
              

City, University of London Institutional Repository

Citation: Tabar, A. M., Tsavdaridis, K. & Bravo-Haro, M. A. (2025). Identification of High-

Speed Moving Loads using Weakened Modal Shape Functions Conceptualised by Dynamic
Influence Line. Structures, 74, 108549. doi: 10.1016/j.istruc.2025.108549 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/34736/

Link to published version: https://doi.org/10.1016/j.istruc.2025.108549

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


1 
 

Identification of High-Speed Moving Loads using Weakened Modal Shape Functions 

Conceptualised by the Dynamic Influence Line 

Afshin Moslehi Tabar1*, Konstantinos Daniel Tsavdaridis2*, Miguel Bravo-Haro2 

1 Department of Civil Engineering, Tafresh University, 3951879611, Tafresh, Iran 

2 Department of Engineering, School of Science & Engineering, City, University of London, Northampton Square, 

EC1V 0HB, London, UK 

*Corresponding Author (Konstantinos.Tsavdaridis@city.ac.uk) 

Abstract 

Identification of moving loads is an inverse problem which is important for the lifespan evaluation of 

bridges. One of the challenging features is to overcome the ill-conditions commonly involved in the inverse 

problems. In this paper, the ill-conditions are significantly degraded using weakened modal shape functions 

conceptualised by the dynamic influence line. Employing the main concept of Muller-Breslau’s principle, 

a surrogate beam is developed by eliminating the required reaction. It is replaced by a dynamic load 

proportional to the modal shape functions of the surrogate beam; not those of the original beam. In this 

condition, the main source of singularities is eliminated. Consequently, the results obtained by the proposed 

method provide smooth curves that fit well to the exact solutions without any extra fluctuations which 

harden the load identification. The results obtained from the case studies show that the loads identified by 

the proposed method agree well with the exact solutions, although only the first shape function of the 

surrogate beam was involved. 

Keywords: Moving load identification; high speed loads; weakened shape functions; dynamic influence 

line; DIL 
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1. Introduction 

Monitoring a vehicle load passing a bridge is an important task for the assessment of the bridge health 

conditions [1]. The load identification gets more importance as the demand to use higher speed vehicles 

and heavier truck-train loads is growing up. These two features can deteriorate the health conditions of the 

existing bridges due to the fatigue phenomenon. Traditional methods measure the gross static load of 

vehicles. In these methods the vehicle is required to pass through a device line with a limited speed. 

However, for higher speeds, the dynamic effects of the problem rise, and static evaluation methods cannot 

be reliable.  

In recent decades, many researchers have developed methods to identify moving loads based on the inverse 

problems in the field of structural dynamics, well reviewed by Yu and Chan [2]. The pioneering attempt in 

this line was carried out by O’Connor and Chan [3], introducing a method for load identification named 

Interpretive Method I (IMI) by which the vehicle-bridge interaction forces are measured from the bridge 

total responses. In this method, the bridge is assumed to be a series of lumped masses interconnected by 

massless elastic beam elements. This method was improved by Chan et al. [4] using Euler-Bernoulli beam 

model and modal analysis to interpret the dynamic loads. Law et al. [5] developed the Time Domain Method 

(TDM) using the time-domain analysis. The time-domain analysis method was used to analyse the bridge 

deck as a simply supported Euler-Bernoulli beam under the vehicle/bridge interaction forces as one-point 

or two-point loads. Since then, TDM was promoted using the Fourier transformation and the frequency 

time-domain method (FTDM) was developed [6,7]. In FTDM, the axle load identification is conveniently 

upgraded using the Fourier transformation of the load response and the method of least squares. Moreover, 

different promotions have been adopted to better identify the moving loads using different fitting functions 

and introducing more convenient integration methods [8,9,10].  

The inverse solutions mentioned above have an intrinsic weak point. The inversion of the structural matrices 

suffers from ill-condition problems [11]. Pinkaew [12] utilised an updated static component technique to 

promote the accuracy of the identified loads. González et al. [13] introduced an algorithm based on first-

order Tikhonov regularisation to identify the moving forces. In this direction, research has been performed 

to mitigate ill-condition problems by using different regularisation methods [14-19]. Li et al. [20] developed 

a hybrid LSQR algorithm to improve the ill-posedness of the inverse problem solved by the time domain 

analysis. Chen et al. [21] carried out a comparative study of the criteria for regularisation parameter 

selection. Some researchers utilised the Singular Value Decomposition (SVD) method [22], however, it 

commonly requires excessive computation process for regularisation, motivating some researchers to 

improve the SDV method. Using truncated methods to make SVD less sensitive to noise are efficient 
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solutions [23,24]. Furthermore, the abilities of the artificial neural network (ANN) in pattern recognition 

and optimisation have become another reliable tool in the field of load identification [25,26].  

According to the state-of-the-art review carried out by Paul and Roy [27] in the field of the bridge weigh-

in-motion (B-WIM), the bridge influence line in any form plays a vital role as the main background of 

bridge health monitoring methodologies. During the initial practice of first-generation B-WIM system, 

Moses [28] used theoretical static influence line which estimates the gross vehicle weight rather accurately. 

