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Abstract 

 

In some cases, when we are making decisions, the available choices can appear to be 

equivalent. When this happens, our choices appear not to be constrained by external 

factors and instead we can believe to be selecting “randomly”. Furthermore, 

randomness is sometimes even explicitly required by task conditions such as in random 

sequence generation (RSG) tasks. This is a challenging task that involves the 

coordination of multiple cognitive processes, which can include the inhibition of habitual 

choice patterns and monitoring of the running choice sequence.  

 

It has been shown that random choices are strongly influenced by the way they are 

instructed. This raises the question whether the brain mechanisms underlying random 

selection also differ between different task instructions. To assess this, we measured 
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brain activity while participants were engaging in three different variations of a sequence 

generation task: Based on previous work, participants were instructed to either (1) 

“generate a random sequence of choices”, (2) “simulate a fair coin toss”, or (3) “choose 

freely”.  

 

Our results reveal a consistent frontoparietal activation pattern that is shared across all 

tasks. Specifically, increased activity was observed in bilateral inferior and right middle 

frontal gyrus, left pre-supplementary motor area, bilateral inferior parietal lobules and 

portions of anterior insular cortex in both hemispheres. Activity in the mental coin toss 

condition was higher in right dorsolateral prefrontal cortex, left (pre-) supplementary 

motor area, a portion of right inferior frontal gyrus, bilateral superior parietal lobules and 

bilateral anterior insula. Additionally, our multivariate analysis revealed a distinct region 

in the right frontal pole to be predictive of the outcome of choices, but only when 

randomness was explicitly instructed. 

 

These results emphasize that different randomization tasks involve both shared and 

unique neural mechanisms. Thus, even seemingly similar randomization behavior can 

be produced by different neural pathways. 

 

 

Keywords: Executive functions, neuroimaging, decision-making, random number 

generation, higher level cognition 
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Introduction 

The ability to elicit seemingly random behavior can be very useful in many different 

situations and has been observed across such diverse domains as predator evasion 

(Humphries & Driver, 1970), exploration (Wilson et al., 2014), creativity (Benedek et al., 

2012), improvisation (de Manzano & Ullén, 2012) and decision-making (Icard, 2019). 

For example, in zero sum games, like rock-paper-scissors, the ability to randomize 

one's actions can prevent opponents from predicting one's strategy, thereby increasing 

the chances of winning (Platt, 2004). Similarly, being able to inhibit prepotent responses 

can help to break free from conventional patterns and generate innovative ideas 

(Benedek et al., 2012). Conversely, the absence of randomization ability, which can go 

hand in hand with behavioral stereotypy, has been observed in various 

psychopathologies (Horne et al., 1982).  

 

Human randomization behavior has been commonly studied using random sequence 

generation (RSG) tasks (Daniels et al., 2003; Guseva et al., 2023; Heuer et al., 2010; 

Jahanshahi et al., 2000; Naefgen & Janczyk, 2018; Nickerson, 2002; Peters et al., 

2007; Schneider et al., 2004). In such tasks participants make consecutive choices 

between different choice option sets in a seemingly random way (see Nickerson, 2002). 

RSG is a complex task that requires the coordination of different higher-order cognitive 

operations. These include updating and monitoring working memory to maintain and 

retrieve previous choices as well as inhibition of overlearned, “patterned” responses 

(e.g., ascending or descending the number line, Jahanshahi et al., 2006). Dysfunctions 

in these cognitive functions can be due to transient executive disruptions (Heuer et al., 

2005; Jahanshahi et al., 1998; Naefgen & Janczyk, 2018) or psychopathological deficits 

(see Horne et al., 1982 for a review) and can result in common choice biases, such as 

repetition avoidance, cycling bias or seriation bias (Peters et al., 2007). 

  

 

Neural bases of RSG 

Compared to the breadth of studies examining various facets of executive function, 
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such as Wisconsin Card Sorting Test (Yuan & Raz, 2014), Tower of Hanoi (Anderson et 

al., 2005) or Stroop task (Laird et al., 2005), the neural mechanisms of randomization 

behavior have only rarely been studied. Work by Jahanshahi and colleagues using 

transcranial magnetic stimulation (TMS) and positron emission tomography (PET) 

highlighted the role of the left dorsolateral prefrontal cortex (DLPFC) in an RSG task 

using letters as a choice set (Jahanshahi et al., 1998, 2000; Jahanshahi & Dirnberger, 

1999). The authors suggested that the left DLPFC stops the spread of activation in the 

number associative network in the superior temporal cortex, thereby preventing 

prepotent responses, such as habitual counting. Other identified areas of activity include 

anterior cingulate cortex, premotor cortex and superior parietal lobules. Similarly, using 

near-infrared spectroscopy (fNIRS) Koike et al. (2011) showed significantly increased 

oxygenated hemoglobin in bilateral DLPFC and ventrolateral prefrontal cortex (VLPFC). 

A few other studies corroborated the involvement of DLPFC, with repetitive TMS (Knoch 

et al., 2004) and electroencephalography (EEG), presenting evidence of left frontal 

negativity during RSG (Joppich et al., 2004; Schneider et al., 2004). 

 

Daniels et al. (2003) challenged the role of the DLPFC as a central node in RSG. At 

slower response rates (1 Hz), they observed an increased activation of bilateral DLPFC, 

premotor cortex, anterior cingulate, inferior and superior parietal cortex and cerebellar 

hemispheres, while faster rates (2 Hz) led to reduced activation in these areas. 

Whereas Jahanshahi et al. (2000) reported a production rate dependent decrease 

specifically in bilateral DLPFC and superior/inferior parietal cortex, Daniels et al. (2003) 

observed a more general decrease and proposed that RSG is subserved by multiple 

regions in a network instead of only the DLPFC.  

 

In summary, the findings converge towards the idea that the dorsolateral activation 

reflects some sort of suppression mechanism of habitual responses. While the DLPFC 

seems to play an important role in the task, it is likely a part of a distributed network of 

brain areas that work together to generate randomness, potentially working in unison 

with parietal, cingulate and cerebellar cortices (Artiges et al., 2000; Daniels et al., 2003). 
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Task diversity in RSG studies 

There is no standardized experimental procedure in RSG studies. Instead RSG has 

employed a variety of tasks and parameters, such as different numbers of choice 

options, such as the digits from 0-9 (Joppich et al., 2004), binary sets e.g., 0/1 or 

heads/tails (Nickerson & Butler, 2009), the letters A-I (Jahanshahi & Dirnberger, 1999), 

or nouns (Heuer et al., 2010). Another variable task parameter across RSG experiments 

is the method of instructing participants to be random, which ranges from analogies like 

drawing numbers from a hat (Jahanshahi et al., 2000), tossing a coin (Nickerson & 

Butler, 2009) or roll a die (Knoch et al., 2004), via instructing to avoid specific patterns 

(Azouvi et al., 1996; Daniels et al., 2003) all the way to emphasizing unpredictability 

(Finke, 1984). 

 

In a recent study we confirmed that randomization performance depends on the precise 

instructions (Guseva et al., 2023). In that experiment, the requirement to choose 

randomly was explicitly stated in some instruction conditions (“choose randomly”) while 

being more indirectly implied in others. For example, participants were instructed to 

choose randomly, choose freely, or even select the darker of two coins, despite the fact 

that unknown to the participants they were equally bright. We found that the instructions 

to “mimic a fair coin toss” and to elicit an “irregular pattern” led to the most random 

sequences (as quantified by conditional entropy, see below). Building upon this 

behavioral paradigm, we conducted an fMRI study with 85 participants to investigate the 

underlying neural substrates behind the different methods of inducing randomness.  

