy of the model used, the nature of the information required

and the reliability of the data available.

It is assumed that the aim of optimizing the performance of the

control system has been simplified as that of minimizing (or

maximizing) a scalar function which is known as the performance index

Q = 0(w, y, z), (2.5)

where w, y and z are defined as in 2.2.1. The problem of determining 

the control w is referred to as deterministic if we assume that z has a 

known value or a known function of time. If the probabilistic 

properties of z are known and we make an appropriate use of them, the 

control problem is stochastic, and we may set the problem target to be 

the minimization (or maximization) of the expected value of 0:

min EfQ}.

w z

If we use the deterministic approach, it is important to investigate 

how the control system behaves when the real disturbance differs from 

the value used in the model. We must require that the performance of 

the control system is relatively insensitive to this model-reality 

difference.

2.2.4 Controller

The general purpose of the controller is to generate the control 

inputs w applied to the plant which result in an optimum value of the 
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performance 0 while satisfying the variety of constraints imposed on 

the system. Also the controller should be able to give non-norma.l 

responses to ensure the safety of the system in contingency situations.

In order to achieve the control goal, the controller needs: (1 ) 

to determine the structure of the plant model and to set the optimal 

values of the parameters in the model with respect to seme objective 

index according to the information obtained through the measurements; 

(2) to make control decisions, i.e., to determine the best controller 

set points based on the model; (3) finally, to implement the control 

decisions. A good, controller should be able to compensate for the 

model-reality differences so that the controller is robust when 

available information is imperfect. We can see that the controller 

requires complex multi-function capabilities.

2.2.5 Information processor

As noted above, the decisions are based on the information 

gathered. The quality of decisions depends on the quality of 

information. Seme major functions of the information processor 

include:

(1) Gathering data and distributing them to points of usage (including 

sensors, data input devices, communication links, etc.).

(2) Processing raw data into the form required by the controller, e.g., 

data smoothing, noise filtering, making inference of the values of 

variables which cannot directly be measured.

(3) Storing the information required for operating the system.

The design of a control system actually involves the design of a 
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controller and an information processor.

2.3 Multilayer control hierarchy

As discussed in 2.2.4, the task of determining and realizing the 

control w is a complex and, maybe, formidable problem. The multilayer 

control hierarchy (Lefkowitz, 1966, 1977) provides a rational and

systematic procedure for resolving it. In the multilayer control 

hierarchy (see Fig. 2.3.) the overall problem is split into a set of 

subproblems which are identified by the four layers of the hierarchy, 

namely, implementation, optimisation, adaptation and organization 

layers. Tn this section, the functions of each layer are briefly 

discussed.

2.3.J Implementation layer (regulation layer)

This first layer plays the role of implementing the decisions

given by the second layer (optimisation layer) and copes with the

dynamics of the plant. The control w is generated in this layer

according to the rule

w = w( x], cd, aC) (2.6)

where x^ denotes the feedback information from the plant, c^ denotes

the controller set points given by the second layer and ac denotes the 

parameters associated with this layer. Conventional PID regulation or 

follow-up control can be considered as one kind of implementation of 

this layer in which control is generated to cause the (appropriately 

chosen) regulated variables to follow their desired values c^. In this 

case, ac is the vector of controller's PID coefficients.
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One important consequence must be noted. The dynamics of the 

problem and fast disturbance inputs may be effectively "absorbed" at 

the first layer so that the system virtually operates in the steady 

state (or more precisely, in a sequence of steady states). Such a 

situation is very common in process control. For example, in a 

continuous chemical process, the process variables such as 

temperatures, pressures, concentrations, etc. may have to be varied 

from time to time to adjust to seme slow disturbances, say, changes in 

raw material composition. The new desired values c^ for these process 

variables may be determined by a steady state approach. On the other 

hand, the process control inputs w, such as valve positions, have to be 

adjusted much, more frequently in response to fast disturbances, such as 

heating gas pressure. This adjustment can be achieved by the regu-

lation layer which tries to keep the process temperatures, pressures, 

etc. to their desired and constant values c^ as prescribed by the 

optimisation layer.

The above discussion is the foundation for choosing a steady-state 

approach in the higher layers. For convenience, we will term the plant 

together with its implementation control layer as real process or 

simply reality.

2.3.2 Optimisation layer

The optimisation layer is the agency where control decisions are 

determined, which then will be implemented by the implementation layer. 

The basic information available to this layer is a model (including the 

model structure, predetermined parameter values and estimated 
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disturbance values) and a constraint set. The model is valid only in 

the neighbourhood of a given "state" or set of circumstances. As these 

change with time, it is necessary to update the model. The updating is 

carried out by the third and/or fourth layers. This means that we can 

eliminate from the optimisation problem formulation those factors or 

disturbance inputs which tend to change infrequently relative to the 

period of control action in the optimisation layer, since they may be 

compensated through the higher layers. Based on this justification we 

will assume that the disturbances are constant in the single run of 

determining desired controller set points and, hence, will be dropped 

to simplify the notation.

The task of the optimisation layer may be described as the model 

based optimisation problem of finding the desired controller set points 

c^ such that

cd= arg min p(c, y) (2.7)

c

(MOP) s.t. y = F(c, a) (2.8)

(c, y) e CY = {(c, y)€ Rnx : G(c, y) x< 0} (2.9),

where Q is the performance function, F are the model equations, G are 

the constraint functions and a are given model parameters.

It is worth pointing out that the feedback information from the 

real process is necessary to improve the quality of the control 

decisions because of the model-reality differences. How the feedback 

information is utilized may distinguish various on-line optimisation 

techniques.
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2.3.3 Adaptation layer

The fundamental task of the adaptation layer is estimating 

parameter and disturbance values in a given model structure which then 

will be used in making control decisions in the optimisation layer. 

Since according to our assumption the disturbances are used as 

constants in the optimisation layer they may be viewed as some kind of 

parameters.

Consider the following model parameter estimation technique where 

the model parameter values are determined by minimizing a given 

comparison index e(.) of the difference between the model and reality 

outputs.

min e(F (c) - F(c, a)) (2.10)

a

(MEP) s.t. y = F(c, a) (2.11)

G(c, y) < 0, (2.12)

where F (c) is the real output vector, F(c, a) is the model output 

vector. A weighted least squares criterion may be employed as the 

comparison index.

The procedure of the parameter estimation involves: Choose a 

suitable set of controller set points c^, apply c0 to the real process, 

measure the corresponding outputs F (c ), then adjust the parameter to 

optimize the comparison index. However, guidelines are required on how 

to choose a suitable c . Ideally, the adaptation layer should be able 

to give "real optima]." parameter values such that the lower optimisa-

tion layer can use these parameters in the decision-making process to 
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achieve the best control decision vhich is the optimal operating condi-

tion in the real process. It is clear that if a random set of cg is 

used the parameter values calculated accordingly may not achieve such a 

desired goal.

2.3.^ Organization layer

When the conditions in which a model is valid have changed 

significantly, updating the model parameters may not be enough to 

ensure the model is a good approximation of the reality. In this 

situation, the organization layer acts to adjust the model structure. 

Also the organization layer should be able to judge the appearance of 

contingency events and to shift the system from normal operation to 

emergency operation. It is recognized that the organization layer acts 

much less frequently compared with the lower layers.

Human intervention in the control system is mainly through the 

organization layer, e.g., managing, planning, operating, etc. The 

functions performed by man including those requiring judgements that 

cannot be standardized, or decision processes that have not been, 

adequately established, or coordinations that involve the integration 

of a great many factors whose subtleties or non-quantifiable attributes 

defy computer implementation.

2.4 Interdependence of optimisation layer and adaptation layer

The coupling relationship between the optimisation layer and 

adaptation layer is inherent in the nature of searching for an "optimal 
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solution". Consider the task of obtaining the real optimum values of 

the controller set points when a model structure with seme unknown 

parameters is given. Assume that the following two steps are 

performed: First solve the model parameter estimation problem (MEP) to 

estimate the parameter values and then solve the model optimisation 

problem (MOP) with these parameter values to determine the controller 

set points. Obviously, such a procedure cannot generate the real 

optimal set points unless the model structure is exactly the same as 

that of the real process with only the real values of seme parameters 

unknown. Moreover, the controller set points generated may be 

unacceptable to the real process when the model-reality structure 

differences are significant.

It is apparent that interaction between the optimisation layer and 

the adaptation layer naturally exists. In general, the two layers 

interact in that the solution of the optimisation problem is dependent 

on the values of the model parameters and the parameter estimates will 

change according to the controller settings. If the parameters are 

estimated under non-optimal conditions, accordingly, the solution 

generated from such models is non-optimal.

2.5 Summary

In this chapter we have examined the components of the control 

system and the functions of the controller. A multilayer approach is

used to analyze a modem control system which is really

multi-function complex. Two facts are particularly worthy of

emphasising: The model which is our understanding of the reality is

a
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unlikely a perfect representation of the reality; the interdependence 

of the optimisation layer and the adaptation layer inevitably exists. 

The coupling relationship of these two layers is strongly strengthened 

because of the existence of the model-reality differences.

The discussion in this chapter gives a wider environment vhere the 

research of this thesis is within. The interaction between the 

optimisation and adaptation layers is a great challenge to on-line 

optimisation techniques and motivates the idea of integrated system 

optimisation and parameter ' estimation. One of the main tasks in this 

research is to develop seme on-line methods which can tackle the 

problems of optimisation and parameter estimation revealed in this 

chapter.
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Fig. 2.1. Basic elements oF control system

43



-P
• r—4
c
Z5

C5
(L>
L.
-P
in
i
c
3:
O

"U

-P

-P 
in 
i 
Q_
Z5

Le
ve

l co
nt

ro
l of

 a t
an

k

44



Fig. 2.3. Multi layer control hierarchy
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CHAPTER 3• ON-LINE INTEGRATED SYSTEM OPTIMISATION AND PARAMETER ESTIMATION

3.1 Introduction

As mentioned in Chapter 2, because of the interdependence of the 

optimisation and parameter estimation problems, an open-loop method, 

i.e., a single operation of (MEP) defined in 2.3.3 and (MOP) defined in 

2.3.2 cannot give satisfactory results. A joint treatment of the two 

problems, therefore, is desirable for searching for the real optimum 

operating condition because the interaction between the two problems 

can then be taken into account. However, integrating appropriately 

these two problems is not an easy task.

An obviously better approach than the open-loop method is to 

repeat (MEP) and (MOP) successively until the convergence is achieved. 

It is well-known that such a two-step approach cannot overcome the 

model-reality structure differences because the interacting 

optimisation and parameter estimation problems are treated separately. 

Attempts have been made to resolve the interaction between the two 

problems by using parameterization and e-constraint methods (Haimes and 

Wismer, 1972; Roberts, 1977a). Applying these two methods in the 

situation where the model structure is inaccurate has proved 

unsuccessful (Roberts, 1977b).

A control scheme (Fig. 3.1.) which has found on-line practical 

application in industry (Youle and Duncanson, 1970) involves 

determining the optimum operating condition (controller set points) of 

the real process using a model and implementing the condition on the 
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process through regulatory controllers. The model contains parameters 

whose values are estimated by comparing output responses from both the 

model and the process. This defines the parameter estimation problem. 

In turn, the model is employed to determine the optimum controller set 

point values to optimize a given performance index. This defines 

system optimisation. In the next section the integrated formulation 

for two such problems is given.

3.2 Description of a class of ISOPE problems

The task of determining the optimum controller set points c for a 

real process can be defined as the following real optimum problem:

min Q(c,y) (3.1)

c

(ROP) s.t. y = F*(c) (3.2)

(c,y)6CY = {(c,y)6pnx R™: G(c,y) « 0 } (3.3)

where Q: Rnx R™ —R is a given performance function, c and y are the 

control and output vectors, respectively, F :Rn-«-Rm is the real process 

input-output mapping, and G: Rnx -*  Rp are the process inequality 

constraints. Let us denote a set C = P (CY), where P^ is the projection 

operator from Rnx R™ to Rn, and the solution set of (ROP) as q . C 

is knovzn as the feasible control set. The following two definitions 

are introduced.

Definition 3.1 (feasible control)

A feasible control c^ is such that c^C.

Definition 3.2 (real optimum control)

A real optimum control c t is such that cQpt
*

£ Q •
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is inefficientSolving (ROP) directly on-line to find a c

because of the presence of process noise and dynamic characteristics 

which are often slow. However, we can introduce a process model and 

formulate another optimisation problem:

min O(c,F(c,a )) (3.4)

c, a

(0P1) s.t. F(c, a)=F*(c) (3.5)

(c, a) 6CA = {(c, a)6 Rnx R*~: G(c,F(c,a )) < 0 } (3.6)

where F: R^x R^ -e-R^1 is the model input-output mapping which is only an 

■Ar
approximation to F because of uncertain knowledge of the real process 

structure and deliberate simplification, and a is the model parameter 

vector.

From the point of view of the equality (3.5) a very simple 

property required for a chosen model is such that given a point in the 

feasible set C, we can always match exactly the model and real outputs 

by an appropriate choice of parameter values. Brdys(1983) named such a 

property as point-parametric.

Definition 3.3 (point-parametric)

The process model is point-parametric at c £ C if there exists a 6 R

— — ~~~~
such that F(c, a) = F (c) . The model is point-parametric on C if it is 

Point-parametric at every point c £ C.

The importance of introducing (0P1) becomes clear in Lemma 3.1. 

-lemma 3.1

If the process model is point-parametric on C then (ROP) and (0P1) are 
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equivalent.

Proof Let (c, ci) solves (0P1). Then c solves (ROP). Otherwise, there 

exists c" 6C such that O('c,F*(c))  < O(c,F (c)). But for o' there exists 

of satisfying F (c) = F(c/, cT) and (c, ot ) CCA. Therefore,

□ (o', F(c^ S')) < Q(c, F(c, a )) which contradicts the fact that

Q(c, F(c, a )) is the minimum.

Similarly let c solves (ROP). Then there exists a satisfying

F (c ) = F(c , a ) such that (c , a ) solves (0P1). Q.E.D.

3.3 Two-step method

A basic method for solving (0P1) is to employ a two-step approach 

(Durbeck, 1965; Foord, 1974). The on-line inpiementation (Fig. 3.2.) 

of the method applied to (0P1) is given as the following algorithm:

Q
Start from seme initial control c 6 C.

kStepl Apply c to the real process. After the transient response of the 

real process is finished the steady-state measurements F (cK) are taken. 

Then estimate parameter values a by solving the equation

F(ck, a) = F*(c k). (3.7)

Tc • • • •
Step2 With fixed ct solve the model optimisation problem to find a new 

k+1
vector of set points c
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min 0(c, F(c, ch) (3.8)

c

s.t. G(c, F(c, ah) 4 0. (3.9)

k+1 k
The iteration is terminated when c - c .

Obviously if the algorithm converges, the real constraints will be 

preserved. This is because the control c obtained satisfies

G(c, F(c, a)) < 0 and F(c, a) = F (c).

Lenina 3.2 (feasibility)

The control obtained by the two-step method satisfies the real process 

constraints.

Sufficient conditions for the applicability of this basic method 

are concerned with the existence of a solution. Assume that the model 

is point-parametric on C and the parameter estimation problem (3.7) 

gives a unique solution (a necessary condition is t = m ). let us 

denote

A =A { aei^: F(c, a)=F*(c),  G(c,F(c, a )) x< 0 and c£C} (3.10)

- A
CA = {(c, a)€Rnx R™: G(c, F(c, a )) x< 0 and F(c,a )= F (c)} (3.11)

A
C = { c£R : G(c, F(c, a)) x< 0 }. (3.12)
a

The parameter estimation problem then can be represented by the mapping

5 : Pn(CA) — A (3.13)

The model optimisation problem with fixed a can be rewritten as

min Q(c, F(c, a))

(MOP ) C (3.14)
a

s.t. c 6 C .
a
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The solution of (MOP ) is denoted by c( a) •

Theorem 3.1 (existence of solution)

Assume 1. Hie model is point-parametric on C. 2. a is continuous on

Pn(CA) . 3. For any a£A, c( a) is unique. 4. c is continuous on A.

5. CA is canpact and convex. Then there exists at least one solution 

c of the two-step algorithm.

. ... a A
Proof Due to assumptions 1., 2., 3. and 4. the composition mapping c a 

is a well-defined point-to-point mapping continuous on Pn(CA). By the 

definitions of c and a, and assumption 1., VcCP^fCA), c a(c)£ Pn(CA), 

A A — —
l.e. c a: Pn(CA) -#-Pn(CA).

Finally Pn(CA) is canpact and convex as a linear transformation of the 

compact and convex set CA (assumption 5.). Schauder's theorem (Appendix 

A), therefore, ensures that there exists at least one point c Pr(CA)

A A — — _ _ * —
such that c a(c) = c, i.e., c( a) = c with F(c, a) = F (c). Q.E.D.

It is necessary to point out that in general the two-step 

algorithm cannot really solve (0P1) (i.e. obtain an optimal solution 

of (0P1)). Father it can only obtain a suboptimal solution of (0P1). 

When the model-reality differences are significant the solution given 

by the two-step method may be quite far from the real optimum. To 

demonstrate this, consider the following simple example.

Simple example 1

The model and reality equations are:

y - F(c, a) = -1.5c + a ,

y = F (c) = c + 1.

Constraint and performance index are:

G(c, y) =c+y+l<0,

Q(c, y) = c2+ y2.
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The following results are readily verifed (Appendix C).

Real optimum: 1 with associated Lagrange multiplier(a)

Notice that the real constraint set is c ^-1 and the constraint

is active.

(b) Two-step method: c = -3, 0=13 with £ = 0.

3.4 Sufficient conditions for the model based solution to give the 

correct process optimum

To determine the conditions when the basic two-step method gives 

the correct optimal solution of (OPJ ) (i.e. (ROP)) let us examine 

sufficient conditions for the model solution to be the correct process 

optimum. Such conditions have been discussed by Durbeck (1965), Foord 

(1974), and Ellis and Roberts (1982). We recall (POP) and (MOP^), and 

assume a could be any desired value in Rt and its value has been given.

Theorem 3.2

(ii)---
^c c

Proof Write the Lagrangians of (ROP) and (MOP^

L*(c,  £ ) = 0(c, F*(c))  + ^TG(c, F*( c)),

Assume (a) 0(c,y) and G(c,y) are continuously differentiable on Rnx Rm,

F and F(., a ) are continuously differentiable on R . (b) All relative

★ 
minimum points are regular points, (c) C and Caare convex, (d) Q(c,F (c))

is convex on C and Q(c,F(c, a)) is convex on C . Then the sufficient

conditions for a solution c of (MOP ) to be a solution of (ROP) are

(i) F(c,a ) = F* *(c),
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L(c, £ ) = Q(c, F(c, a)) + £TG(c, F(c, a)).

According to our assumptions the necessary and sufficient conditions 

(see, for example, Lueriberger, 1973) for c and £ to solve (MOPa) are

rn mm rn mm

v l(c, e, ) = — + — — + r.— + — — j 
Etc 9 c 9 y 3 c 9 c $y

G(c, F(c, a )) < 0 , £ » 0

^TG(c, F(c, a)) =-- 0

“A- 9>t q ?tf* <?TG rn * rn
'^iF 'aG

but v L (c, £ ) :=-- +--------+ [--- +--------i e ■ , due to (i)
c

'T) c 9c 9 y c "3 y

and (ii)

VcL*(c,  E, ) = VcL(c, E, ) = 0

G(c, F*(c))  = G(c, F(c, ct)) < 0

1TG(c, F*(c))  = |TG(c, F(c, a)) = 0 ,

i.e. c and E, solve (POP). Q.F.D.

Conditions (i) is, of course, very mild, e.g., point-parametric 

models can always achieve it. On the other hand, condition (ii) is 

rarely achieved in practice. It requires that the model and the real 

process have the same structure up to first-order derivatives. It 

becomes clear why the two-step algorithm given in Section 3.3 cannot 

find the real optimum solution when the model structure is inaccurate. 

The situation, however, is not hopeless. There are two possible ways 

for improving the standard two-step method so that the correct process 

53



optimum may be achieved.

Foord (1974) proposed a method to satisfy condition (ii) directly 

by extending the parameter estimation problem (3.7) so that not only 

the outputs but also the first-order derivatives of the model and the 

real process are matched, i. e., solving a frcm

F(c\ a ) = F (ck)

^F(ck, a) -3F*(c k)

9c c

This approach, in addition to other practical difficulties, requires a 

much more complex model and suffers ccmputational drawbacks. A 

point-parametric model is not enough. The chosen model must also be 

capable of matching the real process output derivatives. Suppose that 

the parameter estimation problem is unique, the parameter number would 

bet = nxm+m instead of t = m. Solving such a large number of 

equations provides a heavy ccmputational burden.

The second method attempts to modify (MOPa) so that the sufficient 

conditions to give the correct process optimum can be weakened. This 

approach is discussed in the next section.

3.5 Sufficient conditions for the modified model based solution to give 

the correct process optimum

As discussed above, any attempt to satisfy condition (ii) of 

Theorem 3.2 will meet great practical difficulties. Therefore, we will 

allow that model-reality derivative differences exist and try to 
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compensate such differences by modifying the model based optimisation

problem. Let us consider the following modified model optimisation 

T
problem, By "modified" we mean that a modification term - X c is added 

to the performance function. The meaning of modifier A will become 

clear later on.

min { Q(c, F(c, ot)) - XTc }

(MMOPa) C (3.15)

s.t. c f C a.

Theorem 3.3

Assume that assumptions (a) to (d) in Theorem 3.2 hold. Then the

sufficient conditions for a solution c of (MMOP ) to be a solution of

(ROP) are

(i)
1" *

F(c, a) = F (c) ,

(ii)

^F ^F*  z3TQ

X = [---------------1C----
'de c y

+ — C3 
Q y c = c

where £ is chosen such that the associated Lagrange multiplier of 

(MMOP ) at c is r.

Proof Obviously Q(c, F(c, a )) - XTc is convex on C a due to the 

convexity of Q(c, F(c, a )). Therefore, the necessary and sufficient 

conditions for c and £ to solve (MMOP^ are

rn mm m mm
/31Q ? F rp •a G Q F W

V L(c, g ) =---+--------+ [----+-------- 1 5 X = 0
Oc ^c Qy Oc Qc Oy c = c

G(c, F(c,a )) x< 0 , O 0

£TG(c, F(c, a)) =0 .
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Because of (i) and (ii)

rn rp * m rn rn*rp

V L(c, £ ) =-- 4---------- 4- [----4---------- ] £
<5 c Q y T>c 'de ^y c c

= V L*(c,  e ) = 0 
c

G(c, F*(c))  = G(c, F(c, a)) < 0

5TG(c, F*( c)) = eTG(c, F(c, a)) = 0 ,

i.e. c and solve (ROP). Q.E.D.

Condition (ii) of Theorem 3.3 is much weaker than that of Theorem 

3.2. It is no longer required to match the output derivatives. 

Instead, the model-reality derivative differences are allowed to exist 

and compensated by the modifier X . How to implement condition (ii) of 

Theorem 3.3 is discussed in the next chapter.

3.6 Surrmary

In this chapter a class of ISOPE problems is discussed which has 

found on-line practical application in industry. The mathematical 

formulation of such problems is defined as (0P1). Lerma 3.1 provides a 

basis for determining the real optimum operating condition by solving 

(0P1).

Developing a suitable algorithm to solve ISOPE problems proves to 

be nontrivial. Using the two-step method to solve (0P1) has been 

biscussed. Theorem 3.2 reveals the suboptimal nature of the standard 
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two-step method when applied to (0P1). Any attempt to fulfil condition 

(ii) of Theorem 3.2 will meet serious practical difficulties.

The sufficient conditions in Theorem 3.3 have much practical 

sense. It has been shown that by modifying appropriately the model 

based optimisation problem a model solution can be the real optimum and 

yet the structure differences between the model and the process are 

allowed to exist. This result has significant importance because it 

shows that an algorithm can be constructed by modifying the iterative 

two-step algorithm given in this chapter. The resulted algorithm is 

capable of overcoming the model uncertainties in on-line operations. 

In the next chapter technical details of this algorithm are presented.
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Fig. 3.1. An on-line control scheme
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CHAPTER 4. MODIFIED TWO-STEP METHOD

4.1 Introduction

The modified two-step algorithm (MTS) was first introduced by 

Roberts (1978). It has been observed to be superior to the two-step 

algorithm and ensures that the optimal steady-state condition can be 

achieved in spite of model inaccuracies in many applications. Like the 

two-step algorithm, it involves an iterative procedure of model 

parameter estimation and model based optimisation. However, there 

exists an important difference between the two algorithms. In the 

modified two-step algorithm, the model based optimisation problems are 

modified in such a way that the model-reality first-order derivative 

differences can be ccmpensated.

However, the formulation of the algorithm (see, for example, 

Roberts, 1978, 1979; Roberts and Ellis, 1981) assumed that the system 

inequality constraints could be ignored. In this chapter a thorough 

Lagrangian analysis shows that this assumption is not entirely valid. 

Examples can be found, to demonstate that if the inequality constraints 

are ignored the algorithm may fail to have a feasible solution. To 

take account of general inequality constraints an additional term 

should be added to the modifier formula. This appears to give the 

benefit of a better rate of convergence and guarantees that the optimal 

condition is achieved even when the inequality constraints involve the 

system outputs. The previous algorithm may be viewed as a special 

case, i.e., when the system inequality constraints do not involve the 

system outputs or when these constraints are not active during the
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whole iteration procedure.

