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1 Introduction 

We are at the dawn of the fifth industrial revolution [1], where 
retail and business logic are meant to synergize with sustainability 
and inclusivity for building human-centered autonomous systems 
to relieve the human workforce from time-consuming, laborious, 
and often hazardous tasks for the social good. Examples include, 
but are not limited to: fully autonomous driving, computer-guided 
robotic surgery, mobile robots for inspections and surveillance, 
optimized power management and generation, and manufacturing 
robots. These cutting-edge innovations often require solving 
classification problems by designing and training Machine 
Learning (ML) algorithms that assign a discrete label to input data 
with little to no misclassifications. Classifiers should solve a wide 
variety of tasks processing either structured tabular data [2] or 
unstructured inputs (e.g., images) [3], [4] for binary or multi-class 
classification. Most applications deal with tabular data, 
comprising samples (rows) with the same set of features 
(columns). Tabular data is used in practical applications in many 
fields, especially when stakeholders aim at monitoring the 

behavior of ICT systems for the early detection of anomalies due 
to errors, intrusions, or upcoming failures. Monitoring activities 
generate very large amounts of (tabular) data that could be 
potentially used for classification; unfortunately, such data is often 
unlabeled. In this case, the classification process can only be 
unsupervised, leading to well-known detrimental effects on the 
overall classification performance [5], making it unfeasible apart 
from very specific “corner” cases [6], [7]. 

Regardless of the availability of labels, analyzing such a 
massive amount of tabular data is very challenging. That is why 
experts and researchers keep designing new algorithms and 
providing trained models that have the potential to outperform 
their baseline on specific scenarios, often under the assumption of 
Independent and Identically Distributed (IID) training, validation, 
and test data [8], [9]. Constraining experiments behind such 
assumptions may be acceptable and suitable for research purposes; 
however, real systems and infrastructures are prone to 
encountering unexpected operating conditions [10], [11] that 
violate the above mentioned IID assumption. Classifiers for these 
systems have to be designed and deployed for high accuracy, but 
also to be robust to unexpected inputs, and meant to operate 
reliably in the wild [8].  
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A B S T R A C T 

The astounding amount of research conducted in the last decades provided plenty of Machine Learning 
(ML) algorithms and models for solving a wide variety of tasks for tabular data. However, classifiers are 
not always fast, accurate, and robust to unknown inputs, calling for further research in the domain. This 
paper proposes two classifiers based on confidence ensembles: Confidence Bagging (ConfBag) and 
Confidence Boosting (ConfBoost). Confidence ensembles build upon a base estimator and create base 
learners relying on the concept of “confidence” in predictions. They apply to any classification problem: 
binary and multi-class, supervised or unsupervised, without requiring additional data with respect to those 
already required by the base estimator. Our experimental evaluation using a range of tabular datasets 
shows that confidence ensembles, and especially ConfBoost, i) build more accurate classifiers than base 
estimators alone, even using a limited amount of base learners, ii) are relatively easy to tune as they rely 
on a limited number of hyper-parameters, and iii) are significantly more robust when dealing with 
unknown, unexpected input data compared to other tabular data classifiers. Amongst others, confidence 
ensembles showed potential in going beyond the performance of de-facto standard classifiers for tabular 
data such as Random Forest and eXtreme Gradient Boosting. ConfBag and ConfBoost are publicly 
available as PyPI package, compliant with widely used Python frameworks such as scikit-learn and pyod, 
and require little to no tuning to be exercised on tabular datasets for classification tasks. 
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This paper proposes “Confidence ensembles”, classifiers that 
are more accurate and robust than the respective baselines, and in 
our judgment close the gap between what practical applications 
require and what the current state-of-the-art in machine learning 
offers as of today. The proposed confidence ensembles, either 
Confidence Bagging (ConfBag) or Confidence Boosting 
(ConfBoost), can use any existing classifier as a “base estimator” 
to build an ensemble meta-classifier without requiring any 
additional information compared to what the base estimator needs. 
Thus, they can be applied to any existing classification task in a 
way that is almost transparent to the user and requires minimal 
tuning. ConfBag refines the traditional bagging [12], [13], [14], by 
allowing only the most confident base learners to contribute to the 
prediction, weighting their contribution to the prediction by their 
confidence score. ConfBoost creates base learners that are more 
and more specialized in classifying train data items for which 
existing base learners cannot make a confident prediction. This is 
a radically different approach from the typical boosting strategies 
[15], [16], which always require a labeled training set as (weak) 
base learners are subsequently trained using train data that got 
misclassified by existing base learners. ConfBag and ConfBoost: 
• are compatible with any existing classifier as a base 

estimator, which is used to create base and meta learners; 
• have a generic and quite straightforward architecture that 

applies to all classification tasks and scenarios: supervised or 
unsupervised, binary or multi-class; 

• do not require additional input with respect to those already 
needed by the base estimator; 

• require little to no parameter tuning, are easy to use even by 
non-experts, and are implemented in a public Python 
framework that exposes interfaces that comply with the de-
facto standard libraries [17] such as scikit-learn (supervised 
learning) and pyod (unsupervised learning); 

• provide a significant improvement in accuracy and 
robustness of classification compared to using traditional 
classifiers, measured through an extensive experimental 
analysis on many public tabular datasets and algorithms;  

• can deal with many data types. This paper focuses on tabular 
data only, but the approach is general and can be used to 
instantiate classifiers of unstructured data, e.g. images [18].  

The paper is organized as follows. Section 2 provides the 
background and summarizes the works related to classification and 
robustness to unknown input data or operating conditions. Section 
3 describes the design of ConfBag and ConfBoost, their key 
features, and their differences against traditional bagging and 
boosting ensembles. Section 4 describes the experimental 
methodology to evaluate the performance of confidence 
ensembles against baselines, including standard bagging and 
boosting. Section 5 presents the results from the experimental 
campaigns, quantifying how confidence ensembles, and especially 
ConfBoost, are more accurate and far more robust to unexpected 
inputs than the base estimators. Section 6 conducts a statistical 
validation to strengthen experimental findings and provide 
statistically solid takeovers. Section 7 details threats to the validity 
of this study, letting Section 8 conclude the paper. Moreover, 
Appendix A provides a detailed description of the conf-ensemble 
Python framework and how to use ConfBag and ConfBoost, with 
Appendix B summarizing terms and acronyms used in the paper. 

2 Background and Related Works 

This section provides useful background about classifiers for 
tabular data and their robustness to unexpected input data. The 
terminology introduced therein is summarized in Appendix B. 

2.1 Machine Learning Classifiers 

Decades of research and practice on Machine Learning (ML) 
provided us with plenty of algorithms that can learn how to predict 
a discrete label for a data point i.e., classifiers. Supervised 
classifiers [2], [16], [19], and particularly Deep Learners [3], [4], 
[20] were demonstrated capable of achieving excellent 
classification performance in many application domains, whereas 
unsupervised classifiers are typically applied only when training 
data is not labelled [21], [22].  

More formally, a classifier first devises a mathematical model 
from a training dataset [20], which contains a given amount of 
data points. Each data point contains a set of feature values, where 
each feature value describes a specific input of the classification 
problem. Once the model has learned (i.e. the ML algorithm has 
been trained), it can be used to predict the probabilities of the data 
point belonging to each class defined for the problem domain, of 
which the class with the highest probability is assigned as a label 
of the new data point.  

The classification performance of the classifier is usually 
computed by applying the classifier to novel data points and 
computing metrics such as accuracy [23], i.e., the percentage of 
correct predictions of a classifier (typically on the testing dataset). 

2.2 Tabular Datasets and ICT Systems 

Data to be classified may result from monitoring activities of 
computer systems, where features are performance system 
indicators at hardware or low-level, system-level, input/sensor, 
environment, application-level, or even coding-level [24], [25]. 
Features can be textual or numeric: textual features (e.g., the name 
of a protocol) are always categorical, while numeric features may 
either be categorical (the ID of a system call), or continuous, 
describing a continuous ordinal range of values such as the 
percentage of memory used, the number of packets received from 
the network interface in a time-frame, etc. Classifiers may 
compute Euclidean distance (e.g., those based on the concept of 
neighbourhood as the kth nearest neighbours - kNN), which may 
deliver misleading results when applied to categorical features: 
there is no meaning in computing the distance between the IDs of 
system calls, or between the names of network protocols. As such, 
categorical features usually require pre-processing before being 
fed to a classifier e.g., representing each value of a categorical 
feature with a vector of floating-point numbers, or dummy 
variables [26]. 

Datasets resulting from monitoring activities have specific 
properties compared to other tabular datasets. First, features can 
hardly be considered independent as they describe different 
viewpoints of the same system or different areas of the same 
system. This may become a problem whenever applying classifiers 
that are known to perform well under the assumption of (linear) 
independence amongst features. Whereas it may be possible to 
eliminate or reduce collinearity in multivariate datasets using 
mechanisms such as Principal Component Analysis, this is beyond 
the scope of this work and will not be elaborated further. Second, 
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monitoring activities usually happen over a quite stretched 
timespan: the amount of data points is far higher than those of 
features, which rarely exceed hundreds. Monitoring thousands of 
features may exceedingly slow down the execution of the regular 
tasks of the system, which should not be negatively impacted by 
monitoring and logging activities. A trade-off analysis is typically 
conducted to understand the balance between the completeness of 
information provided by monitored features and the resulting 
computational overhead.  

2.3 Machine Learning Classifiers for Tabular Data 

Supervised classifiers require training data for which the label 
(also called class) is known. Recent literature shows how 
ensembles of decision trees as Random Forests or Gradient 
Boosting classifiers can accurately and quickly extract a model 
from tabular data, and are considered the recommended option or 
de facto standard for classifying tabular data [2], [27], [28]. Other 
works propose Deep Neural Networks that are specifically crafted 
for the classification of tabular data [29], [30]. However, they do 
not reliably outperform tree-based ensembles, possibly due to lack 
of locality, data sparsity (missing values), mixed feature types 
(numerical, ordinal, and categorical), and lack of prior knowledge 
about the dataset structure [2]. This dichotomy led to a wide 
variety of benchmark studies in recent years. An extensive study 
[31] analyses the factors making DNN-based classifiers more 
likely to outperform the gradient-boosted decision trees (GBDTs) 
on tabular data. The study analyses 19 classification algorithms 
and 176 datasets and provides useful insight: i) the difference 
between the two classification methods is typically insignificant; 
ii) tuning hyperparameters usually is more important than the 
choice between the two classification methods; iii) DNNs tend to 
perform better on datasets with many features, whose values are 
normalized. The study also defines a new benchmark, called 
TabZilla; a similar benchmark, TALENT, is presented in [32]. The 
study, based on 300 tabular datasets, provides an intriguing insight 
that a core set of "meta-features" can be used to identify dataset 
heterogeneity, which in turn affect the classification performance. 

When a labelled training dataset is not available, the only 
option is to conduct unsupervised classification. These ML 
algorithms model the expected (normal) behaviour of a system, 
and classify any deviation from the normal behaviour as an 
anomaly [33]; thus, they can only perform binary classification 
(i.e., is my system behaving unusually or not?) assuming no other 
information is provided. Options for unsupervised classification 
include, but are not limited to, clustering, statistical, angle, density, 
and neighbour-based algorithms [22]. Differently from supervised 
classification, unsupervised classification of tabular data has seen 
a decent usage of DNNs, namely autoencoders, that have been 
shown [34], [35] to perform similarly to other unsupervised 
classifiers. 

2.4 Ensembles and Diversity 

N-Version Programming (NVP) and design diversity have 
been successfully used for many decades and enforced using 
different design methods, including: programming languages, 
functional diversity, different forms of testing [36], [37]. In 
statistics and machine learning, ensemble methods use multiple 
learning algorithms to obtain better predictive performance than 
could be obtained from any of the constituent learning model alone 
[38]. An ensemble is a form of NVP as it consists of a finite set of 

alternative models, called base learners, orchestrated according to 
a meta-learning strategy [39] acting as data fusion strategy. 
Ensembles usually outperform individual ML algorithms and have 
been used successfully in a variety of domains [16], [17]. 

