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The generalised linear model is a flexible predictive model for observational data that is widely used in practice 
as it extends linear regression models to non-Gaussian data. In this paper, we introduce the concept of a 
properly defined generalised linear model by requiring the conditional mean of the response variable to be 
properly mapped through the chosen link function and the log-likelihood function to be concave. We provide a 
comprehensive classification of proper generalised linear models for the Tweedie family and its popular subclasses 
under different link function specifications. Our main theoretical findings show that most Tweedie generalised 
linear models are not proper for canonical and log link functions, and identify a rich class of proper Tweedie 
generalised linear models with power link functions. We provide a novel interpretability methodology for power 
link functions that is mathematically sound and very simple, which could help the adoption of such a link function 
that has not been used much in practice for its lack of interpretability. Using self-concordant log-likelihoods and 
linearisation techniques, we provide novel algorithms for estimating several special cases of proper and not proper 
Tweedie generalised linear models with power link functions. The effectiveness of our methods is determined 
through an extensive numerical comparison of our estimates and those obtained using three built-in packages,

MATLAB fitglm, R glm2 and Python sm.GLM libraries, which are all implemented based on the standard Iteratively 
Reweighted Least Squares method. Overall, we find that our algorithms consistently outperform these benchmarks 
in terms of both accuracy and efficiency, the largest improvements being documented for high-dimensional 
settings. This is concluded for both simulated data and real data, which shows that our optimisation-based 
GLM implementation is a good alternative to the standard Iteratively Reweighted Least Squares implementations 
available in well-known software.

1. Introduction

1.1. Literature review and main goals

Generalised linear modelling (GLM) is a predictive model for observa-

tional data which creates a bridge between statistics and machine/sta-

tistical learning. That is, GLM provides not only statistical goodness of 
fit evidence (Nelder and Wedderburn, 1972; McCullagh et al., 1989; 
Bickel and Doksum, 2015) but also machine/statistical learning evi-

dence such as feature/variable selection (Kuo and Mallick, 1998; Hastie 
et al., 2001).

GLMs have been successfully implemented in different research 
fields, and it is vastly used in insurance risk modelling; see e.g., (De-
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bón et al., 2008) for mortality modelling, (Eling and Wirfs, 2019) for 
cyber risk modelling, (Delong et al., 2021) for insurance pricing, etc. 
Most of these applications assume independent observations, but insur-

ance applications may require non-independent data, and one example 
is longitudinal data, and this setting is investigated in Antonio and Beir-

lant (2007).

The basic GLM requires assumptions about two key quantities, the 
underlying parametric distribution and the choice of link function (LF). 
The estimation procedure is based on an optimisation algorithm if the 
most common estimation method is chosen, i.e. maximum likelihood esti-
mation (MLE). The asymptotic theory of M-estimators requires a concave 
log-likelihood function, which is the ideal setting so that efficient and 
stable estimates are obtained; the existence and uniqueness of the MLE 
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estimator is an essential assumption that requires some regularity con-

ditions (Wedderburn, 1976; Mäkeläinen et al., 1981). Consequently, we 
introduce the concept of a proper GLM which requires the conditional 
mean of the response variable to be properly mapped through the chosen 
LF and for the log-likelihood function to be well-defined and concave. 
Since the GLM literature typically relies on exponential dispersion mod-

els (Jørgensen, 1987), our first main goal is to provide a classification 
of proper GLMs under this modelling assumption for different LF spec-

ifications. This allows the modeller to reduce the numerical issues and 
understand which combination of the parametric family and LF would 
provide the best possible setting for implementation purposes. The most 
common LFs belong to the class of log or power functions, see e.g. Mc-

Cullagh et al. (1989) and Bickel and Doksum (2015), and thus the main 
focus will be on these choices.

The most popular algorithms for fitting exponential dispersion GLMs 
are Iteratively Reweighted Least Squares (IRLS), Broyden-Fletcher-Goldfarb-

Shanno (BFGS) and Limited-memory BFGS (L-BFGS). IRLS is the standard 
algorithm which is reasonably scalable when the number of covari-

ates/features is smaller than the sample size. However, IRLS requires 
inverting the Hessian matrix at every step, which is computationally 
challenging in non-sparse problems when either the number of fea-

tures/covariates or the sample size is small. A remedy for this is given 
by either BFGS or L-BFGS, where the inverse of the Hessian is approxi-

mated so that it is feasible to solve higher-dimensional GLM Regressions. 
The second main goal of the paper is to identify viable alternative esti-

mation algorithms to IRLS. Given that the underlying distribution of the 
response variable is parametrised according to an exponential dispersion 
family, the MLE could also be obtained via the vanilla Newton’s method, 
which by design is the same as IRLS if the canonical LF is in place; the ap-

plication of Newton’s method is also known as the Fisher Scoring method 
in the GLM literature. Our aim is to improve this estimation method 
for both proper and not proper GLM settings, by making use of the 
mathematical properties of power LFs. For convex problems, Newton’s 
algorithm can be further refined if the objective function is in addi-

tion self concordant (SC), i.e. a convex function whose third derivative is 
bounded relative to the second derivative in the interior of its domain.1

This property allows defining an augmented Newton’s method which 
requires a fewer number of iterations for convergence to the optimal so-

lution, see e.g. Boyd and Vandenberghe (2004) or Nesterov (2004) for 
further details on SC and their fast convergence iterative methods. Since 
the log-likelihood associated to special cases of Tweedie GLMs (e.g. Pois-

son and Gamma) equipped with some particular power LF specifications 
is an SC function, we rely on this method for implementing them.2 For 
non-convex problems, which is typically the case for many exponen-

tial dispersion GLMs (e.g. Inverse Gaussian with power LFs), the use of 
standard IRLS-type algorithms leads to significant computational prob-

lems, as illustrated in the next subsection. In such cases, one could either 
construct bespoke optimisation algorithms designed to tackle a specific 
problem or rely on mainstream optimisation tools (e.g. generic interior-

point methods) if the former is not available. In this paper, we also aim 
to identify tractable solutions for non-convex GLM instances by explor-

ing linearisation techniques, see e.g. Boyd et al. (2011b).

1 In a GLM context, a modified version of the SC property with a different 
control of the third derivative has been used by Bach (2010) for analysing the 
statistical properties of Logistic Regressions.

2 We should note that the augmented Newton’s method for SC objective func-

tions still requires the inverse of the Hessian matrix, but in a much lower number 
of iterations, which reduces the computational time. If the size of the GLM is 
large, then one may need compromises like those given by BFGS and L-BFGS 
algorithms where the inverse of the Hessian is efficiently computed, although 
we do not recommend this choice unless the augmented Newton’s method is 
overwhelmed by the size of the problem. In conclusion, the SC objective func-

tions are expected to bring an improvement to IRLS, and large sized problems 
could be combined with the Hessian inverse approximations brought by L-BFGS 
or BFGS.

Finally, we would like to reiterate that the IRLS methodology ap-

proximates the MLE estimates, though IRLS is a very general method 
that is implemented in various forms in all well-known software. The 
differences between various implementations are given by bespoke so-

lutions to overcome the lack of convergence that is not guaranteed by 
IRLS, and therefore, software engineers came up with different solu-

tions; this explains why R/Python/MATLAB usually lead (if conver-

gence is achieved) to different estimates even if the starting values and 
all other settings are the same.3 Our numerical examples from Sections 5
and 6 show that the lack of convergence is not a negligible issue in GLM 
deployment for both simulated and real data.

1.2. Motivation and contributions

The impact of using standard IRLS-based built-in packages on fitting 
not proper exponential dispersion GLMs is illustrated in the following 
motivational example. Specifically, using synthetic data, we compare 
the estimates of an Inverse Gaussian GLM based on the log LF, which 
is an example of a not proper GLM due to the non-concavity of its log-

likelihood function, obtained with either MATLAB’s fitglm library or the 
non-linear optimisation solver provided by MATLAB’s fmincon function. 
Fig. 1 displays box plots of the ratio between the 𝐿1 distance (from the 
true value) of the estimates obtained with the latter method and those 
computed using MATLAB’s fitglm values. The results suggest that the 
fmincon-based estimation significantly outperforms the fitglm counter-

part, especially for large size problems, which indicates that IRLS is not 
designed to perform well for not proper GLM settings.

To summarise, for any GLM implementation, one should not only 
consider a proper framework but also construct bespoke algorithms to 
deal with the optimisation problem when possible. Our contributions

address these fundamental issues. First, we provide a comprehensive 
characterisation of proper MLE-based GLMs for a variety of exponen-

tial dispersion models, including the Tweedie family and its well-known 
special cases, under various LF specifications. Our main theoretical find-

ings indicate that most of Tweedie generalised linear models are not 
proper for canonical and log link functions, and identify a rich class of 
proper Tweedie generalised linear models with power link functions. 
Consequently, using the Tweedie family for GLM implementation needs 
a careful approach, since, despite its very flexible parametrisation, the 
non-standard (Tweedie) models may lead to serious computational is-
sues. Second, for a few standard Tweedie GLMs equipped with special 
cases of power LFs, we introduce efficient and accurate bespoke algo-

rithms for solving high-dimensional problems which cannot be prop-

erly tackled with standard IRLS-type methods. Specifically, we pro-

pose the Newton’s method for Self-Concordant problems (NSC) for solving 
Poisson and Gamma Regressions and the Alternating Linearisation Meth-

ods (ALM) algorithm for Inverse Gaussian Regressions. We provide a 
comprehensive comparison between these algorithms and those avail-

able in the standard built-in GLM libraries from various software, such 
as MATLAB fitglm, R glm2 and Python statsmodels sm.GLM. We find 
that our methods outperform these benchmarks in terms of both ac-

curacy and efficiency, the largest improvements being documented for 
high-dimensional problems. Third, we propose a novel interpretability 
methodology for power LFs – which are omnipresent in this paper – that 
is simple and mathematically sound, which could further support the 
adoption of such an LF that has not been used much in practice because 
of its lack of interpretability; for details, see Section 2.2. The flexibility 
of GLM modelling is definitely enhanced if the user has access to more 

3 The IRLS lack of convergence led the developers of MATLAB fitglm and R

glm2 to provide bespoke solutions for this problem by adding step-halving argu-

ments that are convergence enablers. For example, the earlier version of R 𝑔𝑙𝑚

was modified for this reason, and R glm2 has an enhanced step-halving imple-

mentation that is a step ahead, but it does not resolve the issue in its totality; 
for details, see Marschner (2011) or the R glm2 documentation.
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Fig. 1. Box plots of MATLAB fmincon vs fitglm for Inverse Gaussian GLM. 
Notes: This figure shows the box plots of the ratio between the 𝐿1 distance (from the true value) of the MLE-based GLM solutions obtained with MATLAB’s fmincon

function and the IRLS-based GLM solution obtained with MATLAB’s fitglm library. Each box plot is constructed based on 𝑁 = 500 simulations according to the DGP 
scheme outlined in Appendix C, for different specifications for the number of observations and the number of covariates. All GLMs are fitted with log LFs, i.e. a 
non-proper GLM.

LFs for which the pros and cons are well-understood. A similar objective 
is achieved in Delong et al. (2021), although the GLM model flexibility 
is obtained by varying the Tweedie’s parameter, and one can do the 
same by varying the power LF parameter, so that data with complex 
structures could be handled by such GLM models.

The remainder of the paper is organised as follows. Section 2 in-

troduces the notion of proper GLMs for exponential dispersion models 
and reviews the LF candidates. Section 3 provides a comprehensive 
classification of proper Tweedie GLMs and its subclasses. Section 4 in-

troduces the NSC and ALM algorithms for solving Poisson and Gamma, 
and Inverse Gaussian Regressions, respectively. The numerical compar-

ison between these algorithms and the standard built-in libraries from

MATLAB, R and Python is illustrated in Section 5 for simulated data, 
while vast real data analysis is provided in Section 6 for two well-

known insurance datasets; both sections show ample evidence for our 
optimisation-based implementation that is an alternative GLM imple-

mentation to the usual IRLS implementation. Section 7 concludes the 
paper.

2. Proper GLM and interpretability for exponential dispersion 
models

A univariate GLM setting assumes that the response variable 𝑌 , 
defined on  ⊆ ℜ, is explained by covariates/features 𝑋𝑋𝑋 defined on 
 ⊆ℜ𝑑 . Let {𝑃𝜃,𝜙 ∶ 𝜃 ∈Θ ⊆ℜ, 𝜙 ∈Φ ⊆ℜ} be the parametric set of dis-

tributions for 𝑌 , which is assumed to be an exponential dispersion model

characterised by the following probability density/mass function4:

log
(
𝑓𝑌 (𝑦;𝜃,𝜙)

)
= 𝜃𝑦− 𝑏(𝜃)

𝑎(𝜙) 
+ 𝑐(𝑦,𝜙). (2.1)

Here, 𝑎(⋅), 𝑏(⋅) and 𝑐(⋅, ⋅) are real-valued functions defined on Φ, Θ and 
 ×Φ, respectively, and 𝜙 is the dispersion parameter. When 𝜙 is fixed, 
(2.1) resembles an exponential family with canonical parameter 𝜃. Under 
standard regularity conditions, the mean and variance of 𝑌 are

E[𝑌 ] = 𝑏′(𝜃) and Var [𝑌 ] = 𝑎(𝜙)𝑏′′(𝜃). (2.2)

4 Although the univariate assumption for the response variable 𝑌 is not es-

sential, it simplifies the exposition.

The GLM consists of 𝑛 independent r.v.’s (observations) 𝑌1,⋯ , 𝑌𝑛

with 𝑌𝑖 distributed according to (2.1) with parameters 𝜃𝑖 and 𝜙, 
and functions 𝑎𝑖 (𝜙) , 𝑏

(
𝜃𝑖
)

and 𝑐
(
𝑦𝑖,𝜙

)
, and conditional mean linked 

through a linear predictor 𝜂𝑖 = 𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽 via a real-valued function ℎ, so that

E
[
𝑌𝑖 ∣𝑋𝑋𝑋𝑖 = 𝑥𝑥𝑥𝑖

]
= ℎ

(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
)
. (2.3)

Here, 𝑥𝑥𝑥𝑖 is a 𝑑-dimensional vector of realised features/covariates for any 
𝑖 = 1,… , 𝑛.5

The inverse function of ℎ, provided that it exists, is known as the 
link function (LF) and it is denoted by 𝑔 = ℎ−1. The standard GLM lit-
erature differentiates the GLMs by the parametric choice made in (2.1)

and the preferred LF 𝑔. However, from the maximum likelihood esti-

mation (MLE) perspective, the function ℎ is more relevant than 𝑔, and 
thus, the remaining results are described in terms of the former. If the 
dispersion parameter 𝜙 is known (otherwise it is estimated through the 
variance function from (2.2)), the MLE associated with the GLM defined 
in Equations (2.1) and (2.3) is obtained by solving the following non-

linear optimisation problem

�̂�𝛽𝛽 = arg max
𝛽𝛽𝛽∈ℜ𝑑

𝓁 (𝛽𝛽𝛽) =
𝑛 ∑

𝑖=1 

𝜃𝑖𝑦𝑖 − 𝑏
(
𝜃𝑖
)

𝑎𝑖 (𝜙)
with 𝜃𝑖 =

(
𝑏′−1 ◦ ℎ

)(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
)
. (2.4)

Without loss of generality, we let 𝑎𝑖 (𝜙) = 𝑎 (𝜙).6 The above optimisation 
problem is well-defined and admits a (unique) solution if the functions 
𝑎, 𝑏 and ℎ satisfy certain regularity conditions. These constraints for-

malise the concept of a proper GLM and are summarised below.

5 Note that although the linear predictor suggests observing 𝑑 covariates/fea-

tures (since  ⊆ ℜ𝑑 ), in fact we only assume 𝑑 − 1 covariates as we impose 
𝑥𝑖,0 = 1 for any 𝑖 = 1,… , 𝑛 almost surely. This convention simplifies the nota-

tion, so that the linear predictor becomes 𝜂𝑖 =𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽 = 𝛽0 +𝛽1𝑥𝑖,1 +…+𝛽𝑑−1𝑥𝑖,𝑑−1.

6 A popular choice in the GLM literature is to consider 𝑎𝑖 (𝜙) = 𝑎 (𝜙) ∕𝑤𝑖 with 
𝑎 (𝜙) = 𝜙 and 𝑤𝑖 non-negative fixed weights for all 𝑖 = 1,… , 𝑛. Under this 
assumption, the non-linear optimisation from Equation (2.4) is equivalent to 
solving a weighted MLE for a GLM where the response variable follows a canon-

ical one-parameter exponential family distribution. While this could simplify 
the estimation of 𝛽𝛽𝛽 , and some bespoke model adequacy is typically available 
to check whether the predefined weights 𝑤𝑖 are acceptable, in reality, this is 
more like a trial error approach which is often resolved by relying on domain 
knowledge.
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Definition 2.1. The GLM defined in Equations (2.1) and (2.3) is said to 
be proper if the following two conditions are satisfied:

C1. The conditional mean relationship from (2.3) is properly mapped, 
i.e. ℎ ∶ ℜ → 𝑏′ (Θ) ⊆ 𝐶𝑜𝑛𝑣 () with 𝑏′ ∶ Θ → 𝑏′ (Θ) an injective 
function.7

C2. Assume that the likelihood function is well-defined in (2.4). The 
individual likelihood contribution is a (strictly) concave function, 
i.e.{

sgn (𝑎 (𝜙))⋅ 
(
𝑦 ⋅

(
𝑏′−1 ◦ ℎ

)
(𝜂) −

(
𝑏 ◦ 𝑏′−1 ◦ ℎ

)
(𝜂)

)
is (strictly) concave 

in 𝜂 on ℜ for any given 𝑦 ∈ ,

where sgn is the signum function.

Condition C1 ensures that the GLM estimation is well-defined. More 
specifically, we require the function 𝑏′ to be injective, so that it ad-

mits an inverse.8 Condition C2 implies that the likelihood function 𝓁
defined in (2.4) is a concave function in 𝜂 ∈ℜ, since the composition 
of a concave function with an affine mapping is concave and the sum 
of concave functions is also concave; in other words, (2.4) is a concave 
programming instance. Consequently, under the constraints from Def-

inition 2.1, the optimisation problem in (2.4) leads to solutions which 
are global maximum (see e.g. Boyd and Vandenberghe (2004)). Note 
that the asymptotic distribution of �̂�𝛽𝛽 – like any M-estimator – requires 
Equation (2.4) to have a unique solution, which is not always guaran-

teed. However, this condition is always satisfied if the function from 
Condition C2 is strictly concave. The technical conditions for the ex-

istence and uniqueness of the MLE estimate are well-known (see e.g. 
Wedderburn (1976) and Mäkeläinen et al. (1981)), and are standard 
in the literature, i.e. the log-likelihood function is strictly concave and 
some boundary conditions are satisfied. The MLE solutions could be on 
the boundary of the parameter space, which makes the estimation quite 
problematic, but we exclude such extreme cases from our analysis.

2.1. Link function candidates for proper GLMs

The standard choice for solving (2.4) is to assume the function ℎ
satisfies

ℎ (𝜂) =𝑏′ (𝜂) , 𝜂 ∈ℜ. (2.5)

Under the specification from (2.5), its equivalent LF 𝑔 is known as the 
canonical LF. The sufficient conditions for a proper canonical LF-based 
GLM are summarised in the lemma below.

Lemma 2.2. Let a GLM be equipped with its canonical LF. The MLE-based 
GLM is proper if Θ =ℜ and 𝑏 is strictly convex (concave) on Θ provided 
that 𝑎 (𝜙) > 0 (𝑎 (𝜙) < 0) for all 𝜙∈Φ.

Although the canonical LF has useful mathematical/statistical prop-

erties, it does not always satisfy the conditions from Lemma 2.2, and 
therefore leads to not proper GLMs. Below, we briefly introduce two of 
the most popular alternative choices in the literature, namely the log

and power classes of LFs.9 The log LF is defined by taking

7 Note that 𝐶𝑜𝑛𝑣 is the convex-hull of a set. In addition, 𝐶𝑜𝑛𝑣
(

)

should be 
read as  when 𝑌 is continuously distributed, while the convex hull operator 
makes a difference when 𝑌 is a discrete random variable (see e.g. Bernoulli and 
Poisson families).

8 The function 𝑏′ is automatically surjective since the codomain coincides with 
its image 𝑏′ (Θ).

9 Note that both these functions are also canonical LFs for certain GLM cases. 
A detailed characterisation of these LFs within the context of a proper GLM is 
provided in Section 3 for several well-known cases of exponential dispersion 
models. Other classes of LFs such as probit and complementary log-log are intro-

duced and discussed in Appendix B.3 for Logistic Regressions.

ℎ(𝜂) = 𝑒𝜂, 𝜂 ∈ℜ. (2.6)

Similar to the previous case, this choice may fail to produce a proper 
GLM in certain situations, but a general classification as in Lemma 2.2

for such models is not available. Moreover, log LFs have been further 
associated to computationally unstable MLE procedures, which leads us 
to considering the following family of LFs which could address some 
of these issues due to their appealing mathematical properties.10 The 
power LF is defined via the following expression

ℎ (𝜂) = 𝜂𝛾 , 𝜂 ∈ℜ and 𝛾 ∈ℜ∗. (2.7)

Popular cases of power LFs used in numerical applications are the iden-

tity, square and square-root functions which are obtained by taking 
𝛾 = 1,1∕2 and 2 in (2.7), respectively. Furthermore, the reciprocal ver-

sions of these cases (i.e. reciprocal identity, reciprocal square and reciprocal 
square-root) are obtained by letting 𝛾 = −1,−1∕2 and −2, respectively.