 

The present study 

In the present exploratory study, we investigated the neural bases of random sequence 

generation under different randomization instructions. Participants were required to 

make repeated binary choices between heads and tails of a coin while we acquired 

functional magnetic resonance imaging data from their brain activity. Importantly, we 

used three task variations that elicit differences in randomization behavior based on a 
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previous study (Guseva et al., 2023). The Explicit Randomness (ER) task group 

received the instruction to “make random choices”, the Free Choice group (FC) task 

group to “choose freely between the two sides”, and the Mental Coin Toss (MC) task 

group to “simulate the output of a fair coin toss”. These tasks were chosen based on 

previous behavioral work (Guseva et al., 2023) and because they present conceptually 

different ways to elicit random behavior. In line with that previous work, we expected 

significant differences in randomization measures between MC sequences compared to 

ER and FC and no differences between ER and FC. 

 

Previous research suggests shared cognitive processes and neural substrates between 

free choice tasks and RSG (Naefgen & Janczyk, 2018). Hence, we expected a 

frontoparietal pattern of activity across all three tasks. Specifically, we expected activity 

in the DLPFC, inferior and superior frontal gyri, premotor as well as inferior and superior 

parietal cortices. Additionally, based on the reviewed research results we hypothesized 

the recruitment of anterior cingulate cortex and anterior insula in all tasks. These 

expectations were not part of the preregistration. 

 

Tasks like ER and MC likely require the coordination of multiple cognitive processes, 

such as choice history monitoring, inhibition of patterned responses and holding task-

related information in working memory. For this reason, we anticipated an increased 

activation of control-related regions in ER and MC. In contrast, we presumed that most 

of these higher-order processes were less relevant for completing an FC task. In this 

task we expected the fluctuation between task-related and task-unrelated (mind-

wandering) activity to be highest, which might be subserved by default mode network 

(DMN), i.e.  posterior cingulate cortex and medial prefrontal cortex (Mittner et al., 2014), 

and mediating salience network activity, involving anterior cingulate cortex and anterior 

insula activation (Schimmelpfennig et al., 2023). Lastly, during the mental simulation of 

a coin toss, we predicted increased posterior parietal activation, particularly in the 

precuneus (Cavanna & Trimble, 2006), reflecting potential involvement in visual 

imagery. 
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Methods 

As in our previous behavioral study (Guseva et al., 2023), we studied the neural effects 

of different randomization task instructions in a between-subjects design to avoid carry-

overs between tasks. Each participant received one of the three task instructions: 

Explicit Randomness (ER), Free Choice (FC) and Mental Coin Toss (MC). In ER we 

explicitly stated to choose the sides of the coins in a random way: “You have to choose 

the sides of the coin randomly”. In FC the instruction was to choose freely between the 

coins without any constraints: “There is no right or wrong answer, we want you to 

decide spontaneously. Which side you choose in every trial is your own free choice”. In 

MC the task was to choose according to a coin toss: “You have to simulate a coin toss 

in your head and choose the side that came up. The goal is to produce a sequence of 

choices that is not different from the results of a real fair coin toss.”  

 

Procedure 

Prior to the experiment, each invited participant gave their informed consent of 

participation by signing a consent form. Next, participants completed a training session 

outside the scanner to familiarize themselves with the task. After that, participants 

entered the MRI scanner and began the session with an anatomical scan, during which 

the instructions and training sessions were repeated to practice the choice selection 

using the response button boxes. During the main experiment, participants completed 6 

functional runs in total, each run consisting of 3 experimental blocks (Fig. 1A). One 

experimental block comprised 30 trials and had a duration of 90 s. The first two blocks 

were separated by a 20 s break. The break following the third block was 30 s, after 

which two Likert-scaled questions were administered (see below). 

 

A trial consisted of three stages (see Fig. 1B). First, participants fixated on a cross in the 

center of the screen (500ms). On the left and right of the fixation cross images of the 

heads and tails sides of a coin were presented. The position of either side of the coin 
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was determined randomly in the beginning of each participant’s session and didn’t 

change throughout the experiment within subject.  

 

Next, the fixation cross turned into a white circle indicating that a choice between heads 

or tails using a button press was required. Participants had a fixed time window of 2000 

ms during which they had to respond. After 2000 ms the circle filled with green color if a 

button was pressed (successful trial) and with red color if no button was pressed. The 

feedback (red or green) was presented for 500 ms. Please note that this feedback was 

based on the timeliness of the choices and not on the performance of the 

randomization. The timing of events - fixation, choice window, feedback screen - 

remained fixed across all trials. 
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Figure 1. Experimental Procedure. A: Procedure of a single experimental run. The study 

comprised 6 functional runs, each consisting of 3 experimental blocks of 30 trials each. Short 

breaks of 20 s and 30 s separated the blocks. At the end of each run, participants provided 

responses on a five-point Likert scale regarding their focus and instruction adherence. B: 

Procedure of a single experimental trial. Following a fixation period of 500 ms, the participant 

was required to make a choice within 2000 ms for one of the two stimuli and indicate their 

choice with a button press using either the left or the right hand with a button box. During the 

subsequent feedback phase (500 ms), the circle turned green if the response was given within 

the allotted time window and red if it was given too late. 
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At the end of each run, we asked participants to answer two questions on a five-point 

Likert scale: “How focused was your attention during this run?” (1 = ”Not focused at all”, 

5 = ”Very focused) and “How closely did you follow the instructions during this run?” (1 = 

”Did not follow at all”, 5 = ”Followed very closely”). Before starting the next run the 

participants could take a break for as long as they needed. At the end of the 

experiment, participants were required to write a free text about their strategy during the 

task (outside of the scanner).  

Participation in the experiment was compensated with 12 € per hour. The whole 

experiment took on average 1.5 h per participant. The behavioral task was implemented 

in PsychoPy (v2022.2.4, https://www.psychopy.org/) (Peirce et al., 2019). The 

experimental procedure was approved by the Ethics Committee of the Department of 

Psychology (Humboldt University of Berlin). The experimental design and analyses 

were preregistered at https://osf.io/m7y92. 

 

Participants 

A total sample of 90 neurologically healthy, right-handed participants (54 females) with 

normal or corrected-to-normal vision and who fulfilled the standard MRI safety criteria 

was acquired. Previous neurocognitive studies of RSG had sample sizes ranging from 6 

to 18 (Daniels et al., 2003; Jahanshahi et al., 1998, 2000; Joppich et al., 2004; Knoch et 

al., 2004; Schneider et al., 2004). Given our between-subjects design, we decided to 

double the sample size to 30 in each of the three groups. Participants were recruited via 

participant mailing lists and flyers on campus. Each participant was allocated to one of 

the three conditions such that mean age and sex were balanced between the groups. 

This was achieved by an adaptive stratified sampling method. The script of this 

sampling method can be found this repository: https://github.com/m-guseva/balanced-

group-assignment.  
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From the initial sample of 90 participants, we had to exclude 5 participants because 

they reported not following the task instructions (3 from the ER group, 1 from the FC 

group, and 1 from the MC group). The final sample contains 85 datasets. The age 

distribution ranged from 19 to 36 years and was as follows: ER: M = 25.9, SD = 4.4 (n = 

27); FC: M = 26.8, SD = 4.2 (n = 29); MC: M = 25.5, SD = 3.7 (n = 29). The sex 

distribution per condition is 17 females in ER, 18 females in FC and 18 females in MC.  

 

Image acquisition 

The images were acquired on a 3T SIEMENS MAGNETOM Prisma fit MRI scanner 

(Siemens, Erlangen) with a 64-channel phased array head coil at the Center for 

Cognitive Neuroscience Berlin. At the beginning of the scanning session a T1-weighted 

3D MPRAGE whole-brain anatomical image was acquired (TR = 1930 ms, TE = 3.52 

ms, FOV = 20.5 cm, flip angle = 8°, voxel size: 0.8 mm, 208 slices (ascending), 

acquisition time 5:39 min). The functional imaging data was collected using gradient-

echo echo planar T2*-weighted imaging (EPI-Factor = 80, TR = 1500 ms, TE = 33 ms, 

FOV: 20 cm, flip angle = 70°, voxel size: 2.5 mm, slices = 54 (interleaved), acquisition 

time 5:53 min) with A/P phase-encoding direction. In total, we obtained six runs of 

whole-brain functional data from each participant, with 230 volumes and a duration of 5 

min 53 s per run. Additionally, field maps were acquired for later use in distortion 

correction in the preprocessing pipeline (TR = 400 ms, TE1 = 4.92 ms, TE2 = 7.38 ms, 

flip angle = 60°, acquisition time = 55 s). The stimuli were displayed on a screen using 

an LCD projector (1920 x 1080, 120 Hz frame rate). The participants were able to view 

the projection through a mirror attached to the head coil. The choices were logged via 

two 2-button response boxes in each hand. 