The enabling condition for an ensemble to outperform the 
individual classifiers is the diversity in the behaviour of the base 
learners: “If perturbing the learning set can cause significant 
changes in the predictor constructed, then bagging can improve 
accuracy” [14]. For ensembles and meta-learning strategies as 
stacking [40] that use different algorithms to create base learners, 
diversity is guaranteed to some extent, but may not suffice [41]. 
More generally, the study [42] summarizes three different design 
diversity principles: Data, Model, and Inference Diversification. 
Data diversification provides different training data to many 
instances of the same classifier, or single instances of many 
different classifiers. This concept is widely applied in Bagging 
(e.g., Random Forests) or Boosting (e.g., XGBoost) ensemble 
classifiers, and makes them more accurate than their Decision 
Tree, or Decision Stump, baseline. Model diversification can be 
implemented either by creating different instances of the same 
classifiers that are trained using different parameters (e.g., a 
different k value for kNN) or by using ensembles, which create 
multiple base learners from heterogeneous classifiers. Lastly, 
inference diversification is concerned with obtaining multiple 
outputs from each classifier, e.g. a classifier output consists of a 
set of possible decisions alongside a ranking or their confidence 
scores. This usually applies to object detection and recognition, 
where multiple labels may be assigned to a single input, each with 
a confidence score. Such a diversification, however, rarely applies 
to the classification of tabular data. Sometimes, design diversity is 
paired with metrics to experimentally quantify diversity [43].  

2.5 Confidence and Uncertainty of Classification 

ML researchers usually aim at maximizing classification 
performance. However, trusting each prediction of a classifier, to 
the extent that the prediction can be confidently propagated 
towards the encompassing system and used in a real system, is a 
different problem [44]. Confidence in classification requires 
estimating the prediction uncertainty and using it to suspect if the 
classifiers’ predictions are likely to be misclassifications. 
Uncertainty is [45] a combination of aleatoric and epistemic 
uncertainty. The former refers to the notion of randomness, that is, 
the variability in the outcome of an experiment due to inherently 
random effects e.g., coin-flipping. The latter describes the 
uncertainty due to a lack of knowledge (i.e. in one’s knowledge) 
of any underlying random phenomenon or due to methodological 
errors. In other words, epistemic uncertainty refers to the reducible 
part of the (total) uncertainty, whereas aleatoric uncertainty refers 
to the irreducible part and cannot be reliably estimated. 

(Epistemic) uncertainty can be quantified using the Bayes 
theorem [46] or more complex approaches. Works as [47] estimate 
the uncertainty by using ensembles of neural networks: scores 
from the ensembles are combined in a unified measure that 
describes the agreement of predictions and quantifies uncertainty. 
In [48], authors processed softmax probabilities of neural networks 
to identify misclassified data points. A new proposal came from 
[49], where authors paired a k-Nearest Neighbour classifier with a 
neural network to compute the prediction uncertainty. The work 
[50] computed the cross-entropy on the probabilities of a neural 
network and used it to detect the out-of-distribution input data 



4 

likely to be misclassified. Many of these approaches are used in 
[51] to implement a safety wrapper.  

2.6 Unexpected Inputs and Robustness 

Even when estimating confidence, there is the risk of having 
classifiers that: “[...] produce almost always high confidence 
predictions far away from the training data” [52]. This is a 
relevant concern as a classifier deployed in its operational 
environment is likely to face input data that does not belong to the 
distribution used to train the classifier. Unexpected or non-IID 
inputs may be due to a wide variety of reasons, mostly 
environmental changes, distribution shifts, anomalous, Out-Of-
Distribution (OOD) data, or adversarial attacks [53], [54]. OOD 
and adversarial data were primarily deemed relevant for computer 
vision and image classification. Recently, these sources of 
unknown inputs become of concern for tabular data [54], alongside 
with: i) novel or unplanned interactions between subsystems or 
interfaces, generating behavioural anomalies [33], ii) distribution 
and concept drifts [55], iii) the occurrence of previously unseen 
events (i.e., zero-day attacks in security [6]). Industrial standards 
such as the SOTIF (ISO/PAS 21448 – Safety Of The Intended 
Functionality [56]) recognize performance limitations of ML-
based software due to these unknown inputs, concluding that the 
frequency of misclassifications due to these events should be 
reduced until it is considered acceptable. 

Straightforwardly, the impact of unexpected input data must 
be considered when evaluating the performance of a classifier [6], 
[57], [58], [59], quantifying what is generally referred to as 
robustness. In [59], the authors review existing datasets and 
classifiers for attack detection. Amongst other findings, they 
conclude that classifiers may have the problem of adapting to new 
attacks, raising many false alarms, or having poor accuracy in the 
process. The study [58] applies the kNN classifier to a dataset of 
system calls and measures a clear degradation in the detection 
performance of kNN, whose Recall drops from 100% to 75% in 
the presence of unknown inputs. The study [6] measures the 
impact that zero-day attacks have on supervised and unsupervised 
classifiers and concludes that when the likelihood of zero-day 
attacks becomes very high, the performance of unsupervised 
intrusion detectors may become superior to supervised 
alternatives. Last, the work in [57] trains different classifiers with 
the CICIDS17 tabular dataset and evaluates them using an unseen 
dataset, measuring a clear drop in accuracy due to the trained 
model being neither general nor robust enough to unknown test 
data from a similar but different dataset.  

The occurrence of unexpected inputs has a noticeable impact 
on classification performance, especially of supervised classifiers. 
A possible solution may be to pair supervised classifiers with 
unsupervised ones as suggested in [21], [60]. However, most of 
these solutions are very problem-specific and are difficult to 
generalize: combining the two approaches itself is not trivial, does 
not always improve performance, and can even have detrimental 
effects as argued in [41]. 

3 Confidence Ensembles 

In this section we describe ConfBag and ConfBoost 
ensembles, which use the concept of prediction confidence for 
building the ensemble model. 

3.1 Preliminaries and Notation 

Confidence ensembles are created from a base estimator, 
which is used to derive k base learners bli, 1 ≤ i ≤ k within the 
training process of each confidence ensemble. The base estimator 
can be any existing classifier clf that implements the following 
functions.  

fit: this function trains the classifier clf using a specific train set. 
The training can be supervised (with labelled training data) or 
unsupervised. The fit function generates a model and makes clf 
ready for prediction: unfitted classifiers cannot predict anything. 
The syntax of using the “fit” function is as follows:  

clf.fit(train features) - for a unsupervised classifier, and 
clf.fit(train features, train labels) – for a supervised classifier. 

predict_proba: given an input data data, it predicts a probability 
distribution in the form of an array of probabilities prob = {pi, 1 ≤ 
i ≤ |c|, 0 ≤ pi ≤ 1} for a given set c of classes c. Probabilities in the 
prob array should sum up to 1, i.e. ∑ 𝑝𝑝𝑖𝑖

|𝑐𝑐|
𝑖𝑖=1  = 1 and represent the 

likelihood that the data item submitted for classification belongs 
with probability pi to class i. 

prob = clf.predict_proba(data)         (1) 

predict_confidence (optional): this function quantifies the 
confidence 0 ≤ conf ≤ 1 in a specific prediction for a given input 
data data, with the following signature.  

conf = clf.predict_confidence(data)             (2) 
Whenever this function is not provided (nor implemented), the 

confidence will be derived as the maximum probability from 
predict_proba as in the following Equation (3). 

conf = max{pi ∈ clf.predict_proba(data),  1 ≤ i ≤ |c|}    (3) 

3.2 Confidence Bagging: ConfBag 

Confidence Bagging (ConfBag) is described below and is 
depicted in Figure 1. 

3.2.1 Basics of Bagging 

Bagging was first proposed by Breiman [14]. It creates k sets 
where nbag data is drawn with or without replacement from the 
training set of n data points. Then, it uses these sets to train k base 
learners which are instances of the same base estimator trained 
using different training sets. Once all base learners are trained the 
prediction for a new input data is exercised as an “average over 
the versions when predicting a numerical outcome and a plurality 
vote when predicting a class” [14]. 

3.2.2 Training ConfBag 

The training of ConfBag follows the proposal of Breiman [14] 
with a small adjustment, as it selects a subset of both training data 
points and features to train the base learners. More precisely, it 
randomly draws (without replacement) a subset of nbag < n data 
points, each with fbag ≤ f features that will be used by a base learner 
i.e., each base learner will see only a fraction of the training set 
composed of nbag items and fbag features. 

3.2.3 Predictions with ConfBag 

The prediction (inference) phase is very different from the 
original bagging [14]: ConfBag predicts a label by using the 
confidence scores in two different ways. 

Confidence for selecting base learners. Each base learner knows 
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the confidence in their prediction through the predict_confidence 
function. This may range from no uncertainty (high confidence) to 
high uncertainty (low confidence). Allowing the base learners with 
low confidence in their predictions to take part in the final decision 
may negatively affect the quality of the final decision. In ConfBag, 
the predictions of “uncertain” base learners are discarded as their 
opinion may not be trustworthy. Predictions of a base learner bli, 
1 ≤ i ≤ k, will contribute to the output of ConfBag only if the 
confidence by the base learner exceeds a given threshold: 

confi = bli.predict_confidence(data) ≥ confthr    (4) 
Clearly, the threshold confthr in Equation (4) is essential and its 

value must be chosen with care as it may dramatically alter the 
prediction result. In cases when the optimal confthr is difficult to 
derive, ConfBag may be configured to operate differently, e.g., the 
user may specify a number bln or the fraction blfrac of base learners 
which should contribute to the final decision of the ConfBag. 
Then, ConfBag will compute an array of confidence scores, 
ordered by value, scs as in the following Equation (5). 
scs=sort_descending({bli.predict_confidence(data), 1 ≤ i ≤ k}) (5) 
For each prediction, a dynamic confthr will be derived as the blfrac 
(or bln / k) percentile of scs, or rather the value for which the 
exactly bln (or blfrac * k) base learners predict with confidence 
greater than confthr. Overall, the threshold is computed as in 
Equation (6).  

  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡ℎ𝑟𝑟 = �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡ℎ𝑟𝑟, 𝑖𝑖𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡ℎ𝑟𝑟 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑝𝑝 𝑢𝑢𝑖𝑖𝑝𝑝𝑝𝑝

𝑖𝑖𝑐𝑐𝑖𝑖[𝑏𝑏𝑏𝑏𝑛𝑛], 𝑖𝑖𝑐𝑐 𝑏𝑏𝑏𝑏𝑛𝑛  𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑝𝑝𝑖𝑖𝑝𝑝
𝑖𝑖𝑐𝑐𝑖𝑖[𝑖𝑖𝑐𝑐𝑝𝑝𝑝𝑝𝑖𝑖], 𝑖𝑖𝑐𝑐𝑝𝑝𝑝𝑝𝑖𝑖 =  �𝑏𝑏𝑏𝑏𝑓𝑓𝑟𝑟𝑓𝑓𝑐𝑐 ∗ 𝑘𝑘�, 𝑖𝑖𝑐𝑐 𝑏𝑏𝑏𝑏𝑓𝑓𝑟𝑟𝑓𝑓𝑐𝑐 𝑝𝑝𝑏𝑏𝑖𝑖𝑝𝑝𝑒𝑒ℎ𝑝𝑝𝑝𝑝𝑝𝑝

  (6) 

Confidence to weight predictions. Traditional bagging averages 
of probabilities. A ConfBag conf_bag_clf computes probabilities 
cb_prob for a data point data as shown in Equation (7). 
cb_prob = conf_bag_clf.predict_proba(data) = 

 1
𝑏𝑏𝑏𝑏𝑛𝑛

∑ 𝑏𝑏𝑏𝑏𝑖𝑖 .𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑐𝑐𝑡𝑡_𝑝𝑝𝑝𝑝𝑐𝑐𝑏𝑏𝑖𝑖(𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖) 𝑘𝑘
𝑖𝑖=0  

𝑖𝑖𝑐𝑐 𝑏𝑏𝑏𝑏𝑖𝑖 .𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑐𝑐𝑡𝑡_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝(𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖) ≥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡ℎ𝑟𝑟 (7) 
ConfBag also offers the option to weighting the predicted 

probabilities with the confidence of each base learner, see 
Equation (8).  
cb_prob = conf_bag_clf.predict_proba(data) = 
 ∑ 𝑏𝑏𝑏𝑏𝑖𝑖 .𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑐𝑐𝑡𝑡_𝑝𝑝𝑝𝑝𝑐𝑐𝑏𝑏𝑖𝑖(𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖) ∗   𝑏𝑏𝑏𝑏𝑖𝑖 .𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑐𝑐𝑡𝑡_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝(𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖)𝑘𝑘

𝑖𝑖=0  
𝑖𝑖𝑐𝑐 𝑏𝑏𝑏𝑏𝑖𝑖 .𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑐𝑐𝑡𝑡_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝(𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖) ≥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡ℎ𝑟𝑟 

cb_prob = cb_prob / sum(c_prob)  (8) 

3.2.4 Parameters 

ConfBag is configured via a set of parameters. 

