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A B S T R A C T 

It is unclear whether quantum phenomena can be observed in brain recordings because of thermal noise causing decoherence, that is, quantum superpositions 
and entanglement quickly collapsing into classical, i.e. non-quantum states. This paper first demonstrates that neuronal noise of the Brownian motion type is 
mathematically equivalent to a wave-particle description of the kind predicted by a fundamental equation in quantum mechanics known as the Schrödinger equation. 
It then extends the considerations to the more realistic FitzHugh-Nagumo model which has been widely used to describe neuronal dynamics. This approach could 
provide new insights into the underlying mechanisms of brain function.

1. Introduction

Quantum mechanics is widely regarded as the most fundamental 
theory of nature, suggesting its applicability to even brain functions. 
However, the prevailing view is that quantum coherence is lost at the 
neuronal level due to the large size and complex environment of the 
neurons, a process known as ‘decoherence’ [1,2]. Each neuron is itself 
a massive and complex cell comprising a vast number of molecules, 
making it unlikely that quantum states could be maintained or mea-

sured across such a large scale. Neurobiological processes operate on 
much larger scales than those where quantum phenomena dominate. 
For example, action potentials are driven by ion exchanges across cell 
membranes that are well described by classical rather than quantum 
physics. Furthermore, cognitive functions, including memory, attention 
and sensory perception, typically involve neuronal populations interact-

ing through electrochemical signals. While these might exhibit quantum 
effects, they might not scale up in a coherent way to affect brain activity 
at the population level. As a result, both physicists and neuroscientists 
have largely dismissed the relevance of standard quantum mechanics to 
neuronal processes. They use classical stochastic models as these are 
needed to explain brain data that show a large amount of variabil-

ity [3–5,7]. This can be due to fluctuations in synaptic transmission, 
stochastic opening and closing of ion channels or changes in incoming 
input. Stochastic effects are then modelled as stochastic terms added 
to differential equations describing synaptic transmission, ion channel 
activity or incoming inputs [8]. Brain recordings include examples of 
stochastic variations in neuronal dynamics such as membrane potential 
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fluctuations [9], irregular spike trains [10], fluctuating synaptic currents 
[11], trial to trial variability in response to stimuli [12], fluctuations in 
spike-triggered average [13], spike amplitude variability [14], variabil-

ity in LTP measurements [15] and calcium dynamics [16], etc.

Neuronal models used to study these phenomena are based on 
stochastic differential equations, and predict effects that can be studied 
using classical physics. Such modeling studies indicate that stochastic 
noise may affect various neural processes, including information pro-

cessing, spike timing reliability, stochastic resonance, firing irregularity, 
subthreshold dynamics, as well as the initiation and propagation of ac-

tion potentials. This can be due to ion channel, synaptic, cellular or 
even mechanical and thermal noise and other factors like background 
network activity [5,6].

An alternative view is that quantum entanglement persists within 
microtubules and is central to consciousness, allowing for non-local con-

nections and unique information processing capabilities in the brain, 
as suggested by Hameroff and Penrose [17–20]. They are shielded by 
Debye layers and actin gel among others [21]. This could protect mic-

totubule quantum coherence even at warm temperatures. While experi-

mental evidence is limited, these ideas have sparked interesting discus-

sions at the intersection of quantum mechanics, consciousness studies, 
and theoretical neuroscience.

Motivated by the mathematical equivalence between stochastic pro-

cesses of the Brownian motion type and quantum mechanics shown by 
Nelson [22–24], we explore here yet another possibility, namely that 
the very noise that destroys quantum mechanical coherence in a neu-

ron generates quantum-like coherence in its electromagnetic realm. This 
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Fig. 1. Random walk with and without drift. The value 𝑥(𝑡) of the random vari-

able 𝑋(𝑡), representing neural depolarization at time 𝑡, equals the last period’s 
value plus a constant (a drift) and a white noise. The drift can be in the direc-

tion of the threshold (forward) or away from it (backward) and describes the 
generation of an action potential, once the threshold is reached.

has implications for how the brain processes information, the emer-

gence of conscious experience, and the neural dynamics that result from 
this processing. These fundamental questions in biology can be explored 
through insights from quantum mechanics, of the sort presented here.

This approach, which can complement the use of classical models for 
other types of stochastic processes in neurons, can lead to novel insights 
and predictions that can be tested against real data.

In the next section, we will present the fundamental concepts and 
mathematical tools required to make our ideas more precise and inves-

tigate their implications.

2. 1D random walk model with drift for the spike activity of 
a single neuron

It would be helpful at this stage to introduce some technical terms 
which will be used in what follows. A stochastic process is a sequence of 
random variables whose values change over time in an uncertain way 
so that one knows the distribution of possible values at any point in 
time. Here we consider the neuron’s membrane potential as a random 
variable. A Markov stochastic process is a particular type of stochastic 
process where only the current value of a variable is relevant for pre-

dicting the future movement, not past values. For neuronal data this 
is clearly a simplification as synaptic plasticity, refractory periods and 
mesoscale patterns of neuronal activity would need to be described by 
a correlated random walk. A random walk with and without drift is 
the stochastic process formed by successive summation of independent, 
identically (often normally) distributed random variables (Fig. 1). To de-

scribe neuronal dynamics resulting from the cumulative effect of several 
factors discussed above, like synaptic inputs, firing threshold, ion chan-

nel variability etc, we will assume a Wiener process. A Wiener process is 
a mathematical description of Brownian motion. It is a continuous time 
Markov process which is essentially a series of normally distributed ran-

dom variables with zero mean such that the variances increase to reflect 
that it is more uncertain and hence more difficult to predict the value 
of the process after a longer period of time, a process called ‘diffusion’ 
(Fig. 2). 

Let us now consider a simple 1D random walk model to describe neu-

ronal dynamics and spike activity. For instance, the electrical state of 
polarization in the somatic and dendritic membrane can be modelled as 
a random variable representing the coordinate 𝑄(𝑡) and executing a ran-

dom walk, influenced by excitatory and inhibitory post-synaptic poten-

tials (EPSPs and IPSPs), and moving back and forth along a straight line 
between a resting potential and a threshold of neuron firing [3,7]. Each 
incoming elemental EPSP (Excitatory Post Synaptic Potential) moves the 
random variable 𝑄(𝑡) one unit toward the threshold, and each incoming 
elemental IPSP (Inhibitory Post Synaptic Potential) moves the random 
variable one unit away from the threshold (Fig.3). The motion toward 
the threshold will be called ‘forward’ motion and the motion away from 
the threshold ‘backward’ motion. If the average rate of incoming elemen-

Fig. 2. Wiener process or gaussian random walk (Brownian motion) showing 
diffusion, i.e. the measure of the dispersion of 𝑋(𝑡) from its mean value zero 
increasing continuously with time. This can describe how neurons accumulate 
information before reaching the firing threshold.

tal EPSP and elemental IPSP are the same, there is an equal probability 
at any time that the random variable moves either a unit toward or a 
unit away from the threshold, i.e. there is no “bias toward” either in-

put. Immediately after the random variable has attained the threshold 
and caused the production of an action potential, it returns to the rest-

ing potential, only to begin its random walk again. Such a model would 
be a simple random walk model.

