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Abstract

Objective: Photoplethysmography is widely used for
physiological monitoring, whether in clinical devices such
as pulse oximeters, or consumer devices such as smart-
watches. A key step in the analysis of photoplethysmogram
(PPG) signals is detecting heartbeats. The MSPTD algo-
rithm has been found to be one of the most accurate PPG
beat detection algorithms, but is less computationally ef-
ficient than other algorithms. Therefore, the aim of this
study was to develop a more efficient, open-source imple-
mentation of the MSPTD algorithm for PPG beat detec-
tion, named MSPTDfast (v.2). Approach: Five potential
improvements to MSPTD were identified and evaluated on
four datasets. MSPTDfast (v.2) was designed by incorpo-
rating each improvement which on its own reduced execu-
tion time whilst maintaining a high F1-score. After inter-
nal validation, MSPTDfast (v.2) was benchmarked against
state-of-the-art beat detection algorithms on four addi-
tional datasets. Main results: MSPTDfast (v.2) incorpo-
rated two key improvements: pre-processing PPG signals
to reduce the sampling frequency to 20 Hz; and only calcu-
lating scalogram scales corresponding to heart rates >30
bpm. During internal validation MSPTDfast (v.2) was
found to have an execution time of between approximately
one-third and one-twentieth of MSPTD, and a compara-
ble F1-score. During benchmarking MSPTDfast (v.2) was
found to have the highest F1-score alongside MSPTD,
and amongst one of the lowest execution times with only
MSPTDfast (v.1), qppgfast and MMPD (v.2) achieving
shorter execution times. Significance: MSPTDfast (v.2) is
an accurate and efficient PPG beat detection algorithm,
available in an open-source Matlab toolbox.

1. Introduction

Photoplethysmography sensors are widely used in phys-
iological measurement, whether in clinical devices such

as pulse oximeters, or consumer devices such as smart-
watches [1]. Photoplethysmography is a non-invasive op-
tical sensing technology, which measures the arterial pulse
wave [2]. A wide range of applications of photoplethys-
mography have been proposed, from cardiovascular to res-
piratory to mental health monitoring [3]. Each application
relies on accurate extraction of physiological information
from the photoplethysmogram (PPG) signal. A key step
in extracting physiological information from the PPG is
the detection of individual pulse waves, corresponding to
heartbeats [4]. Consequently, it is important to develop ac-
curate and efficient algorithms for PPG beat detection.

A wide range of PPG beat detection algorithms have
been proposed [5], and open-source implementations are
available for several of these algorithms [6]. A recent
benchmarking study assessed the performance of open-
source PPG beat detection algorithms, and identified the
MSPTD and qppgfast algorithms as the best-performing al-
gorithms [6]. However, this study only assessed the accu-
racy of the algorithms, and did not assess their efficiency.
Here, efficiency can be thought of in terms of the time re-
quired to run an algorithm, and its memory requirements
[7]. Efficiency is an important aspect of algorithm per-
formance alongside beat detection accuracy, because it di-
rectly impacts the range of devices an algorithm can be
deployed on, as well as the device’s power consumption.
Pulse oximeters and wearable devices operate under re-
source constraints, and so only sufficiently efficient algo-
rithms can be used on these devices. Furthermore, an al-
gorithm’s efficiency affects a device’s power consumption,
which in turn determines influences how frequently PPG
measurements can be taken whilst maintaining the desired
battery life. In initial experiments we observed that the
MSPTD algorithm had a much longer execution time than
other leading algorithms (such as qppgfast), indicating that
it could be beneficial to increase its efficiency [8].

The aim of this work was to develop a more efficient,
open-source implementation of the MSPTD algorithm for
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PPG beat detection, named MSPTDfast (v.2). The objec-
tives were to: (i) design MSPTDfast (v.2) by evaluating
its accuracy and performance when including each of sev-
eral potential improvements; (ii) benchmark MSPTDfast
(v.2) against leading beat detection algorithms; and (iii)
distribute and validate MSPTDfast (v.2) in an open-source
toolbox. This work builds on a recent conference paper [8],
which presented an initial design for MSPTDfast (v.1) de-
veloped using a subset of one of the eight datasets used in
the present study, and benchmarked against two of the six
comparator algorithms used in the present study.

2. Methods

The experiments reported in this study used the ppg-
beats framework [9] developed in [6] to assess the perfor-
mance of PPG beat detection algorithms. This framework
includes benchmark datasets, implementations of state-of-
the-art algorithms, and evaluation code. The framework
has been improved and extended since its original descrip-
tion, with key changes highlighted in this section. Some
aspects of the Methods and Section 3.1.1 are reproduced
from [8] under CC BY 4.0.

Ethical approval was not required for this study as it
used pre-existing, anonymised data.

2.1. Datasets

A total of eight freely available datasets were used in
this study, as summarised in Table 1. Each dataset includes
PPG signals and simultaneous ECG signals from which to
obtain timings of reference heartbeats. The datasets cover
a range of scenarios, from finger PPG recordings in hospi-
tal patients to wrist PPG recordings in healthy volunteers.

2.1.1. Development datasets

Four datasets were used in the development of MSPTD-
fast (v.2): CapnoBase, BIDMC, MIMIC PERform (Train-
ing), and PPG-DaLiA. The CapnoBase, BIDMC and
MIMIC PERform (Training) datasets contain predomi-
nantly high-quality PPG signals acquired via pulse oxime-
ters in hospital. In contrast, the PPG-DaLiA dataset con-
tains lower-quality PPG signals acquired from wearables
in activities of daily living. The CapnoBase dataset con-
tains recordings from 29 paediatric and 13 adult patients
during surgery and anaesthesia [10]. The BIDMC dataset
contains recordings from 53 critically-ill adult patients
[11]. The MIMIC PERform (Training) dataset contains
recordings from 200 critically-ill patients (100 adults, and
100 neonates) [6]. BIDMC and MIMIC PERform (Train-
ing) were both extracted from the larger MIMIC database
[6]. The PPG-DaLiA dataset contains recordings acquired
using the wrist-worn Empatica E4 device from 15 subjects

during a protocol of activities of daily living (the activities
consisted of sitting, working, cycling, walking, on a lunch
break, car driving, stair climbing, and playing table soc-
cer) [12]. The subjects were mostly young adults, with a
median (lower-upper quartiles) age of 28 (24–36) years.

