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Figure 1: (A) Visualisation user studies can be assembled using a declarative specification from (B) visualisations and (C) 
separately developed benchmark data and tasks used to evaluate them; the latter can be organised into ‘literate’ test-suites that 
combine test data with narratives explaining their use and justifying their choice. (D) VisUnit parses declarative studies into (E) 
study sequences and delivers (F) visual stimuli to participants by combining visualisations, datasets, and tasks dynamically. 

Abstract 
We make four contributions to lower the overhead of conducting 
visualisation user studies and promote the reuse and extension of 
their materials. (i) A declarative Javascript specification lets experi-
menters describe how studies are assembled from tested visualisa-
tions, datasets, tasks and chosen evaluation strategies. (ii) A VisUnit 
library translates these into sequences of visual stimuli and delivers 
them to participants. We move away from monolithic evaluation 
stimuli typical of previous work and construct studies around three 
ingredients – visual encodings, datasets, and tasks – that can be 
developed independently and recombined flexibly. (iii) This paves 
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the way for developing benchmark data+tasks test-suites as indepen-
dent, reusable resources to support multiple studies. (iv) Structuring 
user studies as “literate” visualisation notebooks brings together in 
the open all ingredients necessary for replication and scrutiny: for-
mal design specification; underlying materials; participant-facing 
views; and narratives justifying design and supporting reuse. 
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1 Introduction 
User studies are commonly employed to formally evaluate the 
effectiveness of visualisation systems and unravel how our per-
ceptual and cognitive systems interact with visual data represen-
tations [24, 33]. Over the last decade more have been published 
each year [44] and many are influential on visualisation research. 
However, empirical evaluation work trails behind technique devel-
opment and stifles the evolution of a cohesive understanding of 
how visual tools should be designed [21, 30, 44]. This is attributed 
to studies being challenging to conduct, time consuming to carry 
out, and their reliance on a broad range of activities and expertise. 
There is also a lack of published study materials, data, and detailed 
analyses that future researchers can build on [31]. We introduce 
four contributions to alleviate this: 

• (i) a declarative grammar for specifying visualisation 
studies from constituent components (tested visual encod-
ings, datasets and tasks) and evaluation strategies (randomi-
sation and blocking approaches, training) and 

• (ii) VisUnit, a library that automatically assembles theses 
into web-studies that can be readily delivered to participants. 

These build on earlier ideas from EvalBench [2], GraphUnit [41], 
Touchstone2 [17], EvalViz [37] and, more recently, reVisIt [15]. Our 
declarative language and VisUnit share benefits already evidenced: 
they lower the overhead of assembling and deploying user studies; 
create a transparent link between a user study’s formal design and 
its delivery; and support the exploration of alternative study de-
signs by letting experimenters reshape studies with minimal effort. 
VisUnit innovates by moving away from monolithic visual stim-
uli, instead allowing them to be declared in terms of constituent 
components – encoding (and interaction), datasets, and tasks – and 
combining these into studies dynamically, based on chosen eval-
uation strategies. This decomposition fits models of visualisation 
designs [40, 46, 53] and inspires a new reuse opportunity: 

• (iii) data+task test-suites as research contributions and 
resources in their own right. 

Visualisation studies most often source their own datasets and 
tasks to evaluate with. This is non-trivial and time-consuming [44], 
as the materials need to be ecologically valid yet constrained enough 
to support evaluation, minimise confounding factors, and afford 
meaningful participant responses to data questions. We advocate 
that researchers pursue data+task test-suites – concrete datasets 
and questions about them – as contributions in their own right. 
Comprehensive test-suites for particular types of data (e.g., multi-
dimensional, network, spatio-temporal) could, once developed, un-
derlie a body of cohesive evaluative research on how best to vi-
sualise those data. Pursuing them independently, rather than as 
by-products of specific studies, would focus effort, expertise and 
scrutiny on assembling test-suites meaningful, comprehensive, and 
rigorously built. Moreover, they connect with efforts to develop 
visualisation task taxonomies by providing for them concrete and 
representative exemplars that visualisations can readily test against. 

• (iv) literate user studies that showcase and explicitly dis-
cuss the impact of selected and competing experimental 
design choices on study delivery and which bring together 
and in the open all ingredients necessary for replication and 
public scrutiny. 

When reporting on user studies, authors typically showcase 
them as delivered to participants and motivate the chosen exper-
imental design over *imagined* alternatives. Instead, specifying 
studies declaratively lets alternative designs be explored and ex-
perienced directly to strengthen the case for the chosen option. 
This is possible because design adjustments (e.g. evaluating a factor 
between participants rather than within) can be translated auto-
matically into revised study deliveries. We show that visualisation 
notebook environments such as Observable 1 can bring together all 
ingredients necessary for a study’s replication and public scrutiny: 
its formal design specification, underlying study materials (visual 
encodings, data, and task specifications), alternative choices, how 
these present to participants, and narratives justifying choices and 
supporting reuse. 

Our approach borrows nomenclature and ideas from Unit Testing 
in software development. Our data+task test-suites are ‘live’, testable 
instantiations of abstract task taxonomies in the same way that test-
suites are developed for software projects as ‘live’ representations 
of static project-requirement documents. We let visualisations con-
nect and evaluate against data+task test-suites automatically using 
VisUnit in the same way that software test-suites are managed by 
Unit testing libraries (see Section 2). 

2 Related work 

2.1 Visualisation user studies and their 
challenges 

Quantitative user studies in data visualisation typically involve 
showing people (participants) visualisations of data and measur-
ing their performance (accuracy, speed) and preference as they 
attempt tasks that probe their understanding of the data. They play 
a central role in establishing the effectiveness of data visualisation 
designs [24, 33, 39]. 

Conducting user studies is challenging, time consuming, 
and requires diverse expertise [8, 17, 31, 32, 44]. They involve 
a broad range of activities such as scoping the research, sourcing 
or implementing visualisations to evaluate, coming up with tasks 
and datasets that are representative of how visualisations are used 
in practice yet can support the generation of quantifiable insights, 
designing study procedures that reduce confounding factors, build-
ing infrastructure to run the study and collect results, recruiting 
and managing participants, and analysing results. A rigorously con-
ducted, documented, and disseminated study is multi-month-long 
process that requires diverse expertise [44]. 

Studies are often difficult to replicate or extend. Following a 
survey of visualisation studies on perception, Quadri et al. conclude 
that one of the biggest challenges facing such studies is their limited 
scope and reproduceabilty. They attribute this to the difficulties in 
sourcing study materials and accessing diverse participants [44]. In 
their review and positions on the state of replication in visualisation, 

1www.Observablehq.com 
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Kosara and Haroz advocate for replication as a viable visualisation 
contribution. They deem access to original data, code as well as 
documented methods and analyses as crucial to support this [21, 30]. 

Our work tackles these challenges holistically. VisUnit literate 
studies bring together in the open all ingredients needed for public 
scrutiny and seamless reuse and extension. VisUnit test suites elevate 
the design of test data and tasks to contributions in their own 
right, ready to support evaluation efforts pursued independently 
(Section 4). 