In realistic physiological models, however, it would be far more rea-

sonable to assume that there is some excess of either EPSP or IPSP inputs. 
Neuronal excitatory and inhibitory inputs are inherently unbalanced. 
This arises from several factors, including the dominance of glutamater-

gic over GABAergic inputs, the greater number of excitatory neurons 
compared to inhibitory ones, and similar structural considerations. As 
a result, the rates of EPSPs and IPSPs differ. Therefore, the probabil-

ity for the random variable 𝑄(𝑡) to move one unit ‘forward’ toward the 
threshold is different from the probability for it to move one unit away 
from the threshold, i.e. ‘backward’. Considered as a diffusion process, 
the difference between these probabilities can be considered a “drift ve-

locity”, either toward or away from the threshold. The former is called 
the ‘forward velocity’ (usually denoted by 𝑏𝑓 ) and the latter the ‘back-

ward velocity’ (denoted by 𝑏𝑏).
This phenomenon was formally demonstrated using a ‘random walk 

model with drift’ by Gerstein and Mandelbrot [3]. They obtained ‘rea-

sonably good agreement’ between this model with drift and interval 
histograms as well as the joint density of successive interspike inter-

vals of spiking data. We will now show that this 1D random walk model 
with drift is mathematically equivalent to a Schrödinger-like equation, 
indicating quantum-like behaviour of the neuron.

3. Nelson’s method applied to single neurons

Our aim is to demonstrate that neuronal noise can exhibit coherence, 
stability and structure associated with quantum effects, a surprising ex-

ample of ‘order from disorder’ [25]. We do this by showing first that the 
inherent stochastic nature of neural processes described by the ‘random 
walk with drift’ model (discussed in the previous section) is equivalent 
to a Schrödinger-like dynamics of neurons. Such a perspective offers a 
new framework for understanding brain function in terms of quantum-

like processes. We do this by following Nelson’s approach [22–24] and 
its further developments, in particular by Guerra and Morato [26] who 
used stochastic control theory to derive Nelson’s results.

In this section we give a very simple sketch of Nelson’s derivation, 
leaving the details to Appendix A. Let us start with a stochastic differ-

ential equation. Let the random variable 𝑞 representing the membrane 
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potential of a neuron move back and forth along a straight line, exe-

cuting Brownian motion without friction. Then 𝑞 follows the stochastic 
differential equation (SDE)

𝑑𝑞 = 𝑏𝑓 𝑑𝑡+ 𝜎𝑑𝑊𝑓 . (1)

Here, the first term is the usual velocity dependent term in determinis-

tic mechanics, 𝑏𝑓 representing the mean forward drift velocity (caused 
by EPSPs), and the second term is the stochastic term modelled by a for-

ward Wiener process 𝑑𝑊𝑓 , 𝜎 denoting the square root of the diffusion 
coefficient. The diffusion coefficient, 𝜎2, describes the magnitude of the 
random fluctuation shown in Fig. 2 over time, and is determined by the 
physiological characteristics of the membrane.

Following Nelson [27], let us assume time reversal symmetry, i.e. 
symmetry of the processes under the transformation 𝑡 → −𝑡. In clas-

sical mechanics, time reversal symmetry means simply reversing the 
sign of velocity: 𝑣→ −𝑣. In stochastic mechanics, time reversal is more 
subtle because of the diffusion term. Under time reversal, the forward 
and backward velocities swap (𝑣𝑓 ↔ 𝑣𝑏). This implies that one process 
should map onto the other when the time axis is reversed. EPSPs bring 
neuronal depolarization closer to the firing threshold. If time were re-

versed, this movement would instead shift away from the threshold, 
precisely mirroring the typical effect of an IPSP in forward time. Conse-

quently, the SDE for backward processes can be written in the form

𝑑𝑞 = 𝑏𝑏𝑑𝑡+ 𝜎𝑑𝑊𝑏 (2)

where 𝑑𝑊𝑏 is the backward Wiener process. These SDEs ((1) and (2)) 
therefore describe the forward and backward stochastic processes in 
neurons caused by EPSPs and IPSPs respectively. There is thus an exact 
mathematical equivalence of stochastic processes in neural membranes 
modelled by Brownian motion and Nelson’s stochastic mechanics.

We assume here that one can then define a current velocity as the sum 
of the forward and backward drift velocities,

𝑣 = 1
2
(𝑏𝑓 + 𝑏𝑏). (3)

In deterministic mechanics this velocity can always be written in the 
form

𝑣 = 1 
𝑚

𝜕

𝜕𝑞
𝑆 (4)

where 𝑆 is a fundamental function called ‘action’ and 𝑚 the inertia of a 
neuron, i.e. the tendency of its electrical potential to remain unchanged.

One can also define an osmotic velocity as the difference of the for-

ward and backward velocities,

𝑢 = 1
2
(𝑏𝑓 − 𝑏𝑏). (5)

It reverses sign under time reversal. Nelson showed that this velocity 
can be written in the form

𝑢 = 𝜎

2 
𝜕

𝜕𝑞
ln[𝜌] (6)

where 𝜌 is the probability distribution of the random variable 𝑞. This 
relates the ‘osmotic velocity’ to diffusion and stochasticity. Hence, 𝑢 = 0
for deterministic systems.

Having neatly separated the process into a deterministic part and a 
stochastic part, Nelson showed by a series of what he termed “miracles” 
that such a system can be mathematically mapped to the Schrödinger 
equation

𝑖ℏ̂
𝜕

𝜕𝑡
𝜓(𝑞, 𝑡) =

(
− ℏ̂2

2𝑚
𝜕2
𝑞
+ 𝑉 (𝑞)

)
𝜓(𝑞, 𝑡) (7)

where 𝜓 =
√
𝜌 exp(𝑖𝑆∕ℏ̂) = exp( 12 ln𝜌 + 𝑖𝑆∕ℏ̂) and ℏ̂ = 𝑚𝜎. Guerra and 

Morato [26] showed that this equation extremizes the action in stochas-

tic control theory.

Now, for neurons there are two possibilities: (a) ℏ̂ depends on the 
type of neuron involved (its structure and function) or (b) it is a uni-

versal constant for all neurons. In either case, one has an equation for a 
single neuron that is exactly the Schrödinger equation in quantum me-

chanics except that the configuration space variable is replaced by the 
membrane potential 𝑞 and the reduced Planck constant ℏ is replaced by 
a neuronal constant ℏ̂. We will show in Section 7 below how to deter-

mine ℏ̂ from real data.

