Postprandial glycaemic response in different ethnic groups in East London and its association 1

with vitamin D status: study protocol for an acute randomised crossover trial 2

- Honglin Dong^{1*}, Christian Reynolds^{1,2}, AFM Saiful Islam¹, Swrajit Sarkar¹, Sophie Turner¹ 3
- ¹School of Health and Psychological Sciences, City, University of London, London UK 4
- ²Centre for Food Policy, City, University of London, London UK 5
- *Corresponding author. Email: honglin.dong@city.ac.uk 6

Abstract 7

8 In the UK, black African-Caribbeans (ACs) and South Asians (SAs) have 3–6 times greater risks of developing diabetes than white Caucasians do. East London is among the areas with the highest 9 prevalence of type 2 diabetes and the highest proportion of minority groups. This ethnic health 10 inequality is ascribed to socioeconomic standing, dietary habits, culture, and attitudes, while 11 biological diversity has rarely been investigated. The evidence shows that the postprandial glucose 12 peak values in SAs are 2-3 times greater than those in white Caucasians after the same 13 carbohydrate loads; however, the mechanism is poorly understood. In the UK, 50% of SAs and 14 33% of ACs have vitamin D (vitD) deficiency, whereas 18% of white Caucasians have vitamin D 15 deficiency. There is evidence that vitD status is inversely associated with insulin resistance in 16 healthy adults and diabetic patients and that vitD supplementation may help improve glycaemic 17 control and insulin resistance in type 2 diabetes patients. However, little evidence is available on 18 minority groups or East London. This study will investigate the postprandial glycaemic response 19 (PGR) in three ethnic groups (white Caucasians, SAs and ACs) in East London and link PGR to 20 plasma 25(OH)D (an indicator of vitD status). Ninety-six healthy adults (n=32 per group) will be 21 recruited. Two test drinks will be provided to the participants (300 ml of glucose drink containing 22 75 g glucose, and 300 ml of pure orange juice) on different occasions. PGR is monitored before 23 and after drinking every 30 min for up to 2 hours via finger prick. A fasting blood sample obtained 24 via phlebotomy will be used for 25(OH)D and relevant tests. A knowledge/perception 25 questionnaire about vitD and a 4-day food diary (analysing vitD dietary intake) will also be 26 collected. The findings of the study will be shared with participants, published in journals, 27 disseminated via social media, and used to inform a randomized controlled trial of the effects of 28 29 vitD supplementation on PGR in minority groups.

The study complies with the Helsinki Declaration II and was approved by the Senate Research 30 31

Ethics Committee at City, University of London (ETH2223-2000). The study findings will be NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

32 published in open access peer-reviewed journals and disseminated at national and international

33 conferences. ClinicalTrials.gov Identifier: NCT06241976

- 34 Key words: postprandial glycaemic response, type 2 diabetes, vitamin D, ethnical groups
- 35

36

37 Introduction

Background Health patterns differ significantly between ethnic minority groups and the white 38 population. In the UK, the risk of developing diabetes is 3-6 times greater in South Asians (SAs) 39 and up to three times greater in black African-Caribbeans (ACs) than in white Caucasians, and 40 people in these groups develop this condition at a younger $age^{(1)}$. East London is among the areas 41 with the highest proportion of minority groups⁽²⁾ and the highest prevalence of type 2 diabetes 42 mellitus (T2DM)⁽³⁾. Although multiple factors, including socioeconomic standing, diet, culture and 43 attitudes, language barriers, genetics and lifestyles, have been identified⁽⁴⁾, research into biological 44 diversity is scarce. Recent research revealed that the postprandial glucose peak in SAs is two- to 45 three-fold greater than that in white Caucasians after identical carbohydrate loads are reached⁽⁵⁾. 46 Although obesity is believed to account for 80–85% of the risk of developing T2DM due to obesity 47 causing insulin resistance⁽⁶⁾ and some minority groups, e.g., black people, have a higher 48 prevalence of overweight and obesity than white British people do $(73.6\% \text{ vs. } 63.3\%)^{(7)}$, other 49

50 biological mechanisms, including vitamin D (vitD) deficiency, are poorly understood.