2.2 Supporting the creation and replication of 
user studies 

Prescriptive guidelines for conducting user studies include 
best practices for designing materials and study flows [4, 31], for 
ensuring that studies can be replicated and extended [21, 30], and 
for moving from in-lab to online studies [9, 23, 32]. VisUnit supports 
the adoption of prescriptive methods by: (1) lowering the overhead 
of exploring alternative study designs through the use of declarative 
specifications, and (2) by asking researchers to justify design choices 
in-situ with the user study and its materials (Sec.4,3.2,5). The first 
contribution is not entirely new. The authors of Touchstone2 [17] 
remarked that the ease of manipulating study designs in declarative 
forms supports the exploration of alternatives. However, our fourth 
contribution is to make such exploration part of explicit, open 
design narratives and place these at the forefront of literate study 
dissemination. 

Efforts to lower the overhead of creating, deploying, and 
processing the results of user studies also exist. Most relevant 
are frameworks that move away from stimuli-sequences that are 
crafted manually for different participant groups (treatments), to 
assembling sequences flexibly from study-components and rules 
described in declarative study specifications, and deliver them with 
little overhead to participants. 

EvalBench [2] was to our knowledge the first to use elements 
of these innovations. It relied on XML definitions of participant 
tasks and a Java architecture that could transform these into visual 
stimuli. Our own GraphUnit [41] explored the assembly of network 
visualisation studies from XML study-design specifications and a se-
lection of reusable network datasets and parametric tasks informed 
by literature. Subsequently, Touchstone2 used a declarative language 
to describe randomisation strategies for use in Human Computer In-
teraction experiments and remarked how it lets researchers explore 
alternative designs with ease. Recently, reVisIt adopted similar ideas 
but innovated with a more powerful design-specification form in 
modern JSON to support the assembly of studies from a wide range 
of web-stimuli [15]. EvalBench, Graph- and VisUnit, and reVisIt all 
introduce some form of parameterised task definitions. Section 3.2 
describes how this works in VisUnit. Overall, these innovations 
significantly streamline the creation of user studies. 

Other research efforts to support the creation of user studies 
are less closely related to ours and rely predominantly on visual 
stimuli assembled a priori into static images [12, 13, 18, 37, 49, 50]. 
Finally, as already argued by Ding et al [15] commercial surveying 
platforms such as Qualtrics are not sufficiently flexible to support 
the needs of complex visualisation evaluation. 

Our contribution to this space is two-fold. First, our declarative 
form shares the benefits of those proposed previously: they capture 
study designs formally and support the exploration of alternative 
designs. However, we add one more step towards fully modular user-
study designs. VisUnit’s decomposition of visual stimuli into their 
constituent parts – visualisations, datasets, and tasks – inspired us 
to move away from monolithic studies and separate out test-suites 
of datasets and tasks as reusable, extensible research artefacts and 
resources. Second, we show how declarative study-specifications 
can underlie a new form of literate design and dissemination of 
studies and their materials. 

2.3 Synergies with visualisation task 
taxonomies 

Our data+task test-suites complement work on visualisation task 
taxonomies. These refer to systematic classifications of tasks or 
objectives users pursue while analyzing and interpreting data vi-
sually. They help designers create visualizations that align with 
user needs and inform their evaluation. Some task taxonomies are 
generic. They encompass broad activities like exploration, compar-
ison, and pattern recognition applicable across different visualisa-
tion types [3, 11, 52, 56]. Others are tailored to specific kinds of 
data, such as network [1, 26, 34], geospatial [5, 45], or temporal 
data[38, 47] to capture their particularities. 

Many user studies rely on such taxonomies to derive tasks to 
evaluate against [44]. However, the journey from abstract task 
taxonomies to concrete task presentations that are instantiated 
with data and can be deployed in a user study is arduous and can 
account for the most significant part of a study’s design [44]. First, 
while most taxonomies exemplify task categories, they do not do 
so exhaustively. It is often difficult to imagine the ways in which an 
abstract task can present in practice, especially when considering 
the nuances of real-datasets. Second, the exact way in which a task 
presents to participants needs to be designed carefully to reduce the 
impact of confounding factors. Finally, picking datasets and instan-
tiating tasks in them, i.e. picking which data facets a participant 
is queried about, is often non-trivial since tasks rely on answers 
being possible and meaningful in the dataset. 

VisUnit lets such activities be carved out as research in its own 
right, distinguishable from other evaluation efforts. Essentially, 
data+task test-suites can act as instantiations of visualisation task 
taxonomies into datasets, that can be disseminated as stand-alone 
evaluation resources for visualisations to test against. Moreover, 
test-suites can go beyond supporting evaluation to serve as concrete 
exemplars of how abstract task-taxonomies translate to practice. 

2.4 Parallels to Unit Testing 
Our work was further inspired by Unit Testing concepts in software 
development [27]. This involves testing ’units of code’ (methods, 
classes, packages) to ensure they meet their functional requirements. 
Concretely, formal tests are designed for each unit of a software 
project to verify that the unit’s outputs for some given inputs match 
expectations. Individual tests are then collected in a test-suite, which 
a project’s code base can be tested against repeatedly, as it is changes 
and evolves. Developing reliable and exhaustive tests is non-trivial 
but once a test-suite assembled, repeated testing can be done at no 
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added cost, with the help of language-specific unit testing libraries. 
Since tests are typically created to meet a project’s documented 
requirements, test-suites are seen as “live” representations of project 
requirements, ones that software can be readily evaluated against. 
In fact, in test-driven development, unit tests are written before 
the software is even developed as a means of capturing how the 
software should behave in practice. 

We transfer two fundamental ideas to visualisation evaluation. 
First is the ability to capture the data-reading requirements of 
visualisations – what they need to answer about the data – in 
concrete, “live” test-suites that visualisations can test against. Second 
is the ability to connect visualisations to such test-suites and test 
against them with minimal overhead using “unit” libraries. We 
acknowledge the parallelism does not extend completely. User-
studies remain reliant on participant engagement and are thus 
unlikely to be used as freely and often as unit-testing. Nevertheless, 
we see value in borrowing those aspects that do translate and can 
benefit visualisation evaluation. 

Finally, we note that unit testing and visualisation user studies 
bear resemblance in their focus on evaluating relatively low-level 
functionality robustly. They both occupy distinct roles among a 
wider array of testing options and typically are not meant to substi-
tute methods that evaluate systems more holistically (e.g., system 
or usability testing in software development; insight-based and 
longitudinal engagement with users). 

2.5 Building on literate visualisation and 
Observable notebooks 

Literate visualisation [54] and visualisation notebooks more gen-
erally [29], rely on combining the narrative clarity of written lan-
guage with the expressive power of visualizations as a means to 
discuss and justify visualisation designs or to create compelling 
data stories. Observable notebooks are a concrete technological 
embodiment of this paradigm. They allow users to combine data, 
code, visualisations, and explanatory text in a single document to 
integrate visual data analysis and storytelling. By extension, we call 
for “literate” user studies and visualisation data+tasks test-suites 
that combine explorable, ready-to-use study materials and design 
specifications with narratives that justify their choice and explain 
their use (Section 4). While the principles around our approach 
are technology-agnostic, we exemplify how it can work within the 
Observable environment and show that Observable’s support for 
notebook development and extension – versioning, forking, tracing, 
and permission management – can be readily harnessed to support 
the creation of user studies that are easier to extend and reproduce 
(Section 5). 