The wave function 𝜓 describes the Markov process completely [28]:

𝜌 = |𝜓|2, (8)

𝑢 = 𝜎

2 
𝜕

𝜕𝑞
ln[𝜌] = ℏ̂

𝑚
𝜕𝑞ℜ ln𝜓, (9)

𝑣 = 1 
𝑚

𝜕

𝜕𝑞
𝑆 = 𝜎𝜕𝑞ℑ ln𝜓. (10)

This is the ‘Nelson map’. It maps the probability distribution function 
and the current and osmotic velocities in single neurons to a wave func-

tion. In other words, it associates a stochastic process with diffusion 
to every solution of the Schrödinger-like equation (7). Note that the 
diffusion vanishes when the osmotic velocity 𝑢 vanishes. In that case 
𝜎𝑚 = ℏ̂ = 0 and the system is classical. We will elaborate further on this 
in the next section.

This suggests that more realistic models of neuronal dynamics like 
the Hodgkin-Huxley (H-H) [29,30] and FitzHugh-Nagumo (FN) equa-

tions [31,32] may also be connected to a Schrödinger-like equation. We 
now proceed to show this.

4. Random walks and the Schrödinger equation for many 
variables

We have so far considered the basic stochastic mechanical theory of 
a neuron using a single random variable q. As shown by Gerstein and 
Mandelbrot [3], that is not realistic enough to deal with the known ge-

ometric complexity of synapses and of the somatodendritic membrane. 
Hence, the electrical state of these structures cannot be adequately de-

scribed by a single state variable. Several variables are needed, and one 
must allow the state to vary over the surface of the neuron. The ran-

dom walk will then take place in the same number of dimensions as the 
number of random variables.

There exist models of spiking neurons that use several random (also 
known as state) variables, like the 4D Hodgkin-Huxley (H-H) model [29] 
and its 2D variant, the FitzHugh-Nagumo model (FN) [31,32]. Here, we 
will establish a link between a two-state generalization of the theory pre-

sented above and the FN model. To do that we first need to extend our 
formalism to 𝑁 state variables, which is quite straightforward. Having 
done that, we will demonstrate that the 2-state wave function corre-

sponding to the Hamiltonian of the FN model with noise gives quantum 
corrections to the spiking rates calculated from the deterministic FN 
model. The wave function can then, in principle, be mapped to the un-

derlying 2D stochastic processes (𝜌, 𝑢, 𝑣) using the Nelson map (eqns (8), 
(9), (10)) for 2 state variables.

5. Generalization to 𝑵 state variables

Just as one can write a 𝑁 -particle Schrödinger wave function 
𝜓(𝑥1, 𝑥2, ...𝑥𝑁 , 𝑡), one can also write a 𝑁 -state neuron wave function 
𝜓(𝑞, 𝑡), 𝑞 = {𝑞1, 𝑞2, ...𝑞𝑁} where 𝑞 is a set of generalized coordinates rep-

resenting the state variables:

𝑖ℏ̂
𝜕

𝜕𝑡
𝜓(𝑞, 𝑡) =

(
− ℏ̂2

2𝑚
𝜕2
𝑞
+ 𝑉 (𝑞)

)
𝜓(𝑞, 𝑡) (11)

The Einstein summation convention has been used in writing this equa-

tion, i.e. 𝜕2
𝑞
𝜓(𝑞, 𝑡) =

∑𝑖=𝑞𝑁
𝑖=𝑞1

𝜕2
𝑞𝑖
𝜓(𝑞1, 𝑞2, ...𝑞𝑁 ). For notational simplicity, 

we have used the same 𝑚 for all the state variables 𝑞𝑖.

Computational and Structural Biotechnology Journal 30 (2025) 12–20 

14 



P. Ghose and D.A. Pinotsis 

By using the polar expression

𝜓 = exp(𝑅+ 𝑖𝑆∕ℏ̂) =
√
𝜌 exp(𝑖𝑆∕ℏ̂) (12)

in eqn (11) and separating the real and imaginary parts, the following 
coupled differential equations for the functions 𝑅 and 𝑆 can be derived 
[26,34]:

𝜕𝑆

𝜕𝑡 
+ 1 

2𝑚

(
𝜕𝑆

𝜕𝑞

)2
+ 𝑉 (𝑞) + 𝑉𝑄 = 0, 𝑉𝑄 = − ℏ̂2

2𝑚

[(
𝜕𝑅

𝜕𝑞

)2
+ 𝜕2𝑅

𝜕𝑞2

]
,(13)

𝜕𝑅

𝜕𝑡 
+ 1 

2𝑚

(
𝑅
𝜕2𝑆

𝜕𝑞2
+ 2 𝜕𝑅

𝜕𝑞

𝜕𝑆

𝜕𝑞

)
= 0. (14)

The first equation is the Hamilton-Jacobi-Bellman equation for 𝑁 vari-

ables. It is the classical Hamilton-Jacobi equation for 𝑁 variables with 
an additional stochastic term 𝑉𝑄 which takes the form

𝑉𝑄 = − ℏ̂2

4𝑚

[
𝜕2
𝑞
𝜌

𝜌 
−

(𝜕𝑞𝜌)2

2𝜌2

]
(15)

in terms of 𝜌 = 𝑒2𝑅. The second equation can also be written in terms of 
𝜌 as

𝜕𝜌

𝜕𝑡 
+ 𝜕𝑞

[
𝜌
𝜕𝑞𝑆

𝑚 

]
= 0 (16)

which is the continuity equation for 𝑁 variables. These two coupled par-

tial differential equations determine the underlying stochastic processes 
with 𝑁 variables.

The term that couples these two equations is the stochastic term 𝑉𝑄

which vanishes when ℏ̂ = 0. In that case, the two equations become 
independent, i.e. the functions 𝑅 and 𝑆 evolve independently of each 
other. That is the case when the system is classical. In a quantum-like 
system, the amplitude 

√
𝜌 and the phase 𝑆 of the wave function 𝜓 (eqn 

(12)) get coupled, giving rise to interference and coherence.

The importance of Nelson’s method lies in revealing the quantum-like 
features of stochastic processes of the Brownian type by mapping them to a 
wave function (12) which satisfies the Schrödinger equation (11). Without 
this crucial insight, coherence effects would lie hidden and the stochastic 
processes would appear to be classical.

Let 𝐿(𝑞, �̇�) be the Lagrangian of a deterministic classical system with 
𝑁 variables from which one can construct the action

𝑆(𝑞) = ∫ 𝐿(𝑞, �̇�)𝑑𝑡 (17)

and the Hamiltonian

𝐻(𝑆) =
𝑖=𝑁∑
𝑖=1 

1 
2𝑚𝑖

𝜕𝑆

𝜕𝑞𝑖

𝜕𝑆

𝜕𝑞𝑖
+ 𝑉 (𝑞) ∶= 1 

2𝑚

(
𝜕𝑆

𝜕𝑞

)2
+ 𝑉 (𝑞) (18)

in terms of the action. The classical Hamilton-Jacobi equation is of the 
form

𝜕𝑆

𝜕𝑡 
+𝐻(𝑆) = 0. (19)

On the other hand, if one uses the form (12) for 𝜓(𝑞) in the Schrödinger 
equation (11) and separates the real and imaginary parts, one gets, as 
we have just seen, the Hamilton-Jacobi-Bellman equation

𝜕𝑆

𝜕𝑡 
+𝐻(𝑆) + 𝑉𝑄 = 0 (20)

with 𝑉𝑄 given by eqn (15), i.e. the classical and deterministic Hamilton-

Jacobi equation with an additional stochastic term 𝑉𝑄.