Lemma 2.3 provides the sufficient conditions for C1 to be satisfied 
under the choice from (2.7).11

Lemma 2.3. Let a GLM with a power LF be chosen. Condition C1 in Defi-

nition 2.1 is satisfied if either of the following conditions are satisfied:

(i) 𝛾 is a non-zero even integer and 𝑏′(Θ) = ℜ+ ⊆ 𝐶𝑜𝑛𝑣
(

)

such that 
𝑏′ ∶ Θ→ℜ+ is an injective mapping.

(ii) 𝛾 is an odd integer and 𝑏′ (Θ) = 𝐶𝑜𝑛𝑣
(

)
=ℜ such that 𝑏′ ∶ Θ→ℜ

is an injective mapping.

The above result helps us identify when a GLM is not proper due to 
Condition C1 violation. For example, a direct consequence of Lemma 2.3

is that power LFs are not appropriate choices for GLMs where the func-

tion 𝑏′ has a bounded image; this is the case of Logistic Regression (see 
Appendix B.2 for more details).

One way to tackle the not proper GLM issue for power LFs is to 
consider restrictions and/or modifications to these functions. For this 
purpose, we first introduce the class of half-power LFs which corresponds 
to taking

ℎ (𝜂) =
{

𝜂𝛾 , 𝜂 > 0,
+∞, 𝜂 ≤ 0, (2.8)

with 𝛾 ∈ ℜ∗.12 Finally, one can consider the negative versions of the 
power/half-power functions, called negative power/negative half-power, re-

spectively, which are obtained by multiplying ℎ from (2.7)/(2.8) by −1.

2.2. Interpretability of GLM model outputs

Interpretability of (machine learning and statistical) model outputs is 
an emerging field that has been developing in recent years as it is crucial 
for building and ensuring trustworthy algorithms deployed in statis-

tical and machine learning predictive modelling. Generally speaking, 
standard methods of global interpretation methods (e.g., the Partial De-

pendence Plot and Accumulated Local Effect Plots; for details, see Friedman 
(2001) and Apley and Zhu (2020)) make many prediction models (in-

cluding GLM) more interpretable than these models were before. Such 
global interpretation methods describe average behaviour and become 
very useful when the modeller would like to understand the embed-

ded data structure (e.g., whether linear or transformations of linear 

10 Generally speaking, power LFs are useful for constructing convex optimisa-

tion algorithms for estimating GLMs in an accurate and efficient way. Examples 
of such algorithms are provided in Section 4.
11 Note that a general characterisation for Condition C2 cannot be provided 
for the power LF. The proofs of Lemmas 2.2 and 2.3 follow immediately from 
Definition 2.1.
12 Note that the special cases for 𝛾 that we considered for the standard power

LFs are defined in the same way for the half-power scenarios, e.g. we use the 
term reciprocal half-square-root for ℎ following Equation (2.8) with 𝛾 = −2.
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models are suitable for the specific dataset) or to improve the baseline 
model. Specifically, GLM modelling is known for its simplicity and is 
arguably preferred to Generalised Additive Model (GAM) and Generalised 
Linear Mixed Models (GLMM), but all of them are interpretable based 
on the new and continuing discovery in this emergent, exciting and 
fast-growing interpretability of predictive (analytics) models. Therefore, 
such global interpretation methods apply very well to any GLM method-

ology, including our augmented IRLS, which could be used to interpret 
GLM model outputs.

As mentioned before, ensuring trustworthy algorithms is a priority 
to practitioners and academics with a keen interest on creating highly 
adoptable prediction models. Our algorithms ensure this and actually 
proper GLM ensures GLM trustworthiness by requiring the GLM model 
predictions to be as the end-user would expect to be, which is reflected 
in Definition 2.1 and motivated this work. It is well-known that GLM is 
widely used in insurance pricing and the omnipresent numerical solu-

tion is based on IRLS that is an approximation of the actual problem, i.e., 
maximising the data-driven MLE problem as given in (2.4). However, 
our proper GLM solutions enable using convex optimisation instead of 
using approximation methods such as IRLS; note that convex optimisa-

tion is computationally more reliable than general (non-convex) opti-

misation, and IRLS could lead to suboptimal solutions, and thus, proper 
GLM opens up a new strand of research of solving GLM in a more ef-

ficient way, and Algorithm 1 is an example of this kind. Note that the 
Logistic regression is a proper GLM, and no R or Python GLM solution 
is scalable if using IRLS, and thus, such packages use convex optimi-

sation; the seminal paper (Boyd et al., 2011a) is an illustration of this 
point, while multiple implementations are available (e.g., CVX in MAT-

LAB, CVXPY in Python, and CVXR in R, which could be retrieved from 
this link).13 Thus, we may conclude that Algorithm 1 is a trustworthy 
algorithm.

Besides these off-the-shelf global interpretation methodologies that 
are mainly available and implemented in R and Python, modern be-

spoke models have their very own interpretability methodologies that 
help with enhancing the adoption of the model; for example, Zhang 
et al. (2023) illustrates this point for an actuarial application, namely, 
for their bespoke cause-of-death mortality model. In this section, we 
provide some simple and practical interpretable methods of GLM pre-

dictions for power link LFs, which are different than the global interpre-

tation methods.

First, note that the log and power LFs defined in (2.6) and (2.7), re-

spectively, play an essential role in our paper. The log LF is well-known 
for its interpretability, which explains why it is preferred by actuaries 
for insurance pricing models. Specifically, we have the following inter-

pretation for an insured characterised by their observed or engineered 
𝑥𝑥𝑥 = (𝑥1,… , 𝑥𝑑 )⊤ covariates with a pure premium computed via the log

LF and model estimates �̂�𝛽𝛽

𝜕𝑒𝜂

𝜕𝑥𝑘

= 𝜕𝑒𝑥𝑥𝑥
⊤𝛽𝛽𝛽

𝜕𝑥𝑘

|||𝛽𝛽𝛽=�̂�𝛽𝛽 = 𝛽𝑘 for all 2 ≤ 𝑘 ≤ 𝑑, (2.9)

which is a very neat interpretation of this insurance pricing model that 
it also has an obvious sensitivity interpretation connotation. Note that 
𝑘 ≠ 1 in (2.9) since 𝑥1 = 1 always holds in the GLM model and thus, the 
intercept cannot be interpreted in this way, but practitioners adjust the 
intercept so that the observed expected claim amount does not deviate 
too much from the average GLM predicted claim amount.

Following a similar approach, we now provide a novel interpretabil-

ity for power LFs. As before, we assume an insured characterised by 
their observed or engineered 𝑥𝑥𝑥 = (𝑥1,… , 𝑥𝑑 )⊤ covariates with a pure 
premium computed via the power LF and model estimates 𝛽𝛽𝛽, i.e., the 
pure premium estimate is �̂� =

(
𝑥𝑥𝑥⊤�̂�𝛽𝛽

)𝛾
. We then have the following in-

terpretation for such pure premium computed via a generic power LF

13 Available at: https://stanford.edu/~boyd/software.html.

�̂� =
𝑑∑

𝑘=1

𝛽𝑘

𝛾

𝜕�̂�

𝜕𝛽𝑘

|||𝛽𝛽𝛽=�̂�𝛽𝛽 ∶= 𝑑∑
𝑘=1

𝑃𝐶𝑘(�̂�𝛽𝛽;𝑥𝑥𝑥),

𝑃𝐶𝑘(𝛽𝛽𝛽;𝑥𝑥𝑥) ∶=
𝛽𝑘

𝛾

𝜕�̂�

𝜕𝛽𝑘

|||𝛽𝛽𝛽=�̂�𝛽𝛽 for all 1 ≤ 𝑘 ≤ 𝑑.

(2.10)

The validity of (2.10) is ensured by the Euler’s Homogeneous Function 
Theorem and similar arguments have been widely used in capital alloca-

tion (Denault, 2001; Asimit et al., 2019) and in portfolio theory (Asimit 
et al., 2024; Cetingoz et al., 2024). The interpretation of 𝑃𝐶𝑘 is very nat-

ural and represents the pure premium contribution of the 𝑘𝑡ℎ covariate 
to the pure premium �̂�. This interpretation is more general than the one 
used in (2.9), since the latter does not hold for a non-continuous covari-

ate such as categorical/nominal covariate or ordinal covariate (e.g., on a 
Likert scale). On the contrary, our interpretability model in (2.10) does 
not exhibit such a drawback though the formulation in (2.10) would 
need a slight modification. That is, if the 𝑘𝑡ℎ observed covariate requires 
one-hot-encoding, then the PC corresponding to the original observed 
covariate (e.g., the 𝑘𝑡ℎ one) should be replaced by the sum of PC’s cor-

responding to the one-hot-encoded covariates; that is, if the original 
covariate is an ordinal covariate with three possible outcomes (e.g., 
“low”, “medium” and “high”), then the contribution of the 𝑘𝑡ℎ covari-

ate to the pure premium is the sum of the three PCs corresponding to 
the one-hot-encoded covariates (corresponding to “low”, “medium” and 
“high”). According to our knowledge, the novel interpretability of power

LFs in (2.10) has not been discussed in the literature, and we believe that 
the practitioners would appreciate such very simple and natural inter-

pretation of these GLM outputs. It might be more meaningful to report 
the percentage contribution vector as follows(

𝑃𝐶1(�̂�𝛽𝛽;𝑥𝑥𝑥)
�̂�

,… ,
𝑃𝐶𝑑 (�̂�𝛽𝛽;𝑥𝑥𝑥)

�̂�

)⊤

, (2.11)

although a word of caution is that some of these percentages may be 
negative even though they sum up to 100%. An application of this in-

terpretability is illustrated in our real data analyses from Section 6, and 
in particular in Section 6.1 for the health insurance dataset.

3. Special examples of GLMs and main results

This section provides a classification of proper MLE-based GLM for a 
variety of exponential dispersion models and discusses the potential is-
sues associated with the use of the different LFs introduced in Section 2. 
Specifically, we focus on the more general Tweedie family, together with 
three of its most popular special cases, namely the Poisson, Gamma and 
Inverse Gaussian distributions.14 A summary of proper GLMs is provided 
at the end of the section.

3.1. Poisson regression – Poisson family

We assume 𝑌 ∼ Poisson(𝜃) with probability mass function given by

log
(
𝑓𝑌 (𝑦;𝜃,𝜙)

)
= 𝜃𝑦− 𝑒𝜃 − log (𝑦!) , (𝑦, 𝜃,𝜙) ∈N ×ℜ × {1}.

The above expression is obtained as a special case of (2.1) by taking

𝑎 (𝜙) = 𝜙 = 1, 𝑏 (𝜃) = 𝑒𝜃, 𝑐 (𝑦,𝜙) = − log (𝑦!) .

In addition, 𝑏′ (Θ) =ℜ∗
+ and 𝑏′−1 (𝜇) = log (𝜇). Proposition 3.1 provides 

a characterisation of a proper Poisson Regression model according to 
our Definition 2.1.

Proposition 3.1. Assume that 𝑌 ∼ Poisson(𝜃). The Poisson GLM is proper 
if and only if ℎ ∶ℜ→ℜ∗

+, and

14 In addition, the Linear and Logistic Regression models are also illustrated 
in Section Appendix B though we mention that only the Linear Regression is a 
special case of the Tweedie Regression.

https://stanford.edu/~boyd/software.html
https://stanford.edu/~boyd/software.html
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−𝑦 log (ℎ (𝜂)) + ℎ (𝜂) is convex in 𝜂 on ℜ for any given 𝑦∈N. (3.1)

The Poisson canonical LF is the log function and this choice leads to 
a proper GLM due to either Lemma 2.2 or Proposition 3.1. The power

LF does not satisfy the conditions from Proposition 3.1 unless 𝛾 = 2𝑘
with 𝑘 ∈N∗; specifically, Condition C1 does not hold unless 𝛾 is a non-

zero even integer, while Condition C2 requires 𝛾 ≥ 1. The half-power LF 
satisfies the conditions stated in Proposition 3.1 for any 𝛾 ∈ [1,∞). Thus, 
the simplified Poisson regression (i.e. 𝜙 = 1) with a proper half-power LF, 
obtained by taking any 𝛾 ≥ 1 in (2.8), leads to solving

�̂�𝛽𝛽 = arg max
𝛽𝛽𝛽∈ℜ𝑑

𝓁 (𝛽𝛽𝛽) =
𝑛 ∑

𝑖=1 

(
𝛾 𝑦𝑖 log

(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
)
−
(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
)𝛾)

. (3.2)

While these half-power LFs lead to proper GLMs that could be solved 
via a general convex programming algorithm, the half-identity and half-

square-root cases can be solved via a computationally efficient algo-

rithm, as outlined in Section 4.1. Finally, note that the half-square-root

and the standard square-root LFs are closely related, but the latter does 
not satisfy (3.1) because Condition C2 does not hold in this case. Essen-

tially, the half-square-root case optimises the strictly concave instance 
in (3.2) on the ℜ𝑑 cone such that 𝑥𝑥𝑥⊤

𝑖
𝛽𝛽𝛽 > 0 for all 𝑖 = 1,… , 𝑛, while 

the square-root solves a similar problem to (3.2) (where log
(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
)

is re-

placed by log |||𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
|||) on ℜ𝑑 , but its objective function is not concave 

on the entire feasibility set, namely ℜ𝑑 . An analogous differentiation 
between the half-identity and identity LFs can be formulated as well. Fi-

nally, Condition C1 is not satisfied for any negative power LF or negative 
half-power LF, which are not proper for Poisson GLM.

3.2. Gamma Regression – Gamma family

We assume 𝑌 ∼ 𝐺𝑎𝑚𝑚𝑎(𝜃,𝜙) with probability distribution function 
given by

log
(
𝑓𝑌 (𝑦;𝜃,𝜙)

)
=

𝜃𝑦+ log (−𝜃)
𝜙 

+ 1 −𝜙

𝜙 
log (𝑦)

− log
(
𝜙

1 
𝜙 Γ

(
1 
𝜙

))
, (𝑦, 𝜃,𝜙) ∈ℜ∗

+ ×ℜ∗
− ×ℜ∗

+.

The above expression is obtained as a special case of (2.1) by taking

𝑎 (𝜙) = 𝜙, 𝑏 (𝜃) = − log (−𝜃) ,

𝑐 (𝑦,𝜙) =
1 −𝜙

𝜙 
log (𝑦) − log

(
𝜙

1 
𝜙 Γ

(
1 
𝜙

))
.

In addition, 𝑏′ (Θ) =ℜ∗
+ and 𝑏′−1 (𝜇) = −𝜇−1. Proposition 3.2 provides a 

characterisation of a proper Gamma Regression model according to our 
Definition 2.1.

Proposition 3.2. Assume that 𝑌 ∼ 𝐺𝑎𝑚𝑚𝑎(𝜃,𝜙). The Gamma GLM is 
proper if and only if ℎ ∶ℜ→ℜ∗

+, and

𝑦 
ℎ(𝜂)

+ log (ℎ(𝜂)) is convex in 𝜂 on ℜ for any given 𝑦∈ℜ∗
+. (3.3)

The canonical LF associated with the Gamma GLM is the reciprocal 
identity function. This function does not satisfy the conditions stated in 
Lemma 2.2 or Proposition 3.2, since Condition C1 does not hold, and 
therefore, unlike in the Poisson case, the canonical GLM is not proper. 
A popular alternative for Gamma GLM is represented by the log LF; this 
choice satisfies the conditions stated in Proposition 3.2 and is thus ap-

propriate for Gamma GLM. As in Section 3.1, we now discuss the impact 
of using power/half-power LFs in Gamma GLM. First, a power LF does not 
satisfy the conditions from Proposition 3.2 unless 𝛾 = −2𝑘, with 𝑘∈N∗; 
specifically, Condition C1 does not hold unless 𝛾 is a non-zero even in-

teger, while Condition C2 requires 𝛾 ≤ −1. Second, one could find that 
half-power LFs always satisfy Condition C1, but Condition C2 holds if 

and only if 𝛾 ≤ −1, leading to proper Gamma GLM in this case. Note 
that the simplified Gamma GLM (i.e. 𝜙 = 1) with such proper half-power

LF is equivalent to solving

�̂�𝛽𝛽 = arg max
𝛽𝛽𝛽∈ℜ𝑑

𝓁 (𝛽𝛽𝛽) =
𝑛 ∑

𝑖=1 

(
−𝛾 log

(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
)
− 𝑦𝑖

(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
)−𝛾

)
, (3.4)

where 𝛾 ≤ −1. While half-power LFs with 𝛾 ≤ −1 lead to proper GLMs 
that could be solved via a general convex programming algorithm, 
the half-reciprocal identity and half-reciprocal-square-root cases could be 
solved via a computationally efficient algorithm, as outlined in Sec-

tion 4.1. Finally, Condition C1 is not satisfied for any negative power

LF or negative half-power LF, which are not proper for Poisson GLM.

3.3. Inverse Gaussian Regression – Inverse Gaussian (IG) family

We assume 𝑌 ∼ 𝐼𝐺(𝜃,𝜙) with probability distribution function given 
by

log
(
𝑓𝑌 (𝑦;𝜃,𝜙)

)
=

𝜃𝑦−
√
2𝜃

−1∕𝜙 
+ 1

2

(
log

(
𝜙 

2𝜋𝑦3

)
− 𝜙

𝑦 

)
,

(𝑦, 𝜃,𝜙) ∈ℜ∗
+ ×ℜ∗

+ ×ℜ∗
+.

The above function is also a special case of (2.1) where

𝑎 (𝜙) = − 1 
𝜙
, 𝑏 (𝜃) =

√
2𝜃, 𝑐 (𝑦,𝜙) = 1

2

(
log

(
𝜙 

2𝜋𝑦3

)
− 𝜙

𝑦 

)
.

In addition, 𝑏′ (Θ) =ℜ∗
+ and 𝑏′−1 (𝜇) = 1

2
𝜇−2. Proposition 3.3 provides 

the characterisation of a proper Inverse Gaussian Regression model ac-

cording to our Definition 2.1.

Proposition 3.3. Assume that 𝑌 ∼ 𝐼𝐺(𝜃,𝜙). The Inverse Gaussian GLM is 
proper if and only if ℎ ∶ℜ→ℜ∗

+, and

𝑦 
2ℎ2(𝜂)

− 1 
ℎ(𝜂)

is convex in 𝜂 on ℜ for any given 𝑦∈ℜ∗
+ (3.5)

The canonical LF for the GLM-based on the 𝐼𝐺 distribution is the 
reciprocal square function. Similar to the Gamma scenario, this function 
does not satisfy the conditions stated in Lemma 2.2 or Proposition 3.3, 
namely Condition C1, and therefore, it is not a proper GLM. Under the 
log LF assumption Condition C1 is satisfied, but Condition C2 is violated 
since (3.5) does not hold. The effect of non-convexity is depicted in our 
motivational example from Fig. 1.

As before, we also investigate the power and half-power LFs in the 
context of an 𝐼𝐺 GLM. First, we notice that there is no power LF that sat-

isfies the conditions in Proposition 3.3; specifically, Condition C1 does 
not hold unless 𝛾 is a non-zero even integer, while Condition C2 is satis-

fied if and only if 𝛾 ∈ [−1,−1∕2]. Second, one could find that half-power

LFs always satisfy Condition C1, but Condition C2 holds if and only if 
𝛾 ∈ [−1,−1∕2], concluding that half-power LF leads to a proper GLM 
only in this case. Given the previous findings, running IG Regressions 
with power or half-power LFs would require a compromise. That is, the 
power LF with 𝛾 = 2𝑘, 𝑘 ∈ Z∗ is the best possible choice so that con-

strained programming is avoided (for proper IG GLM with half-power

LFs such that 𝛾 ∈ [−1,−1∕2] for which 𝑛 linear inequality constraints 
are needed), which is computationally undesirable for large samples. 
Such choice requires an efficient algorithm to solve the non-concave 
log-likelihood function optimisation. We show how to achieve this in 
Section 4.2 for the reciprocal-square-root LF.

3.4. Main results on Tweedie regression – Tweedie family

In this section, we focus our analysis on a more general class of 
GLMs based on the Tweedie family, which includes the previous dis-

tributions as special/limiting cases. As before, our main goal is to in-
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vestigate if the Tweedie distribution leads to proper GLMs. Assume that 
𝑌 ∼ 𝑇𝑤𝑒𝑒𝑑𝑖𝑒(𝜃,𝜙) with probability distribution function defined below

log
(
𝑓𝑌 (𝑦;𝜃,𝜙)

)
) =

𝜃𝑦−𝐾𝑝(𝜃)
𝜙 

+ log
(
𝜇′
𝜙
((−∞, 𝑦])

)
,

(𝑦, 𝜃,𝜙) ∈ ×Θ×ℜ∗
+, (3.6)

where Θ ⊆ℜ, 𝜇𝜙 is a Radon measure on  ⊆ℜ and the function 𝐾𝑝 is 
given by

𝐾𝑝 (𝜃) ∶=
⎧⎪⎨⎪⎩

𝛼 − 1
𝛼

(
𝜃

𝛼 − 1

)𝛼

, 𝑝 ∈ (−∞,0] ∪ (1,∞) ⧵ {2},
𝑒𝜃, 𝑝 = 1,

−log (−𝜃) , 𝑝 = 2,

with 𝛼 = 𝑝− 2
𝑝− 1

. The expression from (3.6) is obtained as a special case 
of (2.1) by taking

𝑎 (𝜙) = 𝜙, 𝑏 (𝜃) =𝐾𝑝 (𝜃) , 𝑐 (𝑦,𝜙) = log
(
𝜇′
𝜙
((−∞, 𝑦])

)
.

