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Abstract—Monkeypox, a novel zoonotic disease akin to small-
pox, necessitates prompt and accurate diagnosis for effective
treatment. Conventional diagnostic techniques, such as Poly-
merase Chain Reaction (PCR), offer high precision but require
specialized equipment and trained personnel, rendering them
impractical in resource-limited settings. Existing deep learning
approaches for monkeypox diagnosis have predominantly relied
on single, resource-intensive models, prioritizing accuracy over
deployment feasibility across diverse computing platforms. In
this study, we present a resource-conscious model deployment
strategy that balances diagnostic accuracy with computational
efficiency, enabling precise diagnosis in both resource-rich envi-
ronments, such as hospitals, and resource-constrained contexts.
We utilize a pretrained ConvNeXt-B model, trained on the exten-
sive ImageNet-22K dataset, for deployment in resource-abundant
scenarios, and a SqueezeNet model, optimized for resource-
limited devices using the ImageNet-1K dataset. To enhance
the performance of the lightweight SqueezeNet model without
increasing computational complexity, we apply Knowledge Dis-
tillation. Experimental results demonstrate that the ConvNeXt-B
model achieves an accuracy of 95.75%, which is 3.47% higher
than the previous studies. Similarly, the Knowledge Distillation-
enhanced SqueezeNet model attains an accuracy of 91.89%,
representing a 2.32% improvement over the baseline. This dual-
model approach ensures that accurate monkeypox diagnostics are
accessible across a wide range of computational environments,
thereby supporting more effective outbreak management and
contributing to improved public health outcomes.

Index Terms—Monkeypox detection, Knowledge Distillation,
ConvNext-B, Lightweight Model

I. INTRODUCTION

Monkeypox is an emerging zoonotic viral disease caused by
the Monkeypox virus, a member of the Orthopoxvirus genus
[1]. The disease presents symptoms similar to smallpox—such
as fever, rash, and swollen lymph nodes—but is generally
less severe. Recent outbreaks have highlighted its potential
for widespread transmission, posing significant public health
challenges [2]. Accurate and timely diagnosis of Monkeypox
is crucial for effective disease management and containment.

* Corresponding Author: anupam@cseku.ac.bd, Sujit.biswas@city.ac.uk

The current gold standard for diagnosis is the Polymerase
Chain Reaction (PCR) test, which detects viral DNA with
high specificity and sensitivity [3]. However, PCR testing
faces several limitations, particularly in resource-constrained
settings. The requirement for specialized laboratory equipment
and trained personnel—often unavailable in remote or under-
resourced areas—leads to delays as samples must be trans-
ported to centralized laboratories [3]. Additionally, the high
cost and infrastructural demands limit the accessibility and
scalability of PCR testing during large-scale outbreaks [4].

In light of these challenges, there is a pressing need for alter-
native diagnostic approaches that are both rapid and accessible
[2]. Deep learning, a subset of artificial intelligence, has shown
remarkable promise in medical image analysis, particularly in
the classification and detection of skin lesions [5]. Convolu-
tional Neural Networks (CNNs) are adept at learning complex
patterns and features from large datasets [6], enabling them to
distinguish between different dermatological conditions with
high accuracy [7]. Leveraging deep learning for Monkeypox
classification could facilitate the development of automated
diagnostic tools that operate quickly and efficiently, reducing
reliance on laboratory-based PCR tests.

Several recent studies have explored the use of deep learning
architectures for the detection of Monkeypox [2], [3], [8], [9].
These works have demonstrated the feasibility of employing
CNNs for automatic Monkeypox diagnosis. However, most of
these studies utilize a single architecture, often pretrained on
ImageNet-1K, which may not fully capture the complexity
of the task or accommodate varying computational resources.
In real-world scenarios, computational resources vary sig-
nificantly—from high-performance servers in hospitals and
cloud infrastructures to resource-constrained mobile devices
like smartphones. Therefore, there is a need for multiple
architectures tailored to different deployment environments to
ensure broad accessibility and effectiveness.