Now consider the momentum 𝑝 = 𝑚𝑣, 𝑣 being the current velocity 
1 
𝑚
𝜕𝑞𝑆 . Then

𝑑𝑝

𝑑𝑡 
= 𝑑

𝑑𝑡

(
𝜕𝑆

𝜕𝑞

)
=
(
𝜕2𝑆

𝜕𝑞2

)
�̇� + 𝜕

𝜕𝑞

(
𝜕𝑆

𝜕𝑡 

)
(21)

= 𝜕

𝜕𝑞

[
1 
2𝑚

(
𝜕𝑆

𝜕𝑞

)2
+ 𝜕𝑆

𝜕𝑡 

]
(22)

= −𝜕𝑞[𝑉 + 𝑉𝑄] (23)

on using eqns (18), (20). This is Newton’s second law with an addi-

tional stochastic term 𝑉𝑄 . Thus, 𝑉𝑄 gives ‘non-classical’ or quantum 
corrections to the classical equation of motion. It also shows that these 
corrections vanish when 𝑉𝑄 is independent of 𝑞. That is the case if 𝜌 is 
independent of 𝑞. Now, notice that the osmotic velocity 𝑢(𝑞, 𝑡) (eqn (6)) 
vanishes if 𝜌 is independent of 𝑞. Hence, the system behaves classically 
when the osmotic velocity vanishes, i.e. diffusion via Brownian motion 
vanishes. This is why the osmotic velocity is also called the ‘quantum 
drift’.

In summary, a non-vanishing neuronal constant ℏ̂, and hence a non-

vanishing stochastic potential 𝑉𝑄 and a non-vanishing osmotic velocity 𝑢, 
signal non-classical and quantum-like behaviour in Nelson’s stochastic me-

chanics.

Deterministic neuron models such as the H-H, FN or the ‘integrate-

and-fire’ model typically generate a regular sequence of spikes. Spike 
trains of typical neurons in vivo, however, show a much more irreg-

ular behaviour, indicating noise [3,35]. The stochastic mechanics of 
single neurons developed in this paper is based on the existence of such 
noise, at least in part, as Brownian motion. Below, we will extend these 
considerations to a key model of brain dynamics known as the FitzHugh-

Nagumo model.

6. The FitzHugh-Nagumo model

The FitzHugh-Nagumo model consists of two coupled differential 
equations including the membrane potential and a recovery variable 
[31,32]. The model has been widely used to study neuronal dynamics. 
Its applicability however, extends into other domains like cell division 
and physiology as well as population dynamics. We here use it to con-

sider neuronal dynamics. The first equation describes the rapid changes 
in a neuron’s membrane potential after a spike is generated, while the 
second equation describes the dynamics of the recovery variable and the 
dynamics of slower processes that restore the neuron to its resting state 
after excitation, typically modeling ion channel dynamics that inhibit 
or modulate the firing. The FitzHugh-Nagumo equations are as follows:

𝑑𝑞

𝑑𝑡 
= 𝑞 − 𝑞3

3 
−𝑤+ 𝐼, (24)

𝑑𝑤

𝑑𝑡 
= 𝜀(𝑞 + 𝑎− 𝑏𝑤), (25)

where 𝑞 is the membrane potential (a deterministic variable, not a ran-

dom variable in this model), 𝑤 is the recovery variable, 𝐼 is an external 
stimulus current that leads to excitation, 𝜀, 𝑎, and 𝑏 are parameters that 
control the model’s dynamics. The nonlinear term in the first equation 
above describes rapid activation and deactivation. The parameter 𝜀 con-

trols the time-scale of recovery (usually much slower than the membrane 
potential dynamics), while the parameters 𝑎 and 𝑏 determine the mod-

el’s behaviour, adjusting the sensitivity and response of the recovery 
variable to changes in 𝑞. They determine threshold activation, spike du-

ration, and recovery.

These equations are a simplification of the Hodgkin-Huxley equa-

tions [29] where the channel gating variables have been combined into 
one recovery variable, 𝑤, that represents the cumulative effects of ion 
channel inactivation and potassium increase that repolarizes the mem-

brane.

If suitable noise terms are added to the FN equations, they describe 
variability in stimulus current, the opening and closing of sodium chan-

nels or slow dynamics associated with potassium channels. To incor-

porate such processes into the model, we replace the deterministic FN 
equations by

𝑑𝑞

𝑑𝑡 
= 𝑞 − 𝑞3

3 
−𝑤+ 𝐼 + 𝜉𝑞(𝑡), (26)
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Fig. 3. The membrane potential’s forward and backward movements corre-

sponding to Excitatory (EPSP) and Inhibitory (IPSP) Post-Synaptic Potentials, 
respectively. Synaptic inputs create random fluctuations in depolarization mod-

elled as a stochastic process.

𝑑𝑤

𝑑𝑡 
= 𝜀(𝑞 + 𝑎− 𝑏𝑤) + 𝜉𝑤(𝑡) (27)

where 𝜉𝑣(𝑡) and 𝜉𝑤(𝑡) are standard Wiener processes [33] representing 
additive channel noise due to randomly superimposed excitatory and 
inhibitory potentials (see Fig. 3). In their presence 𝑞 is a random variable 
that performs a random walk with drift, considered in section 2. This 
suggests we can apply Nelson’s method to this case.

It will be convenient for our purpose, though, to follow the converse 
of Nelson’s method in this case, namely to first find the Schrödinger 
equation for this model, and then determine the underlying stochas-

tic processes using the Nelson maps (8), (9), (10). We do this below 
by first constructing the Lagrangian 𝐿(𝑞, �̇�) (eqn (29)) for this model 
and from it the Hamiltonian 𝐻(𝑞, 𝑝) (eqn (35)). This classical Hamilto-

nian function is then converted to an operator �̂� (eqn (37)) by using 
the canonical rule of writing the momentum 𝑝 as an operator −𝑖ℏ̂𝜕𝑞 . 
This results, in the standard way, in a Schrödinger equation with a 
wave function 𝜓(𝑞, 𝑡) (eqn (38)). If this wave function is written in 
the polar form 𝜓 =

√
𝜌𝑒𝑖𝑆∕ℏ̂, then after separating the real and imag-

inary parts, the Schrödinger equation results, as we have seen before, in 
the Hamilton-Jacobi-Bellman equation which is the classical Hamilton-

Jacobi equation with an additional stochastic term as in eqn (20) plus a 
continuity equation.