Moreover, the Poisson, Gamma and Inverse Gaussian families are ob-

tained as special cases by taking 𝑝 = 1 with  = ℕ and Θ = ℜ, 𝑝 = 2
with  =ℜ∗

+ and Θ=ℜ∗
−, and 𝑝= 3 with  =ℜ∗

+ and Θ=ℜ∗
−, respec-

tively.15

Without loss of generality, we henceforth assume that 𝑝 ≠ {1,2}, 
since these two cases have already been investigated in Sections 3.1 and 
3.2. Note that one should carefully choose Θ, and 𝑝 so that 𝐾𝑝(⋅) is 
well-defined on Θ. In this section, we assume that Θ ∈ {ℜ,ℜ∗,ℜ∗

+,ℜ
∗
−}, 

and thus, the function 𝑏′ is well-defined and bijective on Θ only under 
the three settings considered in the theorem below. Extensions to subsets 
of these sets are obtainable at the expense of the exposition, and for this 
reason, we proceed with this simplification.

We now provide a characterisation of proper Tweedie GLMs, where 
we exclude the previous cases investigated in Sections 3.1 and 3.2 and 
Appendix B.1. First, we identify in Theorem 3.4 all possible settings 
under which Condition C1 from Definition 2.1 is satisfied.

Theorem 3.4. Let 𝑌 ∼ 𝑇𝑤𝑒𝑒𝑑𝑖𝑒(𝜃,𝜙) parameterised as in (3.6) with 𝑝 ∈
(−∞,0) ∪ (1,2) ∪ (2,∞) (or equivalently, 𝛼 ∈ (−∞,2) ⧵ {0,1}) such that 
 ,Θ ∈ {ℜ,ℜ∗,ℜ∗

+,ℜ
∗
−}. Then, Condition C1 is only satisfied for the fol-

lowing settings:

a) Θ = 𝑏′ (Θ) =ℜ∗
+ (or ℜ+),  ∈ {ℜ∗

+,ℜ} (or  ∈ {ℜ+,ℜ}) and 1 <

𝛼 < 2 (which is equivalent to 𝑝 < 0), with ℎ ∶ℜ→ℜ∗
+ (or ℎ ∶ℜ→

ℜ+);

b) Θ = ℜ∗
−, 𝑏′ (Θ) = ℜ∗

+,  ∈ {ℜ∗
+,ℜ+,ℜ} and 𝛼 ∈ (−∞,1) ⧵ {0}

(which is equivalent to 𝑝∈ (1,∞) ⧵ {2}), with ℎ ∶ℜ→ℜ∗
+;

c) Θ = ℜ, 𝑏′ (Θ) = ℜ∗
+,  ∈ {ℜ∗

+,ℜ+,ℜ∗}, 𝛼 ∈ {−2𝑙 + 1 ∶ 𝑙 ∈ N∗}, 
with ℎ ∶ℜ→ℜ∗

+.

d) Θ = ℜ, 𝑏′ (Θ) = ℜ∗,  ∈ {ℜ∗,ℜ}, 𝛼 ∈ {−2𝑙 ∶ 𝑙 ∈ N∗}, with ℎ ∶
ℜ→ℜ∗.

Setting a) includes a pedantic reference on whether the response 
variable could or could not include 𝑦 = 0, and thus, we made a dif-

ference between the cases Θ =ℜ∗
+ and Θ =ℜ+. Note that the generic 

Condition C1 in Definition 2.1 requires the range of E[𝑌 ], namely 𝑏′(Θ), 
to be a subset of 𝐶𝑜𝑛𝑣(), though a more practical condition would be 
𝑏′(Θ) = 𝐶𝑜𝑛𝑣(), which we assume henceforth. Setting c) is a subcase 
of setting b) from the implementation point of view, since the modeller 
chooses the Tweedie models so that  matches the data range of values. 
However, our classification in Theorem 3.4 has to differentiate between 
models with different parameter sets Θ. The next results focus on the va-

lidity of Condition C2 from Definition 2.1 for the above Tweedie GLM 

15 Other notable examples are Gaussian (𝑝 = 0 with  = Θ =ℜ), Compound 
Poisson-Gamma (1 < 𝑝 < 2 with  = Θ = ℜ+) and Positive stable (𝑝 > 2 with 
 =Θ=ℜ+).

settings under the LF specifications introduced in Section 2. The power

LF class, together with its restrictions/modifications, is investigated in 
Theorem 3.5 below.

Theorem 3.5. Let 𝑌 ∼ 𝑇𝑤𝑒𝑒𝑑𝑖𝑒(𝜃,𝜙) parameterised as in (3.6) with 
𝑏′(Θ) =  , for which condition C1 is satisfied. Then, Condition C2 is not 
satisfied by settings a)–d), for any

(i) power LF, except for the following cases:

– setting b) with 0 < 𝛼 < 1 and 𝛾 = −2𝑘, for any 𝑘 ∈N∗, with (1 −
𝛾)𝛼 ≤ 1,

– setting b) with 𝛼 < 0 and 𝛾 = 2𝑘, for any 𝑘∈Z∗,

– setting c) and 𝛾 = 2𝑘, for any 𝑘∈Z∗.

(ii) half-power LF, except for the following cases:

– setting a) with 1< 𝛼 < 2 and 𝛼−1
𝛼

≤ 𝛾 ≤ 𝛼 − 1,

– setting b) with 0< 𝛼 < 1 and 𝛼−1
𝛼

≤ 𝛾 ≤ 𝛼 − 1,

– setting b) with 𝛼 < 0 and 𝛾 ≤ 𝛼 − 1 or 𝛼−1
𝛼

≤ 𝛾 ,

– setting c) with 𝛼 ∈ {−2𝑙 + 1 ∶ 𝑙 ∈N∗} and 𝛾 ≤ 𝛼 − 1 or 𝛼−1
𝛼

≤ 𝛾 .

(iii) negative power or negative half-power LF.

We notice that the above results are in agreement with our previ-

ous findings. For example, one could recover our discussion from Sec-

tion 3.3 on proper IG GLMs, which is a special case of Theorem 3.5 if 
we take 𝑝 = 3 (or equivalently 𝛼 = 1∕2), where we found that proper 
IG GLMs with half-power LF are achieved if and only if 𝛾 ∈ [−1,−1∕2]. 
In addition, Theorem 3.5 provides necessary and sufficient conditions 
for proper GLMs under other distributional assumptions. For example, 
Tweedie GLMs based on Positive stable distributions (i.e. 𝑝 > 2 or equiv-

alently 0 < 𝛼 < 1) are proper only for power LFs with 𝛾 = −2𝑘, 𝑘 ∈N∗, 
with (1− 𝛾)𝛼 ≤ 1 and half-power LFs with 𝛼−1

𝛼
≤ 𝛾 ≤ 𝛼−1. Similarly, the 

Compund Poisson-Gamma GLM (i.e. 1 < 𝑝 < 2 or equivalently 𝛼 < 0) is 
proper only for power LFs with 𝛾 = 2𝑘, 𝑘 ∈ Z∗ or half-power LFs with 
𝛾 ≤ 𝛼 − 1 or 𝛼−1

𝛼
≤ 𝛾 . A complete summary of proper Tweedie GLMs is 

illustrated in Table 1 of Section 3.5.

Note that if 𝑝 ∈ (−∞,0] ∪ (1,∞) ⧵ {2}, which is equivalent to 𝛼 ∈
(−∞,2]⧵{0,1}, then the simplified Tweedie regression (i.e. 𝜙 = 1) with 
LF ℎ is equivalent to solving

�̂�𝛽𝛽 = arg max
𝛽𝛽𝛽∈ℜ𝑑

𝓁 (𝛽𝛽𝛽)

=
𝑛 ∑

𝑖=1 

(
𝑦𝑖(𝛼 − 1)

(
ℎ
(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
)) 1 

𝛼−1 − 𝛼 − 1
𝛼

(
ℎ
(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
)) 𝛼

𝛼−1

)
. (3.7)

A few comments on (3.7) would help understanding the issues with 
deploying Tweedie GLMs. First, one may discard Condition C2 at the 
expense of losing all useful properties of the M-estimators (MLE is only 
a special case), such as the asymptotic distribution, which questions the 
asymptotic bias and variance of these estimators. If that is the case, 
one can only hope for the numerical optimisation to behave well, but 
this is possible from case to case, and one would need to perform 
extensive numerical implementations to check whether the optimisa-

tion algorithm shows a reasonable performance for specific choices of 
(𝛼, , ℎ). Such compromise is done in Algorithm 2 for solving (4.5), 
where 𝛼 = 1

2 as 𝑝 = 3,  =ℜ+, and reciprocal square-root LF; one could 
recover (4.5) from (3.7) for this particular choice of (𝛼, , ℎ). Second, 
there are other parametrisations other than the one in Algorithm 2 for 
which Condition C2 is not satisfied while all other regularity conditions 
in Definition 2.1 hold. In these instances, one has to rely on non-convex 
optimisation, but more importantly, one has to accept that some (pos-

sibly all) statistical properties of the MLE estimator may not hold. The 
modeller needs to identify stable computational methods (as in Algo-

rithm 2) instead of assuming that the general purpose GLM solvers are 
indeed computationally stable. Finally, we notice that the proper GLMs 
identified in Theorem 3.5 (ii) require solving a constrained optimisation 
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Table 1
Summary of proper GLMs and violations of Conditions C1 and C2.

Regression model LF Predictor 
(
�̂� = ℎ

(
𝑥𝑥𝑥⊤�̂�𝛽𝛽

))
Violations 

Gaussian/Linear identity (canonical) 𝑥𝑥𝑥⊤�̂�𝛽𝛽 No 

logit (canonical) 
(
1 + exp

(
−𝑥𝑥𝑥⊤�̂�𝛽𝛽

))−1
No 

Logistic probit Φ
(
𝑥𝑥𝑥⊤�̂�𝛽𝛽

)
No 

complementary log-log 1 − exp
(
−exp

(
−𝑥𝑥𝑥⊤�̂�𝛽𝛽

))
No 

log (canonical) exp
(
𝑥𝑥𝑥⊤�̂�𝛽𝛽

)
No 

Poisson power
(
𝑥𝑥𝑥⊤�̂�𝛽𝛽

)𝛾

No, if 𝛾 = 2𝑘, 𝑘∈N∗

half-power
(
𝑥𝑥𝑥⊤�̂�𝛽𝛽

)𝛾

⋅ 𝐼{𝑥𝑥𝑥⊤�̂�𝛽𝛽>0} No, if 𝛾 ≥ 1

reciprocal identity (canonical) 
(
𝑥𝑥𝑥⊤�̂�𝛽𝛽

)−1
C1

log exp
(
𝑥𝑥𝑥⊤�̂�𝛽𝛽

)
No 

Gamma power
(
𝑥𝑥𝑥⊤�̂�𝛽𝛽

)𝛾

No, if 𝛾 = −2𝑘, 𝑘∈N∗

half-power
(
𝑥𝑥𝑥⊤�̂�𝛽𝛽

)𝛾

⋅ 𝐼{𝑥𝑥𝑥⊤�̂�𝛽𝛽>0} No, if 𝛾 ≤ −1

reciprocal square (canonical) 
(
𝑥𝑥𝑥⊤�̂�𝛽𝛽

)−1∕2
C1

log exp
(
𝑥𝑥𝑥⊤�̂�𝛽𝛽

)
C2

Inverse Gaussian power
(
𝑥𝑥𝑥⊤�̂�𝛽𝛽

)𝛾

C1, if 𝛾 ≠ 2𝑘, 𝑘∈Z∗, and 
C2, if 𝛾 ∉ [−1,−1∕2]

half-power
(
𝑥𝑥𝑥⊤�̂�𝛽𝛽

)𝛾

⋅ 𝐼{𝑥𝑥𝑥⊤�̂�𝛽𝛽>0} No, if 𝛾 ∈ [−1,−1∕2]

Tweedie (except of canonical
(
(1 − 𝑝) ⋅𝑥𝑥𝑥⊤�̂�𝛽𝛽

)1∕(1−𝑝)
see Theorem 3.6

some of the above log exp
(
𝑥𝑥𝑥⊤�̂�𝛽𝛽

)
see Theorem 3.6

special cases: power or negative power
(
𝑥𝑥𝑥⊤�̂�𝛽𝛽

)𝛾

or −
(
𝑥𝑥𝑥⊤�̂�𝛽𝛽

)𝛾

, 𝛾 ∈ℜ∗ see Theorem 3.5

Gaussian, Poisson half-power
(
𝑥𝑥𝑥⊤�̂�𝛽𝛽

)𝛾

⋅ 𝐼{𝑥𝑥𝑥⊤�̂�𝛽𝛽>0}, 𝛾 ∈ℜ∗ see Theorem 3.5

and Gamma) negative half-power −
(
𝑥𝑥𝑥⊤�̂�𝛽𝛽

)𝛾

⋅ 𝐼{𝑥𝑥𝑥⊤�̂�𝛽𝛽>0}, 𝛾 ∈ℜ∗ see Theorem 3.5

Notes: This table presents a summary of proper GLMs equipped with the LFs discussed in Section 3 and Ap-

pendix B, and the potential violations of Conditions C1 and C2 from Definition 2.1 associated with these 
regressions. Φ stands for the  (0,1) cumulative distribution functionand 𝐼𝐴 represents the indicator func-

tion for set 𝐴.

problem on the convex cone 
{
𝛽𝛽𝛽 ∈ℜ𝑑 ∶ 𝑥𝑥𝑥⊤

𝑖
𝛽𝛽𝛽 ≥ 0, 𝑖 = 1,… , 𝑛

}
. Unfortu-

nately, this is computationally expensive for large values of 𝑛, which 
is a negative attribute. These optimisations could be solved via convex 
programming and not via off-the-shelf GLM packages that rely on IRLS 
which cannot be adapted when such constraints are needed.

The classification of proper Tweedie GLMs based on canonical and 
log LF is illustrated below.

Theorem 3.6. Let 𝑌 ∼ 𝑇𝑤𝑒𝑒𝑑𝑖𝑒(𝜃,𝜙) parameterised as in (3.6) with 
𝑏′(Θ) =  , for which condition C1 is satisfied. Then, Condition C2 is not 
satisfied by settings a)–d), for any

(i) canonical LF.

(ii) log LF, except for setting b) with 𝛼 < 0 or setting c).

Theorem 3.6 shows that there are no proper Tweedie GLMs if the 
canonical LF is chosen. In addition, we notice that the Compound 
Poisson-Gamma GLM is proper for any log LF.

3.5. Summary results

Table 1 summarises our findings discussed in Section 3 and Ap-

pendix B. First, we recall that the canonical LFs, which are the stan-

dard choices in all built-in GLM implementations (available in MAT-

LAB, Python, R, etc.), lead to not proper Tweedie GLMs, except for 
the Gaussian and Poisson cases. Second, log LFs tend to have the simi-

lar limitations to canonical LFs for Tweedie modelling. Third, the power

and half-power LFs allow more flexibility than log LFs to GLM modelling 
when proper GLM are sought.

4. Alternative algorithms for GLMs with power LFs

The goal of this section is to not only provide efficient methods for 
solving high-dimensional problems while addressing the potential nu-

merical issues in the optimisation stage, but to also create tractable 
models for dealing with non-convex instances, which cannot be tack-

led with standard built-in GLM algorithms. In this sense, we introduce 
the Newton’s method for Self-Concordant problems (NSC) for Poisson and 
Gamma regressions equipped with some bespoke half-power LFs, and 
the Alternating Linearisation Method (ALM) for solving Inverse Gaussian 
regressions based on the reciprocal-square-root LF.16

4.1. The NSC algorithm for Poisson and Gamma Regressions

The explicit structure of such self-concordant functions allows for 
defining a refined Newton’s method which is generally more efficient 
due to a reduced number of iterations.17 First, we introduce the defini-

tion of a self-concordant function, which was first provided by Nesterov 

16 This is also known as inverse-square-root LF, but we avoid referring to ‘in-

verse’ since the GLM uses the inverse of a function to identify the functional 
estimator ℎ with the LF 𝑔.
17 For further details on SC problems and their fast convergence iterative meth-

ods, see Boyd and Vandenberghe (2004); Nesterov (2004).
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(2004), although a simplified version is provided in Boyd and Vanden-

berghe (2004), which we follow in this paper.

Definition 4.1. Let 𝑓 ∶ Ω → ℜ be a closed convex function18 where 
Ω= 𝑑𝑜𝑚 (𝑓 ) is an open set in ℜ𝑑 and 𝑓 ∈ 3 (𝑑𝑜𝑚 (𝑓 )). The function 𝑓 is 
self-concordant on Ω if the function 𝑔 (𝑡) ∶= 𝑓 (𝑢𝑢𝑢+ 𝑡 𝑣𝑣𝑣) satisfies ||𝑔′′′ (𝑡)|| ≤
2
(
𝑔′′ (𝑡)

)3∕2
for any 𝑡 ∈ 𝑑𝑜𝑚 (𝑔) ⊆ℜ, 𝑢𝑢𝑢 ∈ 𝑑𝑜𝑚 (𝑓 ), and 𝑣𝑣𝑣 ∈ℜ𝑑 such that 

𝑢𝑢𝑢+ 𝑡 𝑣𝑣𝑣 ∈ 𝑑𝑜𝑚 (𝑓 ).

Note that the constant 2 in Definition 4.1, see ||𝑔′′′ (𝑡)|| ≤ 2
(
𝑔′′ (𝑡)

)3∕2
, 

is chosen for convenience and helps to identify an explicit upper bound 
for the total number of iterations required by the Newton’s method for 
SC functions. If constant 2 is replaced by 𝑀 , i.e. ||𝑔′′′ (𝑡)|| ≤𝑀

(
𝑔′′ (𝑡)

)3∕2
, 

then we say that its equivalent function 𝑓 is SC with constant 𝑀 ; e.g., 
if 𝑓 is SC with constant 𝑀 , then it is not difficult to show that 𝑓 (⋅) ∶=
𝑀2

4 𝑓 (⋅) is SC with constant 2.

We explore the Poisson and Gamma Regressions based on some spe-

cial choices of half-power LFs by solving (3.2) and (3.4), since the as-

sociated negative log-likelihoods are not only convex (actually strictly 
convex in those two cases), but also self-concordant. This is illustrated 
in Theorem 4.2 below, where the half-identity and half-square-root LFs 
for Poisson Regression are explored in Theorem 4.2 a), while the half-

reciprocal identity and half-reciprocal-square-root LFs for Gamma Regres-

sion are explored in Theorem 4.2 b).

Theorem 4.2. Let {
(
𝑦𝑖,𝑥𝑥𝑥𝑖

)
∶ 1 ≤ 𝑖 ≤ 𝑛} be a sample of size 𝑛 drawn 

from (𝑌 ,𝑋𝑋𝑋), where 𝑋𝑋𝑋 =
(
𝑋1,𝑋2,… ,𝑋𝑑

)
with 𝑑 ≥ 1 and define Ω ∶=

𝑛 ⋃
𝑖=1

{
𝛽𝛽𝛽 ∈ℜ𝑑 ∶𝑥𝑥𝑥⊤

𝑖
𝛽𝛽𝛽 > 0

}
. The following statements hold:

a) The MLE-based Poisson GLM equipped with the half-power LF from 
(2.8) with either 𝛾 = 2 (and 𝛾 = 1) is self-concordant, and it leads to an 
optimisation problem with a self-concordant objective function 𝑓𝑃 (𝑓𝑃 ) 
on Ω, where

min
𝛽𝛽𝛽∈Ω 𝑓𝑃 (𝛽𝛽𝛽) ∶=

𝑛 ∑
𝑖=1 

(1
2
(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
)2 − 𝑦𝑖 log

(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
))

, (4.1)

min
𝛽𝛽𝛽∈Ω 𝑓𝑃 (𝛽𝛽𝛽) ∶=

𝑛 ∑
𝑖=1 

(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽 − 𝑦𝑖 log

(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
))

. (4.2)

b) The MLE-based Gamma GLM equipped with the half-power LF from 
(2.8) with 𝛾 = −2 (and 𝛾 = −1) is self-concordant, and it leads to an 
optimisation problem with a self-concordant objective function 𝑓𝐺 (𝑓𝐺) 
on Ω, where

min
𝛽𝛽𝛽∈Ω 𝑓𝐺 (𝛽𝛽𝛽) ∶=

𝑛 ∑
𝑖=1 

(𝑦𝑖

2 
(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
)2 − log

(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
))

, (4.3)

min
𝛽𝛽𝛽∈Ω 𝑓𝐺 (𝛽𝛽𝛽) ∶=

𝑛 ∑
𝑖=1 

(
𝑦𝑖 ⋅𝑥𝑥𝑥

⊤
𝑖
𝛽𝛽𝛽 − log

(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
))

. (4.4)

As previously mentioned, the constant of an SC function does not 
have any impact on the actual iterative algorithm, and could change 
only the upper bound of the total number of steps (that is in an explicit 
form for SC functions; for details, see the Newton’s step in Algorithm 1). 
One may show that a tighter bound could be obtained for (4.1) and (4.2), 
i.e. the objective function is SC with constant 𝑀𝑃 and �̌�𝑃 , respectively, 
where

𝑀𝑃 = �̌�𝑃 ∶= 2 max 
1≤𝑖≤𝑛

{
𝑦
−1∕2
𝑖

𝐼{𝑦𝑖>0} + 𝐼{𝑦𝑖=0}

}
,

18 A function 𝑓 ∶𝐴⊆ℜ𝑑 →𝐵 is closed convex if 𝑓 is convex and closed on 𝐴, 
where 𝑓 is closed if for any 𝛼 ∈ℜ, {𝑥𝑥𝑥∈ 𝑑𝑜𝑚(𝑓 ) ∶ 𝑓 (𝑥𝑥𝑥) ≤ 𝛼} is a closed set.

which satisfies 𝑀𝑃 ≤ 2. However, no tighter bound (tighter than 2) is 
possible for the Gamma GLMs in either (4.3) and (4.4).