2.1.2. Testing datasets

Four datasets were used to test MSPTDfast (v.2) and
other beat detection algorithms. Of these, the MIMIC
PERform (Testing) and WESAD datasets were used to
test performance. The MIMIC PERform (Testing) dataset
is similar to the previously described MIMIC PERform
(Training) dataset: it contains PPG signals acquired via
pulse oximeters from a different set of 200 critically-ill
patients (100 adults and 100 neonates) [6]. The WESAD
dataset is similar to PPG-DaLiA in that it also contains
recordings acquired using the wrist-worn Empatica E4 de-
vice from subjects during a research protocol, in this case
a protocol designed to induce different emotions (consist-
ing of a baseline measurement, and measurements during
meditation, amusement, and stress) [13]. In addition, the
MIMIC PERform Testing, AF and Ethnicity datasets were
used to investigate associations between the performance
of beat detection algorithms and patient characteristics:
between 100 adults and 100 neonates (Testing); between
19 subjects with and 16 subjects without atrial fibrillation
(AF); and between 100 Black and 100 White subjects (Eth-
nicity).

It should be noted that there were two key changes to
the way in which the datasets were used since the ppg-
beats assessment framework was originally described in
[6]. First, the PPG-DaLiA dataset was used for algorithm
development and the WESAD dataset for testing, whereas
the opposite was recommended in the original description.
This was because part of the PPG-DaLiA dataset had been
used for initial development of MSPTDfast (v.1) in [8],
and thus avoided any overfitting. Second, the entire PPG-
DaLiA and WESAD datasets were used in this analysis
rather than separating these datasets into subsets accord-
ing to activities. This approach was taken to simplify the
presentation and interpretation of results. It means that not
only periods of specific activities were included in the anal-
ysis (as was the case previously), but in addition periods
between protocolised activities were also included.

2.2. Designing MSPTDfast (v.2)

2.2.1. The MSPTD Algorithm

The original Multi-Scale Peak & Trough Detection
(MSPTD) algorithm [16] was a refinement of the Auto-
matic Multiscale Peak Detection (AMPD) algorithm [17].
Both of these algorithms identify peaks in a signal as points
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Table 1. Datasets used to assess the performance of PPG beat detectors. Source: adapted from [6] under CC BY 4.0.

Dataset Subjects PPG equipment Reference
beats

Duration
(mins):

med (quartiles)

Total beats

Development datasets
CapnoBase 42 patients undergoing

elective surgery and rou-
tine anaesthesia [10].

Pulse oximeter at 300 Hz
(upsampled from 100 Hz
during acquisition)

Manual an-
notations of
ECG (300
Hz)

7.7 (7.0 - 7.7) 24,953

BIDMC 53 critically-ill adult pa-
tients, a subset of the
MIMIC II dataset [11].

Bedside monitor at 125 Hz
(mostly finger PPG record-
ings)

ECG-derived
QRS detec-
tions (125
Hz)

7.4 (7.0 - 7.7) 33,520

MIMIC PER-
form
Training
Dataset

200 critically-ill patients
during routine clinical care
(100 adults, 100 neonates)
[6].

Bedside monitor at 125 Hz
(mostly finger PPG record-
ings)

ECG-derived
QRS detec-
tions (125
Hz)

6.2 (4.1 - 8.2) 129,708

PPG-DaLiA 15 subjects during a proto-
col of activities of daily liv-
ing [12].

Wristband (Empatica E4) at
64 Hz (with corresponding
tri-axial accelerometry sig-
nals).

Manual an-
notations of
ECG (700
Hz)

139.4 (129.8 -
147.3)

183,941

Testing datasets
WESAD 15 subjects during a

laboratory-based protocol
designed to induce differ-
ent emotions [13].

Wristband (Empatica E4) at
64 Hz (with corresponding
tri-axial accelerometry sig-
nals).

ECG-derived
QRS detec-
tions (700
Hz)

87.8 (83.2 - 92.4) 103,222

MIMIC PER-
form
Testing
Dataset

200 critically-ill patients
during routine clinical care
(100 adults, 100 neonates)
[6].

Bedside monitor at 125 Hz
(mostly finger PPG record-
ings)

ECG-derived
QRS detec-
tions (125
Hz)

All:
6.2 (3.8 - 8.4)

Adults:
8.3 (6.5 - 9.3)

Neonates:
4.3 (3.0 - 5.8)

All:
127,383
Adults:
64,280

Neonates:
63,103

MIMIC PER-
form
AF Dataset

35 critically-ill adults dur-
ing routine clinical care
(19 in AF, 16 not in AF),
using AF labels provided
by cardiologists [14, 15].

Bedside monitor at 125 Hz
(mostly finger PPG record-
ings)

ECG-derived
QRS detec-
tions (125
Hz)

AF:
19.1 (17.3 - 19.7)

non-AF:
19.1 (18.7 - 19.7)

AF:
31,929

non-AF:
23,572

MIMIC PER-
form
Ethnicity
Dataset

200 critically-ill adults
during routine clinical care
(100 of Black ethnicity,
100 of White) [6].

Bedside monitor at 125 Hz
(mostly finger PPG record-
ings)

ECG-derived
QRS detec-
tions (125
Hz)

Black:
8.6 (6.8 - 9.4)

White:
8.2 (5.9 - 9.1)

Black:
68,214
White:
62,054
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which are higher than their surrounding neighbours, where
the number of surrounding neighbours to consider is deter-
mined through analysis of a local maxima scalogram. The
local maxima scalogram is a 2D matrix where each ele-
ment indicates whether the current sample is higher than its
two neighbours at a certain scale. For instance, the top row
indicates whether points are higher than both their immedi-
ate neighbours (a separation of 1 sample), the second row
indicates whether points are higher than their next nearest
neighbours (a separation of 2 samples), etc. For a point
to be classified as a peak, it must be higher than its neigh-
bours on all rows of the scalogram until a certain scale
(i.e. level of separation). This scale is identified as the row
in which most points are classified as peaks. Further details
of the algorithms are provided in Figure 1. The MSPTD al-
gorithm was developed to improve the computational effi-
ciency of AMPD. This improvement was achieved by us-
ing binary values rather than random numbers in the scalo-
gram. It was also modified to detect both peaks and onsets.
For further explanation see [18].