Past studies have confirmed that the bending moment responses are independent to noises as compared to 

the acceleration responses [29]. Consequently, many researchers have taken the moment influence line as 

a base for identification of moving loads. Wang et al. [30] employed influence lines to fit dynamic strain 

for identification of axle loads. The influence line is also used for damage detection [31,32]. Using the 

influence line principle, the transverse distribution of the moving load was studied by Yang et al. [33]. Qian 

et al. [34] reduced the singularity and ill-conditioned matrix by involving the inertial effects in the definition 

of the dynamic moment. The proposed approach utilising the influence lines of bending moment for the 

moving load identification showed high effectiveness.  

In the aforementioned methods, the main approach is based on the mathematical solutions existing in the 

field of linear Algebra or numerical computations to mitigate the singularity problems. Whereas this paper 

aims to overcome the singularity consequences by means of a structural engineering concept, i.e., the 

influence line (IL). Albeit the IL was originally developed in the field of structural statics assuming the 

moving load velocity is negligible, the concept was promoted to the dynamics, called the dynamic influence 

line (DIL), to take the inertia sources and the velocity into consideration [35,36]. In this paper, the DIL 

method is employed to  replace the bridge-vehicle dynamic problem with a surrogate structural system 

under a dynamic point load. The structural shape functions of the surrogate structure and the assumed 

dynamic load function are weakened so that the source of singularities is eliminated. Although this process 

reduces the accuracy of the identified loads to some extent, it is simple and convenient for practical 

purposes. It is worth mentioning that the proposed method is herein implemented for the load identification, 

however, it can be utilised in the field of the damage detection in which the response of specific members 

of a structure should be determined. Furthermore, it should be noted that the present method works based 

on the external and internal reactions which can be monitored by proper setting of strain gages, using 

longitudinal gages at the bottom face of the beam for evaluation of the beam moment or using rosette strain 

gages for identification of the shear.   
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2. Development of the proposed load identification method 

To describe the main concept of the proposed method, a single moving load, P, is considered to pass along 

a multi-span beam with a constant speed v, as shown in Fig. 1. This case is indeed simulating a multi-span 

bridge super-structure subjected to a moving load in a simple way. The beam deformation and the distance 

of the load P at any given time are denoted by 𝑦 (𝑥, 𝑡) and 𝜉 (𝑡), respectively.  

 

Fig. 1. Specification of a multi-span beam under a moving load  

 

By using modal decomposition method, the deformation of the beam shown in Fig. 1 is evaluated as 

follows:  

𝑦(𝑥, 𝑡) = ∑ 𝜙𝑖(𝑥) 𝜂𝑖(𝑡)

∞

𝑖=1

 (1) 

 

where 𝜙𝑖 is the modal shape functions of the beam, and 𝜂𝑖 is the corresponding modal generalized 

coordinate.  

Given y(x,t), the internal moment and shear actions can be obtained as follows: 

𝑀(𝑥, 𝑡) = 𝐸𝐼 ∑
𝑑2

𝑑𝑥2
𝜙𝑖(𝑥) 𝜂𝑖(𝑡)

∞

𝑖=1

 (2) 

𝑉(𝑥, 𝑡) = 𝐸𝐼 ∑
𝑑3

𝑑𝑥3
𝜙𝑖(𝑥) 𝜂𝑖(𝑡)

∞

𝑖=1

 

(3) 

As an alternative method to determine the variation of an arbitrary external or internal reaction (like the 

reaction of the j-th support) during the time of passing, the superposition principle is employed, as shown 
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in Fig. 2. Indeed, the original structure shown in Fig. 1 is decomposed into a surrogate structure under two 

different loading conditions, as shown in Fig. 2. According to the superposition principle, the composition 

of the structures shown in Figs. 2(a) and 2(b) is equivalent to the original structure providing that the 

reaction of the j-th support (shown in Fig. 2b) neutralises the deformation at the j-th support position of Fig. 

2(a) induced by the load P moving along the beam.        

 

Fig. 2. Surrogate beam induced by eliminating a reaction  

 

With the elimination of a reaction, a surrogate structure is developed so that the order of its modal shape 

functions, 𝜙𝑠𝑖, is weakened as compared to that of the original structure, i.e., 𝜙𝑖.  

In this condition, the deformation of the surrogate beam shown in Fig. 2(a) is evaluated as follows:  

𝑦𝑠
(1)

(𝑥, 𝑡) = ∑ 𝜙𝑠𝑖(𝑥) 𝜂𝑠𝑖
(1)

(𝑡)

∞

𝑖=1

 (4) 
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where 𝜂𝑠𝑖
(1)

 is the modal generalised coordinate of the surrogate beam shown in Fig. 2. Since the force acting 

on the beam is a moving concentrated load located at 𝜉(𝑡), it can be defined as below: 

 

𝑞𝑠
(1)(𝑥, 𝑡) = 𝑃 𝛿(𝑥 − 𝜉) (5) 

 

in which  is the delta-Dirac function. The generalised force corresponding to the i-th mode can be 

determined as: 

 

𝑄𝑠𝑖
(1)

(𝑡) = 𝑃 ∫ 𝜙𝑠𝑖(𝑥) 𝛿(𝑥 − 𝜉)𝑑𝑥
𝑙

0

= 𝑃 𝜙𝑠𝑖(𝜉) (6) 

 

By using the Duhamel's integral, the generalised coordinate for the i-th mode is obtained as: 

 

𝜂𝑠𝑖
(1)(𝑡) =

𝑃

𝜔𝑠𝑖
∫ 𝑄𝑠𝑖

(1)(𝜏) sin 𝜔𝑠𝑖(𝑡 − 𝜏) 𝑑𝜏
𝑡

0

 

 

(7) 

in which 𝜔𝑠𝑖 is the natural frequencies of the surrogate beam. 