VitD deficiency in minorities in the UK is well known and is described as an unrecognised 51 epidemic⁽⁸⁾. In the UK, 50% of SAs and 33% of black ACs demonstrate vitD deficiency, whereas 52 17.5% of white Caucasians do⁽⁹⁾, which is primarily due to more subcutaneous pigmentation that 53 absorbs ultraviolet B from sunlight and reduces vitD production in the skin and at high latitudes in 54 the UK⁽¹⁰⁾. This situation is worse in East London. In Tower Hamlets, a borough of East London, 55 47% of black and 42% of Asians have vitD deficiency, whereas 17% of the white population has 56 such deficiency⁽¹¹⁾. An inverse association of serum 25(OH)D levels with insulin resistance was 57 observed in healthy adults⁽¹²⁾ and diabetic patients⁽¹³⁾. Recent evidence has shown that vitD 58 supplementation may help improve glycaemic control and insulin resistance in T2DM patients⁽¹⁴⁾. 59 However, little evidence is available for minority groups or residents in East London, indicating that 60 AC and SA communities are underrepresented in the evidence base concerning diabetes and 61 vitamin D. VitD plays important roles in calcium metabolism and is involved in the modulation of 62

cell growth, neuromuscular and immune function, and the reduction of inflammation due to its 63 64 receptors being expressed ubiquitously in nearly all human cells, including pancreatic β -cells⁽¹⁵⁾. Animal studies have shown that vitD treatment improves insulin production and sensitivity⁽¹⁶⁾, and 65 increased insulin secretion may be caused by increased intracellular calcium(17). Moreover, 66 1,25(OH)2D (the active form of vitD) may modulate β -cell growth and differentiation⁽¹⁵⁾. The 67 secondary high parathyroid hormone (PTH) concentration⁽¹⁸⁾ and increased inflammatory 68 markers⁽¹⁹⁾ associated with vitD deficiency may also cause glucose intolerance. VitD may have an 69 indirect effect on glycaemic control via obesity. Our research (accepted for publication, attached) 70 and many others⁽²⁰⁾ revealed a significant inverse association between body mass index (BMI) and 71 serum 25(OH)D, which is thought to involve a complex of mutual influences because vitD 72 receptors are expressed on adipose cells and regulate their functions⁽²¹⁾, indicating that vitD 73 deficiency might be one of the causes of obesity, thus indirectly leading to an increased risk of 74

T2DM. 75

The postprandial glycaemic response (PGR) has implications for T2DM development⁽²²⁾. The oral 76 glucose tolerance test (OGTT) is widely used to assess insulin sensitivity and pancreatic β -cell 77 function and to assess an individual's metabolic capacity to handle carbohydrate-containing 78 79 foods⁽²³⁾. However, a recently published study indicated that within-subject variations in the PGR pattern may exist between OGTT and food intake, suggesting the necessity of combining OGTT 80 and a meal/drink tolerance test for individualized glycaemic management⁽²⁴⁾. The awareness of 81 82 vitD and its impact on health is poor in the UK. Although the COVID-19 pandemic has attracted the attention of the public on vitD and, a recent UK survey⁽²⁵⁾ revealed that 49% of adults are 83 unaware of the UK government's guidelines for vitD. There is no such survey available on 84 minority groups or residents in East London. We are also interested in dietary vitD intake between 85 different ethical groups in East London, which will partly explain the vitD status of the target 86 population. There is an urgent call for research on minority populations to address health 87 inequality⁽²⁶⁾. This proposal is an attempt to respond to the above call with a focus on minority 88 communities in East London. 89

The aims of this study were to investigate the differences in PGR to OGTT and OJ consumption 90 among white Caucasian, SA and AC adults; to investigate the associations of the plasma 25(OH)D 91 concentration with PGR to OGTT and OJ consumption in white Caucasian, SA and AC adults; and 92 to assess the knowledge and perception of vitD and dietary vitD intake in white Caucasian, SA 93 and AC adults. 94

3

95 Method

This is an acute randomised, repeated measures crossover trial. Figure 1 shows the study flow
chart. The study was approved by the Senate Research Ethics Committee at City, University of

98 London (ETH2223-2000). The recruitment period of the study is between 1st November 2023 and

99 31st December 2024. All participants gave written consent before taking part in the study.