 

Data analysis 

Behavioral Analysis 

Numerous methods of measuring randomness in human-generated sequences have 

been proposed (Gauvrit et al., 2014; Ginsburg & Karpiuk, 1994; Hornero et al., 2006; 
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Naefgen & Janczyk, 2018; Oomens et al., 2015; Towse & Neil, 1998; Wong et al., 

2021), but most do not translate well to the binary decision scenarios we are examining. 

Instead, we chose to use stochastic processes where a binary sequence of discrete 

choices can be naturally modeled as a Markov chain (Cover and Thomas, 2005; Allefeld 

et al., 2013). We discuss other metrics and the challenges of randomness measurement 

in Guseva et al. (2023). 

 

Based on the recorded sequence of button presses we assessed the degree of 

randomness using a procedure established previously (Guseva et al., 2023). This 

method consists of modeling the sequences of discrete choices as a Markov chain. 

Here we determined the optimal Markov order (the order k that describes the number of 

past choices t-k that determine the present choice at t) which reflects the temporal 

extent of sequential dependencies in the sequence. The transition probabilities Pr(Xt| Xt-

1, Xt-2, …, Xt-k) at k = 3 were used to calculate conditional entropy (see Guseva et al. 

(2023) for a detailed description of the method). Both randomness measures were 

calculated for a whole run and then averaged across the runs to get one value per 

person, using the mean for conditional entropy and median for the optimal Markov 

order. Following the procedure in Guseva et al. (2023), we used the non-parametric 

Kruskal-Wallis test at a significance level of 0.05 to detect differences in medians 

between task conditions. 

 

Also similar to our previous study, we determined the run lengths and proportion values 

of the sequences. Please note that the term run length does not refer to the duration of 

a functional run, but rather to the length of a series of consecutive identical choices 

within a sequence. For example, in the sequence "H-H-T-T-T," there is a run of Hs with 

a length of 2 and a run of Ts with a length of 3. The run lengths, proportion values and 

reaction times (i.e., the duration between the start of the choice phase and the button 

press) were determined within a block, then averaged across blocks and then averaged 

across all runs to get one summary value per person. We compared these summary 
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values between conditions using ANOVA, followed by post hoc tests at a significance 

level set at 0.05 (Tukey-Kramer adjusted). 

 

Imaging Analysis 

The images were processed and analyzed using the Statistical Parametric Mapping 

toolbox SPM12 (Wellcome Trust Centre for Neuroimaging, Institute for Neurology, 

University College London, London, UK, https://www.fil.ion.ucl.ac.uk/spm/). Anatomical 

regions were labeled using the probabilistic cytoarchitectonic maps in the SPM Anatomy 

toolbox for MATLAB (Eickhoff et al., 2005) and FSL anatomical labels (mni2atlas 

toolbox, Mascali (2024). Visualizations of brain activations were created with MRIcroGL 

(Neuroimaging Tools & Resources Collaboratory 

https://www.nitrc.org/projects/mricrogl). 

 

The images were unwarped using the fieldmaps entered into the fieldmaps toolbox of 

SPM and spatially realigned to the first image using an affine rigid-body transformation 

to correct for head motion. The functional and anatomical images were coregistered. 

We smoothed the images with a 6 x 6 x 6 mm3 FWHM Gaussian Kernel for the 

univariate analysis only. We normalized the images before entering into the second 

level analysis for both univariate and multivariate analyses to the standard Montreal 

Neurological Institute (MNI) space using unified segmentation (Ashburner & Friston, 

2005).  

 

We used a mass-univariate general linear model (GLM) to model the time series of the 

blood oxygenation level dependent (BOLD) signal in each voxel with the experimental 

block onset as the regressor (duration: 90 s). A canonical hemodynamic response 

function (HRF) as implemented in SPM was used to convolve the regressors. A default 

high pass filter of 128 s was used. The six motion parameters were included as 

additional nuisance regressors of no interest. At the second level we used a random 

effects approach to test for group differences between the three task variations ER, FC 
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and MC. The ANOVA additionally included age, sex and responses to the instruction 

adherence and attention questions as predictors.  In an additional exploratory analysis 

that was not part of the preregistration, we included the mean reaction times per run as 

an additional covariate. All effects are reported at p < 0.001; family-wise error (FWE) 

cluster-corrected at p < 0.05. 

 

For the multivariate analysis, we estimated a first level GLM with left/right button press 

onsets and motion parameters as regressors, this time based on unsmoothed data. The 

resulting parameter estimates of the choice regressors served as inputs for the 

multivariate pattern analysis (MVPA)  implemented in The Decoding Toolbox (TDT) 

(Hebart et al., 2015). A linear support vector machine (SVM) was trained on parameter 

estimates of 5 runs and used to predict the button press on the left-out test data, 

resulting in prediction accuracy maps for each individual. Here we used leave-one-run-

out cross-validated searchlight decoding with a radius of 4 voxels. The accuracy maps 

were then normalized and smoothed and entered into a second level ANOVA. Please 

note, that this analysis does not fall under the criticism of Allefeld et al. (2016), because 

accuracies were not compared between groups. Age, sex and responses to the 

instruction adherence and attention questions were used as covariates to test for 

differences between the three groups. This is an additional exploratory analysis and 

was not part of the preregistration. 

 

Results 

Behavioral Results 

Focus and instruction adherence per condition 

Fig. 2 shows the distribution of answers for each run. Overall, 63.53% of the participants 

answered that they were “very focused” to “focused” and 89.41% of people reported to 

have followed the instructions “very closely” to “closely”. The ratings in terms of focus 

decreased up until the third run and then slightly increased again whereas instruction 

adherence seems to be more stable over the runs. We did not find a significant 
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difference between conditions for both focus and instruction adherence ratings (𝜒2 = 

4.89, p = 0.087, 𝜂2 = 0.04 and 𝜒2 = 1.32, p = 0.52, 𝜂2 = 0.008 respectively).  

 

 

Figure 2. Distribution of responses per condition. Results of focus and instruction 

adherence questions on a 5-point Likert scale from 1 = ’Very focused’/Followed very closely’ to 

5 = ’Not focused at all’/’Did not follow at all’. Top: Percentage of participants per rating in each 

run, Bottom: Boxplots showing the distribution of median ratings across runs for each condition. 

Abbreviations: ER: Explicit Randomness, FC: Free Choice, MC: Mental Coin Toss. 

 
 

Proportion value, run length, reaction time 

The average proportion value reflects the balance between choices of heads and tails, 

where 0.5 indicates equal frequency of both options and 1 indicates the choice of 
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exclusively one option. This value was lowest in MC (M = 0.55, SD = 0.04), followed by 

ER (M = 0.56, SD = 0.03). FC had the least balanced sequences on average (M = 0.58, 

SD = 0.07). A one-way ANOVA revealed a significant difference between the groups 

(F(2,82) = 3.34, p = 0.040, 𝜂2 = 0.08). The follow-up t-tests adjusted for multiple 

comparisons with Tukey-Kramer test showed that FC was significantly different from 

MC (p = 0.034, Cohen’s d = 0.60). 