Now, it is assumed that the surrogate beam is subjected to the load 𝑅(𝑡) = 𝑅 𝜙𝑠𝑖(𝜉) at the j-th support as 

shown in Fig. 2(b). Accordingly, the deformation of the surrogate beam is derived as follows: 

𝑦𝑠
(2)

(𝑥, 𝑡) = ∑ 𝜙𝑠𝑖(𝑥) 𝜂𝑠𝑖
(2)

(𝑡)

∞

𝑖=1

 (8) 

 

in which 𝜂𝑠𝑖
(2)

 is the modal generalised coordinate of the surrogate beam shown in Fig. 2(b). Since the force 

acting on the beam is a concentrated load located at 𝑥𝑗, it can be defined as below: 

𝑞𝑠
(2)(𝑥, 𝑡) = 𝑅 𝜙𝑠𝑖(𝜉) 𝛿(𝑥 − 𝑥𝑗) (9) 

 

The generalised force corresponding to the i-th mode can be determined as: 

https://en.wikipedia.org/wiki/Duhamel%27s_integral
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𝑄𝑠𝑖
(2)

(𝑡) = 𝑅 ∫ 𝜙𝑠𝑖(𝑥) 𝜙𝑠𝑖(𝜉) 𝛿(𝑥 − 𝑥𝑖) 𝑑𝑥
𝑙

0

= 𝛽𝑠𝑖𝑄𝑠𝑖
(1)

(𝑡) 

 

(10) 

in which 

𝛽𝑠𝑖 = (
𝑅 

𝑃
) 𝜙𝑠𝑖(𝑥𝑖) (11) 

 

Then, the modal generalised coordinate of the surrogate beam shown in Fig. 2(b) is derived as:    

𝜂𝑠𝑖
(2)

(𝑡) =
𝛽𝑠𝑖𝑃

𝜔𝑠𝑖
∫ 𝑄𝑠𝑖

(1)
(𝜏) sin 𝜔𝑠𝑖(𝑡 − 𝜏) 𝑑𝜏

𝑡

0

 (12) 

 

Now, comparing Eq. (12) to Eq. (7), the following relationship is developed between 𝜂𝑠𝑖
(1)

 and 𝜂𝑠𝑖
(2)

:  

𝜂𝑠𝑖
(2)(𝑡) = 𝛽𝑠𝑖  𝜂𝑠𝑖

(1)(𝑡) (13) 

 

This proves that the generalised coordinate of the surrogate beams shown in Figs. 2(a) and 2(b) are 

proportional to each other only if the concentrated load 𝑅(𝑡), imposed in Fig. 2(a), is proportional to the 

modal shape functions of surrogate beam. In other words, choosing 𝑅(𝑡) = 𝑅 𝜙𝑠𝑖(𝜉) is true. Furthermore, 

the same method can be implemented for the moment reactions, except that the surrogate beam is obtained 

by eliminating the required internal moment. As an example, the surrogate beam needed to evaluate the 

DIL of the internal midspan moment is shown in Fig. 3.  
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Fig. 3. Surrogate beam for internal moment influence line  

In this case, the slopes induced in the surrogate beams shown in Figs. 3(a) and 3(b) should neutralise each 

other. Accordingly, the slopes are needed to find as follows: 

𝑑𝑦𝑠
(1)

𝑑𝑥
(𝑥, 𝑡) = ∑

𝑑𝜙𝑠𝑖

𝑑𝑥
(𝑥) 𝜂𝑠𝑖

(1)
(𝑡)

∞

𝑖=1

 

 

(14) 

 

𝑑𝑦𝑠
(2)

𝑑𝑥
(𝑥, 𝑡) = ∑

𝑑𝜙𝑠𝑖

𝑑𝑥
(𝑥) 𝜂𝑠𝑖

(2)
(𝑡)

∞

𝑖=1

 

 

(15) 

In addition, the generalised force corresponding to the i-th mode of the beam shown in Fig. 3(b) is 

determined as: 

𝑄𝑠𝑖
(2)(𝑡) = 𝑀 ∫

𝑑𝜙𝑠𝑖

𝑑𝑥
(𝑥)

𝑑𝜙𝑠𝑖

𝑑𝑥
(𝜉) 𝛿(𝑥 − 𝑥𝑖) 𝑑𝑥

𝑙

0

= 𝑀 
𝑑𝜙𝑠𝑖

𝑑𝑥
(𝑥𝑖) 

𝑑𝜙𝑠𝑖

𝑑𝑥
(𝜉) 

(16) 
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Finally, Eqs. (12) and (13) imply that any reaction of the original beam during the time, or the influence 

line in other words, is equivalent to the variation of the corresponding deformation of the beam while 

subjected to the force 𝑅(𝑡) = 𝑅 𝜙𝑠𝑖(𝜉) which is proportional to the surrogate beam deformation. This 

finding agrees with the main concept of the Muller-Breslau’s principle.  