To address this gap, we propose a resource-aware deploy-
ment strategy employing two distinct architectures: a high-



Fig. 1: System Model for Resource-Aware Approach with Knowledge Distillation for Monkeypox Diagnosis.

capacity ConvNeXt-B model pretrained on ImageNet-22K
for resource-rich settings like hospitals, and a lightweight
SqueezeNet model optimized for mobile devices. The
ConvNeXt-B model leverages hospital computational re-
sources to deliver reliable diagnostics, while the SqueezeNet
model ensures efficient performance on devices with limited
processing power, such as smartphones. This approach enables
accurate diagnostics in both centralized healthcare facilities
and at the point of care. To enhance the SqueezeNet model’s
performance without increasing computational complexity, we
apply Knowledge Distillation (KD). In our framework, the
ConvNeXt-B model serves as the teacher, providing informa-
tive outputs that the SqueezeNet student model leverages to
improve classification performance efficiently.

This strategy is pivotal in ensuring that accurate diagnostics
are accessible across diverse deployment environments. The
ConvNeXt-B model delivers reliable and precise results in
high-resource settings such as hospitals, where computational
power is abundant. Conversely, the optimized SqueezeNet
model offers swift and dependable performance on resource-
constrained mobile devices like smartphones. This flexibility
is especially critical during outbreaks, as it facilitates rapid
and widespread deployment of diagnostic tools. By catering
to both centralized and field-based settings, our approach
can enhances disease control and prevention efforts, ensuring
timely and effective responses to public health challenges. The
main contributions of this paper are as follows:

1) Resource Aware Deployment Strategy for Diverse
Computational Environments: We employ a resource-
aware deployment strategy by leveraging two dis-
tinct deep learning architectures: the high-capacity
ConvNeXt-B model, pretrained on ImageNet-22K, tai-
lored for resource-rich environments such as hospitals,
and the lightweight SqueezeNet model, optimized for
edge devices like mobile phones through Knowledge
Distillation. This approach ensures that accurate Mon-
keypox diagnostics are accessible across centralized
healthcare facilities and remote, field-based settings,

thereby enhancing diagnostic reach and adaptability.
2) Performance Enhancement of Lightweight Model via

Knowledge Distillation: We apply Knowledge Distilla-
tion (KD) to distill the knowledge from the ConvNeXt-B
model to the SqueezeNet model, significantly improving
the SqueezeNet’s classification accuracy from 89.57% to
91.89% without increasing its computational complexity.

3) Model Interpretability with Grad-CAM Visualiza-
tions: We incorporate Grad-CAM to provide visual
explanations of the models’ predictions. This enhances
the interpretability and trustworthiness of the diagnostic
decisions made by both the ConvNeXt-B and the en-
hanced SqueezeNet models.

4) Comprehensive Evaluation on EMSID Dataset: We
conduct extensive evaluations of both models on the
Extended Monkeypox Skin Images Dataset (EMSID),
demonstrating their efficacy in real-world diagnostic
scenarios. The ConvNeXt-B model achieves an accuracy
of 95.75%, while the fine-tuned and distilled SqueezeNet
model attains a competitive accuracy of 91.89%, sur-
passing the baseline SqueezeNet variant.

II. RELATED WORK

The application of deep learning techniques for the detection
and classification of monkeypox using skin lesion images has
gained significant attention in recent years. Various convolu-
tional neural network (CNN) architectures have been explored
to address this challenge, including ResNet-50, VGG-19, In-
ceptionV3, and MobileNetV2 [10]. These models have been
employed to analyze image data with the aim of providing
rapid and accurate diagnostics. Ali et al. [3] adapted and
trained three CNN models including VGG-16, ResNet-50,
and InceptionV3 using the Monkeypox Skin Lesion Database
(MSLD). Due to the limited availability of data, they applied
data augmentation techniques to expand the training set. Their
results indicated that ResNet-50 achieved the highest accuracy.