100 Study status: A) participant recruitment will be completed at the end of December 2024; B) data

101 collection will be completed at the end of December 2024 C) results are expected in January and

- 102 February. None of these stages have already been completed.
- 103 Participants

104 The inclusion criteria are as follows: 18–65 y in general good health and living in East London from

105 white, SA or AC origins. The exclusion criteria are as follows: diabetes; digestive system diseases;

106 BMI < 18.5 kg/m2; liver or kidney disease; other chronic diseases; blood clotting disorders; following

a special diet; alcohol consumption (>14 units per week); regular smoking (one or more cigarettes per

108 day); pregnancy; maternity; and mixed race. A health and lifestyle questionnaire will be used to

screen the eligibility of the participants. Participants will provide informed consent online before

being screened for eligibility. Eligible participants will be asked to book their two visits and will

receive a shopping voucher worth £20 per visit.

112 Recruitment

There are a few methods of participant recruitment. We will recruit staff and students who live in 113 East London with gatekeeper permissions from the Dean of the school. Recruitment adverts will 114 be circulated to staff and students at City, University of London. There are 19975 students, among 115 whom 64% are from the UK, and a large proportion of students are from different London 116 boroughs, including the East London area. Each year, many staff or student projects recruit 117 participants successfully in this way. From local communities in East London with gatekeeper 118 permissions. We will contact local ethnic communities, including the Bangladeshi Community, 119 London Central Mosque, Bangladesh Embassy and Indian & Bangladesh Hindu Community East 120 London, etc. We will also recruit participants via social media, including Meta and Instagram. 121

122 Treatments

123 The participants will consume a glucose drink (75 g glucose in 300 ml water, 281 kcal) used for

the OGTT and pure OJ (Tesco 100% Pure Squeezed Orange Juice Smooth 300 ml containing 129

kcal, 30 g sugar, 0.3 g fibre, 1.8 g protein and 90 mg vitamin C) on separate occasions with at least 125

48-hour interval and at random order. The two drinks were chosen rather than meals because of 126

fewer facilities needed to cater to participants, less potential food hygiene issues, and being more 127

acceptable to participants from different ethnic backgrounds. The participants fast for 8–12 h. The 128

blood glucose concentration is measured via a HemoCue Glucose 201+ Analyser (Health-care 129

Equipment & Supplies, Surrey UK) at 0, 30, 60, 90 and 120 min before and after drink 130

consumption by finger prick. Two ml of fasting blood will be collected via phlebotomy at the first 131

or second visit only. The plasma is separated by centrifuging the blood sample at $2000 \times g$ for 10 132

min and stored at -20°C until analysis of some relevant biometabolic parameter measures 133

During the 2-h study period, the participants are asked to stay sedentary, not eat or drink anything. 134

At the night prior to their study visit, participants are encouraged to follow their normal diet, have 135

good sleep during the night and avoid alcohol and intensive exercise. 136

Randomisation 137

The order of drink consumption is randomised by using the Excel RAND function. In the Excel 138

spreadsheet, a list of participants (from 1-96) is shown in one column. In the next column, we use 139

the RANDBETWEEN function and choose 0 and 1 as the ranges to randomly generate values of 0 140

or 1. Participants with a value of 0 will consume glucose drink while participants with a value of 1 141

will consume pure orange juice as their first drink. 142

Outcome measures 143

The primary outcome will be the postprandial glycaemic response (blood glucose concentrations at 144

the above five time points) measured by HemoCue Glucose 201+ Analyser (Health-care 145