The merit of this finding in the field of the moving load identification is that the singularity sources, existing 

near the location of the required reaction, are eliminated by using a weakened form of the modal shapes of 

the surrogate beam. Furthermore, the modal shape functions used in the present method belong to the 

surrogate structure which are of lower order, making the computations much simpler and faster.  

It should be noted that the proposed method is based on the Euler beam theory. However, the general finding 

of the theory may be adopted to more complicated beam theories in which the shear deformation or any 

sources of inhomogeneity, porosity, composite action, nonlinearity and cracks are involved [37-42]. For 

this purpose, the key task is to find modal shape functions of the surrogate beam in presence of the desired 

effects. This can be performed either by beam theories or other methods such as FEM.          

3. Validation of the proposed method 

The validity of the proposed method is examined by means of examples described in this section. In the 

first two parts, the accuracy of the method in the structural analysis is evaluated for a single load (a simpler 

problem), moving on both statically determinate and indeterminate structures. Indeed, the application of 

the theory is generally the same for both cases, except that in the statically determinate structures, the 

surrogate structure consists of some unstable members with only one mode of vibration. This makes the 

analysis of the statically determinate structures much easier. Since many of bridges are statically 

determinate the proposed method may be applied conveniently. Moreover, the feasibility of the proposed 

method is verified by comparing its results with a test data obtained by Yang et al. [24] in Example 4.   

3.1. Statically determinate structures 

3.1.1. Example 1  

A simply supported 20 m long beam is considered as shown in Fig. 4. A concentrated load P passes along 

the beam with constant speed of 40 m/s (144 km/h). The variation of the reaction of the support B and the 

mid-span moment is evaluated.  
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Fig. 4. Specification of simply supported beam  

For determining the reaction at the support B and the moment at the mid-span using the proposed method, 

the exact sinusoidal modes of vibration of a simple span beam in the form of sin
𝑛𝜋𝑥

𝑙
 are converted to the 

linear ones as shown in Figs. 5(a) and 5(b) for the support B reaction and the mid-span moment, 

respectively. Accordingly, not only the exact shape functions are weakened to linear ones, but the infinite 

number of the modes are reduced to only one mode in this beam as a statically determinate structure.     

 

Fig. 5. Surrogate beams for determination of: (a) the support B reaction; (b) the mid-span moment  

The goal is to investigate the accuracy and the efficiency of the proposed method as compared with the 

exact nonlinear solution and the modal decomposition method. For the exact solution, the capability of 

SAP2000 [43] software in the modelling of moving load was used based on the nonlinear time-history 

analysis. Moreover, the modal decomposition method has a well-known solution coming from the field of 
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structural dynamics [44] in which the deflection of a simple supported beam under a moving load is 

obtained as below [44]: 

𝑦(𝑥, 𝑡) =
2𝑃𝑙3

𝐸𝐼𝜋4
∑

1

𝑛4

1

1 − (𝜔0/𝜔𝑖)2
sin

𝑛𝜋𝑥

𝑙
 (sin𝜔0𝑡 −

𝜔0

𝜔𝑖
sin𝜔𝑖𝑡)

∞

𝑖=1

 (17) 

 

Consequently, the reaction of support B and the mid-span moment of the beam can be derived as follows: 

𝑅𝑏(𝑙, 𝑡) =
2𝑃

𝜋
∑

(−1)𝑖

𝑖

1

1 − (𝜔0/𝜔𝑖)2
 (sin𝜔0𝑡 −

𝜔0

𝜔𝑖
sin𝜔𝑖𝑡)

∞

𝑖=1

 

 

(18) 

𝑀(𝑥, 𝑡) = −
2𝑃𝑙

𝜋2
∑

(−1)𝑖

𝑖2

1

1 − (𝜔0/𝜔𝑖)2
 (sin𝜔0𝑡 −

𝜔0

𝜔𝑖
sin𝜔𝑖𝑡)

∞

𝑖=1,3,5,…

 

 

(19) 

To assess the efficiency of the method in comparison to the modal decomposition method, the reaction and 

the mid-span moment, introduced by Eqs. (18) and (19), were evaluated with different number of modes 

(1,5,10,15,20,50,100). The reaction of support B is normalised by the load P as shown in Fig. 6. As 

observed, the method could trace the exact nonlinear solution with an acceptable smooth curve without 

fluctuation. On the other hand, in the classic modal decomposition, a lot of modes should be involved to 

reach an acceptable accuracy.  

 

Fig. 6. Variation of the support B reaction during the load passage  

To assess the differences in detail, the error of the evaluated reaction in different locations (L/5, 2L/5, L/2, 

3L/5 and 4L/5) with respect to the exact nonlinear solution is given in Table 1. The accuracy in the regions 
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near the end support is lower because of the inertial forces acting at the beginning of vibration and the 

ending free vibrations. As observed, the present method provides relatively accurate estimations at the 

middle parts of the beam (2L/5 to 3L/5) when considering only one mode. It is worth noting that in the 

modal decomposition method more than 20 modes of vibration are required to reach desirable accuracy, 

taking 0.0025-s CPU time [Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz   2.90 GHz]. The time elapsed 

for the present DIL is approximately 0.0008 s, i.e., one third of that needed for the modal analysis.    