 

The average run lengths per condition are shown in Fig. 3. The one-way ANOVA 

revealed no significant difference between the groups (F(2,82) = 2.31, p = 0.11, 𝜂2 = 

0.05). The mean length of runs clustered around 2 (ER: M = 2.01, SD = 1.15; FC: M = 

2.25, SD = 1.15; MC: M = 1.71, SD = 0.39). 

 

In terms of reaction times, a one-way ANOVA revealed a significant difference between 

conditions (F(2,82) = 4.22, p = 0.018, 𝜂2 = 0.09). A post-hoc test showed that the 

reaction times between ER (M = 0.45, SD = 0.13) and MC (M = 0.64, SD = 0.31) 

differed significantly (p = 0.014, Cohen’s d = 0.79). FC (M = 0.52, SD = 0.25) did not 

differ significantly from the other groups (see Fig. 3). 

 

Conditional Entropy and optimal Markov Order 

Fig. 3 shows the distribution of individuals’ randomness measures, optimal Markov 

order and conditional entropy, averaged over runs. The conditional entropy values 

clustered around 0.90 in ER and MC (Md = 0.9, IQR = 0.17; and Md = 0.90, IQR = 0.10 

respectively), whereas the value in FC was lower (Md = 0.86, IQR = 0.12), suggesting 

that ER and MC sequences displayed higher levels of randomness. The Markov order 

values were also similar in ER and MC with Md = 0 and IQR = 1 in both, but higher in 

FC (Md = 0.5, IQR = 1). As a benchmark a set of simulated pseudorandom sequences 

of same length using MATLAB’s default “Mersenne twister” algorithm of length 540 

exhibits a median conditional entropy of 0.97 (IQR = 0.01) and median Markov order of 

0 (IQR = 0). Neither Markov order values nor conditional entropy values differed 
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between conditions (Kruskal-Wallis test, 𝜒2 = 0.9, p = 0.64, 𝜂2 = 0.01; 𝜒2 = 3.71, p = 

0.16, 𝜂2 = 0.02 respectively).  

 

 
Figure 3. Behavioral results. Distribution of sequence properties in each condition. The 
histograms show the frequency count of orders per condition. In the violin plots, each dot 
represents the averaged value for one subject. The black bars in each violin plot are boxplots 
and indicate the interquartile range with the median marked by a white dot, the outline of each 
violin represents the kernel density estimate. Left: Randomness measures conditional entropy 
and Markov order were calculated for an entire run and then averaged across all runs using the 
mean for the conditional entropy and median for the Markov order. Right: Proportion value, run 
length and reaction times were determined for a block and then averaged over blocks and runs 
using the mean. n = 85 in each metric plot, * p < 0.05. 
 
 

 
 

Imaging Results 

 

Univariate conjunction analysis 

We used a conjunction analysis (Friston et al., 2005) to identify activations that are 

shared across all three tasks (Fig. 4.B left; Fig. 6; table 1). Common activity was 

increased in a large bilateral frontal cluster consisting of regions in the inferior frontal 

gyri (IFG) and extending into portions of the anterior insula (aINS). Overlapping 
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activations were also present in left premotor cortex/pre-supplementary motor area (pre-

SMA) accompanied by smaller clusters involving bilateral precentral gyri and segments 

of middle frontal gyri. Additionally, BA44 (partially overlapping with Broca’s area) was 

activated. Our analysis revealed also increased activations in bilateral inferior parietal 

lobules (IPL), putamen, occipital cortex and cerebellum across all tasks. 

 

 

Anatomical Area Hem t-value k x y z 

Frontal 

Inferior frontal gyrus L 5.57 1677 -24 38 10 

Inferior frontal gyrus R 5.74 1575 30 32 10 

Pre-supplementary motor area L 5.67 1056 -10 8 48 

Precentral/middle frontal gyrus R 4.62 116 38 -4 50 

Premotor area BA6 L 4.29 189 -34 -8 48 

Broca’s area BA44 L 4.25 71 -56 8 22 

Parietal 
Inferior parietal lobule 
 

L 4.66 66 -50 -56 50 

R 4.34 114 58 -40 46 

Cerebellum  R 4.02 47 40 -56 -32 

Putamen  
L 4.65 102 -26 4 -4 

R 4.02 28 26 4 -4 

Occipital Visual cortex V3 L 4.01 25 -14 -86 -10 

 
Table 1. MNI coordinates of peaks of whole-brain group level conjunction analysis results with p 

< 0.001 uncorrected; family-wise error (FWE) cluster-corrected p < 0.05 (k >= 25). 

Abbreviations: Hem: Hemisphere, L: left, R: right; k: cluster size.  

 

Univariate differential analysis 

Next, we assessed any evidence for differential activity between conditions. Compared 

to ER and MC, activity in the right pre-SMA, right insula and left cerebellum activity was 

reduced in FC (Fig. 4.B right; table 2). 

 

During the MC task, we observed a stronger bilateral frontoparietal pattern of activations 

compared to ER and FC combined (Fig 4.B right; table 2). In the frontal lobes, a 

subregion of the right DLPFC (Fig. 6) was more activated. More posteriorly, there was 

increased activity in right BA44, bordering on inferior frontal and precentral gyrus as well 
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as two clusters in the left hemisphere comprising pre-SMA and SMA. The MC task also 

elicited stronger activation in bilateral portions of insular cortex along with regions in 

bilateral thalamus and left cerebellum compared to FC and ER combined. Our analysis 

further identified clusters of increased activity in the bilateral superior parietal lobules 

(SPL), and right intraparietal sulcus (IPS). 

 

As a further exploratory control analysis (see Appendix for details), we estimated the 

same GLM with the average reaction times per run as an additional covariate to identify 

whether results were affected by the faster or slower responses on brain activity across 

all three conditions. The differential activations remain consistent with or without 

including mean RTs as a covariate, showing only minor variations in the activated 

clusters, such as portions of the intraparietal sulcus, DLPFC, insula and thalamus in the 

contrast that compares MC activations to ER and FC. Overall, these results suggest 

that the main results are primarily driven by the effect of instructions. 

 

The results show also that the activity levels in the following regions were higher when 

RTs were faster: central opercular cortex, regions in middle and superior frontal cortex, 

precuneus, portions of the cingulate gyrus, lateral occipital cortex/IPL, temporal pole, 

amygdala, hippocampus, parahippocampal gyrus and cerebellum. This activation profile 

could potentially reflect the involvement of the DMN during faster responses, which is 

reasonable as individuals who responded more quickly would have more time to remain 

inactive (Menon, 2023). The regions that showed modulation by mean RT are different 

compared to the regions that were activated for the task instructions. This makes sense 

as this trial-wise activity is independent of the task instructions which were sustained 

over the whole block and thus captured by the 90s block regressor. 

 

 



Neural Correlates of Different Randomization Tasks 

20 

Multivariate analysis 

Next, we used multivariate pattern analysis to identify brain regions from which we can 

predict subjects’ specific trial-by-trial choices. Fig. 5.A and table 2 show regions from 

where choices can be decoded across any of the three conditions. As expected, 

bilateral primary motor cortex areas show the highest decoding accuracy across all 

conditions. Additionally, areas in the left frontal lobes encompassing parts of IFG, frontal 

orbital cortex and insular cortex showed significant above-chance decoding accuracy. 