The equations (26) and (27) can be written as a second order equa-

tion

𝑞 =
(
1 − 𝑏𝜀− 2𝑞2

3 

)
�̇� + 𝑞𝜀

(
𝑏− 1 − 𝑏

𝑞2

3 

)
− 𝑎𝜀+ 𝑏𝜀+ �̇� . (28)

Consider the Lagrangian

𝐿 = 1
2
�̇�2 + 𝜀 

2
(𝑏− 1) 𝑞2 − 𝜀𝑏 

12
𝑞4 − 𝜀𝑏

2 
𝑤2 (29)

where 𝑞 and 𝑤 are generalized coordinates. We also define the Rayleigh 
dissipation function [36]

𝑅𝑑 =
(
1
2
− 𝑏𝜀

2 
− 2𝑞2

6 

)
�̇�2 + 1

2
�̇�2 (30)

and the generalized force

𝑄 =
(
−𝑎𝜀+ 𝑏𝜀+ �̇�

)
. (31)

Then the Euler-Lagrange equations with 𝑄 on the right hand side

𝑑

𝑑𝑡

(
𝜕𝐿

𝜕�̇�

)
− 𝜕𝐿

𝜕𝑞
−

𝜕𝑅𝑑

𝜕�̇�
=𝑄, (32)

𝑑

𝑑𝑡

(
𝜕𝐿 
𝜕�̇�

)
− 𝜕𝐿 

𝜕𝑤
−

𝜕𝑅𝑑

𝜕�̇�
= 𝜀 (𝑞 + 𝑎) (33)

yield the FN equations.

Notice that the Lagrangian 𝐿 (eqn (29)) is a function of �̇� but not 
of �̇� which occurs only in the Rayleigh dissipation function 𝑅𝑑 . Hence, 
using the Legendre transformation

𝐻 = 𝜕 𝐿

𝜕�̇�
�̇� + 𝜕 𝐿

𝜕�̇�
�̇�−𝐿 ∶= 𝑝�̇� −𝐿, (34)

we get the Hamiltonian

𝐻 = 1
2
𝑝2 − 𝜀 

2
(𝑏− 1) 𝑞2 + 𝜀𝑏 

12
𝑞4 + 𝜀𝑏

2 
𝑤2 ∶= 1

2
𝑝2 + 𝑉 (𝑞,𝑤;𝑎, 𝜀, 𝑏) (35)

where

𝑉 (𝑞,𝑤;𝑎, 𝜀, 𝑏) = − 𝜀 
2
(𝑏− 1)𝑞2 + 𝜀𝑏 

12
𝑞4 + 𝜀𝑏

2 
𝑤2. (36)

Then, in a representation in which 𝑞 is an independent variable and |𝜓(𝑞, 𝑡)|2𝑑𝑞 is the probability that the system has coordinate between 𝑞
and 𝑞 + 𝑑𝑞, the time evolution of the state function is governed by the 
equation of motion

𝑖ℏ̂𝜕𝑡|𝜓⟩ = �̂�|𝜓⟩, �̂� = 1
2
�̂�2 + 𝑉 (𝑞,𝑤;𝑎, 𝜀, 𝑏) (37)

where �̂� = −𝑖ℏ̂𝜕𝑞 . Time evolution of the state function 𝜓(𝑞, 𝑡) = ⟨𝑞|𝜓⟩
where |𝜓(𝑞, 𝑡)|2 𝑑𝑞 is probability that the system has coordinates be-

tween 𝑞 and 𝑞 + 𝑑𝑞 is governed by the Schrödinger equation

𝑖ℏ̂
𝜕

𝜕𝑡
𝜓(𝑞, 𝑡) =

(
− ℏ̂2

2 
𝜕2
𝑞
+ 𝑉 (𝑞,𝑤;𝑎, 𝜀, 𝑏)

)
𝜓(𝑞, 𝑡). (38)

Thus, the stochastic version of the FN equations can be rewritten as a 
Schrödinger equation. This suggests that predictions about variability in 
brain dynamics in the form of stochastic noise offered by these equations 
may also include noise due to quantum effects such as shot noise [37] 
as well as thermal fluctuations in ion channels [38].

7. Empirical determination of the neuronal constant ℏ̂

The neuronal constant ℏ̂ = 𝑚𝜎 can be empirically determined by 
measuring (a) the diffusion coefficient 𝜎2 ∶= 2𝐷 = ⟨𝑞2⟩∕Δ𝑡 where ⟨𝑞2⟩
is the variance of 𝑞 = 𝐶𝑉 , the randomly varying electrical potential of 
the membrane, and (b) the neuron inductance 𝑚. The neuron inductance 
has its origin in two sources, (i) the coil inductance of myelin and (ii) the 
piezoelectric effect of the cell membrane [39]. Myelin is the lipid-rich 
substance that surrounds nerve cell axons. Its primary role is to provide 
inductance in neuron systems. This inductance plays a significant role 
in the generation and propagation of neural signals.

In electromagnetism, an inductor is an electronic component for stor-

ing energy in the form of a magnetic field. However, biologists do not 
generally study an actual electrical circuit but an equivalent circuit in 
which an inductor is only a symbol for reproducing the voltage oscilla-

tions and resonance frequencies measured in electrophysiological tests. 
Since the voltage oscillations and resonance frequencies are typical char-

acteristics of an LCR circuit, adding an inductor in the equivalent circuit 
becomes inevitable.

A large inductance was first measured on the squid giant axon [29], 
which is an unmyelinated nerve. Myelin sheaths can generate only a 
small inductance, far less than the measured value. Hence, this induc-

tance cannot be associated with myelin. It has been proposed that the 
observed large value comes from an equivalent inductance generated 
by the piezoelectric effect of the cell membrane. For further details, the 
reader is referred to Ref [39].

Since present empirical evidence suggests that neurons have a large 
inductance 𝑚, it would be reasonable to expect that the neuronal con-

stant ℏ̂ has a large value too, unless 𝜎 turns out to be extremely small. 
Given the reasonably good agreement between the ‘random walk with 
drift’ model of neurons and the observed data [3], that seems un-

likely. This lends considerable empirical support for the hypothesis that 
quantum-like effects play a non-negligible role at the level of neurons. 
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It remains to be seen, however, whether ℏ̂ varies from one neuron type 
to another, or is a universal constant.

Another method could be to study subthreshold neural oscillations 
[40,41]. A simple equivalent circuit corresponding to subthreshold is an 
LC circuit [42,43]. The total energy of such a circuit is

𝑈 = 1
2
(𝐶𝑉 2 +𝐿𝐼2) = 1

2

(
𝐶2𝑉 2

𝐶
+ 𝐿2𝐼2

𝐿 

)
(39)

where 𝐶 is the capacitance, 𝐿 is the inductance, 𝑉 is the voltage and 𝐼
the current. This can be written in the form