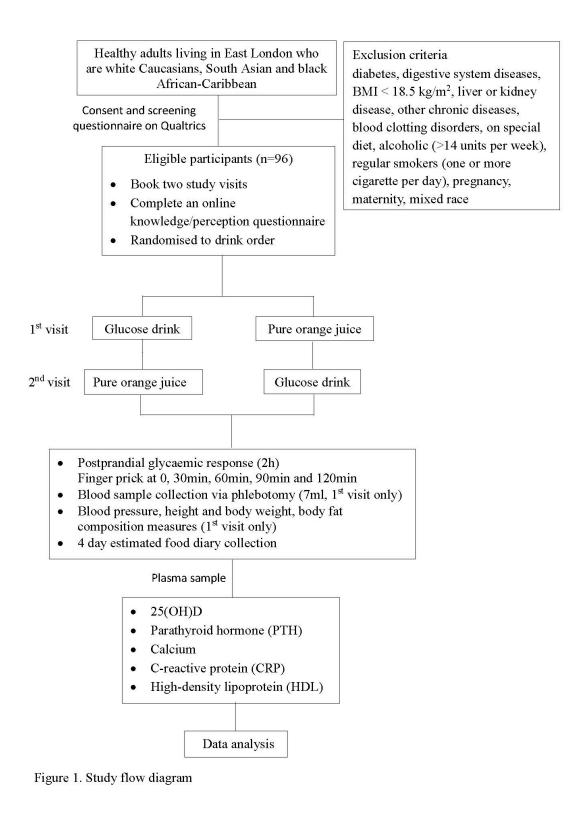
Equipment & Supplies, Surrey UK). 146

Plasma 25(OH)D is the most commonly used indicator of vitD status. PTH and calcium are closely 147

regulated by 25(OH)D levels⁽²⁶⁾, whereas 25(OH)D is inversely associated with CRP, indicating an 148

anti-inflammatory property of vitD⁽²⁷⁾. Cholesterol and HLD also have inverse and positive 149

associations, respectively, with vitD status⁽²⁸⁾. Body mass index (BMI) and fat composition are 150


used as confounding factors of 25(OH)D⁽²⁹⁾ and PGR in drinks⁽³⁰⁾. Therefore, the secondary 151

outcomes and measures include plasma 25(OH)D and PTH tested using AIA-900 immunoassay 152

analyser (Tosoh Bioscience, USA); C-reactive protein (CRP), calcium, total cholesterol and high-153

density lipoprotein (HDL) tested using Horiba Pentra 400 Biochemistry Analyser (Horiba, Japan). In 154

- addition, the body weight and fat composition will be measured by TANITA DC-360 P (Tanita, 155
- Amsterdam), and body height by stadiometer. Dietary vitD intake will be analysed by a four-day 156
- estimated food diary analysed by Nutritics software (Nutritics Ltd., Dublin). Knowledge and 157
- perception of vitD will be assessed by a questionnaire collected via Qualtrics survey platform. 158
- The name, email/mobile (for appointment purposes), sex, age, and ethnicity of the participants are 159
- also collected. 160

161

162 Data analysis

The sample size was calculated by G*Power software (version 3.1.9.7; Heinrich-Heine-Universität 163

164 Düsseldorf, Düsseldorf, Germany). This study aims to achieve a minimum of 25% variability in

the postprandial glycaemic response among three ethnic groups, considering that the response is 165

