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ABSTRACT

for 
in 
is

method of structural stability analysis which accounts 
of inelasticity along structural members is presented 
This method is called the inelastic zone method and 

s to investigate the behaviour of metal plane frames loaded 
For a given loading on a plane frame, the inelastic zones 

i without a
Account 
tangent 
stress- 

for the 
for the 

assumed, the main 
additional terms 

The accuracy of

A new s
spread 
thesis.

employed here
to failure.
which may be present along the frame members are identified 
finite discretization of the members and their cross-sections, 
is taken of any initial member curvature in determining 
force-displacement relationships for the members, 
strain relationship for the material is adopted.
deflection 
deflection 
difference 
for satisfying 
equation is examined in a Parametric Study, 
and
The
load
method
of geometry of the frame.
loads, the stable equilibrium path foi' the frame can be traced.

the 
this

j the
A bilinear

The equation 
similar to that 
is

curve for an inelastic zone which is 
curve foi' an elastic beam-column 
being that this assumed equation contains

curvature boundary conditions. The accuracy of this 
’ . In this thesis, rectangular 

I-shaped cross-sections have been considered for the frame members, 
tangent force-displacement relationships so determined at a given 
level are used to analyse the plane frame using the stiffness 

of structural analysis in which account is taken of the changes 
By repeating this procedure for increasing

Experiments were conducted on two portal frames built-up from mild 
steel members having rolled I-shaped cross-sections. This was aimed at 

realistic geometrical imperfections and residual 
obtained are compared with those predicted by the 
good agreement is obtained for ultimate loads, 
of plasticity.

building 
stresses . 
proposed

a model with 
The results 

method
deflections

and 
and spread

Frame failure loads obtained by theoretical methods and 
experiments reported in the literature are compared with those obtained 
by the inelastic zone method. Good agreement is obtained while the 
inelastic zone method is shown to give lower-bound values of frame 
failure loads.

Recommendations for the design of metal plane frames are also 
given. In addition, a new, simplified method of plane frame design 
which avoids the computation of frame failure loads and member effective 
lengths but considers an estimated ultimate strength of each member 
cross-section based on the results obtained from a non-linear, elastic 
analysis of the frame subjected to the working loads is presented. 
This method is called the limiting moment method and can be applied to 
all types of plane frame under general loadings. Examples which 
illustrate the application of this method to frame design are given.
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NOTATION DESCRIPTION

E Young's modulus of elasticity

0 stress at a point

e strain at a point

A
s ultimate strain/yield strain

B
s ultimate stress/yield stress

E
s slope of tangent to the strain-hardening curve

on the material stress-strain diagram

C
s Es/E [= (Bs-1)/(As-1)]

H depth of cross-section

B width of rectangular cross-section or width of flange

of I-shaped cross-section

T thickness of flange of I-shaped cross-section

t thickness of web of I-shaped cross-section or metric 

tonne when applied to a force

n depth from edge to neutral axis of cross-section

a depth of elastic core of cross-section

a
1 depth of inelastic zone from edge of cross-section

for ultimate stress distribution diagram

I 
z second moment of area of cross-section about its z-axis

A area of cross-section

Z1 elastic modulus of cross-section

4) curvature of cross-section

0 end rotation of zone or member

L length of member

B .1 length of zone i of member

L
0 original length of member1

u
0 initial central deflection of member
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K
0 K/Lo

7 flexibility coefficient for an elastic or inelastic zone

a flexibility coefficient for a beam-column

k stiffness coefficient for a beam-column

A displacement along the y-axis of a member

6 displacement along the x-axis of a member

X longitudinal axis of member

X longitudinal axis of frame

y transverse axis of member

Y transverse axis of frame

z out-of-plane axis perpendicular to x- and y- axes

Z out-of-plane axis perpendicular to X- and Y- axes

<P slope of member

A load parameter (or factor)

P axial force

P s squash load for cross-section (= oy/A)

PE 2 2Euler buckling load for member (= k EI^/L )

M.
1 bending moment at point i along beam-column

M
P full plastic moment of cross-section

C
P squash load ratio (= P/PJ

C 
e Euler buckling load ratio (= P/PE)

% amplification factor for axial load effect [= 1/(1-C-e)]

R.
1 bending moment ratio (=

R a intermediate yield moment ratio (= My2^Myp

Rb ultimate yield moment ratio (= My3/My|)

£ summation
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support fixed in three directions

pinned support or joint

simple support

rolling support

plastic hinge without considering inelastic zones

inelastic zone along a member

plastic hinge and inelastic zones

Suffix

i integer for point, end, zone or member

y yield

u ultimate

e elastic

f failure

yi first yield

y2 intermediate yield

y3 ultimate yield

lw limiting under working loads

sh strain-hardening
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Equations, Figures and Tables are numbered as follows:

( i , j )

where i is the Chapter and j is the Equation, Figure or Table number.

Also, Sections and Sub-Sections of chapters are numbered as follows:

(i,-j) and (i.j.k)

where i is the Chapter, j is the Section and k is the Sub-Section. 

Equations in an Appendix are numbered as follows:

(Ai,j)

where Ai is the Appendix i and j is the Equation number.

In the main, metric units of measurement are adopted in this 

thesis. However, imperial units of measurement have also been used 

where necessary (for example, in experiments and in frame stability 

analyses by other authors). For purposes of conversion from one unit to 

another, a Conversion Table is given in Appendix 5.

Other notations are described wherever they occur in this thesis.
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CHAPTER 1

INTRODUCTION

1 -1 Historical Note

Structural stability theory originated from the early classic

works of Euler (1) on the stability of metal columns. Lagrange,

Considere, Engeseer von Karman and Shanley were among other early

investigators of this subject (2,3,4,52). In 1759 Euler established

that a bifurcation of equilibrium paths and elastic buckling occur when

an initially-straight prismatic, column has a critical compressive

axial load. In 1770, Lagrange confirmed this theory for slender columns 

of different end conditions. In 1889, Considere and Engesser introduced 

the double modulus and tangent modulus theories respectively for 

inelastic buckling. In 1910, von Karman presented a stability analysis 

of an eccentrically-loaded column. In 1947, Shanley proved that the 

tangent modulus theory is more correct than the double modulus theory. 

Today, numerous works are available on the stability of columns and 

other structural elements such as beams, plates, shells and frames.

In this thesis, the inelastic stability of metal plane frames 

which form parts of metal space (or three-dimensional) frameworks will 

be considered.

1-2 Plane Frame Stability Analysis

As the costs of labour and materials increase, the overall cost of 

constructing an engineering structure (such as a building or a bridge) 

increases. Any efforts to reduce this cost must allow for a reduction 

of the total quantity of materials employed in the construction of the 

structure. For a framed structure, this could lead to the use of 
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slender members. Where the framed structure is tall, instability due to 

the build-up of large axial forces in the predominantly-axially-loaded 

members (such as columns) and to the development of large bending 

moments in the predominantly-transversely-loaded members (such as beams) 

could arise at loads much lower than the anticipated frame failure 

loads. The option of increasing the sizes of members to avoid these 

problems may, in turn, lead to uneconomic designs. Considerations for 

the introduction of some form of bracing against sidesway movements may 

often provide a feasible and economic solution to the problem. 

Nevertheless, in a practical design environment, the actual financial 

constraints associated with the design of the structure may, indeed, 

dictate the best line of action to take.

Notwithstanding economic considerations in structural design, a 

structure must fulfil its basic fuctions with ample margins of safety 

against collapse and undue deflections. These aspects of structural 

behaviour, indeed, underly the need for all frame stability analyses and 

imply that frame failure loads must be determined before levels of 

safety can be established.

A realistic determination of the failure load of a structure 

should include all structural elements of the structure. For example, 

in the case of a steel-framed building, the contributions of the steel 

space frames and all concrete slabs and concrete or brick walls to the 

strength of the structure should be allowed for. It is possible to 

obtain an estimate of the failure load of such a built-up structure by 

employing experimental techniques. These would involve building several 

models of the structure and subjecting each model to different 

combinations of load to failure. Such procedures would not only lead 
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to much expense but also may not necessarily reflect the actual 

conditions to be found in the real structure when built. Nevertheless, 

such procedures may be inevitable in the absence of adequate analytical 

techniques. On the other hand, a stability analysis of the structure 

incorporating the different structural elements of the structure and 

accounting for general loadings would be very expensive and prohibitive 

as a routine design procedure particularly where several trial designs 

are required before a satisfactory design is achieved.

In some framed structures (such as steel-framed, tall buildings), 

plane frames can be identified which are constrained to displace 

significantly within their own planes and negligibly out-of-plane under 

the actions of the general loadings on the structure by judiciously 

introducing out-of-plane restraints such as shear walls, floor beams and 

diagonal bracings for these plane frames. Also, these frames generally 

have members of I-shapes which have low torsional and minor-axis 

bending stiffnesses when compared with their major axis bending 

stiffnesses and their members may have rigid, semi-rigid or simple 

connections with the out-of-plane restraints. Such frames, in general, 

represent the weak links in the make-up of the space frame foi' the 

structure and also lend themselves easily to elastic or inelastic 

stability analysis. Thus, if a space frame consists of a number of plane 

frames, the least failure load obtained from stability analyses of all 

the plane frames, each subjected to its range of total design loads, 

win give a good indication of the failure load for the space frame. 

This approach is, where permissible, a more economical and practical 

procedure for estimating the strength or adequacy of the space frame 

than any attempt to treat the entire structure as one unit for 

analytical purposes.

15



The existence of plane frames in structures, taken in isolation,

is not sufficient to warrant a stability analysis for design. Other

factors which make this necessary for frame design include the

uncertainties associated with frame behaviour and design. The main

areas of uncertainty are the true types, nature, distribution,

combinations, frequency and magnitudes of the applied loads and the true

nature and behaviour of the connections and foundations. Also, plane

frames are customarily required to sustain their working loads under1

purely elastic conditions (5) and the maximum specified joint

displacements are customarily required not to be exceeded under 

conditions (5). However, in view of the foregoing factors which 

elastic

affect

true frame behaviour, no guarantee can be given in practical design that 

these requirements can be met Thus, the specified working loads may

induce inelastic conditions in the frame and the expected factor of

safety may not be attained.

A rational, practical, economic and realistic design of a framed

structure which consists of a series of inter-connected plane frames

should, therefore, be based on stability analyses of the plane frames. z
1.3 Plane Frame Classifications

Numerous configurations of plane frame are possible. In general,

a rectangular plane frame (that is one that has only vertical and

horizontal members which has no member discontinuity at any joint or in

any storey is often classified as a regular frame (40). Such a frame

may not necessarily have a vertical axis of symmetry. Any plane frame 

that is not regular is often classified as an irregular frame. A frame 

may be braced or unbraced against sidesway depending on the presence 
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or absence of adequate external or internal in-plane restraints at all 

the beam levels or within all stories using diagonal bracings. Varying 

degrees of elastic and inelastic restraints are also possible and 

partial restraints may be applied at selected beam levels. Unbraced 

rectangular plane frames are also classified as sway frames (46).

1-4 Existing Methods Of Hetal Plane Frame Stability Analysis

A plane frame which fails under elastic conditions is said to fail 

by elastic instability (7). This type of failure is characteristic of 

plane frames having perfect members primarily subjected to axial forces. 

For these frames, therefore, the applied loads do not induce significant 

joint displacements and member bending moments at any stage of loading 

before failure. At failure, however, a bifurcation of equilibrium paths 

becomes possible resulting in unstable behaviour and the corresponding 

failure loads are described as the buckling or the elastic critical 

loads. Fully-braced frames loaded by concentrated loads at the joints 

and regular frames whose columns only are axially-loaded are examples of 

frames that can fail by elastic instability.

When, at least, one cross-section of one member of a plane frame 

is strained into the inelastic domain due to any combination of primary 

effects (such as axial forces, bending moments and material 

non-linearity) and secondary effects (such as initial imperfections, 

eccentric loadings at connections and support deformations), then 

failure by inelastic instability can result. The degree of inelasticity 

present in any loaded frame at any stage up to failure depends entirely 

on the contributions of these effects to the overall performance of the 

frame. A plane frame subjected to loadings at the joints and also along 

its members is an example of a frame that can fail by inelastic 
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instability.

Techniques of stability analysis which attempt to describe the 

above behaviour patterns for loaded plane frames are available. These 

techniques range from simple, manual, analytical methods aiming to

provide reasonable solutions with the minimum of computational effort to

more rigorous, computer-based methods aiming to provide more accurate

results but at the expense of much computational effort.

The slope-deflection method, used in conjunction with stability

functions (14), is widely adopted in the determination of the elastic

critical loads of plane frames (4,7,8,9,10,11,12,13). In this method,

the axial shortenings of members are ignored and only two degrees of

freedom (rotational and translational) are considered at each node.

Non-linear effects due to member axial forces are accounted for through

the use of stability functions which modify the member flexural

stiffnesses calculated on the assumption of zero axial force. The zero-

determinant concept for the resulting stiffness matrix of the entire

frame is employed to establish the elastic critical loads of the plane

frames. The classical integration technique has also been used for this

purpose (15) but to relatively simple frames.

The stiffness method (11,16,17), which is an extension of the

slope deflection method that includes the axial deformations of members,

is the most widely adopted method of structural analysis when using a

computer and is also employed for the determination of the elastic

critical loads for plane frames.

In considering inelastic effects in a plane frame, two main

concepts of behaviour are available, the concentrated inelasticity and

the distributed inelasticity concepts (18).

1 8



The concentrated inelasticity concept is also described as a 

plastic hinge concept because it is mainly applicable to structural 

steel members and frames since these are ductile and exhibit definite 

plastic behaviour before strain-hardening. Basically, this concept, 

pioneered by Baker (84) and later extended by Horne and Heyman (19), 

ignores the gradual spread of inelastic zones along the frame members 

as the applied loads on the frame are gradually increased and assumes 

all inelastic effects to be concentrated at each member end cross- 

section where the resulting bending moment becomes equal to the ultimate 

moment of resistance (also called the full-plastic moment) of the cross-

section. Thus, an abrupt transition from elastic stress distribution 

into a fully-plastic stress distribution at such an end cross-section 

occurs while the entire length of each member of the frame remains 

elastic at all stages of loading up to failure (20,21,22,23). A plastic 

hinge is said to form at a cross-section which attains its full-plastic 

moment so that no additional bending moment can be attracted to that 

cross-section and this is accounted for in modifying the flexural

properties of the relevant members at the relevant stage of loading.

The concentrated inelasticity concept is employed in a plane frame

stability analysis through two basic methods, the rigid-plastic and the

elastic-plastic methods. These methods may, however, lead to widely

different results.

The rigid-plastic method adopts the rigid-plastic stress-strain 

and moment-curvature relationships for the member cross-sections for the 

determination of the failure load of a plane frame (19,24,25,26, 

27,28,29). In this method, the failure of a plane frame by the 

formation of a sufficient number of plastic hinges at various locations 

to transform the frame into a mechanism is assumed to preceed failure 

19



due to the build-up of axial forces in the frame members. In addition 

to the mechanism condition, the yield condition (in which the maximum 

bending moment at a cross-section is not greater than the full- plastic 

moment of the cross-section) and the equilibrium condition (in which the 

resulting bending moment distribution is in equilibrium with the applied 

loads) must be satisfied. The mechanism condition gives an upper-bound 

value of the frame failure load while the yield and equilibrium 

conditions give a lower-bound value of the frame failure load. The 

satisfaction of these three conditions is the fundamental requirement of 

the uniqueness theorem of plastic collapse (28). Also, no joint 

displacements are assumed to exist until a mechanism has been formed 

and plastic failure occurs. A first-order, rigid-plastic method ignores 

axial force effects while a second-order, rigid-plastic method includes 

axial force effects in the computations. The stability analysis is 

carried out by selecting a number of trial mechanisms for a plane frame, 

setting up and solving the virtual work equations of balancing the 

external work done by the applied loads and the internal work done by 

the full-plastic moments on the assumed plastic hinges. The correct 

mechanism is taken to be that which corresponds to the least frame 

failure load obtained. Extensions of this method to include the strain-

hardening property of structural steel can be made using Horne's rigid- 

Plastic-rigid stress-strain relationships (30) in which Horne assumed 

strain-locking to take place at the start of strain-hardening. However, 

Medland (30) and Horne and Medland (31) modified this idealization to a 

rigid-plastic-strain-hardening idealization. In either case, additional 

terms are introduced in the basic work equation to allow for the effects 

of strain-hardening. The general procedure adopted requires a knowledge 
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of the bending moment diagram for the frame under the given set of loads 

so that the plastic hinge length, associated with each plastic hinge, 

can be determined. This length is taken to be the sum of the lengths 

between the ends of the relevant members meeting at the plastic hinge 

position and the points of intersection of the tangent drawn to the 

bending moment, diagram at those ends with the longitudinal axes of the 

members. This approach is, therefore, semi-graphical and time-consuming 

particularly when applied to multi-storey, multi-bay frames.

The results obtained by applying the rigid-plastic method can be 

improved by employing either the shakedown theorem (22) or the Merchant- 

Rankine formula (32) or its modification by Wood (32). The shakedown 

theorem leads to the computation of a collapse load which generally lies 

between the first yield load and the rigid-plastic collapse load for the 

frame as the frame, subjected to variable repeated loading, shakes down 

due to either alternating plasticity or incremental collapse 

(22,33,34,35). For the majority of plane frames designed in practice, 

however, variable repeated loading is not employed and the designs are 

based on statically-applied loadings. On the other hand, the Merchant- 

Rankine formula is based on statically-applied loads and is, therefore, 

more employed in practice than the shakedown theorem. The Merchant- 

Rankine formula leads to a frame failure load which is lower than both 

the rigid-plastic collapse load and the elastic critical load for the 

frame and is expressed as follows:

1 /Pr = 1/P + k/P (1.1)f e p

where P = frame failure load,

P = frame elastic critical load,e

Pp = frame rigid-plastic collapse load and

k = unity or Wood's modification factor of 0.9 introduced to

21



account for strain-hardening and composite action.

The apparent simplicity of the Merchant-Rankine formula which is

related to the Rankine formula for struts, has attracted the attention

of many investigators. Majid (36) concluded that it is reasonable.

concluded that it is inadequate for tall frames where

instability problems are significant. Moses (37) demonstrated that it

is unsuitable for inelastic frame buckling. Ariaratnam (21) pointed out

that it has no theoretical basis and that one reason for its rejection

lies in the fact that it does not allow for imperfections as allowed for

in columns. is a useful

alternative in the absence of adequate computer software and recommended

its use for realistic, regular, plane frames with their bay widths not

less than their storey heights.

Eqn.

Modifications to the linear interaction formula represented by

(1.1) have been proposed by Anderson and Lok and by Scholz in the

form of curves. By making use of the deteriorated elastic critical load

for a plane frame obtained for each formation of a plastic hinge up to

a fitting curve represented by

the following formula:

where X

This curve

the other

X/X -
P (1-0.4*X

frame

frame

frame

failure load factor,

load factor for

load factor for

ignores strain-hardening

2]

plastic collapse load and

lowest elastic critical load.

and composite action. Scholz, on

hand, developed a multi-curve interaction method (85,86, 87)

X
P

Xc

which depends not only on the plastic collapse and the elastic critical

loads but also on the slenderness ratio of member, a limitinga
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slenderness ratio for the member and a reduction factor which lies 

between 0.4 and unity. This method can be applied to either the entire 

frame or to a limited sub-frame made up of some columns and beams within 

a chosen storey. In the latter procedure, several sub-frames are tried 

and the least failure load obtained is taken to be the failure load for 

the entire frame. Scholz’s method also does not consider strain-

hardening and composite action.

In practice, however, the Merchant-Rankine formula or any of its 

modifications has limited application as it gives conservative results 

only when specific conditions are satisfied. By requiring separate 

computations for the plastic collapse load and the elastic critical load 

(each requiring a different loading arrangement), the application of 

these formulae to frame design can be time-consuming. The most obvious 

limitation of these formulae is that they cannot be applied to irregular 

frames subjected to general loadings and in which significant 

non-linear effects are present.

The second-order elastic-plastic method, on the other- hand, adopts

< elastic-plastic stress-strain relationships for the member cross-

sections for plane frame stability analysis. The mechanism concept of 

/ the rigid-plastic method is dropped and joint displacements and member 

/ end forces are calculated for each formation of a plastic hinge using 

the standard stiffness method. Thus, the step-by-step formation of 

Plastic hinges is followed until the frame fails. However, the first- 

order method ignores axial force effects on member stiffness whereas the 

second-order method includes these effects. Thus, the first-order 

Method adopts elastic-plastic moment-curvature relationships for the 

member cross-sections whereas the second-order method adopts elastic-
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/y plastic moment-curvature-axial force relationships for the member cross-

sections (3,17,23,36,39,40,41,42,43,44,45,46,47). Consequently, the

second-order method gives the more realistic results which are

reasonably close to, but generally higher than, those obtained 

experimentally or by means of more rigorous methods. Strain-hardening 

is allowed for by employing an elastic-plastic-strain-hardening material*̂  

stress-strain idealization (27). Each analysis for the formation of a 

plastic hinge gives a point on the stable equilibrium path (or load-

deflection curve) for the frame. By performing several such analyses, 

each time checking the positive-definiteness of the determinant of the 

frame tangent stiffness matrix or testing for loss of convergence, the 

entire stable equilibrium path can be traced and the failure load 

parameter (usually for proportional loading) evaluated. Thus, at 

failure, the number of plastic hinges present in the frame depends 

largely on the manner in which non-linear effects due to the axial

forces are included in the analysis.

The distributed inelasticity concept attempts to describe the true

behaviour of structural materials and therefore, generally

applicable to all structural materials. This concept accounts for

/ simple and complex distributions of stress on member cross-sections,

z spread of inelastic zones along frame members and primary and secondary

effects in structures. It is employed in plane frame stability analysis 

/through the use of numerical integration methods involving finite sub-

divisions of frame members and their cross-sections. The accuracy of 

these numerical integration methods can be increased by increasing the 

number of sub-divisions.

An early attempt to employ the distributed inelasticity concept to 

metal plane frame stability analysis was made by Lu in investigating the
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behaviour of a steel, pin-based, regular, unbraced portal frame having a

uniformly distributed load on the beam and equal, concentrated loads on

the columns (7,48,49,50,51). Chwalla had earlier obtained the failure

load of a similar portal frame without the concentrated column loads by

assuming failure by elastic instability and employing the classical

integration technique (3,7,52). Chwalla's method, therefore, gave an

upper-bound to the true frame failure load whereas Lu' s method

established a lower-bound to the true frame failure load.

In Lu's method, the frame members are sub-divided into finite

segments and the cross-section at the end of each segment is further

sub-divided into finite sub-elements. Then, assuming axial f orce

effects in the beam to be negligible, the moment-curvature curve for the

beam and the moment-curvature-axial force curves for the columns are

derived using a numerical integration technique. The moment-rotation

curve for the beam and the moment-rotation-axial force curve for the

columns are next determined for a chosen set of the applied loads by a

numerical integration technique. The length of each segment along a

member is made equal to a constant (say four) times the radius of

Gyration of the member cross-section. These curves are plotted on the

same set of axes and the moment and rotation for their point of

intersection give the moment and rotation at the knee of the portal

frame assumed effectively braced against sidesway. Then, the bending

moment distribution diagram for the entire frame is drawn. However, a

sidesway mode of failure is assumed. Therefore, an analysis of the

frame in a sidesway configuration becomes necessary. This is

accomplished by first employing the bending moment diagram foi' the beam

io determine the yielding zones along the beam and employing the moment-
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curvature curve for the beam to derive the effective flexural stiffness 

and carry-over factors for the beam (after ignoring the yielding zones) 

by column analogy (29). Then, the flexural stiffness factor for each 

column is derived assuming elastic behaviour and employing stability-

type functions. By applying an arbitrary sidesway and equal, arbitrary 

bending moments to the tops of the columns and using the above factors, 

a bending moment distribution for the entire frame in a sidesway 

configuration is established using standard moment distribution 

procedure. The column shear forces can now be determined. The sum of 

these shear forces must be positive if the frame is stable under the 

applied loads. If this is the case, the above procedure is repeated for 

increased applied loads. The loads corresponding to a zero or negative 

value of the sum of the column shear forces represent the failure loads 

for the frame at which inelastic instability of the frame occurs.

Lu's method is cumbersome to apply to tall, regular and irregular

plane frames. However, it formed a basis for the numerical integration 

methods of plane frame stability analysis in current usage.

In the numerical integration methods, each frame member is sub-

divided into a number of elements (or segments) and the cross-section at

the end of each element is sub-divided into a number of sub-elements

Prior to analysis. These sub-divisions are, therefore, employed for the

frame loaded from the elastic domain exact methods of

analysis involving no sub-divisions are available) into the inelastic

domain. The loads on the frame are applied at the nodal points. At

each load level, the force and moment equilibrium equations for the

determination of the moment-curvature-axial force relationships for the

cross-section at each nodal point are set up and used to derive

expressions for the moment-rotation-axial force relationships for each 
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element along the frame member in terms of the unknown nodal forces and 

displacements. Then, the imposition of the conditions of compatibility 

of nodal displacements and equilibrium of nodal forces gives sufficient 

simultaneous equations which are solved iteratively to determine the 

nodal forces and displacements. Two main methods are employed here 

namely, the finite difference and the finite element methods. Some 

basic differences, however, exist between these two methods.

In the finite difference method, finite difference forms of the 

equations for curvatures and rotations are used and these are based on a 

curve whose slope at a point equidistant from two nodes can be 

represented by the relative displacement of the nodes divided by the 

distance between the nodes. In the finite element method, however, 

expressions for curvatures and rotations are derived by assuming a curve 

(or displacement function) for each element, notably a cubic curve for 

an element subjected to combined bending moment and axial force (that is 

a beam-column) and a straight-line for an element subjected only to an 

axial force (for example, a triangulated truss member). Moreover, in 

the finite difference method, the relevant equations are usually 

expressed in forms which lead firstly to the determination of one 

displacement at each node (notably transverse to the member) from which 

all other unknown quantities can be determined whereas in the finite 

element method, the element tangent stiffnesses are determined and 

employed in obtaining all nodal displacements from which the nodal 

forces can be determined. In each method, the end of elastic behaviour 

(or the onset of inelastic behaviour) and the inelastic zones that may 

z/, be present along the frame member at a given load level are not 

identified. Interest is focussed on the determination of the load-
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deflection curve for the frame and each analysis for the given set of

loads gives a point on this curve. By increasing the applied loads and

repeating the relevant procedure, the entire load-deflection curve for

the frame can be traced. Examples of application of the finite

difference method are given in References 36, 55 and 56. In References

36 and 55, Moses also derived the moment-curvature relationships for an

I-shaped cross-section by analytical means by ignoring the contributions

of the axial force. Examples of application of the finite element

method are given in References 57,58 and 59. Seniwongse (57) showed the

use of a bilinear (elastic-strain-hardened) stress-strain relationship

for the steel. Kang and showed the use of a similar

bilinear representation of the stress-strain relationship for steel.

relevant member length

assuming the central 807

The use of

independent,

confined all plastic effects to 10 7. o f the

from the relevant end of the member thus

of a member length to remain always elastic.

a bilinear material stress-strain idealization for time-

inelastic behaviour is also demonstrated by Smith and

Z a n a t y

Sidebottom (60)

Recently, the

elastic-plastic method which also employs the distributed inelasticity

x/7c°ncept. Basically, the well-known force method (11,62), instead of the

stiffness method, is employed to establish the load steps for plastic 

hinge formation. Then, the influence of spread of yielding zones is 

allowed for by adopting smaller intermediate load steps and specifying a 

convenient number of sub-divisions for a membei' length and solving the 

non-linear force and moment equilibrium equations either numerically or 

by means of generated linear yield domains for the corresponding reduced 

depth of the elastic core of the cross-section at each specified
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location. With these, the reduced axial, and flexural properties of the

cross-section, and hence of the entire member, are derived. The

influence of geometrical non-linearities is accounted for by applying

fictitious forces, derived by multiplying the difference between the

linear elastic and the non-linear stiffness matrices for a member by

the corresponding current end displacement vectors, at the relevant

joint of the frame. The non-linear stiffness is derived by employing

stability functions for the case when the effect of yielding zones is

ignored and by employing a numerical integration technique f or including

this effect. Being based on the force method, however, this method

cannot be easily applied to frames in which the degree of statical

tall, irregular frames).

The typical equilibrium paths obtainable from the plastic hinge

methods of frame stability analysis and a true equilibrium path

obtainable from an experiment are given in Reference 3 and shown in

Fig. 1.1 and the existing methods of plane frame stability analysis

described above are summarized in Table 1.1. The typical equilibrium

path obtainable from a numerical integration technique is not given in

Fig. 1.1 mainly because of the variable nature of the ensuing results

but can lie between the true curve and that obtainable from the second -

order elastic-plastic method if very large member and cross-sectional

sub-divisions are employed.
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Load

Fig. 1.1 Typical Equilibrium Paths For Metal Plane Frames (3)
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Table 1.1 Summary Of Existing Methods Of Metal Plane Frame 
Stability Analysis

Mode Of
Instability

Elastic Inelastic

Failure 
Load

Elastic Critical 
(Or Buckling)

Ultimate

Concept 
Of

Behaviour

Elasticity 
(Including 
Merchant- 
Rankine)

Concentrated 
Inelasticity

Distributed 
Inelasticity

Rigid- 
Plastic

(Including 
Merchant- 
Rankine And 
Shake-down)

Elastic- 
Plastic

(Including 
Shake-down)

Spread Of 
Inelastic Zones

Analytical 
Techniques

Classical 
Integration, 
Slope 
Deflection, 
Stiffness

Virtual 
Work

Stiffness, 
Force

Numerical
Integration
Using Either 
Finite Differences 
Or Finite Elements

Bound Of 
Result

Upper Upper Upper For 
First-Order,
Lower For 
Second-Order

Lower Or Upper 
Depending On The 
Number Of Sub-
Divisions Of Each 
Member Or Cross- 
Section

1.5 Existing Methods Of Metal Plane Frame Design

The existence of several methods of metal plane frame stability 

analysis and the different levels of accuracy which they give present 

9reat difficulty of choice for a frame designer particularly with regard 

to achieving specified frame design objectives. The outcome is that 

varying standards of frame design are achieved in practice. 