2.6 Other efforts to evaluate data visualisations 
Finally, we note efforts to reduce the need for user-driven evalu-
ation altogether. Wu et al. [55] review the use of AI to evaluate 
visualisations based on design guidelines or models trained on avail-
able empirical data and conclude that studies are still indispensable 
to the evaluation of complex and novel visual encodings. Heuristic 
approaches [51] rely on expert designers’ assessment of a visual-
isation’s expected effectiveness. Data saliency models attempt to 
capture the working of people’s visual perception and predict the 

effectiveness of visual encodings [35]. More relevant to our work 
are methods that rely on inspection of visualisation code or design 
such as algebraic visualisation evaluation and linting. They target 
similarly low level data-reading tasks as quantitative user studies 
do and also draw on parallels to software development. Visualisa-
tion linting [36] relies on close code/visualisation inspection and 
recommendations for improvement while algebraic evaluation [28] 
is in some ways similar to formal program verification [16] in that 
it attempts to use rules to determine the effectiveness of a visualisa-
tion/program without actually running it. We argue that linting and 
algebraic visualisation evaluation, while useful, cannot substitute 
the need for actual user evaluation data, especially in more complex 
usage scenarios; e.g. those involving interaction. 

3 Declarative visualisation user studies 
Stimuli typical of visualisation studies can be thought of as a com-
bination of data, visual encoding, and tasks. We show how 
we can define these separately and assemble them flexibly into 
different combinations (Section 3.1). This paves the way towards 
describing user studies declaratively based on evaluated visuali-
sations, datasets, and tasks and associated testing strategies (e.g. 
between or within participant testing; whether tasks are timed and 
trained). We introduce a concrete declarative specification that 
can capture a broad range of visualisation studies and a Javascript 
VisUnit library that can interpret the specifications, translate 
them into studies, and deliver them to participants (Section 3.2). 
We validate these contributions in Section 3.4. We first fully repli-
cate two previously published studies [20, 43]. We then sample 49 
representative visualisation user studies from TVCG and discuss 
the degree to which VisUnit can replicate them. 

3.1 Assembling visual stimuli from constituent 
components 

Visual stimuli are the backbone of visualisation user studies. Most 
can be seen as combinations of a (a) visual encoding of some (b) un-
derlying data and (c) elements pertaining to a task that partici-
pants are asked to do. The latter may include task instructions, 
annotations on the primary visualisation (e.g., highlighted marks 
that task instructions reference), and mechanisms for answering. 
Example stimuli are shown in Fig. 2. This delineation between 
visualisation, data, and tasks aligns with conceptual models of 
data visualisation design [40, 53] and efforts to develop task tax-
onomies [3, 11, 34, 45, 52, 56]. With a few exceptions, most visu-
alisation studies report on their stimuli and materials along these 
three facets. 

Studies typically expose participants to multiple ‘repeats’ (or 
‘trials’) which are visual tasks of similar form but with different 
content and answers. For example, Ghoniem et al. generate a new 
random network for each repeat of the same task [19]. Okoe et 
al.[42] asks participants to find paths between three distinct pairs 
of nodes selected from the same network. Tory et al. [48] structure 
multiple repeats of a spatialisation task around sub-regions within 
a single large dataset. 

VisUnit task can be defined using a parametric form that: (i) 
can be defined independently from data the task may refer to and 
visualisations it may be pertain to; and (ii) supports the creation of 
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Figure 2: Examplar stimuli used in visualisation studies: (a) Okoe et al.’s stimuli emerge as combinations of different networks 
shown with different encodings [42]. (b) Beecham et al. construct line-ups of synthethic colorpleth maps that are auto-
correlated [7]. Jianu et al. compare four different ways of encoding group information onto a given node-link diagram [25]. 

multiple repeats for the same task. Its design rests on insights from 
work on task taxonomies, recognising that concrete tasks emerge 
by instantiating generic ones (Amar et al.’s pro-forma tasks [3]; 
Roth’s operators [45]) into concrete data elements within a dataset 
(Brehmer and Munzner’s inputs and outputs; Roth’s operands). Fig. 3 
(upper-right) exemplifies the parametric form of a network task 
asking participants to determine which of two highlighted nodes 
has a larger degree (compare-degree). It includes its question to 
participants and two elements relating to its parameterisation: 

• A set of task inputs (or parameters). Giving values to those 
inputs instantiates the task into different repeats. For ex-
ample, the prototypical task Find and select the node labeled 
$0 (find-node) would be instantiated by replacing $0 with 
different concrete node labels; the task Determine which of 
the two highlighted nodes has more connections and select 
it (compare-degree) would be instantiated by highlighting 
different pairs of nodes in the visualisations (see Fig. 3). 

• A set of task outputs or responses expected from partici-
pants. These may be inputs into graphical widgets, keyboard 
interactions, or interactive changes to visualisation state. For 
example, the tasks exemplified above require participants to 
select their answers in the visualisation so their outputs are 
selected network nodes. Multiple output are possible such as 
quantitative answers accompanied by qualitative reflections 
(see Fig. 8). 

To create concrete visual stimuli, parametric tasks are then in-
stantiated into datasets, by picking concrete elements within those 
datasets as values for a task’s inputs. Fig. 3 (bottom right) shows four 
repeats of the compare-degree task instantiated with inputs cho-
sen from two different datasets; these were attached to the paramet-
ric task description. Concrete task stimuli can then emerge from the 
combination of independent visual encodings (viewers), datasets, 
and tasks and their instances. Fig. 3 exemplifies this: four distinct 
stimuli were assembled from one viewer (a node-link diagram) en-
coding two datasets and highlighting two task instances (pairs of 
nodes for a compare-degree task) for each of those datasets. 

To achieve this in practice, VisUnit relies on viewers, datasets 
and tasks to implement a set of interfacing conventions. For 
example, all viewers that wish to interface with VisUnit need to 

implement a loadData method (among a few others) which Vi-
sUnit would call when the study design asks for a new dataset 
to be shown. For a viewer to be able to set-up a task, it needs 
to implement ‘setters’ for its inputs and ‘getters’ for its outputs. 
Concretely, the viewer that produced the stimuli in Fig. 3 had to 
implement setHighlightedNodes() and getSelectedNodes() in 
order to set up the compare-degree task exemplified. The benefit 
of Javascript is that adding such methods to already implemented 
resources is relatively effortless. VisUnit relies on calls to these 
capabilities to piece stimuli together. 

Finally, we find it useful to let tasks incorporate computation to 
determine whether answers provided by a participant (the output) 
are correct. As exemplified in Fig.3, the compare-degree task de-
scribed above can verify that the node selected by a participant is 
indeed the more connected one and return an appropriate accuracy 
measure. 