taken from five different time points with 30 min intervals for each person, and to achieve 80% 166 167 power in the study, we will need 32 people in each group (n=96 in total) at the 5% level of significance. Continuous data are presented as the means \pm SDs. Categorical data are presented as 168 percentages. Two-way repeated-measures ANOVA is used to assess time (5 timepoints) effect 169 (within-subject), between-subject effects (ethnicity, sex, normal weight and overweight/obese) and 170 the effect-time interaction. Continuous variables (e.g., 25(OH)D) etc.) are compared between 171 groups via two-way ANOVA. Dietary vitD intake between groups will be analysed by one-way 172 ANOVA (three groups) or an independent t test (two groups) if the data are normally distributed; 173 otherwise, the Mann-Whitney test will be used. Categorical variables, e.g., the percentage of 174 patients with vitD deficiency are compared between groups via Chi-square tests. Data normality 175 will be tested by the Kolmogorov-Smirnov test. The generalized linear mixed models (GLMMs) 176 for longitudinal data will also be used for modelling glycaemic response over time because this 177 model accounts for the correlation between observations within each individual and adjusts for 178 confounding factors (e.g., BMI and age). The statistical significance will be reported with a p value 179 and a 95% confidence interval at the 5% significance level. The statistical software IBM SPSS 29 180 will be used to analyse the data. The percentage of missing data was low on the basis of our 181 previous experience. Therefore, regression imputation is used to address missing data. Both 182 intention-to-treat analysis and per protocol analysis will be used for the data analysis. 183

184 Ethics and expected outcomes/outputs

The study complies with the Helsinki Declaration II and was approved by the Senate Research 185 Ethics Committee at City, University of London (ETH2223-2000). The findings of the study will 186 be communicated to other researchers, clinical professionals and policymakers primarily through 187 publications in peer-reviewed journals, seminars and conferences. A summary leaflet will be 188 189 produced in plain English and shared with participants, local communities, GP clinics and hospitals. The leaflet will include actions that can be taken by East London residents in their local 190 food environments. The findings will be also disseminated by university newsletters and social 191 media. This study will increase awareness of the health outcomes of VitD deficiency, particularly 192 in relation to T2DM, and provide rationales to inform education programs and food fortification to 193 combat VitD deficiency in minorities in East London and the wider public. We anticipate that a 194 major outcome of this study will be evidence to inform a randomised controlled trial (RCT) to 195 confirm the causal relationship between vitD status and glycaemic control in ethnic minorities in 196 the UK. Currently, research on vitD supplementation and PGR interventions has produced 197

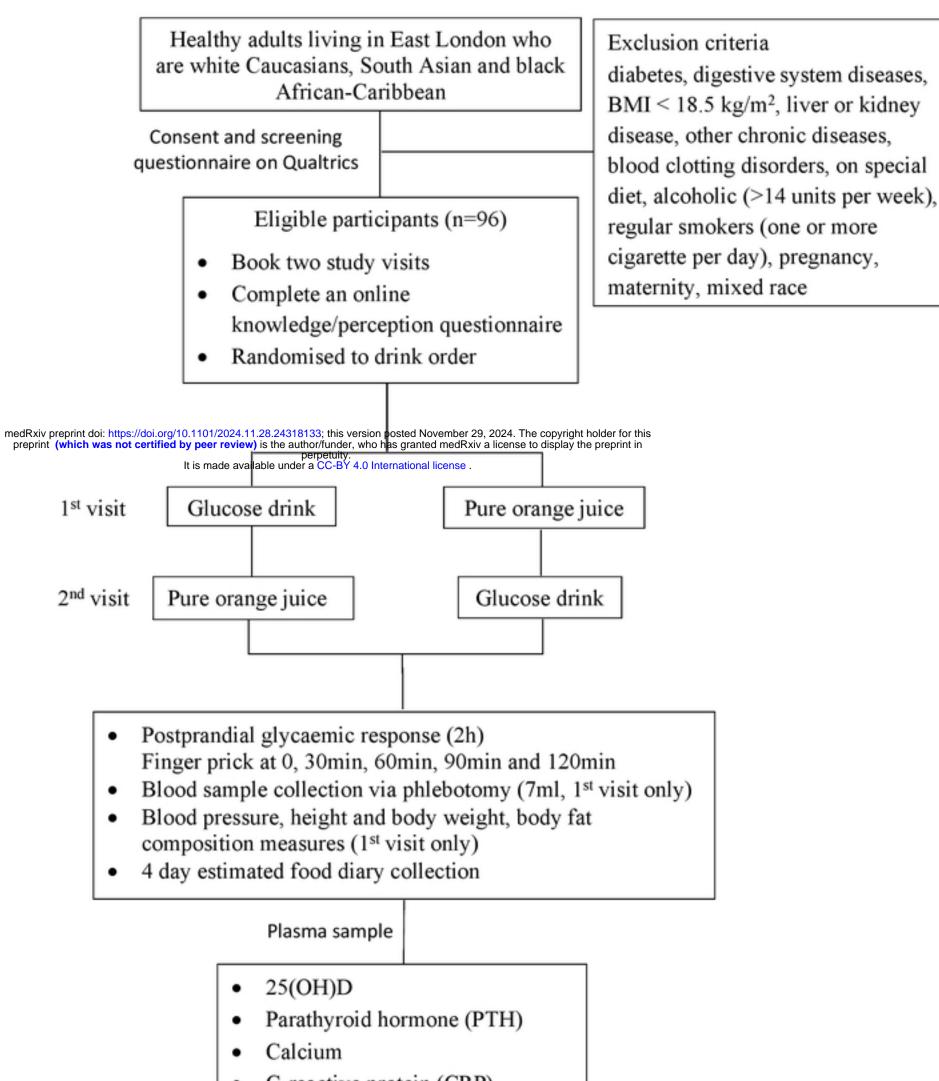
inconclusive results, and research on minority groups and young adults is needed $^{(31)}$.