The same investigation was carried out for the mid-span moment. The results are shown in Fig. 7 and Table 

2. In Fig. 7, the moments were normalised by the maximum static moment (PL/4). The results prove that 

the present method has good accuracy despite its simplicity.  

Table 1. Error in support B reaction with respect to nonlinear time-history analysis (%) 

Method No. of 

modes 

Measurement location 

L/5 2L/5 L/2 3L/5 4L/5 

Modal 1 135.3 125.7 95.9 55.5 32.9 

10 13.0 13.7 0.9 12.6 20.1 

20 6.7 7.2 3.8 5.2 10.5 

100 2.7 1.2 3.3 2.2 1.0 

Present DIL 1 18.6 3.6 4.8 2.7 8.9 

 

 

Fig. 7. Variation of the mid-span moment during the load passage 
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Table 2. Error in mid-span moment with respect to nonlinear time-history analysis (%) 

Method No. of 

modes 

Measurement location 

L/5 2L/5 L/2 3L/5 4L/5 

Modal 1 23.2 4.7 12.3 4.5 33.0 

10 3.1 2.4 5.5 0.6 0.7 

20 2.1 1.9 2.7 0.8 0.3 

100 1.8 1.6 1.1 0.2 0.2 

Present DIL 1 3.8 2.8 1.5 1.2 14.1 

  

In addition, the sensitivity and accuracy of the proposed method in terms of various speed of the moving 

load is studied. Herein the moving load is considered to pass along the simple support beam with speed of 

20, 40 and 80 m/s (72, 144 and 288 km/h, respectively). The results for the reaction at the support B and 

the moment at the mid-span are illustrated in Figs. (8) and (9), respectively. Similarly, the proposed method 

showed acceptable estimation of the actions. The corresponding curves are smooth without extra fluctuation 

which eases the load identification process in comparison to the modal decomposition method in which 

load identification is complicated due to the excessive number of modes required. It should be noted that 

the first 20 modes of vibration have been involved in the modal decomposition method while only one 

mode provides adequate accuracy in the present DIL method.  

Moreover, in Figs. (8) and (9), the static influence line is also shown. The comparison between similar 

curves obtained by the proposed method and the static influence line reveals how the inertia sources, i.e., 

moving load velocity and mass, affect the structural responses. This difference is much more noticeable for 

the loads with higher speeds.  
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(c) 

Fig. 8. Variation of the support B reaction during the load passage with the speed of: (a) 20 m/s; (b) 

40m/s; (c) 80 m/s  
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(b) 

 

(c) 

Fig. 9. Variation of the mid-span moment during the load passage with the speed of: (a) 20 m/s; (b) 

40m/s; (c) 80 m/s  

 

3.2. Statically indeterminate structures 
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Two statically indeterminate beams shown in Fig. 10 are analysed under a single moving load. The goal is 

to assess how the present method works for statically indeterminate structures as well. 

 

 

Fig. 10. Two statically indeterminate beams under a single moving load  

 

3.2.1. Example 2  

A similar study was performed on a fixed-simple support beam as shown in Fig. 10(a). The exact modes of 

vibration of a simple span beam (Fig. 10) given in [44] is rewritten as follows: 

𝜙𝑖(𝑥) = (cos 𝛽𝑖𝑥 − cosh 𝛽𝑖𝑥) − 𝐶1𝑖(sin 𝛽𝑖𝑥 − sinh 𝛽𝑖𝑥) 

 

𝐶1𝑖 =
cos 𝛽𝑖𝑙 − cosh 𝛽𝑖𝑙

sin 𝛽𝑖𝑙 − sinh 𝛽𝑖𝑙
;     𝛽1𝑙 = 3.9266;  𝛽2𝑙 = 7.0686; … 

 

(20) 

 

For determination of the support B reaction using the present method, the corresponding reaction is omitted, 

see Fig. 11(a), and the modes of vibration of the resulted surrogate beam will be as follows [44]: 
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𝜙𝑠𝑖−𝑅(𝑥) = (cos 𝛽𝑖𝑥 − cosh 𝛽𝑖𝑥) − 𝐶2𝑖(sin 𝛽𝑖𝑥 − sinh 𝛽𝑖𝑥) 

 

𝐶2𝑖 =
cos 𝛽𝑖𝑙 + cosh 𝛽𝑖𝑙

sin 𝛽𝑖𝑙 + sinh 𝛽𝑖𝑙
;     𝛽1𝑙 = 1.8751;  𝛽2𝑙 = 4.6941; … 

(21) 

 

In addition, for determination of the support A moment, the surrogate beam is a simply supported beam, as 

shown in Fig. 11(b), with the following modes of vibration: 

𝜙𝑠𝑖−𝑀(𝑥) = sin
𝑖𝜋𝑥

𝑙
 

 

(22) 

 

Fig. 11. Surrogate beams for determination of: (a) the support B reaction; (b) the support A moment  