2.2.2. Improving MSPTD

We identified several potential ways to increase the ef-
ficiency of MSPTD through critically reviewing its current
implementation (as described in [8]):
• Number of scalograms calculated: The MSPTD algo-
rithm calculates scalograms corresponding to both pulse
wave peaks and onsets. It may be possible to maintain
beat detection accuracy whilst only calculating one scol-
gram, corresponding to either pulse wave peaks or onsets.
• Method for calculating scalograms: It has previously
been proposed that the scalograms could be calculated
more efficiently by vectorising the calculation method,
thus avoiding the computationally expensive nested for
loops used in MSPTD [18].
• Number of scales used in each scalogram: The scalo-
grams calculated in MSPTD include all scales correspond-
ing to levels of separation between the point of interest and
its neighbours from one sample to N/2 samples (where
N is the length of the signal). It may be possible to
maintain beat detection accuracy whilst using a reduced
set of scales, excluding those corresponding to separations
longer than that between consecutive beats at a minimum
plausible heart rate, HRmin.
• PPG sampling frequency: PPG signals are typically
sampled at >50 Hz, even though the signals are often fil-
tered to exclude frequency content above 8-25 Hz prior to
analysis [19]. Therefore, it may be possible to downsample
the PPG signal prior to beat detection whilst still retaining
the pertinent information on individual heartbeats (given
that heart rates are rarely above 200 bpm [20, 21]).
• PPG window duration: Adjust the PPG window dura-
tion from the value of 6 s used in MSPTD.

Each of these potential improvements is aimed at in-
creasing the efficiency of calculating the scalograms, since
this is the most computationally complex part of the
MSPTD algorithm.

The configuration options trialled for each potential im-
provement are summarised in Table 2. We assessed the
impact of each option on the performance of a refined
MSPTD algorithm in turn, whilst all other potential im-
provements were set to their default configuration options.
The MSPTDfast (v.2) algorithm was designed by select-
ing each configuration option which provided the short-
est execution time whilst maintaining a reasonably high
F1-score (a subjective process). Its performance was in-
ternally validated through comparison with the original
MSPTD algorithm on the development datasets.

2.3. Benchmarking against leading beat
detection algorithms

MSPTDfast (v.2) was implemented and distributed in
the open-source ppg-beats toolbox [9], and benchmarked
against state-of-the-art beat detection algorithms. The
comparator state-of-the-art beat detection algorithms are
summarised in Table 3. These consisted of: (i) the four
best-performing algorithms identified in a previous bench-
marking assessment [6] (MSPTD [16], qppgfast [22],
ABD [23], and AMPD [17]); (ii) MSPTDfast (v.1) [8]; (iii)
a new implementation of the ‘Mountaineer’s Method for
Peak Detection’ algorithm (MMPD (v.2)) provided by the
original author (whereas the version assessed in [6] was
implemented by someone else) 1; and (iv) the recently re-
ported ‘Waveform Envelope Peak Detection’ (WEPD) beat
detector [24].

2.4. Performance Analysis

Performance was assessed in terms of sensitivity, posi-
tive predictive value, and the F1-score, indicating the al-
gorithm’s ability to detect beats correctly. The computa-
tional efficiency was assessed using the algorithm execu-
tion time, indicating its efficiency. A subgroup analysis
was performed to investigate the robustness of the algo-
rithm to noise. The steps taken to assess performance are
now described.

Beats were detected in PPG signals using each PPG beat
detection algorithm as follows. First, PPG signals were
segmented into 20 s windows with 5 s overlap. Second,
PPG signals were band-pass filtered between 0.67 and 8.00
Hz. Third, beats were detected using a given PPG beat
detection algorithm. Fourth, the detected beats were post-
processed by: (i) removing any repeated beat detections

1In [6] this algorithm was named the ‘Peak Detection Algorithm’,
PDA.
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MSPTD (2018)

Pre-process PPG signal

• Segment into 6s windows with 20% overlap.

• Retain original sampling frequency.

• Detrend linearly

Calculate scalogram(s)

Calculate local maxima scalogram (for peaks) 
and local minima scalogram (for onsets). To do 
so:

• Pre-populate all cells to be false.

• Use binary values to indicate whether or not a 
point is higher (or lower) than its neighbours 
at a particular scale.

• Include all scales from 1 sample separation to 
a separation of N/2 (where N is the number of 
samples in the window).

Identify peaks and/or onsets

Identify peaks and onsets. To do so:

• Identify the scales with: (i) the most local 
maxima (for peaks); and (ii) the most local 
minima (for onsets).

• Truncate the scalograms to remove rows 
corresponding to scales larger than those with 
the most local maxima (or minima).

• Identify peaks (and onsets) as columns in the 
scalograms where all values are true.

Post-process peaks and/or onsets

• Refine the location of each identified peak (or 
onset) by searching for the highest (or lowest) 
sample within 50ms either side of the original 
location.

• Collate peaks and onsets identified in all 
windows.

• Order and retain only unique indices.

MSPTDfast (v.2) (2024)

Calculate scalogram(s)

Calculate local maxima scalogram (for peaks) 
and local minima scalogram (for onsets). To do 
so:

• Pre-populate all cells to be false.

• Use binary values to indicate whether or not a 
point is higher than its neighbours at a 
particular scale.

• Include all scales from 1 sample separation to 
a separation corresponding to heart rates > 30 
bpm.

Identify peaks and/or onsets

Identify peaks and onsets. To do so:

• Identify the scales with: (i) the most local 
maxima (for peaks); and (ii) the most local 
minima (for onsets).

• Truncate the scalograms to remove rows 
corresponding to scales larger than those with 
the most local maxima (or minima).

• Identify peaks (and onsets) as columns in the 
scalograms where all values are true.

Post-process peaks and/or onsets

• Refine the location of each identified peak (or 
onset) by searching for the highest (or lowest) 
sample within 50ms either side of the original 
location.

• Collate peaks and onsets identified in all 
windows.

• Order and retain only unique indices.

Pre-process PPG signal

• Segment into 6s windows with 20% overlap.

• Downsample by the greatest integer factor 
giving a sampling frequency of ≥ 20Hz.

• Detrend linearly

AMPD (2012)

Pre-process PPG signal

• Segment into 6s windows with 20% overlap.

• Retain original sampling frequency.

• Detrend linearly

Calculate scalogram(s)

Calculate local maxima scalogram (for peaks). To 
do so:

• Pre-populate all cells with random values.

• Use zeros to indicate that a point is higher 
than its neighbours at a particular scale.

• Include all scales from 1 sample separation to 
a separation of N/2 (where N is the number of 
samples in the window).

Identify peaks and/or onsets

Identify only peaks. To do so:

• Identify the scale with the most local maxima.

• Truncate the scalograms to remove rows 
corresponding to scales larger than those with 
the most local maxima.