In general, the real process outputs are often contaminated with 

measurement noise and hence, accurate measurements of real outputs 

cannot be assumed. The errors in measurements are further amplified by 

the use of finite difference approximations to determine the process 

output derivatives with respect to the controller set points. This 

forms a major source of inaccuracy. Because the derivatives are 

required in order to calculate the modifiers, an suitable simple method 

for reducing the influence of noise is to filter the modifier vector 

using low-pass digital filters. Bnploying simple averaging techniques 

will also reduce the influence of zero mean value noise, which is a 

common noise in practice.

In the following sections the new version of the modified two-step 

algorithm is formulated, seme implementation aspects of the algorithm 

are given and simulation results are presented and discussed.

4.2 Formulation of the new version of the modified two-step algorithm

It is assumed that the external disturbances which affect the 

system are varying slowly and can be considered as constant in the 

considered time interval of determining the steady state optimal 

control and, hence, the task of integrated system optimisation and 

parameter estimation may be described by (0P1) defined in Chapter 3. 

Rewrite (0P1) as

min q(c, a), (4.1)

c, a
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(0P1) (4.2)s.t. F(c, a ) = F (c), 

g(c, a ) ^ 0, (4.3)

where q(c, a ) = 0(c, F(c, a )) and g(c, a ) = G(c, F(c, a )).

In order to separate system optimisation and parameter estimation 

an additional equality constraint is introduced as v = c, and (0P1)' 

becomes

min q(c, a), (4.4)

c,v, a

(0P2) s.t. F(v, a) = F (v), (4.5)

g(c, a) x< 0 , (4.6)

V = c. (4.7)

The Lagrangian function associated with (OP2) is

L(c,v, a , X , n, £) = q(c, a ) + XT(v - c) + riT[F(v,a ) - F*(v)]

+ £Tg(c, a ), (4.8)

where X • r| and E, are Lagrange multiplier vectors. Assume that all 

required derivatives exist and regularity conditions are satisfied. 

Then the Kuhn-Tucker necessary optimal conditions (for example, 

Luenberger, 1973) take the form:

3Tq(c, a ) 3Tg(c, “ )

v L =------------ / +---------- 5 = 0,
ac ac

(4.9)

3TF(v, a) 3TF*( v)

V L = > + [-------------------- ] n = 0, (4.10)
3 v 9 v

9Tq(c, a ) 9tf(v, a ) gTg(c, a )

a 3a 9a 9a
(4.11)
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V L = v - c = 0, 
A

(4.12)

V L = F(v, a ) - F*(v)  = 0, 

n
(4.13)

L = g(c, a ) 4 0, (4.14)

£TV^L = £Tg(c, a ) = 0, E, > 0. (4.15)

Let us consider how to obtain a solution of (4.9) to (4.15).

3TF(v, « ) -1

Assuming that [---------- ] exists, then n is solved from (4.11)

3a

and substituted into (4.10) to obtain the formula of X

3TF(v, a ) 3TF*(v) 3TF(v, a ) _1

X = x(c,v, a / £ )i = e- ---------iE__.--------j

a v a v 3a

T
3 q(c, a )i 3Tg(c, a )

•E--------- . +----------51. (4.16)

3a 3a

Compared with the previous work (Roberts, 1979,1979; Roberts and Ellis,

aTg(c, a )

1981) a new term ---------- is introduced which takes into account

3a

the influence of system inequality constraints. Because of equation 

(4.12) v = c, (4.16) can be written as

3TF(v, a ) 3TF*( v) 3 tf(v, a ) _1

X = X(v, a, ^) = [-------------------- IE---------- 1
3 V 3 V 3a
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T8 q(v, a )
3[-------------------------

3a

8Tg(v, a )

+----------

8a

(4.17)

Equations (4.9), (4.14) and (4.15) are satisfied by solving the

modified model optimisation problem with given a and X

min [q(c, a) - XTc}, (4.18)

(MMOP) c

s.t. g(c, a) < 0. (4.19)

For given v and £ let us denote the solution of (4.13) by a(v),

evaluate A according to formula (4.17) and denote the solution of

(MMOP)

A
^(v, Ct/

and associated Lagrange multipliers by
A r X
c(v, a, t, ) and

A. 
c(v,

£ ), respectively. Then any solution of 

S(v), O = v,

the operator equations

(4.20)

A
$(v, a(v),£ ) = £ / (4.21)

is a solution of (4.9) to (4.15). The resulting scheme is the same as

in the previous work except for the difference in the formula for

calculating modifiers A and for the need to solve a new operator

equation (4.21). The information structure of the algorithm is shown

in Fig. 4.]. Interestingly, if the system inequality constraints do

not depend on the system outputs, or if those involving the system

outputs are not active during the vhole iterative procedure then

8Tg(c, a )

---------- - 0, (4.20) and (4.21) reduce to

and (4.16) to

8a
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. 9TF(vz a ) 3TF*( v) 3TF(v, a ) 13Tq(c, a )

X = X(c,v, a ) = [-------------------- ?[---------- 1 ----------
3v 3v 3a 3a

vhich, as expected, agrees with the formula given in the previous work.

Simple example 1 given in Section 3.3 is used to demonstrate the 

importance of the new term in the modifier computation. The following 

results show that if the new term in (4.16) is ignored the procedure 

may fail to reach a feasible solution.

(1) Using the previous formula for computing X gives:

c = -0.5 + 0.125 t-

hence, the solution is not feasible.

(2) Using the new formula (4.16) (or (4.17)) for computing X gives:

A A
c = -0.5 - 0.5

A a  A
It follows £ = E,Opt= 1/ c = cQpt=-l and Q = Qopt = 1 (see Appendix C) .

4.3 Implementation aspects of the algorithm

4.3.1 Description of the algorithm

Suppose we have properly chosen seme iterative strategies for 

finding the solutions of equations (4.20) and (4.21)

vk+1= V (ck, vW' <4-22’
V

^k+1= ( Ck, Ck)- (4.23)

Given seme initial v^ inside the feasible set and seme initial guess 

E, 0 the on-line implementation involves repeatedly the following two 
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step procedure

Step 1: Apply v to the real process and obtain the corresponding 

steady-state measurements F (v^). Determine ak by solving

F(vk, a ) = F*(v k).

kPerform additional perturbations about v and measure the corresponding 

process outputs to compute finite difference approximations of the

9TF*(v k)

derivatives ------- . Finally, use equation (4.16) to calculate

9 v

Ak

,k
X may

Ak

, z^k-1 k k r kx 
X (c , v , a , £ ).

Step 2:

be calculated according to equation (4.17). In this case 

= A (A ak, ek).

k kWith fixed a and X , solve the model-based optimisation

problem (4.19) and (4.19) to obtain ck and ^k.

__ ... k k A k k
The iteration is terminated when c = v and E, = E, -

c and

In practice, one may terminate the procedure when all

A
£ satisfy

k
c.

1

elements of

k v.
1

(4.24)i i

i i
A k 
g (4.25)

where It is suggested that the

form

ck - A, (4.26)

k+1 £k + K c( ek- ?k),

are diagonal gain matrices

(4.27)

viier e K and K

diagonal elements less than or equal to unity.

usually with positive
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It is obvious that if the algorithm converges the solution is 

feasible and condition (i) and (ii) of Theorem 3.3 are fulfilled. 

Therefore, if the Kuhn-Tucker necessary optimal conditions are also 

sufficient (e.g., in convex cases) a real process optimum solution is 

found.

The justification of using either (4.16) or (4.17) to calculate \ 

is that the solutions obtained are identical. However, the iteration 

procedure may not necessarily be exactly the same. The author's 

simulation experience suggests that equation (4.16) is preferred in 

that better behaviour (such as faster convergence) of the iteration 

process can usually be achieved. On the other hand, using (4.16) the 

convergence conditions of the algorithm become extremely difficult to 

formulate. The reason for this will be explained in the next chapter.

4.3.2 Approximating real output derivatives

Calculating the modifiers using (4.16) (or (4.17)) needs the real 

output derivatives with respect to controller set points v. These 

derivatives can only be approximated by perturbing v, measuring the

* .... 
corresponding changes in outputs y and applying finite difference

* 
formulae because the real output equation F (v) is unknown. A simple 

finite difference formula is

9F. (v) F. (v + e^n p - F- (v)
—2----_2------------------------- / j=l,...,m, i=l,...,n, (4.28)

9 vi

where e^ is a unit vector with unity ith element and others all zero, 

0 i is a small perturbation on the ith element of v, m is the number of 



outputs and n is the number of controller set points. An advantage of 

(4.28) is ease of implementation. Let Tm be the measurement time 

required to wait for the process to reach a new steady state after the 

set points have been changed, and let Tq be the computing time required 

for Step 2. Changing v^-^ to v^ requires time T , another nTm is needed 

for calculating the derivatives using (4.28). Therefore, the time 

required for one iteration will approximately be (n + l)Tm + TQ.

Roberts and Ellis (1981) showed that this time can be reduced by 

combining process derivative perturbations with controller set point 

changes produced using equation (4.26). Consider using another simple 

finite difference formula 

3F (v) F (v + Av(s))-F. (v + av(s“D)

v = v + Av(n) = v • Using (4.29) to approximate derivatives first and 

k
at the end calculate a > 'the time required for one iteration will be 

reduced to nTm+ TQ. However, to achieve an acceptable accuracy it is 

important to limit both the minimum and maximum possible change in 

controller set points

—------------------------- ---------------- , .. . ,m, s=l, . . . ,n, (4.29)
3v 0

s s
s

where d = v - v \ A v(s) = E e. cr ., A v(0) = 0, v = v^ and 
S S S 11

i=l

i i
i i > (4.30)

For processes with slow dynamics using equation (4.29) is worthwhile 

because saving Tm for each iteration is quite significant. However, if 

the desired tolerance in (4.24) is smaller than equation (4.29) 

should not be used when the iteration procedure reaches its convergent 

stage.
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To reduce the measurement time further the points generated by the 

algorithm may be used to approximate the process output derivatives. 

Such a scheme requires additional perturbations only at the starting 

point. Fbr very slew dynamic systems this method clearly has 

advantage. On the other hand, poor quality of the derivatives may 

adversely affect the behaviour of the algorithm. It is recctrmended 

that when the iteration procedure is near its convergent stage better 

finite difference formulae such as (4.28) should be used.

4.3.3 Simple techniques for attenuating the influence of noise

It is expected that the performance of the modified two-step 

algorithm will deteriorate considerably under noisy measurement 

conditions because the differentiation amplifies measurement errors. 

However, employing simple filter techniques can significantly reduce 

the influence of noise. In this short section, it is not intended to 

construct general filter structures. Rather, only seme very simple 

techniques are suggested. Their effectiveness can be observed in the 

simulation studies given in the next section.

Since the derivatives are used in calculating the modifier vector, 

an efficient method for reducing the influence of noise is to filter 

the modifier vector using low-pass digital filters. A first-order 

low-pass filter with unity steady-state gain is represented by the 

difference equation

_ —— 1a  1a  ,

where and Xj are filtered and unfiltered values of the jth

element of the modifier vector, respectively; t. .
j is a constant,
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< typical values being 0.9 ^0.98.

Employing simple averaging techniques will also help to reduce the 

influence of zero mean value noise which is the common noise in 

practice. Bor example, take T measurements and apply the averaging 

formula

1 T
y • = — £ y.*(i)  • (4.32)

J m J
i=l

4.4 Simulation study

4.4.1 Simulation examples

Three numerical examples have been used in ccmputer simulation

studies.

Example 1. The model and reality equations are:

^1 ~ c]~ c2+ ^2+ al

y2 = c3- c4+ yl” 3y4+ “ 2

Y3 = 2c4” C5” yl+ Y4+ “ 3

= Cg+ 2.5c.?- 4y^+ a

'k k k
Y1 = 1-3c1~ c2+ ^2 + °’15y2 C1 

y2* = C3" C4+ 3y4*+ °* 1C42

Y3*=  2c4- 1.25c5- yx*+  y4*+  0.25c4c5+ 0.1 

Y4* = 0,8C6+ 2*5c7" 4*2y3* ’

The system constraints and the performace index are:

CY = {(c,y)£Rn: c^t c^<. 1, 0 < y^ 0.5, 0.5c3+ c4+ 2c5< 1,

2 2 2
4c^ + 2c3y^+ 0.4y^+ c^c^t 0.5c3 + Yj < 4, 0 >< c^< 1 and
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c6+ y3+ 0.5 >, o },

Q(c,y) = 5(^4- c2- 2)2+ 2(c3- 2)2+ c^+ 3c^+ (c6+ 1)2+ 2.5c?2 

+ 4y12+ (y2- 1)4+ (y3- 1)2+ y42.

Example 2. The model and reality equations are:

y-j= 1.43750-p 0.1R75c2+ 1.5y2+

y2 0 • 5c3~ 1 • 5c4+ y^— 2y4+ ot 2

y3= 2.5c4- O.5c5- yT+ l-5y4+ a3

y4= 1-25c6- 3y3+ a4,

yl = Cl-C2+ ^2 ~ 0,5c12+ 0.5(0^+ c2- 2)y2

* * * 
y2 = c3- c4+ *1  - 3y4

-k 'Jr 'k

y3 = 2C4" C5- yl + Y4 

y4*=  V 4y3*+  0.5c6y3*.

The system constraints and the performance index are:

CY = {(c,y)€ R10: 1-006 - c^ y^ o, 0.375 + 2.25c6- 2.75yg- y4>, 0,

'c^J < 0.5, i=l,4,5,6, 0 c2^ 2.5 and 0 c3< 2},

Q(c,y) = cx2+ (c2- 2)2+ 2(c,_ 2)2+ c42+ 3c52+ (cf+ 1)2+ 4y]2 

+ (y2- 1)2+ (y3- i)2+ y42-

Example 3. The model and reality equations are:

yl= cl~ c2+ “1

y2= c3~ c4+ yl+ a2

y3= 2c4" c5“ Y] + a3'

Y1 “ 1,4ci- 0.6c2+ 1.8y2*

* * 
y2 = 1.3c?- l.lc4+ l.lyT 

y3*=  2.3c4_ c.7c5_
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The system constraints and the performance index are:

A q
CY = {(c,y)6R : !c±’ x< 1, i=l,...,5, y^ 0, j=l,2,3,

0.8 - c2- 0.6y2^ 0 and 2.04 + l.OSy^ c32- c^- c^> 0},

5
Q(c,y) = £ c.2+ (yT- 1)2+ 2(y?- 2)2+ (yg- 3)2-

i=l

In each example, the aim is to use the iterative modified two-step 

algorithm to determine the optimum (minimum) value of the real system

*
performance Q(c, y ) inspite of the fact that the model used to solve 

the optimisation problem is not a faithful representation of reality. 

The model-reality differences are taken into account by updating model 

parameters and through modification of the optimisation problem.

4.4.2 Simulation results

The simulation work was performed on a Prime 550 computer. The 

optimisation problems were solved using the NAG library subroutine 

E04UAF which uses direct search and a sequential augmented Lagrangian 

method. Initial conditions were

v° = 0 and £ 0 = 0.

_3
= 10

Desired tolerances in (4.24) and (4.25) were chosen as

Bv = 5xl0~5 and

Gain matrices K
v and in (4.26) and (4.27) were chosen asK

Kv = I,

vhere I 

found by 

(4-16) and the finite difference formula (4.28) was used to approximate 
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the real output derivatives.

TABLE 4.1 compares the performance of the new version of the 

algorithm with its previous version under noise-free conditions. TABLE

4.2 illustrates detailed results of Example 3.

To investigate the behaviour of the MTS algorithm in the presence 

of noise, random noise sources with normal statistical properties have 

been added to all elements of the real output vector measurements. The

• • * ith sequence of the noise vector has a zero-mean value and 0.01! '

★
standard deviation, where is the real optimum value of the ith

*
element of the output vector (in these examples all y^ are none zero). 

Every element in the sequences of the noise vector are generated using

NAG library subroutines G05CCF and G05DDF so that they are all 

different to each other and have different values in separate runs of 

the program.

Fig. 4.2. to Fig. 4.6. illustrate the effect of noise on real 

system performance during the course of the iterations and the 

significant improvement achieved by the use of the filter techniques 

(4.31) and (4.32), vhere the number T in (4.32) is chosen as 10.

4.4.3 Discussion of results

In all three examples the system inequality constraints depend on 

the system outputs and at least one of them is active. TABT,F 4.1 shews 

that in all these examples the new version of the modified twa-step 

algorithm attained the real system optimum condition with a 
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significantly improved rate of covergence in two of the examples. The 

previous version failed to reach the real optimum condition, 

illustrating the danger that it may fail to achieve a feasible solution

9 g(c, a )
in some situations, due to ignoring the term---------- E, as shown in

3a

Section 4.2. It has been observed that after convergence the associated

A

Lagrange multipliers E, in the new version matched the corresponding 

associated with the real system optimisation problem. Ibis did not 

occur in the previous version of the algorithm.

The simulation results show that, as expected, the measurement

noise has serious influence on the performance of the modified two-step 

algorithm. However, the simulation results also illustrate that the 

simple filter techniques (4.31) and (4.32) are effective. In the

examples tested it has been found that the filter technique (4.31) is

powerful enough to attenuate the influence of the given noise and

contributes the most improvement.

4.5 Summary

In this chapter a method for solving ISOPE problems has been

presented. Using a modification of the two-step algorithm to take

account of differences between real process and model output

first-order derivatives with respect to the controller set points

enables the iterative technique to achieve the correct optimal

operating point on the real process in spite of errors in the structure

of the mathematical model.
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The need to evaluate the real output derivatives represents a 

significant drawback of the modified two-step algorithm. However, two 

major advantages are gained which may partly compensate the above 

drawback. Firstly, the self-adaptive nature of the method enables 

simpler models to be used and results in saving in modelling. If any 

disturbances occur at any stage during the operation the algorithm will 

adapt to proceed towards a new optimum. Secondly, using simpler models 

(e.g. linear models) simplifies the optimisation computation.

It is considered that the modified two-step algorithm is very 

suitable for applying in the situation where highly uncertain 

mathematical models exist. Further work is required to extend the 

algorithm to dynamic optimisation.
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TABLE 4.1 Ccmparison of performances (noise-free)

example

MTS

algorithm 0
V

1

C
D

 
i 1 1

iterations

real

performance

real

optimum

one previous version 0.9 - 15 6.3394 6.3266

new version 0.9 0.9 10 6.3266

two previous version 0.4 - 31 2.1409 2.1405

new version 0.4 0.8 32 2.1405

three previous version 0.3 - 35 5.9273 5.9261

new version 0.3 0.8 29 5.9261
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TABLE 4.2 Comparison of results of Example three (noise-free)

set previous MTS -0.73870 0.10857 0.90761 1.00000 -0.83271

points new MTS -0.71740 0.11836 0.89968 1.00000 -0.82994

real optimum -0.71740 0.11836 0.89966 1.00000 -0.82990

outputs previous MTS 0.97502 1.15242 1.81037

new MTS 0.96953 1.13606 1.81448

real optimum 0.96955 1.13607 1.81443

real constraint previous MTS -0.000025 0.546620

values ( >, 0 ) new rrrs 0.000002 0.559789

real optimum 0.000000 0.559895

Lagrange previous MTS 0.308415 0.000000

multipliers new MTS 0.378316 0.000000

real optimum 0.378188 0.000000
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CHAPTER 5. OPTIMALITY AND GLOBAL CONVERGENCE CONDITIONS OF MODIFIED

TWO-STEP ALGORITHM

5.1 Introduction

In Chapter 4 it has been shown that if the regularity conditions 

are satisfied at every feasible point then the solution obtained using 

the modified two-step algorithm satisfies the Kuhn-Tucker necessary-

optimality conditions corresponding to (ROP)

★
min q (c) (5.1)

(ROP) C

s.t. g (c) ,< 0 (5.2)

where q (c)=Q(c,F (c)) and g (c) = G(c,F (c)). Theorem 3.3 of Chapter 3 

actually gives sufficient conditions for a solution of the modified 

two-step algorithm to be a solution of (ROP) . In the following 

discussion, Q is defined as the algorithm solution set

A
Q = [all solutions obtained by the modified two-step algorithm}.

*
The solution set of (ROP) has already been denoted as q in Chapter 3.

i
Brdys and Roberts

ship between Q and q

(1984b) have investigated further the relation-

*
when the inequality constraints have a special

form: G(c) < 0. In Section 5.2, it is shown that their results are

readily valid for a more general form of inequality constraints:

G(c,y) 0. In Section 5.3 the modified two-step algorithm is

considered as an algorithmic mapping, and its component mappings are

defined. This gives an inside view of the algorithm and provides a 

basis for convergence analysis. Global convergence conditions given in 

Section 5.4 are due to Brdys and Roberts (1984b). Only small changes 
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have been made.

5.2 Optimality conditions

In order to simplify the analysis it is assumed that the

derivatives are calculated accurately.

* 
sufficient conditions that Q c Q •

The following theorem gives

Theorem 5.1

Let v be an algorithm solution and 5 be the associated Lagrange multi-

plier vector. Assume (a) G(c,y) and Q(c,y) are differentiable on RnxF?nz 

F(c, a ) and F (c) are differentiable on Rn. (b) For any c£C, where

A *in ic = [c£R : g (c) 0} is the feasible control set, the regularity

conditions are satisfied. Then v satisfies the Kuhn-Tucker necessary

■k 
optimality conditions for (ROP). If, additionally, C is convex and q 

is convex cn C then v is a solution of (ROP).

Proof. Obviously, v is feasible, 5 > 0 and the following conditions 

are satisfied (see Section 4.2):

c(v, a(v), 5) = v

1 (v, a(v) ,5 ) = 5 .

By the definitions of c and 5 (Section 4.2) and according to assump-

tions (a) and (b) we have

9Tq(c, a(v))

3 c

9Tg(c, a(v))

X (v, a (v), £ ) +------------ 5=0,
3c

g(c, a(v)) < 0,

E, Tg(c, a (v)) =0 and E, > 0.

Notice that F(v, a(v))=F (v) and using the definition of modifier vector
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X (equation (4.16) or (4.17)) we obtain

rp * rn *
8 q (v) 8 g (v)

8c 8 c

g*(v)  < o,

rn * 
£ g (v) = 0 and £ > 0,

which is precisely the Kuhn-Tucker conditions at v for (ROP). The

★
Kuhn-Tucker conditions become sufficient for optimality if q is convex

(Luenberger, 1973). Q.E.D.
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v£c. (iv) The model is point-parametric on C. Then every solution of

(ROP) belongs to the algorithm solution set

* 
be

Q .

Proof. Let c a solution of (ROP). Rxae to assumption (iv) every

*
triplet (c ,

*

* 
v ,

*
a

* * * 
a ), where v = c and

★ *
equation F(v , a )= F (v ), solves (OP2) (see

is any solution of the

Leuna 3.1 and Section 4-2)

min q(c, a)

c,v, a

(0P2) s.t. F(v, a) = F*(v)

According to

g(c, a) <? 0

v = c.

assumption (ii) there exist multiplier vectors AC?11/

p C B?'11 and € pP such that

f * *
3 q(c , a )

A +
T / *3 g(c , a ) 
-----------= o,

3 c 3 c
(5.3)

rp *
3 F(v ,

A + r----------
3v

a )
T * / * x:F (v )
------- 1

3 v
n = o, (5.4)

T * *.
3 q(c , a )

+
T / * *»3 g(c , a )

n - o, (5.5)

3a 3a 3a

■i- -k

g(c , a )

£-Tg(c*,  a*)  = 0 and £ > 0.

0, (5.6)

(5.7)

Assumption (iii) ensures that g can be solved from (5.5) and substituted

into (5.4) to obtain

3TF(v*,  a*)

A = E----------------
3V 3 a
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fp * *
9 g(c , « )
+----------- ?1.

9a

■k k
Because of v = c

* * 9 F(v , a ) 9iF (v ) 91F(v , a )

x = x (v , a / e) = r---------------------- nr----------- n
9 v 9 v 9a

9 q(v , a ) 9 g(v , a )
.[-----------+------------ . (5.e)

9a 9a

*
(5.3), (5.6), (5.7) and (5.8) imply that c with associated Lagrange 

multiplier £ satisfies the Kuhn-Tucker necessary optimality condition 

for (MMOP)

rn
min{q(c, a ) - Xx(v , a , C )c}

(MMOP) C (5.9)

★
s.t. g(c, a ) >< 0.

*
Due to assumption (i) c is a solution of (5.9) (see Mangasarian, 1965). 

Recall the definition of an algorithm solution v and associated Lagrange 

multiplier £ is such that (Section 4.2)

c(v, a(v), | ) = v

£(v, a(v), i ) = E, ,

— — * \
where a(v) is a solution of F(v, a) = F (v), c and £ are a solution 

and corresponding Lagrange multiplier of (5.9) with given v and £ . We

★
conclude that c £ Q • Q.E.D.

The conditions to ensure that the algorithm solution set includes 

all real optimum points require
*

neither C is convex nor q is convex
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(or pseudo-convex) on C. This indicates that the modified two-step 

algorithm has an advantage when using a simpler linear model to solve a 

non-linear steady-state optimisation control problem.

5.3 The algorithmic mapping of modified two-step algorithm

We will restrict the discussion of global convergence conditions 

only on a class of problems where inequality constraints do not depend 

on the system outputs y. There are two reasons for this restriction.

A
Firstly, any becomes identical to C = [c£r : G(c) ><0}. This ensures 

that it is possible to choose seme iterative strategy that guarantees 

the feasibility of every points generated during the iterative 

procedure. Secondly, it is extremely difficult if not impossible to 

formulate the global convergence conditions when the inequality 

constraints involve y. The following discussion is an extension to the 

original work of Brdys and Roberts (1984b) .