• base_estimator (classifier object): this is the classifier to be 
used to create base learners. 

• k (integer ≥ 2): the number of base learners; for compliance 
with the existing libraries, k may be referred to as 
n_estimators. 

• f_bag (0 < float ≤ 1): the proportion (as a percentage of 
features of the full training set) of training features to be 
provided to each base learner when learning its model. 

• sampling_ratio (0 < float ≤ 1): the percentage of the items of 
the training set to be provided to each base learner in training 
(used to compute nbag) 

• weighted_pred (a Boolean value): true if the final prediction 
has to be computed as the weighted average, false if only a 
simple average is used. 

• conf_thr (0 < float ≤ 1): the value to be used as a confidence 
threshold for judging whether the prediction of each base 
learner is made with sufficiently high confidence or not. 

• bl_n (0 < integer ≤ k): the number of base learners that will 
contribute to the final prediction by the ConfBag classifier. 

• bl_perc (0 < float ≤ 1): the proportion of base learners that 
will contribute to the final prediction by ConfBag classifier. 

Only one of the last three parameters is used: if conf_thr is 
provided, bl_n and bl_perc values will be ignored; otherwise, 
bl_perc will be used only if bl_n is missing.  

3.3 Confidence Boosting: ConfBoost  

Confidence Boosting (ConfBoost) is described below and is 
depicted in Figure 2. 

3.3.1 Basics of Boosting 

ConfBoost builds upon the proposal of Shapire [61], which 
introduced boosting as an ensemble of weak learners, where each 
base learner “is only required to perform slightly better than 
random guessing”, building “as strong as a model in which the 
learner's error can be made arbitrarily small”. Base learners are 
created sequentially and are specialized to classify areas of the 
input space for which existing base learners output 
misclassifications. Consequently, boosting is a supervised process 
that assumes knowledge of the labels to understand if a data point 
is misclassified by a base learner. This information is then used to 
prepare the training dataset for the next base learner. Boosting 
works well when using decision stumps as base estimators: 
decision stumps are shallow decision tree regressors that have 
constrained learning capabilities and work well as weak-learners. 

 
 

Figure 1: Train (left) and test (right) schemas for Confidence Bagging (ConfBag) at a glance. 
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3.3.2 Training ConfBoost 

The biggest innovation of ConfBoost is to use confidence 
scores of base learners instead of their predictions to influence how 
data is sampled for training the next base learner. Instead of 
making misclassified training data more likely to be chosen for 
training the next base-learner, we target training data for which the 
existing base learners cannot output a confident prediction, no 
matter if it is correct or not. The training process of a base learner 
bli, 1 ≤ i ≤ k, works as follows.  
• Draw nboost ≤ n data points from the training dataset ts 

according to their weights at step i-1. For bl1 (first base-
learner), weights are uniformly distributed: w = {wj = 1/n, 1 
≤ j ≤ n}. This creates a training sub-dataset tsi ⸦ ts. 

• Train a copy of the base_estimator using tsi. The resulting 
model will be referred to as the bli model. 

• Score the confidence confi of the bli model on each data point 
in the full training dataset ts. Then, update the weights w of 
the training dataset according to the rule in Equation (9) 
below. 

𝑒𝑒𝑗𝑗 = �
𝑒𝑒𝑗𝑗 ∗ 𝑏𝑏𝑝𝑝, 𝑖𝑖𝑐𝑐 𝑐𝑐𝑗𝑗 <  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡ℎ𝑟𝑟

𝑒𝑒𝑗𝑗
𝑏𝑏𝑝𝑝 𝑐𝑐𝑡𝑡ℎ𝑝𝑝𝑝𝑝𝑒𝑒𝑖𝑖𝑖𝑖𝑝𝑝

, 1 ≤ 𝑗𝑗 ≤ 𝑐𝑐 

𝑒𝑒 = { 𝑤𝑤𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤) , 1 ≤ 𝑗𝑗 ≤ 𝑐𝑐}        (9) 
• This increases the weights of the data points in the training 

dataset tsi for which bli is not confident enough. The update 
speed is regulated by a parameter lr (learning rate): the higher 
the value of this parameter, the faster the weights will 
increase or decrease. After updating the weights, the array w 
gets normalized to sum up to 1.  

These steps train the base learner bli and prepare for sampling the 
next training dataset tsi+1, and train the next bli+1, thus iterating 
over all k base learners until the training process ends.  

3.3.3 Predictions with ConfBoost  

As it was originally proposed [15] - and applied to almost all 
known boosting algorithms to date [16], [17] - ConfBoost 
computes the final probabilities (and thus the predicted class) by 
averaging the probabilities computed by each base learner. 
Depending on the specific implementation, boosting algorithms 
may compute the final prediction as a weighted average of the base 
learners’ predictions using different measures (e.g., the accuracy 
of a base learner on the validation/training dataset) as weights. 

Similarly to ConfBag, ConfBoost may perform a weighted 
average of probabilities using the confidence in the predictions of 
each base learner as weight.  

3.3.4 Parameters 

ConfBoost is configured via the following parameters. 
• base_estimator(object): this is the classifier to be used to 

create base learners. 
• k (integer ≥ 2): the number of base learners; for compliance 

with the existing libraries, k may be referred to as 
n_estimators. 

• sampling_ratio (0 < float ≤ 1): the percentage of items of the 
training dataset to be sampled and used for training each base 
learner (used to compute nboost). 

• lr (float > 1): the learning rate, or rather the speed for which 
weights are updated. The bigger the lr, the faster the value of 
weights increases/decreases. 

• weighted_pred (a Boolean): true if the final prediction by 
ConfBoost is computed as a weighted average, false - if only 
a simple average is used. 

• conf_thr (0 < float ≤ 1): the value to be used i) as threshold to 
consider updating the sampling weights of the training set, 
and ii) for judging whether the prediction of each base learner 
is made with sufficiently high confidence or not. 

• bl_n (0 < integer ≤ k): the number of base learners that will 
contribute to the final prediction by the ConfBoost classifier. 

• bl_perc (0 < float ≤ 1): the proportion of base learners that 
will contribute to the final prediction by ConfBoost classifier. 

Differently from ConfBag, conf_thr is mandatory as it is 
needed both in the training and inference phase. Should the user 
provide bl_perc or bl_n inputs, these will be used to recompute the 
confidence threshold to be used for inference (not for training) 
according to the formula in Equation (6).  

3.4 Discussion and Issues of Confidence Ensembles 

ConfBag and ConfBoost have a generic formulation that 
makes them applicable to any type of classification problem: they 
apply to both supervised and unsupervised classification problems, 
whereas traditional boosting is supervised by design. Also, they 
rely on a very basic formulation of confidence (i.e., the highest 
probability predicted for a given class) that can be extended at will 
depending on the needs, knowledge, and expertise of the user (e.g., 

 

 

Figure 2: Train (left) and test (right) schemas for Confidence Boosting (ConfBoost) at a glance. 
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entropy of probabilities [71] or more complex confidence 
computations [44], [51]). The cognitive complexity for learning 
how to use confidence ensembles is very low and becomes 
negligible if the confidence ensembles are configured to use with 
default parameters. Given that confidence ensembles can virtually 
use any classifier as a base estimator, it is rather easy to quantify 
the improvements in classification performance when running a 
base estimator as a standalone classifier or when using it for 
building a confidence ensemble. 

The downside of any ensemble method is bringing more 
complexity to the table: regardless of the implementation, the 
training and prediction times of confidence ensembles will be 
higher than those of the base estimator. While the former concern 
(setting up the ensemble) is a one-off overhead, the overhead due 
to generating multiple predictions cannot be avoided but can also 
be minimized by adequate multithreading programming and 
hardware support. Another potential concern may be related to the 
design of ConfBoost, which follows a boosting process but does 
not strictly require the base estimator to be a weak learner: the base 
estimator could even be a very heavy neural network which is far 
from being a weak learner according to its definition [61]. As per 
Shapire’s definition, this may threaten the performance of 
ConfBoost, as base learners using strong base estimators may 
converge to the same model, learning the same things and thus 
providing very similar results, making ensembles ineffective. To 
tackle this, we remind how the study [42] highlights Data and 
Model Diversification as pillars of any classification ensemble. 
Confidence ensembles have their way of implementing data 
diversity, as they train the base learners using different subsets of 
the training set (and even subsets of features for ConfBag). The 
size of these subsets can be tuned: the smaller the subsets, the less 
overlap between different subsets and the less data a base learner 
would rely upon to learn its model. Considering very similar 
subsets may lead to crafting very similar base learners and be 
detrimental to the overall classification performance. Regarding 
model diversification, each base learner is an instance of the same 
base estimator (i.e., implements the same ML algorithm), but since 
it is trained using different portions of the training dataset, it 
should end up with a diverse (or unstable, using the terminology 
in [14]) behaviour. 

3.5 Confidence as a Building Block 

Last, but not least, we would like to emphasise the way the 
confidence is used for creating classifiers in this study, and why, 
to the best of our knowledge, this differs from the existing studies 
in literature. The confidence in classification is typically provided 
in the studies by others as an additional output to complement the 
class prediction, i) quantifying a margin [62] and understanding if 
a prediction should be rejected or should be trusted instead [63], 
ii) driving the selection of those classifiers that actually contribute 
to the inference process from a large classification ensemble 
(ensemble pruning, [64], [65]), or iii) crafting weights for 
weighted fusion of base-learners opinions to improve ensemble 
performance [64], [66], [67], [68].  

Confidence ensembles build on these concepts as follows. 
ConfBag and ConfBoost have a weighted_pred parameter which, 
if true, makes different base-learners contribute to the final result 
according to the prediction confidence they have: those that are 
more confident will contribute more towards the ensemble 
prediction. Ensemble pruning techniques are integrated by design 

in both ConfBag and ConfBoost, and can be easily tuned via the 
parameters bl_n, bl_perc and conf_thr in both approaches.  
Importantly, the study [64] performs ensemble pruning exercising 
base-learners on a labelled pruning set (different from training and 
test sets), collecting their predictions, computing accuracy on the 
pruning set, and allowing only base-learners with high accuracy to 
take part in the ensemble prediction. Whereas this technique may 
be very useful, it has two important drawbacks: i) it needs a 
labelled pruning set, i.e. be applied to supervised learning only, 
whereas confidence ensembles may even work in unsupervised 
learning scenarios, and ii) tends to prune the same base-learners, 
if the pruning set does not vary, resulting in a static subset of base-
learners that contribute to the decision, whereas confidence 
ensembles perform pruning at prediction level (i.e., different base-
learners may contribute to each prediction). Regarding prediction 
rejection, confidence ensembles do not embed any mechanism to 
do so, as it happens in decision schemes such as recovery blocks 
[69] or delegating [70], but provide enough information for 
crafting such strategies. 