• Identify peaks as columns in the scalograms 
where the standard deviation is zero 
(indicating that they only contain zeros).

Post-process peaks and/or onsets

• Collate peaks identified in all windows.

• Order and retain only unique indices.

• Identify pulse onsets as the minima between 
each pair of consecutive peaks.

Figure 1. The development of MSPTDfast (v.2). The flowcharts show the main steps in three PPG beat detection algo-
rithms (as implemented in the ppg-beats toolbox [9]), with changes from one algorithm to the next shown in red. The
algorithms are: (i) the Automatic Multiscale Peak Detection (AMPD) algorithm [17]; (ii) the Multi-Scale Peak & Trough
Detection (MSPTD) algorithm [16], which improved the efficiency of AMPD; and (iii) the MSPTDfast (v.2) algorithm [this
publication], which improved the efficiency of MSPTD.
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Table 2. Evaluated algorithm configurations, where ∗ indicates a default option. Source: adapted from [8] under CC BY
4.0.

Potential improvement Configuration options
Number of scalograms calculated peaks; onsets; peaks and onsets ∗
Method for calculating scalograms nested for loops ∗; vectorised approach
Number of scales used in each scalogram N/2 ∗; only scales >HRmin, with HRmin ∈ {30, 40} bpm.
PPG sampling frequency (Hz) 10; 20; 30; original ∗
PPG window duration (s) 4; 6; 8 ∗; 10

(arising in part due to the overlapping windows); and (ii)
tidying up detected peaks and onsets to make them log-
ically consistent with each other (ensuring that no peaks
and onsets occurred at the same time; there was at least one
local minimum between consecutive peaks, and at least
one local maximum between consecutive onsets; that de-
tections alternated between onsets and peaks; that detec-
tions started with an onset, and ended with a peak; and that
there was the same number of peaks and onsets). Fifth,
mid-points on PPG pulse wave systolic upslopes were de-
tected between onsets and subsequent peaks, and used for
analysis (because this point has been found to be optimal
for pulse rate variability analysis [26]). Finally, any pe-
riods of no PPG signal were excluded from the analysis
(e.g. due to missing values or flat line segments).

Reference beats were detected in ECG signals as fol-
lows. First, ECG signals were pre-processed by segment-
ing into windows in the same manner as for beat detec-
tion in PPG signals, and high-pass filtered above 0.67 Hz
to remove baseline wander. Second, beats were detected
in ECG signals using two ECG beat detectors: the jqrs
[27,28] and RDECO [29,30] beat detectors. Only beat de-
tections were identified as those which were agreed on by
both beat detectors (i.e. within 150ms of each other) were
retained for analysis.

Beats in PPG and ECG signals were time-aligned as fol-
lows to account for PPG and ECG clocks not being per-
fectly synchronised. The time-lag between the signals was
identified as that which resulted in the highest number of
agreed ECG and PPG beat detections (i.e. within 150ms of
each other), with time-lags of between -10 and 10s trialled
(with increments of 0.02s). In a refinement to the ppg-
beats assessment framework, inspired by [31], the time-lag
was allowed to vary within a recording to account for drift-
ing clocks (which was found to be particularly important
on the WESAD dataset), with new time-lags calculated ev-
ery 300s.

Performance metrics were calculated for each subject’s
recording as described in [6]. Reference beats were deter-
mined to be correctly identified if the closest PPG-derived
beat was within ±150 ms of a reference beat. Then,
the numbers of reference beats (nref ), PPG-derived beats

(nPPG), and correctly identified beats (ncorrect) were used
to calculate the following:

sensitivity (%), Se =
ncorrect
nref

× 100 (1)

positive predictive value (%), PPV =
ncorrect
nPPG

× 100

(2)

F1-score (%), F1 =
2× PPV × Se

PPV + Se
× 100 (3)

Execution time was calculated as the time taken to run
the algorithm on a computer (in this case a MacBook Air
M1 2020 without parallelisation), expressed as a percent-
age of the PPG signal duration. Performance metrics were
expressed using the median and interquartile range, with
boxplot whiskers showing 10th and 90th percentiles. The
performance of MSPTDfast (v.2) was compared to that of
other leading beat detection algorithms using the Wilcoxon
rank sum test. Correction for multiple comparisons was
performed using a Holm-Sidak correction [32,33], for F1-
scores of associations between beat detection accuracy and
patient characteristics.

The robustness of the algorithm to noise was investi-
gated as follows. The level of noise in each PPG sig-
nal segment was assessed using the signal-to-noise ratio
(SNR). The SNR was calculated by band-pass filtering
PPG signals between 0.5 and 12 Hz using a Chebyshev
II filter with order 4 (as recommended in [34]) on non-
overlapping 10-second windows, and then calculating the
SNR using MATLAB’s ‘snr’ function. This produced SNR
values representing ‘the ratio of the spectral power in the
cardiac frequency and its harmonics (i.e. associated with
heart rate) to that of the remaining frequencies which rep-
resent noise’ [35]. Then, the mean absolute percentage er-
ror (MAPE) in heart rates derived from beat detections was
calculated, as described in [6]. Finally, robustness to noise
was investigated by assessing how the MAPE in heart rates
varied across different noise levels.

All analyses were performed in MATLAB (The Math-
works, Natick, MA, USA).
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Table 3. PPG Beat Detection Algorithms. Source: adapted from [6] under CC BY 4.0.

Beat Detector Implementing
Author

Original Au-
thor

Description

ABD: Auto-
matic Beat
Detection [23]

P.H. Charl-
ton

M. Aboy et al. The PPG is strongly filtered to retain frequencies around an initial heart
rate estimate, differentiated, and peaks are detected above the 75th per-
centile. Beats are identified as peaks in a weakly filtered PPG immedi-
ately following each peak identified in the differentiated signal.

AMPD: Au-
tomatic Mul-
tiscale Peak
Detection [17]

P. Charlton F. Scholk-
mann et al.

The PPG is detrended and segmented into 6s windows. A local maxima
scalogram (LMS) is calculated: a matrix of random numbers, where the
rows correspond to different scales (ranging from one sample to half the
window duration), and the columns indicate PPG samples. The LMS
values are set to zero when a PPG sample is higher than its neighbours
at that particular scale. The LMS is truncated to only include scales
smaller than the scale at which the most local maxima were identified.
Beats are identified as samples which are deemed to be local maxima at
all remaining scales.

MSPTD:
Multi-Scale
Peak & Trough
Detection [16]

S. Bishop S. Bishop &
A. Ercole

A modification of AMPD in which LMS matrices are calculated for both
local maxima and local minima, so the algorithm detects both peaks and
onsets. MSPTD also contains some optimisations to improve computa-
tional efficiency.