It is assumed that the modifier vector is calculated according to 

(4.17), which, in the absence of y in the inequality constraints, can 

be written as

3TF(v, a) 3TF*(v)  3TQ(v, F(v,a ))

X = X(v, a) = [------------------- 1---------------  . (5.10)
3 v g v 3 y

This ensures that the algorithmic mapping is autonomous, i.e., at kth 

kiteration, the mapping depends only on v (see Appendix B, Definition 

B7.). If (4.16) is employed, the algorithmic mapping will become non- 

autoncmous, i.e., it depends on v^,..., vk. To prove the convergence of 

a non-autoncmous algorithm is, in general, very difficult. It is worth 
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emphasizing that the optimality of the solution obtained remains the

same using either (4.16) or (4.17).

At each iteration, the modified two-step algorithm consists of 

three stages as follows:

(a) Parameter estimation: For v £ C determine the parameter vector a 

by solving F(vk, a ) = F (v^). Clearly, the solution is not required to 

be unique.

(b) Modified model optimisation:

min [q(c, a^) - ( Ak)Tc},

c£ C

where \ k= l(v\ a ■k) is calculated according to (5.10). Let ck be a 

solution.

(c) Updating v: If ck = v^ the procedure is terminated. Otherwise

vk+1 = V*  + K^(ck - xA) and the procedure is repeated.

In the following, the mappings representing these stages are defined. 

The overall algorithmic mapping then can be expressed as a composite of 

these mappings.

For v£ C if we define the sets

a(v) = F(v, a ) = F*(v)},

and A = (J a (v).

v£C

(5.11)

(5.12)

Then a point-to-set mapping is given as

a : C -^A, (5.13)

k z- • kand Stage (a) can be described as: For a given v € C find a such that 

ak£ a (vk).
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Let us define another point-to-set mapping

c: C x A -*•  C, (5.14)

z\ A rp
as c(v, a ) = Arg min{q(c, a) - X (v, a )c}, (5.15)

c £C

where the capital A of Arg indicates that the optimisation solutions 

are not required to be unique and

X : C x A -*R n, (5.16)

is determined by the relation (5.10). Then Stage (b) is described as: 

For a given (v\ a ^)£ c x A find c^ such that c^£ c^v^, a^).

We will limit the gain matrix to be = 6 1 and allow the 

positive scalar q to change during the iterations, i. e.,

vk+1 = vk + ek(ck - vh with 0 < T e \< b(v*)

where B: C R is an appropriately defined function. Now let us define 

S : C x (C-C) -*-C,  (5.17)

A A
with w(v, d) = {v + ed€C: T< B(v)}. (5.18)

Notice that the appropriate choice of B(v) is of great importance for

Tv 
guaranteeing v + gd6C. Stage (c) can be stated as: For a given v and 

ck find v^+^ such that vk+^ £ w(v\ ck- v^). If = v\ then vk+^ = v^ 

and the iterative procedure is terminated.

Cartesian product of a and the identity mapping I:

Next, the following compositions of q, c and co are given. The

A
6: C -^C x A,

A A
with 6(v) = ((v, a ) £ C x A: a 6 a(v)l-

A A
The composite mapping of § and c:

(5.19)

(5.20)

A A
c 6 : C ->C. (5.21)

kStages (a) and (b) together can be expressed as: For a given v £ C find
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c 6 (v^). A A
The sum mapping of c 6 and -I:

c6 - I: C 1-C-C, (5.22)
A A

with (c 6 -• I) (v) = [d = c - v£ C-C: c£ c 6 (v)}. (5.23)

A A
The Cartesian product of c 0-1 and I:

V : C -*■ C x (C-C), (5.24)

with \f(v)
A A A
= {(v, d)£C x (C-C): d£(c6 - l)(v)}. (5.25)

Finally, the overall algorithmic mapping of the modified two-step

. . /V A
algorithm is defined as the composition of v and w, i.e.,

AAZ
$ = co\> / (5.26)

and the kth iteration of the algorithm is expressed as: For a given 

vk6c find v1^1 such that 4+1€ Hv*).  In a more general sense, the 

set of all fixed points of $ can be defined as the algorithmic solution 

set
A

Q = {v€C: v (v)}. (5.27)

If the solutions at Stages (a) and (b) are unique and a fixed scalar 0 

is chosen the above mappings are all point-to-point mappings.

5.4 Global convergence conditions

Mathematical preliminaries are given in Appendix B to help 

understanding the following theorem.

Theorem 5.3 (global convergence theorem) (Brdys and Roberts,1984b) 

Assume (1) The set C is bounded and the set A is compact. (2) The 

functions convex and continuous on Rn. (3) The

*
function q is differentiable on C and its derivative is Lipschitz 

continuous on C with Lipschitz constant p > 0, i.e.,

92



!; vq*( c + h) - v q (c)!! < p! X !, for an c, c + h£c,

*
where ' ' ! denotes the Euclidean norm. (4) The function F is

continuous on Rn and continuously differentiable on C. (5) The function 

F is continuous on Rnx R^ and F(., a) is continuously differentiable on

C for all a€A. (6) F is point-parametric on C, i.e., the set a (v) is 

not empty for all v£ C. (7) The function 0 is continuous on Rnx and

Q(c,.) is continuously differentiable on R™ for all c£C. (8) For every

a 6 A, the function q(., a) is differentiable on C and its derivative is 

uniformly monotone on C with constant b( a ) > 0, i.e.,

r Vcq(c + h, a ) - Vcq(c, a)]Th > b( a )! X !2/ for all c, c + h£C,

where b: A-*Ris  upper semicontinuous on A and the following holds:

inf b( a) > 0. (5.28)

a£ A

(9) The point-to-set mapping a is open on C. Then

(i) If t and e are chosen such that 1 >, t > 0, e >0 and

A 2
B(v) - min{l,---inf b( a ) - e }, (5.29)

P \a6a(v)

2
T + e <-- inf b( a), (5.30)

p
a€ A

then the algorithmic mapping $ is well-defined on C to C and closed 

outside the set Q.

k->(ii) There exists at least one cluster point of the sequence [v } 

generated by the algorithm v<+^ £ $(v^). Each cluster point belongs to

Q and, moreover, each point v satisfies the real process constraints 

and corresponding process performance values satisfy the condition:

q*(v k+1) < q*(v^)  if / Q for k=l,2,... . (5.31)
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We employ Zangwill's convergence theorem (see Appendix B) to prove this 

theorem. The proof is given in the following two subsections.

5.4.1 Proof of assertion (i) of Theorem 5.3

a) v is closed on C.

Assumption (6) ensures that a is well-defined. The continuity of F and

F (assumptions (4) and (5)) implies that a is closed on C. In fact, for

v v v k a k
vt C, let [v } CZ C, v -*-v  and a a < a 6 a(v ) . We need to prove

* A _ t — * .
aCa(v) = { a€R : F(v, a) = F (v)}.

But F(vk, ak) = F*(v k) hence, F(v, a) = F*(v),  i.e., a£a(v).

According to assumptions (4) , (5) and (7), the function X(v, a )

is apparently continuous on C x A, therefore, the function

q(c, a ) - XT(v, a )c, (5.32)

is continuous on C x(C x A). Assumptions (1) and (2) imply that C is

CxA and Cx(C x A) are compact.ccmpact and convex and hence,

A . . , .
c is well-defined (a continuous function

Therefore,

the mapping achieves its

minimums on a compact set). Moreover, assumption (8) inplies that

X(v, a) is uniformly monotone on C with the same constantVcq(c, a) -

b( a) for all (v, a)€c x A. This ensures that function (5.32) is

strictly convex on the convex set C for any (v, a)£ C x A, and c(v,a )

. , A .
consists of a single point for a given (v, a) e CxA. Thus c is a pomt- 

to-point continuous mapping on C x A (Appendix B, Theorem B5) .

Proving the closedness of v given in (5.24) is new straightforward.

The mapping 6 defined in (5.19) is closed on C due to the closedness

A A A
of a and identical mapping I (Theorem B3). Next, the mapping c 6 given 
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in (5.21) is closed on C (Theorem Bl) and c 6 - I defined in (5.22) is 

closed on C (Theorem B2). Finally is closed on C because it is the

A A
Cartesian product of c 6-1 and I.

b) is closed at (v, d), where d 4= 0 and (v, d) £ C x(C - C) .

First it is easy to check that co is well-defined, i.e., co(v,d) is not 

empty for all (v,d)(£Cx(C - C) . Let (v,d)€C x(C - C), we need to prove 

that the gain 0 defined in (5.IB) exists, i.e., to prove t < B(v). Dae 

to (5.30) the following is true:

2 2
T + e ><---inf b( a ) <----inf b( a) and t < 1,

P , P Az \
a e A a G a(v)

2
or T ---inf b( a ) - e and t 1, consequently, T < B(v).

P \
a £ cd

Next we show that B: C -*■  R is upper semicontinuous on C. Consider 

the function frcm C to R:

inf b(a ) .

a £ a (v)

a is open on C (assumption (9)) and b is upper semicontinuous on A 

(assumption (8)) imply that the above function is upper semicontinuous 

on C (Theorem B4). Now one can easily check that B is upper semi-

continuous frcm the definition of upper semicontinuous (Appendix B, 

definition B9).

For any (v,d)£ Cx(C - C) satisfying d £ 0/ let (v^,d^)^ Cx(C - C) 

and (vSd^) (v,d), and let y^= v^ + Q^d^ -*  y, y^ £ co (v^d^). We need 

to prove y £ co (v, d) . Define

95



A !!y - v];

0 =
1 *d*  1 i A i

We have

i'wk- v^'1
_ i iy v 11
0 - lun- -- = lim 0k

k -oo ' ]dk! ! k —co

1 <x/

Finally, for a v£C satisfying v 4 Q, any (v,d) £ v (v) satisfies 

d 4= 0. The closedness of yf and co ensures that $ is closed at v (Theorem 

Bl). The proof of assertion (i) is complete.

5.4.2 Proof of assertion (ii) of Theorem 5.3

The feasiblity of a sequence {v } generated by the algorithm has 

already been proved. What remains to be proved is that a continuous 

Zangwill function Z: C R exists. We will show that Z can be chosen as

*
q •

Obviously y = v + 0d. Since

then

T 0 < lim sup B(vk) .< B(v) .

k oo

Therefore, y£ ^(v,d) . This proves that is closed at (v,d)£Cx(C - C), 

where d 4 0.

c) Assertion (i) holds.

Clearly $ is well-defined because and are both well-defined. To 

shew $ (C) Cl C, notice that for a given vG C we have c(v, a)€ C for all 

a Ga (v) . Because B(v) < 1 and t >0, the convexity of C inplies

v + 0 (c(v, a ) - v) £-C for all t 0 < B(v) . Thus $(v) CSC.
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For v, c£c, because of assumption (3) and the convexity of C, the

following holds (Appendix B, Theorem B7):

For any (v, ct) € C x A, we already know that function (5.32) is strictly

A . . . .
convex on the convex set C with c(v, a) as its unique global minimum

point over C. Therefore, the following holds (Theorem B6):

C Vcq(c(v, a ) ,a ) - X(v, a)]T(v - c(v, a )) >0. (5.34)

According to (5.10)

X(Vr a) = VcF(v, a) V y0(v,F(v,ct )) - V F (v) VyQ(v,F(v, a ))

= Vcq(v, a) - VcQ(v,F(v, a)) - VF*(v)  VyQ(v,F(v, a))

Because F(v, a)

- vq (v) + vcQ(v,F (v)) +

= F (v) we have

VF*(v)  V 0(v,F*(v)) .

X (v, a) = Vcq(v, a) - Vq (v). (5.35)

Substitute (5.35) into (5.34) we obtain

•fl-
9q (v) A 3 q(v, ct )
------(v - c(v, ct )) >z (  

9c----------------------3 c

3q(c(v,a ), a) A
-------------- ) (v - c(v, ct)) • (5.36)

9c

According to assumption (?) (5.36) can be rewritten as
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------(v - c(v, a)) > b( a ) i 'v - c(v, a) J J2.

3c

Ccmbining (5.33) and (5.37) we have

q*(v)  - q*(c)  >, e (t>(a )-----) ! 'v - c(v, a ); ;2.

2

(5.37)

(5.38)

Finally, due to (5.29) the following holds:

2 2
0 < t < 6 < B(v) x<---inf b( a ) - e ---b( a ) - e ,

p a£a(v) p

9p sp
or b( a ) ----->----> 0 and 9 >, t > 0. Hence,

2 2

q (v) - q*(c)  >----- | |v - c(v, a ) ! J2 >, 0. (5.39)

2

Because-----> 0 and if v , J 'v - c(v, a) [ ] 0, (5.39) indicates
2

q (c) < q (v) if vf Q and q (c) < q (v) if v d Q, vhere c Q 0(v) .

Now all the conditions in Zangwill's convergence theorem have been 

verified. We conclude that assertion (ii) is true. Q.E.D.

5.5 Discussion of assumptions in Theorem 5.3

Assumptions (1) and (2) are mild. C is often bounded in practical 

problems. An unconstrained case has also been considered by Brdys and 
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Roberts (1984b) . If q is twice continuously differentiable on C 

assumption (3) is satisfied. Assumptions (4) to (7) are standard and 

are usually fulfilled.

The crucial assumption is assumption (8). It requires that the 

composition of the performance index and the process mathematical model 

is a uniformly convex function on the feasible control set. However, no

* 
assumption requires that q is convex. The modified two-step algorithm 

can be applied to highly nonlinear processes using a simple linear 

model as the following Lemma shows.

Lerma 5.1

Suppose the process mathematical model has the form:

F(c, a) = De + P( a), (5.40)

where D is a mxn constant matrix and P is a vector function of a • If Q 

is differentiable and uniformly convex on C x R™, then assumption (8) 

is verified.

Proof: Because Q is differentiable and uniformly convex on C x R™, for 

any czc+h^^ C and y.y+t^^R™/ there exists a constant a > 0. such that 

the following holds (Ortega and Rheinboldt, 1970):

[ VcQ(cH-h1,y+h2) - Vc0(c,y)]Th1 + [ V Qfd-h^y+hj) - V Q(c,y)]Th2

> a (I IhJ |2+ | |h2| |2). (5.41)

Notice that for any c € C, a £ Az

Vcq(c, a) = VcQ(c, F(c, a)) + VcF(c,a ) V Q(cz F(c,a))

= VcQ(c, F(c, a)) + DT vyQ(c, F(c, a)).

Therefore

[ Vcq(^h1,a )- Vcq(c,a )]Th1=[ vcQ(c+h1,F(c+h1, a))- VcQ(czF(cz a ))]Th1

+ E vy0(c+hlzF(cthlz a )) - vyQ(c'F<c' a (5.42)
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Let y = F(c, a ) and y 4- F(c+h-^, a ), then = Dh^. Combining (5.42)

and (5.41) we have:

C VcqCc+hj/ a) - vcq(c, a)]Tli1 >0 (I Ih-J 12 + I l^l |2)

= 0(| IhJ |2 + h1T(DTD)h1). (5.43)

T T
Let rmin^D denote the minimal eigenvalue of D D, then for any 

c6Rn, cT(r . (dTD))c X cT(DTD)c. Because DTD is at least positive 
min

Tsemidefinite, r . (D D) >. 0 and (5.43) can be written as
min z

Cvcq(°l'hl' ~ ^c^ClQL ^Thi a U + rmin^DTD^ *’hi'* 2,

We conclude that assumption (8) is satisfied with

A rn
b( a ) = o (1 + r . (D D)) > 0, for any a£ A. (5.44)

O.E.D.

One immediate observation of (5.44) is that b( q ) is a positive 

constant. Therefore, B(v) is a positive constant for any v£c and a 

fixed gain q can be chosen for every iteration. This has a benefit of 

simplifying the iterative procedure. It is, of course, desirable to 

weaken assumption (8). Unfortunately, this can be achieved only at the

cost

j=l,

of strengthening the reguirements on the constraint functions

.p (Brdys and Roberts, 1984b).

Sufficient condition for the openness of a (assumption (9)) can 

be found in Hogan (1973), and Greenberg and Pierskalla (1972).

A
However, if the result of the parameter estimation is unique, 1.e., a 

is a point-to-point mapping, other assumptions have sufficiently 

guaranteed that a is a continuous function on C as shown in Section 

5.4.1. Ibis will be enough to prove the upper semicontinuity of B(v) . 

Therefore, assumption (9) can be emitted.
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Finally, consider an application of Theorem 5.3 and Lemma 5-1 to 

the following simple example.

Simple example 2

The model and reality equations are

y = F(c, a) = c + a

y = F (c) = c + c2. (5.45)

The performance index and constraint set are

Q(c,y) = c2 + (y - 2)2

A ?
CY = l(c,y)£ R . -1 < c < 1}.

A simple check shows that assumptions (1) to (8) in Theorem 5.3 are all 

valid and assumption (9) is not needed. We, therefore, have confidence 

in that the iterative procedure will converge and an iterative strategy 

can be chosen such that all points generated during the procedure are 

feasible and the real value of the performance index is decreased at 

each iteration until convergence is achieved. Tn fact, with the aid of 

Lemma 5.1, the iterative strategy can be chosen as (see Appendix F)

vk+1= vk + 0.4(ck- vk). (5.46)

*
Furthermore, because q is convex, according to Theorem 5.1 the itera-

tive procedure will converge to the correct real optimum. The iterative 

results are presented in TART,F 5.1 where v“= 0.

In practice, the real equation (5.45) is not available and the 

Lipschitz constant p is not kncwn. The gain in (5.46) then has to be 

found by experiment.

5.6 Summary

Theoretical analysis of the modified two-step algorithm has been 
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presented. Under mild assumptions it has been shewn that an iterative 

strategy can be chosen for the algorithm such that each point generated 

by the iterative procedure is feasible, the value of the real process 

performance index is improved at each iteration and the algorithm 

converges to a real process optimal operating condition.

Although, in order to guarantee convergence, the composition of 

the performance index and the mathematical model is required to be a 

uniformly convex function on the feasible control set, the real process 

input-output mapping can be nonlinear and the composition of the 

performance index and the real process input-output mapping can be 

non-convex. The analysis result shows that there are advantages of 

using simple linear models when solving non-linear steady-state 

optimisation control problems by the modified two-step algorithm.

Assumptions in Lemma 5.1 are sufficient conditions. Seme 

practical applications (Roberts, 1979; Ellis and Roberts, 19S5) 

involving nonlinear models have exhibited excellent convergent 

behaviour.
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TABLE 5•1 Iterative results of Simple example 2

iteration V
*
q a X c

1 0.00000 4.00000 0.00000 0.00000 1.00000
2 0.40000 2.23360 0.16000 2.30400 1.00000
3 0.64000 1.31286 0.40960 2.43302 1.00000
4 0.78400 0.97627 0.61466 1.88581 1.00000
5 0.87040 0.89598 0.75760 1.29517 0.94499
6 0.90024 0.89414 0.81043 1.04188 0.85526
7 0.88224 0.89355 0.77836 1.19773 0.91025
8 0.89345 0.89330 0.79825 1.10180 0.87632
9 0.88660 0.89321 0.78606 1.16089 0.89719

10 0.89084 0.89318 0.79359 1.12450 0.88433
11 0.88823 0.89316 0.78896 1.14691 0.89225
12 0.88984 0.89316 0.79181 1.13311 0.88737
13 0.88885 0.89316 0.79006 1.14161 0.89037
14 0.88946 0.89316 0.79114 1.13637 0.88852
15 0.88909 0.89316 0.79047 1.13960 0.88966
16 0.88932 0.89316 0.79088 1.13761 0.88896
17 0.88917 0.89316 0.79063 1.13884 0.88939
18 0.88926 0.89316 0.79079 1.13808 0.88913
19 0.88921 0.89316 0.79069 1.13855 0.88929
20 0.88924 0.89316 0.79075 1.13826 0.88919
21 0.88922 0.89316 0.79071 1.13844 0.88925
22 0.88923 0.89316 0.79074 1.13833 0.88921
23 0.88923 0.89316 0.79072 1.13839 0.88924
24 0.88923 0.89316 0.79073 1.13835 0.88922
25 0.88923 0.89316 0.79073 1.13838 0.88923
26 0.88923 0.89316 0.79073 1.13836 0.88923
27 0.88923 0.89316 0.79073 1.13837 0.88923
28 0.88923 0.89316 0.79073 1.13837 0.88923
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CHAPTER 6. TWO-LEVEL TYPE METHOD

6.1 Introduction

The modified two-step algorithm requires the real output 

derivatives with respect to controller set points for the purpose of 

calculating the modifiers. This produces a serious practical 

consideration particularly when the measurements are contaminated by 

noise. For this reason it is often advisable to apply simple software 

filtering to the computation of the modifiers X as shewn in Chapter 4. 

However, in order to achieve a robust performance under noisy 

measurement conditions it is preferred that an algorithm requires no 

process derivatives.

In this chapter, an alternative modification of the two-step 

approach is investigated in which an additional level is introduced to 

prescribe modifiers by minimizing the performance index. This idea was 

first suggested by Brdys in a manuscript. If seme appropriate strategy 

is chosen the resulted algorithm does not require process derivatives.- 

On the other hand, the second level only has information on the values 

of the performance function and, consequently, the computational 

requirement is increased as the payment. Another advantage of the 

proposed algorithm is that even when the inequality constraint 

functions G(c,y) are not differentiable with respect to y the algorithm 

may still be used vhile the modified two-step algorithm will have 

difficulty because it needs the derivatives of G(c,y) with respect to y 

for calculating the modifiers.
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6.2 Formulation of two-level type method

6.2.1 Preliminaries

Let us examine an alternative way to solve (0P2) of (4.4) to (4.7) 

given in Section 4.2. Assume, as in Section 4.2, that the regularity 

conditions are satisfied and consider first (MMOP) of (4.18) and 

(4.19):

T imin[q(c, a) - X c}, (6.1)

c

s.t. g(c,a ) 0. (6.2)

If, unlike in Section 4.2, X is not evaluated according to (4.17) (or 

(4.16)), rather, it is regarded as an independent variable vector, then 

the solution of (6.1) and (6.2) is dependent on a and X . clearly,

A A
the solution and associated Lagrange multiplier c(a , X) and £(a , X) 

of (6.1) and (6.2) satisfy (4.9), (4.14) and (4.15) with given a and 

X .

As in Section 4.2, let a(v) be the solution of (4.13) with given 

v, then for a given X any solution of

c( a(v),X ) = v, (6.3)

A A
together with corresponding Lagrange multiplier £(a (v), X ) satisfies 

conditions (4.9), (4.12) to (4.15). Denote the solution of (6.3) as

A A
v(X ). If v( X) exists it is always feasible, i.e.,

v( X)€C = {c€Rn: g*(c) 0}.

Conditions (4.10) and (4.11) are not necessarily satisfied if X
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such that

* * / 
q (copt) = min q • 

c €c

(6.4)

and £ is not particularly impor-

If such a copt can be found, whether or not we know the precise values 

of associated Lagrange multipliers g

solution of (4.13) with given vQpt

of (4.4) to (4.7) with associated

tant. I£t vopt= copt and aopt 

then (copt' vopt- “opt’ solve 

Lagrange multipliers X op^ Rn/ 

the solution of (4.13) is unique and the optimisation problem (6.1) and

be a

(0P2)

r| and r ^rP- If/ for example,
opt opt

(6.2) is convex for given a and X,

Copt~ v( ^opf) *

Let us define the

_A= { X £Rn:

the following holds:

set:

A
v(X ) exists}, (6.5)

proper X can be

min q(X ) / 

xeR

A -
such that v( X )

exists ( Aopt is

), a(v( X ))). (6.6)

— * /lways feasible q(X ) > q (cOpt)• This indicates that a 

found by solving the minimization problem

(6.7)

is a global minimal point of (6.4). At least one X

a obvious candidate).

6.2.2 Description of the two-level type algorithm

Based on the above discussion, the following two-level algorithm 

is proposed. The infimal level is precisely a two-step procedure as 

given in Section 3.3 except that the model optimisation problem (3.8) 

has been modified into
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(6.8)min[q(c, ak) - ATc},

c

with A given by the supremal level. The solution of the infimal

A,
problem is denoted as v(A ).

The supremal level's task is to find a such that

opt ) = min q( A ) •

where q( A) is defined by the relation (6.6). It often occurs that 

is a vbiole space and the supremal task is an unconstrained optimisation 

problem. This may be because A does not affect the constraint 

functions. The information structure of the algorithm is shown in 

Fig. 6.1.

6.2.3 Sone comments

The functional relation q( A ) is not explicitly known. It is 

well-kncwn from mathematical programming theory that q( A ) may not be 

differentiable. Basically any technique of minimizing without 

calculating derivatives can be used to solve the supremal problem. For 

example, seme coordinate descent techniques, especially those which 

adopt approximately conjugate directions, can be employed as the 

supremal algorithm. If the number of the controller set points is not 

large (e.g. less than 6), the simplex search method may be adequate.

It is worth emphasising that is not necessarily unique even

when the modified two-step algorithm has a unique solution of the 

modifier vector, in another words, even when the Lagrange multiplier A 
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associated with (0P2) is unique. To show this consider Simple example 

1 introduced in Section 3.3. Applying the two-level type algorithm to 

this example obtains the following results (see Appendix C):

A
For any X -2, the infimal solution is the real optimum v( X)= -1 and 

q( X) = 1. Fig. 6.2. illustrates the infimal solutions as a function of

X . Because of this, the stop criterion for the supremal level 

algorithm should be based on the values of the performance function 

instead of on the modifiers.