Noticeably, all the mechanisms above assume that base-
learners are already trained, and that the confidence is used only 
afterwards to fine-tune the fusion of the ensemble predictions. The 
most important innovation of ConfBoost is that the confidence is 
used to learn the model itself as an essential part of the training 
phase, altering the likelihood of data items to be selected for 
building the training set of the base-learners that are created 
iteratively. The only technical report (still unpublished) that uses 
confidence in learning the model is [18], which presents an 
approach that iteratively creates a chain of DNNs trained 
sequentially using only a subset of the training dataset for which 

Table I. Comparison of classifiers and fusion strategies with 
respect to the role of confidence in predictions. Ticks are starred 
when a capability depends on the parameter setup. The “static” 

tag is assigned to mechanisms that do not dynamically adapt 
decision-making to each individual prediction. 
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Bagging [13], [14] ✓  ✓*   
Boosting [16], [73]   ✓*   

EP-CC [75]   ✓(static) ✓(static)  
EP-WL-CC [75]   ✓(static)   
EP-WV-CC [75]    ✓(static)  

Bayesian Voting [77]   ✓ ✓*  
Recovery Blocks [79],  

Delegating [80] ✓   ✓* ✓ 

Cascade Generalization [79] ✓  ✓*   
Stacking [40] ✓  ✓* ✓*  

CEnsemble [18]  ✓ ✓*   
Pruning Individual 
Contribution [76]   ✓(static) ✓(static)  

Learn++ [78]   ✓(static) ✓(static)  
ConfBag (weighted=True) ✓  ✓ ✓  
ConfBag (weighted=False) ✓   ✓  

ConfBoost (weighted=True) ✓ ✓ ✓ ✓  
ConfBoost (weighted=False) ✓ ✓  ✓  
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there is not enough confidence in predictions. ConfBoost, 
however, uses a different strategy to update the likelihood of the 
data points to be sampled for training base learners, allowing all 
data points (with non-uniform distribution) to take part in the 
learning process. The prediction mechanism of ConfBoost, too, is 
completely different from the proposal in [18]. 

These considerations are summarized in Table I above which 
shows the differences between confidence ensembles and the other 
known studies relying on confidence. Overall, confidence 
ensembles are designed to maximise the usage of confidence at 
inference time for optimal data fusion, even in unsupervised 
scenarios. In the case of ConfBoost, confidence is used also for 
learning the models of each base-learner in the ensemble, thus acts 
at both training and test time.  

4 Experimental Campaign 

This section describes the experimental analysis to answer the 
research questions stated in Section 4.1. The experimental 
methodology is outlined Section 4.2. Details on the experiments, 
assumptions, and inputs are detailed in Section 4.3 to Section 4.6. 

4.1 Research Questions 

RQ1. Do confidence ensembles outperform base estimators used 
for supervised or unsupervised classification of tabular data? 

RQ2. Do confidence ensembles outperform traditional bagging 
and boosting ensemble classifiers, ideally using a restricted 
number of base learners?  

RQ3. What is the impact of hyper-parameter values on the 
classification performance of confidence ensembles? 

RQ4. What is the time overhead of confidence ensembles in 
comparison with base estimators? 

RQ5. How do confidence ensembles compare with base estimators 
when dealing with unexpected inputs? Are they robust? 

4.2 Methodology 

Our experimental methodology had been deployed according 
to the following 4 steps.  
S1. Select a set of supervised and unsupervised classifiers to 

compare against confidence ensembles. Unsupervised 
classifiers can only perform binary classification: when 
dealing with a dataset having data points of multiple classes, 
a conversion from a multi-class to a binary (normal vs others) 
label is needed to enable unsupervised classification. 

S2. Prepare different instances of ConfBag and ConfBoost 
ensembles, varying their parameters to assess their 
capabilities on a range of configurations. These use 
supervised and unsupervised classifiers from step S1 as base 
estimators. For further comparisons, we crafted traditional 
bagging and boosting ensembles using the same base 
estimators and parameters as ConfBag and ConfBoost. 

S3. Gather tabular datasets suitable for classification in real ICT 
systems. These could be datasets with either a binary or multi-
class label.  

S4. Create variants of datasets to evaluate the robustness of the 
classifiers to unexpected inputs (e.g. non-IID data points 
distributed differently from those in the training dataset). 

Experiments have been conducted on a Dell Precision 5820 
Tower with an Intel Xeon Gold 6250, GPU NVIDIA Quadro 

RTX6000 with 24GB VRAM, 192GB RAM and Ubuntu 18.04, 
NVIDIA driver 450.119.03 with CUDA 11.0.  

Confidence ensembles are implemented in the library conf-
ensembles, which is publicly available on GitHub 
(https://github.com/tommyippoz/confidence-ensembles [72]) and 
on PyPI (https://pypi.org/project/confidence-ensembles/). The 
usage of the library is detailed in Appendix A, and has interfaces 
similar to those of the well-known scikit-learn and pyod libraries. 

4.3 Supervised and Unsupervised Classifiers 

We selected 8 supervised classifiers that are widely used in the 
literature: 3 statistical classifiers as Naïve Bayes, Linear 
Discriminant Analysis, Logistic Regression and 5 tree-based 
classifiers that were benchmarked in [17]: Decision Trees, 
Random Forests, Extremely Randomized Trees, Logit Boost, and 
XGBoost. These are very diverse among themselves: some are 
ensembles, and others rely on very fast (but often unreliable) 
statistical mechanisms to predict classes. All classifiers are 
implemented in scikit-learn (https://scikit-learn.org) or in specific 
libraries whose interfaces comply with scikit-learn’s. 

Additionally, we selected 5 unsupervised classifiers that are 
implemented in pyod (https://pyod.readthedocs.io/, [73]): 
Histogram-based outlier score (HBOS), Isolation Forests, Cluster-
Based Local Outlier Factor (CBLOF), Principal Component 
Analysis (PCA) and Isolation-based Anomaly Detection Using 
Nearest-Neighbor ensembles (INNE). Amongst the many 
alternatives from the library, we chose these since they rely on 
different heuristics, with some of them (Isolation Forest and 
INNE) being ensembles themselves. 

This experimental evaluation aimed at benchmarking 
confidence ensembles against existing classifiers rather than 
reaching the best classification performance on a specific dataset. 
A preliminary and informal exploration did not reveal any major 
impact on the difference in performance between classifiers and 
confidence ensembles while varying classifiers’ parameters. Thus, 
all classifiers/base estimators were run using their default 
parameters. As a special case, Logistic Regression provided 
multiple alerts of failed convergence during training, which we 
minimized using the following combination of parameters: solver 
= ’sag’, max_iter = 1000 and tol = 0.001. 

4.4 Confidence Ensembles 

The 13 classifiers above will be used i) in isolation and as base 
estimators to build ii) confidence ensembles and iii) traditional 
bagging and boosting ensembles. 

When crafting confidence ensembles, we varied the number of 
estimators (5, 10, 20), and the weighted_pred (true or false). For 
ConfBag, we set f_bag to (0.3, 0.5, 0.7), and bl_perc to (0.3, 0.5). 
For ConfBoost, we set the lr to 2, sampling_ratio (0.5, 0.3, 0.2), 
and make conf_thr range as (0.9, 0.8, 0.5). This choice was not 
arbitrary: it came after preliminary sensitivity analyses in which 
we found that assigning some parameter values always worsened 
classification performance. This happens when using conf_thr 
values below 0.5, when using exceedingly small subsets of the 
training set (f_bag below 0.3 or sampling_ratio below 0.2), or 
when the data for training base learners is not diverse enough i.e., 
f_bag above 0.7, sampling_ratio above 0.5). Regarding the 
number of estimators, we did not go beyond 20 as even a small 
number of base learners can build confidence ensembles that 
outperform other classifiers. All these setups will be applied for 

https://github.com/tommyippoz/confidence-ensembles
https://scikit-learn.org/
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each of the 13 base estimators from the previous section, resulting 
in a total of 13*162 = 2106 configurations of ConfBag and 13*54 
= 702 of ConfBoost. We used the same parameters for training 
traditional bagging and boosting ensembles (BaggingClassifier 
and AdaBoostClassifier from scikit-learn) using the 13 classifiers 
as base estimators as this is required to answer RQ2. Noteworthy, 
confidence-related parameters as conf_thr, weighted_pred are not 
relevant for traditional ensembles and thus were not used there. 
Also, the AdaBoostClassifier could not be applied to unsupervised 
classifiers nor the supervised LDA due to bugs in the library (i.e., 
pyod classifiers are missing some required attributes to be used in 
some of the scikit-learn’s function). 

4.5 Error, Attack and Failure Datasets 

We selected 23 datasets for this study: 12 datasets of network 
traffic to be used for intrusion detection, 5 hardware monitoring 
datasets for failure prediction, and 6 datasets about error and 
anomaly detection in IoT and Industrial Control systems.  

Table II summarizes the 23 datasets, reporting the domain, 
name, year, number of data points, number of features, and 
categories of anomalies, errors, or attacks. All datasets were 
labelled, structured in CSV format, and cropped to contain 200 000 
data points at most, to speed up the evaluation. Datasets are 
publicly available and can be downloaded using the provided 
references. 

4.5.1 Network Intrusion Detection (NIDS) 

We selected labelled datasets on network intrusions looking at 
surveys, Kaggle, UCI, Zenodo, IEEEDataport and other online 
portals. Our selection process resulted in the following datasets: 
ADFANet [74], AndMal17 [75], BAIoT Doorbell [76], CICIDS17 
[77], CICIDS18 [77], CIDDS [78], IoT Network [79], ISCX12 
[80], NSLKDD [81], SDN20 [82], UGR16 [83], UNSW-NB15 
[84]. All those datasets included records of normal traffic and 
records collected while the system was under attack. Features are 
mostly numeric, extracted by monitoring the network traffic in 
packets (e.g., bytes received per second, number of packets). 

4.5.2 Hardware Failure Prediction  

We gathered datasets related to monitoring hard disks, where 
the performance indicators and the status (failed or not) of a hard 
drive are logged as data points. The BackBlaze [85] manufacturer 
made many years of hard drive data available to the public. 
Another source of hard drive data came from the BAIDU [86] 
competition whose input datasets are still available.  

4.5.3 Error/Anomaly Detection 

The last group of datasets we considered came from 
monitoring IoT or industrial control systems (ICS): a distributed 
control systems of a power plant controlling a turbine [87], [88], 
malfunctions of metros in Portugal [89], railroad trucks equipped 
with sensors to monitor brake pressure [90], an edge device 
monitored for errors [91], the mechanical failure of electrical 
machinery in power plants [92]. 

4.5.4 Creating Datasets Variants 

The RQ5 is devoted to quantifying the robustness of classifiers 
to unexpected inputs (see Section 2.6). Robustness is usually 
difficult to quantify but at the same time one of the most desirable 
properties of classifiers, especially those that may be deployed in 

real environments.  
In our experiments, unexpected inputs are anomaly, error, or 

attack categories that only appear in the test set. This makes the 
non-IID with respect to training data. We simulated unexpected 
inputs by removing specific categories from the training set of 
each dataset that has more than a single “anomalous” class. This 
allowed for the creation of as many training variants as the 
categories of anomalies (see Table II) contained in each dataset. 
The label used for training variants is always binary (normal vs 
anomaly): it will not be possible to have correct multi-class 
misclassification of a data point belonging to a class that does not 
appear in the training set. Importantly, the test set remains 
unchanged: classifiers trained on different training sets or training 
variants of a specific dataset will be validated using the same test 
set, in which unexpected inputs may be present, labelled as 
anomalies. This is similar to the process followed in [6]. 

4.6 Performance Metrics  

The classification performance of classifiers is usually 
measured through the confusion matrix and the compound metrics 
derived from it such as accuracy i.e., the fraction of correct 
predictions over all predictions.  

𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇
 

However, accuracy may deliver misleading results when 
datasets are unbalanced [93], which happens frequently in 
anomaly, error and intrusion detection: therefore, we mostly relied 
upon the Matthews Correlation Coefficient (MCC),  

𝑀𝑀𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 ∗ 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝑇𝑇 ∗ 𝐹𝐹𝑇𝑇

�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)
 

which was primarily developed for binary classification but 
adapts well to multi-class classification. The MCC quantification 

Table II. Name, release year, number of attack types, number of 
portions, and the amount of ordinal features f of used datasets. 
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AndMal17 2017 4 75 100 522 

BAIoT Doorbell 2018 5 115 75 165 
CICIDS17 2017 4 75 200 000 
CICIDS18 2018 5 75 200 000 

CIDDS 2015 4 7 200 000 
IoT Network 2019 9 8 210 425 

ISCX12 2013 4 6 200 000 
NSLKDD 2009 4 37 148 517 

SDN20 2020 5 78 205 128 
UGR16 2016 5 7 207 256 

UNSW-NB15 2015 8 38 165 461 
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r BackBlaze 2017 2017 1 50 32 678 
BackBlaze 2019 2019 1 44 47 525 
BackBlaze 2021 2021 1 37 44 950 
BackBlaze 2023 2023 1 35 70 512 

BAIDU 2017 1 12 186 049 
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Arancino Device 2023 9 119 154 000 
HAI Pressure 2019 1 54 200 000 

HAI ICS 2023 1 224 54 000 
Mechanical Failure 2018 1 18 7 906 

Metro PT 2022 2 20 173 824 
Scania Trucks 2016 1 170 76 000 
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allows for discussing RQ1, RQ2 and RQ3. For completeness, we 
report results using other well-known metrics for classification 
(i.e., Accuracy and F-Measure, or F1) in Appendix C. 