Nevertheless, these methods provide the essential ingredients for 
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selecting feasible member section sizes, connections and foundations for 

plane frames in practice.

This thesis is mainly concerned with the stability analysis of 

metal plane frames. Attention will, therefore, be confined to the 

selection of suitable member section sizes for plane frames in all 

design considerations.

In general, a plane frame design requires a number of trial 

analyses of the frame in which member section sizes are revised foi' each 

analysis before the most feasible set of member section sizes can be 

selected. The method of analysis adopted for the design, therefore, 

must have a profound bearing on the achievement of any specified design 

objectives.

Metal frame design can be sub-divided into two broad 

classifications, namely:

(i) design based on the strengths of the individual members and

(ii) design based on the strength of the entire frame.

These classifications will now be briefly described.

1-5.1 Frame Design Based On The Strengths Of The Individual Members

A frame design based on the strengths of the individual members 

assumes that these strengths can be accurately determined. Also, while 

limitations are imposed on the permissible slenderness of each frame 

member, the design generally results in limiting the maximum stresses on 

member cross-sections to specified values.

There are two basic methods of design here, the working-stress and 

the limit-state design methods. In the working-stress method, the 

working loads are employed in the computations. Furthermore, the 

specified permissible stresses are lower than the material yield
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stresses, elastic stress-distribution for each cross-section is assumed, 

only elastic analysis of the frame is, therefore, adopted and each 

member cross-section is adjudged to be adequate if the condition 

represented by the following interaction equation is satisfied:

f /F * < 1-0 (1.3)a a b b

where f
a is applied axial stress,

F a is permissible axial stress (for bending moment absent),

fb is applied bending stress and

Fb is permissible bending stress (for axial force absent).

In the limit-state method, an elastic analysis of the frame subjected to 

factored working loads (based on a load factor greater than unity) is 

employed and an arbitrary re-distribution of the resulting bending 

moments is carried out to allow for plastic behaviour. The interaction 

equation (1.3) is also employed but the strength of each cross-section 

is based on a fully-plastic stress distribution instead of an elastic 

stress distribution. In each method, limitations are imposed on 

deflections for satisfying serviceability criteria under working loads 

and analysis for joint displacements and member end bending moments is 

often based on linear elastic (and seldom on non-linear elastic or 

inelastic) behaviour. This approach is considered to be adequate for 

practical purposes. On the other hand, the employment of inelastic 

analysis in this regard runs counter to the simplicity of this method of 

frame design.

Although the results of several studies of isolated beam-column 

behaviour are available (2,3,63,64,65,66,67,68,69,70,71,72), these are 

based on assumed boundary conditions (notably pinned, fixed or 

elastically-restrained) often unrelated to the actual conditions present 
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in frames. From these studies, however, the concept of effective length 

for a beam-column is evolved which is widely adopted in the simplified 

working-stress and limit-state design methods briefly described above. 

The effective length of a compression member relates the ultimate axial 

load for the member to the Euler load (calculated for pinned ends) for 

the member. Guidelines, in the form of formulae and nomograms, are 

usually recommended (74,75,76) for computing approximate values of these 

effective lengths in design codes of practice and structural steel 

design publications. Chen (73) emphasized the need for a better 

knowledge of end restraints for columns which form parts of frames. By 

employing a substitute frame approach, Wood also produced charts for 

computing the effective lengths of columns in braced frames (77). The 

computation of effective lengths based only on the elastic flexural 

stiffness of a frame column and its adjoining members and ignoring the 

actual loads on the frame has been pointed out by Moy and Downs (78) to 

be inadequate for accounting for instability effects. For example, in 

the context of overall frame failure rather than isolated column 

failure, the effective length of each column in the portal frame shown 

in Fig. 1.2 should vary with the applied loads, P, Q and R whereas this 

length is usually taken to be constant when failure is based on isolated
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column behaviour. Moy and Downs, therefore, advocated the avoidance of 

the effective length approach to frame design and proposed that the 

permissible axial load in the interaction equation should be the 

buckling load for a pin-ended column while the permissible bending 

moment should be the full-plastic moment of the cross-section divided by 

a factor given by

0 = 1.2 + Ap/30 (1.4)

where A^_ is an elastic amplification factor defined as the elastic 

second-order moment divided by the elastic first-order moment. This 

proposal appears reasonable but cannot overcome all the problems of the 

effective length approach since it is based on a non-representative 

frame column.

It is evident from the foregoing remarks that a realistic 

computation of the ultimate strengths for the members of regular and 

irregular frames should include not only elastic considerations but also 

any inelastic effects in the members and their adjoining members arising 

from all material, geometric and loading effects. Thus, the design of 

plane frames on the basis of the ultimate strengths of their members 

cannot always guarantee to produce a safe or economic design.

1.5.2 Frame Design Based On The Strength Of The Entire Frame

Of the methods of plane frame stability analysis described above, 

the numerical integration methods are not practical or economic tools 

for design owing to their demands for large computer time and storage 

even for regular portal frames. On the other hand, the second-order 

elastic-plastic method is the most practical method for achieving 

specified frame design objectives. However, because it is strictly 

applicable to structural steel frames, its application to other metal 
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frames is approximate since these frames do not exhibit the same degree 

of ductility as structural steel. Also, considerations of economy often 

make the rigid-plastic method, Merchant-Rankine formula (or any of its 

modifications) and optimum design methods (which also employ the 

concentrated inelasticity concept of structural behaviour) to be 

employed in practical plane frame design. In an optimum design method, 

a function (such as weight, cross-sectional area or second moment of 

area) is optimized using a linear or non-linear programming method 

(79,80,81). These methods, however, cannot have the versatility and the 

accuracy of the second-order elastic-plastic method.

Therefore, before using any method of frame stability analysis for 

plane frame design, its economic advantages should be weighed against 

its analytical disadvantages.

1.6 Need For A New Hethod Of Plane Frame Stability Analysis

It has been shown that although rigorous numerical integration 

methods employing the more correct distributed inelasticity concept of 

structural behaviour are available for plane frame stability analysis, 

practical and economic considerations make it necessary to frequently 

employ simplified techniques for frame design. Some of these techniques 

do not require the determination of frame failure loads. Instead, they 

rely on the strengths of the individual frame members assuming known 

boundary conditions for these members. However, no accurate assessment 

of the boundary conditions for a plane frame member, taken in isolation, 

can be made (73). Therefore, plane frames designed by these techniques 

can be either over-designed (in which case the objective of economy is 

not maintained) or under-designed (in which case the objective of 
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ultimate strength or serviceability is not maintained). The treatment 

of a plane frame as one unit in analysis must, therefore, remain the 

most effective and most correct method of assessing both safety and 

economy in frame design, a view also supported by Horne and Merchant 

(6). Some other techniques rely on the determination of the failure 

load of the entire frame by adopting the concentrated inelasticity 

concept of structural behaviour. Of these methods, the second-order 

elastic-plastic method remains the most versatile and the most reliable 

method.

Despite the versatility of the second-order elastic-plastic 

method, a practical and economic method of adopting the distributed 

inelasticity concept is necessary not only for structural steel frames 

but also for other metal plane frameworks. It is essential for such a 

method to have a level of accuracy which compares favourably with 

experimental and existing theoretical techniques and to be applicable to 

all types of metal plane frame under general loadings.

1.7 Scope

The main aim of the work described in this thesis is to develop a 

practical and economic method for including the effect of spread of 

inelasticity in members of a plane frame on its strength and stability. 

A method is proposed here which avoids the finite discretization of 

plane frame members and their cross-sections but identifies the lengths 

and locations of distinct zones of inelasticity that may be present in 

a plane frame member at any stage of loading up to failure. This method

-adopts a simplified, bilinear stress-strain relationship for a metal// 

while the special case of elastic-perfectly-plastic stress-strain 

relationship is limited to structural steel. Various combinations of 
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elastic and inelastic zones for each frame member under any combination 

of axial force and end bending moments are considered. By also 

accounting for the initial curvature of the member, the tangent force-

displacement relationships for the member are derived. This method is, 

therefore, appropriately called the inelastic zone method.

In Chapter 2, exact formulae for computing the moment-curvature- 

axial force relationships for rectangular and I-shaped cross-sections 

frequently used for metal plane frame design are presented. In each 

case, the spread of inelasticity within the cross-section is accounted 

for. Other cross-sections of arbitrary shape are not considered here

because these shapes are not usually employed for metal plane frame

design.

In Chapter 3, the proposed inelastic zone method is employed to

derive beam-column tangent flexibility coefficients in forms which are

directly suitable for plane frame stability analysis by any of the

standard techniques of structural analysis.

Chapter 4 is concerned with the use of the tangent flexibility 

coefficients derived in Chapter 3 in performing stability analyses of 

plane frames by the stiffness method of structural analysis.

Published theoretical and experimental results are compared with 

those obtained by the proposed inelastic zone method in Chapter 5.

Chapter 6 describes tests on two portal frames built from a rolled 

steel section and includes comparison of test results with the theory 

developed in the earlier chapters.

Recommendations for plane frame design, in general, and the use of 

the inelastic zone method, in particular, are given in Chapter 7. Also, 

a new simplified method for plane frame design which avoids the 
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computation of frame failure loads and the use of the member effective 

length concept is presented in this thesis. This method limits bending 

moments, calculated using working loads, to estimated values based on 

the specified ultimate strengths of the member cross-sections and is 

called the limiting moment method.

Conclusions drawn from the work described in this thesis and some 

suggestions for extending the application of the inelastic zone method 

to other areas of structural stability are given in Chapter 8.
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CHAPTER 2

MOMENT-CURVATURE-AXIAL FORCE RELATIONSHIPS FOR A CROSS-SECTION

2.1 Introduction

The response of a beam-column to a given combination of axial 

force and end bending moments up to failure depends, among other things, 

on the moment-curvature-axial force (M-i|>-P) relationships for each 

cross-section and, consequently, on the moment-rotation-axial force (M-Z 

0 —P) relationships for the entire beam-column. The M-ip-P relationships 

for cross-sections are considered in this chapter while the M-0-P 

relationships for a beam-column are considered in Chapter 3.

The M-ip-P relationships for a cross-section are governed by the 

material stress-strain ( o-e ) relationships and also by the magnitudes 

of the initial (or residual) stresses present in the section. These 

generally give rise to non-linear or irregular stress distribution 

diagrams for the cross-section. Closed-form solutions of the resulting 

force and moment equilibrium equations ( o.dA and M oy. dAz

where y is the distance of the point considered from the centroid of the 

cross-section) are difficult to obtain or even may be non-existent. 

Hence, recourse to numerical integration techniques (66,82), involving 

sub-divisions of the cross-section into elemental areas and the use of 

constant stress over each elemental area, has to be made, albeit at the 

expense of much computer time and storage. While the accuracy obtained 

by using numerical integration techniques increases with increasing the 

number of elemental areas employed, reasonable results can, however, be 

obtained even for very complicated shapes of cross-section. 

Alternatively, numerical quadrature formulae can be used s-peeding up the 

40



integration process considerably (83).

By linearizing the material stress-strain relationships and also 

employing simple shapes of cross-section, closed-form solutions of the 

governing equilibrium equations can be obtained leading to direct 

formulae which avoid the discretization of the cross-sections. Thus, it 

becomes possible to achieve significant economy in the computations.

In this chapter, new formulae for the M-ip-P relationships are 

developed for rectangular and doubly-symmetric I-shaped cross-sections 

for the general case of elastic-strain-hardened materials. Simplified 

formulae (some of which are well-known) derived from the formulae for 

the general case for the particular case of elaStic-perfectly-plastic 

materials are given in Appendices 1 and 2 for rectangular and I-shaped 

cross-sections respectively. Rectangular cross-sections are considered 

because they are s imple and aid understanding of the principles 

involved. Doubly-symmetric I-shaped cross-sections bent about their 

major axes of bending are considered because they are the most commonly- 

adopted cross-sections for metal plane frame members. Thus, the 

formulae presented in this chapter and in Appendices 1 and 2 directly 

serve as practical design aids for metal plane frames and also highlight 

the importance of shape of cross-section in structural stability 

analysis and design.

2.2 Assumptions

The following assumptions are made in this chapter:

1. The cross-section is subjected to a uniaxial bending moment

and an axial force.

2. The effects of shear stresses are negligible.
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3. The strain distribution for the cross-section is linear.

This implies that plane sections before bending remain 

plane after bending (Euler-Bernoulli’s Theorem).

4. The stress-strain ( o-e ) diagram for the material is the 

same in tension as it is in compression.

5. A bilinear idealization is used to represent the actual 

stress-strain relationship for the material.

This is widely adopted in metal stability studies.

Fig. 2.1(a) shows the bilinear, elastic-perfectly- 

plastic stress-strain idealization often adopted for 

structural steel. Fig. 2.1(b) shows the bilinear, 

elastic-strain-hardened stress-strain idealization 

adopted for structural steel and many other metals and 

alloys.

(a) (b)

Fig. 2.1 Bilinear Stress-Strain Idealizations For Metals And Alloys
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6. Residual stresses are not included in the analysis.

The effects of residual stress patterns can be 

indirectly allowed for by modifications to the bilinear 

stress-stra in idealizations of Fig. 2.1; for example, 

by reducing the value of yield stress or ignoring 

strain-hardening. This latter approach was found by 

Wood (77), Galambos (3) and El-Zanaty and Murray (59) 

to compensate for the effects of residual stresses 

reasonably without the need to engage in more elaborate 

analysis.

2.3 Stress Distribution Diagrams

The stress distribution diagrams often employed in inelastic 

stability analysis for a cross-section are shown in Fig. 2.2. The use 

of these diagrams in the inelastic zone method will now be described.

(a) Elastic

strain-hardening

(c) Secondary Yield(b) Primary Yield

Fig. 2.2 Relevant Stress Distribution Diagrams
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Fig. 2.2(a) shows the elastic stress distribution diagram in

which the absolute value of the top fibre stress, o is greater than

that of the bottom fibre stress, o^, owing to the presence of the axial

force, P. The bending moment, M , which 
z corresponds to the first

attainment of the yield stress at the top of the cross-section

is here called the first yield moment and designated

Fig. 2.2(b) shows the primary yield stress distribution diagram

1 ’

( i . e .

for the elastic-perfectly-plastic material together with a stress block 

due to strain-hardening for the case of the inelastic zones spreading 

from the top of the cross-section. The bending moment, M which 

corresponds to the first attainment of the yield stress at the bottom of 

the cross-section (i.e. I°2I = °y^ here called the intermediate yield 

moment and designated M
y2

Fig. 2.2(c) shows the secondary yield stress distribution diagram 

for an elastic-perfectly-plastic material together with stress blocks 

due to strain-hardening for the case of inelastic zones spreading from 

both ends of the cross-section. For the elastic-perfectly-plastic 

material, the bending moment, M , which corresponds’ to the depth, a2> of 

the elastic core becoming equal to zero is generally called the full 

plastic moment and designated M . This moment is, in essence, the 

ultimate moment of resistance of the cross-section in the presence of 

the axial force, P. In this thesis, the ultimate moment of resistance 

of a cross-section is called its ultimate yield moment and designated

in order to suit elastic-perfectly-plastic and elastic-strain- 

hardened materials.
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2.4 The Moment-Curvature-Axial Force Relationships For A Cross-Section
Subjected To The Elastic Stress Distribution

Fig. 2.3 shows a rectangular cross-section and an I-shaped cross-

section. In each case, the axis of bending is the z-axis. The formulae 

developed for I-shaped cross-sections may also be applied to cellular 

sections with two or more webs and with additional flange plates 

provided all plate elements of the cross-section are symmetrically- 

located about the y-axis. The value of the web thickness, t, is then 

taken to be the sum of the different web thicknesses while the value of

the flange thickness, T, is taken to be the sum of the original flange

and the additional flange thicknesses.

B

(a) Rectangular Cross-Section (b) I-Shaped Cross-Section

Fig. 2.3 Rectangular And I-Shaped Cross-Sections

Fig. 2.4 shows the relevant strain and stress distribution

diagrams.

(a) Strain Distribution 
Diagram

(b) Stress Distribution 
Diagram

Fig. 2.4 Strain And Stress Distribution Diagrams
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The M-4>-P relationships are determined from the equilibrium of

bending moments and longitudinal forces as follows: 

= A(01 + a?)/2

= M /(El ) = (o -0o)/(EH)z z 12

= (o -P/A)/Z

stress and strain intensities,

2.4

P

M 
z

where the

negative signs as shown in Fig.

I . and the elastic modulus. Z.z i

I = BH3/12
z

Z1 = 21 /Hz
= BH2/6

(2.1)

(e -e )/H (2.2)

(2.3)

o^ and e2 , retain their

and where the second moment of area,

of the cross-section are given by

(2.4a)

(2.4b)

for the rectangular cross-section and

I = CBH3-(B-t)(H-2T)3]/12 (2.5a)

Z = 2Iz/H = [ 8T ( T2 / 3 <• ( H-T ) 2 ) +1 ( H-2 T ) 2 ( H/6-T/3 ) ] / H (2.5b)

for the I-shaped cross-section. Also, incorporates the influence of

the axial force acting on the cross-section.

The first yield moment, determined from Eqn. (2.3) by

replacing o1 by oy thus:

My1 = <VP/A)Z1 <2-6)
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2.5 The Moment-Curvature-Axial Force Relationships For A Rectangular 
Cross-Section Subjected To The Primary Yield Stress Distribution

Fig. 2.5 shows the relevant strain and stress distribution

diagrams including strain-hardening.

(a) Strain Distribution 
Diagram

Fig. 2.5

(b) Stress Distribution 
Diagram

With the notations of Fig. 2.5, the following expressions for strains, 

stresses and curvature are readily obtained:

e1 = ey(H-n)/(a-n) (2.7a)

G2 = "eyn^a_n^ (2.7b)

o=o [1+C (H-a)/(a-n)] (2.7c)1 y s

a = -o n/(a-n ) (2.7d)2 y

= (ey-e2>/a = cy/(a-n) (2.7e)

Considering the equilibrium of longitudinal forces,

P = P s~aB (0^-0 ^) / 2 + (p1 (2.8a)

where P = a A (2.8b)s y

A = BH (2.8c)

(P1 = ( o J-Oy) ( H-a ) B/2

= o BC (H-a)2/[2(a-n)] (2.8d)
y s

Taking moments about the centroid of the cross-section,

Mz = aB (Oy-o ^) ( H/2-a / 3 ) / 2 + tp (2.9a)

where <p = <p (H/6-a/3) (2.9b)
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The ip terms are the contributions of the strain-hardening stress block.

Substitution of Eqns. (2.7d) and (2. 8d) into Eqn. (2.8a) gives 

P = P -o aB[1+n/(a-n ) ]/2 + o BC (H-a)2/C2(a-n ) ]
s y y s

= P +o BCC (H-a)2-a2 ]/C2(a-n ) 3
s y s

= P +o BCa2(C -1)-a(2C H)+C H2]/[2(a-n)] 
s y s s s

(2.10a)

Re-arranging Eqn. (2.10a),

n = C a + C^a + C j (2.10b)

where C = o B/(2(P -P)]
o y s (2.10c)

C. = C (C -1)1 o s (2.1Od)

C„ = 1-2C C H (2.1Oe)2 os
C = C C H2 (2.1 Of)3 os

Substitution of Eqns. (2.7d) and (2.9b) into Eqn. (2.9a) gives

Mz = o aB[1+n/(a-n)][H/2-a/3]/2

+o 8C [(H2-2aH+a2)/(a-n)][H/6+a/3]/2
y s

= o 8[a2(3H-2a)+C (H2-2aH + a2)(H + 2a)]/[12(a-n ) ]
y s

= o BCa3(2(C - 1))+a2(3H(1-C ))+C H3]/[12(a-n ) ] (2.11)y s s s

Substitution of Eqn. (2.10b) into Eqn. (2.11) gives

12M (a-C.a2-C_a-C_)/(o B) = a3[2(C - 1 ) ]+ a 2[ 3H ( 1-C )] + C H3
z i c J y s ss (2.12)

Re-arranging Eqn. (2.12),

3 2
D^a +D2a +D3a+D4 = 0 (2.13a)

where 0 = 2(C -1)
1 s (2.13b)

0 = 3H(1-C )+12C M /(o B) (2.13c)2 s 1 z y

0_ = 12(C,-1)M /(o B)3 2 z y (2.13d)

04 = C H3+12C M /(o B) (2.13e)s 3 z y

A detailed derivation of the equations for determining the depths 

of the neutral axis and the elastic core has been given above. In 

subsequent sections of this chapter, the equations for these depths, 
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based on the procedures adopted in this section, will be given without 

derivations.

Determination Of Curvature

The depth, a, of the elastic core is determined from Eqn. (2.13a) 

for given values of the axial force, P, and bending moment, M by 

using Newton's method (see Appendix 3) or any other suitable method. 

Substitution of the resulting value of a into Eqn. (2.10b) gives the 

depth, n, to the neutral axis of the cross-section. Then, substitution 

of these values of a and n into Eqn. (2.7e) gives the value of the 

curvature, i|).

Determination Of The Intermediate Yield Moment

In this case therefore n = a/2. Substitution of

this value of n into Eqn. (2.10b) gives

a = [(0.5-C2)-{(C2-0.5)2-4C1C3}0,5]/(2C1) (2.14)

Thus , is determined by substitution of Eqn. (2.14) and n = a/2 into

Eqn. (2.11).
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2.6 The Moment-Curvature-Axial Force Relationships For A Rectangular 
Cross-Section Subjected To The Secondary Yield Stress 
Distribution

Fig. 2.6 shows the relevant strain and stress distribution

diagrams including strain-hardening.

(a) Strain Distribution 
Diagram

(b) Stress Distribution 
Diagram

Fig. 2.6

With the notations of Fig. 2.6,

e1 = e [2(H-a1 )/a2 - 1] (2.15a)

Z2 = -e [1 + 2a 
y 1/a2] (2.15b)

= o [1 + 2C 
y s(H’ara2)/a23 (2.15c)

°2 = -a [1 <• 2C
y sai/a2] (2.15d )

* = 2ey/a2 = 2oy/(Ea2) (2.15e)

n = a, ♦ a2/2 (2.15f)

Considering the equilibrium of longitudinal forces,

P = P s -oyB ( 2a 1 + a 2 ) +ip 1 -<p 2

where 'P. = 0 BC (H-a -a_ )2/a
1 y s 1 2 2

and (po = o BC a,2/a_
2 y s 1 2

(2.16a)

(2.16b)

(2.16c)

Considering moment equilibrium about the centroid of the cross-section,

Mz = oyB [ a 2 ( H/2-a ^a 2/3 )+a 1 ( H-a 1 ) ] + ip3 + ip4 

where (p3 = [H/6 + ( aj + a2 ) /3]

and <p4 = <p2[H/2-a1/3]

(2.17a)

(2.17b)

(2.17c)
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The <p terms are the contributions of the strain-hardening stress blocks.

Following the procedure adopted in Section 2.5, the relevant 

formulae are as follows:

a1

P 
s

-P+o etc (H-ao)2/a_ - ao} 
y s 2 2 2 (2.18)

2o 8{1+C (H-a )/a } y s 2 2

and Cia23 * C2a22 * C3a2 * C4 = 0 (2.19a)

where C1 ’ (C -1)/3 s (2.19b)

C2 = (H/2-a ) (1-C )1 s (2.19c)

C3 = a (H-a )(1-C )-M /(o B)11 s z y (2.19d)

C4 = C H3/6
s (2.19e)

Determination Of Curvature

Eqns. (2.18) and (2.19a) are solved by iteration. Firstly, a 

trial value is assumed for a? . This value is substituted into Eqn. 

(2.18) to determine a value for a^ . This value of a^ is substituted 

into Eqn. (2.19a) and the resulting cubic equation is solved by Newton's 

or similar method to determine a revised value for a. This revised 

value for a^ is substituted oncemore into Eqn. (2.18) and the whole 

process is repeated until successive values of a^ and a? satisfy a 

convergence criterion. Then the accepted value for a? is substituted 

into Eqn. (2.15e) to determine the curvature, •

Determination Of The Ultimate Yield Moment

The maximum strain, is set equal to the specified ultimate

strain, e
u Then, from Eqn. (2.15a),

e = e - e {2(H—a )-a }/a1 u ylk 1 2 2

i.e. a = H-a ( 1+A )/21 2 s

A £ (2.20a)

(2.20b)

s y
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From Eqns. (2.18) and (2.20b),

0 a 2 +
1 2 D2a2 » °3 = 0 (2.21a)

where D, = o BA (C -1 ) (2.21b)
1 y s s

°2 p (1-s
C ( 1+A )] + P s s (2.21c)

°3 = HP C s s ( 2.21 d )

from which ’2
= [-02-(022-4D1D3J°•5]/(2D1) ( 2.21 e)

(2.19a) by substituting Eqns. (2.20b) andis determined from Eqn.

(2.21e) into Eqn. (2.19a) and setting equal to M
y3'

2.7 The Moment-Curvature-Axial Force Relationships For An I-Shaped 
Cross-Section Subjected To The Primary Yield Stress Distribution

The relevant strain and stress distribution diagrams are the same 

as those of Fig. 2.5. Two cases are required to be considered in this 

section, namely:

1 . Partial yielding of top flange and

2. Full yielding of top flange and partial yielding of web.

In each case, Eqns. (2.7) are applicable and the procedures adopted in

Section 2.5 for the rectangular cross-section are also applicable.

2.7.1 Partial Yielding Of Top Flange

Consideration of equilibrium of longitudinal forces gives

P = Ps - (oy-o2 ) [ T ( 2a-T ) + ( a-T-H) 21 +1 ( H-2T) ( 2a-H) ] / ( 2a ) + q>1 (2.22a)

where to = a 8C C ( H - a )2 / ( a - n ) ] / 2 (2.22b).
i y s

P s

A

o A
y

28T * t(H-2T)

(2.22c)

(2.22d)

Consideration of moment equilibrium about the centroid of the 

cross-section gives
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(2.23a)

M = (o -o ) [BT<T(H/2-T/3) + (a-T)(H-T)} y &
* {t ( H- 2 T )3 - 8 ( a -H ♦ T )2 ( 2a + H-4T) } 16 ] I ( 2a ) + q>

where q>2 = <p [H/6 + a/3] (2.23b)

The <p terms are the contributions of the strain-hardening stress block.

Determination Of Curvature

The relevant formulae for the depth, n, to the neutral axis and

the depth, a, of the elastic core are given by the following equations:

n = S* 2 + C2a + C3

D a3 + 0 a2 * D a + 0 = 0
1 c J 4

(2.24a)

(2.24b)and

where CQ = o /C2(P -P)] 
y s

C. = C B(C -1)1 0 s

C2 = 1<-2Cn(BH( 1-C )-A]u s

C3 = CH[8H(C -1)+AJ u s

0. = 2(C -1)1 s

(2.24c)

(2.24d)

(2.24e)

(2.24f)

(2.24g)

0_ = 8T-H(5+4C )+12C.M /(o B)2 s 1 z y

°3 = 4C3MZ<c2"1>/(°yB)+(H-T)(4T-H)]

0. = 12CM /(o 8 ) <-T2 ( 4T-3H ) +1 ( H-2T ) 3/B
4 J z y

-(H-T)2(H-4T)*C  H3
s

(2.24h)

(2.24i)

(2.24j)

The value of a obtained by solving Eqn. (2.24b) is substituted into Eqn. 

(2.24a) to obtain n from which i|) is determined from Eqn. (2.7e).

Determination Of The Intermediate Yield Moment

The corresponding depth, a, of the elastic core is determined by 

substituting n = a/2 (since o2 = -o ) into Eqn. (2.24a) and solving the 

resulting quadratic equation. If this value of a is within the limits 

(H-T) < a < H
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then its substitution and the substitution of a? = -o into Eqn. (2.23a) 

gives the correct value for M Otherwise, it becomes necessary to 

consider the case of partial web yielding in the top of the cross-

section .

2.7.2' Full Yielding Of Top Flange And Partial Yielding Of Web

intensities

connection.

additional strain

section are given

stress distribution diagrams required in thisThe strain

as Fig. 2.5which is the same

flange/web

Strain Distribution 
Diagram

(b) Stress I 
Diagram

showing

Distribution

The additional strain and stress intensities are as follows:

e = e (H-n-T)/(a-n) 
y

c> = o C1+C (H-T-a)/(a-n)] 3 y s

(2.25a)

(2.25b)

Consideration of equilibrium of longitudinal forces gives

P = P -(o -o_)[T(B-t) ( 2 a - T ) + a 21J / ( 2 a )+<p +<p
s y z i z

where m = t(o -o )(H-T-a)/2
1 3 y

= o C t(H-T-a)2/[2(a-n ) ]
y s

(2.26a)

(2.26b)
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and <P = BT(a1+o3-2oy)12

= a BTC [(2H-T)-2a]/[2(a-n)] 
y s

(2.26c)

Consideration of moment equilibrium about the centroid of the cross-

section gives

M 
z = (Oy-o^)[BT{T(H/2-T/3)+(a-T)(H-T)}

* t (a - T)2 ( H/2-a / 3-2T/3 ) ] / ( 2a ) + (p + <p,
J 4 (2.27a)

where *3 = <p [ (H/6-2T/3 )+a/3] (2.27b)

and *4 = <p2CH/2-T/3{ (3H-2T-3a)/(2H-T-2a)}] (2.27c)

The <p terms are the contributions of the strain-hardening stress block.