Theorem 4.2 allows us to use the standard SC algorithm which is 
detailed in (Nesterov, 2004; Boyd and Vandenberghe, 2004), and is pro-

vided here as Algorithm 1. 

Algorithm 1: Standard SC algorithm for solving (4.1) and (4.3).

Result: 𝑧𝑧𝑧(𝑘
∗) which approximates 𝑧𝑧𝑧∗, the global optimum of min

𝑧𝑧𝑧∈Ω 𝑓 (𝑧𝑧𝑧)
with 𝑓 (⋅) being SC on Ω, where 𝑘∗ is the termination step.

Choose 𝑧𝑧𝑧(0) ∈ 𝑑𝑜𝑚 (𝑓 ), 𝜖 > 0, and 𝜆∗ ∈
(
0, �̃�

)
where �̃� = 3−

√
5

2 ; 
Let ∇𝑓 (⋅) and ∇2𝑓 (⋅) be the gradient and Hessian, respectively, of 𝑓
on Ω; 

Define the step/search direction function Δ(⋅) ∶=
[
∇2𝑓 (⋅)

]−1 ∇𝑓 (⋅) on Ω; 

Define 𝜆𝑓 (⋅) ∶=
(
∇𝑓 (⋅)⊤

[
∇2𝑓 (⋅)

]−1 ∇𝑓 (⋅)
)1∕2

on Ω; 

Step 1: Damped phase

(i) If 𝜆𝑓

(
𝑧𝑧𝑧(0)

)
< 𝜆∗ go to Step 2; 

(ii) While 𝜆𝑓

(
𝑧𝑧𝑧(𝑘)

)
≥𝜆∗ do 𝑧𝑧𝑧(𝑘+1)=𝑧𝑧𝑧(𝑘)− 1 

1 + 𝜆𝑓

(
𝑧𝑧𝑧(𝑘)

)Δ(
𝑧𝑧𝑧(𝑘)

)
for all 𝑘 ≥ 0; 

Step 2: Newton (or quadratically convergence) phase

While 𝜆𝑓

(
𝑧𝑧𝑧(𝑘)

)
> 𝜖 do 𝑧𝑧𝑧(𝑘+1) = 𝑧𝑧𝑧(𝑘) − Δ

(
𝑧𝑧𝑧(𝑘)

)
for all 𝑘 ≥ 𝑘∗

𝐷𝑃
, where 𝑘∗

𝐷𝑃

is the termination step in Step 1.

This algorithm can be viewed as a modification of the Newton’s 
method and consists of two phases that help reduce the number of it-
erations. More specifically, Step 1, called the damped phase, guarantees 
that 𝑓

(
𝑧𝑧𝑧(𝑘)

)
− 𝑓

(
𝑧𝑧𝑧(𝑘+1)

)
≥ 𝜔 (𝜆∗) and in turn, the number of iterations 

in Step 1, denoted by 𝑁𝐷𝑃 , is bounded with

𝑁𝐷𝑃 ≤
𝑓
(
𝑧𝑧𝑧(0)

)
− 𝑓 (𝑧𝑧𝑧∗)

𝜔(𝜆∗) 
, where 𝜔(𝜆) ∶= 𝜆− log (1 + 𝜆) on ℜ+.

This represents the advantage of Algorithm 1 as compared to relying 
only on the Newton’s method, see Theorem 4.1.10 of Nesterov (2004) 
or Section 9.6.4 of Boyd and Vandenberghe (2004) for further details on 
this issue.19 The total number of iterations in Step 2 is log2 log2 (1∕𝜖) if 
an accuracy of 𝑓

(
𝑧𝑧𝑧(𝑘

∗))− 𝑓 (𝑧𝑧𝑧∗) ≤ 𝜖 is sought. The latter bound is very 
small, e.g., 4.32 and 5.82 for 𝜖 = 10−6 and 𝜖 = 10−17, respectively. Note 
that 𝜖 = 10−17 is the MATLAB machine epsilon, which is the top end 
tolerance level benchmark in MATLAB.

Remark 4.3. Inverting the Hessian is often challenging, and an alter-

native solution to computing the step/search direction, i.e. computing 
Δ(𝑧𝑧𝑧) ∶=

[
∇2𝑓 (𝑧𝑧𝑧)

]−1 ∇𝑓 (𝑧𝑧𝑧) for a given 𝑧𝑧𝑧, is to solve ∇2𝑓 (𝑧𝑧𝑧) 𝑡𝑡𝑡 = ∇𝑓 (𝑧𝑧𝑧)
in 𝑡𝑡𝑡, which is a linear system of equations. If we denote by 𝑡∗

𝑓
(𝑧𝑧𝑧) the 

latter solution, we have Δ
(
𝑧𝑧𝑧(𝑘)

)
= 𝑡∗

𝑓

(
𝑧𝑧𝑧(𝑘)

)
and

𝜆𝑓

(
𝑧𝑧𝑧(𝑘)

)
=
√

∇𝑓
(
𝑧𝑧𝑧(𝑘)

)⊤ [
∇2𝑓

(
𝑧𝑧𝑧(𝑘)

)]−1 ∇𝑓
(
𝑧𝑧𝑧(𝑘)

)
=
√

∇𝑓
(
𝑧𝑧𝑧(𝑘)

)⊤
𝑡∗
𝑓

(
𝑧𝑧𝑧(𝑘)

)
.

4.2. The ALM algorithm for the Inverse Gaussian Regression

We showed in Section 3.3 that the Inverse Gaussian Regression 
model is not proper for any power LF. However, it is still possible to cre-

ate a tractable model for this parametric family for a particular power

LF. Indeed, we assume a reciprocal-square-root LF (i.e. power LF from 

19 More formal convergence measures for Step 1 that are compared to the 
equivalent convergence measures of the standard Newton’s method are avail-

able in Theorems 4.1.11 and 4.1.12 of Nesterov (2004).
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(2.7) with 𝛾 = −2) which satisfies Condition C1 but not Condition C2

of Definition 2.1. This choice leads to solving the following (non-linear) 
optimisation problem:

min
𝛽𝛽𝛽∈Ω 𝑓𝐼𝐺 (𝛽𝛽𝛽) =

𝑛 ∑
𝑖=1 

(𝑦𝑖

2 
(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
)4 − (

𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
)2)

. (4.5)

The advantage of using the reciprocal-square-root LF is that (4.5) has a 
tractable solution via the Alternating Linearisation Method (ALM), see e.g. 
Boyd et al. (2011b) for further details. More specifically, the variable 𝛽
can be split into two variables, so that the ALM reformulation of (4.5)

is given by:

min 
(𝑧𝑧𝑧,𝑡𝑡𝑡)∈ℜ𝑑×ℜ𝑑

𝐺 (𝑧𝑧𝑧,𝑡𝑡𝑡) =
𝑛 ∑

𝑖=1 

(𝑦𝑖

2 
(
𝑥𝑥𝑥⊤
𝑖
𝑧𝑧𝑧
)2 (

𝑥𝑥𝑥⊤
𝑖
𝑡𝑡𝑡
)2 − (

𝑥𝑥𝑥⊤
𝑖
𝑧𝑧𝑧
)(

𝑥𝑥𝑥⊤
𝑖
𝑡𝑡𝑡
))

so that 𝑧𝑧𝑧 = 𝑡𝑡𝑡. (4.6)

The iterative algorithm that efficiently solves (4.6) is given as Algo-

rithm 2 and is an Alternating Linearisation Method with backtracking 
(ALM-bktr), i.e. a bespoke ALM algorithm. This algorithm provides an 
approximation for 𝛽𝛽𝛽∗, which denotes a local optimum of (4.5), by gen-

erating two sequences {𝑧𝑧𝑧𝑠 ∶ 𝑠 ≥ 0} and {𝑡𝑡𝑡𝑠 ∶ 𝑠 ≥ 0} such that 𝑧𝑧𝑧𝑠 → 𝛽𝛽𝛽∗

and/or 𝑡𝑡𝑡𝑠 → 𝛽𝛽𝛽∗. The main idea is to solve a two-block variant of (4.6), 
which is a convex quadratic programming (QP) instance in 𝑧𝑧𝑧 for any given 
𝑡𝑡𝑡 that could be efficiently solved, and the same holds if 𝑧𝑧𝑧 and 𝑡𝑡𝑡 are inter-

changed. The ALM algorithm relies on replacing the function 𝐺 by their 
linearisation and an additional regularisation factor in order to obtain 
an approximation to the initial objective function 𝑓𝐼𝐺 from (4.5). Thus, 
we define the following functions

𝐻1 (𝑧𝑧𝑧,𝑡𝑡𝑡;𝜇) ∶=𝐺 (𝑧𝑧𝑧,𝑡𝑡𝑡) + ⟨ 𝐺2 (𝑡𝑡𝑡, 𝑡𝑡𝑡) ,𝑧𝑧𝑧− 𝑡𝑡𝑡⟩+ 1 
2𝜇

‖𝑧𝑧𝑧− 𝑡𝑡𝑡‖22,
𝐻2 (𝑧𝑧𝑧,𝑡𝑡𝑡;𝜇) ∶=𝐺 (𝑧𝑧𝑧,𝑡𝑡𝑡) + ⟨ 𝐺1 (𝑧𝑧𝑧,𝑧𝑧𝑧) , 𝑡𝑡𝑡− 𝑧𝑧𝑧⟩+ 1 

2𝜇
‖𝑧𝑧𝑧− 𝑡𝑡𝑡‖22,

where ‖⋅‖2 is the 𝐿2 norm on ℜ𝑑 , 𝜇 is a positive constant, and 𝐺1 and 
𝐺2 are the partial derivatives of 𝐺 given below:

𝐺1 (𝑧𝑧𝑧,𝑡𝑡𝑡) ∶=
𝜕𝐺

𝜕𝑧𝑧𝑧
=

𝑛 ∑
𝑖=1 

(
𝑦𝑖
(
𝑥𝑥𝑥⊤
𝑖
𝑧𝑧𝑧
)(

𝑥𝑥𝑥⊤
𝑖
𝑡𝑡𝑡
)2 − (

𝑥𝑥𝑥⊤
𝑖
𝑡𝑡𝑡
))

𝑥𝑥𝑥𝑖,

𝐺2 (𝑧𝑧𝑧,𝑡𝑡𝑡) ∶=
𝜕𝐺

𝜕𝑡𝑡𝑡
=

𝑛 ∑
𝑖=1 

(
𝑦𝑖
(
𝑥𝑥𝑥⊤
𝑖
𝑧𝑧𝑧
)2 (

𝑥𝑥𝑥⊤
𝑖
𝑡𝑡𝑡
)
−
(
𝑥𝑥𝑥⊤
𝑖
𝑧𝑧𝑧
))

𝑥𝑥𝑥𝑖.

Algorithm 2 for solving (4.5), and therefore (4.6), is described below.20

5. Simulation study

This section presents several numerical experiments to determine the 
efficiency and accuracy of the proposed algorithms and investigates to 
what extent they can improve the standard built-in GLM libraries from 
various software. Specifically, we implement the NSC Algorithm 1 in-

troduced in Section 4.1 for the Poisson (with half-square-root LF) and 
Gamma Regressions (with half-reciprocal-square-root LF), and the ALM

Algorithm 2 introduced in Section 4.2 for solving Inverse Gaussian Re-

gressions (with reciprocal-square-root LF).

Before discussing our numerical analyses, we would like to mention 
that the performance of our NSC Algorithm 1 is compared to standard 
IRLS implementations in MATLAB, R and Python, i.e., built-in func-

tions for non-penalised GLM, since prediction through GLM is the main 
aim of this paper. Moreover, we also illustrate that it is worth consid-

ering our NSC Algorithm 1 as an alternative to IRLS to perform GLM 

20 The algorithm stops whenever ∑ |𝑧𝑧𝑧𝑠+1−𝑡𝑡𝑡𝑠+1||𝑧𝑧𝑧𝑠+1| reaches the user’s defined value 
(e.g. the default value in our numerical examples is taken to be 10−4 to balance 
the speed and precision with other benchmark algorithms). Once the process is 
stopped, we use 𝑧𝑧𝑧𝑠+1 (or 𝑡𝑡𝑡𝑠+1) if 𝐻1 is smaller (or larger) than 𝐻2.

Algorithm 2: Standard ALM algorithm for solving (4.5).

Result: (𝑧𝑧𝑧𝑠∗ , 𝑡𝑡𝑡𝑠∗ ) that approximates 𝛽𝛽𝛽∗, a local optimum of (4.5), where 
𝑠∗ is the termination step.

Choose 𝜇1,0 = 𝜇2,0 = 𝜇0 > 0, 𝑏 ∈ (0,1), and 𝑧𝑧𝑧0 = 𝑡𝑡𝑡0 ∈ℜ𝑑 ; 
for 𝑠 ∈ {0,1,…} do

𝑧𝑧𝑧𝑠+1 ∶= arg min
𝑧𝑧𝑧∈ℜ𝑑

𝐻1(𝑧𝑧𝑧,𝑡𝑡𝑡𝑠;𝜇1,𝑠); 

if 𝑓𝐼𝐺

(
𝑧𝑧𝑧𝑠+1

)
≤𝐻1

(
𝑧𝑧𝑧𝑠+1, 𝑡𝑡𝑡𝑠;𝜇1,𝑠

)
then

choose 𝜇1,𝑠+1 ≥ 𝜇1,𝑠; 
else

find the lowest 𝑛1,𝑠 ≥ 1 such that 𝑓𝐼𝐺

(
𝑢𝑢𝑢1,𝑠

)
≤𝐻1

(
𝑢𝑢𝑢1,𝑠, 𝑡𝑡𝑡𝑠;𝜇∗

1,𝑠

)
, 

where 𝜇∗
1,𝑠 = 𝜇1,𝑠𝑏

𝑛1,𝑠 and 𝑢𝑢𝑢1,𝑠 ∶= arg min
𝑧𝑧𝑧∈ℜ𝑑

𝐻1

(
𝑧𝑧𝑧,𝑡𝑡𝑡𝑠;𝜇∗

1,𝑠

)
; 

𝜇1,𝑠+1 ∶= 𝜇∗
1,𝑠∕𝑏 and 𝑧𝑧𝑧𝑠+1 ∶= 𝑢𝑢𝑢1,𝑠; 

end

𝑡𝑡𝑡𝑠+1 ∶= arg min
𝑡𝑡𝑡∈ℜ𝑑

𝐻2
(
𝑧𝑧𝑧𝑠+1, 𝑡𝑡𝑡;𝜇2,𝑠

)
; 

if 𝑓𝐼𝐺

(
𝑡𝑡𝑡𝑠+1

)
≤𝐻2

(
𝑧𝑧𝑧𝑠+1, 𝑡𝑡𝑡𝑠+1;𝜇2,𝑠

)
then

choose 𝜇2,𝑠+1 ≥ 𝜇2,𝑠; 
else

find the lowest 𝑛2,𝑠 ≥ 1 such that 
𝑓𝐼𝐺

(
𝑢𝑢𝑢2,𝑠

)
≤𝐻2

(
𝑧𝑧𝑧𝑠+1,𝑢𝑢𝑢2,𝑠;𝜇∗

2,𝑠

)
, where 𝜇∗

2,𝑠 = 𝜇2,𝑠𝑏
𝑛2,𝑠 and 

𝑢𝑢𝑢2,𝑠 ∶= arg min
𝑡𝑡𝑡∈ℜ𝑑

𝐻2

(
𝑧𝑧𝑧𝑠+1, 𝑡𝑡𝑡;𝜇∗

2,𝑠

)
; 

𝜇2,𝑠+1 ∶= 𝜇∗
2,𝑠∕𝑏 and 𝑡𝑡𝑡𝑠+1 ∶= 𝑢𝑢𝑢2,𝑠 ; 

end

end

modelling. It is well-known that predictive models benefit from adding 
penalisations to the objective function in order to improve the predic-

tion error, and many off-the-shelf pieces of software offer such an option. 
We have not included a comparison with penalised GLM models since 
the penalisation functions are SC functions, and thus, the augmented 
objective function would be SC as well and Theorem 4.2 holds when-

ever such penalisation is added. Specifically, the objective functions in 
(4.1)–(4.4) are SC functions if such penalisations are added, and our 
theoretical results would hold. In addition, since the efficiency of a pe-

nalised predictive model heavily depends upon the range of values for 
the penalisation parameters, it would be more informative to focus on 
comparing our NSC Algorithm 1 to IRLS in settings without penalisa-

tions and raise awareness that advanced optimisation techniques could 
enhance the standard IRLS deployment for GLM estimation, which is the 
main message of our numerical implementation.

For each specification of the number of observations 𝑛 and number 
of covariates 𝑑, we synthetically construct 𝑁 data generating processes 
(henceforth called DGP) and perform the above GLM estimations using 
both algorithms.21 The effectiveness of our methods is determined by 
comparing our estimates with the “true” regression coefficients 𝛽𝛽𝛽𝑘, for 
any 𝑘 = 1,… ,𝑁 , obtained by using three standard built-in packages:

MATLAB fitglm, R glm2 and Python statsmodels sm.GLM libraries.22 To 
assess the accuracy of Algorithms 1 and 2 relative to these benchmarks 
we consider two performance indicators. First, we compute the Absolute 
Error Ratio (AER) and its mean (MAER), defined as:

21 Note that unlike in the theoretical presentation, 𝑑 represents here the num-

ber of covariates excluding the trivial one corresponding to the intercept 𝛽0, 
so that the full matrix of explanatory variables is obtained by adding the 𝑛-

dimensional unit vector to 𝑋𝑋𝑋. Details on the DGP simulation are illustrated in 
Appendix C.
22 We remark that all three software rely on the IRLS method to estimate the 
regression coefficients. Generally speaking, R glm2 provides an improvement 
over the standard R 𝑔𝑙𝑚 package by using the step-halving approach in order 
to improve the convergence properties of IRLS (see e.g. Marschner (2011)).
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MAER = 1 
𝑁

𝑁∑
𝑘=1

AER𝑘 with

AER𝑘 =
AE

(
�̂�𝛽𝛽
𝑎𝑙𝑔

𝑘

)
AE

(
�̂�𝛽𝛽

benchmark
𝑘

) , 𝑘 = 1,… ,𝑁. (5.1)

Here, the Absolute Error (AE) associated with each estimator �̂�𝛽𝛽𝑘 is de-

fined by the 𝐿1-norm:

𝐴𝐸

(
�̂�𝛽𝛽𝑘

)
=

𝑑∑
𝑗=1 

|𝛽𝑘,𝑗 − 𝛽𝑡𝑟𝑢𝑒
𝑘,𝑗

|, (5.2)

where 𝛽𝑡𝑟𝑢𝑒
𝑘,𝑗

is the 𝑗𝑡ℎ component of the 𝑘𝑡ℎ simulated “true” regression 
coefficient according to the DGP scheme outlined in Appendix C, and 
𝛽
𝑎𝑙𝑔

𝑘,𝑗
and 𝛽𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘

𝑘,𝑗
are their corresponding estimated values obtained 

with Algorithms 1 and 2, and the three software benchmark packages, 
respectively. The performance of our approach is further evaluated by 
computing the log-likelihood ratio statistics, which compare the GLM 
with the saturated model. Thus, we introduce below the Deviance Ratio 
(𝐷𝑅) and its mean (MDR):

MDR = 1 
𝑁

𝑁∑
𝑘=1

𝐷𝑅𝑘 with 𝐷𝑅𝑘 =
𝐷

(
�̂�𝛽𝛽
𝑎𝑙𝑔

𝑘

)
𝐷

(
�̂�𝛽𝛽

benchmark
𝑘

) , 𝑘 = 1,… ,𝑁. (5.3)

Here, the Deviance (D) of each GLM is defined by:

𝐷

(
�̂�𝛽𝛽𝑘

)
= −2𝜙

(
𝓁
(
�̂�𝛽𝛽𝑘

)
− 𝓁𝑠

)
, (5.4)

where 𝓁
(
�̂�𝛽𝛽𝑘

)
is the log-likelihood function corresponding to the fit-

ted GLM for the 𝑘𝑡ℎ simulated DGP scenario, while 𝓁𝑠 is the maximum 
value of the log-likelihood of the saturated model that is computed us-

ing the same function as in (2.4) with 𝜃𝑖 = 𝑏′−1
(
𝑦𝑖
)
. Explicit expressions 

for the deviance of all GLMs considered in our numerical experiments 
are provided in Appendix D. Note that an MAER or MDR value smaller 
than 1 indicates that our approach is more accurate on average than the 
benchmark with respect to the corresponding performance measure.