To answer RQ4, we kept track of the training and the test time 
(in milliseconds) needed by each classifier, and of the size of the 
resulting model. Regarding RQ5, we computed the MCC of all the 
models learned using variants of the training set used to simulate 
the occurrence of unexpected inputs. Then, we quantified the 
recall, or coverage of unexpected inputs being correctly detected 
as a metric for robustness. We call this metric rec-unk. 

𝑝𝑝𝑝𝑝𝑐𝑐 − 𝑢𝑢𝑐𝑐𝑘𝑘 =
# 𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑡𝑡𝑏𝑏𝑏𝑏 𝑐𝑐𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑝𝑝𝑝𝑝 𝑢𝑢𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝 𝑖𝑖𝑐𝑐𝑝𝑝𝑢𝑢𝑡𝑡𝑖𝑖

# 𝑐𝑐𝑐𝑐 𝑢𝑢𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝 𝑖𝑖𝑐𝑐𝑝𝑝𝑢𝑢𝑡𝑡𝑖𝑖
 

5 Results, Analysis, and Discussion 

This section presents and discusses the results of our 
experimental campaign in light of the research questions RQ1 to 
RQ5 from Section 4.1. 

5.1 RQ1 - Classification Performance of Confidence 
Ensembles  

RQ1 aims to assess if the confidence ensembles outperform the 
base estimators when performing supervised or unsupervised 
classification.  

5.1.1 Comparison against other Classifiers in the Study 

Table III summarises the findings for each of the 13 classifiers 
in our experiments, and of ConfBag and ConfBoost ensembles 
using those classifiers as base estimators. Quantities in the table 
are an average of the maximum MCC score obtained on each 
dataset by base estimators and confidence ensembles, respectively, 
after trying all the possible parameters’ combinations. For a fair 
comparison of unsupervised and supervised classifiers, the scores 
in the table refer to a binary classification, i.e. normal vs anomalies 
in all datasets. On the right-hand side of the table, we report the 

gain in MCC when using a confidence ensemble in comparison 
with a base estimator: the red background of cells points to a 
negative gain (i.e., a reduction of classification performance), 
while the green cells highlight the combinations for which the 
confidence ensembles provide an actual improvement in 
classification performance.  

Looking at unsupervised classifiers in the top half of the table, 
it is quite clear that the confidence ensembles are a direct upgrade 
to base estimators. This is especially evident for ConfBoost, 
whereas ConfBag does not always show visible improvements 
(i.e., ConfBag has worse MCC than the base estimator PCA). 
ConfBoost, on the other hand, provides an outright improvement 
over the unsupervised classifier. This is a significant result as 
unsupervised classifiers are usually known for their poor 
classification performance: finding a generic solution that flat-out 
improves them is of utmost importance.  

For supervised classifiers in the second (lower) half of Table 
III, there is a clear distinction between simple classifiers as Naïve 
Bayes, LDA, Logistic Regression, Decision Trees and ensemble 
methods LogitBoost, ExtraTrees, RandomForest and XGBoost. 
ConfBag often struggles to match the performance of ensemble 
methods: see negative gains in the bottom 4 rows of the table. 
Conversely, ConfBoost always outperforms the base estimator by 
a fair – and sometimes huge – amount. We note that tree ensembles 
are considered top choices for the classification of tabular data: 
thus, improving classification scores of Extra Trees, Random 
Forests, or XGBoost even by a small amount is still an important 
achievement.  

More in detail, a ConfBoost of Decision Trees scored the 
highest average MCC of 0.805 over all classifiers, outperforming 
Random Forests (0.796) and XGBoost (0.791), and even their 
ConfBoost variants (MCCs of 0.798 In both cases). Tree 
ensembles are based on multiple decision trees (Extra Trees, 
Random Forests) or stumps (LogitBoost, XGBoost), which are 
created according to well-known procedures that for boosting 
heavily rely on labels. As Table III suggests, using confidence in 
predictions allows ConfBoost to have more discriminative power 

Table III. Comparison of classification performance of supervised and unsupervised classifiers against ConfBag and ConfBoost ensembles 
using classifiers as base estimators. Bolded numbers highlight the highest MCC for a specific base classifier and corresponding ensembles. 
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d CBLOF 0.232 0.225 0.233 0.279 0.286 -0.007 0.001 0.047 0.054 
Isolation Forest 0.250 0.251 0.265 0.320 0.317 0.001 0.015 0.070 0.067 

INNE 0.165 0.217 0.201 0.269 0.224 0.052 0.036 0.104 0.059 
HBOS 0.215 0.221 0.222 0.281 0.283 0.006 0.006 0.065 0.067 
PCA 0.288 0.265 0.267 0.311 0.303 -0.023 -0.021 0.023 0.015 

Su
pe
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is

ed
 

GNB 0.415 0.459 0.463 0.507 0.517 0.045 0.048 0.093 0.102 
Logistic Regression * 0.281 0.259 0.256 0.424 0.427 -0.022 -0.025 0.142 0.145 

LDA 0.447 0.462 0.448 0.604 0.604 0.015 0.001 0.157 0.158 
Decision Tree 0.747 0.805 0.795 0.805 0.802 0.058 0.046 0.058 0.054 
Logit Boost 0.753 0.746 0.75 0.765 0.768 -0.007 -0.003 0.012 0.015 
Extra Trees 0.773 0.762 0.772 0.778 0.782 -0.011 -0.001 0.005 0.009 

Random Forest 0.796 0.762 0.779 0.798 0.795 -0.034 -0.017 0.002 -0.001 
XGBoost 0.791 0.756 0.767 0.798 0.796 -0.035 -0.026 0.007 0.005 

Averages 0.473 0.476 0.478 0.534 0.531 0.003 0.005 0.060 0.058 
* Logistic Regression delivered multiple alerts of failed convergence in many datasets regardless of the combination of parameters we tried. 
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than its competitors, making it applicable also to scenarios where 
labels are not available. 

5.1.2 Benchmarking using TALENT 

Our experimental analysis already includes many datasets and 
many classifiers to be used individually and as base estimators for 
confidence ensembles. However, in recent years there has been a 
quick development of benchmarking frameworks for classification 
and regression tasks for tabular datasets that cannot be ignored. 
Thus, we benchmarked confidence ensembles, both ConfBag and 
ConfBoost, within one of these frameworks, LAMDA-TALENT 
[32], which is available at https://github.com/qile2000/LAMDA-
TALENT. The exact steps we followed to perform the benchmark 
are detailed in the conf-ensembles repository [72], which contains 
all the additional configuration files and scripts we crafted to 
exercise confidence ensembles within LAMDA-TALENT. In 
short, we extended the base classes to craft new classifiers, adding 
default configuration parameters and those that are selected in the 
optimization phase through grid searches, which are automatically 
executed within the framework. Also, the current version of the 
framework misses a script for plotting the figures that are in the 
paper [32], thus we logged metric scores for classifiers and 
datasets as CSV files, and edited them as Excel worksheets for data 
cleaning and plotting. Out of all the datasets available in the 
benchmark, we filtered out those related to regression tasks, and 
those that were triggering issues while training some classifiers 
(likely due to imperfect management of categorical features and 
missing values), which are only a few. 

The results are shown in Figure 3, which plots scores of 
different classifiers, averaged across all datasets in the benchmark. 
Mimicking the documentation of LAMDA-TALENT, on the 
horizontal axis we report the MCC rank (i.e., rank i means that the 
classifier has the i-th best MCC on a dataset), where a lower rank 
indicates better performance, while the vertical axis shows the 
average training time in seconds, on a logarithmic scale. The 
results obtained for the benchmark are consistent with the results 
from Section 5.1.1: for some base estimators as Decision Tree 
(DT), Logistic Regression (LR), Naïve Bayes (GNB), both 
ConfBag and ConfBoost provide a far better classification 
performance (i.e., depicted closer to the left) than base estimators. 
For stronger learners as XGB and RF, ConfBoost allows for faster 
training times for either the same or a slightly improved 
classification capability. DNNs are behind in the benchmark, 
requiring more time to train and also having worse classification 

performance. 

5.2 RQ2 – Comparison with other Bagging and Boosting 
Ensembles  

The results in the previous section suggest that confidence 
ensembles have the potential to improve classification 
performance against existing classifiers but does not show how 
they compare against alternative existing bagging and boosting 
ensembles. When analysing any ensemble learner, it is important 
to focus on the number k of base learners that are trained and then 
used at inference time, slowing down inference. Table IV 
quantifies the MCC of confidence ensembles and regular bagging 
/ boosting ensembles for supervised base estimators, varying the 
amount of base learners k. We left unsupervised base estimators 
out of the comparison as it is not possible to apply traditional 
boosting techniques to unsupervised classification by design, thus 
we would have missed the AdaBoostClassifier scores. 

First, we can observe how confidence ensembles outperform 
traditional bagging and boosting ensembles in the vast majority of 
cases. Starting from the top of the table, the GNB classifier has an 
average MCC of 0.415 (the column with k=1, or single learner, has 
the same value as the “base estimator” in Table III), with 
traditional bagging it goes up to 0.469, with boosting it stops at 
0.462, with ConfBag goes to 0.470, and with ConfBoost reaches 
0.516. Furthermore, in general for the GNB, Logistic regression, 
LDA, Decision Tree classifiers we observe that:  
• all ensembles outperform their base estimator;  
• ConfBag has scores similar to the traditional 

BaggingClassifier; 
• ConfBoost clearly outperforms traditional boosting, and it is 

almost always the top performing ensemble. 
Second, we read the table as follows: the more a “best” score 

leans towards the right side, the more base learners are needed and 
thus the more time and resource intensive the classification 
process will be. The MCC scores on the bottom right of the table 
are those of supervised ensembles Logit Boost, Extra Trees, 
Random Forests, XGBoost that we ran with default parameter 
values, which is k=100 base learners. These supervised ensembles 
are considered the top performing classifiers and have average 
MCC as high as 0.796 (Random Forest with 100 base learners, see 
second-last row on the extreme right of Table IV). The reader 
should notice how ConfBag and ConfBoost ensembles of Decision 
Trees reach and even exceed this MCC score using only k=10 base 
learners (4th column, 20-21th rows of the table), and further 

 
Figure 3: Results using the TALENT benchmark: ConfBag (blue dashes) and ConfBoost (orange circles) are exercised alongside non-DNN 

(green squares) and DNN (light-blue triangles) classifiers. The plot shows the MCC rank against training time, averaged across 100+ datasets. 
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improve with k=20 (5th column, same rows), reaching an average 
MCC of 0.804. This confirms the view that confidence ensembles 
are more accurate than the existing classifiers, and that they also 
require crafting significantly fewer base learners, which is a huge 
achievement as the resulting model will require far less resources 
than those needed by the existing supervised ensembles.  

5.3 RQ3 – Impact of Hyper-Parameters  

This section illustrates how different values assigned to hyper-
parameters affect the performance of confidence ensembles. 
Parameters such as k, conf_thr, f_bag and weighted_pred, may 
have an impact to ConfBag, while k, conf_thr, sampling_ratio and 
weighted_pred have a significant impact on ConfBoost.  