199 Dissemination plan

- Lay summary reports/leaflets, which will be made available to participants and local
 communities, and promoted via a social media run by City, University of London
 (Facebook, Twitter etc.) and University newsletter
- Present the findings in seminars at school, and university level open to professionals or
 staff and students from other disciplines (e.g., an annual event called Develop@City which
 focuses on the main themes of Creativity, Wellbeing, Development and Community).
- Professional reports will be made available to professionals at City, University of London,
 wider partners of Barts Charity, and via LinkedIn
- An abstract of the findings will be submitted to the annual Nutrition Society Conference, or Diabetes UK Professional Conference (organised by Diabetes UK) to share the results with broader nutrition and health care professionals. It is hoped the presentation will generate interest amongst attendees and lead to collaborations in working with the applicant team to prepare an application for a larger project grant.
- A research paper will be produced and submitted to peer review journals that have
 agreement with City, University of London for publication fee waiver.

Contributors: HD is the principal investigator of the study and led the design of the study and the preparation of this manuscript and applied for ethics approval. ST contributed to creation of the questionnaire on Qualtrics, and the recruitment advert, CR and SS contributed to the development of the study protocol. SI contributed to the sample size calculation and statistical methods. All authors contributed to the preparation of this manuscript and approved the final manuscript. The funder played no role in the preparation of this manuscript.

Funding: This work is supported by a Barts Charity Research Seed Grant (Grant ReferenceNumber: G-002602).