Determination Of Curvature

The relevant formulae for the depth, n, to the neutral axis and

the depth, a, of the elastic core are given by the following equations:

(2.28a) to obtain n from which is determined from Eqn. (2.7e).

n = C,a * C2a ♦ C3 (2.28a)

and t^a3 <■ 0 a2 ♦ 0 a <-0=0
L J 4 (2.28b)

where co - o /C2(P -P)] 
y s

(2.28c)

C1 ' t(C -1)C_ s 0 (2.28d )

C2 ’ 1-C [2{T[B(1+C )-t]*tC  (H-T)}] 0 s s (2.28e)

C3 = C_[T2(8-t)♦tC (H-T)2+BTC (2H-T)]
0 s s (2.28f)

°1 = t(C -1 )/3 s (2.28g)

0, = tH( 1 -C ) /2 <• 2C.M /o (2.28h)2 s 1 z y

°3 = (H-T)[T(B-t)+C {t(H/6+T/3)-BT}] s

♦ 2M (C -1)/o (2.281)z 2 y

°4 = T2(H/2-2T/3)(t-B) + 2C M /a
j z y

+C [t(H-T)2(H/6-2T/3)+BT{H(2H-T)/2- 
s T(3H-2T)/3 } ] (2.28j)

The value of a obtained by solving Eqn. (2.28b) is substituted into Eqn
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Determination Of The Intermediate Yield Moment

The depth, a, of the elastic core corresponding to the 

intermediate yield moment is determined by substituting n = a/2 (since 

= ~°y) into Eqn. (2.28a) and solving the resulting quadratic

equation. If this value of a is within the limits

T < a < (H-T) (2.28k)

then its substitution and the substitution of o„ = -o into Eqn. (2.27a)
2 y

gives the correct value for M . The limiting axial forces for the 

cross-section for application of these formulae are defined as follows:

For a = (H-T) and o^ = ou, the limiting axial force is given by 

P.. = P -o [2(B-t)(2T-H)(H-T)+B(H-T)2
11 s y

♦ H(H-2T)(8-T)]/(H-T) + P 4 (2.281)s 1

)+(H-2T)(o -o )/H]/2 u y

For a = T and

P.O P - o BT12 s y

where p 4 and P „
s 1 s2

blocks given by

P . BT(o -o )s 1 u y

= o BT(B -1 
y s

P „ - BT[(o -os2 u y

+ P ns2

°1 ~ °u*  the axial force is given by

* t(H-2T)[(H-2T)(o -o )/H]/2
u y

= (%-0 ) C2BT(H-T)+t (H-2T) 2J / ( 2H )

= o (B -1 ) [2BT(H-T)+1(H-2T)2]/(2H) 
y s

(2.28m)

are the contributions of the strain-hardening stress

(2.28n)

( 2.28p)
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2.8 The Moment-Curvature-Axial Force Relationships For An 
I-Shaped Cross-Section Subjected To The Secondary 
Yield Stress Distribution

The strain and stress distribution diagrams required in this

Section are given in Fig. 2.8 which is the same as Fig. 2.5 showing

additional strain and stress intensities for the flange/web connections.

(a) Strain Distribution 
Diagram

(b) Stress Distribution 
Diagram

Fig. 2.8

The additional strain and stress intensitiesa are as follows:

e3 = e C(2(H-a1)-T}/a2-1]

e4 = -e (W^-Tl/a^

o = a (1*2C  {(H-a -T)/a - 1}] 
J y s 1 2

°4 = -<>/1 + 2Cs(arT,/a2]

(2.29a)

(2.29b)

(2.29c)

(2.29d)

Four cases are possible in this section, namely:

1. Partial yielding of both flanges,

2. Full yielding of flange and partial yielding of web at the 

top of the cross-section and partial yielding of bottom 

flange,

3. Full yielding of flange and partial yielding of web at both 

ends of the cross-section and
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4. Full yielding of top flange and partial yielding of bottom 

flange and full or partial yielding of web.

The M-<i-P relationships for the cross-section for cases 1 and 2 

can be approximately determined from those for cases 1 and 2 

respectively in Section 2.7 by setting a1 equal to zero. This 

approximate approach is quite reasonable since is mostly a small 

fraction of the flange thickness. These two cases will, therefore, not 

be considered in this section and only the relevant formulae for cases 3 

and 4 will be presented here.

2.8.1 Full Yielding Of Flange And Partial Yielding Of Web At Both Ends 
Of Cross-Section

Consideration of the equilibrium of longitudinal forces, with

reference to Fig. 2.8, gives

P

<£>

where

Ps-ay[2BT + t{2(a 1-T )+a 2) ]+ip 1+ip2~(p3-(p4 

ayCst(H-T-a1-a2l2/a2

(2.30a)

(2.30b)

(2.30c)

”2

*3 (0-0 ) ( a -T ) t/24 y 1 
o tC (a -T)2/a 

y s 1 2 (2.30d)

*4 8T(o -0 -2o )2 4 y

a BTC (2a -T)/a„ 
y s 1 2 (2.30e)

Consideration of moment equilibrium about the centroid of the 

cross-section gives

Mz = OytBTtH-TJ+ttta^T) (H-T-a1 )+a2(H/2-a1-a2/3)}]

* <P5 * <P6 * + (pQ (2.31a)

58



where *5

=

ip1[H/2-T-(H-T-a1-a2)/3]

VstlO9-a2|2,°10’a2/3,/a2 (2.31b)

*6 = <P2(H/2-T/3{[2(o3-oy )<-(o1 -o ) ]/[o3+o1 -2oy ]}]

= o C BT(Q -2a )[H/2-T/3{(Q -3a )/(Q -2a )} ] /a 
ys 112 122 112 2

(2.31c)

”7 = ip CH/2-T-( a -T)/3]

= o C tQ /an
y s 13 2

(2.31d)

% = q>, CH/2-T/3 {( 3a -2T)/(2a -T)}]4 1 1

= a C 8TQ/ay s 14 2 ( 2.3 1 e )

°9 = H-T-a ( 2.3 1 f)

°10 = [H/2-2T+a1J/3 ( 2.31 g )

= 2(H-a )-T ( 2.3 1 h)

°12 = 3(H-a1)-2T ( 2.31 i )

°13 = (a1-T)2(H/2-2T/3-ai/3) (2.31j)

Q
14

= H(2a1-T)/2-T(3a-2T)/3 (2.31k)

The relevant formulae for the depths a^ and a^ in Fig. 2.8 are

given by

P-P + 0 [2BT+t(a9-2T)]-o C C t {( H - T - a 9 ) 2 - T 21 + 2 B T (H
"a2 )]/a9

a1 = -
y (2.32a )

2o [C {t(2T-H+a_)-2BT}/a_ - t] y s 2 2

C a 3
1 2 * C2

2
a2 ‘ C3a2 * C4 = 0 (2.32b)

where C1 = t(C -1)/3 s (2.32c)

C2 = t[H/2-a1 + Cs(Ql(J-2Qg/3)] (2.32d)

C3 = t[(a1-T)(H-T-a1)*C s(Qg2/3 - 2QgQ1Q)]

+ BT(H-T)(1-C ) - M /o
s z y (2.32e)

S = CSCt(Q13* Q92Q10|tBT(HQt1/2-TQ12/3tQ14)] (2.32f)
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Determination Of Curvature

Eqns. (2.32a) and (2.32b) are solved by iteration. The procedure 

is similar to that described in Section 2.6. The resulting value for a2 

is substituted into Eqn. (2. 15e) to determine the curvature, i|).

Determination Of The Ultimate Yield Moment

The maximum strain, e , is set equal to the specified ultimate

strain, e . 
u Then the depth, a^, is given by:

a1 = H - a (1+A )/22 s (2.33)

The depth, a2, of the elastic core is determined from the following

equation:

°1’2Z * °2a2 ‘ °3 = 0 (2.34a)

where = 0 tA (1-C )y s s (2.34b)

°2 = 2o CtH(C -1 )-{T(B-t)+C Ct(H-T)+ BT]}] 
y s s

+ P [1>C (1+A )] - P s s s (2.34c)

°3 = -P HC s s
(2.34d)

from which a2 = C-D2»£022-4DtDj}°’5J/(20t) (2.34e)

Substitution of Eqns. (2.33) and (2.34e) into Eqn.(2.31a) gi ves M which
z

now is equal to M m . 
y3

The formulae derived in this section are valid within the

following limits:

a 1 > T (2.35a)

(a + a )
1 2 < (H-T) (2.35b)

If condition (2.35b) is not satisfied, the axial force is very low and

the approximate approach for case 1 in Section 2.8 is adopted. The 

limiting axial force and bending moment for the application of these 

formulae are defined as follows:
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For a 1 T and the limiting axial force is given by

P13 P -o BT s y -o a_t + P n y 2 s3
(2.36a)

and the corresponding limiting bending moment is given by

M13 = OyBT(H-T) + oya2t(H/2-T-a2/3) + Ms3 (2.36b)

where P „ and M _ are the contributions of the strain-hardening stress 
S3 S3

blocks given by

P _ = BT[(o -o ) + (o -o ) (H-2T-a_ )/(H-T-a9)]/2S3 uyuy c c.

♦ t(H-2T-a )(H-2T-a )(o -o )/[2(H-T-a_ ) ]2 2 u y 2

- [|o2|-a ]BT/2

= CBT{(o -a ) (2H-3T-2a„)/(H-T-a )-(|o l-o )}
u y 2 2 2 y

♦ t(o -o )(H-2T-a )^/(H-T-a )]/2 (2.36c)
u y 2 2

M o = BT(o -o ) [1 <• (H-2T-a )I{2(H-T-ao)}]CH/2-T/2] s3 u y 2 2
♦ t(o -o )(H-2T-a )2/{2(H-T-a )} [ H/2-T-(H-2T-a„)/3]

u y 2 2 2

♦ 8TC|o2|-a ][H/2-T/3]/2 (2.36d)

and where a2 is determined by setting o1 = ou and a1 = T in Eqn. (2.15c) 

to obtain

a = 2C (H-T)/(B +2C -1) (2.36e)2 s s s

and o2 is determined by employing this value of a2 and a1 = T in Eqn.

( 2 . 1 5d) to obtain

0o = -o [1 + 2C T/a,J (2.36f)2 y s 2

2.8.2 Full Yielding Of Top Flange And Partial Yielding Of Bottom 
Flange And Full Or Partial Yielding Of Web

Fig. 2.9 shows the relevant stress distribution diagrams. In each 

case, a1 is less than the flange thickness, T. The determination of the 

relevant formulae for the M-i|)-P relationships for the cross-section 

using these stress distribution diagrams is cumbersome. It can be seen,
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(a) Partial Yielding (b) Full Yielding
OF Web Of Web

Fig. 2.9

however, that most of the cross-section has yielded and that the elastic 

portion of the cross-section is very small indeed. Thus, the ultimate 

yield moment, My3*  °'fr the cross-section is determined approximately by 

linear interpolation as follows:

In the limit when the triangular stress block due to strain-

hardening extends from its maximum value at the top of the cross-section

to zero at the bottom of the cross-section, the depth, a and the

ultimate yield moment, M , the cross-section vanish and the

corresponding axial force becomes equal to the squash load modified by 

strain-hardening as follows:

P
s P [1 + (o -o ) / ( 2o ) ] s u y y

P [(o +o )/(2o )] s u y y

P (8 + 1 )/2 s s (2.37a)

where P ’
s is the modified squash load of the cross-section. An

approximate value for M _ can be obtained
y3 by interpolating between the

case of a = T (as given in Section 2.8.1) and a 0 as follows:

(2.37b)
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where
(Ps'-PI/(PS'-P13> (2.37c)

and P
13 (2.37d)< P < Ps’

2.9 Notes On The Use Of The Formulae Presented In This Chapter

In using the formulae given in this chapter and in Appendices 1 

and 2, it is essential to avoid numerical instability which arises as a 

result of using a computer. The causes of numerical instability are 

identified here and remedial measures are proposed as follows:

1. At the attainment of the ultimate yield moment of a cross-

section, the depth of the elastic core becomes very small for the 

elastic-strain-hardened material and zero for the elastic-perfectly- 

plastic material leading to excessively-large and infinite curvatures 

respectively. These levels of curvatures must be avoided by computing 

curvatures using a specified, very low, non-zero, positive value for the 

depth of the elastic core (say 1mm to 10mm depending on the desired 

level of accuracy). However, if such a selected value is found to cause 

numerical instability, then a slightly higher value than that value 

should be tried.

2. These formulae are not applicable to the case of a zero 

value for the axial force. Thus, a minimum, non-zero, positive value 

for this force (say 1 . OkN) must be specified.

2.10 Applications Of The Formulae Presented In This Chapter

The first illustration of the formulae derived above involves the 

determination of the moment-curvature-axial force relationships for an 

I-shaped cross-section having the following dimensions:

H = 310.4 mm

B = 12 5.2 mm
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T = 14.0 mm

t = 8.9 mm

The material is structural mild steel having the following properties:

E = 210.0kN/mm2

o = 0.25kN/mm2
y

Allowance for strain-hardening is made by adopting the following values 

for the strain-hardening constants:

A = 40.0s

B = 1.1
s

Also, the squash load ratios employed are 0.001, 0.2, 0.4 and 0.6.

The second illustration of the formulae derived above involves the 

determination of moment-curvature-axial force relationships for a 

rectangular cross-section having the following dimensions:

H = 310.4mm

B = 29.0mm

The depth of the cross-section was chosen to match that of the I-shaped 

cross-section and the width of the cross-section was chosen to give an 

ultimate yield moment close to that for the I-shaped cross-section in 

order to highlight the importance of shape of cross-section in inelastic 

behaviour. All procedures and material properties are the same as those 

employed for the I-shaped cross-section.

Results

The yield moment ratios and moment-curvature-axial force 

relationships are given in Table 2.1 and Fig. 2.10 respectively for the 

I-shaped cross-section and in Table 2.2 and Fig. 2.11 respectively for 

the rectangular cross-section. It can be seen from these results that
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the increasing axial compressive force causes reductions in the values 

of the yield moments while strain-hardening has the beneficial effect 

of increasing the values of the intermediate and ultimate yield moments 

for the cross-section. Also, it can be deduced from Tables 2.1 and 2.2 

that these cross-sections have reasonably close ultimate yield moments 

but widely different first yield moments for the same values of the 

axial force due mainly to their different ultimate yield moment ratios 

which, in turn, depend on the shape and dimensions of each cross-

section. It follows, therefore, that the correct yield moment ratios 

for cross-sections should be adopted in inelastic analysis of structures 

in order to determine the end of elastic behaviour and the onset of 

inelastic behaviour. This can only be accomplished by accounting for 

the true shape of cross-section of a member in the analysis.

Table 2.1 Yield Moment Ratios For The I-Shaped Cross-Section

Yield Moment Ratios

Elastic-Perfectly-
Plastic Material

Elastic-Strain- 
Hardened Material

c p P

(kN)

Myi

(x 106) 

(kN.mm)

R a Rb Ra Rb

0.001 1.51 0.151 1 . 002 1.155 1 . 002 1 . 254

0.2 300.95 0.121 1 . 283 1 .358 1 . 285 1 .469

0.4 601.90 0.091 1 .379 1 .474 1 .465 1 . 659

0.6 902.85 0 . 060 1.381 1 .477 1 .594 1 .743
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Table 2.2 Yield Moment Ratios For The Rectangular Cross-Section

Yield Moment Ratios

Elastic-Perfectly- 
Plastic Material

Elastic-Strain- 
Hardened Material

c
p P M 4 yi Ra Rb Ra Rb

(kN) (x 106)

(kN.mm)

0.001 2.25 0.116 1 . 002 1 . 502 1 . 002 1 . 600

0.2 450.08 0.093 1 .400 1 . 800 1 .400 1.915

0.4 900.16 0.070 1 .800 2.100 1.801 2.271

0.6 1 350.24 0.047 2.120 2.400 2.206 2.712
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m = M/[M .] n y1 pO

C

where CM ] is the first yield moment for C = 0.001y1 pO p

-------------------- denotes curve for elastic-perfectly-plastic material

------------------- denotes curve for elastic-strain-hardened material

Fig. 2.10 M-ip-P Relationships For The I-Shaped Cross-Section
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m = M/EM .] ny1 pO

where CM 1 is the first yield moment for C = 0.001y 1 pO p

—   -— 1 ■ denotes curve for elastic-perfectly-plastic material

denotes curve for elastic-strain-hardened material

Fig. 2.11 M-ip-P Relationships For The Rectangular Cross-Section
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CHAPTER 3

TANGENT FLEXIBILITY COEFFICIENTS FOR INELASTIC BEAM-COLUHNS

3.1 Introduction

A plane frame is essentially an assemblage of beam-columns. 

Therefore, the study of the inelastic behaviour of beam-columns is an 

essential prerequisite for investigating the stability of plane frames. 

As pointed out in Chapter 1, the existing methods of plane frame 

stability analysis which employ the distributed inelasticity concept of 

structural behaviour are based on numerical integration techniques, the 

accuracy of which depends not only on the technique employed but also on 

the number of sub-divisions of each beam-column of the plane frame and 

its cross-sections.

In this chapter, the distributed inelasticity concept of 

structural behaviour is applied to metal beam-columns using the proposed 

inelastic zone method. This involves the derivation of the tangent 

flexibility coefficients for beam-columns. In Chapter 4, these 

coefficients will be employed in obtaining the tangent stiffness 

coefficients for beam-columns for use in the stability analysis of plane 

frames by the stiffness method.

3.2 Assumptions

In addition to the assumptions made in Chapter 2, the following 

assumptions are now made:

1. The beam-column can be represented entirely by its centre-

line for analytical purposes.

This is valid for structural members that can be 

classified as shallow members (that is, the ratio of the 
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length of a membei" to its depth is greater than, say,

six) .

2. The beam-column is adequately restrained against lateral- 

torsional buckling and local buckling of the plate elements 

of its cross-section in the case of an I-shaped cross-

section .

This implies that out-of-plane displacements for the 

beam-column are not allowed or are negligible. The 

restraints required to justify this assumption are, 

however, not included in the analysis.

3. The bending moments are applied about one principal axis of 

the cross-section of the beam-column.

This implies that the beam-column is constrained to 

displace in the plane of the frame.

4. The influence of shear deformations is small and, therefore, 

neglected.

This permits the use of the ordinary theory of bending.

5. Directions of applied loads do not change on account of 

nodal displacements and rotations.

6. The beam-column loads are concentrated at the ends of the 

beam-column and lie in the plane of the frame.

Thus, uniformly-distributed loads on the beam-column are 

replaced by their statical, concentrated equivalents.

7 . There is no gross distortion oi' deformation of the cross-
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sectional dimensions of the beam-column at any load level.

8. The maximum bending moments occur at the ends of the beam-

column resulting in the beam-column bending in either single 

or double curvature. Accordingly, the inelastic zones start 

from one end or both ends of the beam-column and spread 

inwards along the beam-column.

Thus, for a beam-column bent in single curvature and 

likely to have its maximum bending moment along its 

length, a node should be inserted at its mid-span or at 

its likely position of maximum bending moment.

9. The beam-column is prismatic throughout its length.

However, a non-prismatic beam-column can be simulated as 

a number of equivalent prismatic beam-columns for 

analysis.

10. Axial deformations due to curvature (known as "bowing") are

too small in comparison with the beam-column length and are,

therefore, neglected.

11 . The displacements are small so that the curvature at a

cross-section can be represented by the second derivative of 

the displacement, y, of the cross-section located at a 

distance, x, from the end of the beam-column as follows:

ijj = d?y/d2x (3.1)

This is a reasonable assumption widely adopted in

structural analysis.
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12. Forces acting in the directions of the positive member axes 

and anti-clockwise moments and rotations are of positive 

signs .

3-3 Basic Principles

Under elastic conditions, the cross-sections of a beam-column

experience the elastic stress-distribution diagram shown in Fig. 2.2a.

As inelastic conditions set in due to increases in either the applied

end moments or the

moment at an en

moment, M
y1. of

appears along the

remainder of the

applied axial load, the absolute value of the bending

cross-sect ion becomes greater than the first yield

the cross-section. A plastic or strain-hardened zone

beam-column and co-exists with the elastic zone in the

beam-column. Further increases of the absolute value

of the bending moment at this end or increases in the applied axial load

cause the plastic or strain-hardened zone to spread inwards into the

beam-column. The portion of the beam-column over which this plastic or 

strain-hardened zone has spread experiences the primary yield stress 

distribution diagram (Fig. 2.2b) for its cross-sections while the 

remaining portion of the beam-column retains the elastic stress 

distribution diagram for its cross-sections. These portions of the beam-

column are classified as the inelastic and elastic zones respectively.

The actual stress intensities vary from cross-section to cross-section

following the bending moment distribution along the beam-column.

As the absolute value of the end bending moment becomes greater

than the intermediate yield moment, M of the cross-section, they2

plastic or stra in-hardened zone spreads further inwards into the beam-

column causing further reductions of the length of the elastic zone and,
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now, giving rise to an inelastic zone along the beam-column containing

the secondary yield stress distribution diagram (Fig. 2.2c) for its

cross-sections. Thus, when a beam-column is loaded by a given

combination of axial force and end bending moments, up to failure,

various combinations of elastic and inelastic zones can be present in

the beam-column for each load combination. The maximum number of such 

zone combination types is the square of the number of the distint stress

distribution diagrams (that is, nine using the three stress distribution 

diagrams of Fig. 2.2). It is also evident that the absolute value of 

the bending moment at each zone intersection point must be equal to 

either M or M _ and that the absolute value of the maximum bending y1 y2

moment at an end of a beam-column must not be greater than the ultimate

yield moment of the cross-section.

The various possible zone combination types are given in Tables

3.1 (types to 9 inclusive) and 3.2 (types 10 to 18 inclusive for

beam-columns bent in double curvature and single curvature respectively.

From Tables 3.1 and 3.2, it can be seen that the depth of the

elastic core for the elastic zone is constant and equal to the depth of

the cross-section whereas that of an inelastic zone is variable and

diminishes as the bending moment increases in value within the zone.

This leads to a constant flexural rigidity for the elastic zone and

variable flexural rigidity for an inelastic zone as evidenced by the

slopes of the M-ip-P graphs of Figs. 2.10 and 2.11. Indeed, as the depth

of the elastic core tends to zero the curvature of the cross-section

a

the presence of an inelastic zone in a beam-tends to infinity. Thus,

column causes reductions in the flexural stiffness of the beam-column

culminating in zero flexural stiffness at failure. On the other hand,

the flexural stiffness of an inelastic beam-column depends largely on
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Table 3.1 Zone Combination Types For A Beam-Column Bent In 
Double Curvature
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Table 3.1 (Continued)
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Table 3.2 Zone Combination Types For A Beam-Column Bent In 
Single Curvature

Type Zone Combination And
Bending Moment Diagrams

Remarks

Similar to zone 
combination type 1 
with the sign of 
M^ reversed.

11
Similar to zone 
combination type 2 
with the sign of 
M^ reversed.

12
Similar to zone 
combination type 3 
with the signs of M? 
and reversed.

14

Similar to zone 
combination type 4 
with the sign of 
M reversed.

4

Similar to zone 
combination type 5 
with the signs of M2,
M and M. reversed.

3 4
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Table 3.2 (Continued)

Type Zone Combination And 
Bending Moment Diagrams

Remarks

1 5

0 < G2 < G3 < 1 .0

”yi < |M, ■ < My2

Myi < IMJ < My2

Im2i = 1 M, l*G 2(|Mj -IM, 1)

Im3I = |M, |I +g 3(|m4| -IM, 1)

1 6

My2 < |M,| < My3

My1 < 'M4' < My2

M2 =

M = M „ for M. < M „ or 3 y2 4 y2

m3 = |m1I+g 3(|m4|-|m1D

0 < G2 < G < 1 .0

1 7

My, < |M,| < My2

My2 < Im4I < My3

m2 = My2 for M, < My2 or

m2 = 1M,|»G2 <Im4I -|M,|)

m3 = |m1|+g 3(|m4I-|m1I)

0 < G2 < G3 < 1 .0

1 8

M _ < | M, | c M _y2 ' 11 y3

y 2 ' 4 1 y 3

M2 = ImJ.Gj UMJ-ImJ) 

M3 = |M,|+Gj(|M^|-|M,|)

0 < G < G3 < 1.0
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the elastic core remaining in the beam-column at each load level. It 

is, therefore, essential to determine the moment-rotation-axial force 

relationships for a beam-column at all load levels up to failure.

The moment-rotation-axial force (M-0-P) relationships for an 

inelastic beam-column are derived by employing the exact expression for 

the deflection curve for an elastic beam-column to represent the 

deflection curve for the elastic zone and a similar expression, which 

additionally satisfies the curvature boundary conditions, for an 

inelastic zone. In this way, approximations to the deflected shape are 

confined to the inelastic zones thus minimizing error in analysis. The 

use of a curve similar to that for the elastic zone for an inelastic 

zone simplifies the computations. Using these curves, rotation 

compatibility at each zone intersection point is satisfied in order to 

obtain a sufficient number of equations for determining the deflections 

of the zone intersection points in terms of, among other things, the 

lengths of the zones. Equilibrium of shear forces is satisfied at each 

zone intersection point in order to obtain the lengths of the zones in 

terms of, among other things, the deflections of the zone intersection 

points. The solution of the relevant equations is obtained by 

iteration. In general, the numbei' of necessary equations increases with 

the number of inelastic zones along the beam-column and the complexity 

of the computations increases accordingly. As soon as the lengths of 

the zones and the deflections of the zone intersection points become 

known, all other quantities concerning the beam-column behaviour (for 

example, the end rotations) become known. Hence, by employing various 

values of the end bending moments and the axial force, the M-0-P 

relationships for the beam-column can be derived. The above procedures 

can be applied to a prismatic beam-column that is straight or that has a 
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slight initially-curved profile.

The M-6-P relationships so determined are used to derive the 

tangent flexibility (or influence) coefficient, defined as the 

displacement of an end of a beam-column due to a unit value of the 

corresponding force at either end of the beam-column. This is 

accomplished by writing the known limiting bending moment at each zone 

intersection point in terms of the absolute value of the bending moment 

at the end of the beam-column at which the corresponding inelastic zone 

started spreading and arranging the equations for the end rotations of 

the beam-column such that each end rotation is equated to the sum of the 

rotation due to the relative end displacements and the product of each 

end bending moment and a coefficient which becomes the flexibility 

coefficient for that end. For an analysis by the stiffness method, 

these flexibility coefficients must be employed in obtaining the tangent 

stiffness coefficients for each beam-column. This is accomplished by 

re-arranging the resulting equations such that the end bending moments 

and shear forces are written in terms of the remaining quantities. 

Furthermore, the tangent axial stiffness of each beam-column must be 

included in the analysis since three degrees of freedom are required at 

each node of a plane frame. This is accomplished by employing the full 

area of the cross-section for the elastic zone and a reduced area of 

cross-section, based on the remaining elastic core, for the inelastic 

zones in computing the tangent axial flexibility coefficient for the 

entire beam-column and inverting this coefficient to obtain its tangent 

axial stiffness coefficient.

In general, the resulting tangent stiffness matrix for the 

inelastic beam-column is asymmetric owing to the presence and 
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distribution of inelastic zones in the beam-column whereas that of an 

elastic beam-column is symmetric.

The principle of superposition of separate load effects is not 

employed in determining these tangent stiffnesses for the inelastic 

beam-column since the length of each zone must depend on the total shear 

force distribution along the beam-column. Consequently, although 

incremental loading is used in the analysis, the total joint 

displacements and member forces are calculated for each set of total 

loads on the frame by initially assuming elastic behaviour and then 

searching for the presence of inelastic zones. By considering several 

loadings on the frame, the stable equilibrium path for the frame can be 

traced. Failure results when the frame stiffness vanishes. This is 

detected when a solution of the governing equations cannot be obtained 

within a reasonable number of iterations. The corresponding load on the 

frame is, therefore, greater than the failure load of the frame and the 

failure load is taken to lie between this load and the previous load at 

which a convergent solution of the governing equations was obtained.

Based on the above principle of the inelastic zone method, the 

relevant tangent flexibility coefficients will now be derived for the 

various zone combination types for a beam-column, beginning with the 

elastic beam-column as presented in Section 3.4. Zone Combination Type 

1 shown in Table 3.1 is chosen for this purpose. A general procedure 

for deriving the relevant coefficients for an inelastic beam-column, 

showing all steps of analysis, is outlined in Section 3.5. Zone 

Combination Type 6 shown in Table 3.1 is chosen for this purpose. Based 

on this general procedure, the relevant formulae for the tangent 

flexibility coefficients for the remaining zone combination types given 

in Tables 3.1 and 3.2 are presented in Section 3.5.
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The derivation of the tangent stiffness coefficients for a beam-

column from these tangent flexibility coefficients is given in Chapter 

4 where the stiffness method is employed for the stability analysis of 

plane frames.

3.4 Flexibility Coefficients For An Elastic Beam-Column

Fig. 3.1 shows zone combination type 1 which is an elastic beam-

column bent in double curvature.