We quantify and depict the impact of the various parameters 
in Figure 4, which plots the average MCC achieved by ConfBag 
(left) and ConfBoost (right), respectively, while varying the values 

of hyper-parameters listed above. Down-facing black arrows in 
each plot point to the highest column, corresponding to the best 
overall classification performance. For ConfBag (left of Figure 4), 
we observe bars that are progressively growing from front to 
bottom: the first three lines of bars correspond to a conf_thr = 0.5, 
while the farther ones correspond to conf_thr = 0.7. Also, bars in 
the middle of the plot (k=10) are higher than those on the left (k = 
20) and on the right (k=5); having a weighted_pred = True (see 
where black arrows point to) usually allows for an additional slight 
improvement of classification performance. Overall, we conclude 
that ConfBag ensembles of k=10 base learners with 
weighted_pred=True and conf_thr ≥ 0.7 should be preferred over 
other combinations.  

For ConfBoost (right of Figure 4), we observe slightly 
different trends. First, the biggest impact on classification 
performance is due to the number of base learners. From front (k 
= 5) to bottom (k = 20) of the plot, we can notice bars becoming 
higher and higher, with major jumps between the second (orange-
patterned cylinders) and third (striped parallelepipeds) series, and 
from the fourth (yellow cylinders) to the fifth (blue 
parallelepipeds) series; these mark the increases from 5 to 10 and 
from 10 to 20 base learners. Using a weighted_pred = True does 
not seem to have a major impact: the 1st, 3rd, 5th series (non-
weighted prediction) are almost on par compared to the others 
using weighted predictions. The sampling_ratio has also a 
noticeable effect: if low (0.1, see right of the plot), it has a very 
detrimental impact. However, there are no major differences when 
using a sampling ratio of 0.3 or 0.5 (middle and left of the plot). 
Overall, we conclude that ConfBoost ensembles of k ≥ 20 base 
learners with sampling_ratio ≥ 0.3 should be preferred over others. 

As a final remark in this section, we acknowledge that these 
findings are based on the “average case”: the optimal performance 
in specific case studies may be reached using different 
combinations of parameters. Nevertheless, the results in Figure 4 
are useful to derive general guidelines and for setting up default 
parameters for confidence ensembles.  

5.4 RQ4 – Time Overhead 

The main downside of ensemble learning is that resulting 
models are more complex and thus always require more time than 
individual non-ensemble classifiers. Confidence ensembles are no 
different: the higher the k, the more base learners are used in the 
ensemble, the more time is needed for their training. We note that 

Table IV. Average MCC of confidence ensembles against 
supervised ensemble classifiers varying the number k of base 

learners. 
k (# base learners) 1 5 10 20 100 
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I) BaggingClassifier 0.415 0.469 0.468 0.469 
AdaBoostClassifier 0.415 0.422 0.425 0.462 

ConfBag 0.415 0.464 0.470 0.467 
ConfBoost 0.415 0.464 0.496 0.516 

Logistic Regression 
BaggingClassifier 0.281 0.310 0.299 0.308 

AdaBoostClassifier 0.281 0.271 0.277 0.291 
ConfBag 0.281 0.325 0.315 0.291 

ConfBoost 0.281 0.362 0.397 0.425 
LDA 

BaggingClassifier 0.447 0.445 0.441 0.443 
AdaBoostClassifier n.a. n.a. n.a. n.a. 

ConfBag 0.447 0.456 0.444 0.449 
ConfBoost 0.447 0.542 0.589 0.609 

Decision Tree 
BaggingClassifier 0.747 0.768 0.784 0.791 

AdaBoostClassifier 0.747 0.754 0.768 0.769 
ConfBag 0.747 0.775 0.796 0.804 

ConfBoost 0.747 0.782 0.799 0.803 
Ensembles 

Logit Boost  0.715 0.733 0.743 0.753 
Extra Trees  0.756 0.763 0.769 0.773 

Random Forest  0.776 0.782 0.789 0.796 
XGBoost  0.717 0.752 0.777 0.791 

 

  
Figure 4: Variation of MCC scores for different combination of hyperparameters for ConfBag (left) and ConfBoost (right) ensembles. 
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training a classifier is typically considered a one-off overhead 
which, even if significant, may be acceptable. The need to retrain 
a classifier may occur, but is rare, e.g. to respond to new classes, 
or to match distribution shifts, which may emerge after the 
classifier has been deployed.  

Figure 5 shows the train times required for a Decision Tree 
(DT) and for ConfBag and ConfBoost ensembles built using DT 
as a base estimator. We choose DT as it resulted in the highest 
MCC in Table III and Table IV: the expectation is that this trend 
will hold in terms of the relative increase in training time when 
changing the base estimator. The average time needed to train a 
DT in the 23 datasets in this study is 563 ms (left of Figure 5): a 
rough expectation could then be that confidence ensembles of size 
k will require k*563 ms for training i.e., if k=20, the train time may 
be 20*563 = 11260 ms. However, we can observe that ConfBoost 
ensembles with k=20 base learners (see labels over the x-axis) 
have a training time that ranges between 5000 and slightly over 
8000 ms. This is because parameters f_bag and sampling_ratio 
affect the amount of data used to train each base learner, and thus 
the overall training time. Another important observation is that the 
times shown in Figure 5 were computed running experiments as a 
single-thread process, blocking parallelization. Training of 
ConfBag base learners can be parallelized which can lead to 
significant reduction of the overall time on training the base 
learners depending on the capabilities of the specific machine used 
for training.  

The most significant overhead of using ensembles, and 
confidence ensembles in particular, is the one that occurs during 
inference. Similarly to training, this is proportional the number of 
base learners in the ensemble. However, the discussion of RQ2 
(Section 5.2) suggests that the usage of a limited number of base 
learners may still be sufficient to provide improved classification 
capabilities of confidence ensembles, generating less overhead and 
requiring fewer resources than other ensemble classifiers.  

5.5 RQ5 – Robustness to Unexpected Inputs 

The last research question concerns the robustness to non-IID 
data or unexpected inputs of confidence ensembles. We quantified 
that by training and testing all classifiers in our study, including 
the confidence ensembles, using the dataset variants as defined in 
Section 4.5.4. We aggregated the scores obtained on all dataset 
variants and all classifiers in Table V, which reports rec-unk scores 

of base estimators (one per row) and confidence ensembles.  
Unsupervised classifiers (base estimators in the first half of the 

table, 2nd column) have a better rec-unk than the supervised 
classifiers even with lower classification performance overall (see 
Table III). This confirms the results of field studies [4], [5],  
pointing to a better capability of dealing with unknowns of 
unsupervised classifiers than supervised counterparts.  

Deploying ConfBoost ensembles over supervised base 
estimators makes for a significant increase of rec-unk. This 
improvement is significant for Decision Trees (0.426 to 0.667), 
ensembles as Random Forests (0.424 to 0.658) and XGBoost 
(0.434 to 0.644). A ConfBoost with Decision Trees as base 
estimator has an average rec-unk of 0.667, meaning that exactly 
two-thirds of unexpected inputs are being correctly classified. This 
is a very significant improvement from the 4 out of 10 (rec-unk of 
0.426) obtained by using decision trees alone.  

Throughout years, researchers struggled to combine 
supervised and unsupervised classification mechanisms to obtain 
a unique complex classifier with optimal classification 
performance (that unsupervised classifiers do not achieve, when 
labels are available) and high robustness (which supervised 
classifiers often lack) [60], [41]. However, there is still no solution 
that is easy to deploy without excessive complexity and that 
consistently outperforms its competitors. Our results clearly 
suggest that ConfBoost ensembles create both more accurate and 
more robust classifiers thanks to their training process that relies 
on the concept of confidence in the classifier’s predictions.  

 
Figure 5: Variation of Train Time for different instances of 

ConfBag (down in the figure) and ConfBoost (up) built over 
Decision Trees as base estimator (DT, middle of the plot) 

Table V. Comparison of rec-unk of supervised and unsupervised 
classifiers against confidence ensembles in the presence of 

unknowns. The numbers in bold highlight the highest rec-unk for 
a specific base estimator and corresponding confidence 

ensembles. 
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d CBLOF 0.461 0.466 0.464 0.486 0.427 
Isolation Forest 0.464 0.416 0.430 0.442 0.451 

INNE 0.457 0.464 0.469 0.490 0.508 
HBOS 0.425 0.372 0.393 0.413 0.405 
PCA 0.430 0.427 0.414 0.422 0.432 

Su
pe

rv
is

ed
 

GNB 0.441 0.536 0.555 0.583 0.579 
Logistic Regression * 0.253 0.288 0.265 0.510 0.514 

LDA 0.326 0.433 0.480 0.598 0.599 
Decision Tree 0.426 0.512 0.490 0.667 0.661 
Logit Boost 0.434 0.480 0.483 0.562 0.585 
Extra Trees 0.412 0.480 0.481 0.622 0.631 

Random Forest 0.424 0.485 0.487 0.640 0.658 
XGBoost 0.434 0.491 0.495 0.599 0.644 

* Logistic Regression delivered multiple alerts of failed 
convergence in many datasets regardless of the combination of 

parameters we tried. 
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6 A Statistical Validation using Confidence Intervals 

This section provides a statistical validation of the 
performance of confidence ensembles and their base estimators.  

6.1 Computing Confidence Intervals 

Rather than using the measured MCC value, as is done in the 
previous section, we account for the uncertainty attached to these 
point estimates, which is due to randomness in the training and 
testing processes. The analysis is based on confidence intervals 
computed for each point estimate of MCC. Confidence intervals 
were computed using the code used in [94] (available at 
https://github.com/yukiitaya/MCC) which computes Simple, 
Fisher and Zou confidence intervals [95] for a given confusion 
matrix (from which MCC point estimates have been computed) at 
a given confidence level. As suggested in [96], “when the means 
of two independent samples are to be presented (graphically), it is 
a common practice to accompany the two points by error bars 
giving the 95% confidence intervals for each mean”. Thus, we set 
a 95% confidence level and computed the confidence interval for 
all classifiers and all datasets as a range  

𝐴𝐴𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀 = [𝑀𝑀𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝 −
𝑐𝑐𝑖𝑖𝑛𝑛𝑡𝑡

2 ; 𝑀𝑀𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝 +
𝑐𝑐𝑖𝑖𝑛𝑛𝑡𝑡

2 ] 

where MCCpe is the point estimate of an MCC score calculated in 
classifier’s testing, and cint is the tightest of the three confidence 
intervals above. The resulting CIMCC range will contain the “true 
MCC value” with a probability of 95%. 

6.2 Possible Outcomes of the Analysis 

For each combination of 23 datasets and 13 base estimators, 
we computed the confidence interval i) using the MCCpe of the 
base estimator CIMCC(base), and ii) using the highest MCCpe of 
ConfBag and ConfBoost in that combination i.e., CIMCC(ens). 
Comparing CIMCC(base) against CIMCC(ens) may result in one of 
the following outcomes. 

There is no statistically significant difference between  MCC 
scores of the base estimator and confidence ensembles when 
CIMCC(base) and CIMCC(ens) intervals overlap. With the chosen 
confidence level of 95%, the null hypothesis “the two-point 
estimates are identical” is statistically significant in this case. 
Conversely, CIMCC(base) and CIMCC(ens) may not overlap, leading 
to reject the null hypothesis. Confidence ensembles are better than 
the base estimator whether the interval CIMCC(ens) occupies a 
range of values that are strictly greater than the values occupied by 
CIMCC(base). The opposite happens when CIMCC(ens) occupies 
values strictly smaller than those of CIMCC(base); here, confidence 
ensembles are worse than the base estimator.  

These 3 cases are illustrated in Figure 6 with examples from 
the study. From the left of the figure, applying CBLOF as the base 
estimator and for creating confidence ensembles in the ADFANet 
dataset resulted in overlapping CIMCC(ens) and CIMCC(base) 
intervals. The difference between the respective MCC point 
estimates is not statistically significant: there is no evidence that 
the confidence ensembles outperform the base estimator. The 
example in the middle of Figure 6 shows that confidence 
ensembles, built using PCA as a base estimator perform better than 
the base estimator, while the opposite is depicted on the right of 
the figure, where the base estimator Extra Trees has better 
classification performance than confidence ensembles on the 

ARANCINO dataset.   
Considering all the combinations of datasets and base 

estimators in our experimental study, we obtain the following: 
• there is no statistically significant difference between the 

confidence ensembles and the base estimator in 53 out of 285 
(18.6%) combinations.  