Bala et al. [8] addressed the data scarcity issue by develop-
ing the Monkeypox Skin Images Dataset (MSID), segmented



into four classes: ”Monkeypox,” ”Chickenpox,” ”Measles,”
and ”Normal.” They introduced ’MonkeyNet,’ a customized
DenseNet-201 CNN architecture. The model was rigorously
tested on both the original and augmented versions of the
MSID, achieving a diagnostic accuracy of 93.19% on the
original dataset and 98.91% on the augmented dataset.

To enhance classification performance further, Ahsan et
al. [11] proposed a Generalization and Regularization-based
Transfer Learning Approach (GRA-TLA) designed for both
binary and multi-class classification of monkeypox. For multi-
class classification, the ResNet-101 model achieved impres-
sive accuracy ranges from 84% to 99%. Kundu et al. [12]
conducted a comparative analysis between classical machine
learning models (K-NN and SVM) and deep learning models
(ViT and ResNet-50) on a dataset comprising 1,300 images.
The K-NN model achieved an accuracy of 84%, while the ViT
outperformed the others with an accuracy of 93%.

Attention mechanisms have also been applied to enhance
model performance in monkeypox detection. Raha et al. [2]
aimed to develop a more generalized model suitable for
edge deployment by utilizing an extended version of the
MSID dataset (EMSID). They employed a lightweight deep
learning architecture based on MobileNetV2, enhanced with
both spatial and channel attention mechanisms. This approach
aimed to balance resource efficiency with high diagnostic ac-
curacy. The attention-based MobileNetV2 model demonstrated
impressive results, achieving 92.28% accuracy on the EMSID
dataset, 98.19% on the original MSID dataset, and 93.33% on
the MSLD dataset. However, despite its lightweight design,
MobileNetV2 still comprises approximately 3.2 million pa-
rameters, which can be burdensome for deployment on devices
with very limited computational capabilities. Most of the pre-
vious studies have concentrated on single-model approaches,
optimizing either for high accuracy or computational efficiency
but not both. Additionally, many models rely on pretraining
with the ImageNet-1K dataset, which may not fully capture
the complexity of Monkeypox detection tasks. The variabil-
ity in computational resources across different deployment
environments—from high-performance servers in hospitals to
resource-constrained mobile devices—further necessitates the
development of multiple architectures tailored to these diverse
settings.

III. METHODOLOGY

In this section, we describe the architecture of our proposed
system, including the models used, the dataset, and the training
procedures. Fig. 1 shows the overall mechanism of this study.

A. Dataset
We utilized the Extended Monkeypox Skin Images Dataset

(EMSID) [2], which combines the original Monkeypox Skin
Images Dataset (MSID) [8] with images of similar skin condi-
tions from DermNet. EMSID includes eight classes: Monkey-
pox, Chickenpox, Measles, Eczema, Lupus, Molluscum conta-
giosum, Scabies, and Normal. Each condition presents distinct
skin features—such as Monkeypox’s pustular rash, Chicken-
pox’s itchy blisters, and Lupus’s butterfly-shaped rash—that

Fig. 2: EMSID Dataset visualization. (a) Instances of EMSID
(b) t-SNE visualization of feature embeddings (c) Data Dis-
tribution in the EMSID.

can easily be confused by the untrained eye, increasing the
risk of misdiagnosis. The dataset comprises 1,285 images, with
Monkeypox and Normal classes representing approximately
21.7% and 22.8% of the instances, respectively. Lupus and
Chickenpox each account for around 12%, while Eczema,
Scabies, Measles, and Molluscum contagiosum range between
8% and 12%. Fig. 2 illustrates the dataset, where Fig. 2 (a)
shows sample images from EMSID, Fig. 2(b) presents a t-
SNE visualization of feature embeddings extracted from the
images, and Fig. 2 (c) provides a visual summary of the class
distribution.