6.3 Applicability conditions

The two-level type algorithm can be efficiently used providing 

that

a) There exist the modifiers A' opt

b) Infimal iterations are convergent.

c) There is an efficient strategy, i.e., algorithm for adjusting X to 

achieve

A A
Let us define the set A = U a (v) and the impping a : C -~A. The

v C C

following theorem gives sufficient conditions for existence of X Opt«

Theorem 6.1 (existence of supremal solution)

Assume (i) Q is continuous on Rnx R111. (ii) F is continuous on Rn, F is 

continuous on Rn x Rfc and a is continuous on C. (iii) v( A ) is 

continuous on JL. (iv) J'L is compact. Then there exists at least one 

X Opt which solves the supremal problem, i.e.,

q( X t) = min q( X ).

6 J“L
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Proof. Assumptions (i) to (iii) ensure that the mapping

q: J4_ -~R,

q(A ) = O(0(X ),F(v( X ), $(v( X)))) = 0(v( X),F*(v(X  ))), 

is continuous. Because a continuous function on a compact set attains 

its infimum, the assertion of Theorem 6.1 holds. Q.E.D.

Sufficient conditions for the continuity of ot can be derived 

based on the implicit function theorem (e.g. Bertsekas, 1992; Ortega 

and Pheinboldt, 1970). The key assumption is assumption (iii). Lerma

6.1 gives sufficient conditions to satisfy assumption (iii).

Lemma 6.1

Assume (a) The model is point-parametric on C. (b) q is Lipschitz 

continuous on C with constant p0, i.e.,

! ! Ot(c}) - a (c2); ; < pj !c1 - c2; ; , for any c1,c2 £C.

(c) c is continuous on A x j^. (d) For any X £ c(., X) is Lipschitz

continuous on A with constant p2> 0, i.e.,

A A
! !c(a 1, x) - c( Ct2' X ) ! ! x< p 2! ’ a x -a 2' ‘' for any aiz a 2^ A*

(e) C is closed. Then, if P]P 2 < ^ere exists a unique infimal 

solution v( X ) continuous on _7^_.

Proof. Define the infimal algorithmic mapping of (6.1) and (6.2)

T: C x/L

T(c, X) = c(a (c), X ).

Due to assumptions (a) to (c) , T is well-defined continuous on C x jQ_. 

For any X according to assumptions (b) and (d)

! 'TCc-jy X ) - i’(c2/ X ) ! ! P 1 P2! !C1 - c2' ' • for cl,c2^C’ 

Finally, because C is closed and p^ p? < 1, there exists a unique 

fixed point v( X ) of T(., X ) , which is continuous on _/t(see Appendix A, 

A2). 0.E.D.
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It is, in general, difficult to form the sufficient conditions 

which guarantee the global convergence of the infimal iterations for 

any A -fly especially when the constraints involve y. Therefore, we 

are unable to discuss point b) given in the beginning of this section.

In the next section using the simplex search method and Powell' s 

method as the supremal algorithm is considered. The convergence 

conditions of these two methods have well been established (e.g. 

Luenberger, 1973, 1984; Nelder and Mead, 1965; Zangwill, 1969).

6.4 Techniques for solving the supremal problem

6.4.1 Simplex search method

The simplex method is a search procedure for minimizing a function 

of n variables. Its strengths are that it requires no derivatives, so 

it can cope with functions which are not easily written as analytic 

expressions, and that it always increases the information available 

concerning the function by reporting its values at a number of points. 

Its weakness is primarily that it does not use this information very 

effectively, so may take an unnecessarily large number of function 

evaluations to locate a solution.

A simplex is the structure formed by (n+1) points in an 

n-dimensional space. These points should not be in the same plane. 

The essence of the algorithm is as follows: The function is evaluated 

at each point (vertex) of the simplex and the vertex having highest 

function value is replaced by a new point with a lower function value.
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This allows the simplex to adapt itself and, finally, the procedure 

contracts on to a final minimum. There are four main operations which 

are made on the simplex: reflection, expansion, reduction and 

contraction. The technical details can be found in the literature 

(Avriel, 1976; Nash, 1979; Nelder and Mead, 1965).

A program listing of a simplex algorithm written in FORTRAN is 

given in Appendix D. To use this routine (MIFSIM) as the supremal 

algorithm of the two-level type method, the user must supply the 

subroutine FUN. The purpose of FUN is to solve the infimal problem 

iteratively for any given X and to report the resulted value of the 

performance index to MIFSTM. Suitable values of the reflection factor 

ALPHA, the contraction factor BETA and the extension factor GAItlA 

depend on the particular problem to be solved. In practice, they can 

be chosen to try to improve the rate of convergence of the procedure. 

The following values:

ALPHA = 1, BETA =0.5 and GAMMA = 2

have been found to be effective in many tests. The desired tolerance 

TOL is generally chosen to be larger than that used in the infimal 

loop.

6.4.2 Powell's method

This method (Avriel, 1976; Powell, 1964, 1972; Zangwill, 1967), 

frcm the theoretical point of view, belongs to the category of 

coordinate descent methods. The basic idea of the method can be 

described as follows: Each stage of the procedure consists of rH-l

successive one-dimensional linear searches, first along n linearly 
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independent directions and then along the direction connecting the test 

point (obtained at the end of the n-dimensional linear searches) with 

the starting point of that stage. After these searches, a judgement is 

made to decide whether or not one of the first n directions is to be 

replaced by the (n+l)th direction, and then a new stage begins.

The Powell's method has a fine property of quadratic termination, 

i.e., using the method to find the minimum of a quadratic function on 

Rn

T ... . .
f(x) = a + bx +x Qx, where Q is positive definite,

it will terminate after at most n successive one-dimensional linear 

searches along n mutually conjugate directions with respect to Q. The 

method is recognized as an effective technique for minimizing functions 

without using derivatives.

A FORTRAN program listing of a Powell1 s method is presented in 

Appendix E. A parabolic interpolation linear search technique is 

incorporated with the algorithm to perform one-dimensional linear 

searches. Efforts have been made to reduce the number of function 

evaluations as much as possible since each function evaluation 

corresponds to an infimal iterative loop. Coordinate directions can be 

chosen as the initial search directions.

6.4.3 Some remarks

These two techniques, in general, can only find a local minimum. 

Therefore, if is not convex, the solution obtained may depend on the 

initial value of the A. Simplex search method is very robust.
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However, for more than about five-dimensional problems, the procedure 

appears to become inefficient. Powell's method, on the other hand, is 

more efficient.

Frcm the structure point of view, the two-level type method seems 

to be a natural modification of the two-step method. If a suboptimum 

solution is acceptable the algorithm may be operated such that the 

supremal procedure can be terminated at any stage when the infimal 

solution has been improved enough compared with that obtained using the 

two-step method. Since the infimal solution is always feasible it 

causes no difficulty. Such an operating strategy is especially 

suitable if the simplex technique is employed as the supremal algorithm 

since a simplex can quickly reduce itself to a reasonable small size 

which contains a minimum but takes a long time to contract finally on 

to this minimum.

6.5 Simulation study

In the following simulation study, convergence of infimal loops is 

k+1 k —5assumed when all elements of c satisfy ! c^ - c^ ' < 5x10 . The 

supremal problem is solved using either the subroutine MIFSIM (Appendix 

D) or the subroutine MIFNOD (Appendix E). The actual values of the 

arguments used in these two subroutines are listed in TABLE 6.3 and 

TABLE 6.4.

First consider a simple example with nondifferentiable inequality 

constraints with respect to y.
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Simple example 3

Model and reality are:

yl = 2cl + y2 + al

y2 = c2 + 2Yi + a2'

yT = 2cx + y2 + 0.5c.]2 

y2*= c2+ ^1* + °-5c22-

Constraints and performace index are:

A d
CY = {(c,y)6RJ: Jcj 1, i=l,2, yT > -1, y2 >. 0,

C1 + 271 + y2 1 ’c2' + 'yl + y2' 1}'

0(c,y) = 0.5{c12+c22+ (yx - l)2+(y1 - 2)2+ (y2 - 1)2+ (y? - 2)2}-

Using the simplex technique as the supremal level algorithm with 

= 0, the two-level type algorithm successfully obtained the real

optimum Q = 2.760897, c^= -0.191094 and c2 = 0.084627 after a total of 

8 iterations at the infimal level. The final modifiers were X = X 

= 0.3.

Examples 1, 2 and 3 given in Section 4.4 were used again as the 

testing examples. Simulation results are shown in TABLE 6.1. As 

expected, the two-level type algorithm is less efficient compared with 

the modified two-step algorithm. Unlike the latter which achieves a 

unique final modifier vector, the supremal solution can be non-unique. 

If any one of the supremal solutions is found by the supremal level 

algorithm, the procedure will terminate at the real system optimum 

condition. TABLE 6.2 gives seme illustration on this point. On the 

other hand, if jQ_ is not convex, starting from an arbitrary initial 

point the supremal level algorithm may not be able to attain a supremal
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solution (see results of Example 2).

6.6 Summary

An alternative modification of the two-step method has been 

examined in this chapter. This two-level type method does not require 

real process derivatives in searching for the real optimum operating 

condition, which is an important advantage over the modified two-step 

method. The benefit is obtained at the cost of introducing a second 

level. Every time the supremal level prescribes a modifier vector, a 

two-step like iterative loop is performed at the infimal level. This 

two-loop feature is inefficient from the computational point of view.

At present properties of the supremal function q( A ) and the 

supremal feasible set JR. are not very clear, ffore theoretical analysis 

is needed in order to understand the method better. Further work is 

required to develop seme more powerful algorithms for solving the 

supremal level task.

115



TABLE 6-1 Simulation results of two-level type algorithm

supremal initial infimal iterations real real

example algorithm A (set point changes) performance optimum

one Powell 0 403 6.3266 6.3266

two Powell 0 425 2.1452 2.1405

Powell * 325 2.1405

three Powell 0 268 5.9261 5.9261

Simplex 0 410 5.9261

* X° = E0.6 0.0 0.0 -0.6 0.2 0.2]T.

TABLE 6.2 Final modifiers of Example 3

x^ X „ Xc
A 1 A 2 3 4 5

MTS (new version) -0.5163 -0.3037 0.4076 0.5805 0.7113

TL (Powell) -0.7361 0.2619 0.1833 0.7500 0.7198

TL (Simplex) -0.4210 -0.5613 0.5399 -0.0461 0.6971
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TART E 6.3 Values of arguments used in MIFSIM

TOL STEP ALPHA BETA GAMMA

simple example 3

iii11 
1O

 
i 

>—
1

11

0.2 1.0 0.5 2.0

example 3 10 4 0.5 1.0 0.5 2.0

TABLE 6.4 Values of arguments used in MIFNOD

example ALPHA. EPSIL BETA SK Al A2

one

I i l

M
 

i

O
 

!

1
 

1

£
>
 

! 1 1 1

0.5 0.01 1.0 1.5 -0.25

two 10 4 0.5 0.01 1.0 1.5 -0.25

three io-4 0.5 0.01 1.0 1.5 -0.25
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Fig. 6.1. Two-level type algorithm
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CHAPTER 7. AN ISOPE TECHNIQUE FOR HIERARCHICAL CONTROL OF STEADY

STATE. SYSTEMS

7.1 Introduction

When considering hierarchical optimal control of large 

interconnected steady state systems, the crucial difficulty appears to 

be that model-reality differences inevitably exist. Hence, the 

open-loop interaction prediction method (direct method) and the 

open-loop interaction balance method (price method) often fail to 

attain the real system optimum operating condition and may even violate 

the system constraints. The use of feedback information to improve 

these two methods has been thoroughly investigated (for example, Brdys, 

Findeisen and Tatjewski, 1980; Findeisen and co-workers, 1980; Shao 

and Roberts, 1983; Tatjewski and Cygler, 1981). However, in general, 

the resulting techniques can only achieve a suboptimal solution. 

Moreover, many of them actually require that the model-reality 

differences are not significantly large, e.g., requiring that the 

interaction imbalance between model and measured interconnection inputs 

is not significant (see Shao and Roberts, 1983) implies this.

The techniques discussed in Chapter 3 (two-step algorithm), 

Chapter 4 (modified two-step algorithm) and Chapter 6 (two-level type 

algorithm) all possess seme degree of adaptability. Utilizing the 

hierarchical decomposition-coordination nature of the price correction 

mechanism, these three methods can be extended to solve interconnected 

large-scale system problems. A method presented by Brdys (1983) is an 

example of combining the two-step and price techniques. Although it 
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has better adaptability than those techniques mentioned above, it is a 

suboptimal method because of the suboptimality of the two-step method. 

In an attempt to incorporate the price and modified two-step mechanisms 

the joint coordination method (JCM) (Michalska, Ellis and Roberts, 

1985) has been introduced. However, because the old version of the 

modified two-step method was employed, JCM can only achieve the steady 

state optimal condition when the system inequality constraints do not 

depend on the system outputs. Brdys and Roberts (1984a) have shewn how 

a group of optimal adaptive structures can be formulated by integrating 

the modified two-step method or the two-level type method with the 

price correction mechanism. In these structures, the measurement 

feedback is used in different manners.

The weakness of the structures obtained by combining the two-level 

type method and the price method is primarily that they are very- 

inefficient and may take an unacceptable long time to locate an optimal 

solution. This is because of their three level (loop) structure and 

because of lacking effective algorithms for solving the supremal task 

as discussed in Chapter 6.

In this chapter a hierarchical ISOPE technique obtained by 

combining the modified two-step method with the price method is 

studied. The technique requires the real system interaction output and 

input information feedback and updates modifiers X and prices p at each 

iteration. As shown in Chapter 4, if (4.29) is employed to approximate 

the real output derivatives, each time X is updated the set of real 

control inputs needs to be perturbed n times (vhere n is the total 

number of the control inputs) and the computational requirement is 
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dominated by on-line waiting time and information exchange among the 

coordinator, local control units and real subsystems. Therefore, 

advantage would be gained if it is passible to design an alternative 

method which updates X less frequently. In this chapter it will be 

shown that this aim can be achieved by employing a double iterative 

mechanism. The basic idea is similar to that employed by Shao and 

Roberts (1983) where an interior iterative procedure was introduced to 

achieve model interaction balance while shift variables ccmputed using 

real system feedback information were updated at less frequent 

intervals in an outer loop.

7.2 Description of the system

122

It is assumed that external disturbances which affect the system 

are varying slowly and can be considered as constant in the considered 

time interval of determining optimum control and, hence, the system is 

described by a set of subsystem input-output mappings

Fi* *: i=l.... N,

as follows

*
Yi= Fi i=l/-.«/N,

where N denotes the number of subsystems, and are finite

dimensional spaces, c^, u^ and y^ are the ith subsystem's control, 

interaction input and interaction output vectors, respectively. The 

subsystems are interconnected through the coupling equations

N

ui= Hiy = Z HijYj'

j=l

where Hi and • are interconnection matrices. The local constraint



set takes the form

(c., u., u., y.)6

Gi(cf/ uj/ Yi) < 0}, i=l,...,N,

where G^ is the ith subsystem constraint function vector. The system as 

a whole can be written as

y = F*(c, u), (7.1)

u = Hy, (7.2)

(c, u, y)£CUY = {(c, u, y)6 : G(c, u, y) 0}, (7.3)

where c = (c-J, ... ,cnT)T£ ^x.-.xCg^ ,

u= (u1T,.../unT)T^Q^1x...x/16n=

(^iT.......V)T^^ix---x?Vtr %

A
H = (H.^), i,j=l,...N,

ZA rp T T
G(c,u,y) = ((G1(c]/U1,y1)) , ..., (G^o^u^y^ ) ) •

Next, we require that for each c £ the equation y = F (c, Hy) has a

unique solution

y = K*(c) , (7.4)

where K* : % -* and K*(c)  = ((K^c) )T, ..., (^(c) )T)T.

In general the above real system relations are not known exactly 

and, consequently, we have only their approximate models

F.: ^iX%x

Yi= Fi(ci' ap/ i=l/---/N,

where is a finite dimensional space and is the ith subsystem

model parameter vector. As before, the global model equations can be
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written as

y = F(c, u, a ), (7.5)

where a 6 jQ, and jQ,= jQ^x.. The interconnection matrix and the

local constraint set are assumed to be known exactly.

Finally, a known local performance index, associated with each 

subsystem

°i: ^ixUix% i=1.... N-

is required to be minimized. The overall performance function

Q : x Q/x -*■  R /

is assumed to be

N

O(c,u,y) = E C\/ci' ui' Yf) • (7.6)

i=l

7.3 Formulation of the algorithms

7.3.1 Formulation of the optimal control problem

The task of determining the optimum controller set points c for a 

real system can be defined as the following real steady state 

optimizing control problem

min 0(c, u, y),

c,u

(ROCP) s.t. y=K*(c),  (7.7)

u = H y,

G(c, u, y) 0.

An equivalent optimal control problem of (ROCP) (see Brdys and Roberts, 

1984a) is
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min q(c, u, a) ,

c,v,u, a 

(EOCP) s.t. F(v, HK*(v),  a) = K*(v),

u = HF(c, u, a), (7.8)

g(c, u, a) x 0, 

v = c,

where q(c,u, a) = 0(c,u, F(c,u, a)) and g(c,u, a) = G(c,u, F(c,u, a)). 

The Lagrangian associated with (EOCP) can then be written as

L(c,u,v, a,p, x, n, £) = q(c,u, a) + pTru-HF(c,u, a)] + XT(v-c)

(7.9)

+ pT[F(v,HK*(v) , a )-K*(v)J  + £Tg(c,u, a), 

where p, X , r) and £ are Lagrange multipliers. Ln particular, p is 

known as the price vector and x is known as the modifier vector. 

Assuming that all required derivatives exist and regularity conditions 

are satisfied then the Kuhn-Tucker necessary optimality conditions 

(see, for example, Lueriberger, 1973) of (EOCP) are:

3Tg(c,u, a)

1 +---------------- e = 0, (7.10)

-------------------------------------------------+

gTq(c,u, a) 3T[u-HF(c,u,q )1 3Tg(c,u, a )

(7.11)
3 u

V L=

(7.12)

g q(c,u,a) g F(c,u, a ) gTF(v,HK*( v) ,a )

a
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Tg g(c,u,a )
r — n (7.13)

3a

VpL = u - HF(c,u, a) = o, (7.14)

V^L = v - c = 0, (7.15)

★
V^L = F(v,HK (v), a) - K*(v)  = 0, (7.16)

V^L = g(c,u, a) .< 0, (7.17)

3TF(c,u, a) 
----------- HTpl.

3a
(7.19)

Because of v = c and u = HK (v) for any solution of (7.10) to (7.18),

(7.19) can also be written as

* 3TF(v,HK (v),a ) 3TK (v) gTF(v,HK (v) ,a )

X = A(v,HK (v) ,v, a ,p, £ )=[---------------------------][---------------- ]
3 v 3v 3a

x "A1 t i
3 q(v,EK (v), a) 3Tg(v,HK (v),a ) 3 TF( v, HK*  (v), a)
<---------------- +----------------- ---------------------HTpl . (7.20)

3a 3a 3a
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Secondly, for given &, P and X equations (7.10), (7.11), (7.17) and

(7.18) can be satisfied by solving the modified optimisation problem 

min [q(c,u, a) - X Tc + pT[u - HF(c,u, a)]} ,

C'U (7.21)

s.t. g(c,u, a ) 0 .

Finally let us denote the solution of (7.16) a(v) for a given v, 

calculate X by formula (7.20) with given v, a(v), p and i, and 

denote the solution of (7.21) and corresponding Lagrange multiplier

A A A
c(v, a(v), p, £), u(v, a(v), p, £ ) and £(v, a(v), p,£ ), respectively.

Then any solution of the following equations

c(v, a (v), p,£ ) = v , (7.22)

u(v, a (v), p, £ ) = HF(c, u, a(v)), (7.23)

£(v, a(v), p, £ ) = Z ' (7.24)

is a solution of equations (7.10) to (7.18). An iterative algorithm

for solving (7.22), (7.23) and (7.24) is formulated in the next 

subsetion.

7.3.2 A single iterative algorithm (SIA)

Computing q(v) from equation (7.16) involves the operation of 

matching the real system output and the model output, and hence is 

viewed as parameter estimation. Notice that (7.16) can be decomposed 

into N independent parts, one for each subsystem,

Fi(vi, ILK*(v),  a±) =Ki*(v),  i=l,...,N. (7.25)

On the other hand, when a , p and X are given, (7.21) is purely a 

model-based optimisation problem and is also separable. It can be
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rewritten as

min Z Li<ci' ui' ai' i' Ph 

i=l
(7.26)

s.t. gi(ci, u±, ou) << 0, i=l,...N,u-

T T
where Li(ci, u^ ? p) = g^c^ u±, a ±) - c±+ p± u±

N

S PjhjiFitCi, U., a.). 

>1

(7.27)

A single iterative algorithm can readily be designed. The ith local

control problem which consists of the ith local parameter estimation

and the ith local optimisation problems is defined:

* *
(i) For given v. and the measurements K- (v) and H.p (v) 

X*  1 11

find the model parameters which satisfy

* ★
Fi(viz HiK “ Ki = °'

LCPi

i=l,...,N

(ii) For given a p P and find the

A A
c^ and interconnection inputs u^ such 

,A A .
(ciz ui' = 111111 Li'ciz

c. ,u-1'1

controller set points

that

The task

satisfies

This task

uiz Ph

s.t. gi(ci, uiz ai) < 0 .u-

of the coordinator is to ensure that the solution which

(7.22), (7.23) and (7.24) is obtained in an efficient manner.

can be stated as:

N

i' h'

CP

* *
Find p and X such that

{

the conditions (7.12) to (7.15) are satisfied.

The overall problem is suitable for employing an iterative procedure

A A
where v and £ are improved based on c and £ given by the local units, p
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is improved based on the interaction imbalance Au = u - HF(c,u, a) and

A. is updated by formula (7.19) (or (7.20)).

In order to regulate convergence and stability properties, the

iterative strategies for solving equations (7.22), (7.23) and (7.24)

are chosen as

k+1 
v.

1 v.
,A k h k
(c. , v. ) = v.

. 1 1 1 
1

„ zA k K (c. -
v. 1

1
v.

(7.28)

r k+l_
^i

V' q > = q

i

A

5.<5
1

( k (P •
HF(ck, £k, ak)),

(7.30)

matrices with diagonal elements

+

Ok _ k k + K

k+i u,
p = T

P

where ,Kr and K are >
i 1 P

usually positive and less than or equal to unity. Then the kth 

iteration is described as follows:

(a) The local control units update v^, i=l,...,N, then apply v^ to the 

real subsystems and obtain the corresponding steady-state measurements 

of local outputs F3 (x^) and interconnection inputs FLK \vk). Determine

v
oc by solving

Fi(vik, HiK*(v k),ai) =Ki*(v k), i=l,...,N.

• • • TcPerform additional perturbations about v^ and take the corresponding

Tc Tc
real measurements. The values of a. , v. and all real measurements are

1 1

sent to the coordinator for computing finite difference approximations 

of the derivatives

3 TF(vk,HK*(v k), ak) 3 V^x^)

3 v

k k(b) The coordinator computes £ and p , calculates modifiers according

to (7.19)
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. k , /Ak-1 Ak-1 k k k X A = X (c , u , v , ct , p , £ ),

k k
and sends X^ and p to the ith local unit. The modifiers may also be 

computed according to (7.20) similar to the centralized case discussed 

in Chapter 4.

(c) The local units perform their own optimisation task

A v A V k k k.(c±K, tt ) = arg min L.(c., u^ a ± , X ± , p)

ci'ui

sent to the coordinator.

It is noted that the requirement to obtain real process

derivatives produces a serious practical consideration particularly

when the measurements are contaminated by noise. For this reason it is

often advisable to apply simple software filtering to the computation

of the modifiers as shown in Chapter 4. Fig. 7.1. shows the

information structure of the algorithm. The overall convergence 

achieved when successive solutions of v and £ are unchanged

is

and

interaction balance is satisfied. In practice, the overall process may

be terminated when every

a k i
c. . < B ,lj v'

elements
A

of v, u and £ satisfy

vhere

k
v. . - 
13

a k
^il

a k 
u.IS

(HiF(ck, uk,

(7.31)

(7.32)

(7.33)

6V' denotes the

sth element of H.jF.

i i
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A special situation occurs when the system constraints do not depend

T
9 g(c, u, a )

on the outputs. In this case -------------
9a

£ - 0, and the iterative

strategy (7.29) and the criterion (7.32) are not needed. In the 

following discussion we will assume that (4.29) is used to approximate 

the real output derivatives. Therefore, the number of set point 

changes in step (a) (i.e., at each iteration) is n, where n is the 

total number of the controller set points.

7.3.3 A double iterative algorithm (DIA)

Let us examine the local control problem LCP^ and coordination 

problem CP in more detail. Notice that both problems are composed of 

two parts, one requiring real system information and the other not, and 

hence, the problem is very suitable for restructuring into a double 

iterative mechanism such as that employed by Shao and Roberts (19P3). 

The key step is separating the function of improving the modifier 1 and 

local parameter estimation frcm that of improving the price p and local 

optimisation. The latter gives rise to an interior procedure during 

which information is interchanged only between local optimisation units 

and the coordinator, vhile the former, which requires the real system 

information feedback, is solved at less frequent intervals in an outer 

iterative loop. The overall iterative procedure is described as 

follows:

With a and A fixed, the interior procedure is the entirely 

model-based problem
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_ A A
Find cn and in such that

ILOP-: u4) = arg min L4(c4, u^,

i=l,..