MSPTDfast
(v.1): [8]

P.H. Charl-
ton

P.H. Charlton
et al.

A modification of MSPTD in which computational efficiency was im-
proved by: (i) downsampling the PPG signal by the greatest integer
factor which gave a sampling frequency of ≥ 20Hz; and (ii) truncating
the LMS matrices to only include scales corresponding to heart rates of
≥ 30 bpm.

MSPTDfast
(v.2): [this
publication]

P.H. Charl-
ton

P.H. Charlton
et al.

A modification of MSPTD in which computational efficiency was im-
proved by: (i) downsampling the PPG signal by the greatest integer
factor which gave a sampling frequency of ≥ 20Hz; (ii) truncating the
LMS matrices to only include scales corresponding to heart rates of ≥
30 bpm; and (iii) using a window duration of 6s.

MMPD (v.2):
Mountaineer’s
Method for
Peak Detection
[25]

E.J.
Argüello
Prada

E.J. Argüello
Prada

Systolic peaks are identified as peaks which follow an upslope (i.e. pe-
riod of positive gradient) lasting ≥ 60% of the duration of the upslope
leading to the previously detected systolic peak.

qppgfast:
Adapted Onset
Detector [22]

W. Zong, G.
Moody, Q.
Li

W. Zong Systolic upslopes are detected from a signal generated with a slope sum
function, which sums the magnitudes of the PPG upslopes in the previ-
ous 0.17 s. Adaptive thresholding is used to identify systolic upslopes
in this signal. The ’qppgfast’ implementation of this beat detector was
used, after testing showed it performed similarly to the original ’qppg’
implementation.

WEPD: Wave-
form envelope
peak detection
[24]

P.H. Charl-
ton

D. Han et al. The PPG is filtered between 0.5 and 5 Hz, smoothed with a moving
average filter twice, differentiated, and normalised. Then, local maxima
and minima are identified in this signal, representing beats. The choice
of whether to use the detected local maxima or minima is determined
by: (i) the plausibility of the resulting heart rate; (ii) whether one has
substantially fewer beats than the other; and (iii) whether the maxima
or minima are the sharpest extrema. Then, false peaks are eliminated.
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3. Results

3.1. Design

3.1.1. Evaluating and selecting potential im-
provements

Figure 2 presents the performance of MSPTDfast
(v.2) when using each of the potential improvements in-
dependently. Results are shown in terms of beat detection
accuracy (median F1-score in red), and efficiency (median
execution time in blue). Results are presented for each
potential improvement in rows (a)-(e), with the plots in
each row showing the results on each of the development
datasets. Each potential improvement is now discussed in
turn.

Calculating only a single LMS corresponding to either
peaks or onsets consistently resulted in substantial reduc-
tions in execution time of between 36% and 50%, com-
pared to calculating LMSs for both peaks and onsets (see
(a)). However, this was accompanied by substantial re-
ductions in F1-score on the PPG-DaLiA dataset of 3.2%
when only calculating a LMS for peaks, and 2.9% when
only calculating a LMS for onsets. Therefore, the ‘peaks
and onsets’ option was selected for MSPTDfast (v.2) as the
reduction in execution time achieved when only detecting
peaks or onsets was not considered worthwhile when ac-
companied by a reduction in F1-score.

When comparing methods for calculating the LMSs,
there was a substantial increase in execution time across
all datasets when using our implementation of a vectorised
approach in comparison to the original ‘nested loops’ ap-
proach (see (b)). Therefore the original ‘nested loops’ ap-
proach was retained for MSPTDfast (v.2).

Reducing the number of LMS scales by eliminating
scales corresponding to HRs below 30 or 40 bpm substan-
tially reduced the execution time across all datasets (see
(c)). Eliminating scales corresponding to HRs below 30
(or 40) bpm reduced execution time by 39% to 53% (or
28% to 61%). Whilst in this analysis there was no reduc-
tion in F1-score when using either minimum HR value,
we selected the more conservative HRmin = 30 bpm for
MSPTDfast (v.2) to retain accuracy at low heart rates.

Reducing the sampling frequency substantially reduced
the execution time across all datasets (see (d)). Reducing
the sampling frequency to 10Hz reduced execution time by
between 67 and 97%. This was accompanied by minimal
changes in F1-score, or even a slight increase in the case
of the PPG-DaLiA dataset. We selected to downsample
signals to 20 Hz in MSPTDfast (v.2). We selected 20 Hz
rather than the even more efficient 10 Hz, in an attempt to
avoid reduced accuracy at high heart rates in neonates.

Reducing the window duration generally reduced exe-

cution time, whilst increasing the F1-score (see (e)). A
duration of 6 s was selected for MSPTDfast (v.2). This was
selected rather than the even more favourable 4 s duration
in an attempt to avoid reduced accuracy at low heart rates.

In summary, the chosen configuration for MSPTDfast
(v.2) was quite different to that of MSPTD: the number
of LMS scales calculated was reduced by only calculating
those scales corresponding to HRs of over 30 bpm; and the
width of the LMS matrices was reduced by reducing the
sampling frequency. MSPTDfast (v.2) also differed slightly
to that of MSPTDfast (v.1), in that a window duration of 6
s was used instead of 8 s. Figure 1 shows the main changes
between MSPTD and MSPTDfast (v.2).

3.1.2. Internal validation

Figure 3 shows a comparison of MSPTDfast (v.2) and
MSPTD on the development datasets in terms of the beat
detection accuracy and efficiency. Corresponding results
for sensitivity and positive predictive value are shown
in Appendix A. The results demonstrate that the chosen
configuration for MSPTDfast (v.2) resulted in the desired
improvements over MSPTD: increased efficiency whilst
maintaining accuracy. MSPTDfast (v.2) had an execu-
tion time of between approximately one-third and one-
twentieth of the MSPTD algorithm: MSPTDfast (v.2)’s ex-
ecution time was 5.3% of that of MSPTD on CapnoBase;
15.1% on BIDMC; 14.3% on MIMIC PERform (Training);
and 35.9% on PPG-DaLiA. This was accompanied by min-
imal differences in F1-score: no change on CapnoBase;
a decrease of 0.1% on BIDMC; an decrease of 0.2% on
MIMIC PERform (Training); and an increase of 0.2% on
PPG-DaLiA.