Fig. 3.1 Zone Combination Type 1

The shear force, V and the bending moment, M at a point whose 

distance from the y-axis is x are given by

V = (3.2)

M = M -V.x+P(y-A )
X ] ]

= M1(1-x/L)-M2(x/L)fPCy-A1-(A -A )x/L] (3.3)

The curvature at any point is given by

y’’ = d2y/dx2 = -M /(El ) (3.4a)
X z

i-e. y’’ = C-M1(1-x/L)+M2(x/L)-P{y-A1(1-x/L)-A2(x/L)}]/(EI ) (3.4b)
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i.e. y” + py/^EIz) = [-M1(1-x /L)+M2(x /L)

* (1-X/L)+A (x/L)}]/(EI ) (3.4c )

The solution of this second-order differential equation is given by

y = Acos(nx)+Bsin(nx)-M 1 (1-x/L)/P + M2(x/L)/P + A1(1-x/L)+A2(x/L) (3.5a)

where n = (P/(EI )]1/2 (3.5b)
z

and A and B are arbitrary constants determined by satisfying deflection

boundary conditions thus:

at x = 0, y = A = A - M./P + A. (3.6a)1 11

i.e. A = M /p (3.6b)
1

at x = L, y = A^ = M cos(nL)/P + Bsin(nL) + M2/P + A2 (3.7a)

i.e. B = -(M^cos(nL)+M2]/[Psin(nL)] (3.7b)

From Eqn. (3.5a), the slope at a point is given by:

y' = dy/dx = -Ansin(nx)+Bncos(nx)+M1/(PL)+M2/(PL)-A1/L+A2/L (3.8)

Substituting Eqns. (3.6b) and (3.7b) into Eqn. (3.8),

y‘ = -M^nsin(nx)/P-ncos(nx)[M2+M^cos(nL)]/[Psin(nL)]

+ M1/(PL)+M2/(PL)-A1 /L + A2/L

= Mi[{i/L-n(sin(nx)+cos(nL)cos(nx)/sin(nL))}/P]

+ [{1/L-ncos(nx)/sin(nL)}/P] - A^/L + A2/L (3.9a)

at x = 0, y' = ®-| = M-| C ( 1 /L-ncos ( nL ) I sin ( nL )}/P]

* M2 [ {1 /L-n/sin(nL) }/P]

+ A1[-1/L] <• A2C1/L)

= M1a11 + M2ai2 + (A2~A1)/L (3.9b)

at x = L, y*  = 02 = U1/L-n(sin(nL)+cos2(nL)/sin(nL))}/P]

+ [{1/L-ncos(nL)/sin(nL)}/P]

* A1[-1/L] <■ A2(1/L]

= + M2a2 2 + (A2~A1)/L (3.9c)
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where a11 = [ 1 /L-n/tan(nL)]/P (3.9d )

tt12 [ 1 /L-n/sin(nL)]/P (3.9e)

°21 =
[1/L-n(sin2(nL)+cos2(nL))/sin(nL)]/P

= [ 1 /L-n/sin(nL)]/P ( 3.9 f )

a22 [1/L-n/tan(nL)]/P (3.9g)

These coefficients are the flexural flexibility coefficients for the 

elastic beam-column. It can be seen that they are entirely independent 

of the values of the end bending moments. In other words, they are

constant for the given value of the axial force and for all values of

end bending moments less than, or equal to, the first yield moment of

the cross-section. The axial flexibility coefficient for the beam-

column is given by

a = L/(AE) (3.9h)a

Also, it can be observed that

a 22 (3.10a)

(3.10b)

The Deflection Curve

The deflected shape of the elastic beam-column is given by Eqn.

(3.5a). This equation can be written as

y = yc + yd (3.11a)

where y is the deflection component due to curvature and is given by

yc = Acos(nx) + Bsin(nx) - M^I-x/D/P + Mg(x/L)/P (3.11b)

and y^ is the deflection component due to end displacements and is given 

by

yd = A (1-x/L) +A2(x /L) (3.11c )
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Also, the variation of slope along the beam-column is given by Eqn.

(3.8) which can be written as

V = yc * vd (3.12a)

where y'c = M [{1/L-n(sin(nx)+cos(nx)/tan(nL))} / P ]

* M2[{1/L-ncos(nx)/sin(nL)}/P] (3.12b)

and y,d = (A2 - Ap/L (3.12c)

The subscripts c and d represent “due to curvature” and "due to end 

displacements" respectively.

These deflection and rotation components are shown in Fig. 3.2 

where the original, undeformed, straight length, 1°-2°, is transformed, 

after deformation, to the curved profile 1-M-N-2.

Fig. 3.2

This transformation is due to a

(a) net displacement, (S^Sp, along the x-axis,

(b) displacement, A1 , along the y-axis,

(c) rigid-body rotation, C(A -A )/L], and a

(d) rotation due to curvature caused by the end bending moments, 

M and M2.
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So far, only an axial compressive force has been considered. For 

an axial tensile force, a negative value is assigned to P in Eqns. (3.2) 

to (3.4) inclusive. The well-known solution of the resulting second- 

order differential equation is given by

y = Acosh(nx) + Bsinh(nx) - M [(1-x/L)/P] + M2C(x/L)/P]

♦ A ( 1 -x/L ) <■ A (x/L) (3.13)

where P has a negative sign and hyperbolic functions replace their 

trigonometric equivalents in Eqn. (3.5a). Hence, from Eqn. (3.8), it 

follows that

y' = Ansinh(nx) + Bncosh (nx)-M I ( PL ) + M2/(PL) - A^L + A2/L (3.14)

Note the positive sign for Ansinh(nx) in Eqn. (3.14) and the negative 

sign for Ansinh(nx) in Eqn.(3.8). All other quantities are obtained as 

for axial compression.

In what follows, the relevant equations are derived for the case of 

axial compression only. The relevant equations for the case of axial 

tension can be derived from the equations for the case of axial 

compression by employing Eqns. (3.13) and (3.14).

3.5 Flexibility Coefficients For An Inelastic Beam-Column

The flexibility coefficients derived in this section apply to a 

straight beam-column. Those for an initially-curved beam-column are 

derived in Section 3.6.

3.5.1 Derivation Of The Flexibility Coefficients

Fig. 3.3 shows zone combination type 6 which has inelastic zones 

spreading from both ends of the beam-column as also shown in Table 3.1. 

The three zones and four points which define the boundaries of the zones 

are numbered sequentially from the left-hand end of the beam-column.
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B1 B2 B3

Zone 1 Zone 2

L

Zone 3

Fig. 3.3 Zone Combination Type 6

Also, the length of a typical zone , m, is denoted as and the total

displacement of a zone intersection point, i, from the x-axis of the

beam-column is denoted as A. whereas the 1 displacement of the zone

intersection point due to curvature is denoted as (k (see Fig.

Zones 1 and 3 are the inelastic zones while zone 2 is the elastic zone.

In order to simplify the computations, the approach adopted in

B 
m

Section 3.4 for the elastic beam-column will be adopted here by taking 

the origin of co-ordinates for each zone at its left-hand end as shown 

in Fig. 3.3. Also, following the numbering system adopted, the 

identification number for a zone is the same as the number for the left-

hand end of the zone. Thus the flexural flexibility coefficients for

the zone, m, are written as
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The Elastic Zone 2

The rigid-body rotation is known whereas the rotations due to 

curvature need to be determined. The formulae derived for the elastic 

beam-column in Section 3.4 apply here by replacing the appropriate 

quantities used in Section 3.4 by their equivalents here.

Thus, following Eqns. (3.9), the end rotations for this zone are 

given by

023 = M2722,2 + M3723,2+[A4_A1~B2(A4_A15/L_D3-D2]/B2

= M2^22.2+M3^23.2+C(A4-A1,{1-(81+83,/L}-(02t03,]/82

M2* f22,2 *M3^23,2 ~ ( °3 *°2  /82*  {A4 ”A1 (3.15a)

Similarly, G^ = ((y 0,,)Ziy^-A, )/L (3.15b) 

where, following Eqns. (3.10),

722,2 ^33,2 = [1/B2-n/tan(nB2 ) ]/P (3.15c)

and 7 2 3 , 2 y32,2 C1 / B2 -n/ sin (nB2 ) J / P (3.15d )

and n = /[P/(EI )] as before. (3.15e)

The Length Of The Zone

The forces and deflections for this zone are shown in Fig. 3.4.

Fig. 3.4
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The constant shear force in this zone is given by

V = [M +M -P{D + D *8  (A-A )/L-(B + B ) (A,-A„)/L}]/Bn (3.16a)
Z J Z J 1 4 1 1 Z 4 I Z

where V = [M +M +P(A -A )]/L (3.16b)
14 4 1

Thus, the length of the zone is given by

B_ = [M_+M_-P(D +D_)]/[(M.4M/)/L] (3.16c)
Z Z -J Z J 14

and is, therefore, independent of the end displacements, A and A,, of 1 4

the beam-column.

The Inelastic Zone 1

Since the exact equation for the deflection curve of an inelastic 

beam-column is unknown, as pointed out in Chapter 1, an approximate 

equation, based on Eqn. (3.5a) for an elastic beam-column, is proposed 

here for this zone as follows:

y = Acos(m x)+Bsin(q xl-M^d-x/B )/P]-M,(x/B )/P

+ A ( 1 -x/B 1 )+AJx/B ) (3.17)

where the arbitrary constants, A and 8, satisfy the deflection 

conditions and m^ and qsatisfy the curvature conditions at the ends 

of the zone.

The validity and limitations of Eqn. (3.17) are established in a 

Parametric Study given in Appendix 5. This Study shows that Eqn. (3.17) 

is accurate for the ratio, C = m^/q^ = 1.0 and that any error increases 

as C increases above unity and diminishes as the rotation, (A -A )/B ,1 2 11 

increases. This Study also shows that Eqn. (3.17) is a reasonable 

representation of the unknown deflection curve for an inelastic zone of 

a beam-column since it requires the deflections of all zone inter-

section points along the beam-column to be taken into account in all 

computations of tangent flexibility coefficients for the beam-column.
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The Arbitrax'y Constants, m1 And q1

Let if • be curva ture at point i. For the elastic zone 2,, we have

= -M./(EI ) (3.18a)i 1 z

and n = /[P/(EIJ]z (3.18b)

Eqn . (3.18b) can be written as

n = /[{M./(EI1 z )}(P/M = /mjp/bb 1 (3.18c)

Based on this analogy , the values of ni and q,1 1 are given by:

= /(Rj Jp/mj for the left-hand end 1 (3.19a)

% = /(|tbJP/M?) for the right-hand end 2 (3.19b)

The Arbitrary Constants, A And B

Following Eqns. (3.6b) and (3.7b),

A = M1 / P (3.20a)

and B = - [M^ cos (n'^ B ^ )-Mo ] / [ Psin (q B ) ] (3.20b)

Tangent Flexural Flexibility Coefficients For Zone 1

Following Eqns.(3.9), (3.15) and (3.16), the end rotations for this

zone are

0
1 = 012 - My  -My  +D/B+IA-A1 11 1 , 1 2 ’ 1 2 . 1 2 1 4 1 )/L

021 My  -My  + D /B +(A -A1 21 , 1 2’22,1 2141 5/L

and its length is

B1 - [M1-M2+PD?]/[(M.+M,)/L]

1 = [ 1 /B 1 -q cos (m , B J / sin (q , B ) ] I P

7,n . - [1/B -q /sin(q B )]/P12,1 11 11

T21 1 = [1/B1-mlsin(mlB1)-q1cos(m1B1)/tan(qlBl)]/P

722 1 = H/B^q^tantq^l/P

where its

(3.21a)

(3.21b)

(3.21c)

tangent flexural flexibility coefficients are given by

( 3.2 1 d )

(3.21e)

(3.21f)

(3.21g)
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It can now be seen that, unlike for the elastic zone 2,

711,1 * 722,1 ( 3.21 h )

and 712,1 * 721,1 ( 3.21 i )

and that these coefficients also depend on the values of the bending

moments at the ends of the zone.

Summary Of Relevant Equations For A Zone

Based on the foregoing procedure for the inelastic zone 1, the 

relevant equations for the moment-rotation-axial force (M-G-P) 

relationships for a typical zone, m, bent as shown in Fig. 3.5 may be

Fig. 3.5 A Typical Inelastic Zone Along A Beam-Column

summarized as follows:

em,m+ 1 M 7 -M 7 4 HO -0 )/B HA -A4 )/Lm mm,m m+1 m,m+1,m m+1 m m r 1 (3.22a)

e 4 m+ 1 ,m M 7 . "M 7 , +(0 -0 )/B + (A -AJ/Lm m+1,m,m m+1 m+1,m+1,m m+1 m m r 1 (3.22b)

[MI -M +P(0 -0 )]/[(M +M )/L]m m+1 m+1 m 1 r (3.22c)

(3.22e)

CI/8 -q cos(m 8 )/sin(q B )]/P mm mm mm (3.2 2 f)

7
m, m+ 1 , m [ 1 /B -q /sin(q B ) ]/P mm mm

7
m+1,m,m C1/B -m sinlm B )-q cos(m B )/tan(q B )]/P mm m m m mm mm

7
m+1,m+1,m Cl/B -q /tan(q 8 )]/P mm mm

(3.22g)

(3.22h)

(3.22i)

B 
m

m m

m

7mm, m

/U'l)|p/M) m m (3.22d )
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where r number of zones + 1 node identification number for the

right-hand end of the beam-column.

The Inelastic Zone 3

From Eqns.(3.22), the end rotations for this zone are

-My + M y +D /B + (A -A )/L3’33,3 4’34,3 3 3 4 1 "

04 043 -My + M y +0 /B *( A -A )/L3 ’43,3 4 ’44,3 3 3 4 1

Also, the length of the zone is given by

b3 = [-m3+m4+pd 3i/[(m1+m4)/l ]

or can simply be obtained from

b3 = L-0rB2

given by

(3.23a)

(3.23b)

(3.23c)

(3.23d)

The Deflection Components, D2 And 03 (Fig. 3.4)

Rotation compatibility at point 2 demands that

°23 ’ 921 0

Hence, substitution of Eqns.(3.15a) and (3.21b) into Eqn.(3

"M1721,1+M2(y22,1+^22,2}+M3723,2"°2(1/b1+1/b2,_D3/B2

Similarly, rotation compatibility at point 3 demands that

934_932 0

Hence, substitution of Eqns.(3.15b) and (3.23a) into Eqn.(3

0

Let

C2 = 1 /B + 1/b2

C3 = i/b2 ♦ ,/B3

E2 722,1 722,2

E3 733,2 733,3

(3.24)

. 24 ) gives

) (3.25)

(3.26)

.26) gives

(3.27)

(3.28a)

(3.28b)

(3.28c)

(3.28d )
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This means that for a typical zone intersection point, m,

C 
m 1/8 <m- 1 + 1/8 m

and E m 7 + 7mm,m-1 mm,m

(3.29a)

(3.29b)

Substitution of Eqns. (3.28) into Eqns. (3.25) and (3.27) and re-

arranging the resulting equations in matrix form gives

where

232,2 33 4'34,3

(3.30a)

(3.30b)

(3.30c)

A solution of Eqn. (3.30a) in general terms is required so that 

the contribution of the bending moment at each end of each zone to the 

deflection of each zone intersection point and, hence, to the end 

rotations of the beam-column, can be explicitly determined. This makes 

the re-arrangement of the equations for the end rotations in terms of 

only the end moments and displacements, as required by Eqns. (3.9b) and 

(3.9c), possible and, therefore, leads to the determination of the 

flexural flexibility coefficients for the beam-column. In Appendix 4, 

general solutions of 2, 3 and 4 simultaneous equations are presented. 

These can be used for computing the required deflection components due 

to curvature for the zone intersection points for the various types of 

zone combination given in Tables 3.1 and 3.2.

Using the formulae given in Appendix 4 for the general solution of 

two simultaneous equations, the general solution of Eqn.(3.30a) is given 

by
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[Q1 1F2 + Q 1 2F33ZC2

(3.31a)

+ M4(^34.3,]/F22 (3.31b)

The Flexibility Coefficients For The Beam-Column

As for the elastic beam-column, the end rotations for this beam-

column are required in terms of its end bending moments and 

displacements as follows:

91 M1a11 + M4ai4 + (A4’A1)/L (3.32a)

04 Mia41 ♦ Ma + (A -A )/L
4 4 4 4 1

(3.32b)

where the a coefficients are the tangent flexural flexibility

coefficients for the beam-column.

Substitution of Eqn. (3.31a) into Eqn. (3.21a) gives

91 M1C71 1 , 1"Q1 1^21 , 1/(B1C 2 3 3 + M2C"712,1 + (Q11E2 + Q12^3 2,2 3 7(B1C233

* M3C(Q1P23,2+Q12E3,/(B1/C231 * M4[-Q12^34,3/(B1C2,] (3.33a)

Also, substitution of Eqn. (3.31b) into Eqn. (3.23b) gives

% M1[ Q21721,1Z (B3F22) 3 + M2C ( Q2 1 E2 + ?f32 , 2 3 Z ( B3F22 3 3

M3 C’743,3 + (Q21723,2+E317(B3F22 3 3

M4C144,3"73413/(B3F22)3 (3.33b)

The next step is to eliminate M2 and M3 from Eqns. (3.33a) and (3.33b).

This is accomplished by writing M2 in terms of M1 (as shown in Table

3.1) a s it is associated with the inelastic zone spreading from end 1

which is brought about by M1 being greater than the first yield moment,

M 1- 
yi

Similarly, M_ is written in terms of M. as follows:
J 4
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where

points

known.

01

®4

M2

M3

r 2m,

R3M4

(3.34a)

(3.34b)

the coefficients R^ and R^ are related to the zone intersection

2 and 3 respectively and are known since the bending moments are

Substitution of Eqns. (3.34) into Eqns. (3.33) gives

M1[,f11,rR2712,l‘{’0lp21,1tR2(Q11E2tQ12'*32. 2l,/(81C211

' M4ttR3(Q1^23,2+Q12E3’-Q123'34.3>/tB1C2’1

4 1
(3.35a)

M1 [t-°2P21 , 1 ’R2IQ21E2^32,2I}/(83F22I 1

♦ (A ,-AJ/L
4 1

(3.35b)

Comparing Eqns. (3.35) with Eqns. (3.32), the required tangent flexural

flexibility coefficients for the beam-column are given by

coefficient for the beam-column. This is accomplished by computing the

“11 = 1,1_R2712,1+{_Q11721,1fR2(Q11E2+Q12732,2 ) (3.36a)

°14 = {R3(Q11723,2+Q12E3)’Q1273413}/{81C2) (3.36b)

“41 = {’Q21721,1+R2(°21E2+732,21}/(83F22) (3.36c)

“44 14 4,3-R374 3,3 + {R3 (Q21723,2+E3 )"’Y34,3}/(83F 22 (3.36d)

It is also necessary to compute the tangent axial flexibility

average tangent axial flexibility coefficient for each zone based on the

remaining elastic core for the zone and summing these as follows:

% - [81/A12 * 82/A23 * 83/A341/E l3'37al

where A „ = Average cross-sectional area for the elastic corem,m+1

for zone m.

= (Am + Am J/2 (3.37b)m m+1

A = Cross-sectional area of the elastic core at point m. m K
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In general terms, therefore, the tangent axial flexibility coefficient 

for an inelastic beam-column is given by

n

a (3.38)

where m is the zone number and n is the number of zones along the 

beam-column.

Iteration Scheme

Solutions of the various equations presented so far are obtained 

by iteration using suitable starting values for the deflection 

components due to curvature and modifying these values at the end of 

each cycle of iteration until a specified convergence criterion is 

satisfied. The convergence criterion adopted here is

(3.39)

where fc current value of a function

f
P

previous value of the function

0.0001 to 0.0002 (3.40)

A general iteration scheme for the computations is given below.

1. For the given beam-column and the combination of axial force 

and end bending moments, determine the type of zone 

combination and calculate the curvatures at the ends of all 

zones using the formulae presented in Chapter 2.

2. Compute the cross-sectional areas of the elastic core at the 

ends of all zones.

3. Compute m^ and for each zone, m, from Eqns. (3.22d) and

( 3 . 22e) .
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4. Assume starting values for the displacement components of 

the zone intersection points due to curvature.

5. Compute the length of each zone from Eqn. (3.22c).

6. Compute the flexibility coefficients for- each zone from Eqns.

(3.22f), (3.22g), (3.22h) and (3.22i).

7. Obtain revised values for the displacement components of the 

zone intersection points due to curvature by solving the 

relevant equations (for example, Eqn. (3.30a) for Zone 

Combination Type 6).

8. Check for convergence. If this is not satisfied, use 

displacement component values obtained at Step 7 as starting 

values and go back to Step 5, repeating the process until 

the convergence criterion is satisfied. Then go to Step 9.

9. Compute the tangent flexibility coefficients for the beam-

column using the appropriate formulae (for example, formulae 

given by Eqns. (3.36) for Zone Combination Type 6).

3.5.2 Formulae For The Flexibility Coefficients For The
Beam-Column Bent In Double Curvature

8ased on the general procedure presented in Section 3.5.1, the 

relevant formulae for the remaining zone combination types given in 

Table 3.1 will now be given. The notations adopted here are the same as 

those adopted in Section 3.5.1. Also, since Eqn. (3.38) is generally 

employed for determining the tangent axial flexibility coefficient for 

an inelastic beam-column, this coefficient will not be repeated in this 

section.
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Formulae For Zone Combination Types 2 And 3

The formulae given here are for Zone Combination Type 2. The 

tangent flexural flexibility coefficients for Zone Combination Type 3, 

which is a mirror-image of Zone Combination Type 2, are derived from 

those given here by inter-changing the end node numbers for Zone 

Combination Type 2.

The deflection component of the zone intersection point, 2, due to 

curvature is given by

D 2 (3.41a)

from which the required flexural flexibility coefficients for both zone

combination types are as follows:

la11:'2 = = 711 , 1 ''*21  , 1 ' t81C2 1 *R2tE27 (B1C2 1’’*12,  1 1 (3.41b)

|O13:'2 = (a31J3 = ■(23.2/lS1C2) (3.41c)

la31 >2 = (<113 J3 = (3.41d )

(a33:>2 = (Ct1 1 }3 = "f33,2'’*23,2/IB2C2l (3 . 41e)

where (a. .
13

’k iS the tangent flexural flexibility coefficient, for

zone combination type k.

Formulae For Zone Combination Types 4 And 5

The formulae given here are for Zone Combination Type 4. The 

tangent flexural flexibility coefficients for Zone Combination Type 5, 

which is a mirror-image of Zone Combination Type 4, are derived from 

those given here by inter-changing the end node numbers for Zone 

Combination Type 4.

The relevant matrix equation for determining the deflection 

components at the zone intersection points 2 and 3 due to curvature is
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given by

3 -M27 +M3E3+M4734,3

where

(3.42a)

(3.42b)

From Appendix 4, the general solution of Eqn. (3.42a) is given by

(3.42c)

from which the required flexural flexibility coefficients for both zone 

combination types are as follows:

lan \ - la44 >5 711,rR2’Y12,rt_Q1l’Y21,1 + R2{Q11E3“Q12y3 2l2}

+ R {-Q 7 +Q E }]/(B C )3 11*23,2  12 3 1 21 (3.42d)

(ai4 '4 - (tt41 >5 = Q 7 / (B C )12 *34,3  1 21 (3.42e)

(°41 >4 = (t,14 '5 - R 7 -[-Q 7 +R {Q E -7 }3*43,3  21*21.1  2 21 2 *32,2

* R3(-Q21^3.2’E4H/(B3F22> (3.42f)

>4 - (“l 1 >5 74413’73413/(B3F22) ( 3.4 2g)

Formulae For Zone Combination Types 7 And 8

The formulae given here are for Zone Combination Type 7. The 

tangent flexural flexibility coefficients for Zone Combination Type 8, 

which is a mirror-image of Zone Combination Type 7, are derived from 

those given here by inter-changing the end node numbers for Zone
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Combination Type 7.

The relevant matrix equation for determining the deflection

the zone intersection points 2, 3 and 4 due to

is given by

components

^4'^45.4

+M E +M t33 4t 34,3

+ M2E2 M3723,2where

curvature

(3.43a)

(3.43b)

From Appendix 4, the general solution of Eqn. (3.43a) is given by

33

( 0 « F„ + Q 4 F + Q. J,11 2 12 3 13 4

(q„4 F_ + CL F„ + Q^F
21 2 22 3 23 4

(Q31 F2 ‘ Q 3 2F 3 * FJ/F

(3.43c)

from which the required flexural flexibility coefficients for both zone

combination types are as follows:

R3("Q11723,2+Q12E3+Q13743,31}/(81C21 (3.43d)

(ai5>7 (Ct51 }8 (3.43e)

(<X15,8

R3<_Q31* Y23,2* Q32E3+*Y43(3)3/(84F33) (3 . 43f)

(3.43g)
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Formulae For Zone Combination Type 9

The relevant matrix equation for determining the deflection 

component at the zone intersection points 2, 3, 4 and 5 due to curvature 

is given by

where

(3.44a)

Ml’Y21 , 1 +M2E2“M3^23 , 2

<3 "M2732,2+M3E3+M4^34,3
(3.44b)

M3^43 ,3 + M4E4 M5^45, 4

■M/Tk , .+McEc-Mc,Ye._ _4'54,4 5 5 6 ' 56,5 y

From Appendix 4, the general solution of Eqn. (3.44a) is given by

+

+

+

+

+

+

+

+

°14F5I/A

Q24F5,/F

Q34F5)/F
(3.44C)

33

from which the required flexural flexibility coefficients are:

tt1 1 "*11,1  R2*12,1 +{ Q1 1*21  , 1 + R2(Q11E2_Q12*32,2 )

ai6

‘ R-l-Q□

[R4(Q12

’ R3‘-Q 11*23,2 + Q 12 E3

v, + Q F, -Q’34 , 3 13 4

+ Q E13’45,4 1 4 5

+ Q13\3.3,}/(81C2) (3.44d )

(3.44e)

Q6 1

R3 {_Q41723,2+Q4 2E3+Q4 3'Y4 3,3 5 ]/(85F4 4} (3.44f)
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66

+ R ( - Q 7 + E
5 43'45,4 5

(3.44g)

3.5.3 Formulae For The 
Beam-Column Bent

Flexibility Coefficients For 
In Single Curvature

The

The formulae presented here follow the same general procedure

adopted in Section 3.5.2 for the beam-column bent in double curvature.

The maximum number of zones along the beam-column is three since no

point of contraflexure exists along the beam-column. Consequently, the

full range of computations is less here than for the beam-column bent in

double curvature.

Formulae For Zone Combination Types 10, 12, 13 And 1411

Zone combination types 10, 11, 12, 13 and 14 are similar to, ajid

have the same formulae for the flexibility coefficients as, zone 

combination types 1, 2, 3, 4 and 5 respectively but the sign of the
<$

bending moment at the right-hand end of each zone combination type here 

must be reversed.

Formulae For Zone Combination Types 15, 16, 17 And 18

These zone combination types have inelastic zones throughout their 

lengths which are brought about by the simultaneous actions of both end 

bending moments. Since the maximum number of possible zones for a beam-

column bent in single curvature is three, only three inelastic zones are 

necessary to describe these beam-columns. Thus, the bending moments, M2 

and M , at the zone intersection points 2 and 3 are written in terms of 

both end bending moments thus:
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M2 = IMJ + G^lMj-lMj)

M3 = |MJ + g 3Hm4I-Im1H

(3.45a)

(3.45b)

where and are arbitrarily-chosen, positive factors satisfying the

condition

(3.45c)

Following the general procedure adopted for Zone Combination Types

4 and 5, the relevant flexural flexibility coefficients for these zone 

combination types are obtained as follows:

Q11 1 , 1*  1 1 G2,’t12,1* {"°11721,1<'(1“G2)(Q1tE2’Q12’Y32,2

‘ "-G3,l-Q11-<23.2‘Q12E3,,/(01C2) (3.46a)

°14 G 7 +(Q 7 -G (Q E -Q 72^12.1 12^34,3 2 11 2 12’32,2

G3(_Q11723,2+Q12E3,}/(81C2) (3.46b)

°41 ( 1-G )7 -l-Q 7 +(1-G )(Q E -7 )3 ’43,3 21’21,1 2 21 2 ’32,2

+ ( 1 -G )(-Q 7 + E )} / ( 8 F )3 21 ’23,2 3 3 22' (3.46c)

°44

+ G(-Q y +E ) } / (8 F )3 21y23.2 3 3 22 1 (3.46d )

3.6 Flexibility Coefficients For An Initially-Curved 
Beam-Column

All the formulae presented so far in this chapter are applicable

to an initially-straight member. In practice, however, members may

possess initially-curved profiles due to manufacturing processes,

fabrication or construction methods. It is, therefore, essential to

investigate the responses of such curved members to applied loads. As

before, attention is concentrated on the derivation of the flexibility

coefficients for the beam-column.

102



A sinusoidal representation of the initial curved profile of a 

beam-column is widely adopted in the literature on structural stability 

as a reasonable representation of the true curve and this representation 

will also be adopted here.

The general form of the equation for the sinusoidal curve of Fig.

3.6 is

yQ = uosin(kox) (3.47a)

where kQ = i/L0 (3.47b)

Lq is initial straight length of beam-column

and uQ is the measured or assumed deflection of centre of

beam-column.