The efficiency of our algorithms relative to their benchmarks is also 
investigated by reporting the Mean Computational Time Ratio (MCTR) 
introduced as:

MCTR = 1 
𝑁

𝑁∑
𝑘=1

𝐶𝑇𝑅𝑘 with

CTR𝑘 =
𝐶𝑇

(
�̂�𝛽𝛽
𝑎𝑙𝑔

𝑘

)
𝐶𝑇

(
�̂�𝛽𝛽

benchmark
𝑘

) , 𝑘 = 1,… ,𝑁. (5.5)

Here, 𝐶𝑇

(
�̂�𝛽𝛽
𝑎𝑙𝑔1
𝑘

)
and 𝐶𝑇

(
�̂�𝛽𝛽

benchmark
𝑘

)
are the Algorithm 1 and bench-

mark computational times recorded for the 𝑘𝑡ℎ simulated DGP scenario, 
respectively. It follows that our algorithms are faster on average when-

ever MCTR < 1.23 For a consistent and fair comparison of the compu-

tational time efficiency, all benchmarks have been implemented using 
their corresponding default starting values, and the same specifications 
in the optimisation procedure, i.e. maximum number of iterations = 
10,000 and tolerance level = 10−6. Since Algorithms 1 and 2 are coded 
in MATLAB, we use the MATLAB fitglm starting values for our estima-

tions.

The performance indicators MAER and MDR (both in bold), and 
MCTR are computed based on 𝑁 = 500 replicates. Note that Algo-

rithms 1 and 2 always converge within a very reasonable number of 
iterations, which is not the case for the three benchmarks. Therefore, 

23 Note that for streamline purposes we only report the MCTR values for Algo-

rithm 1.

the number of replicates (out of 500 simulations) for which the opti-

misation problem (associated with the benchmarks) does not converge 
within the allocated maximum number of iterations is illustrated as 
#NaN in our tables. Consequently, these cases are discarded from the 
computation of our performance indicators so that the benchmarks’ 
performance is computed in the most advantageous possible to those 
benchmarks.

Table 2 presents the results for the Poisson GLM regression. We first 
notice that in terms of accuracy, Algorithm 1 consistently outperforms 
both MATLAB fitglm and Python sm.GLM libraries for all cases consid-

ered. The improvements are relative to Python sm.GLM is quite signifi-

cant with respect to both MAER and MDR with the largest augmentations 
being noticed for larger scale settings when the ratio between the sample 
size and the number of covariates/features decreases; for example, when 
𝑛∕𝑑 = 5, the improvements for both indicators are on average of around 
15%,37% and 53% for 𝑛 = 100,500 and 1,000, respectively. The MAER
and MDR for the MATLAB fitglm benchmark are closer to 1, but unlike 
in the previous case, there are many scenarios when the fitglm MLE does 
not converge. This typically happens for the bigger scale problems, as 
it is the case when 𝑛 = 1,000 and 𝑑 = 200 (our largest setting) where 
convergence was not achieved in half of the cases. Unlike the MATLAB

and Python libraries, R glm2 seems to perform very similarly to our Al-

gorithm 1 for the Poisson GLM, the MAER∕MDR values being typically 
slightly above/below 1. The MCTR values indicate that Algorithm 1 is 
always more efficient than both Python sm.GLM and MATLAB fitglm, 
with the largest improvements observed for small dimension settings. 
The smallest differences in runtime happen when 𝑛 = 1,000 and 𝑑 = 50, 
when our algorithm is five and seven times faster than the aforemen-

tioned benchmarks, respectively. However, while R glm2 is also slower 
when 𝑛 = 100 than our Algorithm 1, it becomes more efficient for larger 
values of 𝑛. 

The Gamma GLM results are illustrated in Table 3. First, we notice 
that Algorithm 1 consistently outperforms all benchmarks in terms of 
both accuracy and efficiency. Unlike in the Poisson case, our method 
performs significantly better than R glm2 with respect to both accuracy 
indicators, with an average improvement ranging from 40% − 77% and 
40% − 68% for MAER and MDR, respectively, when 𝑛 = 1,000. We fur-

ther notice a reverse situation regarding the MATLAB fitglm and Python

𝑠𝑚.𝑔𝑙𝑚 GLM libraries when compared to the results from Table 2. Specif-

ically, on the one hand, the MLE procedure from Python 𝑠𝑚.𝑔𝑙𝑚 does 
not converge in many instances, but when it converges, the estimates 
are very close to those obtained via Algorithm 1. On the other hand, 
despite always converging, the MATLAB fitglm optimisation produces 
MAER and MDR values which are significantly lower than 1, with the 
lowest values recorded when 𝑛 = 1,000. The reported average compu-

tational times favour again our methodology; only MCTR values greater 
than 1 are spotted for the larger scale settings for R glm2, which pro-

vided inaccurate estimates in all these cases.

In summary, based on our DGP for Poisson and Gamma GLMs, we 
can argue that overall, our Algorithm 1 provides the most accurate and 
efficient estimation approach relative to the three benchmarks, while R

glm2 is the second best, generally speaking being more stable than the

Python sm.GLM and MATLAB fitglm counterparts.24

We next turn our attention to the implementation results of the 
ALM Algorithm 2 for solving Inverse Gaussian Regressions based on 
the reciprocal-square-root LF. The benchmark chosen in our analysis is 
the MATLAB fitglm package and we only focus on the accuracy of our 
methodology. Fig. 2 illustrates the box plots of the MATLAB fitglm-based 
AER and 𝐷𝑅 for the same values of 𝑛 and 𝑑 as in the previous tables. 
First, we notice (in all nine cases) that the AER indicators are more or less

24 Note that these conclusions are drawn solely based on our DGP and a limited 
number of experiments, so further implementations may be needed to further 
investigate this problem.
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Table 2
MAER, MCTR and MDR for Poisson GLM.

n = 100 n = 500 n = 1,000 
d = 5 d = 10 d = 20 d = 25 d = 50 d = 100 d = 50 d = 100 d = 200 

MATLAB MAER 0.9730 0.9620 0.9523 0.9685 0.9721 0.9713 0.9758 0.9782 0.9816

fitglm MDR 0.9947 0.9935 0.9883 0.9977 0.9986 0.9970 0.9998 1.0002 1.0021

MCTR 0.0134 0.0169 0.0272 0.0630 0.0625 0.0762 0.1446 0.1012 0.1069

#NaN 16 32 58 37 67 182 46 87 256

Python MAER 0.9393 0.8998 0.8431 0.9002 0.8463 0.6227 0.8838 0.8131 0.4723

sm.GLM MDR 0.9177 0.8972 0.8518 0.9093 0.8553 0.6268 0.8915 0.8166 0.4721

MCTR 0.0065 0.0082 0.0129 0.0551 0.0531 0.0340 0.2016 0.1022 0.0531

#NaN 0 0 0 0 0 0 0 0 0

R MAER 0.9999 0.9967 1.0014 1.0082 1.0085 1.0161 1.0087 1.0168 1.0376

glm2 MDR 0.9579 0.9708 0.9858 0.9832 0.9882 0.9950 0.9870 0.9911 1.0057

MCTR 0.2553 0.2815 0.5043 1.5819 1.5695 1.0513 3.3093 2.0093 1.3328

#NaN 0 0 0 0 0 0 0 0 0 

Notes: This table reports the Mean Absolute Error Ratio (MAER), Mean Deviance Ratio (MDR) and Mean Computa-

tional Time Ratio (MCTR) of Algorithm 1 from Section 4.1 relative to its benchmarks, MATLAB fitglm, Python sm.GLM
and R glm2, for the Poisson GLM equipped with the half-power LF from (2.8) with 𝛾 = 2. These indicators are computed 
based on the MLE values obtained from 𝑁 = 500 simulations according to the DGP scheme outlined in Appendix C, for 
different specifications for the number of observations 𝑛 and number of covariates 𝑑. The number of replicates (out of 
500 simulations) that the benchmarks cannot converge is shown as #NaN. All benchmarks are implemented using the 
same starting values with a maximum of 10,000 iterations and 10−6 tolerance level.

Table 3
MAER, MCTR and MDR for Gamma GLM.

n = 100 n = 500 n = 1,000 
d = 5 d = 10 d = 20 d = 25 d = 50 d = 100 d = 50 d = 100 d = 200 

MATLAB MAER 0.9216 0.9449 0.9722 0.6554 0.7141 0.8469 0.5547 0.5734 0.7167

fitglm MDR 0.9534 0.9511 0.9687 0.6713 0.6753 0.8061 0.5065 0.4424 0.6202

MCTR 0.0579 0.0270 0.0404 0.2549 0.1142 0.0995 0.5530 0.1991 0.1954

#NaN 0 0 0 0 0 0 0 0 0

Python MAER 0.9831 0.9930 0.9989 0.9962 0.9999 1.0000 0.9932 1.0000 1.0000

sm.GLM MDR 0.9953 0.9980 1.0000 0.9998 1.0000 1.0000 0.9997 1.0000 1.0000

MCTR 0.0700 0.2049 0.2314 1.6705 0.9847 0.5505 3.7401 2.0635 0.8492

#NaN 78 55 21 406 268 124 471 373 206

R MAER 0.9450 0.9608 0.9850 0.5843 0.7216 0.8928 0.4018 0.5434 0.7679

glm2 MDR 0.9496 0.9621 0.9878 0.5887 0.6859 0.8585 0.3944 0.4643 0.6840

MCTR 0.2945 0.5550 0.5101 6.5451 3.4493 1.6073 12.2574 5.1892 1.5737

#NaN 0 0 0 0 0 0 0 0 0 

Notes: This table reports the Mean Absolute Error Ratio (MAER), Mean Deviance Ratio (MDR) and Mean Computa-

tional Time Ratio (MCTR) of Algorithm 1 from Section 4.1 relative to its benchmarks, MATLAB fitglm, Python sm.GLM
and R glm2, for the Gamma GLM equipped with the half-power LF from (2.8) with 𝛾 = −2. These indicators are computed 
based on the MLE values obtained from 𝑁 = 500 simulations according to the DGP scheme outlined in Appendix C, for 
different specifications for the number of observations 𝑛 and number of covariates 𝑑. The number of replicates (out of 
500 simulations) that the benchmarks cannot converge is shown as #NaN. All benchmarks are implemented using the 
same starting values with a maximum of 10,000 iterations and 10−6 tolerance level.

symmetrically distributed around 1, with a median value smaller (but 
closer) to 1, suggesting that our Algorithm 2 slightly outperforms MAT-

LAB fitglm relative to this performance measure. However, our method 
performs much better in terms of the deviance measure, as almost all 
𝐷𝑅 values are below 1, with the most significant differences being 
documented for larger dimension problems and the smallest 𝑛∕𝑑 ratio 
(i.e. 𝑛∕𝑑 = 5). Furthermore, for each value of 𝑛, we notice a decreas-

ing trend in the median of 𝐷𝑅s as the number of covariates increases. 
These observations are consistent with the previous findings on Algo-

rithm 1 regarding the significant improvements in accuracy for bigger 
datasets.

6. Real data analyses

This section replicates some of the numerical illustrations in Sec-

tion 5 for two insurance datasets: i) health insurance and ii) flood insur-

ance. The statistical description of these two datasets and their prepro-

cessing steps are detailed in Appendix E. Specifically, we compare the 
out-of-sample performances of Algorithm 1 (from Section 4.1) against 
benchmark GLM implementations in MATLAB fitglm, Python sm.GLM, 
and R glm2.

For the health insurance dataset, Algorithm 1 is applied to a Poisson 
GLM with the half-power LF defined in (2.8) with 𝛾 = 2. Benchmarks are 
implemented using Poisson GLMs with either the half-power LF in (2.8)
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Fig. 2. Absolute Error Ratio (AER) and Deviance Ratio (DR) for Inverse Gaussian GLM based on MATLAB fitglm. 
Notes: This figure shows the box plots of Absolute Error Ratio (AER) in the left panel and Deviance Ratio (𝐷𝑅) in the right panel of Algorithm 2 from Section 4.2

relative to the MATLAB fitglm benchmark for the Inverse Gaussian GLM based on the reciprocal-square-root LF. Each box plot is constructed using AERs and 𝐷𝑅s 
computed based on MLE values obtained from 𝑁 = 500 simulations according to the DGP scheme outlined in Appendix C, for different specifications for the number 
of observations 𝑛 and the number of covariates 𝑑. All implementations use the same starting value with a maximum of 10,000 iterations and 10−6 tolerance level.

with 𝛾 = 2 or the log LF. For the flood insurance dataset, Algorithm 1 is 
applied to a Gamma GLM with the half-power LF in (2.8) with 𝛾 = −2, 
while the benchmarks use Gamma GLMs with either the half-power LF 
defined in (2.8) with 𝛾 = −2 or the log LF. Results referring to GLM 
benchmarks with the log LF are labelled, for example, as “R glm2 Log”, 
and those with the half-power LF are labelled as “MATLAB fitglm Hp”.

For both datasets, we compute ratios of the mean squared error (MSE)

of Algorithm 1 predictions and those corresponding to the six bench-

marks considered. An MSE ratio less than one indicates that Algorithm 1
outperforms the benchmark, with smaller values signifying better per-

formance. For the health insurance dataset, the data is split into 70% 
training and 30% testing sets, and this process is repeated 100 times. 
The training data is used to estimate model parameters, and predictions 
are made on the testing data to evaluate the MSE ratios. For the flood 
insurance dataset, we analyse claims from three US states, including 
Florida, Texas, and Louisiana, which are prone to severe flooding. In 
this case, we use the previous year’s data (e.g., 2010) as the training set 
to predict claims for the next year (e.g., 2011), repeating this process 
annually from 2011 to 2023.

6.1. U.S. health insurance dataset

The results for the first U.S. health insurance dataset are summarised 
in Table 4. Among 100 data splits, Algorithm 1 consistently outper-

formed the other two GLM benchmark methods (Log LF and half-power

LF) across all software platforms. From Panel A of Table 4, we notice that 
Algorithm 1 achieved the lowest MSE in 77 scenarios for both MATLAB

fitglm and R glm2, and in all 100 cases for Python sm.GLM. The “win-

s” counts further highlight that Algorithm 1 achieved lower MSEs than 
GLMs with Log LF and half-power LF in 86 and 82 cases, respectively, 
for both MATLAB fitglm and R glm2, and in all 100 scenarios for Python

sm.GLM.

Panel B of Table 4 provides the average MSE ratios and quantiles for 
the benchmark methods relative to Algorithm 1. The average MSE ratios 
for GLMs with Log LF and half-power LF for both MATLAB fitglm and R

glm2 are slightly above 0.98 (0.9829 and 0.9882, respectively), indicat-

ing a limited improvement of around 1.7% and 1.2% for Algorithm 1. In 
contrast, the average MSE ratios in Python sm.GLM are much smaller 
(0.0578 for Log LF and 0.2180 for half-power LF), demonstrating a more 
significant improvement for this software. This trend is consistent across 
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Table 4
Poisson GLM for Health data.

MATLAB fitglm Python sm.GLM R glm2

Alg_1 Log Hp Alg_1 Log Hp Alg_1 Log Hp 
Panel A: Model Counts 

“Best” Model Counts 77 16 7 100 0 0 77 7 16 
Alg_1 “Wins” Counts - 86 82 - 100 100 - 86 82

Panel B: MSE Ratios 

Average - 0.9829 0.9882 - 0.0578 0.2180 - 0.9829 0.9882 
25% quantile - 0.9735 0.9781 - 0.0544 0.2064 - 0.9735 0.9785 
50% quantile - 0.9826 0.9886 - 0.0577 0.2162 - 0.9826 0.9886 
75% quantile - 0.9938 0.9961 - 0.0619 0.2301 - 0.9936 0.9961 

Notes: Panel A: Model Counts summarises the results of 100 data splits for GLM implementations of Algorithm 1
from Section 4.1, which uses the half-power LF with 𝛾 = 2, compared to six benchmarks that use both the 
half-power LF with 𝛾 = 2 and the log LF, across MATLAB, Python, and R. The first row (“Best” Model Counts) 
shows how many times each model achieved the lowest MSE in each software. The second row (Alg_1 “Wins” 
Counts) indicates how many times Algorithm 1 (Alg_1) achieved a lower MSE compared to the Log LF and 
half-power LF models. Panel B: MSE Ratios presents the average MSE ratios along with the 25%, 50%, and 
75% quantiles, calculated across 100 data splits for each method. All methods used default starting values 
provided by the software packages, with a maximum of 10,000 iterations and a tolerance level of 10−6 . For 
Algorithm 1, the starting values were taken from the first iteration in each respective software package.

Table 5
Original Data and Percentage Contributions for Selected Examples.

Rows Charges
Original Data Information Percentage Contributions (%) 
Age Sex BMI Children Smoker Region Age Sex BMI Children Smoker Region 

Insured 1 12,829.46 18 M 17.29 2 Yes NE 0.98 -0.37 58.22 2.46 38.71 0.00 
Insured 2 42,303.69 55 M 30.69 0 Yes NE 11.28 -0.31 57.30 0.00 31.72 0.00 
Insured 3 36,580.28 61 F 33.33 4 No SE 24.82 0.00 74.67 3.85 0.00 -3.34 

Notes: This table presents the results for three selected examples from the U.S. health insurance dataset. The first part (Original Data Information) includes the 
characteristics of each selected individual, such as age (18-64), sex (Male or Female), BMI (15.96-53.13), number of children (0-5), smoker status (Yes or No), 
and region (NE for Northeast, NW for Northwest, SE for Southeast, and SW for Southwest). The second part (Percentage Contributions (%)) reports the percentage 
contribution of each covariate to the predicted premium. The contributions are calculated based on the estimated coefficients obtained from Algorithm 1 with a power 
LF (𝛾 = 2). The contributions for one-hot encoded variables such as Region and Age are summed for all corresponding categories. Some contributions may appear 
negative due to the interpretability model formulation, but they are consistent with the theoretical results in the Section 2.2. The negative percentage contributions 
for some covariates (i.e. Sex and Region) for a given insured indicate that these covariates are in fact decreasing the overall value of the corresponding predicted 
premium (when combining with other available covariates). A relevant domain knowledge or a further detailed investigation would help researchers to understand 
better about these covariates and their contributions.

all quantiles (25%, 50%, and 75%) for Python sm.GLM, highlighting 
that Algorithm 1 is particularly effective in reducing errors when com-

pared to these benchmarks.

In addition to the out-of-sample performance summarised in Table 4, 
while Table 5 illustrates the interpretability of Algorithm 1 through the 
percentage contribution vectors in (2.11) for three selected examples 
from the U.S. health insurance dataset. The three examples correspond 
to three insureds that were chosen to capture diverse characteristics of 
the data. The first part of the table reports the original data information 
for each example, such as age, sex, BMI, number of children, smoker 
status, and region. The second part presents the percentage contribu-

tions of each covariate to the predicted premium, calculated based on 
the interpretability framework introduced in Section 2.2.

The results emphasise the varying influence of covariates across indi-

viduals, showing that some contributions are substantial (e.g., BMI and 
smoking status), while others may be negligible or even negative (e.g., 
sex and region). For example, the negative contribution of the Region 
feature for Insured 3 shows that, given this individual’s age (higher than 
the average age amongst the cohort) and high BMI, the Southeast region 
might slightly lower the predicted premium. This could be because age 
and BMI have a much stronger impact, while the effect of the region is 
relatively smaller and interacts differently with the other factors. Addi-

tionally, the minimal contribution of gender indicates that Algorithm 1
is not highly sensitive to this factor, demonstrating its robustness and 

fairness in the context of insurance pricing. The age column highlights a 
clear trend where the percentage contribution increases as the individ-

ual gets older. For instance, the percentage contribution of age is 0.98% 
for the youngest individual (18 years old), 11.28% for the middle-aged 
individual (55 years old), and 24.82% for the oldest individual (61 years 
old). This progression is consistent with the expected influence of age on 
health insurance premiums, as older individuals are generally associated 
with higher risks and, therefore, higher premiums. These patterns align 
with the theoretical model, in which all contributions sum to 100%, 
although some contributions are negative. This table shows that the Al-

gorithm 1 not only improves predictive performance but also provides 
a clear and practical interpretation on the role of individual covariates 
in insurance pricing.

6.2. Flood insurance dataset

The results for the second flood insurance dataset are summarised 
in Table 6, which compares the performance of Algorithm 1 relative to 
the six benchmark methods across 13 years of out-of-sample predictions 
for Florida, Texas, and Louisiana in the U.S. Algorithm 1 demonstrates 
strong performance in most cases. For instance, in the Panel B of Ta-

ble 6, Algorithm 1 achieves 23 wins with the log LF and 29 wins with 
the half-power LF in MATLAB fitglm. Additionally, Algorithm 1 has the 
highest number of times achieving the best performance across all meth-

ods in MATLAB fitglm, with 19 cases for the log LF and 39 cases for the 
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Table 6
Gamma GLM for Flood data.