3.2. Benchmarking

The performance of the MSPTDfast (v.2) algorithm is
compared to that of leading beat detection algorithms
on the test datasets in Figure 4 and Table 4. Corre-
sponding results for sensitivity and positive predictive
value are provided in Appendix B. MSPTDfast (v.2) and
MSPTD achieved the highest F1-scores on both datasets,
and in both cases there was no significant difference be-
tween their F1-scores. MSPTDfast (v.2) achieved F1-
scores of 96.8 (91.1 - 98.8) % and 84.6 (80.3-87.4) %
on MIMIC PERform (Testing) and WESAD respectively.
MSPTDfast (v.2) was also amongst the most efficient al-
gorithms, with only MSPTDfast (v.1) achieving a shorter
execution time on MIMIC PERform (Testing), and qppg-
fast and MMPD (v.2) achieving shorter execution times on
WESAD.

The results also provide insight into the performance
of other state-of-the-art algorithms. Generally, those al-
gorithms which are based on the original AMPD method
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(e) PPG window duration
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Figure 2. The performance of different algorithm configurations: (a)-(e) show performance when using different potential
improvements, where squares indicate the configurations used in MSPTDfast (v.2).
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(a) Beat detection accuracy

(b) Efficiency

Figure 3. Internal validation of MSPTDfast (v.2) against MSPTD on the development datasets: Performance is shown in
terms of (a) beat detection accuracy; and (b) efficiency. Corresponding results for sensitivity and positive predictive value
are shown in Appendix A.

(i.e. AMPD, MSPTD, MSPTDfast (v.1), and MSPTDfast
(v.2)) achieved the highest F1-scores on both datasets, with
the one exception that MMPD (v.2) also performed well
on WESAD. An algorithm could achieve a relatively high
F1-score on one dataset but a relatively low F1-score on
the other dataset. For instance, MMPD (v.2)’s achieved a
relatively high F1-score on WESAD (which was not sig-
nificantly different to the highest F1-scores), but achieved
the second lowest F1-score on MIMIC PERform (Testing).
WEPD also showed quite different performance across the
two datasets. In contrast, several different approaches
achieved low execution times: the MSPTDfast algorithms,
qppgfast, and MMPD (v.2) all had substantially lower ex-
ecution times on both datasets than the remaining algo-

rithms.

Figure 5 shows the associations between beat detection
accuracy and patient characteristics. These results high-
light differences in the performance of beat detection al-
gorithms between different patient groups, which were ob-
served not only for MSPTDfast (v.2) but also almost all
other beat detectors. The F1-score of MSPTDfast (v.2) was
significantly lower on AF subjects in comparison to non-
AF subjects (see (a)); on neonates in comparison to adults
(see (b)); and on White subjects compared to Black sub-
jects (see (c)). Of these, only the difference in perfor-
mance between adults and neonates remained significant
after correcting for multiple comparisons.
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(a) Beat detection accuracy

(b) Efficiency

Figure 4. Benchmarking MSPTDfast (v.2) against leading beat detection algorithms: Performance is shown in terms of (a)
beat detection accuracy; and (b) efficiency. Corresponding results for sensitivity and positive predictive value are shown in
Appendix B.

3.3. Robustness to noise

Figure 6 shows the results relating to the robustness
of the beat detection algorithms to noise. The error in
heart rates (expressed as the MAPE) decreased at lower
levels of noise (as indicated by higher SNR values). In-
deed, all except one algorithm achieved median MAPEs of
<5% on both datasets on the least noisy signals (SNRs of
20 to 30 and 30+ dB). However, on the more noisy sig-
nals (e.g. WESAD signals of <0 and 0 to 10 dB) MAPEs
exceeded 10%, breaching the acceptable limits of ±10%
stated in the AAMI standard [36]. Figure 7 shows ex-
amples of PPG beat detections provided by MSPTDfast

(v.2) on segments of different noise levels. At high noise
levels (e.g. SNR <0 dB) beats were missed and extra beats
were detected. At low noise levels (e.g. SNR >10 dB),
almost all beats were correctly detected with few errors.

4. Discussion

4.1. Summary of findings

This study reports the development and benchmarking
of MSPTDfast (v.2), an open-source PPG beat detection
algorithm whose design is based on that of the MSPTD al-
gorithm. The algorithm was found to have a much faster
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Table 4. Benchmarking MSPTDfast (v.2) against leading beat detection algorithms. Results are expressed as median
(lower - upper quartiles). Corresponding results for sensitivity and positive predictive value are shown in Appendix B.
Definition: * indicates a significant difference compared to MSPTDfast (v.2).

Algorithm MIMIC PERform (Testing) WESAD (all activities)
F1-score (%) Execution time (%) F1-score (%) Execution time (%)

MSPTD 96.8 (90.8-98.9) 0.0491 (0.0444-0.0558) * 84.6 (80.3-87.5) 0.0256 (0.0240-0.0319) *
MSPTDfastv2 96.8 (91.1-98.8) 0.0074 (0.0066-0.0091) 84.6 (80.3-87.4) 0.0074 (0.0065-0.0136)
AMPD 96.6 (90.2-98.8) * 0.0587 (0.0537-0.0635) * 83.3 (78.9-85.9) * 0.0221 (0.0189-0.0260) *
MSPTDfastv1 96.6 (90.6-98.6) * 0.0071 (0.0064-0.0086) * 84.3 (80.2-87.2) * 0.0071 (0.0066-0.0134)
qppgfast 95.9 (89.5-98.6) * 0.0078 (0.0070-0.0091) * 82.9 (75.7-86.4) * 0.0058 (0.0051-0.0123) *
ABD 95.5 (88.6-98.1) * 0.4396 (0.4066-0.4998) * 83.2 (78.7-85.6) * 0.4168 (0.3992-0.4333) *
MMPDv2 93.3 (87.6-97.6) * 0.0092 (0.0084-0.0107) * 84.1 (80.8-87.1) 0.0072 (0.0064-0.0133) *
WEPD 90.1 (75.1-97.5) * 0.0250 (0.0227-0.0274) * 83.5 (78.9-86.3) * 0.0161 (0.0151-0.0215) *

(a) (b)

(c)

Figure 5. Associations between beat detection accuracy and patient characteristics: (a) atrial fibrillation (AF) vs. non-AF;
(b) adults vs. neonates; and (c) Black vs. White subjects. p<0.05 indicates a significant difference before correction
for multiple comparisons, whereas a p<0.003 indicates a significant difference after correction for multiple comparisons.
Corresponding results for sensitivity and positive predictive value are shown in Appendix C.
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(a)

(b)

Figure 6. The robustness of the beat detection algorithms to noise: The mean absolute percentage error (MAPE) in heart
rates calculated from detected beats is shown for each beat detection algorithm at different levels of noise. Noise levels are
categorised according to the signal-to-noise ratio, SNR.

execution time than MSPTD, whilst maintaining a high
F1-score. When compared to state-of-the-art beat detec-
tion algorithms on PPG data acquired in critical care and
activities of daily living, MSPTDfast (v.2) was found to
achieve the highest F1-score (alongside MSPTD) and one
of the shortest execution times. This study indicates that
MSPTDfast (v.2) is an accurate and efficient PPG beat
detection algorithm. An open-source implementation is
available in Matlab format.