𝐻 = 1
2

(
𝐿2𝐼2

𝐿 
+ 𝐶2𝑉 2

𝐶

)
∶= 𝑝2

2𝑚
+ 𝜔2𝐿𝑞2

2 
= 𝑝2

2𝑚
+ 𝑚𝜔2𝑞2

2 
(40)

with 𝑈 =𝐻 (the Hamiltonian), 𝐿 = 𝑚 (the mass), 𝑞 = 𝐶𝑉 (the coordi-

nate), 𝐼 = 𝐶𝑑𝑉 ∕𝑑𝑡 = 𝑑𝑞∕𝑑𝑡 (the velocity), 𝑝 =𝐿𝐼 (the momentum) and 
𝜔 = 1∕

√
𝐿𝐶 (the angular frequency). The identical formal structure of a 

mechanical and LC harmonic oscillator prompts us to postulate that the 
quantum mechanical description of the LC oscillator is in the form of a 
state vector |𝜓⟩. Then, in a representation in which 𝑞 is an independent 
variable and |𝜓(𝑞, 𝑡)|2𝑑𝑞 is the probability that the oscillator has coor-

dinate between 𝑞 and 𝑞 + 𝑑𝑞, the time evolution of the state function is 
governed by the equation of motion

𝑖ℏ̂𝜕𝑡|𝜓⟩ = �̂�|𝜓⟩, �̂� = �̂�2

2𝑚
+ 1

2
𝑚𝜔2𝑞2. (41)

This corresponds exactly to the Schrödinger equation (7) with 𝜓(𝑞, 𝑡) =⟨𝑞|𝜓⟩, �̂� = −𝑖ℏ̂𝜕𝑞 , 𝑉 = 𝑚𝜔2𝑞2∕2. We therefore conclude that the 
Schrödinger equation (7) with 𝑉 = 𝑚𝜔2𝑞2∕2 describes the subthresh-

old oscillations of neurons.

Since we are interested in voltage oscillations, we need time-

dependent solutions of (7) with 𝑉 = 𝑚𝜔2𝑞2∕2. Such states are called 
‘coherent states’ |𝛼⟩ of the harmonic oscillator. They were first intro-

duced by Schrödinger in 1926, and their theory was developed further 
by Glauber [44] and Sudarshan [45] in connection with laser optics. 
Their importance lies in the fact that they are ‘minimum uncertain-

ty’ quantum states and closely approximate classical oscillators. One 
defines the ‘displacement operator’ 𝐷(𝛼) as 𝐷(𝛼) = 𝑒𝛼𝑎

†−𝛼∗𝑎 where 
𝛼 = |𝛼|𝑒𝑖𝜙 is a complex number. A coherent state |𝛼⟩ is then defined 
as a displaced vacuum state |0⟩,
|𝛼⟩ =𝐷(𝛼)|0⟩, 𝐷(𝛼) = 𝑒𝛼𝑎

†−𝛼∗𝑎, (42)

𝑎|0⟩ = 0. (43)

Using 𝛼(𝑡) = 𝛼𝑒−𝑖𝜔𝑡 = |𝛼|𝑒−𝑖(𝜔𝑡−𝜙), one can verify (see the Appendix B
for details) that the expectation value of 𝑥 in such a state is

⟨𝑞⟩ =√
2𝑞0|𝛼| cos(𝜔𝑡− 𝜙) (44)

where 𝑞0 =
√

ℏ̂

𝑚𝜔
is the width of the harmonic oscillator ground state 

which is a gaussian distribution. The uncertainties in position and mo-

mentum in such a state satisfy the relation (𝜎𝑞 )20(𝜎𝑝)
2
0 = ℏ̂2∕4, showing 

they are minimum uncertainty states, i.e. states with minimum quantum 
uncertainty and hence closest to classical states. 

Hence, the unequivocal prediction is that subthreshold neural oscil-

lations should be sinusoidal with a scatter of ℏ̂2∕4 around the classical 
values (Fig. 4). A measurement of the scatter will therefore determine 
the value of ℏ̂. Future work should therefore investigate quantum-like 
fluctuations in subthreshold neural oscillations using, for example, high-

resolution electrophysiological recordings, such as patch-clamp tech-

niques [46,47], capable of detecting minute fluctuations in membrane 
potentials. Besides macroscale organization, these oscillations might 
also reflect microscopic effects of quantum-like origin. This follows from 
Nelson’s mapping and the correspondence between stochastic noise and 
the Schrödinger equation discussed above.

Fig. 4. Coherent state representation of the harmonic oscillator: the expectation 
value ⟨𝑞⟩ as a function of time in the ground state of the harmonic oscillator, 
showing minimum uncertainty scatter points around a classical cosine wave.

Another possibility is to search for discrete stationary energy lev-

els 𝐸𝑛 = (𝑛+ 1
2 )ℏ̂𝜔 of neurons described by a Schrödinger-like equation 

with a harmonic oscillator potential 𝑉 implied by subthreshold oscil-

lations (see Appendix B). These are solutions of the time-independent 
Schrödinger equation and should be observable during the quiescent or 
refractory periods of the neurons. The Helmholtz free energy 𝐹 and the 
average energy ⟨𝐸⟩ of a quantum harmonic oscillator are given by (see 
Appendix B)

𝐹 = ℏ̂𝜔

2 
+ 1 

𝛽
ln
(
1 − 𝑒−𝛽ℏ̂𝜔

)
, (45)

⟨𝐸⟩ = ℏ̂𝜔

2 
+ ℏ̂𝜔𝑒−ℏ̂𝜔

1 − 𝑒−𝛽ℏ̂𝜔
(46)

where 𝛽 = 1∕𝑘𝑇 , 𝑇 being the absolute temperature. These expressions 
show that both 𝐹 and ⟨𝐸⟩ tend to the zero-point energy as the tem-

perature 𝑇 tends to zero. These results are experimentally verifiable 
in principle and can be used to determine the value of ℏ̂. If captured 
by electrophysiological methods, these energy levels would constitute 
direct evidence of non-classical and quantum-like effects in mesoscale 
neural dynamics.

8. Discussions

We first considered a 1D random walk model with drift of a single 
neuron (Section 2) and, using Nelson’s method of stochastic mechanics 
(Section 3), showed that it implies a Schrödinger-like equation in the 
space of the neuron’s state variable 𝑞. We then showed that the FN model 
of spiking neurons with noise (Section 6) also implies a Schrödinger-like 
equation. Both these models are known to correspond fairly well with 
the observed neuronal data.

Empirical evidence suggests that the neuronal constant ℏ̂, the analog 
of the reduced Planck constant ℏ in standard quantum mechanics, has a 
large value, indicating that quantum-like effects are non-negligible for 
neurons. Methods of empirically determining the constant will be found 
in Section 7.

Given that neural plasticity is often linked to the probabilistic nature 
of synaptic changes, our results suggest that quantum-like effects might 
influence how plasticity occurs in specific neural circuits.

Interestingly, ‘entangled states’ also exist in stochastic mechanics, 
and stochastic mechanics and quantum mechanics agree in predicting 
all observed correlations at different times. The reader is referred to the 
papers by Faris [48] and Petroni and Morato [49] for details. Looking for 
entanglement in neural systems is therefore another important area for 
further research, not only for its intrinsic value but also because entan-

glement is a key resource in quantum information processing, and it is 
important to find out whether the brain makes use of it, as conjectured 
[50]. Hameroff and Penrose have suggested that entanglement might 
involve quantum states in microtubules, dendrites and other parts of a 
neuron [17]. These would occur at a smaller scale than the one we con-

sider here, the scale of a whole neuron. On the basis of the demonstrated 
equivalence of neuronal dynamics and Schrödinger-like behaviour, one 
would expect that the presence of non-classical correlations in neuronal 
fluctuations, akin to quantum entanglement, could be detected through 
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cross-correlation analyses of simultaneous recordings from neighbour-

ing neurons. Further work is required though to establish this, which 
goes beyond the scope of the present paper.