Alike Example 1, the sensitivity of the proposed method in terms of various speeds of the moving load is 

studied for the new end conditions. The results for the support B reaction and the support A moment are 

illustrated in Figs. (12) and (13), respectively. The accuracy of the method can be observed by comparing 

the corresponding results with those obtained by the nonlinear time history analysis. As observed by the 

graphs, the reaction estimated by the modal decomposition method has fluctuation which harden the load 

identification, while the proposed method provides a smooth curve that fits well to the nonlinear time-

history analysis. It should be declared that the results of proposed method were obtained by incorporating 

the first mode of vibration of the surrogate beam.  
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(c) 

Fig. 12. Variation of the support B reaction during the load passage with the speed of: (a) 20 m/s; (b) 

40m/s; (c) 80 m/s  
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(b) 

 

(c) 

Fig. 13. Variation of the support A moment during the load passage with the speed of: (a) 20 m/s; (b) 40 

m/s; (c) 80 m/s  
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3.2.2. Example 3  

The dynamic influence line of the support B reaction of the 2-span beam under a single load moving with 

the speed of 40 (m/s) is investigated in the following example (Fig. 10(b)). The surrogate beam related to 

this reaction is shown in Fig. 14. 

 

Fig. 14. Surrogate beam for determination of the support B reaction  

The results for the reaction at the support B obtained from the proposed method and those resulted from the 

nonlinear time-history analysis are compared in Fig. 15. The static influence line is also illustrated in Fig. 

15. As it is observed, the proposed DIL is converged to the SIL, however it reflects better the effect of 

dynamic sources.  

 

Fig. 15. Variation of the support B reaction determined by different methods  

3.4. Singularity assessment 

In the modal decomposition method, singularity sources are commonly involved, especially for statically 

determinate structures. In Example 1, Rb should have a finite value once the load reaches the support B, 
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while it tends to zero for all the modes of vibration since those are sinusoidal. This means that infinite 

number of modes should be involved to approach the finite value of Rb, making the analysis time 

consuming. Fig. 16 illustrates the error percentage of 1 m end length of the beam. The figure implies that a 

large number of modes should be considered to amend singularity issue of the modal decomposition method 

existing near the support B. On the other hand, such a problem is not observed in the proposed DIL method.     

 

Fig. 16. Analysis error adjacent to the beam end  

 

3.5. Example 4: A two-axle moving load 

This example is based on a laboratory test carried out by Yang et al. [25]. In this test, a model two-axle load 

is considered to move along a 2 m long beam with the speed of 0.25 m/s, as shown in Fig. 17. The beam 

has a cross-sectional area of 10x150 mm2. The moving load weighs 9.38 kg, equally divided between the 

front and rear axles. The strain response of the beam’s bottom face was monitored at different locations 

along the beam length. However, the results obtained at the mid-span, shown in Fig. 17, were taken as a 

base to evaluate the present method efficiency in prediction of the beam response under moving load. The 

response of the beam was evaluated by combination of the DILs of the front and rear axles shown in Fig. 

17 by the grey curves. It was observed that the evaluated response fits well with the results of simulation 

and has a good agreement with the test data obtained by Yang et al. [25]. The details of the evaluation using 

the proposed DIL method is described in the next section.   

 

0

20

40

60

80

100

120

19 19.2 19.4 19.6 19.8 20

R
b

er
ro

r 
(%

)

x (m)

Modal (No.=1)

Modal (No.=10)

Modal (No.=20)

Modal (No.=100)

Proposed DIL



24 
 

 

Fig. 17. Verification of the present method by comparing with test data [25]  

4. Generalisation of load identification using the proposed DIL method 

Based on the previous examples, a flowchart is outlined for the identification of a multi-axle moving load, 

as shown in Fig. 18. 

 



25 
 

 

Fig. 18. Flowchart of moving load identification  

4.1. Description of the flowchart steps 

Step 1: Similar to the Examples 1-3, the DIL of the required reaction of the beam is determined depending 

on the support conditions and the load speed. 

Step 2: N similar DILs, where N is the number of axles, are arranged at a distance equal to the wheelbase 

(see Fig. 19). 

Step 3: At least, N relationships can be developed among different axle loads as follows. These relationships 

are regarded as constraints for identification of the moving loads.    

𝑅𝑖 = 𝐷𝐼𝐿𝑖 (𝑃𝑖 + 𝑃𝑖+1)    𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁 (23) 

1. Determination of DIL for 

the specific action 

2. Arrangement of DILs 

according to the wheelbase 

3. Generating relationships 

among different axle loads 

4. Generating an acceptable 

combination of axle loads 

5. Calculation of standard 
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Step 4: According to the above-mentioned relationships, a set of acceptable axle loads are predicted, i.e., 

𝐏 = {𝑃1, 𝑃2, … , 𝑃𝑁| 𝑅𝑖 = 𝐷𝐼𝐿𝑖 (𝑃𝑖 + 𝑃𝑖+1)    𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁} 

 
(24) 

Step 5: The response of the beam under the predicted multi-axle moving loads is determined as follow: 

𝑅𝑃𝑟𝑒𝑑 = ∑(𝐷𝐼𝐿𝑃𝑖) 𝑃𝑖 

𝑁

𝑖=1

 

 

(25) 

 

 

Fig. 19. Application of DIL method for moving load identification 

The standard deviation of the predicted response is evaluated in comparison to the monitored data (or 

simulated data as utilised in this paper). If the calculated SD satisfies the required SD, the identification 

process is terminated. Otherwise, the process should be executed again from Step 5 by assuming another 

set of acceptable axle loads. An application of the method is conducted in the following example. 