3.2 Declarative study specifications 
As discussed in Section 2, previous research found benefits to de-
signing studies using declarative specifications. Our declarative 
form integrates elements from such work. For example, parametric 
tasks in the context of declarative study designs were introduced 
in EvalBench [2] and adopted inGraphUnit [41] and reVisIt [15]. 
Centering study design around study blocks that are arranged in 
accordance to specified experimental designs and randomisation 
strategies was used in GraphUnit, Touchstone2 [17] and reVisIt. 
Additional similarities, in particular to reVisIt are discussed in Sec-
tion 6. The main innovation in VisUnit and its declarative form 
stems from organising studies around viewers (visual encoding with 
interaction), datasets, and tasks and the benefits that this affords. 

VisUnit study specifications start from factorial designs centered 
around the three factors described above: viewers, datasets, and 
tasks. Section ?? shows that variations of factorial designs form a 
large part of visualisation studies. Fig. 4 (left) illustrates a VisUnit 
declarative design in its simplest form. It captures a 2 viewer × 
2 dataset × 2 task design with all factors evaluated within par-
ticipants and viewer counterbalancing. The blocking hierarchy is 
viewer→data→tasks (blocking : "vtd"). This means that participants 
will complete all activities for the first viewer before moving to the 
next. For each viewer, they will complete each task for all datasets 
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Figure 3: Two visual repeats each for two different datasets (left) emerge from the parameterised task declaration on the right. 
The task takes two HighlightedNodes as input and participants select a node as output (upper right). Two concrete pairs of 
nodes are picked from each of two networks (demoNetwork and lesMis) as inputs for four tasks instances (lower-right). The 
correct answer for each task instance is encoded into its accuracy function. 

Figure 4: A declarative specification of a 2 viewers × 2 datasets × 2 tasks study, with all factors evaluated within participants 
and counterbalanced for viewers (left), is translated by VisUnit into a study sequence (middle). VisUnit can then deliver this 
to participants by sequentially assembling each ’stack’ of viewers (orange), datasets (yellow), and tasks (green) into a visual 
stimulus (see Fig. 5). A small change in the declaration to the viewer evaluation strategy and the study’s blocking is seamlessly 
translated into a new delivery sequence (right). 

before moving to the next task. The two tasks included in the dec-
laration are of the form shown in Fig. 3 and include task instances; 
the two viewers implement the interface methods mentioned in 
section 3.1 but are otherwise basic Javascript implementations of 
network visualisations. The datasets contain regular node-link data. 

Fig. 4 (centre) shows the study sequence for this declarative 
design – this is generated automatically by VisUnit from the declar-
ative specification. Since the testing of the viewers is counterbal-
anced, VisUnit produced distinct sequences for two participant 

groups, each group starting with a different visualisation. The 
benefits of the declarative approach become apparent when small 
changes made to design specifications translate seamlessly to rela-
tively significant changes in the study delivery. For example, chang-
ing the evaluation strategy of viewers to between participants and 
changing the blocking order to tasks first, completely rearranges 
the study sequence as shown in Fig. 4 (right). 
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Once study sequences produced, VisUnit can assemble the view-
ers, datasets, and tasks for each factor combination (stacked verti-
cally in Fig.4) into visual stimuli and deliver the study in order to 
participants. VisUnit can collect participants’ raw responses, task 
completion times, and accuracies computed with the help of the 
tasks’ dedicated function. 

This basic declarative specification can be extended to capture 
significantly more complex study designs. Fig. 5 shows a fully func-
tional study constructed around the minimal factorial design dis-
cussed above but which was expanded to include training and mul-
tiple repeats for each task, introductions of visualisation methods, 
pre- and post- questionnaires (e.g. visualisation expertise or partici-
pant demographics), color-blindness testing, and brief alerts to keep 
participants informed about upcoming activities and progress. Key 
principles of its declarative design are shown in Fig.6 and described 
below: 
Customising how a task is delivered: If a task is provided in the 
format discussed in Sec. 3.1 then a single repeat is chosen from the 
ones attached to the task. However, tasks can also be provided in 
an expanded format to include: 

• Number and choice of repeats: how many repeats of each 
type of task are to be included and how they are picked from 
all available repeats (e.g., in order or at random; whether 
a participant can experience the same repeat in a different 
task∗data combination or not). 

• Training: whether tasks ought to be trained, with how many 
training repeats, with what datasets and when they should 
be trained (e.g., at the very start of the study or just before a 
new visualisation is introduced). 

• Estimated task duration: VisUnit can use this information to 
estimate the total duration of a study (which is useful when 
balancing number of conditions and repeats against partici-
pant engagement and fatigue) and to inform participants of 
their progress through the study. 

• Mark gateways tasks for which participants are required 
to give a particular answer before they can continue the 
study. For example, participants need to choose “yes” on the 
consent page and pass a color-blindness test or else the study 
will terminate. 

Block tasks follow the same format described in Sec. 3.1. How-
ever, they are exempt from the factorial design and instead in-
serted into the study sequence before, after or between factorial 
blocks. They would be inserted before (show:"before") or after 
(show:"after") the main (factorial) study (block:"s") in the case 
for study entry/exit questions such as consent processing, demo-
graphic questions, or requests for study-feedback (Fig.6). However, 
block tasks can also be inserted at different points before, after, 
or between viewer, dataset, or task blocks (block:"v"|"d"|"t"). 
These would typically be tasks connected to those blocks. Fig. 6 
shows the use of a rate vis task designed to be introduced after 
the last showing of each viewer. Again, the benefit of positioning of 
block tasks relative to the main factorial sequence is that a change 
to the factorial design leads to an automatic reconfiguring of all 
activities at no cost to the experimenter. 
Parametric and non-parametric tasks. A typical task is para-
metric – it has inputs (data elements) and outputs (answers) – and 

interfaces with data visualisations. However, tasks do not need to 
have inputs or outputs. Tasks with no inputs are non-parametric 
single instance tasks. They include tasks that apply to the whole 
dataset (e.g. “estimate the total number of nodes in the network”) 
or to a visualisation (e.g. the “rate this visualisation“). Tasks with 
no outputs are likely to simply provide information. For example, 
an announce demographics task might simply tells participants 
that demographic questions will follow. Finally, tasks with no 
viewers rely on task instructions alone and do not need to be used 
in conjunction with a visualisation or dataset. The “demographic” 
askAge task in Fig.6 is an example of this. 

Finally, we note that VisUnit ‘visualisations’ can be any HTML 
+ Javascript implementations: D3, Vega and other SVG or canvas 
visualisations; collections of pre-rendered static images displayed as 
HTML content; simple as well as complex web-pages built around 
HTML components (e.g., based on React). In the VisUnit model their 
implementation would load data and revolve primarily around eval-
uated encodings and interaction designs. However, in practice their 
implementations can be tailored flexibly to support designs and 
deliveries that go beyond the default VisUnit model This provides 
flexibility in the range of studies that can benefit from VisUnit use. 

The studies featured in Fig. 4 and 5 can be browsed at https: 
//observablehq.com/@rdjianu/visunit-tutorial. 