223 There are no declared competing interests.

224

References 225

- 1. Meeks, K. A., Freitas-Da-Silva, D., Adeyemo, A., Beune, E. J., Modesti, P. A., Stronks, K., Zafarmand, M. H., & Agyemang, C. (2016). Disparities in type 2 diabetes prevalence among ethnic minority groups resident in Europe: a systematic review and meta-analysis. Intern. Emerg. Med. 11, 327-340. https://doi.org/10.1007/s11739-015-1302-9
- 2. GOV.UK (2022). Regional ethnic diversity. Available at https://www.ethnicity-factsfigures.service.gov.uk/uk-population-by-ethnicity/national-and-regionalpopulations/regional-ethnic-diversity/latest (Accessed 10/01/2022)
- 3. Diabetes UK (2019). New figures show rise in diabetes rates across London. Available at https://www.diabetes.org.uk/in_your_area/london/london-region-news-/new-figures-risediabetes (Accessed 10/01/2023)
- 4. Hanif, W. & Susarla, R. (2018). Diabetes and cardiovascular risk in UK South Asians: an overview. Br. J. Cardiol. 25(suppl 2), S8–S13. doi:10.5837/bjc.2018.s08
- 5. Tan, W. S., Tan, S. Y., & Henry, C. J. (2017). Ethnic Variability in Glycemic Response to Sucrose and Isomaltulose. Nutrients. 9(4), 347-353. https://doi.org/10.3390/nu9040347
- 6. Diabetes UK (2022). Diabetes and Obesity. Available at https://www.diabetes.co.uk/diabetesand-obesity.html (Accessed 22/01/2023)
- 7. GOV. UK (2020). Overweight adults. Available at https://www.ethnicity-factsfigures.service.gov.uk/health/diet-and-exercise/overweight-adults/latest (Accessed 10/01/2022)
- 8. Darling, A. (2020). Vitamin D deficiency in western dwelling South Asian populations: An unrecognised epidemic. Proc. Nutr. Soc. 79(3), 259-271. doi:10.1017/S0029665120000063
- 9. Sutherland, J.P., Zhou, A., Leach, M.J. & Hyppönen, E. (2021). Differences and determinants of vitamin D deficiency among UK biobank participants: a cross-ethnic and socioeconomic study. *Clin. Nutr.* 40(5), 3436-3447. <u>https://doi.org/10.1016/j.clnu.2020.11.019</u>
- 10. Lowe, N.M. & Bhojani, I. (2017). Special considerations for vitamin D in the South Asian population in the UK. Ther. Adv. Musculoskelet. Dis. 9(6), 137-144.
- 11. NHS Tower Hamlets (n.d.). JSNA Factsheet: Vitamin D maternity and early years-Tower Hamlets Joint Strategic Needs Assessment 2010-2011. Available at https://www.towerhamlets.gov.uk/Documents/Public-Health/JSNA/Vitamin-D-maternityand-early-years.pdf (accessed 17/01/2023)
- 12. Yin, X., Chen, J. Y., Huang, X. J., Lai, J. H., Huang, C., Yao, W., Li, N. X., Huang, W. C., & Guo, X. G. (2022). Association between vitamin D serum levels and insulin resistance assessed by HOMA-IR among non-diabetic adults in the United States: Results from NHANES 2007-2014. Front. Nutr. 9, 883904. https://doi.org/10.3389/fnut.2022.883904
- 13. Abubaker, S., Albasseet, A., El-Abd, K. A., Alandijani, A. A., Alendijani, Y. A., & Alkhenizan, A. (2022). Association Between Vitamin D Levels and Glycemic Control Among Adult Diabetic Patients in Riyadh, Saudi Arabia. Cureus. 14(6), e25919. https://doi.org/10.7759/cureus.25919
- 14. Hu, Z., Chen, J., Sun, X., Wang, L., & Wang, A. (2019). Efficacy of vitamin D supplementation on glycemic control in type 2 diabetes patients: A meta-analysis of interventional studies. Medicine. 98(14), e14970. https://doi.org/10.1097/MD.000000000014970
- 15. Lips, P., Eekhoff, M., van Schoor, N., Oosterwerff, M., de Jongh, R., Krul-Poel, Y., & Simsek, S. (2017). Vitamin D and type 2 diabetes. J. Steroid Biochem. Mol. Biol. 173, 280-285. https://doi.org/10.1016/j.jsbmb.2016.11.021.
- 16. de Souza Santos, R., & Vianna, L. M. (2005). Effect of cholecalciferol supplementation on blood glucose in an experimental model of type 2 diabetes mellitus in spontaneously hypertensive rats and Wistar rats. *Clin. Chim. Acta*. 358(1-2), 146–150. https://doi.org/10.1016/j.cccn.2005.02.020
- 17. Klec, C., Ziomek, G., Pichler, M., Malli, R., & Graier, W. F. (2019). Calcium Signaling in ß-cell Physiology and Pathology: A Revisit. Int. J. Mol. Sci. 20(24), 6110–6133. https://doi.org/10.3390/ijms20246110