Ct£/ X jr p) >

A

Find p such that

ICP :

u - HF(c, u, a) = 0,

and it can readily be solved iteratively using an open-loop interaction 

balance method. When the interaction balance has been achieved, a and 

X are adjusted by the outer iterative loop and then the interior 

procedure restarts with new a and X . The outer loop iterates a and X 

similarly to the single iterative algorithm as described in steps (a)

Ak—1 Ak—1 k
and (b) except that c ,u and p are the solution and corresponding 

price vector of the interior procedure. The overall process is 

terminated when v and determined in the outer procedure remain

sufficiently unchanged between successive iterations.

The information structure of the mechanism is shown in Fig. 7.2., 

where it is observed that only when a and X are adjusted within the 

outer iterative procedure that the real system information is required. 

Bearing in mind that calculating a and X requires perturbing the 

controller set points n times, it is expected that this mechanism will 

reduce on-line computing time significantly.

7.4 Information interchange requirement

Two types of information interchange which occur during the 
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iterative procedure are defined. The first type occurs between the 

local control units and the coordinator after each model-based 

optimisation iteration, which we will denote as off-line information 

interchange. The second type occurs between the real subsystems and 

the coordinator (through the local control units) after each time that 

the controller set points have been changed, which we will refer to as 

on-line information interchange. It is assumed that the total number 

of information exchanges is roughly equal to the sum of the off-line 

and on-line information interchanges.

Because the process dynamic characteristic is often slow compared 

with the computing time required for model optimisation and because of 

the necessity to approximate the process output derivatives, the time 

required to locate an optimal solution by the single iterative 

algorithm is

interchange.

dominated by the time spent on on-line information

The aim of the double iterative algorithm is to reduce 

on-line information interchange and hence, to reduce the time required 

for determining the optimal steady state control, even at the cost of 

increasing off-line information exchange.

7.5 Simulation study

7.5.1 Simulation examples

Four examples have been used in computer simulation studies. 

Example 4. The model and reality equations are:

Yll= Cll" C12+ 2ull+ail

Y21= c2]- c22+ u21- 3u?2+ a21
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y31~ C31+ 2,5c32 4u31+ a31'

Y11 = 1*3C11“ C12+ 2ull+ 0,15ullCll

Y21 ” C21“ C2.2+ 1’2u21~ 3u22+ °’1c22

Y22 = 2C22“ 1‘25c23“ U21+ u22+ °* 25c22c23+ 0,1

y31 = °’8C31+ 2*5c32~ 4’2u31*

The subsystem performance indices are:

Q1(C1' = (Ull“ + 5^C11+ C12" '

Q2(c2' U2^ 4u21 + U22 + 2(C21 2) + °22 + 3°23 '

Cl~ (cll'c12’ ' C2 : ^c21,c22,c23^ ' C3== (c?

ur un' U2= ^U21,U22^ ' U3= U31'

yi= yu- Y2= ^y21,y22^ ' y3= Y31*

The system constraints and the coupling equation are:

CUY1 = {(c1/u1,y1) G R4' cn2+ c122x< 1 and 0 << u^ 0.5 },

A 7 2
CUY2 = {(c2/u2,y2) € R ' °* 5c21+ c22+ 2c23'^ 1 311(3 4c21 + 2C21U21+

2 2
0-4u2i+ c21c23+ °’5c23 + U21 4

CUY3 = {(c3,u3,y3) G P4; c3]+ u31+ 0.5 > 0 and 0 c^ 1 },

'0

1

0

.0

1 0

0 0

0 0

0 ].

0

1
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Example 5. The model and reality equations are:

Yjl= 2-43750^- 0.1875c12+ 1.5^^+

y2i= 0.5c21- 1-5c22+ u21- 2u22+a21

Y22= 2,5c22~ °’5c23“ u21+ 1,5u22+ a22

y31= ]-* 25c31~ 3u31+ a31'

Y31*= C31" 4U31+ °-5c31U31*

yll = c -
11 c12+ 2ul 1“ 0-5Cii + 0-5(c + c12- 2)u]3

"k
Y21 = C21“ c22+ u21“ 3u22

★

Y22 = 2C22-" c23"’ u21+ u22

The subsystem performance indices are:

Q](cl' = (ull- + cn + ^C12“ '

Q2(c2' u2^ ” 4u21 + U22 + ?(C21 2) + °22 + 3°23 '

0?(c3, u?) = (u31- I)2 + (c3]+ l)2-

The system constraints are:

OJYi = f(c1,u],y1) € R4: 1-006 “ cn“ un>, 0 } ,

CUY2 = ^c2/U2,y2^ R '

A 3
CUY3 = {(c?/ u3, y3) £ R : 0-375 + 2-250^^- 2-75u3^- y31^ 0 },

and the coupling equation is the same as in Example 4-

Example 6- The model and reality equations and performance indices are:

Y11 C11 C12+ 2ull+aJl

Y21 C21 c22+ u21+ a21
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Y11 = 1‘4C11“ °* 6c12+

y21 = 1,3C21“ 1,1C22+

y22 = 2’3C22“ °‘7c23"

1.8un

1,lu21

1,lu21'

Ql(cl' yj = (yu- l)2 + cn2+ c122,

Q2<C2' y2^ = 2^y21_ 2’ + (y22“ + °21 + °22 + C23 '

The system constraints and the coupling equation are:

CUY1 = t<ci' ui' Y],) £ r4: 'cii‘ ’ c12 * < T' 0 and

0.8 - c12~ 0.6^^ 0 },

CUY2 = ^c2' u2' y2^ £ r6’’ ^'C2i'^1, i=1'2'3)' Y21>x 0/ y22>x 0 

2.04 + 1.05u21- c212- c222- c232 >z 0 ),

7.3.).

Subsystem 1. Model and reality are:

Yll= Cll“ C12+ C13“ °’45c14 + 2,lu11+ot n

y12= Cll+ C12+ 1’1C13C14“ °-65un+ a12'

Y11 C11 C12+ C13 °’5c14 + 2U11

y12 = Cll+ C12+ c13c14“ (1 + c13)ull*

Performance index and constraint set are:

4
Q}(cl, up = (un - l)2 + E

i=l

A -7
= {(CjyU-^yp £ R : < 1/ i=l,2,3,4), un> 0 and

Cll+ 1,5c12+ C13+ Ull<
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Subsystem 2. Model and reality are:

y2i= 1.15c21- c22+ u2]- 2.75u22+ a2±l

Y21 C21 C22+ U21 3u22*

Performance index and constraint set are:

Q2(c2' u2) = 2u212+ (U22~ 1)2+ 2(C21- 2^+ C 22'

A 5
CUY2= {(c2,u2,y2) £ R : ('c2i' x T' u2i> °' i=1'2) 

C21 + °22 * U21+ 3u22^ ’

Subsystem 3. Model and reality are:

y31= c31+ 2,5c32" c33+ c34+ 1’93u31+ «3i

y32= C33+ C34“ 1,lc31 + °* 9U32+ a32

Y33= 1*15c32c33+ 0,9c35 " U31+ °32+ a33'

y31 = C31+ 2*5c32“ c33+ c34+ ” c35^u31

y32 = C33+ C34" C31 + U32

y33 = C32C33+ C35 " U31+ U32*

Performance index and constraint set are:

y41= c41+ °*5c42+ c43+ 2’5u41+ 0.894u42~ 2.417u43+ oi41,

y *
41 — c4^+ 0.5c42+ c4g+ 2.5u4^+ (1 - c4jPu42“ (3 “ c43^u43*

Performance index and constraint set are:

Q4^C4' u4^ = (U41“ 1)2+(u42" 2^+(u43" 1)2+(c41+c42+1)2+^C43~ 1)2

A 7
CUY4= l(c4,u4,y4) c R : (!c4i! < 1, u4±> 0, i=l,2,3) and

2c41+ c42+ c43x u41+ 1,5u42+ 2u43^’
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Subsystem 5. Model and reality are:

y51= C51+ 2’1c52+ C55~ 3*15u51+ a5i

y52= C52+ c53“ 1,981u52+ a52

y53~ 2c53+ C54“ C56+ °’8u51+ 1,2u52+ a53'

y51 = C51+ 2c52+ c55“ 3u51

y52 = C52+ C53~ (2 + c54)u52

y53 = 2C53+ C54“ c56+ u51+ u52*

Performance index and constraint set are:

3
O5(c5, u5) = (u51- 2)2+ (u52- 1)2+ E c5.2+ 3c542+ c552+ (c^- l)2,

i=l

CUY5={ (c5,u5,y5) £ R11: (!c5i! -< 1/ i=l,...,6), (u5i> 0, i=l,2) and

6

E c5i < 1.5}.

i=l

’V

U21

U22

U31

u32 —

u
41

U42

U43

U51

.U52,

equation is:

0 0 0 0 1 Yn'
0 0 0 0 0 Yn

0 0 0 0 0 y2i

0 0 0 0 0 1—
i

c
o

0 0 10 0 y32

0 0 0 0 0 Y33

0 0 0 0 0 Y41

0 0 0 1 0 Y51

0 10 0 0 Y52

1 0 0 0 0, .y53.
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In each example, the aim is to use the two versions of the 

hierarchical ISOPE technique formulated in this chapter to determine 

the optimum steady state control for the real system.

7.5.2 Simulation results

The simulation work was performed on a Prime 550 computer. Ihe 

local optimisation problems were solved using the NAG library 

subroutine E04UAF.

The simulation results are given in TAB!E 7.1. Initial conditions 

and suitable coefficients chosen for (7.28) to (7.33) can be found in 

TABLE 7.2. Fig. 7.4. to Fig. 7.9. illustrate the convergence 

behaviour of performance, seme prices, a typical controller set point 

and a typical modifier during the course of iterations for updating A.

7.5.3 Discussion of results

The optimality of both algorithms is demonstrated by the results 

shown in TABLE 7.1. Of particular interest is to compare the 

efficiency and communication cost of the two algorithms.

From TABLE 7.1 it is observed that although the double iterative 

algorithm (DIA) requires a considerably greater total number of model 

optimisation iterations than that required by the single iterative 

algorithm (SIA), it significantly reduces the total number of set point 

changes applied to the real process. Following the same arguments as 

used by Shao and Roberts (1983), we denote M as the total number of 
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model-based optimisation iterations and as the total number of set 

point changes. The time needed to determine the optimal steady state 

condition may be given in the form

t x t^+ x t2 /

where t^ is the computing time required for each model optimisation 

iteration and t is the system settling time period required to reach a 

new steady state after the set point changes have been applied. Since, 

in many industrial processes, t^ << t^ and, moreover, of SIA is 

comparable to of DIA, a significant time saving by using DIA is 

apparent.

As mentioned before, the purpose of various double iterative 

procedures is to reduce the on-line information exchange and hence, to 

reduce the time for determining the optimum solution, even at the cost 

of increasing the off-line information exchange. If it is accepted 

that the total number of information exchanges is roughly equal to the 

sum of the off-line and on-line information exchanges, it often occurs 

that double iterative procedures increase the total number of 

information exchanges (for example, Shao and Roberts, 1983). However, 

from TABLE 7.1, this has not occured in the new DIA designed in this 

chapter. In fact, the total number of information exchanges is 

significantly reduced in seme of the examples. Ibis benefit is 

apparently due to the fact that each iteration for calculating the 

modifiers X requires n items of on-line information exchange and also 

to the fact that the DIA reduces significantly the iterations required 

for calculating X . It appears frem the simulation results that for 

larger systems such benefit is more apparent (compare examples 6, 5, 4 

and 7).
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7 ■ 6 Summary

Two versions of an optimal adaptive procedure for combining the 

price coordination technique and the modified two-step method have been 

presented. The procedure has an important advantage over several other 

existing methods (such as the price method with feedback and the direct 

method with feedback) in that, in an efficient manner and based only on 

an approximate model, it attains the optimal steady state operating 

condition rather than a suboptimal one. This benefit is obtained at 

the cost of demanding more information from the real process in the 

form of measurement derivatives with respect to the controller set 

points. A further advantage occurs, however, in that due to its 

adaptive nature, the procedure enables simpler model to be used, and 

consequently, has a great advantage in the situation where process 

knowledge is highly uncertain.

The double iterative version is preferred in that it can 

significantly reduce the time for determining the optimum steady state 

condition of a real system. An interesting result is that, in the 

particular examples investigated, the double iterative version of the 

presented technique does not increase the total number of information 

exchanges within the overall iterative procedure and may even reduce it 

s igni ficantly.

Using the same technique of Chapter 5 and the stationarity 

conditions (Lasdon, 1970), optimality conditions similar to those given 

in Chapter 5 can be formulated for this hierarchical ISOPE technique.
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Brdys and Roberts (1985) has discussed sufficient global convergence 

conditions for another hierarchical ISOPE technique under a linear 

quadratic assumption. Einploying their tactics, global convergence 

conditions for linear quadratic problems can be derived, for the 

technique given in this chapter. Further work needs to be conducted to 

investigated more general convergence conditions.

The robustness of the procedure under noisy measurement conditions 

is investigated in a real-time simulation study given in the next 

chapter where simple techniques are employed to reduce the influence of 

the noise.

TABLE 7.1 Comparison of results

iterations total set point real real

example algorithm for A iterations changes performance optimum

4 SIA 42 42 294 6.3266 6.3266

DIA 6 113 42 6.3266

5 SIA 95 95 570 2.1405 2.1405

DIA 13 673 78 2.1405

6 SIA 36 36 180 5.9261 5.9261

DIA 20 501 100 5.9261

7 SIA 62 62 1240 8.5404 8.5404

DIA 27 520 540 8.5413
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TABLE 7.2 Initial conditions and chosen coefficients

example algorithm

I I

C
H o

1

v°

1 1

o
1 1

3
V Kv

i i 1 * Kp

4 SIA 0

1 1 i

*
ii

i

1 
o1—
1

11 1

1

1 1

I—
* O
1 1

0.91 **

DIA - 0
A
P

10 4 10 4 0.91 - **

5 SIA 0 0
A
P

10“4 10"3 10-4 0.61 0.81 0.21

DIA 0 0
A
P

io"4 10-3 10“4 0.61 0.81 0.21

6 SIA 0 0
A
P

io-4 10-3 10“4 0.41 0.81 +

DIA 0 0
A
P

IO-4 10"3 10“4 0.41 0.81 +

7 SIA 0 0
-4

5x10 5xl0“4 0.31 ++

DIA 0 0
-4

5x10 5xl0~4 0.31 _ ++

A
* p: open loop optimal price with ot = 0.

** Kp= diag{0.2, 0.25, 0.15, 0.2}.

+ Kp= diag{0.8, 0.9}.

-H- Kp= diag{0.2, 0.2, 0.2, 0.1, 0.2, 0.2, 0.2, 0.2, 0.15, 0.2}. 

I: identity matrix.
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Fig. 7.1. Information structure of SIA
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Fig. 7.2. Information structure of DIA
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AQ: real performance - real optimum

(A) Example six

applications to the real system
(B) Example seven

Fig. 7.5. Comparison oF rates oF convergence (Examples 6 and 7)
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p : Final valuesAp = p - p

Fig. 7.6. Comparison oF price trajectories oF Example

Fig. 7.7. Comparison oF price trajectories oF Example 5
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Fig. 7.8. A typical control set point oF Example 5

Fig. 7.9. A typical modiFier oF Example 4
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CHAPTER 8. A DISTRIBUTED TWO-LEVEL COMPUTER NETWORK

8.1 Introduction

A popular distributed network structure which is often used for 

small networks is the star. In a star network, the local computers are 

connected by individual ccmmunication links to the main (host) 

computer. This modularly organized structure ensures that it is easy 

to handle the expansion of the network. In addition, the operating 

speed of the links may be slow and the hardware required to support 

them can be very simple. This structure is efficient provided that 

there is little need for communication between local computers (since 

all such communication must be routed via the host) . The major 

disadvantage of the structure, however, is that the system may 

breakdown if the host computer fails and hence, a standby computer is 

often required. In spite of this reliability problem, the star network 

is often used in control systems because the structure reflects their 

hierarchical nature.

One of the main

Centre of The City

areas of research in the Control Engineering

University is concerned with the application of

hierarchical control techniques to industrial processes. Much of this

research is conducted in the computer control laboratory using a

distributed two-level computer network (Fig. 8.1.) which operates

several pilot-scale processes simultaneously. The network has a

typical star structure.

Previously, several Intel 8085 based I-MIC microcomputers occupied 
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the current positions of Acorn BBC model B microcomputers. In seme 

applications, the speed of the communication links between the I-MICs 

and the LSI11/23 proved to be insufficient. For example, in the 

application of the hierarchical ISOPE technique given in Chapter 7 to 

determine the optimum steady-state operating condition of an 

interconnected two-subsystem process it was found that considerable 

amount of time was spent in data communication (Chen, Roberts and 

Wadhwani, 1985). In order to improve the efficiency of the network and 

to accommodate new research activities, these I-MICs have gradually 

been replaced by BBCs with a more efficient inter-communication system.

In the remainder of the chapter the distributed hierarchical 

computer system and its applications are briefly described. The main 

focus, however, is on asynchronous serial data communication between an 

Acorn BBC microcomputer and a DEC LSI 11/23 minicomputer. The 

development of software for such serial data communication is essential 

to enable the operation of the network which includes a LSI11/23 and 

several BBCs. The configuration and supporting software of 

inter-communication between the LSI11/23 and BBCs is discussed in 

detail.

8.2 Distributed hierarchical computer system

The host computer, a LSI11/23 which is used to coordinate and 

monitor the computers at the infimal level, has a full complement of 

256Kbyte of RAM and runs the TSX-PLUS time-shared operating system. 

Programmes and data are stored on twin 20Mbyte Winchester discs and an 

1.2Mbyte floppy disc. Other peripherals available at the supremal 
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level include a Tektronix graphics terminal, a hard copy unit, a 180 

cps line printer and an Intecolor 8001G graphics terminal. The 

LSI11/23 is programmed mainly in FORTRAN IV because the real-time 

support routines are written in FORTRAN or are FORTRAN callable.

The infimal level of the network contains two I-MICs, a DEC 

LSIll/02 minicomputer and four BBCs. The I-MIC has 16Kbyte of RAM and 

its software is mostly written in CONTROL BASIC with a few routines, 

such as the link communication routines, written in Intel 8085 machine 

code in situations where the execution speed of the high level 

interpretive language is insufficient. Fach BBC has 32Kbyte of RAM and 

a floppy disc system, and is programmed in BBC BASIC with the exception 

of the link routines which are written in 6502 assembly language. The 

LSI11/02 is programmed entirely in FORTRAN IV.

At present an I-MIC controls a hot and cold water mixing rig, a 

BBC and an I-MIC control a pilot-scale freon vaporiser vhich is viewed 

as an interconnected two-subsystem plant. A BBC is used in the control 

of a TQ 2000 robot manipulator. The rest of the BBCs control an 

analogue computer simulating interconnected plants. The LSI11/02 

controls a pilot-scale travelling load furnace.

The network is used as a development tool for designing and

testing control algorithms in a real-time situation. Three types of

data communication link exist. The communication between the LSI11/02

and the LSI11/23 takes place over a 16 bit optically isolated parallel 

link. The data transfer rate for the parallel link is limited 

primarily by the response speed of the time-shared operating system to 
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interrupt requests. Hie communication between an I-MIC and the 

LSI11/23 takes place over a 20mA current loop serial line at 1200bd, 

whilst the communication between a BBC and the LSI11/23 takes place via 

RS423 (PS232) interfaces at 9600bd, i.e., eight times faster than that 

of the I-MIC and the LSI11/23 link. Stevenson (1984, 1985) has 

described the configurations and supporting softwares for the parallel 

link and the serial link between the I-MIC and the LSI11/23. The 

serial link between the BBC and the LSI11/23 is considered in 

Section 8.4.

8.3 Applications

8.3.1 Mixing rig

The hot and cold water mixing rig consists of two 0.12m square and 

0.45m high vessels in cascade. Streams of hot and cold water enter the 

first vessel. The local I-MIC controller performs supervised DDC and 

obtains measurements of levels and mixed temperatures in the two tanks. 

The LSI 11/23 is used to display the measurements and to select the 

control of the level and temperature in either of the two tanks. 

Whichever tank is selected, the level is controlled by providing 

analogue control signals to an electro-pneumatic valve actuator on the 

cold water line, and the temperature is controlled in a similar way by 

adjusting a valve on the hot water line.

Due to the inevitable interactions occurring between the two 

control loops, the process is a valuable vehicle for the demonstration 

of multivariable control techniques, particularly, the non-interacting 
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control method and the Inverse Nyquist Array method (Rosenbrock, 1974).

8.3.2 Freon vaporiser

The pilot-scale vaporiser process contains two subsystems. The 

first subsystem, the freon vaporiser, is a vertical cylindrical tube, 

0.075m diameter and 0.69m high. Liquid freon enters the base of the 

vaporiser tube to be heated by hot water flowing through an inner 

heating tube which runs the length of the vaporiser tube. On its 

travel through the tube, the liquid freon absorts sufficient heat to 

undergo a phase change. The second subsystem is a hot water reservoir 

tank which supplies the heat to freon liquid during vaporisation.

Previously the process was considered as a centralized system with 

an I-MIC as its controller. Applications to this process included 

on-line determining the optimum operating condition of the process 

using the modified two-step technique (Ellis and Roberts, 1985). 

Recently the process has been decomposed into two subsystems and a BBC 

has been employed as the second local decision unit. Application of 

various hierarchical optimisation techniques to the process is being 

investigated by a research student.

8.3.3 Robot

A TQ2000 robot manipulator with a BBC microcomputer as its 

controller has been connected to the system recently. An alternative 

approach for modelling industrial robots and dynamic simulation of a 

robot involving decentralized control technique have been studied 
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(Zainol Anuar, 1995). These methods may be modified and applied to the 

TQ2000 robot system in the future.

8.3.4 Analogue computer system

This small computer system consists of the LSI11/23, which serves 

as the coordinator, two BBCs, which are used as two local control 

units, and an EAL Pace TR48 general purpose analogue computer, which 

simulates interconnected two-subsystem dynamic processes. The system 

is an ideal tool for investigating various hierarchical optimisation 

techniques. Problems associated with the on-line implementation of the 

techniques can be studied and methods for dealing with these problems 

can be tested under real time operation. In the next chapter using 

this system to implement the algorithms given in Chapter 7 will be 

discussed.

Previously, two I-MICs were used as the local control units. 

Research work performed in the old analogue computer system can be

found in the papers (Roberts and co-workers,1984; Chen, Roberts and

Wadhwani, 1985).

8.3.5 Travelling load furnace

The pilot-scale travelling load furnace consists of eight

separately controllable heating zones through which are propelled

aluminium block loads measuring 202x198x102 millimetres. Each heating 

zone contains six radiant heaters, the power to vhich is controlled by 

phase controllers. The loads are propelled by an adjustable speed 
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conveyor system. Measurements of the load temperatures and the 

position of the loads within the furnace are taken. The local 

controller interfacing the furnace is a DEC LSI11/02 minicomputer which 

is connected to the LSI11/23 at a higher level using an 16 bit parallel 

optically isolated link. Data received by the LSI11/23 during an 

experiment can be transferred to a Prime 550 minicomputer for analysis.

This ccmplex heating process is fitted into a category of 

continuous dynamic processes which may be split, in time, into batches, 

and its mathematical model is highly uncertain. Stevenson, Brdys and 

Roberts (1985), and Stevenson (1985) have extended the use of the 

modified two-step technique originally developed for steady state 

processes to batch type dynamic processes and have reported a 

successful application to on-line adaptive control of the travelling 

load furnace.

8.4 BBC and LSI11/23 serial data link

8.4.1 Hardware configuration

The link connecting a BBC and the LSI11/23 is shown in Fig. 8.2. 

The connection requires only three lines: a DATA-IN, a DATA-OUT and a 

GROUND. This is the barest minimum for a bidirectional link. The two 

handshaking lines of the BBC, Request To Send (RTS) and Clear To Send 

(CTS), are not required.

The major component of the RS423 interface in a BBC model B 

microcomputer is a 6850 Asynchronous Communication Interface Adaptor 
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(ACIA) which is responsible for changing 8 bit data from a parallel 

format to a serial format and vice versa. A SERial Uncannitted Logic 

Array (SERULA) allows the input to the 6850 ACIA to be switched between 

a cassette and the RS423 interface and defines the baud rate. The 

programmer can gain access to the RS423 interface through three 

registers. The register at address &FE08 acts as the ACIA Control 

Register (ACIACR) when it is written to, and acts as the ACIA Status 

Register (ACIASR) when it is read from. In the same manner, the 

register at address &FE09 functions as the ACIA Transmit and Receive 

Data Registers (ACIATDR and ACIARDR) depending on whether it is written 

to or read frcm. The third register at address &FE10 is the SERULA 

control register. The detailed information of these registers can be 

found in the books (Bray, Dickens and Holmes, 1983; James, 1983).

The LSI11/23 uses the DLV11-J 4-channel asynchronous serial unit 

to interface BBCs. Each channel can be independently configured for a

assigned with four registers and two vectors. These registers are all

RS232 link and is connected to a BBC RS423 interface. The transmit and

receive baud rates have been preset to 9600bd but it is possible to

select various baud rates using software control. Every channel is

memory mapped and are: Receive Control/Status Register (RCSR), Receive

BUFfer register (PBUF), Transmit Gontrol/Status Register (XCSR) and

Transmit BUFfer register (XBUF). The two vectors are the receive 

vector and transmit vector. The DEC microcomputer interfaces handbook 

gives full detailed information.
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8.4.2 Communication protocol

The following communication scheme has been used:

1) Data transfer between the LSI11/23 and a BBC occurs asynchronously 

and is initiated by the BBC.

2) The communication data are organized into blocks where the length of 

the blocks can vary.