3.3 Deploying VisUnit studies 
VisUnit provides the infrastructure to deliver study sequences 
(parsed from study specifications) to participants. It assembles stim-
uli by combining visualisations, dataasets, and tasks, lets partici-
pants advance through the study, and collects their responses. The 
latter include raw participant responses, accuracies computed in 
accordance with task specifications and those responses, and task 
timing. 

VisUnit does not provide storage for studies or results. VisUnit 
studies need to be deployed using third-party web hosting services 
or as part of Observable notebooks as discussed in Sec. 4. Similarly, 
VisUnit makes new participant responses available as they advance 
through their studies, but experimenters are expected to provide 
callback implementations that store these responses into third-party 
databases. 

3.4 Validation 
Through replication: We validate VisUnit first by replicating two 
studies comparing the effectiveness of node-link diagrams and ad-
jacency matrices for displaying network data. Ghoniem et al.’s [20] 
seminal study tested the two visualisations on synthetic networks 
that varied in size and density (but with overall small network size) 
and seven types of tasks inspired by Lee et al.’s taxonomy [34]. 
The study was conducted in-person within participants. Okoe et al. 
later extended this research to include two real, larger networks, 
fourteen more diverse tasks – including network clustering and 
memorability ones — and more interactive visualisations [42, 43]. 
They conducted their study online with Amazon Mechanical Turk 
(AMT) participants. 

We first sourced the data used in the two experiments. We gener-
ated multiple random instances of Ghoniem et al.’s 9 categories of 
graphs (20, 50, 100 nodes × 0.2, 0.4, 0.6 densities) and sourced Okoe 

https://observablehq.com/@rdjianu/visunit-tutorial
https://observablehq.com/@rdjianu/visunit-tutorial
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Figure 5: A fully functional study parsed by VisUnit from a declarative specification shown in Fig. 6. It includes, roughly 
in order (left to right): consent elicitation; demographic questions; testing for color-blindness; trained tasks evaluated over 
multiple repeats; qualitative questions; and bridging information. Viewers (orange), datasets (yellow) and tasks (green) are 
combined into visual stimuli exemplified in the bottom half of the image and delivered to participants. VisUnit would collect 
raw participant responses, task time, and computed accuracy when appropriate. 

et al.’s ingredients (258 nodes, 1090 edges) and airports (332 nodes, 
2126 edges) networks. We then defined parameterised VisUnit spec-
ifications for all of Ghoniem et al.’s 7 tasks and for 10 of Okoe et al.’s 
14 ones. We skipped their 4 network clustering tasks because, even 
though straightforward to implement in VisUnit, showing them 
required more complex visualisations, the development of which 
was beyond our scope. We kept the two memorability tasks as they 
introduced complexity in study sequencing: they refer to questions 
that participants see earlier in a study delivery. We then generated 
repeats for all task×dataset combinations by choosing concrete 
data elements as inputs for the parameterised tasks. We assembled 
datasets, tasks and repeats in a network test-suite available here: 
https://observablehq.com/@rdjianu/network-test-suite. Finally, we 
implemented node-link and adjacency matrix visualisations with 
interaction sets to match those used in the replicated studies. 

We then assembled the studies using VisUnit’s declarative speci-
fication. Ghoniem et al.’s study was relatively straightforward to set 
up – within participant evaluation of all factors, counterbalanced 
for visualisations, and with visualisation →network →task block-
ing. One particularity was in the ordering of the 9 datasets: the 3 
sparsest networks were shown before the 6 denser ones but within 
theses two category the order of graphs was random. VisUnit does 
not support this by default but can show datasets in a given order. 
Dataset ordering was thus computed separately and fed into the 

study’s VisUnit specification. Okoe et al.’s setup was a bit more com-
plicated as tasks were divided into three groups; tasks in a group 
were evaluated within participants but groups themselves between 
participants. Again, VisUnit does not support task grouping but 
the setup could be implemented as three different studies, one for 
each task group, with tasks in each study evaluated within partic-
ipants. To conclude, both studies could be designed as originally 
delivered, with minimal extraneous effort. They can be explored at 
https://observablehq.com/@rdjianu/ghoniem-network-study and 
https://observablehq.com/@rdjianu/okoe-replica. 
By surveying existing studies: To get a more general sense of 
the range of studies VisUnit supports, we sampled 49 representative 
visualisation studies and imagined whether and how they could be 
implemented with VisUnit. Fully implementing the studies would 
not have been feasible. We searched SCOPUS for papers published 
in Transactions on Visualization and Computer Graphics (TVCG) 
between 2000 and 2023 with keywords ‘user study’ and ‘evaluation’ 
and 10 citations or more. We read their abstracts and removed 
papers that did not include quantitative user studies or evaluated 
visualisations in Virtual or Augmented Reality, on mobile or large 
displays, or in collaborative contexts. Our rudimentary keyword 
search missed a few studies known to us and we recognise that there 
are many other venues where visualisations studies are commonly 
published. Nevertheless, we judge our sample to be representative 
of typical visualisation studies. 

https://observablehq.com/@rdjianu/network-test-suite
https://observablehq.com/@rdjianu/ghoniem-network-study
https://observablehq.com/@rdjianu/okoe-replica
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Figure 6: Complete declarative specifications let users cus-
tomise how tasks are delivered (e.g., their number of repeats 
and whether they are trained) and include tasks that are in-
serted before, after or between factorial blocks. 

We found that 35 studies (71%) we sampled had a direct im-
plementation in VisUnit (A); 5 studies (10%) required minor ad-
justments in mapping authors’ designs and study presentations 
to the VisUnit structure but could by-and-large be described in 
VisUnit (B); 9 (18%) were not VisUnit compatible (C). Of such un-
supported studies, four followed a staircase design (e.g., [22]); two 

of them evaluated stimuli that were not strictly data visualisations – 
videos and GIFs; in the remaining three, participants’ performance 
was factored dynamically into the choice of stimuli. For example, 
Boukhelifa et al. gave their participants more or fewer experimental 
blocks depending on their performance[10]. 

Among studies requiring minor adjustments (B), the most no-
table issue was a non-straightforward mapping between authors’ 
evaluated factors and the three default VisUnit ones –viewers, 
datasets, tasks. For example, Borgo et al. describe their study on 
visual embellishments [8] as having two tasks, A and B, with the 
former having four ‘sections’, each containing 9 embellished and 
9 plain visual stimuli. We mapped ‘sections’ to VisUnit tasks as 
they were meant to capture different kinds of activities. We mapped 
‘stimuli’ to nine repeats drawn from a dataset shown with two 
visualisations. Moreover, the visualisation supplied into VisUnit 
would need to be engineered to permanently display the author’s 
distractor task B. These adjustments would let VisUnit deliver the 
study in its original form. Lack of ‘study flow’ that fits the VisUnit 
model was another reason. For example, two studies opted for ‘semi-
factorial’ designs: some combinations of factors were included but 
some not. This can be achieved by letting VisUnit design the study 
as full factorial, then removing unwanted conditions from resulting 
study sequences. 