 

4.2. Example 5: Evaluation of the axle loads of a two-axle vehicle  

A two-axle vehicle is considered to pass along a simply supported beam with the speed of 40 m/s (144 

km/h), as shown in Fig. 20. The front and rear axles weigh 7 kN and 5 kN, respectively. 
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Fig. 20. A two-axle vehicle moving on a simple supported beam  

A nonlinear time-history analysis was conducted in SAP2000 [43]. The corresponding results for the mid-

span moment during the time of passage, shown in Fig. 21, are taken as a benchmark to find out the accuracy 

of the present method. In Fig. 21, the two grey curves depict the dynamic influence lines of mid-span 

moment, as obtained in Example 1, with 0.0625 (s) time difference denoting the distance between the axles.   

 

Fig. 21. Mid-span moment during the time obtained by nonlinear time-history analysis  

To estimate the mid-span moment using the present method, a linear combination of the mid-span dynamic 

influence lines of two axles are used as follows: 

𝑀𝐿/2 = (𝐷𝐼𝐿𝑃1
) 𝑃1 + (𝐷𝐼𝐿𝑃2

) 𝑃2 

 
(26) 
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in which 𝑀𝐿/2 is the mid-span moment during the time measured in site or obtained from the nonlinear 

time-history analysis in this paper; (𝐷𝐼𝐿𝑃1
) and (𝐷𝐼𝐿𝑃2

) are the magnitude of the dynamic influence lines 

obtained from the present method as illustrated in Example 1; and 𝑃1 and 𝑃2 are, respectively, the front and 

rear axle loads which are assumed to be unknown.   

In this example, the intersection of the dynamic influence lines is an appropriate point to determine the sum 

of the axle loads because (𝐷𝐼𝐿𝑃1
) and (𝐷𝐼𝐿𝑃2

) are the same and 𝑃1 + 𝑃2  is equal to 12.08 kN, hence with 

less than 0.6% error.  

For the next step, a variety of values for  𝑃1 and 𝑃2 is considered provided that their summation is 12.08 

kN. In each case, the correlation between the nonlinear time-history diagram and that resulted from the 

present method is evaluated based on the standard deviation. The results are presented in Fig. 22. It is 

obtained that the least standard deviation is attained as 𝑃1 and 𝑃2 equal 7.04 kN and 5.04 kN, respectively. 

The results anticipated by the present method has 0.8% error, approximately.    

 

Fig. 22. Standard deviation in terms of different values of axle loads  

The accuracy of the results from the present method and those obtained from the nonlinear time-history 

analysis are depicted in Fig. 23. An appropriate correlation exists between the corresponding responses. 
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Fig. 23. Mid-span moment during the time 

4.3. Example 6: case study with field data 

In this section a case study is considered for the validation of the proposed method using real field data. 

The case study corresponds to an instrumented Network Rail E-type steel half-through railway bridge. This 

structure has a single skew span of 26.82 m carrying two rail lines within the West Coast Main Line near 

the city of Crewe in the United Kingdom. The primary structural components of the bridge include two 

steel longitudinal girders, steel transversal beams, and a reinforced concrete (RC) deck. The longitudinal 

girders are I-shaped steel plates, precambered and 2.2 meters deep, simply supported by RC abutments at 

both ends. The transversal beams, which provide lateral strength and stability, are universal column (UC) 

sections with a depth of 0.368 meters. The deck is a composite structure 0.250 meters deep, featuring a 

double layer of steel reinforcement. For a comprehensive description of the structural system and 

visualization of the sensor data within a BIM environment, readers can refer to sources [45, 46]. 

The sensing system installed in the bridge has unique monitoring features, as it was designed to be used 

both during construction and operation and was integrated during the construction phase. Implementing the 

sensing system from the conceptual design stage addresses a critical gap for developing a digital twin and 

understanding the undamaged structural integrity of the bridge, providing a valuable baseline for future 

comparisons throughout its operational life [47]. This early-stage instrumentation included fibre-optic-

based strain and temperature Fibre Bragg Grating (FBG) sensors installed along the flanges of the main 

steel girders and the concrete deck. Additionally, extra sensors for detecting accelerations were added in 

the first half of 2021, along with a new centralised data acquisition system [48]. Such monitoring system 
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has enabled the development of an online platform for the continuous monitoring of the structural health of 

the bridge, equipped with several features such a real-time B-WIM system [49], among others. For this 

study, the strain deformation data recorded by the FBG sensors at the main steel girders is used, specifically 

during the crossing of a New Measurement Train (NMT) because the weight and layout of the axles are 

precisely known. In particular, a NMT crossing (03.03.2022 15:13:43 UTC) with 28 axles, a total weight 

of 332.84 Tons and an average speed of 84.03 mph is considered in the following. The full description of 

the bridge and monitoring system can be found in Refs. [48] and [49]. 