Fig. 3.6 A Sinusoidal Curve For A Beam-Column

Since bending strains are caused by the net curvature of the beam-

column, the basic differential equation (3.4a) now includes the initial 

curvature thus:

y’' “ yo’‘ s ‘Mx/(EIz) (3.48a)

Following the procedure adopted in Section 3.4 for the elastic beam-

column, the solution of Eqn. (3.48a) now becomes

y = Acos(nx)+Bsin(nx)-M1(1-x/L)/P+M2(x/L)/P*A 1(1-x/L)

♦ A (x/L) ♦ y [1/(1-C )] (3.48b)
i o e
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where C = P/P_ (3.48c)e E

For the inelastic beam-column, therefore, the general expression for the 

deflection curve given by Eqn. (3.17) for a typical zone, m, is now 

modified to include the initial deflection thus:

y = Acos(m x)+Bsin(q x)-M.(1-x/L)/P+M (x/L)/Pm ml r

♦A (1-x/L)+A (x/L)+C_u_sin(k_x) (3.49a)1 r 0 0 0

where r is the identification number for the right end of the beam-

column. From Eqn. (3.49a), the slope of the zone, m, now becomes

y' = -Am sin(m x)+Bq cos(q x)*M./(PL)/(PL) m m m m 1 r

t(ar-A1)/L»C0k0u0coS(k0x) (3.49b)

where CQ 1 /(1-C ) and the constants A, e B, m and q retain their m m

values satisfying deflection and curvature boundary conditions.

Similarly, the end rotations of the beam-column based on tangent

flexural flexibility coefficients, are

91 ♦ Ma, + r 1 r (A^A^/L ♦ 901 (3.50a)

where 901

90r

and the

♦ Ma + r rr (A -A )/L ♦ r 1 e„ Or (3.50b)

tangent

Wo (3.50c)

■cokouo -901 (3.50d)

flexural flexibility coefficients retain their values

M 1a 11

6 r Ma .1 r 1

for an elastic beam-column. For an inelastic beam-column, however, the 

equations for determining the deflection components due to curvature at 

the zone intersection points (for example, Eqn. (3.30a)) remain valid 

and unchanged since the rotations due to initially-curved profile at 

each zone intersection point are numerically equal and, therefore, 

cancel out when the rotation compatibility condition is imposed.
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The length of each zone is, however, modified as follows:

Considering a typical zone, m, of a beam-column loaded as shown in

Fig.(3.7), the length of this zone now becomes

where V

(3.51a)

(M +M )/L (as before) 1 n (3.51b)

B m

and from Eqn.(3.47a),

D0,m = Couosin(koLm)

°0,m+1 = C u sin[k (L +B )] 0 0 0 mm

where L 
m is the distance from end

end, m, of the zone as shown in Fig.

°0,m' is, therefore, an addition

(3.51c)

(3.5 1 d )

1 of the beam-column to the first

3.7. The bending moment, P(D„
0 ,m+ 1

1 term required to account for the

influence of initial curvature of the beam-column. This bending moment

depends on the lengths of the zones of the beam-column. These lengths 

can only be determined during the iteration process for calculating the 

displacements of the zone intersection points. As a first 

approximation, it is best to ignore the contribution of this bending 
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moment in estimating a starting value for iteration for the length of 

each zone.

Also, the tangent axial flexibility coefficient for the elastic 

beam-column can be estimated by sub-dividing the original curved length 

of the beam-column into a few segments (for example, four) and adopting 

Eqn. (3.38). However, since the initial central deflection of the beam-

column is usually very small in comparison with its original length 

(often taken to lie between LQ/3000.0 and Lq /1000.0), it is sufficiently 

accurate to avoid sub-dividing the member and employ its full length, 

Lg, in computing the tangent axial flexibility coefficient. Thus, for 

the inelastic beam-column, the lengths of the inelastic zones, as 

computed from Eqn. (3.51a), are employed in Eqn. (3.38) in computing its 

tangent axial flexibility coefficient.

All the formulae for the flexibility coefficients for the beam-

column remain unchanged but the values of these coefficients are, of 

course, altered by the revised values of the lengths of the zones.

3.7 Notes On The Use Of The Formulae Presented In This Chapter

In using the formulae given in this chapter, it is essential to 

avoid numerical instability which may arise during the computations. 

The causes of numerical instability are identified and remedial measures 

are proposed as follows:

1. When an end of a beam-column attains its ultimate yield 

moment, the flexural flexibility coefficients become 

theoretically infinite and the corresponding stiffness 

coefficients become equal to zero. Thus, the curvature of 

the beam-column at this end becomes infinite as the depth of 
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the elastic core of the cross~section vanishes. However, as

suggested in Section 2.9, excessive or infinite values of

curvatures must be avoided. An indirect approach is to

compute the flexibility coefficients for the beam-column

using the chosen minimum value for the depth of elastic core

of the cross-section and then to multiply the coefficients

by a sufficiently large, positive number (not less than 10e)

in order to render this end very flexible so that the

corresponding flexural stiffness coefficients tend to zero.

Thus, a plastic hinge is considered to form at this end.

As the limiting axial force, P [see Eqns. (2.36a) and

(A2.9a)] for the cross-section of a beam-column is exceeded,

its intermediate yield moment, M approaches, or may

exceed, its ultimate yield moment, My3< giving rise to a

zero or negative value for the length of the corresponding

inelastic zone bounded by M „ and Mj y2 y3 This situation must

be avoided either by ignoring M in the computations so

that the inelastic zone is bounded by the first yield

moment, and the ultimate yield moment, My3 or by

assigning a very small, positive value (say 5.0mm) to the

length of the inelastic zone bounded by and My3.

3. An infinite curvature of a cross-section can give rise to an 

infinite deflection of a zone intersection point. Thus, in 

addition to limiting the curvature of a cross-section which 

attains a plastic hinge to a finite value (as suggested in 

Section 2.9), the deflection of a zone intersection point

2 .
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adjacent to a plastic hinge must be limited to a finite 

value (for example, one-quarter of the length of the beam-

column ) .

3.8 Applications Of The Formulae Presented In This Chapter

The applications of the formulae for the tangent flexibility 

coefficients for inelastic beam-columns presented in this chapter are 

illustrated in this section using a beam-column loaded as Zone 

Combination Type 8 (see Table 3.1). The cross-sections considered are 

the I-shaped and rectangular cross-sections considered in Section 2.10. 

The material properties considered are also those utilized in Section 

2.10. In each case, the following data are adopted:

L = 5000.0mm

P

M
1

0 . 2P s

lMy2 * My3)/2

The appropriate first yield moment and yield moment ratios are given in 

Tables 2.1 and 2.2 for the I-shaped and rectangular cross-sections 

respectively.

The tangent flexural flexibility coefficients are given in the 

following form:

L/ (El ip . .) z4 13 (3.52)

where tp. . is a flexural flexibility factor. Also, the tangent axial

flexibility coefficient is given in the following form:

(p L/(AE) d (3.53)

where tp is an axial flexibility factor.

a . .
13

a a
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Results

The results obtained are summarized in Table 3.3 for the beam-

column of I-shaped cross-section and in Table 3.4 for the beam-column of 

rectangular cross-section. These results show that for the given load 

combinations the length of the elastic zone is of the order of 75Z of 

the length of the beam-column of I-shaped cross-section and 65Z of the 

length of the beam-column of rectangular cross-section even in the 

absence of a plastic hinge.

The tangent stiffness coefficients derived from these tangent 

flexibility coefficients will be given in Sub-Section 4.4.4.

Results For The Bean-Coltum Of I-Shaped Cross-SectionTable 3.3

Material B1 B2 B3 B4 *11 *15 *51 *55 a(mm) (mm) (mm) (mm)
Ela stic- 
Perfectly- 
Plastic

555 3812 558 75 3.42 -8.06 -8.57 2.78 1 . 09

Elastic- 
Strain- 
Hardened

546 3725 549 180 3.47 -8.11 -8.98 2.92 1.11

Table 3.4 Results For The Bean-Column Of Rectangular Cross-Section

Material B1
(mm)

B 2 
(mm)

B3 
(mm) (mm)

*11 *15 *51 *55 *a

Elastic- 
Perfectly- 
Pla stic

685 3269 689 357 3.75 -9.13 -10.7 3.21 1 .06

Elastic- 
Strain- 
Hardened

670 3205 672 453 3.81 -9.19 -11.2 3.35 1 .06
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CHAPTER 4

PLANE FRAME STABILITY ANALYSIS

4.1 Introduction

In Chapter 3, the tangent flexibility coefficients for a beam-

column were evaluated for any load level up to failure. These 

coefficients lend themselves easily to plane frame stability analysis by 

any of the standard methods of structural analysis. In this chapter, 

the stiffness method of structural analysis is employed in plane frame 

stability analysis. Thus, it will be necessary to derive the tangent 

stiffness coefficients for a beam-column from these tangent flexibility 

coefficients.

The stability analysis presented here not only gives the stable 

equilibrium path and failure load of a plane frame but also gives the 

locations and lengths of all inelastic zones that may be present in the 

frame at any load level. The analysis can be applied not only to plane 

frames but also to single-span and multi-span beam-columns.

4.2 Load Simulation

For elastic analysis of a plane frame, the loads on the frame may 

be either concentrated at nodal points of the frame or distributed along 

the members or any combination of these loads. However, for a stability 

analysis of a plane frame as developed in this thesis, all loads must be 

applied at the nodal points of the frame. Thus, distributed loads need 

to be simulated by their statically-equivalent concentrated loads placed 

at the nodal points of the frame. This approach is necessary because 

fixed-end moments cannot be easily evaluated for distributed loads when 

inelastic zones are present along a beam-column.
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For a stability analysis, loading may be proportional or non-

proportional. For proportional loading, a load parameter (or factor) is 

assigned to all loads on the frame. The value of this load parameter is 

increased as the total load on the frame is increased. A non-

proportional loading has a constant part and a variable part and the 

load parameter is assigned to all the variable parts of the loads on the 

frame. In either case, however, the analysis of the frame is for the 

total loads on the frame at any load level up to failure.

4.3 Geometry Simulation

A plane frame is discretized into a number of beam-columns for 

stability analysis by introducing nodes at various locations on the 

frame. Initially, nodes are introduced at points of intersection of 

the members of the frame and also at the supports. Then, certain 

factors may make it necessary to introduce additional nodes along the 

members of the frame. These factors are

1. Nature of bending of member,

2. Type of loads on the frame and

3. Behaviour of a structural member.

For a member bent in double curvature, no additional node is 

required along its length since its maximum bending moments occur at its 

ends while a point of contra flexure (that is a point of zero bending 

moment) occurs along its length. However, for a member bent in single 

curvature, the possibility exists for the bending moment at, oi' near, 

its mid-span to be larger than its end bending moment. In order to 

employ the formulations and assumptions of Chapter 3, therefore, a node 

must be inserted at its mid-span or the likely position of maximum 

11 1



bending moment near its mid-span.

A node must also be inserted at the location of each concentrated 

load required for a stability analysis so that there is no load along 

the span of each beam-column in accordance with the assumptions made in 

Chapter 3.

It is sometimes necessary to investigate the behaviour of a 

particular member within a framework. Perhaps, the bending moments, 

deflections and rotations at various locations are of interest. These 

can be monitored by inserting nodes along such a member. However, 

closely-spaced nodes must be avoided so that the length of an inelastic 

zone does not tend to zero thus causing numerical instability in the 

computations.

Supports may be fully fixed, pinned or elastically-restrained. 

Also, the connections between the members of the frame may be rigid or 

pinned but it is essential that the frame, or any part of it, does not 

become a mechanism. Member cross-sectional dimensions, material 

properties and lengths must be given. However, the members required to 

restrain the frame against lateral-torsional buckling are not required 

to be specified as they do not form part of the analysis.

4.4 Tangent Stiffness Matrix For A Beam-Column

Three types of beam-column are considered here namely:

1 .

2 .

Beam-column rigidly-connected to a plane frame at both ends,

Beam-column rig idly-connected to a plane frame at one end and

pinned to the frame at the other end and

3 . Beam-column pinned to a plane frame at both ends.

In each case, the general case of a beam-column having an initially-

curved profile will be considered here.
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4.4.1 Beam-Column Rigidly-Connected To A Plane Frame At Both Ends

The end rotations of a beam-column bent in double curvature are

given by Eqns. (3.50) as follows:

e1 H1a11 * Mr°1r ‘ <VA1,/L * ®01 (4.1a)

8 r Ma ♦1 r 1 Ma + (A -A.)/L ♦ 8_ r rr r 1 Or (4.1b)

For simplicity in the present derivation, the end node number, r, given

in Eqns. (4.1) is replaced by 2. Thus, the matrix form of the revised

From

(4.2)

Appendix 4, the general solution of Eqn. (4.2) is obtained and

simplified as follows:

where

In Eqns.

91 * k12®2 * k13IA2-Al’ ‘ M0l]
(4.3a)

lk2181 ‘ k2292 * k23IA2-Al’ * M02j

s s Q1ia22 ’ tt12a21 (4.3b)

ku = a22/P (4.3c)

k12 = ~tt12/P (4.3d)

k13 = (<X12‘a22,/P/L = "(k11* k12,/L (4.3e)

MO1 = k13LG01 (4.3f)

k21 = ‘a21/P (4.3g)

k22 = a / 61 r p (4.3h)

k„,
23

= (Ct2l’ai1 ,/P/L = ’(k21* k22)/L (4.3i)

Mno02 - kooL0nn23 02 (4.3j)

(4..3), the rotation coefficients k^, k^, k21 and k22 are the

flexural stiffness coefficients for the beam-column while the

displacement coefficients k^ and k^ are derived from these flexural
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stiffness coefficients.

The shear forces at the ends of a beam-column bent in double 

curvature are given by Eqn. (3.2) as

V = V1 = -V2 = [M1 + M2+PU2-A1)]/L (4.4)

Substituting Eqn. (4.3a) into Eqn. (4.4) and re-arranging the resulting

equation, one obtains

V1 = -V2 = k3101 * k3202 *

where k31 = ,kl/k21,/L

k32 = ,k12tk22,/L

k33 = lk13tk23tPl/L

k130O1tk23602

V02 -V01

Also, the net axial deformation

(3.2) and Eqn. (3.38) as

6 -61 2 = Pa a

k33(A2_A1* + V01 (4.5a)

(4.5b)

(4.5c)

(4.5d)

(4.5e)

(4.5f) 

of a beam-column is derived from Fig.

(4.6a)

i.e. P s P = -P = »< (6 -6_)1 2 a I 2 (4.6b)

where k a is the axial stiffness coefficient of the beam-column and is

given by

(4.6c)

are put into matrix form as follows:

fpA -k 0
2 a

vo r = 0 k
2 33

0 -kI 2) 23
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Equations (4.7) and (4.8) are expressed symbolically as

(4.9)

(4.10)

and s22

P1 = S1161 ’ S12®2 ’ P01

P2 5 S21®1 * S2262 ’ P02

where s<| , are the tangent stiffness matrices for the

beam-column.

4.4.2 Beam-Column Rigidly-Connected To A Plane Frame At One End And 
Pinned At The Other End

Case 1 - One End Of The Beam-Column Pinned

Consider end 1 of the beam-column to be pinned. In this case, M1 

equals zero and the values of the tangent stiffness coefficients are

k = 1/ot (4.11a)a a

k„ = k12 = k13 = k21 = k31 = 0 (4.11b)

k22 = 1/a22 (4.11c)

k23 = -1/(La22) (4.lid)

k32 = 1/(La22) (4.11e)

kg3 = [P-1/(La22)]/L (4.11f)

The relevant coefficients for end 2 of the beam-column pinned are 

derived from the above coefficients by inter-changing the end node 

numbers for the beam-column.

4.4.3 Beam-Column Pinned To A Plane Frame At Both Ends

In this case, the flexural and displacement stiffness coefficients 

are zero. The axial stiffness coefficient for the initially-curved 

beam-column is approximated to AE/LQ for a very small initial central 

deflection of the beam-column as suggested in Chapter 3 for the beam-

column in the elastic state under the axial force and equal to zero at 

the attainment of either the squash load of the cross-section or the 
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elastic buckling load of the beam-column.

4.4.4 Examples

The flexural flexibility coefficients given in Tables 3.4 and 3.5 

for the beam-columns of I-shaped and rectangular cross-sections 

respectively considered in Section 2.10 will now be used to obtain the 

flexural stiffness coefficients for these beam-columns. These stiffness 

coefficients will be expressed in the following form:

ki3 • P^e^/L

where fl is a flexural stiffness factor. The stiffness factors are 

given in Tables 4.1 and 4.2.

Table 4.1 Stiffness Factors For The Beam-Column Of I-Shaped 
Cross-Section

Material •’ll "iz P21 P22

Elastic- 
Perfectly- 
Pla Stic

3.966 1 .285 3.221 1 .366

Elastic- 
Strain- 
Hardened

4.032 1.310 3.389 1 .451

Stiffness Factors For The Beam-Column Of Rectangular 
Cross-Section

Table 4.2

Material P 11 ^12 ^21 P22

Elastic- 
Perfectly- 
Plastic

4.282 1 .285 3.660 1 .504

Elastic-
Strain-
Hardened

4.348 1 .304 3.824 1 .587
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4.5 The Transformation Matrices For Beam-Column End Forces And 
Displacements

A typical beam-column in a plane frame may have any inclination to 

the horizontal plane. It becomes necessary to transform the individual 

beam-column end forces and displacements to a global set of axes before 

conditions of equilibrium and compatibility at nodal points can be 

written.

Let member 1° -2° of Fig. 4.1 represent the original beam-column 

inclined at degrees to the horizontal plane (the curve 1°-3°-2° 

indicates an initial curved shape of the beam-column) and displaced to 

the new equilibrium position 1-2 as a result of the applied loads on the 

frame.

Fig. 4.1
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Let the joint displacements along the global frame axes be A A A.v 

and ^2Y and the joint rotations about the out-of-plane (Z-) axis be 

O1Z and ®2Z' These displacements and rotations related to the 

displacements and rotations referred to the member axes through the 

following matrix equations:

(4.12)

(4.13)

(4.14a)

(4.14b)

Equations (4. 12) and (4.13) can be written in symbolic form as follows:

A1 = T6 (4.15a)

A2 = T62 (4.15b)

where the coefficient matrix, T, is the transformation matrix for the 

nodal displacements and rotations from the global to the beam-column 

axes. The corresponding transformation matrix for the nodal 

displacements and rotations from the beam-column to the global axes is 

given by the inverse of T, thus:

51 = T_1A1 (4.15a)

62 = T_1A2 (4.16b)

Owing to the orthogonality of the cartesian co-ordinate axes, T 1 is 

obtained by transposing the elements of T thus:
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s 0c

(4.17)

These transformation matrices are also valid for the nodal forces. 

Thus, if the nodal force vector referred to the global axes is denoted 

by P while the nodal force vector referred to the beam-column axes is

denoted by p, then

p, = Tp1 (4.18a)

P2 ' Tpz (4.18b)

Thus, Eqns. (4.9) and (4.10) can be expressed symbolically as

% = Ts1161 ♦ Ts A
12 2 + Tpoi (4.19a)

p2 = TS2161 * Ts 622 2 TP02 (4.19b)

Substitution of Eqns. (4.16) into Eqns. (4.19) gives

P1 = S11A1 ‘ S._A„12 2 * Tpoi (4.20a)

P2 = S2141 S A22 2 ‘ TpO2 (4.20b)

where S11 ‘ T‘l1T" 1 (4.20c)

S12 ■ t .12t - 1 (4.20d)

S21 * u21t - 1 (4.20e)

and 1S22 • ts 22t - (4.20f)

4.6 Nodal Forces And Displacements

Let i and j represent any two nodes connected by a beam-column, m,

in a plane frame. Then, the compatibility of nodal deformations demands

that the same displacement vector, A, be assigned to all beam-column

ends meeting at nodes i or j. Thus, A^ and A^ represent the

displacement vectors at nodes i and j respectively.
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Also, let the external load vector at node i be represented by

(4.21)

where and Wy are the externally-applied nodal loads in the directions 

of the global X and Y axes respectively and is the externally-applied 

nodal bending moment about the global Z-axis. Similarly, the external

load vector at node j is represented by

(4.22)

Then, using subscripts i and j for the subscripts 1 and 2 respectively 

in Eqns. (4.20), the conditions of equilibrium of forces are applied at 

nodes i and j, using Eqns. (4.20), (4.21) and (4.22) to obtain the 

following equations of equilibrium of forces:

ES..A.
11 1

ES. .A .
13 3

tTp0i ’ L.
1

(4.23a)

ES ..A.
31 i

ES..A.
33 3

ZTp0j ’ (4.23b)

Eqns. (4.23) follows:are put into matrix form as

(4.24)

+

+

+

+ L .
3

0

0

Eqn. (4.24) for a beam-column is expressed in condensed form as

(4.25)

120



where the subscript b refers to the beam-column. For the entire plane 

frame, therefore, the relevant equilibrium equation is

SfAf = Lf (4.26)

where the subscript f refers to the frame, is the tangent stiffness 

matrix for the frame, A^ is the displacement vector for the frame and 

is the load vector for the frame with its sign reversed. The matrix, 

Sf, is assembled from the stiffness matrix, S^, for each beam-column. 

The matrix is symmetric for the elastic response and asymmetric for the 

inelastic response. In general, if any two nodes are not connected by a 

member, then the corresponding off-diagonal terms of the frame stiffness 

matrix, S^, vanish. The frame stiffness matrix, Sf, is a square matrix 

of order n where n is 3N and N is the total number of nodes in the 

frame.

The nodal displacement vector, A^, is determined from Eqn. (4.26) 

as

Af = (4.27)

where 1 is the inverse of S^. It is evident from Eqn. (4.27) that a

solution for A^ exists only if is positive-definite and, therefore,

satisfies the inequality

|Sf| > 0 (4.28)

It has already been stated that at failure the frame stiffness vanishes. 

Therefore, the inequality (4.28) expresses a stable condition for the 

frame and it follows that the onset of instability of the frame is given 

by the condition

|Sf| = 0 (4.29)

For the stable frame, therefore, the nodal displacements referred 

to the beam-column axes are determined by substituting the relevant 
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nodal displacements from Eqn- (4.27) into Eqns. (4.1G) for each beam-

column. These are then substituted into Eqns. (4.9) and (4.10) to 

determine the end force vectors for each beam-column.

4.7 The Stable Equilibrium Path

A s stated in Section 4.2, an analysis of a plane frame by the

inelastic zone method is for the total loads on the frame. This

analysis directly gives a point on the stable equilibrium path for the 

frame. By incrementing the loading in small amounts, the entire stable 

equilibrium path foi' the frame can be traced. At the end of each 

analysis, the inequality (4.28) is checked and the loads are increased 

if this inequality is satisfied. In using load increments, however, it 

is possible to place a total load on the frame which is greater than the 

failure load of the frame. In this case, the analysis breaks down. It 

is, therefore, recommended that smaller load increments than those used 

in the elastic range be used in the inelastic range.

In general, the stable equilibrium path is traced by plotting the 

load parameter (for proportional loading) or a total joint load (for 

non-proportional loading) as ordinate against the maximum horizontal (or 

vertical if this is more critical) joint displacement as abscissa. The 

failure load corresponds to the point of zero slope. A typical 

equilibrium path for a plane frame is described in Fig. 4.2.
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Fig. 4.2 Description Of A Typical Stable Equilibrium Path For 
A Plane Frame

4.8 Attainment Of The Ultimate Yield Moment Of A Cross-Section At 
An End Of A Beam-Column

In Section 3.7, procedure was proposed for monitoring the

development of a plastic hinge at an end of a beam-column which attains

a

its ultimate yield moment, M 
y3 With reference to Eqns. (4.7) and

(4.8), the attainment of M , 
y3

at end 1 causes the stiffness coefficients

K11 and K to vanish while the attainment of at end 2 causes the

stiffness coefficients K21 and K22 to vanish. These coefficients will

generally be very small quantities and will not be exactly equal to zero

as would be required (since the depth of elastic core is not equal to

Therefore, in order to prevent the bending moment at such an end

having zero flexural stiffness from becoming zero during the process of

iteration, it is necessary to consider a plastic hinge to form at that 
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end and impose the ultimate yield moment for that end, of appropriate 

sign, as a fixed-end moment there.

4.9 Failure Conditions

Eqn. (4.29) expresses a general failure condition for a frame. 

Analysis breaks down whenever this condition is attained due to 

incremental loading as was pointed out in Section 4.7. However, since 

exact zero stiffness cannot be employed for a member in the analysis 

(depth of elastic core for an end which attains its ultimate yield 

moment must not be zero), a break-down of analysis can be avoided by 

terminating analysis as soon as the right-hand side of Eqn. (4.29) or a 

leading diagonal term in the frame tangent stiffness matrix after a 

Gaussian elimination process becomes equal to, oi- less than, a specified 

small, positive numbei' (say 0.004 ).

4.10 Flow Chart

A flow chart for plane frame stability analysis by the inelastic

zone method is given in Fig. 4.3.
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(Fig. 4.3 continued on next page)
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Fig. 4.3 A Flow Chart For Plane Frame Stability Analysis By The 
Inelastic Zone Method
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CHAPTER 5

COMPARISON OF EXISTING THEORETICAL AND EXPERIMENTAL RESULTS

5.1 Introduction

The validity of the inelastic zone method as an effective tool for 

plane frame stability analysis will now be demonstrated by comparing the 

frame failure loads obtained by some existing theoretical and 

experimental methods with those obtained by the inelastic zone method. 

In published literature on frame stability, information on inelastic 

zones is not given and these, therefore, cannot be compared. The 

comparison is, therefore, limited to magnitudes of the failure loads and 

the locations of plastic hinges where these are given. Also, the step- 

by-step formation of plastic hinges is not compared since the inelastic 

zone method does not require a prediction of the load factor at which a 

plastic hinge would form at any stage of analysis. However, the load 

parameter for each plastic hinge formation, as derived by the elastic-

plastic method, is given in bracket next to the plastic hinge. The 

frames considered here range from regular, unbraced portal frames to 

irregular, unbraced multi-storey, multi-bay frames.

5.2 Theoretical Results

In this section, some results obtained by existing theoretical 

methods of plane frame stability analysis are compared with those 

obtained by the inelastic zone method. In general, the loads shown on 

the frames are for proportional loading to which a unit load parameter 

is assigned. Also, frame member numbers are shown in brackets along the 

relevant members where these numbers are required in the Tables of 

member section sizes.

1 27



5.2.1 Frame Analysed By Andreaus And D'Asdia (61)

A three-storey, four-bay, regular frame was analysed by Andreaus 

and D'Asdia based on a modification of the elastic-plastic method to 

account for finite spread of yielding zones. Fig. 5.1 shows the frame 

geometry and its working loads. The yielding zones, however, are not 

given but the frame failure loads and the equilibrium paths for 

geometrically-linear and non-linear cases are given.

The frame members are of I-shaped cross-sections, the dimensions 

of which are given in Table 5.1. The material is structural mild steel. 

The material yield stress is not given but the squash loads for the 

members are given as follows:

For each column, P = 1460.1 kNs

For each beam, P = 1202.9 kNs

From these squash loads and the cross-sectional areas given in Table 

5.1, the material yield stress for use in the inelastic zone method is

2
calculated to be 0.224 kN/mm . Also, the modulus of elasticity adopted

2in the inelastic zone method is 207.0 kN/mm .

Two typical load simulations for uniformly-distributed loads on 

beams, as recommended in Chapter 4 for applying the inelastic zone 

method, are given in Figs. 5.2 and 5.3 and are employed here for 

purposes of comparison of results.

Table 5.1 Details Of Member Cross-Sections

Member Section Size Section Dimensions 
(mm)

Cross-Sectional 
Area

(cm )
H W T t

Column HEB 180 180.0 180.0 14.0 8.5 65.3

Beam IPE 300 300.0 150.0 10.7 7 . 1 53.8
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a a a a

w - 2.7t/m

L = 3000mm

a = 6000mm

b = 4500mm

c = 3000mm

Fig. 5.1 Frame Geometry And Loads
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P = 8 . 11

a = 3000mm

Fig. 5.2 Load Simulation A
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Q = 4.05t

a = 1500mm

Fig. 5.3 Load Simulation B
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Table 5.2 summarizes the frame failure load parameters obtained

and Fig. 5.4 shows the equilibrium paths obtained.

Table 5.2 Summary Of Frame Failure Load Parameters

Results Obtained By Results Obtained By 
The Inelastic Zone MethodAndreaus

(Extracted
& D'Asdia

From Graph)

Geometri-
cally 
Linear

Geometri- 
cally 
Non-linear

Load Simulation

A B

1 .85 1 .50 1 .52 1 . 50

A - horizontal deflection of roof beam.

Fig. 5.4 Equilibrium Paths
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The above results show that the failure load obtained by the 

inelastic zone method with load simulation B is equal to that obtained 

by Andreaus and D'Asdia for the geometrically-non-linear case which more 

correctly represents the frame behaviour than the geometrically-linear 

case. Load simulation B is, therefore, better and would give more 

realistic location of inelastic zones than load simulation A. The 

inelastic zones near failure for load simulation B are, therefore, given 

in Fig. 5.5. A load simulation which requires more beam sub-divisions 

than four would give a slightly lower failure load than load simulation 

B. However, the failure load obtained by load simulation B is only 

slightly lower' than that produced by load simulation A. Thus, in view 

of the reduced computer time and storage required fox' load simulation A, 

this load simulation can be considered to be adequate fox' practical and 

economic design of plane frames.
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Fig. 5.5 The Inelastic Zones At A Load Parameter Of 1.48 
For Load Simulation B

H
i

134



5.2.2 Frame Designed By Majid And Anderson (46)

A four-storey, one-bay, regular frame was designed by Majid and 

Anderson based on the elastic-plastic method. The frame geometry, 

working loads and plastic hinges, numbered in their orders of formation, 

are given in Fig. 5.6. Ten plastic hinges are shown at failure, three 

in the columns and seven in the beams. The member section sizes are 

given in Table 5.3.