The improved efficiency of MSPTDfast (v.2) in compar-
ison to MSPTD was achieved by incorporating two key
changes: (i) pre-processing PPG signals to reduce the sam-
pling frequency to 20 Hz prior to analysis; and (ii) only
calculating scalogram scales corresponding to heart rates
>30 bpm. Both of these improvements reduce the com-
putational complexity of calculating the scalogram matri-
ces, which is the most computationally demanding part of
the algorithm. Whilst efficiency could potentially have
been improved further by making additional refinements
(such as downsampling to 10 Hz instead of 20 Hz, using a
shorter window duration of 4 s instead of 6 s, and detecting
only either pulse peaks or onsets rather than both), we se-
lected design options based on not only efficiency but also
beat detection accuracy. Whilst there was no evidence that

downsampling to 10 Hz or using a window duration of 4
s would have reduced accuracy in this study, we preferred
the more conservative choices of 20 Hz and 6 s in an at-
tempt to maintain accuracy in potential edge cases (namely
very high or low heart rates).

The improvement in efficiency conferred by MSPTDfast
(v.2) is closely related to the original sampling frequency
of the PPG signal (see Figure 3(b)), as demonstrated by
the greatest improvement in efficiency being observed on
the CapnoBase dataset (in which PPG signals are sampled
at 300 Hz), followed by the BIDMC and MIMIC PER-
form datasets (125 Hz), and finally PPG-DaLiA (64 Hz).
Nonetheless, in all these cases the MSPTDfast (v.2) al-
gorithm conferred a substantial improvement in efficiency
compared to MSPTD.

This study confirmed key limitations of MSPTDfast
(v.2) as well as other PPG beat detection algorithms. As
observed in [6], most beat detection algorithms performed
worse in neonates than adults. Not only was this the case
for the original MSPTD algorithm, but it remained the case
for the proposed MSPTDfast (v.2). This is a key area for
future work. In addition, poorer performance of MSPTD-
fast (v.2) was observed in AF signals compared to non-
AF signals, although this difference did not remain signif-
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Figure 7. Examples of PPG beat detections provided by MSPTDfast (v.2) on segments of different noise levels from the
WESAD dataset.

icant after correction for multiple comparisons. Nonethe-
less, improving performance in AF may also indicate an
area for future development [24]. The beat detection al-
gorithms were also found to perform worse in more noisy
signals. Future work could investigate whether the use of
motion artifact removal techniques prior to PPG beat de-
tection improves performance in more noisy signals [37].

4.2. Comparison with the literature

The development of MSPTDfast (v.2) builds on work
spanning over a decade by many researchers, as illustrated
in Figure 1. It benefited firstly from the original and sub-
sequent work on algorithm design which laid the basis for
the development of MSPTDfast (v.2) [8, 16–18]. In addi-

tion, it benefited from a recent study benchmarking PPG
beat detection algorithms [6], which identified MSPTD as
a leading PPG beat detection algorithm and provided an
open-source implementation. This development process
was greatly aided by the provision of source code in some
of the previous studies [6, 8, 16].

In this work a key step in improving the efficiency of
MSPTD was to introduce a downsampling step, whereby
the PPG signal was downsampled to approximately 20 Hz
prior to analysis. This is a counter-intuitive step as devices
often use much higher sampling frequencies than this to
measure the PPG. Yet, it follows a trend in the literature
which has observed that it is possible to estimate physi-
ological parameters accurately from PPG signals at rela-
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tively low sampling frequencies, such as: (i) 5 Hz for heart
rate estimation [38]; (ii) ≥ 16 Hz for respiratory rate esti-
mation [39]; (iii) ≥ 25 Hz or 50 Hz for pulse rate variabil-
ity analysis [40, 41]; and (iv) ≥ 60 Hz for pulse wave fea-
ture extraction [42]. Similarly, in this study, no reduction
in performance was observed for beat detection when us-
ing signals of ≥ 20 Hz. Reducing the sampling frequency
may reduce power consumption and therefore extend bat-
tery life by reducing the power used in sensing, data trans-
mission and/or storage, and processing [43].

4.3. Strengths and limitations

The key strengths of this study are as follows. First, the
proposed algorithm was developed and tested on several
different datasets which are representative of different set-
tings in which photoplethysmography is commonly used:
both hospital monitoring and wearable monitoring in daily
life. The use of several datasets provides confidence about
the generalisability of the algorithm’s performance. Sec-
ond, the proposed algorithm was benchmarked against sev-
eral state-of-the-art algorithms, providing strong evidence
for its high performance. Third, an open-source implemen-
tation of the algorithm was provided for ease of use.

The key limitations of the study are as follows. First,
the different datasets used are not entirely independent.
The eight datasets listed in Table 1 were derived from four
original datasets (since five of the datasets were derived
from the larger MIMIC database). In addition, the WE-
SAD and PPG-DaLiA datasets were acquired using the
same device from similar groups of subjects. Second, there
can be a high level of heterogeneity between PPG signals,
which was not fully captured by the datasets used in this
study. For instance, signals can vary greatly between sub-
jects (such as young and elderly subjects) and between de-
vices (due to differences in factors such as body position,
wavelength of light, and contact vs. non-contact imag-
ing photoplethysmography). Third, in the benchmarking
assessment we only included open-source beat detectors,
and we do not know how the performance of the pro-
posed algorithm would compare to proprietary algorithms
(e.g. SWEPD, which was designed for accurate beat detec-
tion in AF [24]). Fourth, there are limitations to the use of
execution time as a metric to assess algorithm efficiency,
particularly when used on a computer rather than with tar-
get monitoring devices, as it may not capture differences in
real-world efficiency [44] and reflects the execution time of
an algorithm implementation rather than the intrinsic com-
putational complexity of the algorithm itself [45]. Fifth,
some of the comparator algorithms were implemented by
ourselves rather than the original authors, so are subject to
potential inaccuracies in our understanding or implemen-
tation of the algorithms. Finally, the proposed algorithm
has not been designed for real-time use, and it may be pos-

sible to make further improvements for use on embedded
devices, particularly given the large memory requirements
of the scalograms (see [16] for further details).