B. Data Preprocessing
For data preprocessing, we first divided the EMSID dataset

into training and testing sets using the hold-out method with
an 80:20 ratio. To enhance the diversity of the training data
and improve model robustness, we applied data augmentation
techniques, including random resized cropping, horizontal flip-
ping, rotation, and color jittering. The augmentation process
generated six additional versions for each original image,
effectively increasing the dataset size. After augmentation,
each class comprised the following number of instances:
Chickenpox (889), Eczema (1,205), Lupus (1,798), Measles
(511), Molluscum contagiosum (1,134), Monkeypox (1,561),
Normal (1,638), and Scabies (1,218).

C. Model Architectures
1) High-Performance Deployment: To achieve superior

performance, we explored the ConvNeXt-B and Swin-B mod-
els [13]. ConvNeXt-B, in particular, has demonstrated excep-
tional capability in handling complex datasets across various
scenarios [14]. Pre-trained on the extensive ImageNet-22K
dataset, ConvNeXt-B’s deep architecture and substantial ca-
pacity have proven highly effective for processing complex,
high-resolution images. In our specific settings, ConvNeXt-
B also outperformed other models, solidifying its suitability
for our task. The architecture of a ConvNeXt-B block is
represented as follows:

Y = X+ F(X) (1)

F(X) = Cv1×1 (GELU (Cv1×1 (LN (DC7×7(X))))) (2)



Fig. 3: Knowledge Distillation Framework: Distilling Knowledge from ConvNeXt-B to SqueezeNet.
Here, DC7×7 denotes a depthwise convolution layer utilizing a
7× 7 kernel, which captures spatial dependencies in the input
feature map. LN refers to layer normalization, a technique that
stabilizes and accelerates the training process by normalizing
the inputs across the features. Cv1×1 signifies a pointwise
convolution, which adjusts the number of feature channels
without altering the spatial dimensions and GELU stands
for Gaussian Error Linear Unit, an activation function that
introduces non-linearity into the model. The output feature
map Y incorporates a residual connection from the input
X, facilitating the flow of information and mitigating issues
related to vanishing gradients during training.

2) Resource Efficient Deployment: To address deployment
in environments with limited computational resources, we
incorporate the SqueezeNet architecture [15] into our frame-
work. SqueezeNet is a lightweight convolutional neural net-
work designed to achieve high accuracy with significantly
fewer parameters compared to traditional models, making
it ideal for deployment on mobile and edge devices. The
fundamental building block of SqueezeNet, known as the Fire
module, operates based on the following formulation:

Y = X+ F(X) (3)
F(X) = Expand (Squeeze(X)) . (4)

In these equations. Squeeze(X) represents a convolutional
layer with 1 × 1 kernels that reduces the number of input
channels, effectively compressing the feature maps. Expand(·)
consists of two parallel convolutional layers with 1 × 1 and
3× 3 kernels, respectively. These layers increase the number
of channels to capture a diverse set of features.

The output feature map Y is obtained by adding the input X
to the processed output from the Fire module F(X), thereby
incorporating a residual connection. This residual connection
facilitates better gradient flow during training and enhances the
network’s ability to learn complex representations without a
substantial increase in computational overhead. To further en-
hance the performance of the lightweight SqueezeNet model,
we employ Knowledge Distillation (KD).

LKD(S(x),T(x)) = KL
(
σ

(
T(x)

T

)∥∥∥∥σ(
S(x)

T

))
× T 2 (5)

D. Knowledge Distillation

KD is a model compression technique introduced by Hinton
et al. [16], which enables a smaller student model to learn
from a larger, well-trained teacher model. In our framework,
we leverage KD to enhance the performance of the lightweight
SqueezeNet model, denoted as S, by transferring knowledge
from the high-capacity ConvNeXt-B model, denoted as T.
The core idea of KD is to train the student model using a
combination of the ground truth labels and the soft target
distributions produced by the teacher model. This allows the
student model to capture nuanced information learned by the
teacher, including inter-class similarities that are not evident
from the hard labels alone. The training objective for the
student model involves minimizing a total loss function Ltotal,
which is a weighted sum of the standard cross-entropy loss
LCE and the distillation loss LKD:

Ltotal = αLCE(S(x),y) + (1− α)LKD(S(x),T(x)) (6)

In this equation, x represents the input data, and y denotes
the true labels corresponding to x. The parameter α ∈ [0, 1]
is a weighting factor that balances the importance of the
two loss terms. The functions S(x) and T(x) denote the
logits (pre-softmax outputs) of the student and teacher models,
respectively. The cross-entropy loss LCE is defined as:

LCE(S(x),y) = −
∑
i

yi log σi(S(x)) (7)

Here, yi is the ground truth label for class i, and σi(S(x))
is the softmax probability of class i produced by the student
model, computed as:

σi(S(x)) =
exp(Si(x))∑
j exp(Sj(x))

(8)

In this expression, Si(x) is the logit output of the student
model for class i, and the denominator sums over all classes j
to normalize the probabilities. The distillation loss LKD mea-
sures the divergence between the softened output distributions



Fig. 4: Performance curves for training and testing across multiple models.

Fig. 5: Confusion matrix for different models.

of the teacher and student models, using the Kullback-Leibler
(KL) divergence:

In this context, T is the temperature parameter that controls
the softness of the probability distributions. Higher values of
T produce softer probabilities, allowing the student model
to learn from the relative probabilities assigned to incorrect
classes. The softened softmax function σ

(
z
T

)
is computed as:

σi

( z

T

)
=

exp
(
zi
T

)∑
j exp

( zj
T

) (9)

where z represents the logits vector (either T(x) for the
teacher or S(x) for the student), and zi is the logit for class
i.

The KL divergence KL(P∥Q) between two probability
distributions P and Q is defined as:

KL(P∥Q) =
∑
i

Pi log

(
Pi

Qi

)
(10)

This divergence quantifies how one probability distribution
Q diverges from a reference distribution P . The temperature
scaling factor T 2 in the distillation loss accounts for the
gradients’ magnitude during backpropagation, ensuring that
the contribution of LKD remains appropriately scaled relative
to LCE [16]. By minimizing the total loss Ltotal, the student
model learns to mimic the teacher’s output distribution while
also fitting the true labels. This dual training objective enables
the student model to generalize better and achieve higher
accuracy without increasing its complexity. In our implemen-
tation, we set the temperature T = 5 and the weighting factor
α = 0.3 based on empirical studies and task-specific tuning.
Fig. 3 shows the distillation procedure from ConvNext-B to
SqueezeNet model.

IV. EXPERIMENTAL SETUP AND RESULT ANALYSIS

A. Experimental Setup

In our experimental setup, we utilized the PyTorch frame-
work (version 2.0.1) for model implementation and training,
running on an NVIDIA RTX 3080 Ti GPU with 12 GB of
memory and an Intel Core i9 processor. The Adam optimizer
was employed with a learning rate of 0.0001 and a batch
size of 32 to ensure efficient memory utilization and optimal

convergence speed. All input images were resized to 224×224
pixels to match the dimensions required for models pretrained
on the ImageNet dataset. For training protocols, larger models
were trained for 30 epochs, whereas distillation experiments
were extended to 100 epochs to ensure adequate learning.
Specifically, for the SqueezeNet variants in this study, the
standard SqueezeNet and SqueezeNet-Distillation were each
trained for 100 epochs, while the SqueezeNet-Distillation-
Finetuning variant underwent an initial 30 epochs of fine-
tuning followed by 100 epochs of distillation.