Table 5.3 Member Section Sizes

Member Number Section Size

1 305 x 305UC 118kg/m

2 457 x 152UB 52kg/m

3 254 x 254UC 89kg/m

The material employed is structural mild steel and the material 

properties adopted in the analysis are E 

kN/mm^.

207.0kN/mm^ and o = 0.247
y

The proportional load parameters obtained by the 

and inelastic zone methods are summarized in Table 5.4.

elastic-plastic

It can be seen

from the results obtained by the inelastic zone method that the working 

loads cause inelastic effects in the frame.

Table 5.4 Load Parameters

Method Of 
Analysis

Load Parameter 
At End Of Elastic 
Behaviour

Load Parameter 
At Formation Of 
First Plastic 
Hinge

Load Parameter 
At Failure

Elastic- 
Plastic Not Given 1.08 1.49

Inelastic 
Zone 0.93 1.08 1.48
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s

p = 132.0 kN

Q = 64.0 kN

R = 32.0 kN

S 8 16.0 kN

a = 4575mm

b = 3660mm

Fig. 5.6 Frame Geometry And Working Loads
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Fig. 5.7 shows the equilibrium path obtained by the inelastic zone 

method while Fig. 5.8 shows the locations of the inelastic zones near 

failure. The squash load ratios at failure are relatively small for all 

members, being less than 0.24 for the columns and less than 0.10 for the 

beams. This is mostly due to the high bay-width/total frame height 

ratio for the frame. The failure load obtained by the inelastic zone 

method is in close agreement with that obtained by the elastic-plastic 

method mainly because the instability effects of member axial forces are 

very small in this frame when compared with the effects of member 

bending moments. It is interesting to observe that whereas six plastic 

hinges are shown in Fig. 5.0 at a load parameter of 1.45, several 

inelastic zones (including six plastic hinges) are present in the frame 

at this load parameter as shown in Fig. 5.8.
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A = horizontal deflection of roof beam.

Fig. 5.7 Equilibrium Path Obtained By The Inelastic Zone Method
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Fig. 5.8 The Inelastic Zones At A Load Parameter Of 1.45
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5.2.3 Frame Designed By Horne And Hajid (39)

A six-storey, two-bay, irregular frame was designed by Horne and 

Majid based on the elastic-plastic method. The frame geometry and 

working loads are given in Fig. 5.9. The plastic hinges and their 

orders of formation, together with the associated load parameter for 

each hinge formation, are given in Fig. 5.10. Fourteen plastic hinges 

are shown. This number is much less than the degree of statical 

indeterminacy of the frame and, therefore, suggests that instability due 

to combined axial force and material non-linearity preceeds rigid- 

plastic collapse.

It can be seen from Fig. 5.10 that two plastic hinges are present 

in the columns, twelve in the beams and none in the members above the 

fourth floor level. Also, plastic hinges numbered 11,12 and 13 form 

simultaneously at a load parameter of 1.41.

The material employed is structural mild steel having the 

following properties:

E = 13000 tonf/in2

2
o = 16 tonf/in
y

Thus, the strain-hardening property of the steel was ignored in the 

analysis.

The members of the frame are of I-shaped cross-sections, the 

section sizes of which are given in Table 5.5.
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Fig. 5.9 Frame Geometry And Working Loads

P = 5.62 tonf ; Q s 11.24 tonf

R = 8.43 tonf ;; S = 4.22 tonf

T = 1.34 tonf ; u = 1.41 tonf

a = lO’-O” ;: b = 5’-0’1

c = 15 *-0  *’ ; d • 12'-O''
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[1.34]
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*11 [1.41]

[1 .40] [1.13]

10 3

[1 .38] [1.08] [1.41]

8 2 13

[1 .39] [1.06]
a ’

[1.42]
► 14

9 1

Fig. 5.10 The Plastic Hinges At Failure Obtained By 
The Elastic-Plastic Method

142



Member Section SizesTable 5.5

Member Section Member Section
Number Size Number Size

1 10x10UC491bf/ft 2 12x12UC651bf/ft

3 8x8UC4Olbf/ft 4 8x8UC31lbf/ft

5 6x6UC251bf/ft 6 8x8UC351bf/ft

7 12x6.50UB271bf/ft 8 10x5.75UB21lbf/ft

9 10x5.75UB21lbf/ft 10 8x5.25UB201bf/ft

11 8x5.25UB171bf/ft

Fig. 5.11 shows the equilibrium path obtained by the inelastic 

zone method and Fig. 5.12 shows the inelastic zones near failure. Table

5.6 summarizes the load parameters obtained by the elastic-plastic and 

the inelastic zone methods. The inelastic zone method shows that the 

working loads of Fig. 5.9 cause inelastic effects in the frame. The 

squash load ratios obtained by the inelastic zone method confirm that 

axial force effects are significant in this frame and, together with the 

extensive spread of inelastic zones along the frame members, cause 

twelve plastic hinges to form in the frame, four in two columns of the 

fifth storey and eight in the beams at a load parameter of 1.40 whereas 

ten plastic hinges form only in the beams of the frame at this load 

parameter as shown in Fig. 5.10. These two columns, indeed, have 

relatively high squash load ratios (0.301 for the external column and 

0.492 for the internal column). Nevertheless, the failure load 

parameters obtained by both methods are in close agreement.
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Table 5.6 Load Parameters

Method Of 
Analysis

Load Parameter 
At End Of Elastic 
Behaviour

Load Parameter 
At Formation Of 
First Plastic 
Hinge

Load Parameter 
At Failure

Elastic- 
Plastic Not Given 1.06 1 .42

Inelastic 
Zone 0.96 1.02 1.41

A = horizontal deflection of roof beam.

Fig. 5.11 Equilibrium Path Obtained By The Inelastic Zone Method
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Fig. 5.12 The Inelastic Zones At A Load Parameter Of 1.40
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5.2.4 Frame Designed By Horne And Hajid (39)

A five-storey, irregular frame was designed by Horne and Majid 

based on the elastic-plastic method. The frame geometry and working 

loads are given in Fig. 5.13. The plastic hinges and their orders of 

formation, together with the associated load parameter for each hinge 

formation, are given in Fig. 5.14. Fourteen plastic hinges are shown at 

failure. This number is the same as that shown for the frame in Fig. 

5.10 and is much lower than the degree of statical indeterminacy of the 

frame. Also, some plastic hinges are shown to form Simulataneously at

the same load parameter while others are shown to form at different load

parameters.

The material employed is structural mild steel having the same

properties as for the members of frame of sub-section 5.2.3. The frame

members are of I-shaped cross-sections and the section sizes are given

in Table 5.7.

Table 5.7 Member Section Sizes

Member Section Member Section
Number Size Number Size

1 6x6UC201bf/ft 2 8x8UC31lbf/ft

3 8x8UC4Olbf/ft 4 1 2x12UC651bf/ft

5 10x10UC491bf/ft 6 6x6UC251bf/ft

7 10x5.75UB21lbf/ft 8 8x5.25UB17lbf/ft

9 1 2x6.50UB271bf/ft 10 18x7.50UB551bf/ft

1 1 10x5.75UB251bf/ft 12 8x5.25UB201bf/ft
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Fig. 5.13 Frame Geometry And Working Loads
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Fig. 5.14 Plastic Hinges At Failure Obtained By 
The Elastic-Plastic Method
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Table 5.8 gives a summary of the load parameters obtained by the

elastic-plastic and the inelastic zone methods and shows that the

working loads do not cause inelastic effects in the frame although a 

large difference exists between the failure load parameters obtained by 

both methods. Fig. 5.15 shows the equilibrium paths obtained by the 

elastic-plastic and inelastic zone methods and Fig. 5.16 shows the

inelastic zones near failure obtained by the inelastic zone method.

Also, only six plastic hinges are shown in Fig. 5.14 at a load parameter

of 1.47 whereas Fig. 5.16 shows several inelastic zones (including ten

plastic hinges) at a load parameter of 1.45.

Table 5.8 Load Paraneters

Method Of
Analysis

Load Parameter 
At End Of Elastic 
Behaviour

Load Parameter 
At Formation Of 
First Plastic 
Hinge

Load Parameter
At Failure

Elastic-
Plastic Not Given 1 . 29 1 .54

Inelastic
Zone 1 . 20 1 . 28 1 .46
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X

A = horizontal deflection of uppermost roof beam.

Fig. 5.15 Equilibrium Paths Obtained By The Inelastic Zone 
And Elastic-Plastic Methods
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Fig. 5.16 The Inelastic Zones At A Load Parameter Of 1.45
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5.2.5 Frame Designed By Anderson (44)

An irregular frame was designed by Anderson based on the elastic-

plastic method. The frame geometry and working loads are given in Fig. 

5.17. The members have I-shaped cross-sections and the member section 

sizes are given in Table 5.9. The material is structural mild steel 

having the following properties:

E = 13400 tonf/in2

2
o = 16 tonf/in
y

Fig. 5.18 shows the plastic hinges and their orders of formation. 

Table 5.10 summarizes the load parameters obtained by the elastic-

plastic and inelastic zone methods. The equilibrium path and the 

inelastic zones near failure obtained by the inelastic zone method are 

shown in Figs. 5.19 and 5.20 respectively.

Table 5.9 Member Section Sizes

Member Section Member Section
Number Size Number Size

1 21x8.25UB621bf/ft 2 2 1 x8.25UB551bf/ft

3 27x10UB841bf/ft 4 24x9UB761bf/ft

5 21x8.25UB621bf/ft 6 1 4x6.75UB301bf/ft

7 18x7.50UB501bf/ft 8 14x14.50UC119lbf/ft

9 14x14.50UC1361bf/ft 10 14x14.50UC1031bf/ft

11 14x14.50UC1031bf/ft 12 14x14.50UC1031bf/ft

13 14x14.50UC1031bf/ft 14 1 2x12UC791bf/ft

15 12x12UC791bf/ft 16 12x12UC791bf/ft

17 14x14.50UC136lbf/ft
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g = 12*-6’’

Fig. 5.17 Frame Geometry And Working Loads
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Fig. 5.18 Plastic Hinges Obtained By The Elastic-Plastic Method
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Table 5.10 Load Parameters

Method Of 
Analysis

Load Parameter 
At End Of Elastic 
Behaviour

Load Parameter 
At Formation Of 
First Plastic 
Hinge

Load Parameter 
At Failure

Elastic- 
Plastic

Not Given 1.10 1.69

Inelastic 
Zone

0.90 1.10 1 .47

The changes of geometry and member end forces (particularly of the 

cantilevered sub-frames) are such that, as the frame failure load is 

approached, extensive inelastic zones are set up along some members (as 

shown in Fig. 5.20 for a load parameter of 1.46) leading to a frame 

failure load much lower than that obtained by the elastic-plastic 

method. Thus, it is insufficient to account for the effects of member 

axial forces without also accounting for the effects of change of 

geometry and spread of inelastic zones on structural stability 

particularly of tall, irregular frames.
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A = vertical deflection of point J (see Fig. 5.17)

Fig. 5.19 Equilibrium Path Obtained By The Inelastic Zone Method
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Fig. 5.20 The Inelastic Zones At A Load Parameter Of 1.46
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5.3 Experimental Results

In this section, the frame failure loads obtained from a number of 

reported experiments are compared with those obtained by the proposed 

inelastic zone method.

5.3.1 Portal Frame Tested By Yen, Lu And Driscoll, Jr. (49)

Fig. 21 shows the frame geometry and its loading arrangements.

This test was one of a series of tests conducted in order to verify Lu's 

moment distribution method briefly described in Chapter 1. Theoretical 

results obtained by Lu's method are, therefore, included here for 

comparison. A relatively slender frame was chosen so that the number of 

plastic hinges at frame failure would be less than that required for a 

rigid-plastic collapse mechanism.

Q = 2.7P ; R = 4.2P

«/ 19/ • L. n«13/ • ft-J9.a = 14 /32in : b = 29 ^64in c = 87 /32in

Fig. 5.21 Geometry And Loads For The Test Frame
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The frame members were of the same I-shaped cross-section having 

the following dimensions:

H = 2.625 in

B = 1.813 in

T = 0.207 in

t = 0.156 in

The material was structural steel, the properties of which were 

obtained by coupon and stub column tests for the stress-strain 

relationships. The properties obtained by coupon tests are summarized 

in Table 5.11.

Table 5.11 SiMMary Of Coupon Test Results

Location 0 
y

(ksi)

ou

(ksi)

ey

(in/in)

esh

(in/in)

E

(ksi)

Flange 42.11 54.71 0.00134 0.01336 32047.0

Flange 43.27 54.57 0.00125 0.01403 31592.0

Web 48 . 28 60.35 0.00167 0.01086 30483.0

It can be seen from Table 5.11 that a large difference exists 

between the web and flange yield stresses. However, a test on a 6-inch 

long stub column loaded in axial compression gave a yield stress 

between those for the flanges and led to the decision to employ a yield 

stress which is the average of only the yield stresses of the flanges 

and a modulus of elasticity which is the average of the moduli of 

elasticity of the web and the flanges in the stability analysis based on 

Lu's method. Consequently, the properties adopted for analysis were:
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E(a) 31374.0 ksi

y = 42.7 ksi

The strain-hardening properties of the steel were, therefore, ignored in 

the analysis.

It would, however, be interesting to find out if improved results 

would be obtained by using average material properties. Thus, in using 

the inelastic zone method, the following average material properties, 

obtained by considering all elements of the cross-section, are also 

employed:

(b) E = 31374.00 ksi

o = 44.55 ksi
y

Also, in order to estimate the effect of strain-hardening on the 

behaviour of the frame, the following strain-hardening constants, as 

defined in Chapter 2, are employed in using the inelastic method:

A = 40.0s

B = 1.05s

Fig. 5.22 gives the equilibrium path obtained by the inelastic 

zone method for the stresses adopted by Yen et al. The inelastic zones 

present along the frame members were not reported by Yen et al. These 

zones obtained by the inelastic zone method for a value of the column 

axial load, R, of 8.31kips are given in Fig. 5.23 for’ the case excluding 

strain-hardening. Table 5.12 summarizes the failure loads obtained by 

Yen et al and by the inelastic zone method. It is evident from Table 

5.12 and Fig. 5.23 that the frame has a reserve of strength at a column 

axial load, R, of 8.31kips although some inelastic zones are present in 

the frame at this load.
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Table 5.12 Values Of The Column Axial Load, R, At Failure

Method Material 
Properties

Value Of R At Failure 
(kips)

Test Not Applicable 9.16

Lu's Moment 
Distribution (a) 8.61

Inelastic
Zone
(Excluding
Strain-Hardening)

(a)

(b)

8.50

8.81

Inelastic
Zone
(Including
Strain-Hardening)

(a)

(b)

8.88

9.43

While the failure load given in Table 5.12 by the inelastic zone 

method for material properties (a) excluding strain-hardening is lower 

than that obtained by Lu's theory, Table 5.12 shows that results closer 

to test results are obtained by the proposed inelastic zone method when 

using average material properties obtained by considering all elements 

of cross-section and by making some allowance for strain-hardening in 

the stability analysis of the frame.
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A = the vertical deflection of centre of beam.

Fig. 5.22 Equilibrium Paths Obtained By The Inelastic Zone Method 
For Material Properties (a)
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Fig. 5.23 The Inelastic Zones For R = 8.31kips For Material 
Properties (a) Excluding Strain-Hardening
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5.3.2 Pitched-Roof Portal Frame Tested By Hajid (43)

The frame geometry and applied loads are given in Fig. 5.24. This 

frame was also analysed by the elastic-plastic method and the plastic 

hinges and their orders of formation are also given in Fig. 5.24.

H = 4 0 6.0 mm

ip = 15°

a = L/16 mm 

b = L/8 mm

Fig. 5.24 Frame Geometry, Loads And Plastic Hinges At Failure

Each frame member had a 13mm x 13mm rectangular cross-section and 

the material was structural mild steel. No tests were described for 

determining the material properties. Instead, the following quantities 

were given for this purpose:

M (for zero axial force) = 153.793 kN.mm
P

El = 460748.0 kN.mm2
z
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The second moment of area and the plastic modulus of the cross-

section are computed from the cross-sectional dimensions as

From these quantities,

The strain-hardening

analysis. However,

1 3 4/ 1 2

1 33 / 4

2380.083

549.250

4 mm

3 mm

the material properties are deduced as follows:

193.59 kN/mm2

0.28 kN/mm 2

properties

the effect of

using the inelastic zone method

of the steel were ignored in the

strain-hardening will be estimated in

by employing the following strain-

hardening constants, as defined in Chapter 2:

40.0

1.10

The failure loads obtained by the test, the elastic-plastic method

and the inelastic zone method, are summarized in Table 5.13. Fig. 5.25

shows the equilibrium paths obtained by the inelastic zone method for

the cases including and excluding strain-hardening. The inelastic zones

near failure obtained by the inelastic zone method are given in Fig.

I z

S
P

E

o
y

A s

B s

5.26.

Majid attributed the difference of 2.5Z between the test and

analytical results to the strain-hardening property of the steel.

However this difference may also be due to the material properties

employed in the analysis and to the adoption of the concentrated 

inelasticity concept of structural behaviour in the elastic-plastic 

method. The failure value of W obtained by the inelastic zone method 

ignoring strain-hardening is lower than that obtained by the elastic-

plastic method while the inclusion of some strain-hardening gives a 

result closer to the test result.
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Table 5.13 Values Of The Applied Load. W, At Failure

Method Value Of W At Failure (kN)

Test 2.469

Elastic-Plastic
(Excluding Strain-Hardening) 2.406

Inelastic Zone
(Excluding Strain-Hardening) 2.260

Inelastic Zone
(Including Strain-Hardening) 2.420

Fig. 5.25 Equilibrium Paths Obtained By The Inelastic Zone Hethod
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Fig. 5.26 The Inelastic Zones At W = 2.22 kN For
Material Properties Excluding Strain-Hardening
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5.4 Summary Of Frame Failure Load Parameters

Table 5.14 gives a summary of the failure load parameters obtained 

analytically for the frames considered in this chapter.

Table 5.14 Failure Load Parameters

Section Type Of 
Frame

Existing 
Method Of 
Analysis

Results Obtained 
By Using The 
Existing Method

Results Obtained 
By Using The 
Proposed 
Inelastic Zone 
Method

5.2.1 3- Storey,
4- Bay, 
Regular

Modified 
Elastic- 
Plastic 
(for geom-
etrically , 
non-linear 
case)

1 .50 1 .50
(for load simula-
tion B)

5.2.2 4-Storey, 
1-Bay, 
Regular

Elastic- 
Plastic

1.49 1.48

5.2.3 6-Storey,
2-Bay, 
Regular

Elastic- 
Plastic

1.42 1 .41

5.2.4 5-Storey, 
Irregular

Elastic- 
Plastic

1.54 1.46

5.2.5 Irregular Elastic- 
Plastic

1 .69 1 .47

5.3.1 Regular 
Portal

Moment- 
Oistri- 
bution

8.61 
[for unit 
value of R 
(see Fig.
5.21)]

(Test result 
= 9.16)

8.50 
(excluding 
strain-hardening)

8.88
(including 
strain-hardening)

5.3.2 Pitched- 
Roof 
Portal

Elastic- 
Plastic

2.406 
[for unit 
value of W 
(see Fig.
5.24)] 

(Test result 
= 2.469)

2.26
(excluding 
strain-hardening)

2.42
(including 
strain-hardening)
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CHAPTER 6

EXPERIMENTS

6.1 Introduction

The comparisons made in Chapter 5 between the results obtained by 

the inelastic zone method and some existing theoretical and 

experimental methods vindicate the inelastic zone method as a viable, 

theoretical tool for obtaining lower-bound values of frame failure 

loads. With the exception of the portal frames tested by Yen, Lu and 

Driscoll (see Section 5.3.1), the remaining frames have storey-height 

columns of low slenderness ratios and are, therefore, representative of 

those found in practice. Moreover, the test results given in Section

5.3.2 applied to frames which were braced during the tests against out- 

of-plane failure occurring before in-plane frame failure as is 

customarily required for plane frame analysis. The locations of 

inelastic zones along the frame members for the frames loaded into the 

inelastic domain were neither- reported from the tests nor from the 

analyses.

In this chapter, experiments on two slender, regular portal 

frames unbraced both in-plane and out-of-plane and also subjected to 

both vertical and horizontal concentrated loads are reported. The 

horizontal load/vertical load ratio adopted was of a magnitude much 

higher than that commonly found in practice, The objectives for these 

tests were

1. to determine the distribution of inelastic zones along frame 

members for frames loaded into the inelastic domain and

2. to compare the results obtained experimentally with those 

obtained analytically by the inelastic zone method.
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6.2 Frame Geometry And Loads

Two portal frames, each loaded as shown in Fig. 6.1, were adopted 

for the tests. These frames were designated as frames T1 and T2 

respectively for distinction. A 127x76x13.36kg/m rolled, mild steel 

joist was selected for the frame members. The height, h, for frame T1

W/4 1

SW//7ZK

700 1400

Fig. 6.1 Geometry And Loads For Test Trame

was chosen so as to give an actual height/minor axis radius of gyration 

ratio of about 145 which can be considered to be high for practical 

frames. This ratio will hereafter be called an actual slenderness ratio 

in order to distinguish it from a column slenderness ratio in which the 

"effective height" of the column is considered instead of its actual 

height. The height of frame T2 was taken to be 500mm lower than that of 
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frame T1 so as to give an actual slenderness ratio of about 116.0.

Table 6.1 shows the actual slenderness ratios adopted for the columns.

Actual Slenderness Ratios For Test Frame ColumnsTable 6.1

Frame Column 
Section Size

Radius Of 
Gyration 
About y-axis

(mm)

Height 
h

(mm)

Actual 
Ratio

Slenderness

T1 127x76x13.36kg/m 17.2 2500.0 145.35

T2 127x76x13.36kg/m 17.2 2000.0 116.28

Fig. 6.2 shows the details of all connections for one test frame.

Fig. 6.3 shows the location of one test frame in relation to the 

standard three-dimensional testing frame used in the Civil Engineering 

Structures Laboratory. The bases of the test frame were bolted on to 

the deep beam (marked B3) of the standard testing frame by means of mild 

steel bolts and plates and were considered fully fixed for analytical 

purposes. These bolts and plates were designed to withstand the forces 

arising from, at least, twice the full plastic moments of the sections 

for the frame members so that they would remain elastic at all stages of 

loading of the frames. Also, the connections between the frame members 

were stiffened by plates in order to ease the force transfer between 

these members thus avoiding local buckling of the plate elements of the 

member cross-sections and the setting-up of high stress concentrations.

As shown in Fig. 6.1, the concentrated vertical load on the test 

frame was offset from the centre of the test frame beam so as to cause 

sidesway of the test frame at any value of the load. Also, the 

concentrated horizontal load was chosen to be one-quarter of the 

vertical load so as to give a high horizontal load/vertical load ratio.
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(a) Knee Details

330

330x280x25 plate with 
for M25 black bolts.

4 holes

(b) Base Details

Note: 6mm fillet welds are used except noted otherwise.

Fig. 6.2 Connection Details For Test Frane
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itlSh
Jacks

Beam
83

Fig. 6.3 The Test Frame On The Standard Testing Frame

173



6.3 Material Properties

The material properties for use in the inelastic zone method were 

determined from tensile tests on small coupons taken from a spare piece 

of a test frame member reserved for this purpose. Two coupons were 

taken from the web and each flange of the member cross-section. In each 

case, one coupon was taken from the centre of the plate element of the 

cross-section and the other was taken from near the edge of the plate 

element and these coupons were numbered sequentially as shown in Fig. 

6.4. Each coupon was required to be of rectangular cross-section with a

Fig. 6.4 Locations Of The Coupon On The Cross-Section

width of 12.5mm. Each flange outstand was machined to give a uniform 

thickness of 4.7mm for each flange coupon while the web thickness of 

4.5mm was maintained for each web coupon. Fig. 6.5 shows a typical 

test coupon adopted which complied with the recommendations of British 

Standard Code of Practice, BS 18 (89). An extensometer was used to

measure the elongations while a “Denison testing machine" was used to 

apply the tensile loads.

The testing of each coupon was commenced by taking readings of the 

extensometer at no load on the coupon. Then, the loads were applied in 

small increments of 400.01bf, each time taking readings of the
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Transition

Fig. 6.5 A Typical Test Coupon

extensometer, until a point was reached at which the material exhibited 

plastic flow when the elongations increased rapidly at the constant load 

and the material yield stress was attained. When the rate of plastic 

flow slowed down sufficiently to indicate that the point of equilibrium 

under the constant load at which strain-hardening would commence was 

being approached, the extensometer was removed and the "Denison testing 

machine" was set to full power thus loading the coupon to the point of 

fracture. This fracture was characterized by a slight reduction of 

width (the phenomenon of "necking") for, and a large total elongation 

of, each coupon. The resulting stresses and strains for the coupons are 

given in Table 6.2.

It can be seen from Table 6.2 that the material properties for the 

cross-section are not constant and are greater for the web than for the 

flanges. However, these properties are reasonably close together so as 

to permit the use of average material properties for analysis as is 

commonly adopted in practical frame design. Thus, the average values of 

the material properties are as follows:
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ey = 0.00130 mm/mm

°y = 0.275 kN/mm2

E = 211.54kN/mm2

ou = 0.459 kN/mm2

These average material properties are shown in Fig. 6.6 which also shows 

the bilinear stress-strain idealizations employed in the stability 

analyses of the test frames by the inelastic zone method.

Table 6.2 Stresses And Strains For Test Coupons

Coupon 
Number

Element Of 
Cross-Section

Yield
Stress

0 
(kN/ffcn2)

Yield
Strain

(mm/iMm)

Ultimate 
Stress

(kN^mm2)

1 Flange 0.259 0.00108 0.441

2 Flange 0.265 0.00115 0.442

3 Flange 0.276 0.00120 0.443

4 Flange 0.270 0.00109 0.443

5 Web 0.285 0.00148 0.491

6 Web 0.293 0.00180 0.491

Fig. 6.6 Representative Stress-Strain Diagram For 
The Mild Steel For The Test Frames
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6.4 Instrumentation For Frame Testing

Hydraulic jacks were employed for the application of the loads, 

dial gauges for the measurement of in-plane and out-of-plane movements 

and electrical-resistance strain gauges for the measurement of strains.

For each test frame, a 100-kN capacity jack was employed for the 

vertical load while a 30-kN capacity jack was employed for the 

horizontal load. A 100mm x 50mm x 6mm thick rectangular plate was 

placed between the jack and the relevant frame member in order to keep 

the local bearing stress on the frame member to very low levels within 

the elastic range.

Also, for each test frame, four dial gauges, numbered and located 

as shown in Fig. 6.7, were used. Dial gauge 1 measured in-plane 

horizontal movement of the point of application of the horizontal load, 

dial gauge 2 measured vertical movement of the point of application of 

the vertical load and dial gauges 3 and 4 measured out-of-plane 

horizontal movements of the tops of the two columns.

For test frame T1, 112 strain gauges were employed as shown in 

Fig. 6.8. A minimum spacing of 50mm was adopted for these strain gauges 

and no strain gauge was located at the centre of cross-section of the 

member since this location is a potential location of zero (or very low) 

stress. However, only a few of these strain gauges gave inelastic

3

2

Fig. 6.7 Locations Of Dial Gauges
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( 24 ) ( 25 )

W 109 (110)

____________
5J 5*5 5j 6J 6J3 7J 7J ^2 86 90

2 <60) (62* * 2(77,J79J I
5*2 5*6 6* 66 ?0 7^ 7 to ^3 87 9J

67 7~ 7*5 ' " ""

6A

63 84 88 92
L1 1 1

(112)

9J 9J 1 QJ 
9^4 100 12.4 

(9*5) (J7)_
96 10*1 105
98 102 106

4 rf

(18) (19)

Notes: (1) Numbers in brackets are for strain gauges on the

far side of web of member.

(2) Strain gauge 80 was later abandoned in order to 

allow connection of vertical-load jack to member.

Fig. 6.8 Locations Of Strain 6auges For Test Frame T1
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Note: Numbers in brackets are for strain gauges on the far

side of web of member.

Fig. 6.9 Locations Of Strain Gauges For Test Frame T2 
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strains at. frame failure. Consequently, for test frame T2, the number 

of strain gauges was reduced to 100 as shown in Fig. 6.9. All the 

strain gauges were connected by means of electrical leads to a 

"Compulog" data logger foi' measuring the strains directly at any stage 

of loading. Fig. 6.16 shows the overal view of a test frame, jacks and 

strain gauges and Fig. 6.17 shows the detail of the knee of the frame.

6.5 Frame Testing Procedure

The first frame tested was frame T1. Before commencing the 

testing, every effort was made to align the webs of beams B1, B2, 83 and 

B4 of the standard testing frame (see Fig. 6.3) with the plane of the 

test frame. However, there was difficulty of alignment of the webs of 

beams B1, B2 and B3 with the plane of the test frame and, consequently, 

an inevitable eccentricity of the vertical load with respect to the 

plane of the test frame remained. This eccentricity could not be 

accurately measured but was of the order of 2mm to 4mm and was, 

therefore, initially considered small enough to have no significant 

influence on the results of the tests. Consequently, the webs and 

flanges of these beams were not stiffened by plates before commencing 

the testing. By contrast, beam B4 was easily aligned with the plane of 

the test frame to give no eccentricity of the applied horizontal load.