• Confidence ensembles are better than the respective base 
estimators in 222 out of 285 (77.9%) combinations.  

• Confidence ensembles are worse than the base estimators in 
only 10 out of 285 (3.5%) combinations. 

These results show further evidence of the superiority of 
confidence ensembles over the respective base estimators. The 
benefits are evident not only via the experimental MCC point 
estimates from Section 5, but also after accounting for the 
uncertainty in the MCC scores. In the vast majority of the cases 
(96.5%) the confidence ensembles are not worse than the 
respective base estimators and in a significant proportion of 
combinations (~78%) offer an outright benefit.  

6.3 Impact of Confidence Ensembles on Base Estimators 

As a last contribution, we analyse the statistical improvement 
of confidence ensembles over individual base estimators, depicted 
in Figure 7. From top to bottom of the bar chart, we depict red 
slices when the base estimators are statistically better than 
confidence ensembles, light-grey slices when there is no 

 
Figure 6: Examples of possible outcomes of the statistical 
validation: i) no statistical difference (left), ii) confidence 

ensembles are better than the base estimator (center), and iii) the 
base estimator is better than confidence intervals (right). 
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Figure 7: The bar chart shows the percentage of cases in which 

confidence ensembles are statistically better (green), worse (red), 
no statistical difference (light-grey) against base estimators. 
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significant statistical difference, and green slices when confidence 
ensembles are better than the base estimators. 

The overall bar on the left of the chart summarizes the overall 
behaviour reported at the end of Section 6.2. When unsupervised 
classifiers are used as base estimators, the green slice grows more, 
simultaneously reducing the light-grey area. However, the most 
outstanding results can be observed for GNB, Logistic Regression, 
LDA, Logit Boost, Random Forests, and XGBoost base 
estimators, for which confidence ensembles are never statistically 
worse than base estimators and still being beneficial in most of the 
cases (i.e., no red slice). This is a critical improvement as decision 
tree ensembles as Random Forests and XGBoost are the de-facto 
standard for classification in tabular data [2], [16], [17], [27], [28] 
as they typically outperform their competitors. The two bars on the 
extreme right of Figure 7 show that confidence ensembles of 
Random Forests or XGBoost can further improve the performance 
of these two top-notch base estimators, with no drawbacks.  

7 Threats to Validity and Reproducibility 

We report here possible limitations to the validity and the 
applicability of our study. 

7.1 Internal Validity 

Internal validity is concerned with factors that may have 
influenced the results, but they have not been thoroughly 
considered in the study.  

First, classifiers have hyperparameters whose tuning critically 
affects the classification performance: as explained in Section 4.3, 
this is not relevant for the base estimators, but it is for ConfBag 
and ConfBoost. Therefore, we exercise confidence ensembles 
under different parameters’ combinations and discuss the results 
of these sensitivity analyses in Section 5.3 (RQ3). We discuss our 
plans for future work on confidence threshold in section 8 below.  

Second, each classifier may encounter a wide variety of 
problems during training (e.g., under/overfitting, poor quality of 
features, feature selection to leave out noisy features, etc.). These 
problems may have a noticeable impact on the classification 
performance of a classifier. The use of multiple tabular datasets 
with different features helped us mitigate this problem, as the 
envisaged problems are unlikely to affect all datasets. In cases 
where we found that these problems were recurring consistently, 
we made sure to find solutions through a careful tuning of hyper-
parameters, as with Logistic Regression. 

7.2 External Validity 

We cannot claim validity of this study for classifiers and domains 
other than those that we used in this study. One of the authors of 
this paper already conducted a preliminary analysis [18] using a 
technique similar to ConfBoost, and applying it using DNN base 
estimators for image classification. One of the major limitations 
was that the number of (DNN) estimators needed to be kept very 
low to avoid incurring in lack of resources or unfeasibly lengthy 
training and inference times. Since tree-based classifiers typically 
outperform or at least have comparable classification performance 
with DNNs for tabular data classification [2], [27], [28], [31], [32], 
there was no need to deploy confidence ensembles over DNNs. 
Indeed, confidence ensembles are agnostic to the base estimator 
by design, provided that there is a way to estimate the confidence 

in a specific prediction. Building confidence ensembles with 
DNNs as base estimators will result in resource-hungry classifiers 
that would limit their applicability in resource-constrained 
systems, which is a frequent condition in embedded or IoT 
systems, to name a few. Therefore, confidence ensembles using 
DNN base estimators should be used only in domains, mostly 
computer vision as image classification, where DNNs are clearly 
outperforming other competitors. 

Theoretically, confidence ensembles may also be generalized 
to regression problems, but this process will require domain-
specific knowledge of regression problems and is outside the 
scope of this paper. 

7.3 Reproducibility 

The usage of public data and public frameworks to build 
classifiers was a prerequisite for our analysis to enable the 
reproducibility of the analysis and scrutiny of the findings. All 
software used to obtain results presented therein is publicly 
available on GitHub [72] and PyPI, including the scripts to 
reproduce the experiments (see Appendix A for further 
descriptions). The framework does not include the datasets we 
used due to IP constraints; however, the manuscript provides the 
reader with references to all datasets, which are available to 
download at the owner/publisher’s websites. 

8 Conclusions and Future Work 

This paper introduced confidence ensembles, ensembles of 
Machine Learning classifiers that use confidence in predictions 
within the training process to learn their model. Confidence 
ensembles craft their base learners as multiple instances of an 
existing classifier, (i.e., base estimator), without requiring any 
additional input by the user. Confidence estimation is considered 
model-agnostic, enabling the application of confidence ensembles 
to any classification task. The confidence ensembles ConfBag and 
ConfBoost stem from traditional bagging and boosting, 
respectively, but their behaviour is noticeably different compared 
to baselines due to employing confidence in learners’ predictions.  

After designing ConfBag and ConfBoost, we set up an 
experimental campaign that uses more than 20 public datasets 
collected by monitoring real or simulated ICT systems and 
infrastructures. Our studies include many supervised and 
unsupervised classifiers used for processing tabular data, a 
common data type in real-world applications, despite the 
formulation of confidence ensembles makes them applicable also 
to other classification (e.g., image) tasks. After discussing research 
questions RQ1 to RQ5, we found that:  
• (RQ1) confidence ensembles are typically more accurate than 

the base estimators they are derived from. Especially, 
ConfBoost is a flat-out upgrade for any unsupervised 
classification task and allows also to improve the 
performance of tree-based supervised classifiers, which are 
the preferred choice for tabular data classification.  

• (RQ2) compared to traditional bagging and boosting 
ensembles, ConfBag and ConfBoost require fewer base 
learners to provide improved classification performance. This 
is critical from an implementation standpoint, as it allows for 
more efficient usage of resources as fewer inference 
processes have to be carried out simultaneously. 



16 

• (RQ3) despite having many hyper-parameters that could 
affect the classification performance, only a few of them may 
be worth subjecting to tuning, which may be optional in some 
cases. 

• (RQ4) the time - and complexity - overhead of using 
confidence ensembles over base estimators is linearly 
dependent on the number of base learners. 

• (RQ5) confidence ensembles and especially ConfBoost are 
much more robust to unexpected inputs (i.e., non IID, 
belonging to distributions other than those used in training 
and validation) than the base estimators.  

• An additional validation of experimental results using 
confidence intervals demonstrates how confidence ensembles 
are statistically better in more than half of the cases, and that 
confidence ensembles using LDA Logistic Regression, LDA, 
Logit Boost, Random Forests, and XGBoost are never 
statistically worse than base estimators, still being beneficial 
in most of the cases. 

Wrapping up, we have both experimental and statistical 
evidence that ConfBag and, even more, ConfBoost have a clear 
potential to improve any classifier in terms of both accuracy and 
robustness of classification, with little to no drawbacks aside from 
the increased complexity. Confidence ensembles can be applied to 
a wide range of problems and can be deployed over many 
classifiers. The Python framework publicly available on GitHub 
and PyPI [72] makes them easy to use, mimicking interfaces from 
well-known frameworks as scikit-learn.  

Among the directions for future work, our activities will 
mostly be devoted to the following aspects. 

Confidence Thresholds and Optimization. We acknowledge the 
possibility to consider alternative ways of using confidence 
thresholds in our approach. Currently, this threshold is defined as 
a hyperparameter, and its value is expected to come from the user 
of our methods (a default value if also defined in the respective 
classes). An alternative approach would be to consider whether an 
optimal value of the confidence threshold can be automatically 
sought during the training process. We have conducted 
preliminary studies and established that the value of the threshold 
impacts the classification accuracy, thus this machinery has high 
potential. However, we realise that seeking an optimal threshold 
value in training, which defines tighter decision boundaries, may 
negatively affect the capability of confidence ensembles of dealing 
with unexpected inputs (as discussed in section 5.5). The 
optimization will depend on a train/validation set, which may not 
be distributed the same as test data, likely dropping classification 
performance in case of unknown, non IID inputs. 

Usage of a Set of Base Estimators. Widespread and proven-in-
use fusion and ensemble techniques as Bagging and Boosting 
assume that base-learners are created as variants of the same ML 
algorithms: this is also the case of confidence ensembles. The 
usage of different ML algorithms for crafting base learners found 
application in many techniques as stacking, cascading, cascade 
generalization, delegation, recovery blocks as it promotes 
diversity, which is the enabling condition [14], [38] for ensemble 
learning to outperform individual classifiers. When drafting 
confidence ensembles at a first stage, we were initially thinking of 
using different base estimators. The problem we found is that each 
classifier has their own probability distribution of predictions: the 
usage of a unique confidence threshold did not allow to fully take 
advantage of the diversity of base estimators. A possible solution 

could be to allow only perfectly, or semi-perfectly calibrated [97] 
classifiers to be used as base estimators, alleviating this issue. 
Calibration should make predicted probabilities comply to a 
common distribution, making them behave properly against the 
confidence threshold used by the confidence ensemble.   

Framework refinement. The framework for confidence 
ensembles is publicly available at [72] and fully operational. 
However, there are ongoing coding optimizations and others to be 
made for increasing the quality of the code and its speed, relying 
on GPU supports whenever available.  
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Appendix A 

Structure of the Framework 

The framework that implements ConfBag and ConfBoost is 
called confidence-ensembles and is publicly available on GitHub 
(https://github.com/tommyippoz/confidence-ensembles [72]) and 
on PyPI (https://pypi.org/project/confidence-ensembles/).  

Appling the framework includes the following steps: 
• Define a base class Classifier which provides the definition 

of the main interfaces and provides compatibility with scikit-
learn and PYOD frameworks. Thus, confidence ensembles 
can be used in scikit-learn Pipelines, GridSearchCV for 
parameters, or make them part of complex estimators such as 
StackingClassifier or VotingClassifier without any issue. 

• Define a class ConfidenceBaggingClassifier for ConfBag and 
a ConfidenceBoostingClassifier for ConfBoost. These inherit 
their type from Classifier and thus benefit from the features 
of the superclass.  

Shared Methods 

Confidence ensembles classes, either 
ConfidenceBaggingClassifier or ConfidenceBoostingClassifier, 
have their own constructors, which we detail in the next 
subsection. The classes also have the following additional 
methods: 

fit(self, X, y=None) 
This function is used for training a classifier using a training 
feature set (X) and labels(y), that are optional and set to None by 
default. The training feature set can be a 2D matrix (either 
numpy.ndarray or pandas.DataFrame) for tabular datasets, or an 
array of images for image classification. Calling this function is 
mandatory for calling any other function on the objects. 

predict_proba(self, X) 
This function returns a 2D numpy.ndarray of probabilities, 
composed of as many rows as the items in X, and as many columns 
as the classes of the problem (minimum of 2). Each row of the 
ndarray describes probabilities that an item in the test set belongs 
to a particular class, thus each row of probabilities sums up to 1. 
The highest value in each row of probabilities correspond to the 
class predicted for a specific item.  

predict(self, X) 
This function returns a numpy.ndarray of predicted classes 
composed of as many predictions as the items in X. Each item 
describes the class assigned by the classifier to each item in X. 

predict_confidence(self, X) 
This function returns a numpy.ndarray of floating point values 
where each value describes the confidence that the classifier has in 
each prediction for the items in X. The higher the floating point 
value, the more confident the classifier. Ideally, these floating 
point values should range from 0 (complete lack of any 
confidence) to 1 (certainty in the classification). 

classifier_name(self) 
Returns the name of the classifier as a string. 

get_diversity(self, X, y, metrics=None) 
This function outputs the value of all diversity metrics specified in 
metrics. To compute them, both a feature set X and associated 

labels y are needed, regardless of the type of learning (supervised, 
unsupervised) applied to the problem. Diversity metrics are 
implemented in the metrics.DiversityMetric class of confidence 
ensembles and use the metrics defined in [43]. The function 
outputs a dictionary of pairs (metric name, value).  