4.4. Implications

The MSPTDfast (v.2) algorithm may be of great util-
ity in research, particularly when conducting research
with larger photoplethysmography datasets. We have
tried to make the algorithm accessible to others by pro-
viding an open-source Matlab implementation. Further-
more, the algorithm is provided under the permissive
MIT license to aid reuse (although as the license states
- it is provided without warranty of any kind). Re-
searchers may benefit not only from the open-source al-
gorithm, but also from the open-science practices adopted
in this study: (i) the datasets used are all freely avail-
able (although admittedly the WESAD and MIMIC PER-
form Ethnicity dataset require some derivation using
the provided open-source code); (ii) the PPG beat de-
tection algorithms used are all open-source (MSPTD-
fast (v.2) and comparator algorithms); (iii) experiments
were conducted using the open-source ppg-beats evalu-
ation framework; and (iv) tutorials are provided to re-
produce the work. These resources are all documented
at https://ppg-beats.readthedocs.io/, and
archived at https://zenodo.org/doi/10.5281/
zenodo.6037646 [9].

Further research is required to determine the potential
clinical utility of the MSPTDfast (v.2) algorithm. Key areas
for future work include assessing the algorithm’s perfor-
mance on other clinical datasets, and improving the algo-
rithm’s performance in neonates. Furthermore, to improve
clinical utility, the algorithm should be coupled with a
quality assessment component that automatically assesses
the confidence level of each beat detection. This would al-
low only beat detections with high confidence levels to be
used in analyses that inform clinical decision making. This
approach has been found to increase the accuracy of pulse
oximetry-based heart rate monitoring [46].

More broadly, the growing body of evidence that physi-
ological information can be extracted from PPG signals at
relatively low sampling frequencies indicates that it may
be beneficial to reduce the sampling frequency used by de-
vices. This could be particularly beneficial in wearable de-
vices, where it could increase battery life. PPG sensors
have a particularly high power consumption in compar-
ison to ECG or accelerometry sensors, making reducing
their power consumption a key factor in the battery life of
wearables when used for physiological monitoring. mea-
surements. It may be possible to use sampling frequen-
cies of 60 Hz or less to obtain physiological parameters
accurately, depending on the parameters to be extracted.
Indeed, some devices already use relatively low sampling

Page 15 of 22 AUTHOR SUBMITTED MANUSCRIPT - PMEA-105869.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t

https://ppg-beats.readthedocs.io/
https://zenodo.org/doi/10.5281/zenodo.6037646
https://zenodo.org/doi/10.5281/zenodo.6037646


frequencies, such as 25 Hz in the PulseOn Optical Heart
Rate Monitor device [47], and 64 Hz in the Empatica E4
device [48]. The potential benefits of using more efficient
algorithms aided by lower sampling frequencies are not
only linked to the user acceptance of a device, but also its
carbon footprint [49].

5. Conclusion

The MSPTDfast (v.2) algorithm presented in this study
is an accurate and efficient PPG beat detection algorithm.

It was found to be considerably more efficient than its pre-
decessor, MSPTD, with no reduction in accuracy. MSPTD-
fast (v.2) is openly available in the Matlab ppg-beats tool-
box .
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Appendix

A. Additional internal validation results

Additional results for the sensitivity and positive pre-
dictive value of beat detection algorithms are shown in
Figure 8.

B. Additional benchmarking results

Additional results for the sensitivity and positive pre-
dictive value of beat detection algorithms are shown in
Figure 9 and Table 5.

C. Additional results on associations be-
tween beat detection accuracy and pa-
tient characteristics

Additional results for the associations between beat
detection accuracy and patient characteristics in terms
of sensitivity and positive predictive value are shown in
Figure 10.
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(a) Sensitivity

(b) Positive predictive value

Figure 8. Internal validation of MSPTDfast (v.2) against MSPTD on the development datasets: additional results showing
the sensitivity and positive predictive value of the algorithms
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(a) Sensitivity

(b) Positive predictive value

Figure 9. Benchmarking MSPTDfast (v.2) against leading beat detection algorithms: additional results showing the sensi-
tivity and positive predictive value of the algorithms.
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Table 5. Benchmarking MSPTDfast (v.2)against leading beat detection algorithms: additional results for the sensitivity
and positive predictive value of the algorithms. Results are expressed as median (lower - upper quartiles).
Definition: * indicates a significant difference compared to MSPTDfast (v.2).

Algorithm MIMIC PERform (Testing) WESAD (all activities)
Sensitivity (%) PPV (%) Sensitivity (%) PPV (%)

MSPTD 97.4 (91.7-99.0) 97.2 (92.0-99.0) * 83.0 (80.2-86.1) * 86.2 (82.1-90.4) *
MSPTDfastv2 97.2 (91.7-99.1) 97.1 (91.7-98.9) 83.0 (80.2-86.1) 86.1 (81.9-90.2)
AMPD 96.6 (90.5-98.8) * 97.3 (91.7-99.1) * 80.1 (77.7-83.4) * 86.3 (82.5-90.1) *
MSPTDfastv1 97.1 (90.9-99.0) * 97.0 (91.8-98.8) * 82.5 (80.2-85.6) * 86.2 (82.1-90.2) *
qppgfast 96.1 (89.5-98.7) * 96.8 (92.7-98.9) 81.8 (77.2-85.3) * 84.2 (78.5-88.8) *
ABD 96.2 (88.7-98.6) * 96.5 (91.6-98.7) 81.0 (78.8-85.2) * 84.6 (80.8-89.0) *
MMPDv2 92.5 (86.4-97.7) * 95.9 (89.4-98.3) * 85.5 (83.2-88.5) * 83.7 (79.4-88.6) *
WEPD 90.2 (65.2-97.9) * 95.3 (90.4-98.2) * 84.1 (81.5-86.4) * 81.0 (78.0-88.5) *
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(a)

(b)

(c)

Figure 10. Associations between beat detection accuracy and patient characteristics: (a) atrial fibrillation (AF) vs. non-AF;
(b) adults vs. neonates; and (c) Black vs. White subjects. p<0.05 indicates a significant difference (no correction was made
for multiple comparisons in this analysis).
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