Training Year Predicted Year
MATLAB fitglm Python sm.GLM R glm2

Log Hp Log Hp Log Hp 
Florida (FL) 

2010 2011 24.6196 1.0144 0.0142 0.0142 24.6136 1.0144 
2011 2012 31.5413 1.0675 0.0151 0.0150 6.9684 0.9777 
2012 2013 3.0440 1.0176 0.0039 0.0039 3.0432 1.0178 
2013 2014 14.6594 0.9948 0.0540 0.0538 14.6575 0.9946 
2014 2015 3.8898 0.9993 0.0048 0.0048 3.8897 0.9993 
2015 2016 0.0146 0.9982 NaN 0.0146 0.3764 0.9985 
2016 2017 0.0528 0.6760 NaN 0.0068 0.2913 1.0588 
2017 2018 0.1236 0.3160 NaN 0.0233 0.2364 1.1073 
2018 2019 0.0194 0.5719 0.0199 0.0199 0.4000 0.9852 
2019 2020 0.0537 0.9486 0.0531 0.0529 5.6086 0.9487 
2020 2021 0.0106 0.9769 NaN 0.0106 0.1947 0.9773 
2021 2022 0.1697 0.9718 0.1678 0.1679 0.7980 0.9741 
2022 2023 0.8357 1.0013 0.0857 0.0857 0.8351 1.0015

Texas (TX) 

2010 2011 5.8798 1.0557 0.0022 0.0022 5.8782 1.0556 
2011 2012 6.9224 0.6053 0.0249 0.0248 6.9144 0.6054 
2012 2013 8.5670 0.9641 0.0239 0.0239 8.5657 0.9638 
2013 2014 3.3014 0.9643 0.0023 0.0023 3.3009 0.9643 
2014 2015 4.7864 0.9913 0.0479 0.0477 4.7857 0.9911 
2015 2016 18.5862 0.9181 0.0110 0.0110 4.5940 1.0097 
2016 2017 0.0291 0.9522 0.0272 0.0270 0.3640 0.9882 
2017 2018 0.0488 0.8019 NaN 0.0301 0.4833 1.9563 
2018 2019 0.1961 0.6751 0.0541 0.0543 0.3690 0.9855 
2019 2020 0.0046 0.9463 NaN 0.0046 0.1951 0.9462 
2020 2021 0.0179 0.7292 0.0112 0.0112 0.5730 1.0259 
2021 2022 0.8210 0.9790 0.0510 0.0510 0.7251 0.9812 
2022 2023 0.7062 1.0305 0.0642 0.0642 0.7320 1.0312

Louisiana (LA) 

2010 2011 3.0166 0.9570 0.0364 0.0364 3.0166 0.9569 
2011 2012 0.0100 0.5317 0.0120 0.0119 0.2573 0.9533 
2012 2013 10.2523 1.3220 0.0137 0.0137 10.2518 1.3224 
2013 2014 2.0511 0.8257 0.0100 0.0101 2.0509 0.8257 
2014 2015 7.5954 1.0932 0.0118 0.0118 7.5945 1.0933 
2015 2016 3.9441 0.7310 0.0686 0.0682 3.9542 0.7311 
2016 2017 0.0471 0.9164 NaN 0.0062 0.2124 1.1408 
2017 2018 0.0096 1.0854 0.0095 0.0095 0.2488 1.0863 
2018 2019 0.0445 0.5151 0.0307 0.0311 0.5027 0.9928 
2019 2020 0.0600 0.3827 0.0103 0.0103 0.2688 0.9917 
2020 2021 0.0157 1.0746 0.0157 0.0157 0.2491 1.0746 
2021 2022 0.0115 0.9746 0.0115 0.0115 0.3276 0.9760 
2022 2023 0.6846 0.4587 0.0374 0.0374 0.6143 0.9206

Panel A: Statistics Summary (FL, TX, LA) 

2011-2023

Average 4.0165 0.8727 0.0314 0.0282 3.3062 1.0160 
25% quantile 0.0368 0.7301 0.0112 0.0105 0.3458 0.9692 
50% quantile 0.6846 0.9641 0.0178 0.0150 0.7320 0.9917 
75% quantile 4.3652 1.0003 0.0487 0.0369 4.6898 1.0286

Panel B: Counts Summary (FL, TX, LA) 

2011-2023

Alg_1 “wins” 23 29 39 39 22 24 
Alg_1 “best” 19 39 12 
Log “best” 16 0 18

Hp “best” 4 0 9 
Notes: This table compares the MSE values for Gamma GLM implementations of Algorithm 1
(Alg_1) from Section 4.1 using the half-power LF from (2.8) with 𝛾 = −2 to six benchmark meth-

ods. The benchmarks use both the half-power LF from (2.8) with 𝛾 = −2 and the log LF. All 
implementations rely on default starting values provided by the respective software packages, 
with a maximum of 10,000 iterations and a tolerance level of 10−6 . For Algorithm 1, the starting 
values are initialised from the first iteration results in MATLAB, Python, and R. The first three 
panels present the results of 13 out-of-sample evaluations (2011 to 2023) for three states (FL, 
TX, and LA) with the most frequent flood claims. Failures to converge are marked as “NaN” in 
the Python sm.GLM Log column, while Algorithm 1 successfully converges in all cases. Panel A 
displays the average and the 25%, 50%, and 75% quantiles of the 39 ratios computed for each 
column. Panel B shows the number of times Algorithm 1 outperforms the other methods in all 
settings and shows the best implementation of each method within each respective software.
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half-power LF in Python sm.GLM. This highlights the algorithm’s con-

sistent ability to deliver optimal results in these software environments. 
However, its performance in R glm2 is mixed. While the log LF achieves 
the best results in 18 cases, Algorithm 1 still outperforms the half-power

LF, which is similar in formulation, in 12 instances. These results indi-

cate that while Algorithm 1 is generally effective, the log LF can perform 
better under specific conditions. Nevertheless, Algorithm 1 achieves no-

table success in delivering the best results across a significant portion of 
the tests.

Panel A of Table 6 provides additional insights into the relative per-

formance of the methods. For the log LF, Algorithm 1 has an average 
MSE ratio of 4.02 in MATLAB fitglm and 3.31 in R glm2, indicating that 
the benchmark methods perform better for certain years. However, for 
the half-power LF, Algorithm 1 achieves an average MSE ratio of 0.87 in
MATLAB fitglm and 1.02 in R glm2, showing comparable or better per-

formance. These results suggest that the half-power LF is better aligned 
with the properties of Algorithm 1, leading to improved predictions in 
many scenarios.

One key advantage of Algorithm 1 is its stability. As shown in the first 
three panels in Table 6, convergence failures occur frequently for the log

LF in Python sm.GLM, resulting in missing values “NaN”). In contrast, 
Algorithm 1 converges successfully in all cases, demonstrating its robust-

ness across different datasets and link functions. This reliability makes it 
a better candidate for practical predictive modelling, particularly when 
convergence is a concern. Therefore, Algorithm 1 performs well overall, 
particularly with the half-power LF, and offers consistent convergence 
in all cases. While it does not always achieve the lowest MSE, espe-

cially when compared with the log LF in certain years, its stability and 
competitive performance make it a reliable option for modelling flood 
insurance claims.

Focusing on extreme events recorded by the National Center for En-

vironmental Information (NCEI),25 several significant flooding disasters 
impacted Texas, Louisiana, and Florida during the study period. In 2015, 
2016, 2017, and 2019, extreme rainfall and subsequent flooding caused 
billions of dollars in losses in Texas and Louisiana. Notably, the 2016 
Louisiana flood, a historic event, destroyed over 50,000 homes. Addi-

tionally, Hurricanes Laura and Delta in 2021 brought widespread dam-

age to homes in Texas and Louisiana. These events provide context for 
interpreting the results in Table 6.

For Texas, Algorithm 1 generally performs well during years affected 
by extreme events, showing better overall predictability compared to the 
log and half-power LFs. However, exceptions exist. For instance, in MAT-

LAB fitglm and R glm2, the log LF achieves the best performance for the 
predicted years 2015 and 2016, and the half-power LF performs better 
in 2016 and 2021. For Louisiana, the results reflect mixed performance 
during extreme events, with Algorithm 1 showing comparable predictive 
ability to other methods across many years. For Florida, NCEI records 
highlight events such as Hurricane Ian in 2022 and historical rainfall 
with flash flooding in 2023. In these years, Algorithm 1 outperforms all 
other methods in the predicted year 2022 and remains a strong choice 
for 2023 across most scenarios. These findings suggest that Algorithm 1
can adapt well to extreme conditions, particularly in Florida while main-

taining competitive performance in Texas and Louisiana. Overall, the 
results indicate that Algorithm 1 is a reliable choice for predictive mod-

elling, particularly in years with extreme flooding events.

7. Conclusions

This paper makes two important contributions to the GLM literature. 
First, we provide a general characterisation of proper GLMs for various 
exponential dispersion models, including the Tweedie family. The main 
finding is that although most Tweedie GLMs are not proper for canon-

ical and log LFs, a rich class of proper Tweedie GLMs can be identified 

25 Available at: https://www.ncei.noaa.gov/access/billions/.

for power LFs. Second, we propose specialised optimisation algorithms 
for implementing several instances of Tweedie GLMs under power LFs. 
These algorithms outperform standard methods in terms of accuracy and 
efficiency, particularly in high-dimensional scenarios, as demonstrated 
via a thorough comparison with existing libraries like MATLAB fitglm,

R glm2, and Python sm.GLM.
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Appendix A. Proofs

A.1. Proof of Propositions 3.1-3.3

The proofs follow easily by verifying the conditions in Definition 2.1

for the Poisson, Gamma and Inverse Gaussian families, respectively.

A.2. Proof of Theorem 3.4

The identification of the three classes of Tweedie GLM that are well-

defined is not difficult, and thus, we only outline some arguments with-

out further details that are quite obvious. Clearly, 𝑏′(𝜃) =
(
𝜃∕(𝛼−1)

)𝛼−1
for all 𝜃 ∈ℜ. Since 𝛼 < 2, then setting a) is readily true and we require 
𝛼 ∈ (1,2), which is equivalent to 𝑝 < 0, whenever Θ∈ {ℜ∗

+,ℜ+}. Setting 
b) is the mirror case of setting a), and the proof is very similar. Settings 
c) and d) are similar to the previous ones, and the analysis depends if 
𝛼 − 1 is an odd or even negative integer.

A.3. Proof of Theorem 3.5

First, we investigate parts (i) and (iii) (the negative power LF case) 
together, and therefore assume only power or negative power LFs. Condi-

tion C2 requires

𝑦(𝛼 − 1)
(
ℎ(𝜂)

) 1 
𝛼−1 − 𝛼 − 1

𝛼

(
ℎ(𝜂)

) 𝛼

𝛼−1

to be concave in 𝜂 on ℜ for all 𝑦 ∈ . (A.1)

Setting a) is first justified, but only for power LFs since the image of 
ℎ is ℜ∗

+, and in turn, 𝛾 = 2𝑘,𝑘 ∈Z∗. Denote 𝑎1 = 𝑦 (𝛼 − 1), 𝑎2 =
1−𝛼

𝛼
and 

𝛾 ′ = 1 
𝛼−1 . Equation (A.1) is equivalent to

𝜉 (𝜂;𝑦) ∶= 𝑎1𝜂
𝛾𝛾′ + 𝑎2𝜂

𝛾(𝛾′+1) is concave in 𝜂 on ℜ for all 𝑦 ∈ . (A.2)

Note that  =ℜ∗
+ is assumed. Since 1 < 𝛼 < 2 and 𝑦 > 0, then 𝑎1 > 0

and 𝑎2 < 0, and in turn, (A.2) holds if and only if 𝛾𝛾 ′ ∈ [0,1] and 𝛾(𝛾 ′ +
1) ∉ (0,1). This is equivalent to having 𝛾 ≥ 0, 𝛾𝛾 ′ ≤ 1 and 𝛾(𝛾 ′ + 1) ≥ 1, 
since 𝛾 ′ > 1 in this case, which is further equivalent to 𝛼−1

𝛼
≤ 𝛾 ≤ 𝛼 − 1. 

The latter cannot hold since 𝛼 − 1 ∈ (0,1), 𝛼 − 1 − 𝛼−1
𝛼

∈ (0,1∕2) and 
𝛾 = 2𝑘,𝑘 ∈ Z∗, which concludes that no proper GLM model is possible 
for setting a).

Setting b) is now justified, but only for power LFs since the image of 
ℎ is ℜ∗

+, and thus, 𝛾 = 2𝑘,𝑘 ∈Z∗. We split this in two subcases, setting 
b1) and setting b2) for 0 < 𝛼 < 1 and 𝛼 < 0, respectively.

Setting b1) holds if and only if 𝛾𝛾 ′ ∉ (0,1) and 𝛾(𝛾 ′ + 1) ∈ [0,1], 
since 𝑎1 < 0 and 𝑎2 > 0, which is equivalent to having 𝛾 ≤ 0, 𝛾𝛾 ′ ≥ 1

https://www.ncei.noaa.gov/access/billions/
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and 𝛾(𝛾 ′ + 1) ≥ 1 as 𝛾 ′ < −1, and in turn, 𝛼−1
𝛼

≤ 𝛾 ≤ 𝛼 − 1. The later 
is true if and only if 𝛾 = −2𝑘 for any 𝑘 ∈ N∗ and (1 − 𝛾)𝛼 ≤ 1 since 
0 < 𝛼 < 1, which concludes setting b1).

Setting b2) implies that 𝑎1, 𝑎2 < 0 and 𝛾 ′ ∈ (−1,0). Therefore, setting 
b2) holds if and only if 𝛾𝛾 ′ ∉ (0,1) and 𝛾(𝛾 ′ + 1) ∉ (0,1), which is equiv-

alent to having 𝛾 ≥ 0 and 𝛾(𝛾 ′ + 1) ≥ 1 or 𝛾 ≤ 0 and 𝛾𝛾 ′ ≥ 1, and in turn, 
𝛼−1
𝛼

≤ 𝛾 or 𝛾 ≤ 𝛼 − 1 must hold, which concludes setting b2).

Setting c) is similar to setting b2), and we thus skip its proof. Setting 
d) requires for power and negative power LFs to having 𝛾 ′ ∈Z so that the 
likelihood function is well-defined in (2.4) (and thus, in (A.1)), but also 
𝛾 to be an odd integer so that the image of ℎ is ℜ∗. These do not hold 
since 𝛾 ′ ∈ (−1,0), which justifies our claim for setting d). This concludes 
parts (i) and (iii) (the negative power LF case).

The proof of parts (ii) and (iii) (the negative half-power LF case) fol-

lows in a similar way, with one small difference. That is, half-power LFs 
require 𝛾 ∈ℜ∗ instead of 𝛾 = 2𝑘,𝑘 ∈ Z∗, but everything else does not 
significantly change. For these reasons, we do not provide additional 
details on this proof.

A.4. Proof of Theorem 3.6

We first show part (i), and assume canonical LFs. Note first ℎ(𝜂) =
𝑏′(𝜂) =

(
𝜂∕(𝛼−1)

)𝛼−1
, which implies that 𝛼 ∈Z⧵ {1}. This implies that 

amongst settings a)–c), only setting b2), which was introduced in Ap-

pendix A.3, might hold while all other settings are clearly infeasible. The 
image of ℎ is ℜ∗

+ and therefore, 𝛼 is an odd negative integer, which is a 
power LF with an odd parameter 𝛾 . This contradicts our findings in the 
proof of part (i) from Theorem 3.4 for setting b2), and concludes that no 
canonical LF leads to proper GLM in settings a)–c). Setting d) requires 
𝛼 to be an even negative integer and 𝛾 ′ ∈ Z as explained in the previ-

ous proof, which is infeasible conditions. Thus, no canonical LF leads to 
proper GLM in setting d). This concludes part (i).

We now show part (ii) and assume log LFs. Using the same notations 
as in Appendix A.3, Equation (A.1) is equivalent to

𝜉 (𝜂;𝑦) ∶= 𝑎1𝑒
𝜂𝛾′ + 𝑎2𝑒

𝜂(𝛾′+1) is concave in 𝜂 on ℜ for all 𝑦 ∈ , (A.3)

which requires 𝑎1, 𝑎2 ≤ 0 due to the convexity property of 𝑒𝜂𝛾 in 𝜂 on 
ℜ, for any 𝛾 ∈ ℜ. The latter explains that only setting b2) is feasible 
amongst settings a)–c). Setting d) is infeasible since the image of ℎ is 
ℜ∗, which is impossible for a log LF. The proof is now complete.

A.5. Proof of Theorem 4.2

We proceed by showing part a), but only for (4.1), since (4.2) could 
be argued similarly. Let

𝑓𝑖,𝑃 (𝛽𝛽𝛽) =
(1
2
(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
)2 − 𝑦𝑖 log

(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
))

for all 1 ≤ 𝑖 ≤ 𝑛, (A.4)

so that 𝑓𝑃 (𝛽𝛽𝛽) =
𝑛 ∑

𝑖=1
𝑓𝑖,𝑃 (𝛽𝛽𝛽). First, we show that 𝑓𝑃 is a closed convex 

function on Ω. From (A.4), 𝑓𝑖,𝑃 is convex (and therefore, continuous) 
on Ω, and since 𝑑𝑜𝑚

(
𝑓𝑃

)
=Ω is an open set and lim 

𝛽𝛽𝛽→𝛽𝛽𝛽0
𝑓𝑖,𝑃 (𝛽𝛽𝛽) =∞ for all 

𝛽𝛽𝛽0 ∈ 𝜕 𝑑𝑜𝑚
(
𝑓𝑃

)
, it follows that 𝑓𝑖,𝑃 is closed convex on Ω. The closed 

convex property of 𝑓𝑃 follows from the fact that it is a sum of closed 
convex functions.

We next prove that 𝑓𝑃 is self-concordant on Ω. For any 𝑡 ∈ℜ, 𝑢𝑢𝑢 ∈
Ω and 𝑣𝑣𝑣 ∈ ℜ𝑑 , such that 𝑢𝑢𝑢 + 𝑡 𝑣𝑣𝑣 ∈ Ω, we define the function 𝑔𝑖,𝑃 (𝑡) =

𝑓𝑖,𝑃 (𝑢𝑢𝑢+ 𝑡 𝑣𝑣𝑣), or any 𝑖 = 1,… , 𝑛, and let 𝑔𝑃 (𝑡) =
𝑛 ∑

𝑖=1
𝑔𝑖,𝑃 (𝑡). Next, we show 

that|||𝑔′′′𝑖,𝑃
(𝑡)||| ≤ 2

(
𝑔′′
𝑖,𝑃

(𝑡)
)3∕2

. (A.5)

Note that

𝑔′′
𝑖,𝑃

(𝑡) =
(
𝑥𝑥𝑥⊤
𝑖
𝑣𝑣𝑣
)2 + 𝑦𝑖

(
𝑥𝑥𝑥⊤
𝑖
𝑣𝑣𝑣
)2(

𝑥𝑥𝑥⊤
𝑖
𝑢𝑢𝑢+ 𝑡 𝑥𝑥𝑥⊤

𝑖
𝑣𝑣𝑣
)2 and 𝑔′′′

𝑖,𝑃
(𝑡) = −

2𝑦𝑖
(
𝑥𝑥𝑥⊤
𝑖
𝑣𝑣𝑣
)3(

𝑥𝑥𝑥⊤
𝑖
𝑢𝑢𝑢+ 𝑡 𝑥𝑥𝑥⊤

𝑖
𝑣𝑣𝑣
)3 .

Clearly, (A.5) holds whenever 𝑥𝑥𝑥⊤
𝑖
𝑣𝑣𝑣 = 0, and thus, we further assume that 

𝑥𝑥𝑥⊤
𝑖
𝑣𝑣𝑣 ≠ 0. Now,

|||𝑔′′′𝑖,𝑃
(𝑡)||| (𝑔′′𝑖,𝑃 (𝑡))−3∕2

= 2𝑦𝑖
(
𝑦𝑖 +

(
𝑥𝑥𝑥⊤
𝑖
𝑢𝑢𝑢+ 𝑡 𝑥𝑥𝑥⊤

𝑖
𝑣𝑣𝑣
)2)−3∕2

≤ 2,

since 𝑦𝑖 ≤ 𝑦
3∕2
𝑖

≤
(
𝑦𝑖 + 𝜖𝑖

)3∕2
for any non-negative integer 𝑦𝑖 and any 

𝜖𝑖 ≥ 0 (recall that 𝑦𝑖 ∈N as the sampling distribution is Poisson). The 
self-concordant property of 𝑓𝑃 follows from

|||𝑔′′′𝑃
(𝑡)||| = |||||

𝑛 ∑
𝑖=1 

𝑔′′′
𝑖,𝑃

(𝑡)
||||| ≤

𝑛 ∑
𝑖=1 

|||𝑔′′′𝑖,𝑃
(𝑡)||| ≤ 2

𝑛 ∑
𝑖=1 

(
𝑔′′
𝑖,𝑃

(𝑡)
)3∕2

≤ 2

(
𝑛 ∑

𝑖=1 
𝑔′′
𝑖,𝑃

(𝑡)

)3∕2

= 2
(
𝑔′′
𝑃
(𝑡)
)3∕2

.

Note that the first inequality follows from the triangle inequality, the 
second from (A.5), and the last one from the fact that the 𝑝-norm on 

ℜ𝑛, ||𝑥𝑥𝑥||𝑝 ∶= (
𝑛 ∑

𝑖=1 
||𝑥𝑖

||𝑝
)1∕𝑝

is a decreasing function in 𝑝 on ℜ∗
+ for 

any x ∈ℜ𝑛, and thus, ||𝑥𝑥𝑥||1 ≤ ||𝑥𝑥𝑥||2∕3. This completes the proof for part 
a).