4 "Literate", reusable test-suites and studies 
4.1 Data+task test suites 
The ability to decouple visualisations, datasets and tasks and re-
combine them flexibly paves the way for data+tasks test-suites de-
veloped as stand-alone resources to support the design and evalua-
tion of visualisations pursued separately. Such test-suites could be 
constructed to capture tasks specific to certain types of data (e.g., 
network, multi-dimensional, spatio-temporal, geographic) or to par-
ticular domains and applications (e.g. transport analytics, genomics 
and proteomics, finance and trading, urban decarbonisation). 
How? Consider the compare-degree task in Fig. 3. Bundling it 
with the two datasets it references – demoNetwork and lesMis – pro-
vides all information needed to evaluate four variations of this task. 
VisUnit would be able to set this task up and collect user responses 
from any (Javascript) network visualisation that lets it highlight 
nodes (implements setHighlightedNodes) and retrieve nodes that 
users select interactively (implements getSelectedNodes). 

This task is one listed in Lee et al.’ taxonomy of network tasks 
and was used in multiple visualisation studies [6, 19, 25, 43]. We 
can similarly define other tasks featured in the taxonomy or popu-
lar in network evaluation (e.g. findNode, findCommonNeighbour, 
shortestPath) and instantiate them in our two datasets. We can 
include additional datasets with different sizes and topological prop-
erties. Generally, we can choose data, task presentations, and re-
peats with evaluation requirements in mind: that they cover how 
networks are used in practice; reduce confounding factors; and af-
ford meaningful answers. Finally, we can design task presentations 
such that highlighting nodes and retrieving selected nodes are all 
the capabilities network visualisations need to set the tasks up. 

The result would be a comprehensive data+task test-suite to sup-
port the evaluation of network visualisations. To be tested, such 
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visualisations would simply need to implement the two capabil-
ities referenced by the suite’s tasks (setHighlightedNodes and 
getSelectedNodes). VisUnit would then be able to connect them 
to the test-suite with minimal overhead. Such test-suites could 
be developed to capture the particularities and analysis needs of 
specific types of data, applications, or domains. 
Why? Developing such test-suites as research artefacts in their own 
right has several benefits. First, they would reduce the overhead of 
conducting user studies, help avoid duplication, and supports reuse. 
This is significant as Quadri et al. cites lack of materials as a major 
roadblock to reuse and replication [44]. Second, it would focus the 
effort, expertise, and scrutiny needed to develop test-suites that are 
comprehensive, ecologically valid, meaningful and evolving. While 
sourcing datasets and tasks to evaluate against typically forms a 
significant part of a user study [44], it is still just one of several 
activities involved. As such, the efforts that go into it, as well as 
the scrutiny it receives, are typically balanced against a study’s 
other activities and contributions. Suboptimal testing materials can 
thus slip through the research pipeline. Third, they can improve 
evaluation consistency and support the incremental development 
of visualisation knowledge. Using a consistent set of tasks and 
data and presentation to participants would make the results of 
subsequent user studies more easily relatable. 

Finally, data+task test-suites complement existing work on task 
taxonomies. By providing fully fleshed-out task exemplars that 
can be readily browsed and used in evaluation, they effectively 
instantiate task taxonomies into ‘live’ representations that serve 
similar purposes – design, evaluation – but in more tangible ways. 

4.2 Literate test-suites and studies 
We advocate that data+task test-suites are disseminated as com-
putational notebooks, using “literate” design paradigms [29, 54]. 
This can bring together all ingredients needed for their scrutiny, 
interpretation and reuse: testing materials, visual demonstrators, 
and the reasoning behind their choice and design. 
How? Observable (observablehq.com) is a notebook environment 
designed for visualisation and can readily support this. Data and 
tasks developed within an Observable notebook can be easily con-
nected to visualisations and imported into other notebooks for 
reuse; can be browsed and explored as raw data, programming con-
structs or visualisations; and are declared in Javascript, currently 
the lingua franca of visualisation. Narratives can be included in-situ 
as markdown text to justify why chosen materials are ecologically 
valid, sufficiently diverse, and how their setup avoids confounding 
factors. 

Studies as a whole can follow a similar approach. First, Observable 
can be used to store most study ingredients and outputs: materi-
als (either embedded directly or imported from test-suites); their 
declarative designs; demonstrators of participant delivery; and, 
once complete, participant responses and their analysis. These can 
be combined with narratives justifying experimental design; se-
lection of evaluated visual encodings, datasets, and tasks; inter-
pretation of results; and conclusions drawn. The ease of changing 
declarative studies and observing the effects on participant deliv-
ery (Section 3.2), lets researchers explore and showcase different 
evaluation approaches explicitly (e.g., within vs. between testing, 

number of repeats) to support their methodological choices. This 
is similar to Wood et al.’s branching narratives [54]. Finally, study 
flows developed and showcased as part of an Observable notebook 
can be easily embedded in stand-alone web-pages for delivery to 
participants. 

Observable provides native capabilities for reproducing and ex-
tending user studies and test-suites through version locking, ‘fork-
ing’ and provenance tracing. Test-suites can be extended over mul-
tiple iterations to enrich or tailor their capabilities. For example, 
a basic test-suite for network visualisation could be forked into 
extended versions to include attribute-based tasks, dynamic net-
works, or domain-specific network data and tasks. Similarly, an 
existing study could be extended by ‘forking’ it to test different 
visual encodings or to alter its experimental design. We exemplify 
these scenarios in Sec. 5. 
Why? Overall, the current practice of disseminating user study 
research and results across many platforms including academic pub-
lications (for methodological narratives and result summaries), data 
and code repositories such as Github or Figshare (for study materi-
als and raw results), and online hosting services (for exemplars and 
study delivery) makes it difficult to interpret them holistically. Inter-
active access to all a study’s information together and in the open 
can answer calls for more transparent reporting, dissemination and 
reuse [21, 30, 44]. 

4.3 Validation 
An exemplar test-suite: To demonstrate the form and utility of 
data+task test-suites we developed a fully functional one for net-
work visualisation: https://observablehq.com/@rdjianu/network-
test-suite. It was built primarily around materials used in three 
user studies on network visualisations, those of Ghoniem et al. [20], 
Okoe et al. [43], and Di Giacomo et al. [14]. It contains Ghoniem 
et al.’s 9 types of random graphs of different sizes and densities, 
Okoe et al.’s ingredients and airports networks, and Di Giacomo et 
al.’s weavers, ecoli, and dblp datasets. It also includes 19 different 
tasks, most of which replicate those evaluated in the three studies 
above, and repeat instances of these tasks onto the datasets. All 
tasks include logic necessary to compute the accuracy of partici-
pant responses and rely on just two visualisation capabilities to be 
available: highlighting and selecting nodes. Finally, the test-suite 
is augmented with instructions for use and narratives justifying 
the choice and design of materials. The latter include discussions 
around the representativeness of datasets and the ecological valid-
ity of tasks, their links to taxonomies such as that of Lee et al. [34], 
and how their design minimises confounding factors. 