Constructor and Parameters of ConfBag  

Creating a Pyton object implementing the ConfBag classifier 
requires a set of different parameters to be specified, which map 
those defined in Section 3.2.4. 
• clf: specifies the algorithm to be used for creating base 

learners (base_estimator in Section 3.2.4). 
• n_base (int): number of base learners (k in Section 3.2.4). 
• max_features (float): specifies the percentage of features to 

be used at each iteration (f_bag in Section 3.2.4), 
• sampling_ratio (float): specifies the percentage of the dataset 

to be used at each iteration (sampling_ratio in Section 3.2.4). 
• conf_thr (float): defines the a floating point value to be used 

as a threshold used to distinguish between “confident 
enough” and “not confident enough” predictions (conf_thr in 
Section 3.2.4). 

• perc_decisors (float): specifies the percentage of base 
learners to be used for prediction (bl_perc in Section 3.2.4). 

• n_decisors (int): specifies the number of base learners to be 
used for prediction (bl_n in Section 3.2.4). 

• weighted (bool): True if prediction has to be computed as a 
weighted sum of probabilities of base learners or False 
otherwise (weighted_pred in Section 3.2.4). 

Listing A.1. Usage of ConfBoost for supervised learning. 

import numpy 
import sklearn.metrics as metrics 
from sklearn.discriminant_analysis  
 import LinearDiscriminantAnalysis 
from src.classifiers.ConfidenceBoosting  
 import ConfidenceBoosting 
 
# Load dataset in the typical way,  
# splitting in train (x_train y_train)  
# and test (x_test, y_test) sets 
 
# Creating classifiers 
classifier = LinearDiscriminantAnalysis() 
cb_clf = ConfidenceBoosting(clf=classifier,  
      n_base=10,  
                            learning_rate=2, 
                            sampling_ratio=0.5,  
                            conf_thr=0.8) 
 
# Exercising Classifier 
classifier.fit(x_train, y_train) 
clf_pred = classifier.predict(x_test) 
 
# Exercising ConfBoost 
cb_clf.fit(x_train, y_train) 
cb_pred = cb_clf.predict(x_test) 
 
print('LDA has accuracy of %.3f, whereas the  
 ConfBoost(LDA) has accuracy of %.3f' %  
 (metrics.accuracy_score(y_test, clf_pred),  
  metrics.accuracy_score(y_test, cb_pred))) 
 

 

https://github.com/tommyippoz/confidence-ensembles
https://pypi.org/project/confidence-ensembles/
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Constructor and Parameters of ConfBoost 

Creating a ConfBoost object requires a set of different 
parameters to be specified, which map those defined in Section 
3.3.4. 
• clf: specifies the algorithm to be used for creating base 

learners (base_estimator in Section 3.3.4). 
• n_base (int): defines the number of base learners (k in Section 

3.3.4). 
• learning_rate (float): defines how fast weights of items of the 

training set are being updated (lr in Section 3.3.4). 
• sampling_ratio (float): defines the percentage of the dataset 

to be used at each iteration (sampling_ratio in Section 3.3.4). 
• conf_thr (float): defines the a floating point value to be used 

as a threshold used to distinguish between “confident 
enough” and “not confident enough” predictions, and update 
the weights of the training set accordingly (conf_thr in 
Section 3.3.4). 

• perc_decisors (float): specifies the percentage of base 
learners to be used for prediction (bl_perc in Section 3.3.4). 

• n_decisors (int): specifies the number of base learners to be 
used for prediction (bl_n in Section 3.3.4). 

• weighted (bool): True if the prediction has to be computed as 
a weighted sum of probabilities of base learners 
(weighted_pred in Section 3.3.4) and False otherwise. 

Usage Examples 

We show the usage of the library for two simple analyses in 
Listing 1 and Listing 2, respectively. For both libraries, we assume 
that the dataset gets loaded according to user’s preferences and 
show how to instantiate an object of respective classifier type, train 
it, and predict using the respective confidence ensemble. Listing 1 

refers to supervised learning, while Listing 2 shows the usage of 
confidence ensembles for unsupervised learning. 

Repeatability of Experiments  

All experiments reported in this paper can be reproduced by 
calling specific scripts available in the library. Each script sets a 
random seed at the beginning to avoid the nondeterminism due to 
pseudo-randomness; this makes the execution fully deterministic 
and repeatable. Results in the paper can be obtained using the 
following scripts: 
• tests/rq1-2.py contains the script used to generate the data 

needed to answer RQ1 and RQ2. The script generates a large 
CSV file that can be then used to compute averages, produce 
plots, and to compute additional statistics. 

• tests/rq3.py contains the script used to generate the data 
needed to answer RQ3, including the generation of the 
dataset’s variants and the computation of rec-unk. The script 
generates a large CSV file that can then be used to compute 
averages, produce plots, and to compute additional statistics. 

The XLSX file contains the results of these scripts, including 
the plots and tables presented in this paper, can be found in the root 
folder of the GitHub repository. 
  

Listing A.2. Usage of ConfBoost for unsupervised learning. 

import numpy 
import sklearn.metrics as metrics 
from pyod.models.pca import PCA 
from src.classifiers.ConfidenceBoosting  
 import ConfidenceBoosting 
 
# Load dataset in the typical way,  
# splitting in train (x_train y_train)  
# and test (x_test, y_test) sets 
 
# Creating classifiers 
classifier = PCA(contamination=an_perc) 
cb_clf = ConfidenceBoosting(clf=classifier,  
      n_base=10,  
                            learning_rate=2, 
                            sampling_ratio=0.5,  
                            conf_thr=0.8) 
 
# Exercising Classifier 
classifier.fit(x_train) 
clf_pred = classifier.predict(x_test) 
 
# Exercising ConfBoost 
cb_clf.fit(x_train) 
cb_pred = cb_clf.predict(x_test) 
 
print('PCA has accuracy of %.3f, whereas the  
 ConfBoost(PCA) has accuracy of %.3f' %  
 (metrics.accuracy_score(y_test, clf_pred),  
  metrics.accuracy_score(y_test, cb_pred))) 
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Appendix B 

8.1 Definitions 

This section reports the table of terms that are used throughout 
the paper, associated with the meaning they have within the 
manuscript. 

Table B.I: terms used throughout the manuscripts. 

Term Meaning within the manuscript 

System 
Indicator 

A performance indicator (e.g., memory usage, 
bytes received from the network, number of 

opened files) of a target system. 
Feature A System Indicator to be monitored for analysis 

Feature Value The value of a Feature gathered at a specific 
time instant or when specific events occur 

Data Point A collection of Feature Values of different 
Features for the same Target System 

Tabular Data 
Structured data comprising of multiple Data 
Points (rows) containing values of multiple 

Features (columns) 

Label A class (categorical value) associated to a Data 
Point.  

ML Algorithm 
An algorithm that can learn classification or 

regression tasks from data and generalize their 
findings to unseen data. 

Classifier A ML algorithm that performs classification  

Training Data Collection of Data Points used for training a 
classifier 

Inference The process of assigning a label to a data point. 

Model An object containing what a classifier learns 
after training. It can be used for inference. 

Prediction 
The Label result of the inference of a classifier, 
i.e., the output of a Model when a Data Point is 

fed into it. 
Unexpected 

Input 
Data point to be classified that does not belong 
to the distribution of data points in training data 

Supervised 
Classifier A classifier whose training data is labelled 

Unsupervised 
Classifier A classifier whose training data is unlabelled 

Base Learner Classifier exercised within an ensemble 
classifier 

Base Estimator 
The classifier used to craft base learners. It is 

instantiated with different parameters or training 
set to create diverse base learners. 

Uncertainty The epistemic uncertainty to be estimated using 
different techniques. 

Confidence Floating point value that quantifies the 
Uncertainty in a Prediction 

Confidence 
Ensembles 

Either Confidence Bagging or Confidence 
Boosting 

confidence-
ensembles 

The GitHub framework that implements 
Confidence Ensembles, available at 

https://github.com/tommyippoz/confidence-
ensembles and on PyPI at 

https://pypi.org/project/confidence-ensembles/ 
 

8.2 Table of Acronyms 

This section summarizes the acronyms used in this paper. 

Table B.II: Table of acronyms. 

Term Meaning within the manuscript 
ICT Information and Communication Technology 
ML Machine Learning 

DNN Deep Neural Network 
IID Independent and Identically Distributed 

OOD Out-Of-Distribution 

PCA 
Principal Component Analysis (mostly referred to as 

a classifier, but also as and a dimensionality reduction 
technique in Section 2.2) 

HBOS Histogram-based outlier score 
CBLOF Cluster-Based Local Outlier Factor 

INNE Isolation-based Anomaly Detection using Nearest-
Neighbor ensembles 

kNN k-th Nearest Neighbour 
SOTIF Safety Of The Intended Functionality 
GNB Gaussian Naïve Bayes 
LDA Linear Discriminant Analysis 

XGBoost eXtreme Gradient Boosting 
ConfBag Confidence Bagging 

ConfBoost Confidence Boosting 
PyPI Python Package Index 
MCC Matthews Correlation Coefficient 
 

  

https://github.com/tommyippoz/confidence-ensembles
https://github.com/tommyippoz/confidence-ensembles


 

Appendix C 

The paper mostly relies on the Matthews Correlation Coefficient (MCC) to quantify classification performance. For completeness, this section 
reports tables and plots discussed in Section 5.1 in which we present Accuracy and F1 (F-Measure) scores instead of MCC values. The reader 
may observe that changing the metrics does not change the takeovers of the paper. Note that results of the benchmark with LAMDA-TALENT 
are also available at the public GitHub [72], folder ‘benchmark’. 

Results using the TALENT benchmark using Accuracy - Figure C.ACC (left) – and F-Measure – Figure C.F1 (right). 
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Comparison of classification performance of classifiers against ConfBag and ConfBoost ensembles using classifiers as base estimators using 
Accuracy (Table C.ACC, up), and F-Measure (Table C.F1, down). 

 Classifier 

Av
er

ag
e 

AC
C

 o
f B

as
e 

Es
tim

at
or

 a
nd

 C
on

fid
en

ce
 E

ns
em

bl
es

 

B
as

e 
E

st
im

at
or

 

C
om

fB
ag

 
(w

ei
gh

te
d=

Fa
ls

e)
 

C
om

fB
ag

 
(w

ei
gh

te
d=

T
ru

e)
 

C
on

fB
oo

st
 

(w
ei

gh
te

d=
Fa

ls
e)

 

C
on

fB
oo

st
 

(w
ei

gh
te

d=
T

ru
e)

 

AC
C

 G
ai

n 
of

 C
on

fid
en

ce
 E

ns
em

bl
es

 w
.r.

t. 
Ba

se
 E

st
im

at
or

 

C
om

fB
ag

 
(w

ei
gh

te
d=

Fa
ls

e)
 

C
om

fB
ag

 
(w

ei
gh

te
d=

T
ru

e)
 

C
on

fB
oo

st
 

(w
ei

gh
te

d=
Fa

ls
e)

 

C
on

fB
oo

st
 

(w
ei

gh
te

d=
T

ru
e)

 

U
ns

up
er

vi
se

d CBLOF 0.790 0.814 0.812 0.829 0.839 0.024 0.022 0.039 0.049 
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* Logistic Regression delivered multiple alerts of failed convergence in many datasets regardless of the parameters we tried. 
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