3) After a block of data has been received, the LSI11/23 must devote an 

amount of time to process the data.

4) Before transmitting a block of data to a BBC, the LSI11/23 must 

issue a ready-to-send flag to the BBC.

At present only integer data are considered. Since the link can 

only transfer data in the form of bytes (8 bit), integer data must 

first be converted into bytes and then sent to the destination where 

they are restored into integers. However, there is a further 

consideration. Fig. 8.3. shows how the LSI11/23 and the BBC store the 

value of an integer. Because the LSI11/23 can only accommodate 

two-byte integers ranging from -32767 to 32767, integer data to be 

transferred over the link should be limited to the same range. It is 

clear frcm Fig. 8.3. that to transfer an integer frcm a BBC it is 

enough to transmit two lower bytes to the LSI11/23. However, to 

transfer an integer frcm the LSI11/23 to a BBC the corresponding values 

of two higher bytes in the BBC must be decided by bit7 of received byte 

2, vhich is the sign bit of the integer in the LSI11/23. If this bit 

is 1 the received integer is negative, therefore, the bits of the two 

higher bytes must be filled with ones. Otherwise, they should be 

filled with zeros.
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8.4.3 Software

8.4.3.1 General description

The link programmes for the LSI11/23 are written in FORTRAN. 

Since the ccmmunication load on each of the links is light the 

operating speed of the FORTRAN routines is adequate. Ihe software to 

operate the link inside a BBC is written in 6502 assembly language. 

The link programme flowchart is shown in Fig. 8.4.

The LSI11/23 invokes a particular link by calculating the RCSR 

address and the receive vector location for the required channel of the 

DLV11-J serial interface card. Once these twa addresses are known the 

addresses of the remaining registers and the transmit vector can easily 

be calculated. The TSXLIB routine ICNINT is then used to connect the 

receive handler and the transmit handler to the appropriate vectors. 

This is followed by setting up the receive interrupt vector, and 

initializing the 6850 ACIA and the SERULA by writing appropriate values 

into the ACIACR and the SERULA control register inside the BBC. As 

soon as the above two steps have been ccmpleted the link involved is 

ready for operation.

The ccrrmunications are always initiated by the BBC because this 

simplifies the link software. The 6850 ACIA transmit interrupt is 

disabled in the initialization. Each lime that the BBC needs to 

transmit a block of data a non-interrupt-driven routine simply writes 

the data one by one into the ACIATDR. Ihe BBC receives data using an
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interrupt-driven mechanism. Using an indirect addressing mode all 

maskable interrupts on a BBC are accessed through an Interrupt ReQuest 

Vector 1 (IRQ1V) at addresses £204 and £205, and the 6850 ACIA chip has 

the highest priority among all hardware which generate maskable 

interrupts. Interrupts are intercepted at the IRQ1V level and passed 

to a receive interrupt service routine. If an ACIA receive interrupt 

occurs this routine performs proper receive service. If the interrupt 

was not caused by an ACIA receive it simply hands over the control to 

the BBC system service routines. It is very convenient using the 

resident integer variables (@%, A% to Z%) to transfer data between the 

link routines and BASIC programmes because they have fixed locations 

(starting from 0% at £0400 with four bytes for each variable) and they 

can be changed or cleared only through explicit assignment or switching 

the machine off and on.

In the LSI11/23 each time a data transfer request over the link is 

made the TSX-PLUS operating system calls the appropriate handler which 

then either sends data from a buffer to the link or receives data from 

the link and stores it in a buffer. Ihe information is passed between 

the link programmes and the FORTRAN main programme using COMMON 

statements.

A complete communication cycle involves the follows: At the start 

of the communication the BBC transmits the length of the data to be 

sent to the LSI11/23. It is then followed by the actual data. After 

the LSI11/23 has processed the received data, a block of data is 

transmitted, to the BBC. Again the first data is the length of the data 

to be sent to the BBC. A description of the link programmes is given 
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in the successive subsections. Program listing can be found in (Chen, 

Wadhwani and Foberts, 1985, 1986).

8.4.3.2 BBC link software

A total of eight routines written in 6502 assembly language form 

the supporting software for the serial data link in the BBC. Six of 

these routines together perform the non-interrupt-driven transmit and 

the interrupt-driven receive using the 6850 ACIA and a single-byte 

receive buffer. The other two routines support the task of 

transmitting and receiving a vhole integer. Except RECBSR, these 

routines can be called in BASIC programmes by the instruction CATT.. 

The link routines reserve two resident integer variables R% and T% for 

operation. A brief summary of the tasks carried out by them is given 

below.

LININI

This routine sets up the receive interrupt vector, and initializes 

the ACIA and the SERULA by writing appropriate values to the ACIACR and 

the SERULA. control register.

The main task of LININI is to save the original content of IRC1V 

to OLDSRV and to write the location of the link receive interrupt 

service routine (RECBSR) to IRQ1V so that whenever a maskable interrupt 

occurs RECBSR will be called first. It is absolutely necessary to 

disable interrupts during the course of changing the two bytes of IRC1V 

in case an interrupt occurs during the process.
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The reason for disabling the ACIA transmit interrupt is very- 

simple. If not disabled the transmit interrupt would occur immediately 

since the ACIA starts out empty and therefore is ready to transmit data 

but at this stage no trasmit data is available. However, if we have 

disabled the transmit interrupts the system cannot learn from the 

interrupts that the ACIA is ready to transmit. The solution to this 

problem is to create a non-interrupt-driven routine that writes a 

transmit byte to the ACIA.

RECBSR

The RECBSR identifies vhether the interrupt was an ACIA receive 

interrupt (bitO of ACIASR=1) or the interrupt of seme other source. If 

an ACIA receive interrupt occurs, the routine reads the data from the 

ACIARDR, saves it in the software buffer (PKBYTE) and sets up the 

receive data flag (RXBFLA). If the interrupt was caused by seme other 

source, a JMP to OLDSRV instruction in the routine redirects the 

interrupt to the system service routines.

Interrupts must not have any effect on the interrupted programme, 

i.e., the interrupted programme will expect the processor registers and 

flags to be exactly the same after the return from an interrupt routine 

as they were before the interrupt occurred. Thus an interrupt routine 

must either not alter any registers (which is difficult) or restore all 

register contents to their original values before returning. In a BBC 

the interrupt routines are entered with interrupts disabled, and the 

following conditions apply on entry to an interrupt routine:

(i) The original processor status byte and return address are already 
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stacked ready for a RTI instruction at exit.

(ii) The original X and Y states are still in their registers.

(iii) The original A register contents are in location &FC. However, 

this location is only used temporarily at the very beginning of an 

interrupt routine.

The first action of the RECBSR, therefore, is to push the contents 

of &FC onto the stack. Notice that because the RECBSR has no effect on 

the X and Y registers, there is no need to save them. If the interrupt 

was not caused by an ACTA receive, before a JMP to the system interrupt 

routines, the conditions (i), (ii) and (iii) must be restored. Since 

(i) and (ii) are still true the only action needed is to pull the 

contents of the A register out of the stack and to restore them in &FC.

RXBGET and RXBSTA

The RXBGET waits for a receive byte to become available, clears 

the receive software flag and loads the byte to the second least 

significant byte of R%.

The RXBSTA sets the CARRY flag from the receive software flag so 

that the RXBGET can examine the status of the receive software buffer 

by testing CARRY. If CARRY=1 a receive byte is ready in the software 

buffer. If CARRY=O no receive byte is available.

TRNBSR

The TRNBSR writes a transmit byte (assumed to be the least 
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significant byte of T%) to the ACIATDR and hence, forces it to be sent 

out. This routine is the non-interrupt-driven entry to the link, i.e., 

whenever a byte is to be transmitted out it must be called (compare 

with the interrupt-driven RECBSR).

BYTEOP and BITTES

The BYTEOP shifts the contents of a memory location to the one 

byte lower location. The original location is then filled with zero. 

The memory locations treated must be in page 4 (resident integer 

variables are in page 4) . This enables multibytes to be received or 

transmitted using a fixed byte in R% or T%.

As mentioned early, an integer in the LSI11/23 consists of two 

bytes, while an integer in the BBC has four bytes (see Fig. 8.3.). 

After the BBC has received the two bytes of an integer from the 

LSI11/23 and has stored them in the two lower bytes of R%, BITTES can 

be used to check bit7 of the second byte, which is the sign bit of the 

integer in the LSI11/23, and to decide the values of the two higher 

bytes of R% according to the value of this bit. To set the X register 

to the required low byte of an address, assignment

X% = low byte of address

can be used before CALL the routines in BASIC programmes.

TIDYOU

This routine restores IRQ1V to the original place. It should be 

called at the end of execution of the programme so that the BBC 
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microcomputer can function normally after the termination of the link 

operation.

8.4.3.3 LSI11/23 software

The LSI11/23 link subroutines written in FORTRAN have been 

obtained by modifying the original subroutines written for the I-MIC 

and the LSI11/23 serial link (Stevenson, 1984, 1985). The changes are 

mainly in the interrupt handlers RXIHZXN and TXIHAN, and the completion 

routine RK, which simplify the programming and improve the efficiency 

of the network.

INIT

This subroutine accepts an argument which is the link number 

required. It then calculates the addresses of the RCSR, RBUF, XCSR and 

XBUF, and the locations of the receive vector and the transmit vector. 

The TSXLIB routine ICNINT is used to connect the handlers RXIHZXN and 

TXIHZXN to the appropriate vectors. The receive interrupt is enabled on 

exit.

RXIHZXN and TXIHAN

The receive interrupt handler RXIHZXN and the transmit interrupt 

handler TXIHAN perform actual data transfer over the link. RXIHZXN 

leaves the transmit interrupts enabled on exit. TXIHZXN disables the 

transmit interrupts after it is entered, it also echoes a zero to the 

BBC while the BBC is transmitting. These two handlers, together with 
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software flags FLAG1 (RXFREE), FLAG11 (TXFREE) and FLAG21, ensure that 

correct data transfer is achieved.

RK

On the termination of receiving data, the completion routine RK is 

called to store and/or process the newly received data. Notice that it 

sets the flag (INFLAG) to inform the LSI11/23 main programme.

RXFORM and TXFORM

The two accessory subroutines RXFORM and TXFORM are used to 

convert the received data from a BYTE array into an INTEGER* 2 format 

and to convert the data to be transmitted from an INTEGER*  2 format to a 

BYTE format.

8.4.3.4 How to use the link programmes

The simplest way to use the BBC link routines is to join the BASIC 

main programme after the link programmes. Each time the programme is 

executed the BBC first assembles the link routines into machine code 

and then enters the main BASIC programme.

A better method is to assemble the link routines into machine code 

separately and to hide them scmevhere in the memory. There are several 

methods for hiding a piece of machine code. Unfortunately none of them 

proves to be really satisfactory. One technique involves altering the 

pseudo-variable PAGE to make space for machine code, which proves 
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useful. Bor detailed discussion see (Chen, Wadhwani and Roberts, 

1985) .

8.5 Concluding remarks

It has been shown that, by adopting a star network configuration, 

the expansion of the distributed two-level computer system has easily 

been achieved. A more powerful local computer network has been estab-

lished and a more efficient inter-ccmmunication system has been 

developed.

The data communication scheme discussed in this chapter is 

designed such that it can easily be expanded to enable the LSI11/23 to 

communicate with more than one BBC simultaneously which is required in 

the application of hierarchical decomposition-coordination techniques 

(Chen, Wadhwani and Roberts, 1986).

Although, at present, only the transfer of integer data has been 

incorporated it is expected that the link software can be improved in 

order to transfer real data over the serial data link. However, the 

data formats for a real number in the BBC and the LSI11/23 have 

significant differences, which is the main difficulty and must first be 

overcome.

It is possible to organize the link programmes so that the data 

communication can be initiated randomly either by the BBC or by the 

LSI11./23, where the software for such a communication scheme is more 

complex. Previous research applications conducted using the I-MIC and 
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the LSI11/23 serial link have suggested that the simple link strategy 

given in this chapter is often adeguate.

TABLE 8.1 Device RCSR addresses and Receive Interrupt vectors

DQ614 Winchester controller 174400-160

M7941 LP parallel interface 177514-200

MXV21 Floppy controller 177170-264

MLSI :DRV11 LSI11/02 167770-270

M8043 DLV11-J Port 0 TSX line 1 176540-300

1 2 176550-310

2 3 176560-320

3 (console)4 177560-60

M8028 DLV11-F I-MIC 176520-330

- - I-MIC (Vaporiser) 176530-340

- - Intercolor 175610-350

- - I-MIC (Mixing rig) 176500-360

- - I-MIC 176510-370

MLSI ]DLV11-J Line 1 BBC (Analogue 176600-500

2 BBC computer) 176610-510

3 BBC 176620-520

4 BBC 176630-530

M8028 DLV11-F Prime 550 link 176570-770

All numbers are octal number.
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CHAPTER 9. REAL TIME SIMULATION USING A MICROCOMPUTER BASED SYSTEM

9.1 Introduction

The advent of inexpensive and more powerful microcomputers has 

facilitated the implementation of on-line optimization schemes to 

industrial processes. Most optimization algorithms require a process 

model and their performance clearly depends on how accurate the model 

is to reality. Unfortunately, for many industrial processes an 

accurate model may be very difficult, time consuming, or impractical to 

obtain. This is particularly true for interconnected large-scale 

processes.

The hierarchical ISOPE technique discussed in Chapter 7 shares 

many common advantages (such as simplifying the overall optimisation 

task, enabling parallel calculation and being suitable for 

implementation using the distributed computer system) with other 

existing hierarchical optimisation methods (such as the interaction 

balance method with feedback and the interaction prediction method with 

feedback). Moreover, it has been shown that, in an efficient manner 

and based only on an approximate model, the technique attains the 

optimal steady state operating condition. This advantage enables it to 

be used in the situation where process knowledge is highly uncertain.

A quick review will show that both the single and double iterative 

versions of the hierarchical ISOPE technique operate in a decentralized 

manner at the local level, and there is no need for ccmriunication among 

the local units. They can easily be implemented using hierarchical 
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(star) ccmputer networks such as the one discussed in Chapter 8, with a 

central ccmputer (supremal level) serving as the coordinator and local 

ccmputers (infimal level) serving as the local control units. Parallel 

local optimisation and parameter estimation calculations are achieved.

In this chapter, we implement the hierarchical ISOPE technique 

using part of the network shown in Chapter 8, where the aim is to 

investigate the behaviour of the technique in a real-time environment 

and to study methods for dealing with seme problems associated with 

on-line application. The efficiency of the two versions of the 

technique is also compared.

9.2 On-line inpiementation aspects

Using the distributed ccmputer system, parallel computation can be 

performed at the local level once coordination variables have been 

received frem the supremal level. However, synchronisation and 

interprocess communication problems arise at the local units because 

the iteration in each unit is finished within a different time 

interval.

Because steady state measurements are needed in order to estimate 

parameters and, particularly, to compute finite difference 

approximations of the derivatives with respect to the controller set 

points, bad quality measurements will affect the iterative procedure. 

For this reason synchronisation is reccranended to enable controls to be 

sent to the real process simultaneously. Roberts and co-workers (1984) 

considered two methods for synchronising the local units — elapsed 
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time and semaphore.

The ' elapsed time' method requires an estimate of the time taken 

for each local unit to finish one iteration. Each unit then waits a 

sufficient time to enable the slowest unit to complete its task before 

sending the controls to the real subprocesses. Al though 

decentralisation can be obtained at the local level, it is difficult to 

determine the waiting time for every iteration of each unit. This 

arises because the computation time required at each iteration is, in 

general, unpredicable and often varies due to differing ccrimunication 

delays caused by the time-shared operating system used at the supremal 

level.

The second method is the ' semaphore' method. After each 

optimization computation (or other actions such as taking measurements) 

each local unit sends a completion flag to the coordinator and waits. 

A task of the coordinator is to check that all the completion flags 

from the local units have been received before transmitting a start 

flag to each unit, all of which then send controls simultaneously to 

the real subprocesses. In real implementation, data sent to the 

coordinator may well serve as completion flags and data sent frcxn the 

coordinator may be used as a start flag. This synchronisation scheme 

has been shown to work efficiently in previous research and, therefore, 

is used in the implementation of the hierarchical ISOPE technique 

investigated in the present chapter.

After controls have been applied to the real subprocesses, all 

local control units should wait a sufficient time until the plant has 
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settled down, at which point steady state measurements are taken. It 

is difficult to reduce this on-line waiting time interval without 

risking the quality of the steady state measurements. However, if the 

number of controller set point changes can be reduced the time for 

determining the optimal solution may be less. The double iterative 

algorithm is aimed at achieving this purpose.

A usual way to speed up the iterative procedure involving multi-

processors is to introduce seme kind of asynchronization to the 

procedure. Because of the complexity of the hierarchical ISOPE 

technique (mainly calculating real output derivatives) it is difficult 

to choose a suitable asynchronized operating scheme for it, which 

achieves the purpose of faster convergence. Experience also shows that 

if the measurements are taken long before the process reaches its 

steady state the performance of the technique will deteriorate. 

Therefore, only the synchronized scheme mentioned above is employed to 

implement the technique.

The requirement to evaluate real process derivatives represents a 

significant drawback of the technique. In the situation where the 

noise level becomes intolerable filter techniques should be applied to 

reduce the influence of noise. A simple technique involves using a 

first-order low-pass filter to smooth each element of the modifier 

vector which has already been proposed in Chapter 4.

9.3 Configuration of the simulation system

Part of the computer network used to implement the algorithms 

177



given in Chapter 7 includes the LSI11/23, which serves as the 

coordinator, two BBC microcomputers, vhich are used to perform local 

parameter estimation and optimisation tasks, and an EAL Pace general 

purpose analogue computer, vhich simulates an inteconnected two- 

subsystem dynamic process (Fig.9.1.).

Measurements are taken using the BBC analogue port, which is a 4 

channel 12-bit A to D convertor. This is really a poor performance 

convertor. In order to reduce the thermo-effect of the port and to 

improve the quality of measurements, the reference diodes of the port 

have been replaced to increase the range of voltages from Ov to 1. 8v to 

Ov to 2.5v and a simple averaging procedure is performed.

Control signals applied to the plant are generated using two 3 

channel 8-bit D to A convertors. Data are outputed to the D/A 

convertor through the BBC user port by means of software control. The 

principle is as follows: The output/input register B of the user port 

at address &FE60 is divided into two halts. The lower half contains 

4-bit data, and the other half acts as control bits to decide which 

channel and which half (lower or upper half) of the channel data 

register the 4-bit data will be assigned to (see Fig.9.2. and 

TABLE 9.1) . The user port must be set up for 8-bit output and control 

signal CB2 set to pulse mode before the above application can be 

realized. This can be achieved by setting all bits of the Data 

Direction register B (DDRB) at address &FF.62 to one and the upper half 

of the Peripheral Control Register (PCR) at address &FE6C to binary 

1010. In a similar way a 4 channel 12-bit D/A convertor can also be 

obtained at a cost of decreasing converting speed.
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To end this section a summary of digital data and analogue signal 

ranges is provided. Control inputs to the two D/A convertors are 

limited in the range of -1.0 to 1.0 (real numbers). The corresponding 

output voltages are -2.5v to 2.5v. The minimum and maximum voltages of 

the analogue computer are -lOv and lOv, which correspond to real 

numbers -4.0 and 4.0, respectively. Voltages ranging from -lOv to lOv 

must first be transferred to Ov to 2.5v before they can be inputed to 

the A/D convertor of the BBC microcomputer whose outputs are integers 

from 0x16 to 4095x16. A simple software operation can then be applied 

to change these integers to real numbers in the range of -4.0 to 4.0.

9.4 Study example

An interconnected two-subsystem plant (Fig. 9.3.) is simulated 

using a TR48 analogue computer. The values of the time constants T.^ to 

T^^ can be chosen to achieve a reguired overall plant settling time 

period. The steady state of the process is governed by the following 

equations

yn* = 1,4cn" °-6c12+ 1,8uii'

y21 = 1,3c21" 1,1c22+ 1,1U21

Y22 = 2’3C22“ °‘7c23“ 1'1U21‘

The model equations and coupling equation are

yll= Cll“ C12+ 2ull+ all'

y21= C21“ C22+ U21+ a 21

Y22= 2c22" C23" U21+ a22‘
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The performance indices and constraint sets are

Qi(ci- yp = Tr1)2 + cn2+ ci22, 

02(c2, y2) = 2(y21- 2)2 + (y22- 3)2 + c212+ o,;2.

CUY} = {(c^/u1,y1) R4: ’c^J^l, !c12K<1 and Q.8 - c]2- 0.6un >z o),

CUY2 = Hc2,u2,y2) 6 R6: 'c2i'^1/ 1=1/2,3}.

where c^ (cn c12)T, c2= (c21 c22 c?3)T, un, u2= u2]/

Yl= Yll' y2= (y21 y22^ *

The two local optimization problems (which are much simpler than 

the overall optimisation problem) are simple enough to be solved 

analytically. Tn this case there is no need to load seme standard 

numerical optimisation algorithm into the BBC's RAM, which is a 

difficult task due to the limited memory capacity of the microcomputer. 

Local optimization problem 1:

c]2+ 2U11+ a n_ 1)2+ c]?2- ^c.^- X

C11,C12,U11

+pllUll P21/Cll C12+ 2ull+ “11^'

Local optimization problem 2:

min{2(c21-c22+u21+ a21~2) + (2c22-c23-U21+ a 22-3^ ^21 +C22 +C23

C21'C22'C23/U21

X21c21

s.t. !c2i! x< 1, i=l,2,3.

Because both problems are convex the first-order necessary optimality
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conditions are also sufficient. The Kuhn-Tucker necessary conditions, 

therefore, can be employed to solve these optimization problems. There 

are eighteen possible regions for problem 1 and twenty-seven possible 

regions for problem 2, depending upon the values of the parameters 

allz a21 a 22' mO(3ifiers i=i/2 and ^2j' 3=^'2,3, and

the prices p^^ and p£^ (see Appendix G). The optimization computation 

in each local decision unit is reduced to deciding which solution 

region is applicable according to the values of the given parameters, 

modifiers and prices.

It is observed that measurement noise is near 1% on average about 

normal operating conditions. Sources of noise include the low quality 

of the A/D convertors, the long age of the analogue computer and other 

unknown factors. However, such a noise level is small in an industrial 

environment and should not cause difficulties to the algorithms if they 

are to have any practical usefulness. When the process settling time 

period is set at 20 seconds, an item of on-line information 

interchange, begining when the local control units apply the controls 

to the real process until the start flag of the next action is 

received, will take about 21.5 seconds. It is observed that it takes 

approximately 1.5 seconds for the system to complete a typical off-line 

information interchange (each local unit performs its optimisation 

calculation, sends its results to the coordinator and then waits until 

it is informed by the coordinator that all other units have completed 

their tasks) . A notable improvement in data ccrrmunication speed has 

been achieved (The previous I-MIC - LSI11/23 system took nearly 10 

seconds to complete the same item of off-line information interchange).

181



9.5 Experimental results and discussion

The derivatives required to compute X were approximated using

formula (4.28) given in Subsection 4.3.2. Suitable values of the

gain matrices V Kp were

Kp = diag{0.8, 0.9}, where I is an identity

found by experiment as = 0.41 and

matrix. Desired tolerances

0.01 according to measurement accuracy.

Starting frcm zero initial controls, typical results obtained using the

technique formulated in Chapter 7 are shown in TART,E 9.2 where the

results are compared with the real optimum values. To compare the

efficiency of the single iterative algorithm and the double iterative

algorithm, the time required to determine the real optimum solution and

the communication requirement of both versions are listed in TABLE 9.3.

Ccmputer software can be found in (Chen, Wadhwani and Roberts, 1986).

In practice the technique can be applied such that after the 

optimal operating condition has been found, the plant is maintained at 

this condition and the control system is switched into a ' supervising 

mode' , ready to track the new optimum if the process conditions are 

changed. Fig. 9.4. demonstrates this adaptability, where at time 

instant 0, a disturbance occurred and real subsystem 1 became:

*
yn = 0.6c^2+ 1.8u^^+ 1.0.

Because of the interconnection all real measurements were affected. A 

sudden deterioration in the performance was reported to the host 

ccmputer who restarted the procedure. It can be seen frcm Fig.9.4. 

that, in this case, the DIA agian took only half of the time required 

by the SIA to converge to the new optimum.
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To study the behaviour of the algorithms under a stochastic

situation additional randcxn noise sources, ranging from -0.05 to 0.05,

generated using the BBC function RND were added to all real

measurements. Ihe given noise was about 5% of the normal operating

conditions. To see how the differentiation amplifies measurement

errors let the minimum perturbation on controller set points be 0.06;

using (4.28) to calculate the derivatives under such a noise condition 

the maximum error would approximately be 1.7, which is about 150% of 

the average real derivative. To enable the application of the DIA, the 

inner loop tolerance was increased to 0.06 and a maximum limitation of 

20 iterations was imposed on the inner loop. Fig.9.5. and Fig.9.6. 

illustrate the serious effect of the additional noise on real system 

performance during the course of the iterations and the improvement 

achieved by the use of the smoothing technique (4.31) proposed in 

Subsection 4.3.3. For the example tested, the DIA seemed to yield more 

robust results.