CRediT authorship contribution statement

Partha Ghose: Writing – review & editing, Writing – original draft, 
Methodology, Conceptualization. Dimitris A. Pinotsis: Writing – re-

view & editing, Writing – original draft, Formal analysis, Conceptual-

ization.

Declaration of competing interest

The authors declare no conflict of interest.

Acknowledgements

The authors thank E. M. Pothos for helpful discussions. DAP was 
supported by the Medical Research Council (MRC) (Grant Number 
MR/W011751/1).

Appendix A

The solutions 𝑄(𝑡) of the stochastic differential equations (1), (2) are 
known to be continuous at all state points but nowhere differentiable. 
Hence, Nelson [27] suggested the following mean forward and back-

ward differentials which we adopt:

𝐷𝑓𝑄(𝑡) = lim 
Δ𝑡→0+

𝐸𝑡

[
𝑄(𝑡+Δ𝑡) −𝑄(𝑡)

Δ𝑡 

]
, (47)

𝐷𝑏𝑄(𝑡) = lim 
Δ𝑡→0+

𝐸𝑡

[
𝑄(𝑡) −𝑄(𝑡−Δ𝑡)

Δ𝑡 

]
(48)

where 𝐸𝑡 denotes the expectation conditional on 𝑄(𝑡) = 𝑞. For differen-

tiable curves 𝐷𝑄𝑋(𝑡) =𝐷𝑏𝑄(𝑡) = �̇� = 𝑣(𝑡), the ‘velocity’ of the random 
variable. It follows that the drift coefficients in the forward and back-

ward equations are given by

𝐷𝑓 (𝑄(𝑡)) = 𝑏𝑓 (𝑄(𝑡), 𝑡), 𝐷𝑏(𝑄(𝑡)) = 𝑏𝑏(𝑄(𝑡), 𝑡) (49)

Then 𝑏𝑓 is 𝐷𝑓𝑥(𝑡), the mean forward velocity, and 𝑏𝑏 is 𝐷𝑏𝑥(𝑡), the mean 
backward velocity of the process. This amounts to a complete description 
of the motion, as in classical mechanics.

As is well known, the forward and backward SDEs lead to two 
Fokker-Planck equations for the probability density 𝜌(𝑥, 𝑡) of the ran-

dom variable executing Brownian motion:

𝜕

𝜕𝑡
𝜌(𝑞, 𝑡) = − 𝜕

𝜕𝑞

[
𝑏𝑓 (𝑞, 𝑡)𝜌(𝑞, 𝑡)

]
+ 𝜎2

2 
𝜕2

𝜕𝑞2
𝜌(𝑞, 𝑡), (50)

𝜕

𝜕𝑡
𝜌(𝑞, 𝑡) = − 𝜕

𝜕𝑞

[
𝑏𝑏(𝑞, 𝑡)𝜌(𝑞, 𝑡)

]
− 𝜎2

2 
𝜕2

𝜕𝑞2
𝜌(𝑞, 𝑡) (51)

The negative sign of the noise term in the second (backward) equation 
is due to time reversal (𝑡→ −𝑡) which does not change the diffusion co-

efficient [51]. Adding these equations results in the continuity equation

𝜕

𝜕𝑡
𝜌(𝑞, 𝑡) + 𝜕

𝜕𝑞
[𝑣(𝑞, 𝑡)𝜌(𝑞, 𝑡)] = 0 (52)

with the current velocity defined by 𝑣(𝑞, 𝑡) = (𝑏𝑓 (𝑞, 𝑡) + 𝑏𝑏(𝑞, 𝑡))∕2. This 
displays the role of the current velocity in maintaining the probability 
distribution:

The difference of the forward and backward drifts 𝑢(𝑞, 𝑡) = (𝑏𝑓 (𝑞, 𝑡)−
𝑏𝑏(𝑞, 𝑡))∕2 is defined as the osmotic velocity. Subtracting the two Fokker-

Planck equations results in

𝑢(𝑞, 𝑡) = 𝜎

2 
𝜕

𝜕𝑞
ln[𝜌(𝑞, 𝑡)] = 𝜎

2 
𝜕𝑞𝜌

𝜌 
= 𝜎

𝜕𝑅

𝜕𝑞
(53)

where ln𝜌(𝑞, 𝑡) = 2𝑅(𝑞, 𝑡). The coupled forward-backward stochastic dif-

ferential equations for the position process can thus be written as

𝑑𝑄(𝑡) = (𝑣(𝑄(𝑡), 𝑡) + 𝑢(𝑄(𝑡), 𝑡)) + 𝜎𝑑𝑊𝑓 (𝑡), (54)

𝑑𝑄(𝑡) = (𝑣(𝑄(𝑡), 𝑡) − 𝑢(𝑄(𝑡), 𝑡)) + 𝜎𝑑𝑊𝑏(𝑡). (55)

It follows from this that the current velocity is curl-free and can be writ-

ten as

𝑣(𝑞, 𝑡) = 1 
𝑚

𝜕

𝜕𝑞
𝑆(𝑞, 𝑡) (56)

where 𝑆(𝑞, 𝑡) is a scalar function which can be identified with the action.

Now, following Guerra and Morato [26], let us introduce the La-

grangian field

 = 1
2
𝑚(𝑣+ 𝑢).(𝑣− 𝑢) − 𝑉 (𝑞) = 1

2
𝑚(𝑣2 − 𝑢2)(𝑞, 𝑡) − 𝑉 (𝑞) (57)

where 𝑉 (𝑞) is the electrostatic potential, from which the action 𝑆(𝑞, 𝑡)
can be constructed. The minus sign before 𝑢2 is physically relevant; it 
means that the osmotic part of the action plays a role similar to an exter-

nal potential 𝑉 and is not a kinetic contribution. Using the variational 
principle, one can show that the main features of Nelson’s stochastic me-

chanics can be derived from such an action. That is the justification for 
the form of the Lagrangian . As pointed out by Guerra [52], ‘a physical 
justification for the assumed form of the stochastic Lagrangian seems to 
be a very difficult task, and surely it will involve new ideas about the 
origin of the underlying Brownian motion in stochastic mechanics’.