The midspan deflection of the main girder monitored by the B-WIM system is illustrated in Fig. 24. 

According to Fig. 24, the train entered the bridge at, approximately, 14.9 s and passed it completely at about 

19.5 s. Consequently, the following dynamic analysis was performed for about 5 seconds.     

 

Fig. 24. Midspan deflection during the time 

The corresponding midspan moment was obtained based on the monitored deflections. Indeed, the moment 

was calculated with the well-known formula M=EI d2y/dx2 using the finite difference method. The results 

are shown in the following figure. It should be noted that for this calculation, the bridge moment of inertia 

(=3.8×107 cm4 as a double I-shaped section) was multiplied by a modifier of 0.75 to take the load 

eccentricity into account. The modifier 0.75 is derived assuming the load is located at the ¼ width of section 

from the west girder.  
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Fig. 25. Midspan moment during the time 

For using the proposed dynamic method, the bridge was simplified to a simple support-single span beam 

element. Then, the dynamic influence line of the midspan moment is derived as shown in Fig. 26. However, 

to verify the accuracy of this simplification, the midspan moment derived by the simplified model (1D 

model) is compared, in Fig. 26, with that obtained by modelling the bridge as a 2D model using SAP2000 

[43] software. As inferred from Fig. 26, the resulting curves are so close to each other. Accordingly, the 1D 

model is used for next analyses.   

 

Fig. 26. DIL of mid-span moment (velocity=37.6 m/s) 

-5000

0

5000

10000

15000

20000

25000

30000

35000

0 10 20 30 40 50 60

M
id

sp
an

 m
o

m
en

t 
(k

N
.m

)

time (s)

Extracted from monitored strains

-20

-10

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M
id

sp
an

 m
o

m
en

t 
(k

N
.m

)

time (s)

Midspan moment (1D Model)

Midspan moment (2D model)



32 
 

Since the train has 28 axles, 28 DILs with specific time intervals (which are derived by dividing the distance 

between to consequent axles by the train velocity) are arranged. The midspan moment during the time (5 

seconds, approximately) or midspan moment DIL is obtained by the sum of 28 arranged DIL multiplied by 

the corresponding axle weight. The results obtained by the proposed DIL method is given in Fig. 28 in 

comparison to the corresponding results derived based on the monitored displacements.    

 

Fig. 27. Comparison between the monitored and predicted data  

As observed, the estimated dynamic response is in good accordance to the monitored data regarding the 

maximum moment. Moreover, the figure shows that the proposed DIL method, as a practical method, is 

able to estimate the variation of the required reactions during the time. To quantify the accuracy of the 

predicted data, the cumulative errors of the proposed method were evaluated at extremums, and the results 

are illustrated in Fig. 28. The maximum and the average errors are 9.4% and 3.3%, respectively.   
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Fig. 28. Error of the data predicted by the proposed DIL method  

 

5. Concluding remarks 

This paper develops a method based on a well-known structural engineering concept to solve the ill-

conditions existing in the moving load identification and its singularity consequences. In the proposed 

method the bridge-vehicle dynamic problem is replaced by a surrogate structural system under a dynamic 

point load. Since the modal shape functions and the assumed dynamic load function are weakened, the 

source of singularities is eliminated. The accuracy of the method was examined via three types of examples. 

The first example was related to identification of a one-axle vehicle moving along a simply supported beam 

as a statically determinate problem. The moving load speed varied from 20 m/s to 80 m/s single beam. The 

workability of the present method for statically indeterminate structures was evaluated through the second 

example, which was same as the first one except that one of the supports was assumed to be fixed. The 

ability of the proposed method in the identification of a two-axle vehicle moving along a simply supported 

beam was investigated through the third example. Finally, the method was examined based on the data 

monitored by a real bridge weigh-in-motion system. The main findings are summarised as follows: 

1. Using the weakened shape functions, acceptable results were achieved by considering the only 

possible shape function of the surrogate beam in case the original beam is statically determinate. 

For the statically indeterminate beams , the first shape function of the surrogate beam provides 

adequate accuracy in load identification.  
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2. For simply supported beams, the moving load is estimated with an error of less than 5% by taking 

only a linear shape function (as the only possible shape function) for a surrogate beam. While, in 

the modal decomposition method, such accuracy is obtained by using more than 20 modal shape 

functions. The numerous shape functions make the load identification more complicated. 

3. The proposed method also worked well for the statically indeterminate beams. 

4. The front and rear axle loads of a two-axle vehicle moving along a simply supported beam was 

estimated with less than 1% error. 

5. The midspan moment predicted by the proposed method agree well with the data monitored by the 

B-WIM system installed on a real bridge. The maximum and the average errors were 9.4% and 

3.3%, respectively.  

6. It should be noted that although the present method was employed on the uniaxial superstructures 

using the dynamic influence line, it can readily be generalized to the biaxial superstructures using 

the concept of the dynamic influence area.   

According to the accurate and reliable results obtained from the present method, it can be regarded as a 

simple and practical way for identification of moving loads. However, it should be noted that the effect of 

any sources of noise is not addressed in this paper and will be studied in subsequent studies.  
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