The testing of frame T1 commenced by taking initial readings of 

the dial and strain gauges when no load was applied to the test frame. 

These readings were recorded. Then, the vertical load was set to 10.0kN 

while the horizontal load was simultaneously set to 2.5kN in order to 

maintain the required proportion between these loads. Further readings 

of the dial and strain gauges were taken and recorded. Vertical load 

increments of 10.0kN were adopted for strains less than a strain of 
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0.001mm/mm which is very close to the minimum yield strain of 

0.00108mm/mm (see Table 6.2) for the mild steel. After the first 

attainment of this strain at a strain gauge location, the vertical load 

increments were reduced to 5kN, then to 4kN and finally to 2kN as the 

frame failure load was approached. In each case, the horizontal load 

increment was correspondingly reduced and dial and strain gauge readings 

were taken and recorded.

The out-of-plane horizontal deflections of the tops of the frame 

were found to be insignificant until the vertical load reached a value 

of 56.0kN at which the frame exhibited significant inelastic strains. 

At this juncture, the larger out-of-plane horizontal deflection was 

given by dial gauge 4 as 3.73mm. Also, at this load, the "vertical-

load" jack had a slight deviation from the vertical plane. This was 

thought to be due more to the inevitable eccentricity of the vertical 

load than to the lack of out-of-plane restraints for the tops of the 

frame since the bottom flange of beam B2 (see Fig. 6.3) was slightly 

bent by the "vertical-load" jack applying its load non-uniformly on 

this flange. The frame testing was, therefore, stopped and the frame 

was unloaded in order- to prevent lateral-torsional buckling of the test 

frame beam and so that beam B2 could be stiffened. The corresponding 

dial and strain gauge readings at the unloading of the frame were also 

taken and recorded.

The web and flanges of beam B2 were stiffened on either side of 

its web by 12.0mm thick rectangular plates at three locations (one at 

the jack position and each of the other two at 150.0mm away from the 

jack position). The stiffeners are shown in Fig. 6.18. The frame 

testing was then commenced by using only three load increments to reach 
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the value of the vertical load of 56.0kN at which the test frame was 

unloaded since unloading is elastic even in the inelastic range. At the 

vertical load of 56.0kbl, no further bending of the bottom flange of beam 

B2 was observed and the vertical-load jack remained vertical indicating 

the beneficial effect of the stiffening of beam B2 and confirming that 

the lack of out-of-plane restraints was not detrimental to the stability 

of the frame at this load. The frame testing continued above this load 

with the frame remaining stable as long as the maximum out-of-plane 

horizontal deflection of the knee of the test frame remained lower than 

the maximum in-plane horizontal deflection of the knee. A critical load 

was eventually reached at which a large, .in-plane horizontal deflection 

of the knee followed by an uncontrolled out-of-plane horizontal 

deflection of the top of the test frame column remote from the 

horizontal load (given by dial gauge 4) occurred and no dial or strain-

gauge readings could be taken. This critical load was taken to be the 

frame failure load and the frame testing was then stopped.

Frame T2 was next tested. The procedure adopted here was similar 

in many respects to that adopted for frame T1 except that the stiffened 

beam B2 was now advantageously used from the onset of the testing.

6.6 Frame Test Results

The results obtained from the tests are given in this section. In 

each case, only strains not less than 0.001mm/mm are tabulated for the 

last loads at which readings could be taken. The inelastic zones for 

each frame at these loads are also given. Furthermore, the resulting 

equilibrium paths for the frames are given and the test results are 

compared with those obtained by the inelastic zone method. A negative 

sign is adopted here for a tensile strain.
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Results For Test Frame T1

The relevant strain gauge readings are given in Table 6.3. Owing 

to the non-uniformity of yield stress for the member cross-section and 

with reference to Table 6.3 and Fig. 6.8, it can be seen that a 

scattered pattern of inelastic zones results. However, it is clear that 

zones of elasticity and inelasticity co-exist along the frame members 

for the frame loaded into the inelastic domain. Thus, from these 

results, a distribution of inelastic zones near failure showing zones 

subjected to inelastic strains irrespective of the magnitudes of the 

strains is given in Fig. 6.10. Fig. 6.11 shows the inelastic zones 

obtained by the inelastic zone method and Fig. 6.12 shows the 

equilibrium paths obtained by experiment and by the inelastic zone 

method.

Table 6.3 Last Recored Strains Not Less Than 0.001mm/mm 
For Test Frame T1

Vertical Load, W = 64.OkN

Strain Gauge
Number

Strain
£ 

( x 1 0“ 2 ) 

(mm/mm)

Strain 
Number

Gauge Strain
e 

(x10“2) 

(mm/mm)

Strain Gauge
Number

Strain 
£

(x 1 0 " 2) 

(mm/mm)

10 0.298 13 0.494 30 0.114

33 -0.100 39 -0.140 40 0.161

41 0.148 43 -0.116 64 0.105

68 0.125 71 -0.151 72 0.500

73 0.405 74 -0.291 75 -0.617

76 0.413 77 0.387 78 -0.413

79 -0.434 85 0.106 88 -0.140

106 0.125 107 -0.375 110 -1.235

112 -0.145
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Fig. 6.10 The Inelastic Zones Near Failure Obtained 
By Experiment For Test Frame T1
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For elastic-perfectly-plastic material,

a = b = e = f = 0 ; c = 2 2 mm ; d = 2 7 mm

For elaStic-strain-hardened material,

a = 3 3 mm ; b = 42 mm ; c = 65 mm ; d = 82 mm ; e = 26 mm ; f = 97 mm

W = 63.0kN for elastic-perfectly-plastic material

W = 68.0kN for elastic-strain-hardened material

Fig. 6.11 The Inelastic Zones Near Failure Obtained By
The Inelastic Zone Method For Test Frame T1
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Fig. 6.12 The Equilibrium Paths For Test Frame T1
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Results For Test Frame T2

The results obtained for test frame T2 are presented in a similar

manner to that adopted for test frame T1 in Table 6.4 and Figs.

6.13, 6.14 and 6.15.

Last Recorded Strains Not Less Than O.OOImm/mm 
For Test Frame T2

Table 6.4

Vertical Load, W = 68.0kN

Strain 
Gauge 
Number

Strain
e

(x 10“ 2) 

(mm/mm)

Strain 
Gauge 
Number

Strain 
e

( x 1 0 “ 2) 

(mm/mm)

Strain 
Gauge 
Number

Strain
e

(x 10 “ 2)

(mm/mm)

Strain
Gauge
Number

Strain
e

(x1 0”2)

(mm/mm)

0 0.356 3 0. 233 4 0.200 5 0.325

6 0.279 7 0.202 8 0.230 9 0.311

51 0.105 54 0.134 55 0.117 56 0.588

57 -0.140 58 0.486 59 0.731 61 -0.544

62 2.132 63 -0.366 64 1.162 65 0.219

66 0.180 67 0.107 68 -0.207 71 1.912

72 -0.402 73 0.197 74 0. 136 75 0.102

79 0.510 80 0.503 81 0.131 82 0.359

83 0.436 84 0.538 85 0.579 86 0.436

87 0.437 88 0.434 89 0.464 100 0.143

101 0.156 102 0.126 103 0.113 104 0.142

105 0.856
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Fig. 6.13 The Inelastic Zones Near Failure Obtained 
By Experiment For Test Frame T2
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For elastic-perfectly-plastic material,

a = 5 mm ; b = 7 mm ; c = 40 mm ; d = 55 mm ; e = 0

For elastic-strain-hardened material,

a = 5 0 mm ; b = 7 0 mm ; c = 8 4 mm ; d = 117 mm ; e = 17 mm

W = 67.0kN for elastic-perfectly-plastic material

W = 72.0kN for elastic-strain-hardened material

Fig. 6.14 The Inelastic Zones Near Failure Obtained By 
The Inelastic Zone Method For Test Frame T2
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Fig. 6.15 The Equilibrium Paths For Test Frame T2
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6.7 Remarks

The equilibrium paths obtained by the inelastic zone method for 

the elastic-perfectly-plastic material closely agree with those obtained 

from the tests despite the use of average material properties in the 

analyses while those obtained for the elastic-strain-hardened material 

gave slightly higher failure loads than those obtained from the tests. 

Thus, in using the elastic-strain-hardened material for mild steel for a 

stability analysis by the inelastic zone method, slightly lower values 

of the strain-hardening constants than those adopted here would need to 

be specified for the results to closely agree with experimental results.

The out-of-plane strengths of the frames tested were sufficient in 

preventing premature out-of-plane failure of the frames prioi' to the 

attainment of the theoretically-computed in-plane failure loads. Thus, 

while the use of less slender frames may be advocated in many practical 

design situations, the unusual nature of frame geometry and loads 

employed in these tests and the encouraging results obtained must give a 

structural frame designer greater confidence in specifying columns of 

high slenderness ratios for economic design of plane frames subjected to 

less stringent combinations of vertical and horizontal loads. The role 

of out-of-plane restraints for plane frames must, therefore, be seen not 

only as maintaining the specified slenderness ratios for the columns of 

the frames but also as improving frame out-of-plane strengths to account 

for such effects as eccentricities of loadings and non-uniformity of 

yield stress for the various plate elements of the cross-sections.

The results presented here confirm the presence of inelastic zones 

along frame members for frames loaded into the inelastic domain. The 

scatter of the inelastic zones determined from the tests, however, makes 

a reasonable analysis of the problem almost impossible to achieve.
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Nevertheless, by adopting bilinear stress-strain relationships for the 

material, reasonable results have been obtained 

of the test frames by the inelastic zone method.

The comparisons made in this chapter 

inelastic zone method as an efficient analytical 

the stability of plane frames.

from stability analyses

further vindicate the

tool for investigating
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Fig. 6.16 Test Frame, Jacks And Strain Gauges
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Fig. 6.17 Test Frame Knee Detail
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Fig. 5.18 Stiffeners For Beam 82 (See Fig. 6.3)
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CHAPTER 7

DESIGH RECOMMENDATIONS FOR METAL PLANE FRAMES

7.1 Introduction

In Chapters 5 and 6, results of frame stability analyses based on 

the proposed inelastic zone method were shown to agree well with 

available theoretical and experimental results for metal plane frames. 

In this chapter, the adequacy of the proposed method as a design tool 

will be examined. Recommendations for a satisfactory frame design and 

foi' the use of the inelastic zone method will be given. In addition, a 

new, simplified method for plane frame design, which avoids the 

computation of frame failure loads but considers only a non-linear, 

elastic analysis of the frame subjected only to the working loads, will 

be presented. This method considers the ultimate strength of a cross-

section based on the formulae derived in Chapter 2. As stated in 

Chapter 1, design considerations will be confined to the selection of 

suitable section sizes for plane frame members assuming adequate 

connections and foundations.

7.2 General Procedures For Plane Frame Design

The design of a plane frame is a trial-and-process which depends 

not only on a structural analysis of the frame foi' a given set of loads 

but also on personal judgement, experience and intuition. During a 

design process, a constant re-appraisal of the various factors which 

affect the design is made and changes are made where necessary. Thus, a 

decision which is made at the beginning of a design process may be 

changed at a later stage. The various available techniques of structural 
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analysis and the variety of dimensions for rectangular and I-shaped 

cross-sections lead to further re-appraisal during a design process. 

The total cost of producing a design is also constantly reviewed during 

the design process and a seemingly satisfactory design may be dropped if 

it is considered to be expensive. Thus, an acceptable frame design 

cannot be achieved from structural considerations alone and more than 

one set of member section sizes can give a satisfactory frame design. 

Nevertheless, by following a specified set of design procedures, a 

constant standard of design can be maintained and a satisfactory frame 

design can be achieved.

The recommended procedures for plane frame design are described 

below under the following headings:

1. Design objectives

2. Means of achieving the design objectives.

3. Initial estimates of member section sizes.

4. Steps of analysis.

7.2.1 Design Objectives

The essential first step in a frame design process is to clearly 

identify the design objectives. These design objectives can be grouped 

under the following main headings:

1. Serviceability.

2 . Ultimate strength

3 . Economy.

4 . Balanced design.

The serviceability objective ensures that the displacements of

the frame subjected to the working loads are within specified, 
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acceptable limits arid that inelastic conditions are present or absent in 

the frame as may specified under these loads. The working loads should 

include loads which may be required to be supported by the frame at a 

future date and allowances for loads which may not (or cannot) be 

identified at the onset of the design process.

The ultimate strength objective ensures that the frame has a 

minimum factor of safety against failure. This objective is applied not 

only to the cross-section of each frame member but also to each frame 

member and to the entire frame as one unit.

The objective of economy ensures that the total design time 

(including computer time) and the total weight of frame lead to a total 

design cost which does not exceed the design budget.

A frame design is classified here as satisfactory if it satisfies 

the above design objectives. A satisfactory design which exactly 

satisfies the above design objectives is described here as a balanced 

design.

7.2.2 Means Of Achieving The Design Objectives

The second step in a frame design process is to identify the means 

of achieving the design objectives. Where inelastic conditions are not 

allowed under the working loads, a non-linear, elastic analysis of a 

plane frame is more appropriate for satisfying the serviceability 

objective than a linear, elastic analysis of the frame. Where inelastic 

conditions are allowed under the working loads, then a non-linear, 

inelastic analysis of the frame should be performed.

Any method of plane frame stability analysis which gives a lower-

bound value of the frame failure load is more appropriate for satisfying

the ultimate strength objective for the entire frame than any method
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which gives an upper-bound value of this load. Limiting-stress (or 

interaction ratio) methods, in general, consider the ultimate strength 

of each member cross-section (based on assumed boundary conditions for 

each member) and do not compute frame failure loads. These methods 

cannot, therefore, be used to check the satisfaction of the ultimate 

strength objective for a frame.

In order to satisfy the objective of economy, consideration must 

be given not only to the method of structural analysis to be employed 

but also to the accuracy of the results that the method can give. 

Although a frame may fail by inelastic instability, the degree (or 

level) of inelasticity present at failure may be so low that many 

members in the frame remain elastic, causing uneconomic use of 

materials. Methods of analysis which allow the presence of several 

plastic hinges and inelastic zones under specified ultimate loads are 

particularly useful for achieving economy of weight of frame albeit at 

the expense of computer time which may be considered to be significant 

for design. Thus, in order to increase the number of plastic hinges 

and inelastic zones in a frame, it is essential to initially obtain a 

satisfactory design and to identify the extent of inelasticity present 

in the frame at failure. This is accomplished only from the bending 

moment distribution throughout the frame by establishing all points at 

which the first yield moments of the various member cross-sections have 

been exceeded. In general, it is best to avoid the development of 

significant inelastic zones in predominantly-axially-loaded members 

(such as columns) while allowing the development of significant 

inelastic zones in predominantly-trans versely-loaded members (such as 

beams). This is because of the significant secondary bending moments 
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that can result as the column axial force acts through its displaced 

profile. Thus, the inelastic response of a given satisfactorily- 

designed plane frame can be improved by reducing the beam section sizes 

or increasing the column section sizes or by a combination of both 

activities. A re-analysis should, however, be undertaken to ensure that 

these changes do not lead to an unsatisfactory design. By applying the 

distributed inelasticity concept of structural behaviour without finite 

discretization of members and their cross-sections and by identifying 

the inelastic zones in a plane frame without the need to draw the 

bending moment diagrams, the inelastic zone method is directly suited to 

the easy achievement of this objective.

Notwithstanding the method of stability analysis employed for 

frame design, the equilibrium path for a frame is the best means of 

ascertaining the degree of departure of the design from the balanced 

design. Fig. 7.1 shows typical equilibrium paths for satisfactory,

satisfactory design

balanced design

unsatisfactory design

Fig. 7.1 Equilibrium Paths Obtained In Frame Design
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balanced and unsatisfactory frame designs based on stability analyses of 

the entire frame. The failure load parameter and the maximum 

permissible horizontal and vertical deflections under the working loads 

(to the variable parts of which a unit load parameter is assigned) 

should be specified for the balanced design. It is also essential to 

specify whether or not inelastic conditions are permissible under the 

working loads. A balanced design is very difficult to achieve. Thus, a 

satisfactory design which is very close to the balanced design is the 

best that can be achieved in practice.

7.2.3 Initial Estimates Of Member Section Sizes

After choosing the appropriate method of analysis, it becomes 

necessary to select initial trial section sizes for the members before 

analysis can be commenced. Several analyses of the frame may be 

performed in which member sections sizes are revised before the final, 

satisfactory design is achieved. It is, therefore, quite unnecessary to 

engage in elaborate, time-consuming methods for selecting the initial 

member section sizes. On the othei' hand, member section sizes may be 

initially selected arbitrarily but this approach is likely to lead to 

many trial analyses of the frame. A recommended procedure is to 

estimate the full plastic moment of the section of a beam (or 

predominantly-transversely-loaded member) using a formula based on the 

rigid plastic method and to estimate the cross-sectional area of a 

column (or predominantly-axially-loaded member) using a specified squash 

load ratio (for example 0.2 to 0.3).
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7.2.4 Steps Of Analysis

After selecting the initial section sizes for the frame members, 

the analysis of the frame for the given loads can be commenced. The 

recommended steps of analysis are as follows:

1. Group the working loads into load combinations.

2. Employ each working load combination in a linear or non-

linear analysis as may be specified for satisfying the 

serviceability objective. Revise section sizes and repeat 

analysis where this objective is not satisfied. Go to the 

next step when this objective is satisfied.

3. From the acceptable results of Step 2, identify the most 

critical vertical load combination and the most critical 

combined load combination and employ each of these two load 

combinations in an analysis to satisfy the ultimate strength 

objective. Revise section sizes and re-analyse frame in each 

case when this objective is not satisfied. When this 

objective is satisfied, go to the next step.

4. If the design obtained gives an ultimate strength much greater 

than that specified or gives a maximum deflection much lower 

than that specified, reduce the section sizes for some members 

with a view to achieving a satisfactory design which is close 

to the balanced design and re-analyse frame. Then, check 

whether a satisfactory design is still maintained and re- 

analyse frame if necessary.

5. Terminate analysis and print results.

The above steps of analysis are summarized in the Flow Chart given in

Fig. 7.2.
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Fig. 7.2 A Flow Chart For Plane Frame Design
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7.3 Ose Of The Inelastic Zone Method For Plane Frame Design

The recommended procedures for plane frame design given in Section 

7.2 are of a general nature and do not impose any restrictions on the 

method of analysis to be adopted although it can be expected that a 

computer would be required for the structural analyses. In using the 

inelastic zone method, inelastic conditions can be specified for the 

working loads (for example, the intermediate yield moment, IT _ or 

ultimate yield moment, , may pe specified for one member cross-

section) and the frame may be analysed for the specified ultimate load 

without initially analysing for lower loads. Thus, although useful, it 

is not essential to employ finite load increments foi' analysis in the 

inelastic range. Few load increments (such as four 01- five) may be 

sufficient for analysis in the inelastic range for tracing the 

equilibrium path for the frame. A drawing showing the inelastic zones 

in the frame at a given load level is a useful alternative to the 

bending moment diagram for the given load level. Such a drawing is 

particularly required for a load near the failure load for the frame. 

7.4 Limiting Moment Method For Plane Frame Design

The need for the inelastic zone method to perform several

inelastic analyses of a plane frame in order to trace the equilibrium

path for the frame for each identified critical load combination may

make it undesirable for a particular frame design owing to the computer

time and storage that would be required. This is more so where a

computei' of large storage capacity is not available. A new, simplified

method which can be applied to any type of plane frame, can be used to

satisfy serviceability and ultimate strength criteria for the frame and

requires only one analysis of the frame subjected to one working load

204



combination is presented here as an alternative method. This method is 

called the limiting moment method.

In this method, inelastic zones are not required in the frame 

under the working loads. A non-linear, elastic analysis of the frame 

subjected to a working load combination is initially performed. The 

resulting member axial forces are multiplied by the specified failure 

load parameter (greater than unity which applies to the working load) 

for satisfying the ultimate strength objective for the loading being 

considered. This gives a factored axial load, P fOr each member 

cross-section. This factored axial load is employed to obtain an 

ultimate yield moment, M for the cross-section which is lower than 

that for the working load using the methods given in Chapter 2. The 

bending moment at the cross-section derived from the analysis is 

required not to exceed the limiting moment. M for the cross-section 

defined as

Mlw = Mu/Xf t7'”

If the bending moment at a cross-section exceeds the limiting moment for 

the cross-section or if the serviceability objective is not satisfied, 

member section sizes are revised and a re-analysis of the frame is 

performed. Otherwise, the member section sizes are accepted for the 

working load combination being considered. This process is repeated for 

all working load combinations.
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7.5 5)esig« Examples

Three examples will now be given for designing regular and 

irregular plane frames using the proposed limiting moment method. The 

frames are for office buildings. The resulting satisfactory designs are 

required to be checked using the inelastic zone method. In each case, 

the following design specifications (which do not necessarily agree with 

those given in any Code of Practice) will apply:

1. The loading is proportional loading. All loads are applied as 

concentrated loads. External, vertical loads on each floor level 

include the weights of external, storey-height walls.

2. The material is structural steel of grade 43 (E = 210kN/mm and 

°y = 0.25kN/mm^ ) or grade 50 (E = 210kN/mm<’ and o = 0.35kN/mm').

3. Ignore strain-hardening and initial member imperfections.

4. Requirements for serviceability:

Joint maximum horizontal deflection should not exceed height 

of frame above ground l.evel/300.

Joint maximum vertical deflection should not exceed beam 

span/300.

5. Requirements for ultimate strength:

for vertical loading, ultimate load/working load = 1.50

For combined loading, ultimate load/working load = 1.20
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Example 7.5.1

Design the five-storey, one-bay, regular frame loaded as shown in 

Fig. 7.3 which also shows the joint and member numbers (in brackets) 

used in the analyses.

Try steel grade 43.

Try ultimate moment for beam to be given by

My3 = central load x span x 1.5/6

Try cross-sectional area for column to be given by

A = static axial load x 1.5/(0.2xyield stress)

Fig. 7.3
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Solution

1. Initial Estimates Of Member Section Sizes

(i) Floor Beam M o y3 1.5x120x8000/6 240000kN.mm

Floor Beam Plastic Modulus 240000/(0.25x1000) 960 cm^

Try 406x178UB60 kg/m

(ii) Roof Beam M oy3 1.5x60x8000/6* 120000 kN.mm

Roof Beam Plastic Modulus 120000/(0.25x1000) 480 cm3

Try 305x127UB42 kg/m

(iii) Column section sizes are given in Table 7.1.

Table 7.1 Initial Trial Section Sizes For Columns

Column 
Number

Factored 
Axial Load 

(kN)

Area Of
Cross-Section 

(cm2 )

Trial Section 
Size

17 90 12.0 254x102UB22 kg/m

13 90+240 = 330 44.0 305x127UB42 kg/m

9 330+240 = 570 76.0 406x178UB67 kg/m

5 570+240 = 810 108.0 457x191UB98 kg/m

1 810+240 = 1050 140.0 610x229UB125 kg/m

2. Trial Designs

The details of the various trial designs employed are given in

Table 7.2.
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Table 7.2 Details Of Trial Designs

Trial Loading Member Section Size Remarks

1 . Combined Each As given on 
page 208

Unsatisfactory 
Design. Servicea-
bility objective is 
not satisfied.

2. Combined As Trial 1 Except

Floor
Beam 457x191UB67 kg/m Satisfactory design

Roof
Beam 356X171UB51 kg/m

17 As member 13

9 As member 5

3 . Vertical As Trial 2 Satisfactory design

The load parameters obtained by the inelastic zone method for the

satisfactory design are as follows: 

For combined loading

1.18

2.35

and for vertical loading,

1 . 65

2.75

where Xe is the load parameter for the end of elastic response.

Thus , the more critical design loading is combined loading and the

equilibrium path for this loading is given in Fig. 7.4 while the

corresponding inelastic zones near failure are given in Fig. 7.5.

It can be seen from Fig. 7.4 that the satisfactory design is

governed by the serviceability objective while the ultimate strength

X 
e

X f

X e

X 
f
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achieved after three trials is much greater than that required. Since 

the maximum deflection obtained for the working load is equal to the 

permissible deflection under this load and since the design is based on 

the limiting moment method, a re-design of the frame to approach a 

balanced design cannot be undertaken. It follows, therefore, that an 

inelastic analysis of the frame would be required in order to achieve a 

satisfactory design closer to the balanced design than that achieved by 

using the limiting moment method.

A = horizontal deflection of roof beam.

Fig. 7.4 Equilibrium Paths For Combined Loading
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Fig. 7.5 Inelastic Zones At A Load Parameter Of 2.20 
For The Final Design Under Combined Loading
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Example 7.5.2

Design the ten-storey, one-bay, regular frame loaded as shown in

Fig. 7.6 which also shows the joint and member numbers (in brackets)

S/2 S S/2

Fig. 7.6
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used in the analyses. The values of a, P, Q, R, and S are the same as 

those for frame of example 7.5.1. Try steel grade 43 and use the simple 

formulae used to estimate the initial member section sizes for frame of 

example 7.5.1.

Solution

1. Initial Estimates Of Member Section Sizes

This frame has the same storey heights, bay-width and loads as the 

frame for example 7.5.1. Therefore, the same initial beam section sizes 

as for frame for example 7.5.1 will be adopted. Similarly, the same 

initial column section sizes for the columns above the fifth floor level 

as for those for frame for example 7.5.1 will be adopted. The complete 

initial trial section sizes for columns are given in Table 7.3.

Table 7.3 Initial Trial Section Sizes For Columns

Column Factored Area Of Trial Section
Number Axial Load Cross-Section Size

(kN) (cm2 )

37 90 12.0 254X102UB22 kg/m

33 90+240 = 330 44.0 305X127UB42 kg/m

29 330+240 = 570 76.0 406X178UB67 kg/m

25 570+240 = 810 108.0 457X191UB98 kg/m

21 810+240 = 1050 140.0 610x229UB125 kg/m

17 1050+240 = 1290 172.0 610x305UB179 kg/m

13 1290+240 = 1530 204.0 610x305UB238 kg/m

9 1530+240 = 1770 236.0 B38X292UB226 kg/m

5 1770+240 = 2010 268.0 914x305UB253 kg/m

1 2010+240 = 2250 300.0 914X305UB388 kg/m
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2. Trial Designs

The details of the various trial designs employed are given in

Table 7.4.

Table 7.4 Details Of Trial Designs

Trial Loading Member Section Size Remarks

1 Combined Each As given on Unsatisfactory
page 213 Design. Servicea-

bility Objective Is 
Not Satisfied.

2 Combined As Trial 1 Except

Floor
Beam 457X191UB67 kg/m

Roof
Beam 356X171UB51 kg/m

37 , 33 356x171UB57 kg/m Unsatisfactory
Design. Servicea-

29 , 25 533x2 1 OU B101 kg/m bility Objective Is 
Not Satisfied.

21 As member 17

13 As member 9

5 As member 1

3 Combined As Trial 2 Except

37 , 33 457X1.5 2UB60 kg/m

29 , 25 533X210UB122 kg/m Satisfactory design.

21 , 17 610X305UB238 kg/m

13 As member 9

5 As member 1

4 Vertical Each As Trial 3 Satisfactory design.
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The load parameters obtained by the inelastic zone method for the

satisfactorydesign are as follows:

For combined loading

X 
e = 1.01

xf = 1 .95

and for vertical loading

X 
e = 3.15

X 
f = 3 .70

Thus, the more critical desing loading is combined loading and the 

equilibrium path for this loading is given in Fig. 7.7 while the 

corresponding inelastic zones near failure are given in Fig. 7.8. Also, 

the serviceability objective governs the design of this frame. Since 

the design is based on the limiting moment method, member section sizes 

can be reduced and re-analyses performed until the maximum deflection 

under the working loads equals the permissible value of 133.33mm. 

However, an inelastic analysis of the frame would be required in order 

to achieve a satisfactory design closer to the balanced design than that 

achieved by using the limiting moment method.
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X

A = horizontal deflection of roof beam.

Fig. 7.7 Equilibrium Paths For Combined Loading
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Example 7.5.3

Design the six-storey, irregular frame given in Fig. 7.9 which

also shows the joint and member numbers (in brackets) used in the

analyses. Try steel grade 50 and use the simple formula used for

estimating beam sizes for frame of example 7.5.1. Try column cross-

sectional area to be given by

A = static axial load/(0.25xyield stress)

S = 62.5kN ; T = 50.0kN ; U = 65.0kN ; V = 52.0kN ; W = 40.0kN 

a = 6000.0mm ; b = 4000.0mm ; c = 2000.0mm ; d = 3750.0mm

Fig. 7.9
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Solution

The first floor beam will be designed to be capable of spanning 

over 16m and its central deflection will be limited to span/600 instead 

of span/300. This is aimed at providing a relatively stiff support for 

the uppei' level beams.

Also, since the frame is irregular, both directions of wind will 

be considered in its design.

1. Initial Member Section Sizes

(i) Floor Beam M (except first floor beam)

= 1.5x100x6000/6

= 150000 kN.mm

Required plastic modulus = 150000/(0.35x1000)

= 428.6 cm3

Try 356x1 2711633 kg/m.