The proof of part b) follows in a similar way, and thus, we only 
provide the main steps. As before, we only show (4.3) since its proof is 
very similar to the proof of (4.4). We denote

𝑓𝑖,𝐺 (𝛽𝛽𝛽) =
(𝑦𝑖

2 
(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
)2 − log

(
𝑥𝑥𝑥⊤
𝑖
𝛽𝛽𝛽
))

for all 1 ≤ 𝑖 ≤ 𝑛,

so that 𝑓𝐺 (𝛽𝛽𝛽) =
𝑛 ∑

𝑖=1
𝑓𝑖,𝐺 (𝛽𝛽𝛽). Following the same arguments as in part a), 

we may show that 𝑓𝐺 is a closed convex function on Ω. The proof that 𝑓𝐺

is self-concordant on Ω follows in a similar way by defining the function 

𝑔𝑖,𝐺(𝑡) = 𝑓𝑖,𝐺 (𝑢𝑢𝑢+ 𝑡 𝑣𝑣𝑣) and 𝑔𝐺(𝑡) =
𝑛 ∑

𝑖=1
𝑔𝑖,𝐺(𝑡) for any 𝑡 ∈ ℜ, 𝑢𝑢𝑢 ∈ Ω and 

𝑣𝑣𝑣 ∈ℜ𝑑 , such that 𝑢𝑢𝑢+ 𝑡 𝑣𝑣𝑣 ∈Ω, and showing that |||𝑔′′′𝑖,𝐺
(𝑡)||| ≤ 2

(
𝑔′′
𝑖,𝐺

(𝑡)
)3∕2

. 
The second and third order derivatives of 𝑔𝑖,𝐺 are given by

𝑔′′
𝑖,𝐺

(𝑡) = 𝑦𝑖
(
𝑥𝑥𝑥⊤
𝑖
𝑣𝑣𝑣
)2 + (

𝑥𝑥𝑥⊤
𝑖
𝑣𝑣𝑣
)2(

𝑥𝑥𝑥⊤
𝑖
𝑢𝑢𝑢+ 𝑡 𝑥𝑥𝑥⊤

𝑖
𝑣𝑣𝑣
)2 and 𝑔′′′

𝑖,𝐺
(𝑡) = −

2
(
𝑥𝑥𝑥⊤
𝑖
𝑣𝑣𝑣
)3(

𝑥𝑥𝑥⊤
𝑖
𝑢𝑢𝑢+ 𝑡 𝑥𝑥𝑥⊤

𝑖
𝑣𝑣𝑣
)3 .

Clearly, the required inequality holds if 𝑥𝑥𝑥⊤
𝑖
𝑣𝑣𝑣 = 0, and thus, 𝑥𝑥𝑥⊤

𝑖
𝑣𝑣𝑣 ≠ 0 is 

further assumed. Now,|||𝑔′′′𝑖,𝐺
(𝑡)||| (𝑔′′𝑖,𝐺(𝑡))−3∕2

= 2
(
𝑦𝑖
(
𝑥𝑥𝑥⊤
𝑖
𝑢𝑢𝑢+ 𝑡 𝑥𝑥𝑥⊤

𝑖
𝑣𝑣𝑣
)2 + 1

)−3∕2
≤ 2,

since 
(
1 + 𝑦𝑖𝜖𝑖

)−3∕2
≤ 1 for any 𝑦𝑖 > 0 and 𝜖𝑖 ≥ 0 (recall that 𝑦𝑖 ∈ℜ∗

+ as 
the sampling distribution is Gamma). This completes the proof.

Appendix B. Other special cases of GLMs

B.1. Linear regression – Gaussian family

Assume that 𝑌 ∼ 𝑁(𝜃,𝜙2) with probability distribution function 
given by

log
(
𝑓𝑌 (𝑦;𝜃,𝜙)

)
=

𝜃𝑦− 𝜃2

2 
𝜙 

− 1
2

(
𝑦2

𝜙 
+ log(2𝜋𝜙)

)
,

(𝑦, 𝜃,𝜙) ∈ℜ ×ℜ ×ℜ∗
+.

The above pdf is obtained as a special case of (2.1) by taking

𝑎 (𝜙) = 𝜙, 𝑏 (𝜃) = 𝜃2

2 
, 𝑐 (𝑦,𝜙) = −1

2

(
𝑦2

𝜙 
+ log(2𝜋𝜙)

)
.
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In addition, 𝑏′ (Θ) =ℜ and 𝑏′−1 (𝜇) = 𝜇. Proposition Appendix B.1 pro-

vides a characterisation of the LFs under which the Gaussian GLM is 
properly defined according to Definition 2.1.

Proposition Appendix B.1. Assume that 𝑌 ∼ 𝑁(𝜃,𝜙2). The Gaussian 
GLM is proper if and only if ℎ ∶ℜ→ℜ and

−𝑦ℎ(𝜂) + ℎ2(𝜂)
2 

is convex in 𝜂 on ℜ for any given 𝑦∈ℜ. (B.1)

Proof. The proof follows from verifying conditions C1 and C2 from 
Definition 2.1. □

Corollary Appendix B.2 identifies the only class of LFs which satisfies 
Equation (B.1).

Corollary Appendix B.2. The Gaussian GLM is proper if and only if the 
LF is linear.

Proof. Since any convex real function defined on a finite open set 𝐼 is 
continuous with non-decreasing left (and right) derivatives, then (B.1)

implies that

ℎ′
+
(
𝜂1
)
ℎ
(
𝜂1
)
− 𝑦ℎ′

+
(
𝜂1
)
≤ ℎ′

+
(
𝜂2
)
ℎ
(
𝜂2
)
− 𝑦ℎ′

+
(
𝜂2
)

for all 𝑦 ∈ℜ,

(B.2)

and any reals 𝜂1 < 𝜂2 from 𝐼 , where ℎ′
+ is the right derivative of ℎ. 

Assume now that ℎ is not linear on ℜ, and thus, not linear on 𝐼 . Then, 
there exists 𝜂1 < 𝜂2 from 𝐼 such that ℎ′

+
(
𝜂2
)
− ℎ′

+
(
𝜂1
)
≠ 0. The latter 

contradicts (B.2), and in turn, we must have ℎ linear on ℜ, and no other 
possible LF leads to a MLE-based Gaussian GLM. □

The canonical LF for Gaussian GLMs is the identity function. Corol-

lary Appendix B.2 implies the canonical LF leads to a proper GLM and it 
is the only power function with this property.

B.2. Logistic Regression – Bernoulli family

Assume that 𝑌 ∼ Bernoulli(𝜃) with probability mass function given 
by

log
(
𝑓𝑌 (𝑦;𝜃,𝜙)

)
= 𝜃𝑦− log

(
1 + 𝑒𝜃

)
with (𝑦, 𝜃,𝜙) ∈ {0,1} ×ℜ × {1}.

The above function is obtained as a special case of (2.1) by taking

𝑎 (𝜙) = 1, 𝑏 (𝜃) = log
(
1 + 𝑒𝜃

)
, 𝑐 (𝑦,𝜙) = 0.

In addition, 𝑏′ (Θ) = (0,1) and 𝑏′−1 (𝜇) = log 𝜇

1−𝜇
. Proposition Appendix

B.3 provides a brief characterisation of a proper Logistic regression 
model.

Proposition Appendix B.3. Assume that 𝑌 ∼ Bernoulli(𝜃). The Bernoulli 
GLM is proper if and only if ℎ ∶ℜ→ (0,1), and

𝑦 log (ℎ(𝜂)) + (1 − 𝑦) log (1 − ℎ(𝜂))

is concave in 𝜂 on ℜ for any given 𝑦= {0,1}. (B.3)

Proof. The proof follows easily by verifying the conditions C1 and C2

from Definition 2.1. □

A direct consequence of the above is that the MLE-based Bernoulli 
GLM is proper if and only if ℎ(𝜂) and ℎ(1−𝜂) are log-concave functions26

26 A function 𝑓 ∶ 𝐴 → 𝐵 is log-concave on 𝐴 if log (𝑓 (𝛼𝑥+ (1 − 𝛼)𝑦)) ≥
𝛼 log (𝑓 (𝑥)) + (1 − 𝛼) log (𝑓 (𝑦)) for all 𝑥, 𝑦 ∈𝐴 and 0 < 𝛼 < 1.

on ℜ. Three standard choices for ℎ have been proposed for this family 
in the literature, and all of them lead to proper GLMs:

(i) logit LF, which corresponds to having ℎ(𝜂) = 1 
1+𝑒−𝜂

, which is also 
the Bernoulli canonical LF that satisfies the conditions in Proposi-

tion 2.2 since 𝑏 is strictly convex on ℜ.

(ii) probit LF, which corresponds to having ℎ(𝜂) = Φ(𝜂), where Φ is 
the cdf of a standard Gaussian random variable. In this case, it 
is not difficult to show that ℎ satisfies the characterisation from 
Proposition Appendix B.3.

(iii) complementary log-log LF, which corresponds to having ℎ(𝜂) = 1 −
exp (−exp (−𝜂)). It is not difficult to show that ℎ satisfies the con-

ditions in Proposition Appendix B.3.

Finally, it is clear that no power LF satisfies the conditions in Propo-

sition Appendix B.3.

Appendix C. Data generation process

This section briefly outlines the DGPs for the Poisson, Gamma and 
Inverse Gaussian GLMs.

• Step 1: Generate the matrix of covariates 𝑋𝑋𝑋 = {𝑋𝑖,𝑗}
𝑛,𝑑

𝑖=1,𝑗=1, from 
a Gaussian distribution with mean 𝜇 and unit standard deviation, 
𝑋𝑖,𝑗 ∼ (𝜇,1). Note that for each GLM, we let 𝜇 to be a function 
of 𝑑, such that the expected value of the response variable is within 
reasonable bounds in order to avoid exaggerating the parameter 
values when generating 𝑌𝑌𝑌 in Step 3, which typically affect the es-

timation procedure for the benchmarks.27

• Step 2: Generate the regression coefficient 𝛽𝛽𝛽 = {𝛽𝑗}𝑑𝑗=0 by setting 
𝛽𝑗 = 𝑗∕𝑑.

• Step 3: For any 𝑖 = 1,… , 𝑛, let 𝜃𝑖 = 𝛽0 +
𝑑∑

𝑗=1
𝛽𝑗𝑥𝑖,𝑗 and gener-

ate the response variable 𝑌𝑌𝑌 = {𝑌𝑖}𝑛𝑖=1 by simulating each 𝑌𝑖 from 
Poisson

(
𝜃2
𝑖

)
for the Poisson GLM, Gamma

(
𝜃2
𝑖
,1
)

for the Gamma 
GLM and 𝐼𝐺

(
𝜃−2
𝑖

,1
)

for the Inverse Gaussian GLM.

Appendix D. Deviance for Poisson, Gamma and Inverse Gaussian 
GLMs

• Poisson GLM with half-square-root LF

𝐷

(
�̂�𝛽𝛽

)
=

𝑛 ∑
𝑖=1 

(
4𝑦𝑖 log

(√
𝑦𝑖

𝑥𝑥𝑥⊤
𝑖
�̂�𝛽𝛽

)
+ 2

((
𝑥𝑥𝑥⊤
𝑖
�̂�𝛽𝛽

)2
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27 Note that in such cases all standard benchmarks fail to converge in most 
scenarios.
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Table E.7

Summary Statistics of Raw Health Insurance Data.

Variable Obs. Min Max Median Mean Std.Dev. 

Medical costs (charges, USD) 1,338 1,122 63,770 9,382 13,270 12,110 
Age 1,338 18 64 39 39 14 
Sex (female: 662 vs. male: 676) 1,338 N/A N/A N/A N/A N/A 
BMI 1,338 15.96 53.13 30.4 30.66 6.1 
No. of Children 1,338 0 5 1 1.1 1.21 
Smoker (yes: 274 vs. no: 1,064) 1,338 N/A N/A N/A N/A N/A 
Region 1,338 N/A N/A N/A N/A N/A 

Notes: This table summarises the variables in the U.S. health insurance dataset. The dataset includes 1,338 obser-

vations. Character variables such as Sex, Smoker, and Region are shown with counts. For Region, NE refers to the 
Northeast (324 observations), NW refers to the Northwest (325 observations), SE refers to the Southeast (364 ob-

servations), and SW refers to the Southwest (325 observations). Numeric variables include medical costs (charges), 
age, BMI, and the number of children, summarised by their minimum, maximum, median, mean, and standard devi-

ation. Character variables are listed as “N/A” for numerical summaries.

Table E.8

Summary of Data Preprocessing for Health Insurance Dataset.

Variable Type Regrouped Bounded One-hot Encoded Resulting Columns 

Charges Numeric Yes No Yes 4 
Age Integer Yes No Yes 6 
Sex Character No No Yes 2 
BMI Numeric No No No N/A 
Children Integer No Yes Yes N/A 
Smoker Character No No Yes 2 
Region Character No No Yes 4 

Notes: This table summarises the processing steps applied to the U.S. health insurance dataset. The Charges variable, 
used as the dependent variable, was regrouped into four categories: (1) Low (≤ 10,000 USD), (2) Mid (10,001 −
20,000 USD), (3) Upper-Mid (20,001 − 40,000 USD), and (4) High (> 40,000 USD). The remaining variables were 
used as features in the analysis. For Age, values were regrouped into six categories: (1) Ages 18-21, (2) Ages 22-

26, (3) Ages 27-35, (4) Ages 36-45, (5) Ages 46-55, and (6) Ages 56-64. The Children variable was capped at 3, 
meaning any number greater than 3 was set to 3. The BMI variable underwent a logarithmic transformation to 
reduce skewness. Binary variables such as Smoker and Sex were encoded into two categories. The Region variable, 
which includes four geographic areas (Northeast, Northwest, Southeast, and Southwest), was one-hot encoded. The 
Resulting Columns column indicates the number of columns created after one-hot encoding for character variables. 
For numeric variables (BMI and Children), “N/A” is shown under the Resulting Columns column, as they were not 
transformed into additional columns during preprocessing.

Appendix E. Data description

This section describes the two real-world datasets used in the analy-

sis: the U.S. health insurance dataset and the FEMA NFIP claims dataset. 
The first focuses on medical costs and related demographic and lifestyle 
factors, while the second provides information on flood insurance claims 
from 2010 to 2023 in Florida, Texas, and Louisiana. Both datasets are 
preprocessed to ensure the variables are suitable for statistical mod-

elling, including transformations, binning, and encoding as needed. 
Summary statistics and visualisations are provided to give an overview 
of the datasets and highlight key features. The preprocessing steps and 
descriptive analyses ensure the data is prepared for evaluating the per-

formance of Algorithm 1.

E.1. U.S. health insurance dataset

The first U.S. health insurance dataset28 contains 1,338 observations 
and is widely used in the machine learning research community to study 
the relationships between medical costs and various demographic and 

28 “U.S. Health Insurance” dataset is available at https://github.com/stedy/

Machine-Learning-with-R-datasets or www.kaggle.com/datasets/teertha/

ushealthinsurancedataset.

lifestyle factors. The dataset includes one dependent variable, Medical 
Costs (Charges), and six independent variables: Age, Sex, BMI, Number of 
Children, Smoker, and Region. Table E.7 provides summary statistics for 
the raw dataset, which highlights the distribution of the numerical vari-

ables and the counts for categorical variables. The dependent variable, 
Charges, exhibits a wide range from 1,122 to 63,770 USD with a mean 
of 13,270 USD, showing a right-skewed distribution.

To prepare the dataset for analysis, preprocessing steps were applied 
to both dependent and independent variables, as summarised in Ta-

ble E.8. The Charges variable, representing medical costs, was regrouped 
into four categories: Low (≤ 10,000 USD), Mid (10,001 − 20,000 USD), 
Upper-Mid (20,001 − 40,000 USD), and High (> 40,000 USD). Binning 
the Charges variable simplifies the interpretation of medical costs and 
makes it suitable for modelling with a Poisson GLM. For Age, values were 
grouped into six categories based on predefined age ranges to facilitate 
modelling. The BMI variable underwent a logarithmic transformation 
to reduce skewness and improve its interpretability. Binary variables, 
such as Sex (Male or Female) and Smoker (Yes or No), were one-hot en-

coded. The Region variable was also one-hot encoded to represent four 
geographic areas: Northeast, Northwest, Southeast, and Southwest. Ta-

ble E.9 presents the cleaned dataset, grouped by binned Charges, with 
numerical averages and distributions of categorical variables. Similar 
preprocessing techniques, including binning age groups and applying 

https://github.com/stedy/Machine-Learning-with-R-datasets
https://github.com/stedy/Machine-Learning-with-R-datasets
http://www.kaggle.com/datasets/teertha/ushealthinsurancedataset
http://www.kaggle.com/datasets/teertha/ushealthinsurancedataset
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Table E.9

Summary Statistics of Cleaned Health Insurance Data by Binned Charges.

Charges_binned Low Mid Upper-Mid High

Avg_charges 5,207.23 13,513.71 29,222.34 45,681.02

Avg_age 33.09 49.03 39.90 48.75

Avg_log(BMI) 3.39 3.39 3.39 3.60

Sex F: 355, M: 357 F: 192, M: 161 F: 83, M: 111 F: 32, M: 47

Smoker N: 712, Y: 0 N: 291, Y: 62 N: 61, Y: 133 N: 0, Y: 79

Children Count 0: 292, 1: 201,

2: 126, 3: 93

0: 174, 1: 59,

2: 53, 3: 67

0: 82, 1: 46,

2: 40, 3: 26

0: 26, 1: 18,

2: 21, 3: 14

Age_binned 1: 140, 2: 100, 3: 168

4: 190, 5: 114, 6: 0

1: 27, 2: 16, 3: 36

4: 19, 5: 93, 6: 162

1: 27, 2: 21, 3: 30

4: 36, 5: 50, 6: 30

1: 0, 2: 3, 3: 6

4: 19, 5: 27, 6: 24

Region NE: 161, NW: 176,

SE: 193, SW: 182

NE: 95, NW: 88,

SE: 83, SW: 87

NE: 53, NW: 47,

SE: 52, SW: 42

NE: 15, NW: 14,

SE: 36, SW: 14

Notes: This table summarises the U.S. health insurance dataset grouped by binned charges. Avg_charges, Avg_age, 
and Avg_log(BMI) represent the averages for numerical variables. The distributions of Character variables are 
provided for Sex, Smoker, Age_binned, and Region. For Sex, F indicates Female, and M indicates Male. For Smoker, 
Y indicates Yes (smoker) and N indicates No (non-smoker). While Children is treated as a numeric variable, it is 
displayed in the table as counts for 0, 1, 2, and capped at 3 children to enhance clarity. Age_binned represents 
grouped age ranges labelled from 1 to 6. Region refers to geographic locations, with NE for Northeast, NW for 
Northwest, SE for Southeast, and SW for Southwest.

Fig. E.3. Distribution of Medical Costs (Charges). 
Notes: The left plot shows the histogram of the dependent variable, medical charges, which exhibits a right-skewed distribution due to a few high-cost outliers. The 
right plot depicts the histogram of the same variable after binning into four categories for analysis: Low (≤ 10,000 USD), Mid (10,001 − 20,000 USD), Upper-Mid 
(20,001 − 40,000 USD), and High (> 40,000 USD). Binning simplifies the interpretation of the dependent variable by grouping observations into discrete categories, 
which are used in subsequent modelling and analysis. These plots represent data from the U.S. health insurance dataset used in the study.

logarithmic transformations to handle skewness, can be found in the 
analysis of the French Motor Third-Party Liability Claims dataset.29

Fig. E.3 visualises the dependent variable, Charges, with two his-

tograms. The left plot shows the original distribution, which is right-

skewed due to high-cost outliers, while the right plot depicts the binned 
Charges distribution categorised into four levels. These preprocessing 
steps ensure the dataset is structured and ready for a 70% training 
and 30% testing split to evaluate the out-of-sample performance of Al-

gorithm 1 and compare it to other methods implemented in Matlab,

Python, and R.

29 Tutorials for similar preprocessing steps can be accessed at https://github.

com/actuarial-data-science/Tutorials.

E.2. Flood insurance dataset

The second FEMA NFIP Claims dataset30 includes flood insurance 
claim records from the NFIP. The data provide information on flood-

related claims across the United States, with sensitive details redacted 
to protect policyholders. We focus on claim data from 2010 to 2023 
for three states: Florida, Texas, and Louisiana. These states are partic-

ularly vulnerable to flood-related losses and were selected due to their 
prominence in flood insurance claims. The dataset captures financial, 
structural, and geographical attributes of flood claims, making it suit-

able for analysing coverage efficiency and model-based predictions.

30 “OpenFEMA” dataset is available at www.fema.gov/openfema-data-page/

fima-nfip-redacted-claims-v2.

https://github.com/actuarial-data-science/Tutorials
https://github.com/actuarial-data-science/Tutorials
http://www.fema.gov/openfema-data-page/fima-nfip-redacted-claims-v2
http://www.fema.gov/openfema-data-page/fima-nfip-redacted-claims-v2
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Table E.10

Summary of Data Preprocessing for Flood Insurance Dataset.