B. Numerical Results

Fig. 4 shows the training and testing loss and accuracy for
six different models. In Fig. 4 (c), SqueezeNet demonstrates
notable fluctuations in the test loss, suggesting instability in
generalization during training. However, with the introduction
of KD, the training and testing curves become more stable,
particularly for the distilled versions of SqueezeNet(Fig. 4 (d),
Fig. 4 (e)). This stability can be attributed to the distillation
process, where the student model (SqueezeNet) learns from
the softer, more informative predictions of the teacher model
(ConvNeXt-B). This reduces overfitting by guiding the student
model to focus on broader patterns in the data, rather than
being overly influenced by noise in the training data. Fig. 5
highlights the confusion matrices for each model, providing
a detailed view of class-level performance. As summarized in
Table I, ConvNeXt-B, pretrained on ImageNet-22K, consis-
tently outperforms other models with an accuracy of 95.75%,
precision of 96.22%, and a specificity of 99.42%. Swin-
B performs similarly, though slightly behind ConvNeXt-B.
SqueezeNet, despite its smaller size, achieves competitive
results, especially when enhanced with distillation, reaching
an accuracy of 91.89% and a specificity of 98.82%. This
demonstrates that Knowledge Distillation effectively enhances
lightweight models like SqueezeNet, enabling them to perform
well in resource-constrained environments while maintaining
computational efficiency. Figure 6 showcases the Grad-CAM
visualizations for both the ConvNeXt-B and SqueezeNet-
Distillation-Balance models, illustrating the specific regions
of the input images that each model prioritizes during pre-



TABLE I: Performance of deep learning models on the EMSID dataset for Monkeypox detection.

Model Pretrained Dataset Parameters Accuracy Precision Recall F1 Score Specificity

ResNet-152 [2] ImageNet-1K 60.2M 0.9147 0.8959 0.9040 0.8983 0.9880
Attention-MobileNetv2 [2] ImageNet-1K 3.7M 0.9228 0.9048 0.8942 0.8984 0.9890
SqueezeNet (This Study) ImageNet-1K 0.7M 0.8957 0.8791 0.8918 0.8837 0.9852
SqueezeNet-Distillation (This Study) ImageNet-1K 0.7M 0.9034 0.9027 0.8858 0.8876 0.9859
SqueezeNet-Distillation-Balance (This Study) ImageNet-1K 0.7M 0.9189 0.9151 0.9090 0.9096 0.9882
Swin-B (This Study) ImageNet-22K 87M 0.9536 0.9521 0.9528 0.9506 0.9931
ConvNext-B (This Study) ImageNet-22K 89M 0.9575 0.9622 0.9609 0.9608 0.9942

Fig. 6: GradCam Visualization For ConvNext-B and
SqueezeNet Model.

diction. The first row displays the ConvNeXt-B model, while
the second row presents the SqueezeNet-Distillation-Balance
model. By utilizing these Grad-CAM visualizations, users can
verify whether the models are concentrating on the relevant
areas of the images, thereby ensuring the reliability of the
diagnostic results. For example, in Fig. 6(e) and (k), both
models erroneously focus on incorrect regions, leading to mis-
classifications. However, after adjusting the image angle, the
models successfully predict the correct class, demonstrating
that proper image capture techniques significantly enhance
model performance. This capability allows users to assess and
confirm that the models are making informed decisions based
on appropriate image features, thereby providing assurance of
the diagnostic accuracy in various imaging conditions.

V. CONCLUSION
This study presents a dual-model deployment strategy to

enhance Monkeypox diagnosis across diverse computational
environments. The high-capacity ConvNeXt-B model delivers
superior diagnostic accuracy in resource-rich settings, achiev-
ing 95.75% accuracy, making it suitable for hospitals and
centralized healthcare facilities. The lightweight SqueezeNet
model, optimized for mobile devices and enhanced via Knowl-
edge Distillation, attains a competitive accuracy of 91.89%,
effectively operating in resource-constrained settings. Evalua-
tions on the EMSID dataset confirm the efficacy of this ap-
proach in accurately diagnosing Monkeypox and distinguish-
ing it from similar skin conditions. By providing a flexible
and scalable diagnostic solution, this work has significant
implications for public health, enabling rapid and accurate dis-
ease detection both centrally and in the field. Future research
could explore integrating this diagnostic tool into telemedicine
platforms and applying federated learning to enhance data
privacy and security, further improving healthcare outcomes
in resource-limited settings.
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