Using stochastic control theory and the current velocity as the con-

trol, Guerra and Morato showed that the following differential equations 
for the functions 𝑅 and 𝑆 extremize the action:

𝜕𝑆

𝜕𝑡 
+ 1 

2𝑚

(
𝜕𝑆

𝜕𝑞

)2
+ 𝑉 + 𝑉𝑄 = 0, 𝑉𝑄 = −𝑚𝜎2

2 

[(
𝜕𝑅

𝜕𝑞

)2
+ 𝜕2𝑅

𝜕𝑞2

]
,

(58)

𝜕𝑅

𝜕𝑡 
+ 1 

2𝑚

(
𝑅
𝜕2𝑆

𝜕𝑞2
+ 2𝜕𝑅

𝜕𝑞

𝜕𝑆

𝜕𝑞

)
= 0. (59)

The first equation is the Hamilton-Jacobi-Bellman equation, i.e., the 
Hamilton-Jacobi equation with an additional stochastic term 𝑉𝑄 which 
takes the form

𝑉𝑄 = −𝑚𝜎2

4 

[
𝜕2
𝑞
𝜌

𝜌 
−

(𝜕𝑞𝜌)2

2𝜌2

]
(60)

in terms of 𝜌 = 𝑒2𝑅. It is the analog of the Bohm quantum potential [34]. 
The second equation can also be written in terms of 𝜌 as

𝜕𝜌

𝜕𝑡 
+ 𝜕𝑞

[
𝜌
𝜕𝑞𝑆

𝑚 

]
= 0 (61)

which, using eqn (56) for the current velocity, is a continuity equation. 
These two coupled partial differential equations determine the stochas-

tic process. These equations can be derived from the Schrödinger-like 
equation

𝑖𝑚𝜎
𝜕

𝜕𝑡
𝜓(𝑞, 𝑡) =

(
−𝑚𝜎2

2 
𝜕2
𝑞
+ 𝑉 (𝑞)

)
𝜓(𝑞, 𝑡) (62)

by putting 𝜓 = exp(𝑅 + 𝑖𝑆∕𝑚𝜎) =
√
𝜌 exp(𝑖𝑆∕𝑚𝜎) and separating the 

real and imaginary parts [26,34]. The argument 𝑞 in the wave function 
𝜓(𝑞, 𝑡) representing the value of the random variable 𝑄(𝑡) of the neuron 
membrane plays the role of the spatial coordinate 𝑥 and the coefficient 
𝜎 plays the role of the factor ℏ∕𝑚 in standard quantum mechanics.

Bearing in mind that the stochastic processes which occur in neural 
membranes are entirely different from those in configuration space that 
give rise to standard quantum mechanics, it would be useful to introduce 
a new universal constant ℏ̂ = 𝑚𝜎 for neuronal media and rewrite the 
above equation in the form

𝑖ℏ̂
𝜕

𝜕𝑡
𝜓(𝑞, 𝑡) =

(
− ℏ̂2

2𝑚
𝜕2
𝑞
+ 𝑉 (𝑞)

)
𝜓(𝑞, 𝑡) (63)
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Fig. 5. Flow chart depicting the main mathematical steps used in deriving the Schrödinger equation from stochastic mechanics. 

and treat it as the Schrödinger equation for single neurons. Like the 
Schrödinger equation in standard quantum mechanics, this equation 
will also ensure a novel level of stability and structure in the stochastic 
world of neurons.

Fig. 5 is a flow chart that summarizes the various mathematical steps 
used in deriving the Schrödinger equation in Nelson’s stochastic me-

chanics.

Appendix B

When considering harmonic oscillators, it is convenient to introduce 
the ladder operators

𝑎 = 1 √
2𝑚𝜔ℏ̂

(𝑚𝜔𝑞 + 𝑖�̂�), (64)

𝑎† = 1 √
2𝑚𝜔ℏ̂

(𝑚𝜔𝑞 − 𝑖�̂�). (65)

Using the commutation rule [�̂�, 𝑞] = −𝑖ℏ̂, one gets the commutation re-

lation [𝑎, 𝑎†] = 1, and

𝑎†|𝑛⟩ =√
𝑛+ 1|𝑛+ 1⟩, (66)

𝑎|𝑛⟩ =√
𝑛|𝑛− 1⟩, (67)

𝑎†𝑎|𝑛⟩ = 𝑛|𝑛⟩ (68)

where 𝑛 = 0,1,2, ... is an integer. The Hamiltonian operator can be writ-

ten in the form

�̂� = ℏ̂𝜔

(
𝑎†𝑎+ 1

2

)
= ℏ̂𝜔

(
𝑁 + 1

2

)
(69)

where 𝑁 = 𝑎†𝑎 is the number operator. It then follows from the time-

independent Schrödinger equation �̂�𝜓𝑛 = 𝐸𝑛𝜓𝑛 that the energy eigen-

values are

𝐸𝑛 = ℏ̂𝜔

(
𝑛+ 1

2

)
. (70)

The factor ℏ̂𝜔∕2 is the ‘zero-point energy’ of neurons. The corresponding 
energy eigenfunctions are given by

𝜓𝑛(𝑞) =
1 √
𝑛!
(𝑎†)𝑛𝜓0(𝑞) (71)

with the ground state

𝜓0(𝑞) =

(
𝑚𝜔

𝜋
̂̂
ℏ 

)
𝑒
− 𝑚𝜔𝑞2

2 ̂̂ℏ (72)

which is a Gaussian distribution with width 𝑞0 =
√

ℏ̂

𝑚𝜔
.

Now note that the coherent state can be written as

𝑎|𝛼⟩ = 𝛼|𝛼⟩, (73)

⟨𝛼|𝑎† = ⟨𝛼|𝛼∗, (74)

⟨𝛼|𝑎†𝑎|𝛼⟩ = |𝛼|2. (75)

Using these results, one can compute the uncertainties in 𝑞 and 𝑝:

(𝜎𝑞)2 = ⟨𝑞2⟩− ⟨𝑞⟩2 = 𝑞20

(
𝑛+ 1

2

)
, (76)

(𝜎𝑝)2 = ⟨𝑝2⟩− ⟨𝑝⟩2 = ℏ̂2

𝑞20

(
𝑛+ 1

2

)
, (77)

and hence for the ground state (𝑛 = 0) (𝜎𝑞)20(𝜎𝑝)
2
0 = ℏ̂2∕4. For further 

details of coherent states the reader is referred to Ref [53].

The thermodynamic properties of the quantum harmonic oscillator 
can be calculated using the standard techniques of statistical mechanics. 
The partition function

𝑍 = 𝑇 𝑟𝑒−𝛽�̂� =
∞ ∑
𝑛=0 

𝑒−𝛽𝐸𝑛 =
∞ ∑
𝑛=0 

𝑒
−𝛽

(
𝑛+ 1

2

)
ℏ̂𝜔 = 1

2
𝑐𝑠𝑐ℎ

(
𝛽ℏ̂𝜔

2 

)
(78)

where �̂� is the Hamiltonian operator. Hence

𝐹 = −1 
𝛽
ln𝑍 = ℏ̂𝜔

2 
+ 1 

𝛽
ln
(
1 − 𝑒−𝛽ℏ̂𝜔

)
, (79)

⟨𝐸⟩ = − 𝜕 ln𝑍
𝜕𝛽

= ℏ̂𝜔

2 
+ ℏ̂𝜔𝑒−ℏ̂𝜔

1 − 𝑒−𝛽ℏ̂𝜔
. (80)
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