The result is a test-suite that can support the evaluation of net-
work visualisations. It can be readily used to replicate the three 
studies above with minimal effort as well as to conduct subsequent 
studies. As long as tested visualisations implement node highlight-
ing and selection, VisUnit can connect them to the test-suite, eval-
uate them against its data and tasks, and report back accuracy 
measures. Additionally, the test-suite acts as an instantiation of 
Lee et al.’s network task taxonomy. Users can browse concrete task 
examplars across a range of tasks to understand their challenges 
and imagine visualisation designs to support them better. 

observablehq.com
https://observablehq.com/@rdjianu/network
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An exemplar literate study: We used this test-suite to repli-
cate Okoe et al.’s study (described in Sec. 3.4) in ‘literate’ note-
book form: https://observablehq.com/@rdjianu/okoe-replica. We 
imported datasets and tasks from the test-suite and justified their 
inclusion into the study (e.g., choice of real datasets over synthetic 
ones; why networks are representative of real-life networks more 
broadly; ecological validity of tasks). Similarly, we imported two 
interactive (Javascript) network visualisations and justified their 
interaction sets. The notebook was set up to allow the study’s ma-
terials (datasets, tasks, visualisations) to be explored interactively, 
helping to contextualise the selection and design narratives pro-
vided alongside. 

We then combined these materials into a VisUnit study design 
specification which we linked (using VisUnit utilities) to a schematic 
view of the study delivery as well as a view of the study as delivered 
to participants. Through these links, the study’s specification (and 
any changes to it) is seamlessly reflected into the other two views, 
helping readers observe directly the impact of design choices on 
study-delivery. Moreover, we showcase the journey towards the 
study’s final presentation as an iteration over alternative designs 
that were considered (and some abandoned) along the way. As 
illustrated in Fig. 7, each alternative design is discussed, its specifi-
cation can be explored, and its participant-facing delivery can be 
tried in-situ. The ability to directly experience the drawbacks of 
alternative designs (rather than just imagining them) strengthens 
the case for the study’s ultimate delivery. This mode of alterna-
tive design exploration bears similarities to Wood et al.s branching 
design narratives [54]. 

Finally, the notebook cells showcasing the study are directly 
exported (as iFrames) onto separate websites ready for delivery 
to participants. Participant responses are collected into a database 
and looped back into the notebook where they can be explored 
in context with the study design. Thus, the study’s materials, de-
signs, delivery, and results are brought together and in the open for 
inspection and reuse. 

5 Use case 
We validated individual contributions in Sections 3.4 and 4.3. How-
ever, their main benefits stem from how they can impact visualisa-
tion evaluation holistically, by supporting study reproduction and 
extension workflows. We highlight these benefits via a fictional 
use case that builds on a sequence of three real studies. The 
first two – (S1) Ghoniem et al.’s study on node-link (NL) diagrams 
vs. adjacency matrices (AM) and (S2) Okoe et al.’s subsequent exten-
sion of it – were introduced in Sec. 3.4. The third is (S3) Di Giacomo 
et al.’s recent evaluation of hybrid network visualisations that blend 
node-linking, matrices, and chord diagrams [14]. They evaluated six 
tasks on three real-life networks with online participants recruited 
from universities and research lists. We re-imagine this series of 
studies with VisUnit: 
S1: The authors design a test-suite with 7 tasks and 9 synthetic net-
works of different sizes and densities. They then create Javascript 
node-link and adjacency-matrix visualisations and use VisUnit to 
assemble everything into an Observable “literate” study. They opt 
for within participants evaluation of the visualisations (counterbal-
anced), datasets and tasks and motivate their design choices (e.g., 

Figure 7: Our literate replica of Okoe et al.’s study captures 
the evolution of the study’s final design as a sequence of 
iterations. Each iteration is justified and its corresponding 
delivery is shown and can be experienced interactively. The 
figure illustrates the first and fourth iteration. 

https://observablehq.com/@rdjianu/okoe-replica
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within participants designs are immune to differences in individual 
participants). Once the study complete, they include de-identified 
data, result analysis, and interpretation on their study’s Observable 
notebook. They distribute this along with their publication, allow-
ing reviewers to explore their study-design and delivery first hand 
and to interpret results in context. It also hands future researchers 
the data and details to extend it. 
S2: The authors decide to evaluate more interactive versions of the 
two network visualisations on real rather than synthetic data and 
with more tasks. They fork the S1 test-suite and add two datasets to 
it, one capturing ingredients commonly used together in recipes and 
another of well-connected airports. They also define and include 
6 new tasks to the test-suite. Along with the data and tasks, they 
provide in-situ justification of their inclusion (e.g., why real data is 
preferable to synthetic one; why datasets and tasks are representa-
tive). To complete the test-suite expansion, they need to provide 
repeats for all task × dataset combinations. This means repeats 
for new S2 tasks on new S2 datasets; but also for old S1 tasks on 
newly added datasets and for new S2 tasks on the older synthetic 
datasets. Upgrading the test-suite involves added effort beyond S2 
goals but it leads to the creation of a more complete test-suite that 
now includes both synthetic and real data as well as more tasks. 

The design of the study itself is more complex as it involves more 
tasks and repeats. Moreover, the authors plan to recruit Amazon 
Mechanical Turk participants who do not engage with long studies. 
So, delivery needs to be short. Using VisUnit’s timing estimate, 
the authors conclude that a fully within participant setup would 
take about an hour. To half this time, the opt for evaluating the 
two visualisations between participants instead. They also carefully 
balance the repeats of each task: more for short tasks, fewer for 
longer tasks. However, studies are still too long. They ultimately 
decide on a mixture of between participant and within participant 
evaluation of tasks. 

VisUnit supported this iterative design because changes were 
quick to make and their impact on study delivery immediately 
evident. The ability to explore alternative designs gave authors con-
fidence that they converged on a study fit for purpose. The authors 
describe the evolution towards their final setup in an Observable 
notebook as a sequence of alternative designs (in both declarative 
and participant-facing forms) and justifying narratives. Similarly to 
S1, authors publish de-identified data and result analyses. Together, 
the information helps reviewers gain a holistic view of the study 
and its findings. 

Finally, S2 authors wish to compare their results to those of S1, 
to understand the impact of added visualisation interaction or of 
testing with real rather than synthetic data. However, the significant 
differences in how the two studies were delivered – S1: within 
participants, in person university students; S2: between participants, 
AMT online users – complicates this. The authors decide to re-run 
part of the S1 study in its original form but with AMT participants. 
Setting this up takes just under an hour as the test-suite contains 
all necessary materials and VisUnit puts everything together. The 
replication facilitates the desired comparison and new findings. 
S3 aims to contribute further with an evaluation of visualisations 
that blend node linking with matrices. The authors decide to reuse 
S2’s test-suite. The ingredients dataset has an appropriate size for 
their envisioned study, but the airports network is too large. As 

using a single network would hurt their study’s generalisibility, they 
include two additional datasets, an ecoli co-expression network and 
a dblp co-citation one. They decide to use six tasks already available 
in the test-suite. The inclusion of new datasets means that task 
repeats need to be provided for all tasks on these datasets. Overall 
the reuse of tasks and one dataset saved the authors significant 
time and their effort led to a more complete network evaluation 
test-suite. Moreover, it means their experimental setup and delivery 
overlaps significantly that in S2. They can thus relate results to 
those obtained by S2 and discuss how differences can arise from 
the slight difference in participant recruitment (students over AMT 
users). 
Summary: When compared to the original research sequence of 
three independent user studies that each sourced its study mate-
rials separately, the imagined use of VisUnit would have resulted 
in: limited savings for the authors of the initial S1 study; but, a 
significant reduction in the overhead of conducting S2 and S3; a 
new, comprehensive network visualisation test-suite to support any 
future studies; and additional research insights – S2: comparison of 
in-person vs. AMT delivery; S3: comparison of S3 and S2 results. 