9.6 Seme concluding remarks

Real-time simulation results demonstrate that both versions of the

hierarchical ISOPE technique can be used to overcome model-reality 

differences and to track slowly changing optimal operating conditions 

in on-line application. The aim of 

information interchange and hence, 

determining the optimum steady state

the DIA is to reduce on-line 

to reduce the time required for 

control, even at the cost of

increasing off-line information exchange. This feature is well 

demonstrated by the results shown in TART,F 9.3.
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The DIA is particularly desirable for processes which have long 

settling time periods. While the real process settling time period is 

often beyond our control using more powerful computers at the local 

level and increasing the efficiency of the ccmmunication link will 

reduce the time required for off-line information interchange, vhich 

also favours the DIA.

As with the majority of decentralised methods, to guarantee good 

performance, the hierarchical ISOPE technique requires synchronised 

operation. The requirement to measure first-order derivatives of real 

outputs imposes an important practical limitation to the technique. To 

enable the application to stochastic processes, further research is 

needed to investigate the possibility of incorporating filter theory 

with the hierarchical ISOPE technique.

TABLE 9.1 D/A channel control using BBC user port

bit 7654 data bits 0 to 3 assigned to

0 0 0 0 i i

0 0 0 1

0 0 1 0

0 0 1 1 i i

0 1 0 0 i i

0 1 0 1 i i

lower half of the register of D/A channel

upper half of the register of D/A channel

lower half of the register of D/A channel

upper half of the register of D/A channel

lower half of the register of D/A channel

upper half of the register of D/A channel

0

0

1

1

2

2

All bits of the register at &FE62 must be set to 1.

Upper half of the register at &FE6C must be assigned with binary 1010.
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TABLE 9.2 Comparison of results

i 
i

i 
i

‘
 

n
 

s

1 
i

1 
F—

1 
i

1 
1

1 
1

1 
1

1 
1

i 
i

i 
i

i 
i

Q
 

i

! M 
i

1 N> 
1

1 
1

1 
1

1 
1

: 
1 I 

I

I 
:

i 
I

i! 
r-

1 
1

1 
C

N 
1

I 
O

1 
1

1 
1

1 
1

i 
i

ii 
i

Ii 
C

M
i 

CM 
1

i 
o

 
;

i 
i

i 
i

i 
i 1 1 1

1 
1

O
 

1

1 
M

 
i

1 
O

J 
1

1 
1

! 
1

1 
1

Q(c,y )

real optimum -0.72 0.12 0.90 1.00 -0.83 5.93

STA -0.72 0.12 0.89 1.00 -0.85 5.93

DIA -0.71 0.12 0.90 1.00 -0.83 5.93

TABLE 9.3 Comparison of efficiency

iterations

algorithm of modifiers

optimisation set point total information computation

time (minutes)iterations changes interchanges

SIA 23 24 138 162 50.4

DIA 11 113 66 179 27.2

Plant settling time period = 20 seconds.
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0: COORDINATION ACTION

i: LOCAL INFORMATION

m: MEASUREMENT FEEDBACK

Fig. 9.1. ConFiguration For analogue computer simulation
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CHAPTER 10. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

This research is concerned with hew to achieve the optimal 

operating conditions of industrial processes operating in real time. 

The economic benefits of maintaining an industrial plant at its optimal 

This task, however, is

accurate process model

Additional problems arise frem the fact that

operating conditions are apparent, 

difficult because, primarily, an 

impossible.

operating conditions of a plant are, 

the time-varying process conditions, 

normal Lagrange analysis has been 

Integrated System Optimisation and 

method s. Based

extremely 

is often

the optimal 

in general, slowly changing due to 

A systematical approach involving 

applied to develop a class of 

Parameter Estimation (ISOPE) 

the followingon the results obtained in the research,

two conclusions related to the application of the ISOPE techniques are 

obvious:

(1) The solution obtained is independent of the models used. Simpler 

models can be employed, and model uncertainty does not cause serious 

problems.

(2) The real process optimal solution, not a suboptimal one, can be 

attained.

In other words, they can be viewed as optimal adaptive control 

schemes for steady state systems. If the procedure is operated in a 

way described in Section 9.5 the plant can follow the slowly changing 

optimal conditions. The above two advantages enable the ISOPE methods 

not only to be applied to solve steady state control problems but also 

to be used to solve complex non-convex mathematical programning 

problems. Given a complex non-convex mathematical programning problem
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involving highly nonlinear equality constraints, we may consider these 

equality constraints as 'real process equations' and construct sane 

simpler linear equations as their 'models' . Then the ISOPE methods are 

readily applicable to solve the problem iteratively. In sane cases 

this may be an easier and faster way to obtain a solution than solving 

the original problem directly. In this application, there exists no 

uncertainty. Fven the information of derivatives could be perfect. 

General convergence conditions and the rate of convergence can be

derived, and sane advanced iterative strategies, instead of a fixed

gain parameter, can be chosen. Further research is suggested to

investigate using the modified two-step algorithm as a mathematical

programming method. Although the optimality of the ISOPE techniques, 

in general, is in a local sense, simulation involving non-convex 

problems has shown that, provided that the convergence can be achieved, 

the ISOPE techniques tend to converge to the global optimum.

It should be noted that the modified two-step algorithm and its 

extensions require knowledge of real output derivatives with respect to 

the inputs during the course of the iterations. This imposes an 

important practical limitation. These algorithms can obtain good 

results provided that the measurement noise level is tolerable and a 

deterministic approach is feasible. In this research, it has been 

shown that averaging output measurements and using simple filter 

techniques to filter the modifier vector can significantly improve the 

performance of the modified two-step algorithm under noisy measurement 

situations. Further research is suggested to investigate how to 

incorporate filter theory with the ISOPE methods in order to extend 

their application to stochastic processes.
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Using a stochastic approach to incorporate system optimisation and 

parameter estimation has been studied in the Control Engineering Centre 

of The City University. For the linear quadratic problem with unknown 

parameters under a classical information structure, a stochastic 

modified two-step algorithm has been formulated which gives excellent 

results in ccmputer simulation (Han and co-workers, 1986) . However, 

attempts to extend the idea to nonlinear stochastic processes will meet 

enormous difficulties and may not be possible.

An algorithm has been proposed and studied in the research which 

is more robust to measurement noise because it does not require the 

real measurement derivatives. This is achieved not at the cost of the 

optimality but at the cost of introducing an additional hierarchical 

level which, in this situation, results in a substantial cost of 

ccmputational efficiency. Although, like the modified two-step 

algorithm, it is originally derived by analyzing the Kuhn-Tucker 

necessary optimal conditions the algorithm seems to belong to a special 

case of two-level decision making problems. This two-level type 

algorithm has been observed to perform well when using coordinate 

descent techniques, such as Powell's conjugate direction method, to 

solve the supremal problem. However, the speed of convergence still 

needs to be improved so that it can meet the requirements of real-time 

application. Further research can be conducted in this direction to 

investigate more powerful techniques for solving the supremal problem. 

More theoretical study is also required to analyze the mathematical 

properties of the algorithm.

In this research the modified two-step technique has been extended 
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for application to interconnected large scale systems by incoporating a 

two-level hierarchical structure employing the price correction 

mechanism. Because there is no need to interchange the information 

within the local level the hierarchical ISOPE technigue is particularly 

suitable for implementation using a distributed computer network 

connected as a star structure. In the research considerable emphasis 

has been given to information exchange requirements between the 

hierarchical units with real time application in mind. A double 

iterative coordination strategy has been shown to have important 

practical advantages under real time operation.

In this thesis normal Lagrange analysis is used as a basic tool to 

develop on-line ISOPE techniques. It is suggested that the augmented 

Lagrangian approach can be employed in a similar manner to derive a 

group of augmented ISOPE algorithms. It is thought that two advantages

can be gained by employing augmented Lagrange analysis. Firstly, the

resulted algorithms will have faster convergence rate. Secondly, the

applicability of the algorithms will be wider than that of the

algorithms derived from normal Lagrange analysis. Because of the

similarities between these two mathematical tools the results reported

in this thesis will benefit the development of the algorithms based on 

augmented Lagrange analysis, which is currently being conducted in the

Control Engineering Centre of The City University. Further efforts can 

be directed to investigate practical implementation asp>ects, to compare 

them with normal ISOPE methods and to study the benefits obtained using 

this new approach.

In this research we have restricted our interest to steady state
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optimisation. Further work is suggested to consider how to extend the 

ISOPE methods to dynamic processes. For general dynamic processes it 

is not clear how this can be achieved, and the task may be impossible 

to accomplish. However, a successful extension of the modified 

two-step algorithm to on-line control of a pilot scale travelling load 

furnace, which is a batch dynamic plant, has been performed (Stevenson, 

1985) . This suggests that at least it is feasible to apply the ISOPE 

methods to batch type dynamic processes. Extending the results of Han 

and co-workers (1986) to the stochastic linear quadratic dynamic 

problem with unknown parameters is also feasible.

The final concern is the application of the ISOPE techniques to

industry. These techniques are quite sophisticated. Many practical

inpiementation aspects need further investigation. People frcm

industry still need to be convinced that the application of ISOPE

methods is feasible, that it can bring them profits and that the

techniques are reliable. Seme computer software packages have to be

developed which can conveniently be used by the engineers working in 

industry.
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Appendix A Fixed point theorems

Al♦ Schauder1s theroem (e.g. Kantorovich and Akilov, 1982)

A continuous mapping that maps a ccnpact. convex set in a Banach space 

into itself has a fixed point.

A2. (e.g. Hutson and Pym, 1980; Kantorovich and Akilov, 1982)

Let B and C be Banach spaces. Take closed D C. B, and an arbitrary 

ECC, and assume A: D x E D is continuous. Suppose that there 

exists a q < 1 such that A(.,g) is a contraction with Lipschitz 

constant q independent cn g. Then there exists a unique fixed point 

f(g) of A(.,g). Moreover, f(g) is continuous cn E.
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Appendix B Mathematical preliminaries for Chapter 5

Definition Bl. (point-to-set mapping)

A mapping F: X -*Y  is said to be a point-to-set mapping if for any

xGX, F(x) is a set in Y.

Definition B2. (open mapping)

A point-to-set mapping F: X -*-Y  is cpen at a point xG X if {x^}C3X, 

x -**x z and y(-F(x) imply the existence of an integer m and a sequence 

[yk}cZY such that y^G F(xk) for k >, m and y^-*~y.

Definition B3. (closed mapping)

A point-to-set mapping F: X -+-Y is closed at a point x£X if {x^lc^X, 

x^-**  x, y^£ F(x^), and y^-►y imply that y 6 F(x).

Definition B4. (fixed point)

A fixed point for a point-to-set mapping F: X -*-Y  is a point x€X such 

that x£ F(x), where X and Y are subsets in a same space.

Definition B5. (composition)

Let F: X -*-Y  and G: Y -*-Z  be point-to-set mappings. The ccmposite 

mapping H = GF is defined as the point-to-set mapping H: X -»-Z with 

h(x) =

y£F(x)

Definiticn B6. (Cartesian product)

Let FL: X Y^, i=l,...,n be point-to-set mappings. The Cartesian 

product H = x.. .x is defined as the point-to-set mapping 
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H: X -*  Y1X. . .xYn with H(x) = {(yT, . . . ,yn): y^H^x), i=l,...,n}.

Definition B7. (algorithm)

An algorithm is an iterative process consisting of a sequence of point- 

to-set mappings 0^.: X -*-X.  Given a point x%X, a sequence {x^lcZX is 

generated hy use of the recursion x^+^ £ $ (x^)« The mappings are

called the algorithmic mappings. A special case is = $ for all k. 

Remark: Generally, the mappings depend on the iteration number k as 

0 k-1
well as previous points x , ..., x . Such mappings are termed as 

nonautoncmous mappings. Algorithmic mapping $ does not depend on 

0 k-1
previous points x , . • ., x . Such a mapping is referred to as an 

autoncmous mapping.

Definition B8. (monotone)

A mapping F: DCZX -*-Y  is monotone on DgCZD if

CF(x) - F(y)]T(x - y) > 0, Vx,yGDg. (B.l)

F is strictly monotone on Dg if strict inequality holds in (B.l) whenever 

x 4 y and uniformly monotone if there is a r > 0 such that

[F(x) - F(y)]T(x - y) > r(x - y)T(x - y), Vx,yGDg.

Definition B9. (upper semicontinuous)

kA real-valued function f:X -*-R  is upper semicontinuous at x£X if x -‘-x,

k -*  oo implies lim f(x^) f(x), where

k-*-  oo

lim f(x^) = lim sup f(x^).

k-*-  co k-**  oo

Definition BIO, (pseudo-convex)

Let the real-valued function h: C R be differentiable on C. h(c) is 
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said to be pseudo-convex on C if for any c^, C2G C

T(c2~ c-^) V^(c1) >, 0 inplies 11(02) > h(c^)

9Th(c)

where Vh(c) denotes------ .
9 c

Definition Bll. (quasi-convex)

Let h: C -*  R be a real-valued function and let C be convex. h(c) is 

said to be quasi-convex on C if for any c^, C2 6 C

h(c^) implies h( Xcj + (1 - X )c2) h(c2)

for every A such that 0 <: X< 1.

Theorem Bl (Zangwill, 1969; Luenberger, 1973)

Let F: X -^Y and G: Y -*Z  be point-to-set mappings. Suppose F is closed 

at x and G is closed on F(x). Then the composite mapping H=GF is closed 

at x if any one of the following three conditions holds:

(a) If “*■  x and y^€ F(xk), then there is a y such that, for seme sub-

ki ki
sequence {y }, y *y.

(b) Y is compact.

(c) F is a point-to-point mapping continuous at x.

Theorem B2 (Zangwill,1969)

Let F: X -*-Y  and G: X -*-Y  be point-to-set mappings closed at x6X. Then 

the sum mapping H = F + G: X -^Y is closed at x if any one of the 

following three conditions holds:

(a) If. xk_*"  x and £ F(xk), then there is a y such that, for seme sub-

ki ki
sequence {y }, y -*y«

(b) Y is compact.

(c) Either F or G is a point-to-point mapping continuous at x.
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Theorem B3 (Hogan,1973)

If IL: X i=l,...,n are closed point-to-set mappings on X. Then

the Cartesian product H,x...x H : X -*Y,x. . .x Y is closed on X.
1 n 1 n

Define a real-valued function f: Z x Y -*  R and a point-to-set 

mapping H: Z -**Y.  Let

A A
c(z) = inf{f(z,y): y£H(z)} and M(z) = {y£H(z): c(z) = f(z,y)}.

The function c is an infimal value function and the point-to-set 

mapping fl describes its solution set. The following two theorems are due 

to Hogan (1973).

Theorem B4

If H is open at z and f is upper semicontinuous on z x H(z), then c is 

upper semicontinuous at z.

Theorem B5

If f is continuous on Z x Y, H is continuous on Z, Z is connected, Y is 

ccmpact and M is single-valued at z. Then M is continuous at z.

Remarks: The definition of connected is as follows.

Z is connected if for any z^, Z26 Z there exists a polygonal line (a 

curve obtained ty joining a finite number of straight line segments) 

joint z^ and Z2 which lies entirely in Z. Thus if Z is convex then Z 

must be connected. If H(z) is identical to Y for all z£ Z, without Z 

being connected, the assertion of Theorem B5 still holds.

Theorem B6 (Luenberger, 1973)

Let the real-valued function h be convex on a convex set C and assume

*
that h is continuously differentiable. If x is a global minimum point 
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of h over C, then for all y£ C

h (x ) (y - x ) > 0,

3h(x)I
where h (x) denotes----- .

3x

Theorem B7

Let the real-valued function h: C -*>R  be differentiable cn C and itsI
derivative h be Lipschitz continuous on C with constant p > 0, i.e.,

' ' Vh(v) - Vh(c) ! ! <: p ! 'v - c' ! for all v, c€C,

and let C be convex. Then for all v, c6C the follcwing holds:

h(v) - h(c) > h (v)(v - c)-----! 'v - c' J2.

2

Proof: Owing to the convexity of C, c + a(v - c)€ C for all 0 < a 1.

Hence we have

f1 ■h(v) - h(c) = I h (c + a(v - c))(v - c) da= h (v)(v - c) +

' 0

i i
T

Using Schwarz inequality a b > i ii 11

h(v) - h(c) > h (v)(v - c) ! 'h (c + a(v - c))

' 0

h (v) J!J!v - c'' da

I
> h (v)(v - c) p!!( a- 1)(v - c)'’' *v  - c!! da = h (v) (v - c) -
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1

c) - (1 - a) da

J 0

i P n
= h (v)(v - c)----- ' 'v - c' i . Q.E.D.

2

Zangwill's convergence theorem (Zangwill, 1969; Luenberger, 1973)

Let the point-to-set mapping <J> :C -*C  determine an algorithm that given 

a point v^C C generates the sequence {v^} ty use of the recursion

£ $(v^). Also let a solution set QCZC be given. Suppose

(1) All points v" are in a ccnpact set X C c.

(2) There is a continuous function Z: C R such that

(a) if v Q, then Z(c) < Z(v) for all c 6 $(v).

(b) if v £ q, then either the algorithm terminates or Z(c) -< Z(v) 

for all c £ $(v).

(3) The mapping $ is closed at points outside Q.

Then either the algorithm stops at a solution or the limit of any 

convergent subsequence is a solution.
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Appendix C Analytical solutions of Simple example 1

Model: y = F(c, a) = -1.5c + a .

Reality: y=F (c) = c + 1.

2 2Performance index: Q(c,y) = c + y . Constraint: G(c,y) = c + y +1 < 0.

Let q(c, a) = c^+ (-1.5c +a)^/ q (c) = c^+ (c + 1)^,

q(c, a) = -0.5c + a + 1 and g (c) = 2(c + 1).

Notice that the real system constraint set is c < -1.

Cl. Real optimum

Consider L (c, £) = q (c) + £ g (c). This is a strictly convex problem.

Let V^L = 0, L <: 0, ^v^L ~ 0 and £ 0, i.e.,

2c + 1 + £ = 0, c s< -1, £(c + 1) = 0 and £ 0.

Suppose £= 0, i.e., c t= -0.5 but this violates the real constraint

c ,< -1. Hence,

Ccpt_ cpt_ 1 an<3 ^opt-

C2. Two-step method

Parameter estimation: Solve -1.5v + a = v + 1 we have a = 2.5v + 1.

Consider L^(c, C ) - q(c,a ) + £ g(c, a) • Frcm VcLj= 0 we have 

13c = 6 a + E,.

Let c = v we obtain 13c = 6(2.5c + 1) + E, or

c = -3 -0.5 and a = -6.5 - 1.25 £.

Check: g(c,a ) = -0.5c + a + 1 = -4 - £ <0 for £>, 0, hence, 

c = -3, £ = 0 and Q = 13.
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C3. Previous version of modified two-step method

*
Modifier:

3F 
X = (----

3F 
---- ).

30
= 7

3c 3 c 3y V

Consider L2(c, Z ) = q(c, a ) -- X c

13c =
A

6 a + £ + 2 X .

A
Let c - v we obtain 13c =- 6(2.5c

c = -0.5 + 0.125
A
Z .

A A
But / 0 an<3 c violates the real

5v - 5 a.

A
+ 5g(c, a ) • Fran VCL2 = 0 we have

+ 1) + I + 2(7.5c - 5(2.5c +1)) or

system constraint c < -1. Hence, the

solution is not feasible.

C4. New version of modified two-step method

*
3 F 3F 3Q 3G

Modifier: X = (-- -----)(--- +--- C) = 7.5v
3c 3c 3y 3y V

A A
2 X.Solve V L~=

c z
0 we have 13c = 6 a + C +

a  a
Let c = v and £ = £ we obtain

A A
c = -0.5 - 0.5 £ .

Check g(c, a ) = 0 we find £ = 1, hence,

= = ccpt= -1- 5 = 5 cpt= 1 and Q = Qopt= K

X = -2.5 which is unique.

C5. Two-level type method

Again fran V CL2= 0 we have

13c = 6a + C + 2X .

A
Notice that here \ is an independent variable. Let c = v and substitute

a = 2.5v + 1 into the above equation
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A
c = -3

A A
- X - 0.5^ . Also a = -6.5 -

A
2.5X - 1.25 £ and

,A A , 
g(c, a) = -4 - 2 X - e.

a) g(c, a)
,A A

is not active: g(c, a ) < 0 and
A

e = o.
i.e., for

A A
X > -2, c = -3 - X and Q = 2

x2 + 10 > + 13.

b) g(c, a )
A A

is degenerate: g(c, a ) = 0 and
A
e = o.

i.e., for
„ A A

X = -2, c = -1 and Q = 1.

c) g(c, a)
,A A . A

is active: g(c, a) = 0 and E, > 0.

i.e., for X<_2, c = -1, = -4 - 2 X
A

and Q = 1.
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Appendix D Prograirrne listing of simplex algorithm
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SUBROUTINE MIFSIM (N, X, F, FUN, STEP, ALPHA, BETA, GAMMA, TOL,
* JCOUNT, INMCN, XS)

EXPLANATION----
PURPOSE: Minimizing a function without calculating derivatives 
(Simplx search method).
PARAMETERS----

Inputs:
N: The number of independent variables. Unchange on exit.
STEP: Increment for generatig initial simplex. Unchange on exit. 
ALPHA: The reflection factor. Unchange on exit.
BETA: The contraction factor. Ucchange on exit.
GAMMA: The extension fator. Unchange on exit.
TOL: The criterion for stopping the search. Denote VL the lcwest 
function value and VH the highest function value in the current 
simplex. If ' VH - VL ] < TOL is satisfied the procedure will 
be terminated. Unchange on exit.
INMON: On entry if INMON >0 MONISI will be called, if INMON <0 
MONISI will not be called. Unchange on exit.
Inputs/Outputs:
X: On entry X specifies a guess of optimal point. On a success 
exit X contains the cptimal point found.
F: On a success exit F contains the function value at the 
cptimal point.
JCOUNT: On exit JCOUNT specifies number of calling FUN.
WORKING SPACE----

XS.
ASSOCIAXTED SUBROUTINES----

MONISI: Subroutine to present the result during MIFSIM. It must 
not change any parameter in MIFSIM.
FUN: User must supply this subroutine to calculate the function 
value at any given point and declare it as EXTERNAL. The 
specification is:

SUBROUTINE FUN(N, X, F)
INTEGER N
DOUBLE PRECISION X(N), F

DOUBLE PRECISION X(N), F, STEP, ALPHA, BETA, GAMMA, TOL,
* XS(N+l,N+2)
INTEGER N, JCOUNT, INMON
DOUBLE PRECISION SIZE, SS, VL, VH, VN, T, DABS, DFLOAT
INTEGER IC, IL, IN, IH, I, J
EXTERNAL FUN

IC=N+2

Initial function evaluation and saving vertex 1

JCOUNT=1
CALL FUN(N, X, F)
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IL=1
XS(N+1, 1)=F
DO 20 1=1, N
XS(l,l)=X(l)

20 CONTINUE
C
C Generate rest of simplex and compute a measure of size
C

SIZE=0.0
DO 30 J=2,N+1
DO 40 1=1,N
XS(I,J)=X(l)

40 CONTINUE
XS(J-l,J)=X(J-l)+STEP
SIZE=SIZE+DABS(STEP)

30 CONTINUE
C—**—
C 9000 IS THE POINT AT WHICH THE ALGORITHM CONTINUES AFTER
C A GENERAL CONTRACTION OF THE SIMPLEX.
C
C Generate function values at each vertex
C
9000 SS=SIZE

DO 50 J=1,N+1
IF (J.EQ.IL) GO TO 50
DO 60 1=1,N
X(I)=XS(I,J)

60 CONTINUE
JCOUNT=JCOUNT+1
CALL FUN(N, X, F)
XS(N+1,J)=F

50 CONTINUE
C—**—
C 14000 IS THE POINT AT WHICH THE ALGORITHM CONTINUES IN
C ALL INSTANTS EXCEPT A GENERAL CONTRACTION.
C
C Order of function values
C
14000 IL=1

IH=1
IN=1
VL=XS(N+1,1)
VH=VL
VN=VL
DO 70 J=2,N+1
T=XS(N+1,J)
IF (T.GE.VL) GO TO 100
VL=T
IL=J
GO TO 70

100 IF (T.LT.VH) GO TO 200
IN=IH
VN=VH
IH=J
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VH=T
GO TO 70

200 IF (T.LT.VN) GO TO 70
IN=J
VN=T

70 CONTINUE
C
C Monitoring
C

IF (INMOST. GT. 0) CALL MONISI (JCOUNT, N, VL, VH, XS)
Q__ -fc-fc__

C DETERMINE WHETHER THE PROCEDURE CAN BE TERMINATED.
C

IF (DABS(VL-VH).LT.TOL) GO TO 40000
C
C Find the centroid
C

DO 80 1=1,N
T=-XS(I,IH)
DO 90 J=1,N+1
T=T+XS(I,J)

90 CONTINUE
XS(I,IC)=T/DFIOAT(N)

80 CONTINUE
C
C Reflection
C

DO 15 1=1,N
X (I) = (1. CH-ALPHA) *XS  (I, IC) -ALPHA*XS  (I, IH)

15 CONTINUE
C
C Calculate new function value
C

JCOUNT=JCOUNT+1
CALL FUN(N, X, F)

C
C Test new function value
C

IF (F.LT.VL) GO TO 35000
IF (F.LT.VN) GO TO 39000
IF (F.GE.VH) GO TO 27000

C
C Replacement
C

DO 25 1=1,N 
XS(I,IH)=X(I)

25 CONTINUE
XS(N+1,IH)=F

C
C Reduction
C
27000 DO 35 1=1,N

X(I)=(1.0-BETA)*XS (I,IC)+BETA*XS (I,IH)
35 CONTINUE
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c
C Calculate new function value
C

JCOUNT=JCOUNT+1
CAIL FUN(N, X, F)

C
C Test new function value
C

IF (F.LT.XS(N+1,IH)) GO TO 39000
C
C General contraction
C

SIZE=0.0
DO 45 J=1,N+1
IF (J.EQ.IL) GO TO 45
DO 55 1=1,N
XS(I,J)=BETA*(XS(I,J)-XS(I,IL))+XS(I,IL)  
SIZE=SIZE+DABS(XS(l,J)-XS(l,IL))

55 CONTINUE
45 CONTINUE
Q______
C TEST SIMPLEX SIZE.
C

IF (SIZE.LT.SS) GO TO 9000
WRITE (1,99994)

99994 FORMAT(28H -*-THIS  IS NOT NORMAL EXIT./
* 61H SIZE OF SIMPLEX HAS NOT BEEN REDUCED BY GENERAL CONTRACTION.) 
GO TO 40000

Q__**__
C EXTENSION AND SAVING BR IN THE RIGHT-MOST COLUMN.
C
35000 DO 65 1=1,N

T=GAMMA*X  (I) + (1.0-GAMMA) *XS  (I, IC) 
XS(I,IC)=X(I)
X(I)^I

65 CONTINUE
XS(N+1,IC)=F

C
C Calculate new function value
C

JCOUNT=JCOUNT+1
CALL FUN(N, X, F)

C
C Test new function value
C

IF (F.LT.XS(N+1,IC)) GO TO 39000
C
C Reset X to BR
C

DO 75 1=1,N
X(I)=XS(I,IC)

75 CONTINUE
F=XS(N+1,IC)

C
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C Tansfering
C
39000 DO 85 1=1, N 

XS(I,IH)=X(l)
85 CONTINUE

XS(N+1,IH)=F
GO TO 14000

40000 DO 95 1=1,N
X(l)=XS(I,IL)

95 CONTINUE 
F=XS(N+1,IL)
RETURN
END

C
C
c 

SUBROUTINE MONISI(JCOUNT, N, EMIN, FMAX, SIM)
C EXPLANATION----
C PURPOSE: Subroutine to present the result during MIFSIM. 