- 18. Takiishi, T., Gysemans, C., Bouillon, R., & Mathieu, C. (2010). Vitamin D and diabetes. Endocrinol. Metab. Clin. North Am. 39(2), 419-446 https://doi.org/10.1016/j.ecl.2010.02.013
- 19. Kolb, H. & Mandrup-Poulsen, T. (2005). An immune origin of type 2 diabetes?. Diabetologia. 48, 1038-1050. https://doi.org/10.1007/s00125-005-1764-9
- 20. Rafiq, S., & Jeppesen, P. B. (2018). Body mass index, vitamin D, and type 2 diabetes: A systematic review and meta-analysis. *Nutrients*, 10(9), 1182-1201. https://doi.org/10.3390/nu10091182
- 21. Vranić, L., Mikolašević, I., & Milić, S. (2019). Vitamin D deficiency: Consequence or cause of obesity? Medicina (Kaunas, Lithuania), 55(9), 541-550. https://doi.org/10.3390/medicina55090541
- 22. Meynier, A., Goux, A., Atkinson, F., Brack, O., & Vinoy, S. (2015). Postprandial glycaemic response: how is it influenced by characteristics of cereal products?. Br. J. Nutr. 113(12), 1931-1939. https://doi.org/10.1017/S0007114515001270
- 23. American Diabetes Association (2013). Diagnosis and classification of diabetes mellitus. Diabetes care, 36 Suppl 1(Suppl 1), S67–S74. https://doi.org/10.2337/dc13-S067
- 24. Liu, A., Fan, Z., Lu, X., Wu, Y., Zhao, W., Lou, X., Hu, J., & Peng, X. (2022). The characteristics of postprandial glycemic response patterns to white rice and glucose in healthy adults: Identifying subgroups by clustering analysis. Front. Nutr. (Lausanne), 9, 977278-977278. https://doi.org/10.3389/fnut.2022.977278
- 25. British Nutrition Foundation (2021). British Nutrition Foundation survey reveals 49% adults unaware of UK Government guidelines for vitamin D. Available at https://www.nutrition.org.uk/news/2021/british-nutrition-foundation-survey-reveals-49adults-unaware-of-uk-government-guidelines-for-vitamin-d/ (Accessed 22/01/2023)
- 26. Khundmiri, S. J., Murray, R. D., & Lederer, E. (2016). PTH and Vitamin D. Compr. Physiol. 6(2), 561-601. https://doi.org/10.1002/cphy.c140071
- 27. de Oliveira, C., Biddulph, J. P., Hirani, V., & Schneider, I. (2017). Vitamin D and inflammatory markers: cross-sectional analyses using data from the English Longitudinal Study of Ageing (ELSA). J. Nutr. Sci. 6, e1. https://doi.org/10.1017/jns.2016.37
- 28. Alkhatatbeh, M.J., Amara, N.A. & Abdul-Razzak, K.K.(2019). Association of 25-hydroxyvitamin D with HDL-cholesterol and other cardiovascular risk biomarkers in subjects with non-cardiac chest pain. Lipids Health Dis. 18, 27. https://doi.org/10.1186/s12944-019-0961-3
- 29. Grønborg, I. M., Lundby, I. M., Mølgaard, C., Jakobsen, J., Ovesen, L., & Andersen, R. (2015). Association of body fat and vitamin D status and the effect of body fat on the response to vitamin D supplementation in Pakistani immigrants in Denmark. Eur. J. Clin. Nutr. 69, 405–407. https://doi.org/10.1038/ejcn.2014.254
- 30. Dhaheri, A. S. A., Henry, C. J. K., Lightowler, H. J., Ismail, L. I. C., Tydeman, E., & Hourani, H. M. A. (2010). Role of Body Composition in the Glycaemic Response to Foods Fed to Three Different Ethnic Groups: A Pilot Study. Ann. Nutr. Metab. 56(3), 217–224. https://www.jstor.org/stable/48507089
- 31. Christides, T. (2022) Vitamin D and risk of type 2 diabetes BMJ. 377, e066222. doi: https://doi.org/10.1136/bmj-2021-066222

- C-reactive protein (CRP)
- High-density lipoprotein (HDL)

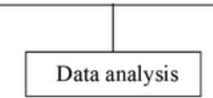


Figure 1. Study flow diagram

Figure 1