The comparison of accuracy values of ER versus FC and MC revealed significantly 

higher accuracy values in the right frontal pole (Fig 5.B; Fig. 6; table 2). Figure 6 shows 

this cluster plotted together with the differential and shared univariate activations for 

comparison. Please keep in mind that although this figure displays both univariate and 

multivariate results together, it does not imply that both types of analysis measure the 

same thing as the first shows average activation levels during an experimental block 

while the latter identifies voxels that are predictive of individual choices 
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Figure 4. Whole-brain group level analysis (GLM). Results of the whole-brain group level 
analysis at three different transversal slices (Z = 4, Z = 50, Z = 58). Shown are significantly 
activated clusters overlaid on the Montreal Neurological Institute space (MNI) template, p < 
0.001, FWE cluster corrected at p < 0.05 (corresponding extent threshold k is displayed for each 
contrast). A: Contrasts of task activation against (implicit) baseline for each condition. B, left: 
conjunction analysis across all tasks. B, right: Differential activations for the contrasts MC > 
ER&FC and ER&MC > FC. Abbreviations: ER: Explicit Randomness, FC: Free Choice, MC: 
Mental Coin Toss, IFG: inferior frontal gyrus, aINS: anterior insula, pre-SMA: pre-supplementary 
motor area, PG: precentral gyrus, IPL: inferior parietal lobule, SPL: superior parietal lobule. 
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  Anatomical Area Hem t-value k X Y Z 

 
Mental Coin Toss > Explicit Randomness & Free Choice (k >= 21) 

Parietal 
Superior parietal lobule 

R 4.37 176 30 -54 64 

L 4.34 338 -24 -60 56 

Intraparietal sulcus R 3.43 25 44 -34 42 

Frontal 

Supplementary motor area L 4.16 79 -6 6 54 

Pre-supplementary motor area L 3.64 46 -8 -8 74 

Inferior frontal gyrus R 4.01 121 50 8 22 

Dorsolateral prefrontal cortex R 3.61 22 30 46 22 

Thalamus  R 3.86 27 6 -14 -4 

Insula 
 R 3.71 21 32 18 4 

 L 3.62 31 -42 12 2 

Cerebellum  L 3.59 21 -24 -64 -44 

 
Explicit Randomness & Mental Coin Toss > Free Choice (k >= 45) 

Frontal Pre-supplementary motor area R 4.04 109 6 12 46 

Insula  R 3.82 59 30 20 4 

Cerebellum 
 L 3.90 48 -32 -52 -40 

 L 3.83 45 -18 -62 -42 

 
Decoding F-test k >= 106 

Frontal 

Primary motor cortex 
 

R 

283.49 92345 

36 -16 46 

L -36 -20 48 

Supplementary motor area R/L 0 -8 52 

Frontal orbital cortex, inferior 
frontal gyrus 

L 8.78 106 -36 30 2 

Frontal orbital cortex L 7.92 180 -34 38 -22 

Occipital  R 8.08 137 42 -60 8 

 
Decoding Explicit Randomness > Free Choice & Mental Coin Toss k >= 258 

Frontal Frontal pole R 4.24 258 38 66 2 

 
 
Table 2. MNI peak coordinates of significantly activated clusters for different contrasts (whole-
brain) p < 0.001 uncorrected; family-wise error (FWE) cluster-corrected p < 0.05 (k > 45) on the 
group level. Abbreviations: Hem: Hemisphere, L: left, R: right; k: cluster size. 
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Figure 5. Decoding of trial-by-trial choices using MVPA. Shown are regions where 
accuracies were above chance level, separately for (A) overall F-test and (b) specific 
comparison Explicit Randomness > (Mental Coin Toss & Free Choice) overlaid on the Montreal 
Neurological Institute space (MNI) template (p < 0.001, FWE cluster corrected at p < 0.05, 

extent threshold for (A) >= 106 voxels and for (B) >= 258 voxels). Bar plots show accuracy in 
percent minus chance level (50%) in right motor cortex (A) and right frontal pole (B), with red 
error bars indicating the 90% CI. Abbreviations: IFG: inferior frontal gyrus, SMA: supplementary 
motor area, ER: Explicit Randomness, FC: Free Choice, MC: Mental Coin Toss. 
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Figure 6. Comparing task-specific and shared activations with informative brain regions 
in decoding analysis. Results of different contrasts showing differential and shared activations 
between tasks. Green shows the shared activations across all three tasks as identified via the 
conjunction analysis. Blue shows the contrast MC > ER&FC in the univariate analysis. Yellow 
shows the contrast ER > FC&MC from the MVPA analysis. Clusters are overlaid on the 
Montreal Neurological Institute space (MNI) template, p < 0.001, FWE cluster corrected at p < 
0.05. Abbreviations: ER: Explicit Randomness, FC: Free Choice, MC: Mental Coin Toss. 

 

 

 

 

 

 

Discussion 

In this study we explored the neural basis of random sequence generation by giving 

each subject one of three different instructions for eliciting random behavior. 

Specifically, participants were asked to conduct a binary decision-making task that 

instructed them to either (1) make random choices, (2) to make free choices or (3) to 

choose according to their mental simulation of a fair coin toss. We identified a strong 

and shared frontoparietal pattern of activity across all three tasks. Our results highlight 

the significance of mental imagery in the MC task and suggest that regions of the 
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anterior insula are distinctly activated in ER and MC as compared to FC. In addition, our 

MVPA analysis revealed an area in the right frontopolar cortex to be predictive of the 

choices in the ER task. Our study shows that similar behavioral randomization 

performance can emerge from distinct cognitive processes.  

 

Behavioral results  

Overall, we observed sequential dependencies in participants’ choice sequences, which 

is a robust result in the RSG literature (reviewed e.g. by Nickerson, 2002). Drawing from 

perceptual decision-making research, individuals’ time series exhibit autocorrelations, 

where current choices are dependent on previous choices. (Urai et al., 2019). Thus, 

suppression of these autocorrelated responses is not entirely successful, possibly due 

to constraints posed by the limited capacity controlling mechanism (Jahanshahi et al., 

1998). This leads to sequential dependencies in the sequences that were picked up by 

our metrics. 

 

Notably, all three tasks exhibited a similar randomization profile in terms of our key 

metrics conditional entropy and Markov order. Our previous study (Guseva et al., 2023), 

had found that MC sequences differed from those in both ER and FC in terms of 

conditional entropy, along with differences between MC and FC conditions in terms of 

Markov orders. Nevertheless, the overall results pattern aligns with Guseva et al. 

(2023), with MC showing the best randomization performance, followed by ER and then 

FC in across all metrics. The lack of statistical significance could be attributed to 

differences in sample size (ranging from 27-29  vs. 73-85 participants per condition in 

Guseva et al., 2023), sequence length (540 vs. 1000 in Guseva et al., 2023), and trial 

timing (2000 ms vs 1000 ms in Guseva et al., 2023). 

 

Despite the absence of explicit randomness cues in the FC instructions, participants’ 

choices resembled those of the ER and MC randomization tasks, consistent with 

Naefgen and Janczyk (2018) who found similarities between comparable RSG and FC 

tasks. The FC task theoretically should not require active memory storage and updating 
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as the choice history should be irrelevant to the task. There is also no apparent need to 

inhibit habitual or patterned response tendencies, reducing the load on the executive 

functions. We suggest that participants might have formed certain assumptions about 

the nature of the task and intuitively introduced randomness into their choices, possibly 

to give the task a perceived purpose, or perhaps they interpreted a free choice to be a 

random choice (see post-experiment text responses in our published dataset). This 

result highlights the role of participants’ assumptions about a cognitive task, as people 

seem to inject some variability in unconstrained choice situations.  

 

The FC and MC sequences differed in their proportion values, reflecting the balance of 

heads and tails frequencies. FC participants created less proportional sequences, with 

one of the sides being chosen more often than the other, consistent with Guseva et al. 

(2023). This difference may stem from perceiving a coin toss as inherently balanced, 

e.g., a participant wrote in the post experimental questionnaire: “At the beginning of the 

test I thought that after a lot of coin flips the ratio is always around 50-50% between 

heads and tails, so I tried to press left and right equal times.“ At the same time, the FC 

task instructions did not mention any need for balanced choices. In contrast, the 

average run lengths were comparable across the tasks, showing no significant group 

differences. This could suggest some inherent pattern length emerging in binary 

decision scenarios, regardless of instruction.  