Variable Type Regrouped Bounded One-hot Encoded Resulting Columns 

ratioCoverage Numeric No Yes No N/A 
amountPaidOnBuildingClaim Numeric No Yes No N/A 
totalBuildingInsuranceCoverage Integer No Yes No N/A 
buildingPropertyValue Numeric No Yes No N/A 
buildingDamageAmount Integer No Yes No N/A 
numberOfFloorsInTheInsuredBuilding Integer No No No N/A 
waterDepth Integer No Yes No N/A 
buildingDeductibleCode Character No Yes No N/A 
elevatedBuildingIndicator Integer No No Yes 2 
postFIRMConstructionIndicator Character No No Yes 2 
ratedFloodZone Character Yes No Yes 2 
buildingDescriptionCode Integer Yes No Yes 2 
originalConstructionDate Character Yes No Yes 3 
replacementCostBasis Character Yes No Yes 2 
causeOfDamage Character Yes No Yes 2 
latitude Numeric Yes No Yes 4 
longitude Numeric Yes No Yes 4 

Notes: This table summarises the dependent variable and features used in the flood insurance dataset. The dependent 
variable, ratioCoverage, is calculated as the ratio of amountPaidOnBuildingClaim to totalBuildingInsuranceCoverage, 
representing the proportion of insurance coverage paid for building claims. To mitigate the effect of outliers, rati-

oCoverage was capped at the 0.99 quantile. Features include all variables except amountPaidOnBuildingClaim. Vari-

ables such as totalBuildingInsuranceCoverage, buildingPropertyValue, buildingDamageAmount, and buildingDeductible-

Code were bounded to be strictly greater than 0 to avoid numerical issues during logarithmic transformation and 
to ensure meaningful values. Specifically, buildingDeductibleCode was transformed from its original character repre-

sentation into numerical amounts based on descriptions provided in the FEMA NFIP Claims dataset. waterDepth was 
capped at the 0.99 quantile to handle outliers and was lower bounded by 0 (including 0). latitude and longitude were 
used together and grouped into clusters to represent the location of buildings. Binary variables, including replace-

mentCostBasis, elevatedBuildingIndicator, and postFIRMConstructionIndicator, were retained in their original format. 
Categorical variables such as ratedFloodZone, buildingDescriptionCode, and causeOfDamage were simplified into two 
groups based on the meaning being described to avoid rare categories that may not appear in all years. originalCon-

structionDate was converted to originalConstructionYears to calculate building age and grouped into three categories. 
The Resulting Columns column indicates the number of columns created after one-hot encoding or clustering. For 
numeric variables that were not transformed into additional columns, “N/A” is shown to indicate no additional 
columns were created.

The dependent variable, ratioCoverage, is defined as the ratio of 
amountPaidOnBuildingClaim to totalBuildingInsuranceCoverage. This vari-

able represents the proportion of coverage utilised in claims and is 
used to evaluate the efficiency and adequacy of flood insurance cov-

erage. To ensure meaningful values and reduce the impact of outliers, 
ratioCoverage was capped at the 0.99 quantile. In addition to this de-

pendent variable, the dataset includes 15 features: totalBuildingInsur-

anceCoverage, buildingPropertyValue, buildingDamageAmount, numberOf-

FloorsInTheInsuredBuilding, waterDepth, buildingDeductibleCode, elevated-

BuildingIndicator, postFIRMConstructionIndicator, ratedFloodZone, build-

ingDescriptionCode, originalConstructionDate, replacementCostBasis, cause-

OfDamage, latitude, and longitude. These features reflect various aspects 
of the claims, including financial details, building characteristics, and 
geographical location. Table E.10 outlines the features, their types, and 
the preprocessing steps applied, which include bounding numerical vari-

ables, simplifying categorical variables, and encoding binary variables 
as needed.

Tables E.11, E.12, and E.13 present the annual and overall sum-

mary statistics for amountPaidOnBuildingClaim, totalBuildingInsurance-

Coverage, and ratioCoverage, respectively, across Florida, Texas, and 
Louisiana. They also include the number of observations, minimum, 
maximum, median, mean, and standard deviation for each variable, 
which helps to understand variability and trends over time. For exam-

ple, amountPaidOnBuildingClaim (Table E.11) underscores variations in 
flood-related claims between states and across years, while totalBuildin-

gInsuranceCoverage (Table E.12) shows differences in insured amounts. 
ratioCoverage (Table E.13) summarises the proportion of claims relative 
to coverage, illustrating patterns in insurance utilisation.

Figs. E.4, E.5, and E.6 provide visualisations of the data for Florida, 
Texas, and Louisiana, respectively. These include histograms of amount-

PaidOnBuildingClaim, totalBuildingInsuranceCoverage, and ratioCoverage. 
Logarithmic transformations of financial variables are included to ad-

dress skewness and enhance interpretability. The ratioCoverage his-

tograms are also overlaid with a Gamma distribution fit, illustrating its 
suitability for modelling purposes.

These preprocessing steps ensure that the extracted data from 2010 
to 2023 are ready for an out-of-sample testing approach to evaluate the 
forecasting performance of different methods. Specifically, each year’s 
dataset is used as a test set, and the data from the previous year is used as 
a training set. This approach exploits temporal patterns while avoiding 
data leakage. The main goal of the analysis is to compare the perfor-

mance of Algorithm 1 with alternative methods implemented in Matlab,

Python, and R, focusing on the ability to predict ratioCoverage using the 
selected features.
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Table E.11

Summary Statistics for Flood Insurance Dataset (Building Claim).

Year Obs. Min Max Median Mean Std.Dev. 

Florida (FL) 

2010 241 265.50 151,336.40 6,275.89 14,310.32 20,469.76 
2011 1,027 19.13 483,061.70 8,099.52 17,327.53 31,953.73 
2012 2,741 0.20 494,292.70 8,836.92 19,712.75 34,265.14 
2013 1,101 31.58 1,070,279.00 13,373.94 22,732.65 43,857.98 
2014 2,352 10.65 1,649,712.00 24,377.75 36,088.53 54,672.15 
2015 1,080 45.04 433,906.00 10,214.19 20,090.91 30,566.75 
2016 5,044 44.64 1,011,369.00 26,107.08 39,331.90 47,977.24 
2017 16,216 3.88 2,395,029.00 20,934.88 42,705.43 67,122.00 
2018 2,864 46.06 4,504,105.00 27,212.72 52,764.74 120,814.80 
2019 492 41.66 868,788.00 17,669.28 40,740.05 73,328.56 
2020 6,322 24.13 908,923.50 21,511.22 39,308.67 52,624.37 
2021 384 386.67 248,750.00 18,294.27 34,779.68 41,193.29 
2022 31,061 2.68 9,899,055.00 69,509.74 105,434.20 219,265.70 
2023 7,754 34.25 1,084,439.00 61,062.64 69,173.08 66,755.06 
All Years 78,679 0.20 9,899,055.00 35,001.34 67,897.07 150,038.60

Texas (TX) 

2010 1,642 8.60 357,937.80 13,903.04 28,785.46 37,879.04 
2011 82 11.53 131,565.20 6,346.45 15,411.13 24,837.49 
2012 1,336 25.81 244,527.90 10,579.21 19,815.68 24,443.59 
2013 1,241 23.68 230,043.00 24,929.10 35,464.10 37,020.18 
2014 654 102.38 287,634.50 9,395.23 16,695.70 22,481.69 
2015 8,972 12.69 2,250,779.00 25,606.37 43,018.55 58,203.41 
2016 10,509 26.62 480,806.20 35,234.87 47,613.32 48,642.23 
2017 61,229 5.68 3,718,845.00 66,255.77 78,802.76 68,702.77 
2018 2,091 4.00 490,812.20 25,102.79 39,657.50 44,727.73 
2019 8,998 18.70 515,975.00 48,697.10 56,777.53 48,429.79 
2020 1,191 9.34 361,616.30 15,578.69 26,336.46 31,344.37 
2021 1,237 153.67 428,758.30 17,248.87 29,623.56 38,413.29 
2022 346 78.30 259,506.50 21,284.90 36,452.89 42,293.05 
2023 285 200.29 339,217.60 22,280.11 37,757.51 47,990.23 
All Years 99,813 4.00 3,718,845.00 51,192.40 65,386.98 64,221.07

Louisiana (LA) 

2010 177 269.71 186,889.00 6,663.98 12,771.22 18,402.82 
2011 1,789 6.21 225,524.70 10,635.26 18,323.00 24,697.03 
2012 9,195 4.80 454,036.50 23,601.94 34,873.10 38,161.29 
2013 702 45.16 166,523.50 10,805.19 20,788.63 23,292.28 
2014 486 194.17 209,857.40 18,746.75 27,304.86 27,819.45 
2015 488 80.82 213,694.10 10,720.24 20,341.93 27,430.32 
2016 26,704 9.54 692,480.00 66,080.45 71,927.44 52,991.48 
2017 1,741 21.75 361,308.00 20,654.59 30,409.53 34,754.57 
2018 346 89.23 215,838.50 18,381.26 26,296.47 28,477.97 
2019 2,031 133.29 433,805.00 24,241.07 35,923.32 41,337.63 
2020 2,737 8.03 434,323.20 27,130.69 39,524.83 42,882.96 
2021 11,615 14.68 499,648.60 51,518.71 58,998.37 52,799.65 
2022 123 804.05 156,646.90 13,893.35 25,412.10 31,172.44 
2023 109 681.94 476,322.80 19,225.69 35,527.84 61,953.50 
All Years 58,243 4.80 692,480.00 47,332.86 55,795.29 51,312.22 

Notes: This table summarises the annual statistics for the feature amountPaidOnBuildingClaim across three 
states (Florida, Texas, and Louisiana). The statistics are calculated for each year and state (Florida, Texas, 
and Louisiana) and include the number of observations, minimum, maximum, median, mean, and standard 
deviation. The “All Years” row aggregates the data across all years (2010-2023) to provide overall summary 
statistics for each state. The data provides insights into the variability and distribution of building claim 
payments over time and across states.
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Table E.12

Summary Statistics for Flood Insurance Dataset (Building Coverage).

Year Obs. Min Max Median Mean Std.Dev. 

Florida (FL) 

2010 241 18,400.00 90,967,200.00 200,000.00 1,092,283.00 7,211,990.00 
2011 1,027 15,000.00 116,000,000.00 250,000.00 747,523.50 5,625,071.00 
2012 2,741 4,900.00 93,250,000.00 198,400.00 419,302.80 3,164,952.00 
2013 1,101 12,000.00 244,000,000.00 227,900.00 2,293,090.00 12,477,770.00 
2014 2,352 5,500.00 142,000,000.00 240,000.00 633,667.90 4,383,651.00 
2015 1,080 8,700.00 244,000,000.00 204,700.00 923,395.40 9,691,769.00 
2016 5,044 5,000.00 61,000,000.00 250,000.00 370,075.90 1,967,997.00 
2017 16,216 2,700.00 123,000,000.00 250,000.00 552,023.80 3,636,400.00 
2018 2,864 10,000.00 64,000,000.00 250,000.00 307,067.80 1,583,612.00 
2019 492 17,700.00 244,000,000.00 250,000.00 4,288,565.00 19,228,059.00 
2020 6,322 5,500.00 58,250,000.00 250,000.00 369,857.60 1,723,522.00 
2021 384 17,700.00 114,000,000.00 240,000.00 801,724.20 6,515,546.00 
2022 31,061 3,600.00 63,750,000.00 250,000.00 493,944.60 1,844,845.00 
2023 7,754 4,000.00 244,000,000.00 250,000.00 346,802.90 3,204,194.00 
All Years 78,679 2,700.00 244,000,000.00 250,000.00 529,721.10 3,643,900.00

Texas (TX) 

2010 1,642 7,400.00 6,442,000.00 150,000.00 172,664.50 244,207.70 
2011 82 20,000.00 500,000.00 164,800.00 179,298.80 98,285.68 
2012 1,336 10,000.00 7,247,400.00 177,900.00 185,815.90 249,984.40 
2013 1,241 16,500.00 20,500,000.00 150,000.00 208,194.20 835,324.90 
2014 654 12,100.00 32,524,800.00 150,000.00 261,836.70 1,532,190.00 
2015 8,972 2,800.00 29,250,000.00 191,900.00 205,652.40 654,214.20 
2016 10,509 3,500.00 26,000,000.00 193,600.00 192,483.20 336,868.60 
2017 61,229 2,300.00 99,809,800.00 227,600.00 216,316.20 584,933.90 
2018 2,091 5,500.00 6,797,800.00 200,000.00 199,071.40 279,317.40 
2019 8,998 6,000.00 7,477,600.00 200,000.00 187,718.70 127,481.70 
2020 1,191 5,100.00 9,949,300.00 150,000.00 194,172.20 451,069.50 
2021 1,237 4,500.00 4,126,100.00 200,000.00 200,803.20 200,332.00 
2022 346 19,000.00 1,750,000.00 196,500.00 195,624.60 133,564.20 
2023 285 12,000.00 500,000.00 250,000.00 211,410.50 82,326.96 
All Years 99,813 2,300.00 99,809,800.00 200,000.00 208,407.40 540,750.00

Louisiana (LA) 

2010 177 6,500.00 500,000.00 118,100.00 144,411.90 104,203.10 
2011 1,789 5,500.00 21,072,500.00 118,600.00 143,834.30 503,543.70 
2012 9,195 2,000.00 13,310,000.00 175,000.00 185,403.80 273,969.90 
2013 702 1,000.00 500,000.00 125,000.00 129,675.50 79,398.39 
2014 486 10,000.00 500,000.00 150,000.00 163,741.60 81,913.65 
2015 488 6,500.00 500,000.00 125,000.00 148,917.00 98,669.01 
2016 26,704 1,000.00 4,341,700.00 170,000.00 176,025.70 85,021.68 
2017 1,741 6,500.00 1,625,000.00 153,100.00 178,626.40 115,088.40 
2018 346 8,800.00 500,000.00 143,000.00 159,257.20 108,916.30 
2019 2,031 2,900.00 21,072,500.00 200,000.00 230,164.90 668,780.60 
2020 2,737 1,800.00 3,250,000.00 170,000.00 179,188.80 119,142.70 
2021 11,615 2,200.00 3,250,000.00 203,500.00 203,445.70 98,007.40 
2022 123 20,400.00 500,000.00 200,000.00 191,066.70 84,045.23 
2023 109 33,000.00 500,000.00 250,000.00 227,714.70 108,870.80 
All Years 58,243 1,000.00 21,072,500.00 177,100.00 183,144.40 205,325.90 

Notes: This table summarises the annual statistics for the feature totalBuildingInsuranceCoverage across three 
states (Florida, Texas, and Louisiana). The statistics are calculated for each year and state (Florida, Texas, 
and Louisiana) and include the number of observations, minimum, maximum, median, mean, and standard 
deviation. The “All Years” row aggregates the data across all years (2010-2023) to provide overall sum-

mary statistics for each state. These values reflect the distribution and variation in total insurance coverage 
amounts for building over time and across states.
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Table E.13

Summary Statistics for Flood Insurance Dataset (Building Coverage Ratio).

Year Obs. Min Max Median Mean Std.Dev. 

Florida (FL) 

2010 241 0.0005 0.9267 0.0327 0.0795 0.1195 
2011 1,027 0.0000 0.9661 0.0393 0.0828 0.1051 
2012 2,741 0.0000 0.9963 0.0509 0.1193 0.1599 
2013 1,101 0.0001 0.9696 0.0654 0.1079 0.1304 
2014 2,352 0.0001 0.9951 0.1284 0.1853 0.1890 
2015 1,080 0.0000 0.8852 0.0616 0.1125 0.1386 
2016 5,044 0.0002 0.9929 0.1485 0.2007 0.1895 
2017 16,216 0.0000 0.9990 0.1075 0.1909 0.2088 
2018 2,864 0.0001 0.9991 0.1397 0.2345 0.2457 
2019 492 0.0001 0.9831 0.0686 0.1317 0.1622 
2020 6,322 0.0001 0.9986 0.0959 0.1733 0.1868 
2021 384 0.0000 0.9950 0.1060 0.2217 0.2668 
2022 31,061 0.0000 1.0000 0.2990 0.3272 0.2654 
2023 7,754 0.0001 0.9998 0.2890 0.2975 0.2068 
All Years 78,679 0.0000 1.0000 0.1748 0.2491 0.2392

Texas (TX) 

Year Observations Min Max Median Mean Std_Dev 
2010 1,642 0.0000 0.9900 0.1100 0.1900 0.2100 
2011 82 0.0000 0.5300 0.0400 0.1000 0.1300 
2012 1,336 0.0000 1.0000 0.0700 0.1300 0.1600 
2013 1,241 0.0000 1.0000 0.1700 0.2500 0.2300 
2014 654 0.0000 0.9700 0.0600 0.1300 0.1600 
2015 8,972 0.0000 1.0000 0.1800 0.2400 0.2200 
2016 10,509 0.0000 1.0000 0.2400 0.2700 0.2200 
2017 61,229 0.0000 1.0000 0.3900 0.4000 0.2600 
2018 2,091 0.0000 1.0000 0.1700 0.2600 0.2500 
2019 8,998 0.0000 1.0000 0.3000 0.3200 0.2300 
2020 1,191 0.0000 0.9900 0.1100 0.1900 0.2100 
2021 1,237 0.0000 0.9700 0.1000 0.1700 0.1800 
2022 346 0.0000 0.9600 0.1300 0.2200 0.2200 
2023 285 0.0000 0.8900 0.1200 0.1900 0.2100 
All Years 99,813 0.0000 1.0000 0.3200 0.3400 0.2600

Louisiana (LA) 

2010 177 0.0025 0.9125 0.0634 0.1153 0.1444 
2011 1,789 0.0000 0.9982 0.1023 0.1971 0.2248 
2012 9,195 0.0000 0.9984 0.1778 0.2195 0.2088 
2013 702 0.0002 0.9934 0.1285 0.2132 0.2217 
2014 486 0.0009 0.9543 0.1306 0.1990 0.1960 
2015 488 0.0003 0.9467 0.0977 0.1830 0.2047 
2016 26,704 0.0001 1.0000 0.4226 0.4247 0.2450 
2017 1,741 0.0002 0.9939 0.1395 0.2134 0.2167 
2018 346 0.0006 0.9952 0.1447 0.2312 0.2460 
2019 2,031 0.0009 0.9961 0.1448 0.2045 0.1955 
2020 2,737 0.0000 0.9996 0.1917 0.2482 0.2261 
2021 11,615 0.0001 0.9999 0.2943 0.3077 0.2388 
2022 123 0.0049 0.6765 0.0802 0.1506 0.1676 
2023 109 0.0061 0.9761 0.0862 0.1514 0.1696 
All Years 58,243 0.0000 1.0000 0.3123 0.3301 0.2510 

Notes: This table provides annual summary statistics for the dependent variable ratioCoverage, which repre-

sents the ratio of the amount paid on building claims to the total building insurance coverage. The statistics 
are calculated for each year and state (Florida, Texas, and Louisiana) and include the number of observa-

tions, minimum, maximum, median, mean, and standard deviation. The “All Years” row aggregates the data 
across all years (2010-2023) to provide overall summary statistics for each state. These ratios reflect the 
proportion of insurance coverage utilised in claims, helping to evaluate the efficiency and adequacy of flood 
insurance coverage over time.
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Fig. E.4. Distribution of Building Claim Data for Florida (FL). 
Notes: The first row shows the histogram of the amount paid on building claims (left) and its logarithmic transformation (right). The second row depicts the histogram 
of the total building insurance coverage (left) and its logarithmic transformation (right). The third row illustrates the histogram of the ratio of the amount paid on 
building claims to the total building insurance coverage (left) and the histogram of the same ratio with an overlaid Gamma distribution fit (right). These plots represent 
all data aggregated across years (2010-2023) for Florida. Logarithmic transformations are applied to reduce skewness and provide better visual interpretation for 
highly dispersed data. The Gamma fit in the last plot highlights the suitability of a Gamma distribution for modelling the ratio of payments to coverage.
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Fig. E.5. Distribution of Building Claim Data for Texas (TX). 
Notes: The first row shows the histogram of the amount paid on building claims (left) and its logarithmic transformation (right). The second row depicts the histogram 
of the total building insurance coverage (left) and its logarithmic transformation (right). The third row illustrates the histogram of the ratio of the amount paid on 
building claims to the total building insurance coverage (left) and the histogram of the same ratio with an overlaid Gamma distribution fit (right). These plots represent 
all data aggregated across years (2010-2023) for Texas. Logarithmic transformations are applied to reduce skewness and provide better visual interpretation for highly 
dispersed data. The Gamma fit in the last plot highlights the suitability of a Gamma distribution for modelling the ratio of payments to coverage.
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Fig. E.6. Distribution of Building Claim Data for Louisiana (LA). 
Notes: The first row shows the histogram of the amount paid on building claims (left) and its logarithmic transformation (right). The second row depicts the histogram 
of the total building insurance coverage (left) and its logarithmic transformation (right). The third row illustrates the histogram of the ratio of the amount paid on 
building claims to the total building insurance coverage (left) and the histogram of the same ratio with an overlaid Gamma distribution fit (right). These plots represent 
all data aggregated across years (2010-2023) for Louisiana. Logarithmic transformations are applied to reduce skewness and provide better visual interpretation for 
highly dispersed data. The Gamma fit in the last plot highlights the suitability of a Gamma distribution for modelling the ratio of payments to coverage.
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Data availability

Data will be made available on request.
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