DOUBLE PRECISION FIIIN, FMAX, SIM(N+l,N+2)
INTEGER JCOUNT, N, I, J

C
C Inset statements here to shew the results, for example, in a order:
C
C JCOUNT, FMIN, FMAX
C ((SIM(I,J), J=1,N+1), 1=1,N+l)
C

RETURN
END
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Appendix E Programne listing of Pcwell's method
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SUBROUTINE MIFNOD(N, X, F, FUN, ALPHA, EPSIL, ITERAT, BETA, SK,
* Al, A2, INMON, XI, XO, T, LAMBDA, BL)

EXPLANATION----
PURPOSE: Minimizing a function without calculating derivatives
(Pcwell's conjugate direction method—Zangwill's simplified version).
PARAMETERS----

Inputs:
N: The number of independent variables. Unchange on exit.
ALPHA: The criterion for stopping the procedure. Denote kTH F 
the optimal value of the function found at kTH iteration, then if 
! kTH F - (k-1)TH F ] < ALPHA the procedure will be terminated. 
Unchange cn exit.
EPSIL: A positive number of less or equate to 1. Unchange on 
exit.
BETA, SK, Al, A2: See LINSE1.
INMON: If on entry INMCN>0, MONITO will be called; if INMON<0,
MONITO will not be called. Unchange on exit.
InputsIOutputs:
X: On entry X specifies a initial guess of optimal point. On a 
success exit X contains the optimal point found.
F: On a success exit F contains the function value at the 
optimal point.
ITERAT: On exit ITERAT specifies the iteration number performed.
Here "iteration" means a whole set of direction searches.
WORKING SPACE----

XI, XO, T, LAMBDA, BL.
ASSOCIAXTED SUBROUTINES----

LINSE1/LINSE2: Subroutine(s) to perform linear search.
MCNITO: Subroutine to present the result during MIFNOD.
FUN: User must supply this subroutine to calculate the function 
value at any given point and declare it as EXTERNAL. The 
specification is:

SUBROUTINE FUN(N, X, F)
INTEGER N
DOUBLE PRECISION X(N), F

DOUBLE PRECISION X(N), F, ALPHA, EPSIL, BETA, SK, Al,
* A2, XI(N,N), XO(N), T(N), LAMBDA(Ntl), BL(N)
INTEGER N, ITERAT, INMQN
DOUBLE PRECISION FOM, DELTA, SUMM, DSQRT, DABS, LAMS, TEST
INTEGER I, J, IS
EXTERNAL FUN

Set coordinate directions

DO 10 1=1,N
DO 20 J=1,N
IF (I.EQ.J) XI(I,J)=1.0
IF (i.ne.j) XI(I,J)=0.0
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20 CONTINUE
X0(l)=X(l)

10 CONTINUE
CALL. FUN(N, XO, F)
F0M=F
ITERATED
DELTA=1.0

C—**—
C DIRECTION SEARCHES.
C
10000 ITERAT=ITERAT+1
C
C Search loop
C

DO 30 I=1,N
C
C Linear search along each direction
C

DO 40 J=1,N 
t(j)=xi(j,i)

40 CONTINUE
CALL LINSE1 (N, X, T, LAMBDA(I), F, FUN, BETA, SK, Al, A2,BL)

30 CONTINUE
C—**—
C CHOOSING A NEW POINT.
C
C TEST WHETHER THE PROCEDURE CAN BE TERMINATED.
C

IF(DABS(F0M-F).LT.ALPHA) GO TO 20000
C
C Set a new direction
C

SUMMO. 0
DO 50 I=1,N
SUMM=SUMM+(X(I)-X0(I))*  *2

50 CONTINUE
SUMM=DSQRT(SUMM)
DO 60 I=1,N
T(I)=(X(I)-XO(I))/SUMM

60 CONTINUE
C
C Search a new optimum point along this new direction
C

CALL LINSE1(NZXZTZLAMBDA(N+1)ZFZFUNZBETAZSKZA1ZA2ZBL)
C
C Monitoring
C

IF (INMON.GT.O) CALL MONITO(N, XI, T, X0, X, F0M, F, ITERAT)
C
C TEST WHETHER THE PROCEDURE CAN BE TERMINATED.
C

IF(DABS(F-FOM).LT.ALPHA) GO TO 20000
Q_ **__

C SET NEXT SET OF DIRECTIONS.
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c
FOM=F
DO 65 1=1,N
XO(l)=X(I)

65 CONTINUE
LAMS=LAMBDA(1)
IS=1
DO 70 1=2,N
IF (LAMBDA(l) .LE.LAMS) GO TO 70
LAMS=LAMBDA(l)
IS=I

70 CONTINUE
TEST =LAMS*DELTA/SUMM
IF (TEST.LT.EPSIL) GO TO 10000
DO 80 1=1,N
XI(I,IS)=T(I)

80 CONTINUE
DELTA=TEST
GO TO 10000

C
C Procedure is terminated
C
20000 RETURN

END
C
c
c

SUBROUTINE MONITO(N, XI, T, X0, X, F0, F, ICOUNT)
C EXPLANATION----
C PURPOSE: Subroutine to present the result during MIFNOD. It must 
C not change any parameter in MIFNOD.
C

DOUBLE PRECISION XI (N,N), T(N), X0(N), X(N), F0, F
INTEGER ICOUNT, I, J

C
C Inset statements here to shew the results, for example,
C in a order:
C ICOUNT, X0, F0
C (J, (XI(I,J), 1=1,N), J=1,N)

C X, F
C T
C

RETURN
END

C
C
c

SUBROUTINE LINSE1(N, X, T, LAMB, F, FUN, BETA, SK, Al, A2, B)
C
C EXPLANATION----
C PURPOSE: Subroutine to perform linear search using the success-
C failure and parabolic inverse interpolation.
C PARAMETERS----
C Inputs:
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N: The order of X. Unchange on exit.
T: The search direction. Unchange on exit.
BETA: The criterion for stopping the search, i.e. when 

j kTH LAMB - (k-l)TH LAMB } < BETA is satisfied, the search 
is terminated and returned to where it was called. Unchange 
on exit.
SK: On entry SK specifies the initial increment step. Unchange 
on exit.
Al, 2X2: Section factors. Al >1, 0< -A2 <1 and Al * (-2X2) <1. 
Unchange on exit.
Inputs/Outputs:
X: On entry X specifies a initial guess of optimal point. On 
exit X contains the cptimal point along the direction T so 
far been found, i.e. X = X + IAMB * T.
IAMB: On exit IAMB contains the cptimal step along the search 
direction.
F: On entry F specifies the function value at initial point X. 
On exit F contains the function value at the cptimal point.
WORKING SPACE----

B.
2XSSOCIATED SUBROUTINES----

FUN: Subroutine to evaluate the function value at any given 
point. The specification is:

SUBROUTINE FUN(N, X, F)
INTEGER N
DOUBLE PRECISION X(N), F

DOUBLE PRECISION X(N), T(N), IAMB, F, BETA, SK, 2X1, 2X2, B(N) 
INTEGER N
DOUBLE PRECISION SKO, SSTEP, LZXM1, FL1,

* STEP, IAM2, FL2, IAM3, FL3, TEP1, TEP2, DABS
INTEGER INF, I
EXTERNAL FUN

SKO=SK
SSTEP=0.0
FL2=F
IAM2=0.0
INFO

._** _

SEARCH BEGINS.

Form a V shape ty success-failure performance

10000 STEP=SSTEP+SKO
DO 10 1=1,N 
B(I)=X(I)+STEP*T(I)

10 CONTINUE
CALL FUN(N, B, F)
IF (F.GE.FL2) GO TO 100
FL1=FL2
IAM1=IAM2
FL2=F
IAM2=STEP
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SSTEP=STEP
SKO=A1*SKO
INF=2
GO TO 10000

100 IF(INF.EQ.2) GO TO 200
FL1=F
LAM1=STEP
INF=2
SK0=A2*SK0
GO TO 10000

200 FL3=F
IAM3=STEP

C
C Arrange order: IAM1 < LAM2 < LAM3
C

IF (LAM1.LT.LAM3) GO TO 20000
TEP1=LAM1
TEP2=FL1
LAM1=LAM3
FL1=FL3
LAM3=TEP1
FL3=TEP2

C—**—

C PARABOLIC INVERSE INTERPOLATION.
C
20000 TEP1=(LAM2-LAM3) *FL1+(LAM3-LAM1 ) *FL2+(LAM1-LAM2 ) *FL3  

TEP2=(LAM2**2-LAM3**2 ) *FL1+(LAM3**2-LAM1**2 ) *FL2+(LAM1**2-
* LAM2**2)*FL3

C
C If TEMPI is not equal to zero, quadratic approximation
C can be performed
C

IF(TEPl.NE.O.O) GO TO 90
WRITE(1,99999)

99999 FORMAT(' 0 DIVISION, LINEAR SEARCH FAIL! ’ )
STOP

90 LAMB=0.5*TEP2/TEP1
p__**__
C TEST WHETHER LINEAR SEARCH CAN BE TERMINATED.
C

IF (DABS(IAMB-LAM2).LT.BETA) GO TO 40000
C
C Evaluate the function value at the minimum of the quadratic
C function
C

DO 20 1=1,N
B(I)=X(I)+LAMB*T(I)

20 CONTINUE
CALL FUN(N, B, F)

C
C Replace one of old points ty the nw pointc

IF ( (IAMB.GT.IAM2) .AND. (F.GT.FL2)) GO TO 500
IF ( (IAMB.GT.IAM2) .AND. (F.LE.FL2)) GO TO 510
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IF ((LAMB.LT.LAM2).AND.(F.GT.FL2)) GO TO 520 
LAT13=LAM2
FL3=FL2
LAM2=LAMB
FL2=F
GO TO 20000

500 LAM3=LAMB
FL3=F
GO TO 20000

510 LAM1=LAM2
FL1=FL2
LAM2=LAMB
FL2=F
GO TO 20000

520 LAM1=LAMB
FL1=F
GO TO 20000

C
C Linear search is terminated
C
40000 LAMB=LAM2

F=FL2
DO 30 1=1,N
X(l)=X(l)+LAMB*T(l)

30 CONTINUE
RETURN
END
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Appendix F Iterative strategy for Simple example 2

Simple example 2

The model and reality equations are

y = F(c, a) = c + a

y = F (c) = c + c .

The performance index and constraint are

Q(c,y) = c2 + (y - 2)2

A 2
CY = {(c,y)GR : -1 < c < 1}.

Firstly, [ V Q(dAc,y+Ay)- V Q(c,y)]Act[ V Q(c+ Ac,y+ Ay)- V Q(c,y)]Ay 
c c y y

= 2( Ac2+ Ay2).

Therefore, a = 2. According to (5.44)

b( a ) = a (1 + rm^n(DTD)) = 2(1 + 1) - 4, which implies

inf b(a ) = inf b( a ) =4.
A

a£A a6a(v)

* 2 2 2Next, we note that q(c) = c + (c+c-2) , hence,

Vq (c+h) - Vq (c) = 2h(2h2+ 6c2t 6ch + 3h + 6c - 2).

Aon
Define f(c,h) = 2h + 6c + 6ch + 3h + 6c - 2

where -1 < c + h < 1 and -1 < c < 1. It can easily be shewn that

max f(c,h) = f(l,O) = 10 and

min f(c,h) = f(-0.5,0) = -3.5.

We then have

! Vq (c+h) - Vq (c) ' < 20|hJ .

That is the Lipschitz constant p can be chosen as 20. Finally, consider 

(5.29) and (5.30). If we set E = 0+, then B(v) = 0.4. We conclude that 

the iterative strategy can be chosen as

vk+1= vk+ e(ck- vh

with the gain 0 satisfying 0 < 0 <0.4.
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Appendix G Solution regions of the example in Chapter 9

Local optimisation problem 1

[1] G^> 0, -1< Cpp< 1 and -1< c^2< 4

Cpp— 0.5 Xp-^L 0.25ppp, C12 0.5 Xp2— 0.25p-^p,

Upp= 0.25(-X u+ X ^2“ l-3Ppp+ P21- a]j) + 0*5,  

G^= 0.1(1.51 6.5 X^2+ 4«75ppp- 1.5p2p+ 3 ctpp) + 0.5.

[2] G^,> 0, -1< Cpp< 1 and Cp2=-1

Cpp— 0.5 0.25ppp, Upp— 0.25(- Xpp— P21— 2 ^11^'

G^= 0.05(3 Ajj+ 3ppp- 3p2^+ 6 app) + I* 8*

[3] G^> 0, -1< Cpp< 1 and Cp2= 4

Cpp- 0.5 X 0.25ppp, Upp— 0.25(— Xpp— Ppp^ P21— 2 ^11^ 4'

G^= 0.05(3 Xpp+ 3ppp- 3p2pt 6 O-^) ~ 0.8.

[4] G^> 0, Cpp=-1 and -1< Cp2< 1

Cp2= 0.5A P2— 0* 23ppp, ^11 8*23( ]_2~ Pll4- P21— 2 11 4'

G^= 0.05(-13X 12+ 8Ppp~ 3p2^+ 6a^) + 0.2.

[5] G^> 0, Cpp=-1 and cp2=:-l

Upp= (-Ppp+ 2P2P~ 4otpp)/8 + °-5' Gp= (3P]_1“ 6P21+ 42a lp/40 + 4’5,

[6] G^> 0, Cpp=-1 and c±2~ 4

Upp— Pll"* ” 2P21~ z^otp^)/8 + 1.5, Gp— (3pjip- 8Ppi+ 12a pp)/40 — 1.1.

[7] G^> 0, Cpp= 1 and -1< Cpp< 1

0-^2 0.5 A p2~ 0.25p^-£, u-^-^ 0.25( Xp2— P21— 2 ^11^'

G^= 0.05(-13X ^2+ 8Pii~ 3P21+ 8ap^) + G«8*

[8] G^> 0, Cpp= 1 and Cp2=~l

Up1= (_Ppp+ 2P2i~ 4app)/8 - 0.5, Gp= (3ppp- 6p2p+ 12a ^pJ/^O + 2.1.

[9] G^> 0, Cpp= 1 and Cp2= 1

Upp= (~Ppp+ 2P21“ 4a11)/8 + 0.5, Gp= (3Ppp“ 6P21+ 12a lp/40 “ °’5,

[10] Gj= 0, -1< Cpp< 1 and -1< Cp2< 1
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c11= (89 Xn+ 19.5 A 12+ 32.5P11+ 4.5p21~ 9«n- 15)/187, 

c12= (19.5 1-^+ 91 12+ 15P11- 19.5P21+ 39a u+ 65)/187, 

Uj^= (-32.5 X 15 X y2~ 25P-q+ 32.5P2^~ 65 ol-q+ 141)/187.

[11] Gj= 0, -1< cp< 1 and c^2=-^

CU= 0.25( XT1+ P21~ 2 a1T) - 3, ui;L= 3.

[12] G^= 0, -1< c^< 1 and Cj2= 1

Cli= 0.25( Xpl P21~ ^11^ 4/3, u^p-1/3.

[13] G^= 0, Cp=-1 and -1< c-^2< 4

c-^2= (9 A i2+ 15pn~ 39P2^+ 78 a^+ 52)/356,

u-q= (-15 A i2~ 25P^-^+ 65P2i~ 130 a 388)/356.

[14] G1= 0, cll=_1 and Ci2=-1

ull= 3.

[15] G^ 0, cll=-1 and Ci2= 1

un=-l/3.

[16] G1= 0, cll= 1 and -1< 0^3 < 1

c^2= (9 A^2+ 15pn- 29p>2^+ 78 a-Q+ 208)/356, 

u^p (-15 A 12“ 25Ph+ 65P2i- 130a ^pl- 128)/356.

[17] Gp= 0, c^p 1 and Ci2=“4

ull= 3.

[18] G^= 0, c^p 1 and c^2=

un=-l/3.

Local cptimisaticn probleu 2

[1] -1< C2i< 1, -1< c?22< 1 and -1< C23< 1

c21= (3e5 A21“ A 22+ A 23+ °-5Pn+ 4P21~ 2 a 21" 2 a22+ 10)/9' 

c22~ A21+ 3.5A 22+ A 23+ 0.5pn- 5p21- 2 a21" 2 a22+ 10)/9,

C23— ( A 2y ~^~ 22+ 2*5  A23- 0• 2pn"l 0• 5P2i"l 2 a2i~l ^22 "^0r

u21= ^_4 ^21+ 3 ^22” O’3 ^23+ 2P11- ^^21” ® a21+ a22+ 42)/9.
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[2] -1< c^< 1, -1< c22< 1 and c23=“l

c21= (2.5 X 2r X 22+ 0.5pn+ 3p2^- 2 a2l“ 2 a22+ S)/7,

c22= (— X2j + 2.5 X 22"*"  8*3Pr~ 4P21~ 2(^ 21— 2<^ 22"*"  ^)/7r

u21= ( 3 X 21"*"  4 22"* ” 4 * 3P11 8 * 3P21 8 21"*"  22"* ” 48 /7 *

[3] -1< c2^< 4' -4< c22< 4 an<4 c23= 4

c21= (2.5 X 2i“ X 22+ O^p^H- 3p21~ 2 c^- 2a 22+ 12)/7f

c22= (— X21"*"  2’5X 22"* ” 8*3Ph— 4P21~ 2 a21~ 2<^ 22+ 42^/^z

U21= (-3 X2^+ 4 ^2+ 1.5pn~ 8.5p2^- 6 a2^+ a 22+ 8)/7.

[4] -1< c2^< 1/ c22=-4 an<4 _4< c23< 4

c21= (2.5 X21+ X22+ 0.5p11+ 2P2r 2 a2i~ 2 a22+ 42)/7'

c23= ( 421+ 2 *3 X 23"” 8 ’ 3P11"*~  4 * 3P21+ 2 O' 21"*"  2 22~ 42 /7 z

u21= (—2 x 21~ 1«5 X23+ Ph- 3P21~ 4 ^21"*"  3 *̂22~  44)/7 •

[5] -1< c2^< 4' c22~-l an<4 c23~-4

c2i= 0.1(3 x2]+ Pn+ 2P21“ 4 a21_ 4 °22^ "*"  2'

u21~ 0,1( 2 X21+ Pll 3P21 4 °21+ 6ct 22^ 2*

[6] -1< c2^< 1, c22~-4 an(4 c23= 4

c21= 0.1(3 X2i+ Pll"4 2P21~ 4 *̂21  ~ 4^ 22"* ” 2.8,

^21= 2X 21+ Pll_ 3P21~ 4<^ 21+ 8 22 — 3*2*

E7] -1< c2^< 1, c22= 4 an8 “4< c23< 4

c2i= (2.5 A21+ X 23+ 0.5p11+ 2p21~ 2 a 21- 2 a22+ 8^7'

23= 21+ 2,5 ^23“ 0,5Pr+ l-5p21+ 2 a21+ 2 «22- 8)/7,

U21= ^“2 ^21“ 4,5 X 23+ Pll“ 3p21“ 4a 21+ 3 a22+ 9^/7*

[8] -1< c21< 1/ c22= 4 an<4 c23=~"4

c21— 0.1(3 X 21"*"  Pll"*"  2P21 4<^ 21 4 ^22^ "*"  4,2/

^21~ 2 X 2i+ Pn 3?21 4 21+ 8 a22^ "* ” 4*2*

[9] -1< c2^< 1, c22= 1 and c23= 4

c21= 0.1(3 A 21"*"  Pll"*"  2P21- 4 21” 4 22 "*"  21

u21= °-4(-2 X21+ Pr“ 3P21“ 4 a21+ 6 a22^’
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[10] c2i=~l' -4< c22< 4 an<4 ~4< c23< 4

c22 (2-5 A 22+ X 23+ 2P2i 2a 2^ 2a 22"^ 12)/7,

A22^" 2 • X 23
0.5pn- 0.5p21+ 2a2j+ 2a22" 42)/7,

u21“ (3 ^22+ 0,!

[11] c21=-1, -1<

c22= 0.1(3 X22+

u21= °* 4^4 A22+

[12] c2]=-l, -1<

c22= 0.1(3 X22+

u21= °* 4^4 X22+

[13] c21=-l, c22:

> X23+ 2pn 5p21 8

c22< 1 and c23=-l 

pll“ 4p21“ 4 a21” 4 

3pll“ 7P21" 12 a21“ 

c22< 1 and c23= 1 

pll“ 4p21“ 4a21 

3pll“ 7p21“ 12 a21~ 

:-l and -1< c23< 1

a21_ a22+ 27)/7.

a22) + 2,

2a 22) + 4.

L <^22^ + 2.8z

2 a22^ "I- 4*4*

c23“ 0.1(3 ^3 pn+ p21+ 4 a21+ 4a 22^ 2,8/

+ 2 a 22) +0.6.

[14] C2^=-lz c22~~4 an(4 c23=~4

u21= (pll- p21” 4a 21+ 2a22^6,

[15] c21=~4' c22~~4 an<3 c23= 4

u21~ (pll~ p21“ 4a 21+ 2 a 22“ 4)/6’

[16] C2i=-1/ c22= 4 an<4 ~4< c23< 4

c23= 0.1(3 X23“ Pn+ P21+ 4 a21+ 4 a22^ “ 2/

U21“ A 23+ 2pH~ 2p21~ 8 a21+ 2 a22^ 3*

[17] c21=_4, c22= 4 an<4 c23=~4

^23— (pi 1 P21 4 a21~4 2 a22+ 4^/6.

[18] C2i“_4z c22= 4 an<4 c23= 4

u21=

[19] C2i= 1, -1< c?22< 4 an(4 ~4< c23< 4

c22“ (2.5 a 22+ X 23"^ ^‘4Pp- 3p21~ 2 ^21“ 2<^ 22"^ ®)/7, 

^23 A22"^” 2.5A 23 3 * 3pll 3 * 3p21* 4 2

u21= (3 ^22+ 0,5 423+ 2pll“ 5p21“ 8 a21“ a22+ 11)/7-

(pll" p21“ 4 a21+ 2 a22)/6 + 2.

2i+ 2 a 22 8)/7,
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c22- 0.1(3 A 22+ Pll 4p21

pll" 4p21" 4 a 21~ 4a22} + 2'

[20] c21= 4' -4< c22< 4 and c23=_4

- 4ct2jL “ 4 (*22)  + 1.2, 

^2]— 0.1(4 A 22+ 3pll— 7p2i- I3 ®,21~ 2 ^22 1*̂*

[21] c21= 1, -1< C22< 1 and C2^= 1

c22= °* 4^3 X 22+

U21= 0*1(4  ^22+ 3pll“ 7p2i~ 12 c^l- 3 c^) + 2*

[22] C2j= 1/ c22=-4 an<4 _4< c23< 4

c23= °’1(3 ^23“ pll+ p21+ 4a 21+ 4a22^ “ 2'

u21= °’4^_423+ 2pll“ 2p21“ 8 a21+ 2 a22^ “ 1*

[23] C2^= 1, c22=-4 an<3 c23=-4

u21= (pll- p21" 4 a21+ 2 a22~ 8)/6-

[24] c21= 1/ c22=_4 and c23~ 4

u21= (pll- p21~ 4 a21+ 2 a22^6 “ 2*

[25] C2i= 1, c22= 4 and -4< c23< 4

c23= °-4^3A23“ pll+ p21+ 4a 21+ 4a22^ “ 4*2'

U21 0 • 1 ( X 23+ -| 2p28 2 2L~^~ ^22 •

[26] c2i= 1/ c22= 1 an<3 c23=~l

u21= (pll" p21“ 4 a21+ 2 a22+ 8)/6*

[27] C2i= 1/ C22= 1 and C-23~ 1

u21= (pll“ p21“ 4 a21+ 2 a22+ 4)/6*
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