 
 

Imaging results 

 

Common neural substrates across all tasks 

We found a large-scale frontoparietal activation pattern across all three tasks. Frontal 

regions included a bilateral cluster located in IFG, which also extended into regions of 

aINS and frontal opercular cortex, as well as left pre-SMA, left precentral gyrus/middle 

frontal gyrus. Parietal regions included bilateral IPL. The cluster also extended into the 

right cerebellum, left occipital cortex and bilateral putamen. This activation pattern 
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largely overlaps with the frontoparietal activation that is hypothesized to be associated 

with voluntary decision-making (Rens et al., 2017). Its recruitment could reflect the high 

demand for cognitive control during all three tasks as will be explained in the following.  

 

The frontal activation pattern comprised a bilateral cluster around the IFG, which is part 

of the VLPFC. This aligns well with previous findings on RSG (Daniels et al., 2003; 

Jahanshahi et al., 2000; Koike et al., 2011). However, only little is known about the 

involvement of IFG in free choice tasks. The robust activation of this area is not 

unexpected given the established role of VLPFC in action control and executive 

functions (Segal & Elkana, 2023; Tops & Boksem, 2011). The VLPFC’s executive role is 

debated, with suggestions of inhibitory control for cognitive and motor interference (Aron 

et al., 2014; Schaum et al., 2021), and working memory involvement (Segal & Elkana, 

2023). Overall, our results highlight the involvement of IFG in randomization tasks. 

 

Of note is the cluster of activation of the posterior portion of IFG in the left hemisphere 

which corresponds to BA44 (and thus partially overlapping with Broca’s area). This area 

has not been explicitly observed in either the randomization or free choice literature. 

While traditionally associated with overt speech production, this region has also been 

implicated in the generation of internal speech (Alderson-Day & Fernyhough, 2015). 

This could mean that the participants engaged in internal vocalization of their choices. 

In fact, some examples of the post-experimental questionnaire contain the following 

answers: “Sometimes I focussed [sic] on the choice between left and right by verbalizing 

it to myself […]” or “I did think of the words left/right and the feeling of the movement to 

either left/right.” This presence of neural activation in this area opens up the discussion 

about the role of language-related processes in randomization tasks. Future research 

could for instance explore aspects of internal vocalization in rehearsing potential 

choices or using it as a verbal strategy for choice selection 

 

Adjacent to the IFG lies the aINS, which also showed activation across the tasks. In line 

with our results, Takahashi et al. (2015) found that activity in bilateral insula correlated 
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positively with behavioral entropy during an interactive matching pennies game. 

Because none of the studies had reported insula activation so far (Daniels et al., 2003; 

Jahanshahi et al., 2000), the authors concluded that that activation likely arose due to 

the competitive nature of the task and not due to randomness generation. As our study 

does not involve a game element, it demonstrates that insula activity can arise in non-

competitive RSG task variants nonetheless. Insula activation across all tasks is 

plausible given its role as a well interconnected integrative hub, involved in cognitive 

control, goal-directed behavior (Wu et al., 2019), along with motor inhibition (Levy & 

Wagner, 2011). Together with the IFG, the aINS was suggested to play a crucial role in 

top-down biasing of the posterior cortex (Tops & Boksem, 2011) reinforcing the role of 

the frontoparietal network in the three tasks. 

 

We also report activations in left pre-SMA and bilateral clusters in the precentral gyrus, 

consistent with findings across free choice and the few existing RSG studies. Pre-SMA 

activity has been associated with higher-level motor planning, internally guided 

voluntary actions, conflict monitoring and execution of novel actions (Nachev et al., 

2007). Our results are in line with the model of corticolimbic control pathways proposed 

by Tops & Boksem (2011). This framework suggests a chain of top-down control with 

the IFG/aINS maintaining working memory representations and goals and connection to 

premotor and motor regions to initiate or suppress responses. This is supported by 

previous reports of functional connectivity of pre-SMA with the IFG (Schaum et al., 

2021; Tomiyama et al., 2022), reinforcing the network’s role in motor response 

inhibition. We suggest that response inhibition, necessary to override prepotent 

responses, plays a key role in all three tasks, with premotor along with frontal/insula 

regions contributing to this process. This offers an alternative neurocognitive possibility 

compared to Jahanshahi et al.'s (2000) network modulation model. Our experimental 

framework presents a basis for future research to create an updated neurocognitive 

model of human randomization. 
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Our results also revealed shared bilateral activation of the IPL which constitutes part of 

posterior parietal cortex. This aligns with activations reported in Daniels et al. (2003), 

while Jahanshahi et al. (2000) found it to be deactivated. IPL activity is also a consistent 

finding across multiple FC studies (Bode et al., 2013; Lau et al., 2004; Si et al., 2021; 

Welniarz et al., 2021). Activity in this area might be relevant across all tasks due to its 

role as a convergence point for multiple networks, contributing to various functions, 

such as (visuo-) spatial attention and semantic processing (Numssen et al., 2021), 

attending to current goals and responding to salient information (Singh-Curry & Husain, 

2009), mathematical cognition (Wu et al., 2009) and decision-making under uncertainty 

(Vickery & Jiang, 2009). It is likely that IPL activity is modulated by inferior frontal 

activation, particularly frontal opercular cortical areas (Higo et al., 2011) positioning it as 

another pivotal node in top-down control.  

  

Electrophysiological work showed that during a working memory task, prefrontal activity 

occurs prior to parietal activity, suggesting a hierarchical activation flow with prefrontal 

areas exerting top-down modulation of parietal regions when implementing cognitive 

control (Brass et al., 2005). The different task instructions might have activated a host of 

different goal-directed processes, triggering down-stream effects such as contextual 

biases on attention processes in more posterior regions (Friedman & Robbins, 2022). 

 

It is unexpected that our analysis did not reveal any joint DLPFC activation across all 

tasks given the existing literature (Bode et al., 2013; Daniels et al., 2003; Jahanshahi et 

al., 2000; Lau et al., 2004). DLPFC is a key node in the frontoparietal control network 

and is strongly connected to the rest of the active regions that were identified in the 

present analysis, such as IFG, aINS and pre-SMA (Cai et al., 2014; Orr et al., 2015). 

Jahanshahi et al.'s (2000) neurocognitive model of randomization (network modulation 

model) specifically highlights the role of the left DLPFC as suppressing prepotent 

responses by modulating the number association network in superior temporal cortex. 

Additionally, our initial hypothesis of anterior cingulate cortex activation across all tasks 

has also not been met, which is surprising as this region appears in tasks with high 
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degrees of decision uncertainty and arbitrary decisions that introduce choice conflicts 

(Friedman & Robbins, 2022; Furstenberg et al., 2023; Ridderinkhof et al., 2004).  

 

Differences in task setup between the studies might explain the lack of shared activation 

in both DLPFC and anterior cingulate cortex. Our task differs from Jahanshahi et al. 

(2000) in that it is a binary choice task and is thus unlikely to induce ascending or 

descending prepotent responses, as would be the case in a larger alphabetical or 

numerical choice set, such as digits ranging from 1-9 in Jahanshahi et al. (2000). So, 

the network modulation model might not be applicable in our case. This raises an 

important methodological question: Is the randomization across a large, orderly choice 

set, like the letters of the alphabet merely a variation of the same task or does it 

represent an entirely different task compared to a binary and/or non-alphanumeric 

choice set? A clear standardization and taxonomy of randomization tasks is needed. 

Additionally, in Daniels et al.'s (2003) task the choices were produced faster (1 and 2 

Hz) and were generated via an internal speech technique, as opposed to button 

presses like in our case. Moreover, both studies feature smaller sample sizes (n = 8 and 

n = 11).  

 

We also conducted an additional exploratory parametric modulation analysis to 

determine whether brain activity is modulated by conditional entropy and proportion 

values. However, we found that no regions were significantly affected by these 

variables, even when the threshold was lowered to p < 0.01. This could be related to the 

fact that observable characteristics of a random sequence, such as conditional entropy 

or proportion value, do not have a direct correspondence to the underlying process that 

generates it (for a discussion see Nickerson, 2002). In other words, these measures 

alone are insufficient to capture the full complexity of the generative randomization 

process. On top of that, there was very low variability in both measures within-subject 

across the six runs. The coefficient of variation was on average below 10% for both 

metrics (Armitage et al. 2002), which further exacerbated the detection of significant 

activations. 
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Distinct activations between tasks 

Our univariate analysis also compared the activity between the tasks revealing 

differential activations in aINS, pre-SMA and SPL in both hemispheres. This univariate 

analysis was based on activation over an entire block, i.e., it captured sustained 

activation levels during that period. Regions that carried specific choice-predictive 

information were identified with the decoding approach using single choices. 