6 Discussion 
Limitations of the declarative form: VisUnit structures studies 
around three default factors: visualisations, datasets, and tasks. The 
benefit is a straightforward mapping from conceptual study design 
to a model of assembling visual stimuli from granular components 
– visualisations show datasets and set up tasks – that fits princi-
ples of visualisation design and implementation (see Section 3.1). 
As discussed in Section 3.4, many studies are indeed structured 
around these three factors. However, some are not (e.g., Borgo et 
al.’s study [8]). In such cases, VisUnit forces authors to map their 
conceptual factors to its three default ones. 
Beyond quantitative studies: While VisUnit was designed with 
quantitative studies in mind, it can also support qualitative or mixed 
methods studies. First, tasks can be designed to accept free form 
answers (without an objectively correct response) and even mul-
tiple answers. A task might thus involve a quantifiable response 
(e.g. a number, a selection) but also qualitative reflection about how 
the task was performed. Moreover, while VisUnit doesn’t itself cap-
ture interaction, voice or gaze data, its interfacing mechanisms lets 
visualisations capture it themselves and return it to VisUnit as com-
ponents of a task’s answer. Second, VisUnit tasks can be designed 
to capture not just keyhole data-reading tasks, but also more elab-
orate data analysis scenarios, perhaps with explicit grounding in 
domain problems. Fig.8 exemplifies the definition and presentation 
of a relatively complex, domain specific task with multiple outputs 
- including a selection on the visualisation, a multiple choice se-
lection, qualitative self-reflection, and interactions logged by the 
visualisation. 
Beyond Observable: We advocate that studies be designed and 
disseminated as visualisation notebooks to support interpretation, 
scrutiny, and reuse and show how Observable can support this. 
However, we also distribute VisUnit as a stand-alone library to 
support studies that need to be created outside the Observable 
ecosystem. Moreover, we note that Observable notebooks can be 
exported as stand-alone resources to be stored or pre-registered 
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Figure 8: Example of an open ended VisUnit task with mul-
tiple outputs to support testing of visualisations for decar-
bonisation planning. 

on other platforms (e.g. Figshare) if needed. Ultimately, while Ob-
servable provides a convenient platform to implement ‘literate’ 
test-suites and studies, the same principles could be implemented 
in regular web setups. 
Comparison to reVisIt: reVisIt provides capabilities closest to 
VisUnit. A series of design principles are also shared: reVisIt al-
lows parametric visual stimuli that can serve similar purposes to 
VisUnit parametric tasks; and VisUnit gateway tasks are similar to 
reVisIt interruption blocks. We have not formally compared VisUnit 
against reVisIt, but our intuition from validation efforts described 
in Sec. 3.4, is that reVisIt’s declarative language may in fact support 
a few more designs than VisUnit. On the other hand we point out 
that this is because reVisIt’s specification language is at a lower 
level of abstraction. For example, its specification and placement of 
study-blocks is highly recursive and it cannot combine factors as 

VisUnit can; adding task repeats to a study is done one at a time 
and programmatically (compared with a change of parameter in 
VisUnit); and it doesn’t have support for automatic task training. 
As such, while expressive, we think that reVisIt specifications are 
longer, and more difficult to design, change and interpret. 

Beyond these differences, we feel the main benefit of VisUnit is 
the explicit decomposition of studies around visualisations, datasets 
and parametric tasks and the natural delineation of reusable data+task 
test-suites that this inspires. reVisIt provides support for parametric 
visual stimuli and we think this would be sufficient to implement 
a form of basic reVisIt test-suites. However, reVisIt specifications 
are more monolithic so ‘importing’ separately defined data and 
tasks into them is less natural than in VisUnit. Moreover, we see 
our research as going beyond a system for the development and de-
ployment of user studies: our contributions (iii) and (iv) are to the 
visualisation evaluation ecosystem as a whole and they complement 
work on task taxonomies. 
Guiding study design: Through declarative specifications, study 
design choices with known implications become salient and explicit. 
This facilitates the provision of study-design guidance and opens 
the way to narrative design schemas suggested by Wood et al.[54]. 
Study designers could be prompted to consider the implications 
of choosing between a within and between participant setup and 
provided with information to support their decision. Along with 
the ability to more easily explore alternative design options, this 
could lead to studies better fit for purpose. 
Default result analyses: Having a formal, declarative study spec-
ification paves the way to recommending default result analyses 
that match the study design declaration. For example, information 
on whether independent variables were tested between or within 
participants, along with preliminary tests of data normality, would 
inform the type of statistical testing needed (e.g. paired t-tests vs. 
independent t-tests; Wilcoxon rank-sum vs. Wilcoxon signed-rank), 
and the need for post-hoc testing. While not excluding the possi-
bility of more nuanced, bespoke analysis of raw participant data, 
default statistical analyses and visualisation of collected data that 
are aligned with study design would make user studies more acces-
sible to those who lack expertise in numerical methods. 
New opportunities: The ability to create and deploy user stud-
ies within hours once test-suites assembled, without the need for 
specialised expertise, can broaden the use of quantitative user eval-
uations. First, rather than predominantly a way to validate an es-
tablished visualisation technique or a finished design, lightweight 
quantitative evaluations could be integrated within the design process 
to help developers choose between alternative designs, similar to 
how A/B testing is employed in website design. Second, the ability 
to change design declarations and immediately observe how these 
are reflected into user study sequences and result analyses can help 
support the teaching of user research methods. 

7 Conclusion 
We describe a way of specifying the design of visualisation user 
studies using simple declarative forms and translating them effort-
lessly into complex participant-facing studies. This encourages the 
exploration of study design alternatives and reduces the overall 
overhead of conducting user studies. An important innovation of 
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our declarative specification is that it lets visualisations, datasets, 
and tasks underlying studies to be parameterised and defined sepa-
rately from each other. This paves the way for the development of 
independent data+task test suites for particular data types, appli-
cations, or domains and reusing them across studies that evaluate 
the visual designs meant to support them. They can lower the over-
head of running user studies, support reproducibility, and their 
consistent use can lead to studies with more comparable outcomes. 
Finally, we advocate for the development of test-suites and studies 
as visualisation notebooks that bring together and in the open all 
ingredients necessary for study delivery, scrutiny, and dissemina-
tion. We show, with a use case, how embracing these methodologies 
can lead to more effective, transparent, and cohesive visualisation 
evaluation. 
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