Specifically, we observed the right frontopolar cortex to be predictive of the choices in 

the ER condition. Interestingly, despite the lack of differences in the behavioral 

randomization measures, these differential results suggest that participants might have 

recruited distinct cognitive control mechanisms during the different tasks. 

 

Explicit Randomness and Mental Coin Toss 

In addition to the shared insular activation, we observed a subregion of the aINS that 

was more active in both ER and MC as compared to FC. With this region’s role in as a 

cognitive control hub, the increased activation in ER and MC might reflect a potential 

higher cognitive load and attention demand in these tasks. The aINS has also been 

characterized as a bottleneck region of cognitive control capacity (Wu et al., 2019). 

Alternatively, Jahanshahi et al. (2000) designated the DLPFC as the limited capacity 

controller. Our results suggest that aINS activation may also play a key role in this 

capacity, perhaps in tandem with pre-SMA. Overload of the aINS in this subregion might 

set a limit on randomization performance, potentially explaining why randomization is 

generally challenging to people.  This could occur in the broader context of the cingulo-

opercular network where the aINS region is a key node (Menon & D’Esposito, 2022). 

This difference in activity patterns might indicate that different neural mechanisms are 

involved in randomization behaviors. Our univariate analysis was based on the 90s 

blocks, so we did not model trial-wise reaction times. Given the difference in RTs 

between ER and MC it would be an interesting topic for future research on 

randomization tasks. 

 



Neural Correlates of Different Randomization Tasks 

32 

Differential activation in Explicit Randomness 

The multivariate analysis identified the frontal pole’s most anterior area as predictive of 

individual choices in the ER condition. Overall this result aligns with what is known 

about this region as it has been reported to be linked to abstract higher cognition and 

along multiple functions has been implicated in the evaluation of internally generated 

information (Christoff & Gabrieli, 2000; Tsujimoto et al., 2010). The frontopolar area has 

also been associated with monitoring uncertainty and considering alternative courses of 

action (Wan et al., 2016). The frontopolar activity as observed here could potentially 

stand atop of the top-down control hierarchy, as it exhibits connections to premotor 

cortices and parietal lobes (Boorman et al., 2009). At the same time, it is interesting to 

observe this particular result only in the ER condition, as one might expect these 

cognitive functions to be shared across all three tasks. It is hence possible that ER 

might invoke a different cognitive subprocess than a related randomization task, such 

as MC. 

 

While absent from RSG literature, frontopolar activity has been documented in studies 

on free choice (Bode et al., 2011; Soon et al., 2008). Interestingly, the observed cluster 

lies in the vicinity of the region found in Soon et al. (2008), who used a free choice task.  

Notably, when we included mean RTs as a covariate in the exploratory analysis (see 

Appendix), we observed a cluster in the frontal pole with increased activity in the FC 

condition compared to ER and MC (see Fig A2 and table A2 in the appendix), 

consistent with the results in Soon et al. (2008). This cluster was located more medially 

than the cluster identified in the decoding analysis for ER.  

 

While it has been argued that the classifier in Soon et al. (2008) could have captured 

lingering information from the previous trial due to the autocorrelation present in the 

choice sequences (Lages & Jaworska, 2012), this was controlled for in subsequent 

reanalyses (Allefeld et al., 2013). Here this possibility was ruled out, as such a result 
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would have been observed in all conditions, given that all conditions exhibit some 

degree of autocorrelation not just the ER.  

 

It is worth noting that in Soon et al. (2008), subjects were pre-selected who already 

produced balanced sequences, which could have effectively reduced the dataset to 

choice sequences resembling those from an ER task rather than a true FC task. As we 

outlined above, a free choice might be understood as a random choice by people or at 

least carry this connotation  because it is common practice to include specific 

restrictions and rules (e.g., to avoid repetitions) in “free choice” instructions (Naefgen & 

Janczyk, 2018). In contrast, our FC instructions were intentionally unrestricted. This 

specific type of FC task instructions lead to a differential neural activation profile 

compared to a simple randomization task, challenging the contemporary view that ER 

and FC are the same task (Naefgen & Janczyk, 2018). For future experiments it would 

be advisable to have better ways to define what an FC task is and to closely examine 

how people understand it. This could be done for instance via standardized pre- and 

post-task interviews to track potential shifts in understanding or strategy or intermittent 

ratings between experimental runs. 

 

 
Differential activation in Mental Coin Toss 

The MC task activated frontoparietal regions more strongly than the other two tasks. 

The key regions in the frontal lobe that showed heightened differential activation were 

pre-SMA/SMA, IFG and DLPFC. We also observed bilateral activation of SPL. This 

activation pattern strongly resembles the network engaged during visuo-spatial motor 

imagery, encompassing the IFG, SMA, aINS as well as inferior and superior parietal 

lobules. Also, subcortical regions such as cerebellum and thalamus have been 

implicated in motor imagery (Hétu et al., 2013). This is consistent with our expectation 

that a mental coin toss task likely involves simulating motor actions. Martel and Glover 

(2023) argue that motor imagery requires executive resources that are mediated by 
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DLPFC activation. This could potentially explain the specific dorsolateral activation in 

MC and not in the other condition. 

The differential involvement of the right IPS also aligns with the task demands as it has 

been involved in visuo-spatial attention and working memory (Bray et al., 2015). 

Notably, with the similar behavioral performance across tasks, this suggests that 

perhaps motor imagery alone does not seem to pose a significant randomization 

advantage compared to the other tasks. 

 

Our study’s results on differential neural activation across randomization tasks align with 

(Xiao et al., 2023) who demonstrated that conflict-modulatory neurophysiological signals 

generalize within a task but not between different cognitive control tasks. Future 

research could further investigate task-specific and task-invariant components of 

randomization tasks since there seems to be a complex interaction between sensory 

inputs, motor outputs and task demands when facilitating cognitive control. 

 

On the surface, it seems that our instruction conditions produce a similar outcome. 

However, “underneath the hood” they partially activate different neural pathways. 

Considering the pervasive issue of differing task parameters (such as task instructions) 

across randomization experiments coupled with the lack of standardized experimental 

protocols, and taking into account our observation that instructions matter on a neural 

level, what has truly been measured in the past decades of research on RSG? Our 

results suggest that it is important to take a step back and build a stronger 

methodological foundation by re-examining the most basic components of the RSG 

task.  

 

Limitations 

Several limitations of this study should be considered. First, the primary methodological 

difficulty is in assessing performance in tasks where choices are generated internally 

(as opposed to stimulus-driven), lacking a clear objective criterion to confirm whether 
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participants actually correctly understood and executed the task. Unlike in perceptual 

decision-making research for instance, where accuracy scores allow the researcher to 

evaluate (1) compliance and/or (2) correct understanding of the task, this is challenging 

in tasks without a criterion for right or wrong answers. For instance, an important factor 

specifically in randomization tasks, is participants’ familiarity with random processes. 

Differences in statistical literacy and their impact on randomization are still unexplored.  

 

Thus, to gauge participants’ understanding and attention to the task we used questions 

and open-form text responses. Because this is a simple method that may not capture 

the full extent of participants' understanding and adherence to the instructions, we 

believe that the field could greatly benefit from developing more sophisticated 

techniques. For example, by ongoing interactive comprehension checks, asking 

participants to verbalize their approach during practice to gain insight into the thought 

process or detecting sudden change points in the choice time series indicating fatigue 

or physiological tracking. These new methods should be capable of closely monitoring 

participants' comprehension and following of instructions to provide more reliable data 

on their performance. 

 

Second, we used established randomness measures that are sound and grounded in 

theory. Nonetheless, there is no measure that can comprehensively test every aspect of 

randomness in a sequence (Ayton et al., 1989), especially considering that human-

made sequences are naturally rather short. Therefore, the absence of performance 

differences in this study does not rule out the possibility that other measures might 

identify them. 

 

Third, our study is limited by the absence of a control group performing a task where 

they produce non-random, orderly choices, e.g. pressing the keys in a purely alternating 

pattern or some prespecified order as was done in (Joppich et al., 2004). Hence, we 

cannot make any claims regarding the differences between random and 
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orderly/predictive responding. Instead, our objective was to compare brain activation 

between different types of randomization tasks. 

 

Finally, although we identified basic neural substrates of randomization, the specific 

roles of the neural regions remain speculative. Further investigation, for instance within 

the context of Cooper's (2016) computational model of randomization, could provide a 

deeper understanding of the circuits supporting various cognitive functions such as set-

shifting, schema selection and monitoring. 

  

 

Conclusion 

Our exploratory study into the neurocognitive architecture of randomization across 

different task instructions found consistent frontoparietal pattern of activation across all 

three tasks, indicating shared neural substrates associated with cognitive control and 

inhibitory processes. Some of our results differ from the few previous studies in terms of 

dorsolateral PFC and anterior cingulate cortex activation, possibly due to increased 

power with a substantially enlarged sample. In addition to the shared activation, our 

findings also suggest that although the three tasks produce similar behavioral 

outcomes, they also partially rely on distinct neural pathways. Our results highlight the 

complexity of brain-behavior relationships (Gilman et al., 2015) and challenge the idea 

of a universal random generator in the brain.  

 

 

Appendix 

 

Analysis including mean RT per run as covariate 

 

To rule out that the effects were primarily driven by latent effects of different reaction 

times between conditions, we conducted an additional exploratory analysis that was not 

part of the preregistration. This was a univariate analysis with the addition of mean 
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reaction times per run as a covariate (in addition to the covariates used in the 

preregistered main analysis, i.e. age, sex and responses to the instruction adherence 

and attention questions). We found that the main results remain consistent when RT 

was added as a covariate, with only smaller differences. First, an additional cluster was 

observed in the frontal pole where activity in the Free Choice condition was increased 

compared to the Explicit Randomness and Mental Coin Toss conditions (Fig A1, table 

A1). The conjunction and differential results with the mean RT covariate included are 

shown in table A1. Second, compared to the main analysis without RTs as covariates, 

activity in portions of the intraparietal sulcus, DLPFC, thalamus and insula was not 

significantly increased in the contrast MC vs. ER & FC, (table A1 and table 2). 

 

We also used the same model to assess any direct effects of reaction time. We found 

that several regions exhibited increased activity when reaction times were faster, 

including middle and superior frontal cortex, central opercular cortex, precuneus, 

portions of the cingulate gyrus, lateral occipital cortex/IPL, temporal pole, amygdala, 

hippocampus, parahippocampal gyrus and cerebellum (Fig. A2, table A2). 
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Figure A1. Regions with higher activity in Free Choice compared to Explicit Randomness 
and Mental Coin Toss. Shown is the significantly activated cluster for the contrast FC > ER & 
MC overlaid on the Montreal Neurological Institute (MNI) template, p < 0.001, FWE cluster 
corrected at p < 0.05, k=43 at (X = 2, Y = 65, Z = 9). Abbreviations: ER: Explicit Randomness, 
FC: Free Choice, MC: Mental Coin Toss 

 

 

 
Figure A2. Regions with increased activity levels for shorter RTs. Results of the reaction 
time analysis showing those regions that showed increased activity for shorter RTs at (X = -5, Y 
= -16, Z = 16). Shown are significantly activated clusters overlaid on the Montreal Neurological 
Institute space (MNI) template, p < 0.001, FWE cluster corrected at p < 0.05 (corresponding 
extent threshold k is displayed for each contrast. 

 

 

 

 

 

Anatomical Area Hem t-value k x y z 

Conjunction analysis (k >= 24) 

Frontal Pre-supplementary motor area L 5.78 2642 -10 8 48 

  Inferior Frontal Gyrus R 5.59 1516 30 32 10 

  Premotor area BA6 L 4.24 200 -34 -8 50 
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  Precentral/middle frontal gyrus R 4.60 111 38 -4 50 

  Broca’s area L 4.02 55 -56 8 20 

  Putamen 
  

L 4.72 97 -24 4 -6 

  R 4.06 24 26 4 -4 

Parietal IPL L 4.67 86 -50 -56 50 

    R 4.30 99 58 -40 46 

Cerebellum   R 4.15 54 42 -56 -32 

 
Mental Coin Toss > Explicit Randomness & Free Choice (k >= 21) 

Parietal Superior parietal lobule 
Superior parietal lobule 

R 4.37 129 30 -54 64 

    L 4.27 266 -24 -60 56 

Frontal Inferior frontal gyrus R 4.32 141 52 6 22 

  Supplementary motor area L 3.94 58 -6 6 54 

Cerebellum   L 3.61 21 -24 -64 -44 

 
Explicit Randomness & Mental Coin Toss > Free Choice (k >= 21) 

Frontal Pre-supplementary motor area R 4.02 107 6 12 46 

  Precentral gyrus R 3.75 21 12 -28 68 

Insula Insula R 3.85 58 30 20 4 

Cerebellum   L 3.89 47 -32 -52 -40 

    L 3.80 43 -18 -62 -42 

Free Choice > Explicit Randomness & Mental Coin Toss  (k >= 43) 

Frontal Frontal Pole R 3.89 43 0 66 8 

 
Table A1. MNI peak coordinates of significantly activated clusters for different contrasts (whole-
brain) p < 0.001 uncorrected; family-wise error (FWE) cluster-corrected p < 0.05 on the group 
level. The cluster size is indicated for each contrast. Abbreviations: Hem: Hemisphere, L: left, R: 
right; k: cluster size. 
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Anatomical Area Hem t-value k x y z 

 
Increased activity for shorter RTs 

  
  
  
  
  
 Frontal 

Middle frontal gyrus R 4.26 160 30 16 46 

Frontal Medial cortex L 4.87 815 -2 70 10 

L 3.73 22 -40 14 50 

R 3.60 22 26 38 40 

Superior Frontal Gyrus L 3.40 30 -8 44 32 

L 3.65 21 -24 26 50 

  Central Opercular cortex R 3.50 29 54 -6 8 

Cingulate Precuneus R 4.76 791 0 -44 18 

Cingulate gyrus L 3.99 45 -2 -28 40 

  
  

Lateral Occipital Cortex L 3.97 94 -56 -66 -2 

R 4.39 68 60 -60 12 

 Parietal IPL L 3.88 49 -54 -60 38 

 Temporal Temporal pole R 4.39 229 46 6 -34 
 

L 4.05 77 -48 -20 -16 

  Amygdala L 4.56 167 -24 -12 -14 

  Parahippocampal Gyrus R 4.38 196 26 -8 -34 

  Hippocampus L 4.12 94 -36 -28 -16 

  Corpus Callosum/Fornix L 4.69 67 -2 -10 22 

Cerebellum   L 4.53 370 -12 -92 -38 

  R 4.91 159 40 -82 -36 

  L 4.38 121 -36 -84 -40 

Increased activity for longer RTs 

Frontal Frontal pole L 4.26 31 -38 56 28 

Occipital Lingual gyrus R 3.52 21 0 -78 4 

 
Table A2. MNI coordinates of peaks of whole-brain group level for reaction time analysis with p 
< 0.001 uncorrected; family-wise error (FWE) cluster-corrected p < 0.05 (k >= 21). 
Abbreviations: Hem: Hemisphere, L: left, R: right; k: cluster size. 
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