(ii) Roof Beam M = 1.5x75x6000/6 = 112500 kN.mm

Required plastic modulus = 112500/(0.35x1000)

= 321.4 cm3

Try 305x102ub25 kg/m

(iii) Column section sizes are given in TabJ.e 7.5.
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Table 7.5 Initial Trial Section Sizes For Columns

Column
Numbei

Factored
Axial Load 

(kN)

Area Of
Cross-Section

^cm2

Trial Section
Size

49 112.5 12.9 305X127UB37 kg/m

39 1 1 2. 5 + 225 = 337 . 5 38.6 305x127ub37 kg/m

29 337.5+225 = 562.5 64.3 457X152UB67 kg/m

19 562.5+225 = 7 87.5 90 . 0 457X152UB67 kg/m

9 787.5+225 = 1012.5 115.7 6 1 0 x 2 2 91) B 1 0 1 kg/m

50 ( 37 . 5+62.5 + 50x5/7 
+65x3/7)1.5= 245.4 28.0 203X203UC46 kg/m

40 245 . 4 +( 50 + 83 + 33 ) 1 .5
= 494.4 56.5 203X203UC60 kg/m

30 494.4+249 = 7 4 3.4 85 . 0 254X254UC89 kg/m

20 743.4+249 = 992 . 4 113.4 305x305UC158 kg/m

1 0 992.4+249 = 1241.4 141.9 305x305UC158 kg/m

4 1 (33 + 70.5 + 75x1. 5/4.5)
192.8 22 . 0 As member 40

3 1 192.8+249 441.8 50.5 As member 30

21 441.8+249 690 . 8 79.0 As member 20

1 1 690.8+249 939 . 8 107.4 AS member 10

Section sizes for members 51, 42, 32, 22 and 12 are same as for

those for members 49, 39, 29, 19 and 9 respectively.

(iv) First floor beam

Fig. 7.10 shows the loading arrangement used in estimating the 

initial trial section size for the first floor beam based on the rigid- 

plastic method. The maximum bending moment occurs under the load of 

910.6kN. Thus, with a unit vertical deflection imposed at the position 

of this load, the estimated full plastic moment of the section at this
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load position is given by

= [100x0.5+910.6+66x0.8+709.5x0.6+100x0.3]/[1/10000+1/6000]

= 5509125.0 kN.mm

w = 100.OkN

W2 = 1241.4/1.5+83.0 = 910.6kN

W3 = 66.OkN

W4 = 939.8/1.5 + 83.0 = 709.5kN

a = 3000.0mm

b = 2000.0mm

Fig. 7.10

Required plastic modulus 5509 1 25 / ( 0 .35x 1 000 ) 15740.4 cm3

Try 914X419UB388 kg/m.

(v) Ground floor columns

The section sizes for both columns will be made the same. 

Therefore, the estimate will be based on the factored axial load for 

column 1.

From Fig. 7.10, = 968.19 kN

Therefore, factored axial load on column 1 = 1012.5+1.5x968.19

= 2464.8 kN

Required area of cross-sect ion = 2464.8 /( 0.25x0.35x 1 00 )

= 281.7 cm2

Try 914x305UB289 kg/m.
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2. Trial Designs

The details of the various designs employed are given in Table 

7.6.

Table 7.6 Details Of Trial Designs

Trial Loading Member Section Size Remarks

1 Combined, 
Wind from 
Lef t.

Each As given on 
pages 219, 
220 and 221

Unsatisfactory 
Design. Servicea-
bility Objective Is 
Not Satisfied.

2 As Trial 1 Floor Beams 
(except first) 457x191UB67 kg/m

As Trial 1 Except

29 , 19

9

1

457X152UB82 kg/m

610X229UB125kg/m

914x419UB388kg/m

Unsatisf actory 
Design. Servicea-
bility Objective Is 
Not Satisfied.

3 As Trial 1 As Trial 2 Except
Roof beam

4 9, 51

457x152UB52kg/m

406x152UB52kg/m

Satisfactory 
Design.

4 Combined, 
Wind from 
Right.

As Trial 3
Unsatisfactory 
Design. Servicea-
bility Objective Is 
Not Satisfied.

5 As Trial 4 As Trial 3 Except

Roof beam 457x191UB67kg/m

4 9. 51

50

406x140UB46kg/m

203x203UC52kg/m

Satisfactory 
Design.

39 , 42 As member 49

6 Combined,
Wind from
Left

As Trial 5 Satisf actory 
Design.

7 Vertical As Trial 5 Satisfactory 
Design.
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The load parameters obtained by the inelastic zone method for the 

satisfactory design are as Follows:

For combined loading with wind from left

X 1 .29e

2.70

For combined loading with wind from right

X e 1 . 27 

2.50

and for vertical loading

e 1 .56 

2.70

Thus, the most critical design loading is combined loading with 

wind acting from the right and the equilibrium path for this loading is 

given in Fig. 7.11 while the corresponding inelastic zones near failure 

are given in Fig. 7.12. The serviceability objective governs the 

design of this frame and an inelastic analysis of the frame would he 

required in ordei' to obtain a satisfactory design closer to the balanced 

design than that achieved by the limiting moment method.
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X

A = horizontal deflection of roof beam

Fig. 7.11 Equilibrium Paths For Combined Loading 
For Wind Acting From The Right
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Fig. 7.12 Inelastic Zones At A Load Parameter Of 2.40 For
Combined Loading With Wind Acting From The Right
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CHAPTER 8

CONCLUSION

The inelastic zone method developed in this thesis uses the 

distributed inelasticity concept of structural behaviour for metal plane 

frame stability analysis and design. The method has two principal 

features. These are the identification of the inelastic zones in a 

plane frame loaded to failure and the adoption of solution procedures 

which increase in complexity only as the level of inelasticity in a 

frame member increases. Frame failure loads obtained by using the 

inelastic zone method agree well with published theoretical and 

experimental, results. Satisfactory agreement was also obtained by 

comparing test results obtained for two portal frames subjected to 

vertical and horizontal loads and loaded to failure with those obtained 

by using the inelastic zone method.

The work described in this thesis highlights the following aspects 

of plane frame stability analysis:

1. The predicted failure load of a plane frame depends upon the method 

employed for the stability analysis and generally approaches the 

true value with increasing number of non-linear effects included in 

the analysis.

2. The concept of concentrated inelasticity for frames loaded to 

failure is a simplification of actual behaviour. The applicability 

of the distributed inelasticity concept adopted in this thesis is 

confirmed by tests on portal frames.

3. A bilinear representation of material stress-strain relationships 

is adequate and can be used to obtain direct formulae for computing 

the moment-curvature-axial force relationships for member cross-
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sections without the need to sub-divide the cross-sect ions into

smaller segments. These formulae are exact, subject to the shape

of cross-section chosen and the stress-

strain curve adopted.

4 . The inelastic zone method is based on calculating tangent

flexibility coefficients for a beam-column in a plane frame by

using equations to represent the deflection curve for the beam-

column. These equations take into account the displacements of

all zone intersection points along the beam-column at any stage of

5 .

6 .

analysis up to failure. The lengths of the elastic and inelastic

zones are determined by satisfying equilibrium of moments and shear

forces and compatibility of deflections and rotations at the z o n e

intersection points.

For an elastic zone of a beam-column, an exact equation for the

deflection curve is employed. For an inelastic zone of the beam-

column, an approximate equation for the deflection curve is chosen

which satisfies the curvature boundary conditions. The curvatures

at the ends of an inelastic zone are obtained from the moment-

curvature-axial force relationships for the cross-section.

The errors introduced in the values of deflection and rotation

along an inelastic zone are small and diminish as the relative end 

displacement for the zone increases and as the length of the zone 

diminishes.

7. The errors introduced in the values of curvature along an inelastic 

zone depend entirely on the values of the bending moments and 

curvatures at the ends of the zone. For relatively small 

differences in these end values, satisfactory curvature 

distribution along the zone can be obtained. For relatively large 
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distribution of curvature along the zone may be introduced. In 

this case, improved curvature values can always be obtained by sub-

dividing the inelastic zone into smaller segments at the expense of 

increased computational effort. It is worth noting that large 

errors in curvature distribution along an inelastic zone do not 

necessarily imply large errors in values of deflection and slope 

along the zone. Also, the deflection equation chosen in this 

thesis for an inelastic zone under-estimates curvature values along 

the zone when the origin of local member axes is at the end with 

the smaller bending moment and over-estimates curvature values 

along the zone when the origin is at the end with the larger 

bending moment.

8. The use of concentrated load simulations in a stability analysis of 

a plane frame for all distributed loads on the frame is adequate.

The foregoing remarks show that a realistic stability analysis of 

a plane frame can only be performed by using a computer. Early attempts 

to obtain frame failure loads aimed at economic, simplified manual 

methods. It was then necessary not only to ignore some of the factors 

which affect frame behaviour but also to adopt relatively large factors 

of safety for frame design. With the increased understanding of frame 

behaviour made possible by the use of computers, greater confidence is 

gained in designing taller, more slender and more irregular frames today 

than before. Thus, in choosing a method for plane frame stability 

analysis and design purposes, it is essential not only to consider 

economy of design time and weight of frame but also to consider the 

limitations of the method with regard to its treatment of non-linear 

effects and the desired level of accuracy which may necessitate the use 
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of a computer.

In order to increase the versatility of the inelastic zone method, 

it would be necessary to extend its application to other areas of 

structural stability analysis not considered in this thesis. Examples 

of these areas include the treatment of metal plane frames comprising 

members of hybrid cross-sections (fabricated from materials of different 

yield strengths), metal space frames comprising members of rectangular, 

I-shaped and tubular cross-sections, metal plates and reinforced 

concrete frames and slabs. Also, its extension to frames comprising 

members having composite sections of steel and reinforced concrete and 

to the dynamic stability analyses of frames would be desirable. It can 

be expected that any extension of the inelastic zone method to these and 

other areas of structural stability analysis would pose problems of 

analysis and can only be made possible by further research.
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APPENDIX 1

FORMULAE FOR THE MOHENT-CURVATURE-AXIAL FORCE RELATIONSHIPS FOR A 
RECTANGULAR CROSS-SECTION OF AN ELASTIC-PERFECTLY-PLASTIC MATERIAL

Introduction

The relevant formulae can be derived directly from the general 

formulae for elastic-strain-hardened material presented in Chapter 2 by 

specifying a value slightly greater than unity (say 1.0001 or 1.001) for 

Bs and a large value tending to infinity (but not less than 30.0) for

A,. However, this approach will necessitate all the computational steps

adopted in Sections 2.5 and 2.6 and will, therefore, make large demands

on computer time and storage.

In this appendix, the relevant formulae are presented in

simplified forms which altogether avoid the specification of the strain-

hardening constants, A and B , s s and, therefore, make more economic use

of the computer for the computations than when these constants are

specified for this material. Reference should be made to Sections 2.5 

and 2.6 for the symbols and figures relevant to this appendix.

Moment-Curvature-Axial Force Relationships For A Rectangular 
Cross-Section Subjected To The Primary Yield Stress Distribution

V, -- q>2 =. Cs = 0 (A1.1)

Hence substitution of Eqns. (2.8a) and (A1.1) into Eqn. (2.9a) gives

M = (P -P) (H/2-a/3) z s

i.e. a = 3[-M /(P.-P)+H/2]

(A1.2a)

(A1.2b)

230



Also, substitution of Eqns. (2.8a), (A1.2b) and (A1.1) into Eqn. (2.7e)

gives

ip = a''[K^ps..pV 2M_J2

where ci 8(P -P)3/(9BE)
s

( A1 . 3 a )

(A1.3b)

The value of the depth, a, of the elastic core which corresponds to

becoming equal to -o
y

is obtained by substituting for in Eqn.- o
y

o o

(2.8a) thus :

a H - P/(o B) ( A1 . 4 a )

The intermediate yield moment, is determined by substituting Eqn.

(A1.4a) into Eqn. (A1.2a) thus:

where R
a 1+2P/P s

( A1 . 4 B )

(A1.4c)

Moment-Curvature-Axial Force Relationships For A Rectangular 
Cross-Section Subjected To The Secondary Yield Stress Distribution

a = [H-a -P/(o B)]/21 2 y
0 5= <p[M -M ]2 p z

-- [12/(0 B)]°-5
y

M = [P 2-P2]/(40 B) 
p s y

(A1.5a )

(A1.5b)

(A1.5c)

(A1.5d )

M z R M ,a y 1
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APPENDIX 2

FORMULAE FOR THE MOMENT-CURVATURE-AXIAL FORCE RELATIONSHIPS FOR AN
I-SHAPED CROSS-SECTION OF AN ELAST IC-PERFECTLY-PLAST IC MATERIAL.

Introduction

The formulae given in this appendix follow the procedure adopted 

for the rectangular cross-section in Appendix 1 and are based on the 

general formulae given in Sections 2.7 and 2.8.

Moment-Curvature-Axial Force Relationships For An I-Shaped 
Cross-Section Subjected To The Primary Yield Stress Distribution

For partial yielding of top flange, the depth, a, of the elastic 

core is determined from the following equation:

Aa3+Aa2+Aa+A, = 0’ C J ‘t (A2.1a)

where -B/3

An = B(H/2-G )c I

(A2.1b)

(A2.1c)

A3 = -2G (2T-H)(B-t) (A2.1d)

A, = G_-HG (H-2T)(B-t) 
h c.

(A2.1e)

G = M / ( P - P )
1 z s

G? = BT2(2T/3-H/2) + {t(H-2T)3-B(T-H)2(H-4T)}/6

(A2.1f)

(A2.1g)

by employing Newton's or similar method. Substitution of the resulting

value of a into Eqn. (2.30a) gives the appropriate value for o2 from

A
1

which n and ip can be determined from Eqns. (2.7 d) and (2.7e) 

respectively. If this value of a is within the limits

(H-T) a C H

then it is accepted. Otherwise, it becomes necessary to consider the

case of partial web yielding in the top of the cross-section.

32



The corresponding depth, a . of the elastic core for the

determination of the intermediate yield moment is determined from the 

following equation

2
A a + A 9 a A = 0 ( A 2 . 2 a )

where A = B (A2.2b)

Aq  = 2(B-t)(2T-H) - (Ps-P)/o^ (A2.2C)

A3 = H(H-2T)(B-t) (A2.2d)

2 0 5
from which a = l-A?+{A? ^A^} ]/(2A^ ) (A2.2e)

If this value of a is within the limits

(H-T) < a < H

then its substitution and the substitution of o = -o into Eqn. (2.23a)2 y

gives the correct value for Otherwise, it becomes necessary to

consider the case of partial web yielding in the top of the cross-

section .

For full yielding of top flange and partial yielding of web, the 

depth, a, of the elastic core for the determination of the curvature is 

determined from the following equation:

A^3 + A^a2 + A^a + A, = 0

where A^ = -t/3

A? = t(H/2-G1)

A3 = T(B-t)(H-T-2G , )

A = T2(B-t)(2T/3-H/2+G )
4 1

G, = M /(P -P)1 z s

(A2.3a)

(A2.3b)

(A2,3c)

(A2.3d)

(A2.3e)

(A2.3f)

by employing Newton's or similar method. Substitution of the resulting 

value of a into Eqn. (2.26a) gives the appropriate value for a? from

whence n and tp can be determined from Eqns. (2.7d) and (2.7e) 

respectively.
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The depth, a, of the elastic core for the determination of the

intermed iate y ieId mornent is determined from the following equation:

B 2ia + B2a ♦ B3 = 0 (A2.4a)

where B =
1 t (A2.4b)

B =
2 2T ( B-t) -(Ps-P)/Oy (A2.4c)

B
3

T2(t- B) (A2.4d)

from which a = [- (A2.4e)

If this value of a is within the limits

T < a (H-T) (A2.4f)

then its substitution and the substitution of o = -o into Eqn. (2.27a) 
y

the correct value for M
y2

For a (H-T), the limiting axial force, P^, is given by

P11 P -O [2(B~t)(2T-H)(H-T)+B(H-T)2 
s y

+ H(H-2T)(B-T)/(H-T)] (A2.5)

For a = T, the limiting axial force, is given by

P._ = P-oBT = o [BT +1(H-2T ) ]12 s y y (A2.6)

Homent-Curvature-Axial Force Relationships For An I-Shaped 
Cross-Section Subjected To The Secondary Yield Stress Distribution

For full yielding of flange and partial yielding of web at both

ends of cross-section, the relevant formulae foi' the depths a1 and ao in

Fig. 2.8 are given by

3 1 = (F-a2)/2 + T (A2.7a)

32
= q>(M -M )°’5

P z
(A2.7b)

M
P

= 0 [Kt + BT(H-T)] (A2.7c)

K = F[2(H-2T) - F]/4 (A2.7d)

234



F (A-2BT-P/O )/t (A2.7e)

<P [12/(0 t)]°-5
y

(A2.7 f)

Substitution of Eqns. (2.30a), (A2.7d) and (A2.7e) into Eqn. (A2.7c)

gives

M = o
p y

[{ (H-2T)"-(P/(0 t) )‘ }/(4t) + BT(H-T)] 
y

(A2.7g)

The ultimate moment of resistance, M , is evidently equal to the

fully-plastic moment, M ,
P

for the curvature, 4'. determined by

substituting Eqn. (A2.7b) into Eqn. (2. 1 5e) , to be infinite.

The formulae derived in this section are valid within the

following limits:

T (A2.8a)

(H-T) (A2.8b)

the

condition (A2.8b) is the axial force is very low and

approximate approach for case 1 in Section 2.7 should be adopted.

I f

The limiting axial force, P^, above which these formulae are no longer

applicable is derived from Eqn. (2.30a) by setting a equal to T and a?

equal to zero to obtain

P13 P - 2o BT s y (A2.9a)

Substitution of Eqns. (2.22c) and (2.22d) into Eqn. (A2.9a) gives

O t(H-2T) (A2.9b)

The corresponding limiting bending moment, , is derived from

Eqn.(2.31 a) as

M = o BT(H-T)13 y (A2.9c)
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For full, yielding of top flange and partial yielding of bottom

flange and full or partial yielding of web, linear interpolation is

employed as in Section 2.8.2 to determine the ultimate yield moment as

follows:

where

M
y3

R 
c

= M13Rc

(Ps-P)/(Ps-P13)

(A2.10a)

(A2.10b)

and P
s > P > P 13 (A2.10c)
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APPENDIX 3

NEWTON'S METHOD OF SUCCESSIVE APPROXIMATIONS FOR
SOLVING AN EQUATION OF ONE UNKNOWN

Let f (x) be a function of x.

Let f’(x) be the first derivative of f(x).

We want to obtain the solution of the equation

f(x) = 0 (A3.1)

by trial-and-error. Let a first approximation for x be x

Then, the second approximation for x is given by

X 2 = x1-f(x])/f(x1) (A3.2)

It follows that the nth. approximation for x is given by

(A3.3)

Iteration is continued by employing equation (A3.3) until the difference 

between x and x becomes very small or satifies a convergence 

criterion. Then, the resulting value of x^ is chosen as the required 

value of x.
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APPENDIX 4

FORMULAE FOR SOLVING TWO. THREE AND FOUR SIMULTANEOUS EQUATIONS

Introduction

In Chapter 3, solutions of two, three or four simultaneous 

equations were required to determine the deflection components due to 

curvature of the zone intersection points. Formulae for the explicit 

solutions of these equations are given in this appendix.

Formulae For Solving Two Simultaneous Equations

The matrix form of the relevant equations is given by

The required as follows:

(A4.2)

where
1 - A12 /A11

22 = *22 -f1A12

(1 = A12 /F22

i
1 1

= Q +1 1 B2 2 °1 2

i
22 = 811 °21 ‘ B22

!1 1 = 1 » f191

!1 2 = “31

21
= -f1

(A4.3)
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(A4 . 4 )

Formulae For Solving Three Simultaneous Equations

The matrix form of the relevant equations is given by

The required solution of Eqn. (A4.4) is given in matrix form as follows:

(A4.5)

where

F22 = A-f A „
22 112

f2 = A /F23 22

F33 = A33’f2A23

91 = A23/F33

92 = A12/C22

°11 = B Q +B Q11 11 22 12 + B 33 °13

°22 = B Q +B Q1121 2222 + B 33 °23

°3 3 = B Q +B Q1131 2232 + B 33

= 1 + f q ( 1 + f q1 y2 2y1 )

°1 2 z -92(1* fjS, )

°13 - 9192

°21 -

Q
22 = ’*f291

Q 23 = ~91

°31 = f1 f2

°3 2 = -f2

(A4.6 )
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(A4.7)

Formulae For Solving Four Simultaneous Equations

The matrix form of the relevant equations is given by

k

The required solution of

A
1 1 A. „1 2 0 0

A
1 2 Ao„22 *23 0

0 A
23 *33 *34

0 0 A3 4

where f

0 0

1/F22 0

0 1/F33

0 0

in matrix form as follows:is given

(A4 . 8 )

F22

f2

F33

f3

22 -f1*12

A„„ /F_23 22

A_ - f „ A33 2 23

A. , /F__34 33

F4 4

91

92

93

*4 4 -fn An,3 34

A , /F34 44

A /F23 33

A „ /F1 2 22 (A4.9)
= B, . Q + B Q + B Q + B Q1 1 1 1 1 1 22 1 2 33 13 44 1 4

= B Q + B Q + B Q + B , Q
22 1 1 21 22 2 2 33 23 4 4 24

I = B Q + B Q + B Q + B Q33 1 1 3 1 22 3 2 33 3 3 4 4 3 4

I = B Q + B Q + B „ Q, + B, ,44 1 1 4 1 22 42 33 43 4 4

11 = 1 + f 1 93 ( 1 + f 2 92 (1+f391 ) )

1 2 = -93 (1 + f292 ( 1 + f391 ) )
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(A4.9 continued)

Q
13 = g2g3d*f 3g,)

Q
1 4 = "91 9293

Q
2 1 = -fl(Hf2g2d*f 3g1))

°22 = ,*f 2g2(uf3g1)

-g„ (1 + )23 J2 3

°24 = 9192

Q
3 1

=
12 3 a1

Qnn - - f ( 1 + f g )32 2 3 J1

(3 - 1 + f g33 3y1

Q
34 = ‘gi

Q,, -f4 1 1 2 3

Q f f42 2 3

Q -f43 3
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APPENDIX 5

A PARAMETRIC STUDY OF THE PROPOSED DEFLECTION CURVE FOR AN INELASTIC
ZONE OF A BEAM-COLUMN

Introduction

Eqn. (3.17), reproduced here as Eqn. (A5.1a), defines the proposed

deflection curve for an inelastic zone, 1-2, of a beam-column.

y = Acos (m, x) + Bsin(q x) - M^I-x/B.J/P - M^fx/B^J/P

+ A^[1-x/B^] + A^Cx/B^J (A5.1a)

In this equation, the origin of Cartesian co-ordinates is at the end 

with the bending moment, M . This equation was chosen by comparison 

with the exact, well-known equation for the deflection curve for an 

elastic beam-column so that, the tangent flexibility coefficients for the 

entire beam-column comprising a number of elastic and inelatic zones can 

be easily determined by assigning appropriate values to the arbitrary 

constants, A, B, m^ and q The slope and curvature equations derived 

from Eqn. (A5.1a) are as follows:

y' = - Am1 sin (m1 x)+Bq cos (q x) + [ (M -M )/P + A„-A ]/B (A5.1b)

2 °y'*  - -[Am^"cos(m^x) + Bq] sin(q x)] (A5.1c)

For an inelastic zone, however, the depths of the elastic core vary with 

length and Eqns. (A5.1) may not give identical results with those 

obtained by inter-changing the end bending moments or by placing the 

origin of Cartesian co-ordinates at the end with the bending moment, M?.

The main aims of this Parametric Study are to ascertain the 

significance of these differences and to highlight any of the 

limitations of Eqns. (A5.1).
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The Parameters

Curve 1 of Fig. A5.1 represents the deflected shape of an 

inelastic zone, 1-5, subjected to an axial force, P, and end bending 

moments, and Mr. The relative displacement of the ends of the zone 

is A and the yielding spreads from end 1 to end 5 so that the values of 

bending moment and curvature at end 1 are greater than the corresponding 

values at end 5. Curve 2 of Fig. A5.1 is a mirror-image of Curve 1 

except that the origin of Cartesian co-ordinates is at end 1 for Curve 1 

and at end 5 for Curve 2 .

Fig. A5.1

This Parametric Study will be carried out by selecting values for 

the parameters, P, B and A and calculating the moment, deflection, 

rotation and curvature variation at intermediate points along the zone 

for the two curves shown in Fig. A5.1. The values of the parameters are 

as fo1lows:

value;, for P are 0.00 IP and 0.2P.,

values fur B are 50.0mm and 200.0mm and1

values for A are 1.0mm and 20.0mm.

Also, two types of inelastic zone will be studied, namely the zone for

which M - M and M = M and the zone for which M = M _ and M_ = M n1 y2 5 y1 1 y3 5y2
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where the bending moments are determined for the chosen values of the 

axial force.

The I shaped cross-section (that is 305x127UB48kg/m), yield stress 

and modulus of elasticity employed in Example 2.1 for an elastic- 

perfectly-plastic material will be employed here. Thus, the values of 

axial force and the corresponding values of the bending moments are 

given in Table 2.1. The curvature values corresponding to the chosen 

axial force and bending moment values are derived from Fig. 2.10. The 

values of axial force, bending moments and curvatures are given in Table

A5 . 'I for ease of reference in the following forms

P - C Pp s

M - R M
1 i yi

Fl - RM5 5 y 1

ib - N ,1 1*y1

K =

Table A5.1 End Forces And Curvatures For Curves 1 And 2

Parameter Value

C
P

0.001 0 . 2

P 1 .505 KN 301.0 kN

M .
y 1

151000 0 k N. mm 121000 . 0 k N. mm

ip
yi

0.0000076G mm
-1 0.00000614 mm'1

Zone With Zone With Zone With Zone With
H1 =
And

My2
Fl y = M

2 y 1
=

And
M _ y 3

F1„ - M n2 y2

M1 = My2
And M_ = M2 y 1

M = M1 y 3
And FL - M „2 y2

R
1 1. 002 1 . 155 1 .283 1.358

% 1. 000 1 . 002 1 .000 1 .283

N
1 1. 002 5 . 000 4 .000 5 .000

N
5 1. 000 1 . 0 02 1 . 000 4 . 000



The results of this Parametric Study are summarized in Tables A5 . 2 

to A5.11 inclusive and in Figs. A5.2 to A5.5 inclusive. The results are 

given for quarter points along the zones and for quarter points along 

the end segments of the zones, each segment being of length one-quarter 

that of the zone.

The following notations are used in the Tables and Figures:

C1 - m./q,

R. = M. / M ,1 1 y 1

N . = /ty.1 i ys

A.
1 = deflection of point i

0 .
1 = rotation of point i

EQ . = curvature value determined from Eqn. (A5.1c

FG. - curvature value determined from Fig. 2.10
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Table A5.2 Results For Inelastic Zone 1-5

Parameter Value

C
P

R
1

R
5

N
1

N5

B 1

A
1 

s

0.001

1 .002

1 . 000

1 . 002

1 . 000

50 . 0

0 . 0

1 . 0

0.001

1 .002

1 .000

1 .002

1 .000

200 . 0

0 . 0

1 . 0

Result Curve 1 Curve 2 Curve 1 Curve 2

R2

R3

R4

1.0015

1.0010

1 .0005

1.0015

1.0010

1.0005

1.0015

1.0010

1 .0005

1.0015

1.0010

1.0005

A2

S

A4

0.25185

0.50246

0.75177

0.25185 

0 .5024 6 

0.75177

0 . 27 875

0.53836

0 .77 877

0.27875

0.53836

0.77877

01

02

03

54

55

0.020192

0 .020095

0.020000

0.0 19904

0.019808

-0.020192

-0.020095

-0.020000

-0.019904

-0.019808

0 .005767

0 .005383

0.005000

0.004616

0.004234

-0.005767

-0.005383 

-0 . 005000 

-0.004616

-0.004234

N2

N3

N4

EQ . FG. EQ . FG . EQ . FG . EQ . FG .

1.0015

1.0010

1 .0005

1.0015

1.0010

1 .0005

1.0015

1.0010

1.0005

1.0015

1.0010

1 .0005

1.0015

1.0010

1.0005

1.0015

1.0010

1 . 0005

1.0015

1.0010

1 .0005

1.0015

1.0010

1 . 0005

c
1 1 . 000
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Table A5.3 Results For Inelastic Zone 1-5

Parameter Value

C
P

R
1

R
5

N
1

N5 

B
1

A1

*5

0.001

1 .002

1.000

1 .002

1 .000

50 . 0

0 . 0

20 . 0

0.001

1 . 002

1 .000

1.002

1 .000

200 . 0

0 . 0

20 . 0

Result Curve 1 Curve 2 Curve 1 Curve 2

%

%

R
4

1.0015

1.0010

1.0005

1.0015

1.0010

1 .0005

1.0015

1.0010

1 .0005

1.0015

1.0010

1 .0005

*2

A
3

5.00185

10.00246

15.00177

5.00185

10.00246

15.00177

5 . 02875

10.03836

15.02877

5.02875

1 0 . 03836

1 5 .02877

®2

03

°4

°5

0.400192

0.400095

0.400000

0.399040

0.399808

-0.400192

-0.400095

-0.400000

-0.399040

-0.399808

0.100767 

0 . 1 00383 

0 . 1 00000 

0.099616 

0.090233

-0.100767

-0.100383

-0 . 1 00000

-0 . 0996 1 6

-0.090233

N2

N3

\

EQ . FG . EQ . FG . EQ . FG . EQ . FG .

1.0015

1.0010

1.0005

1.0015

1.0010

1.0005

1.0015

1.0010

1.0005

1.0015

1.0010

1.0005

1.0015

1.0010

1 .0005

1.0015

1.0010

1 . 0005

1.0015

1.0010

1 . 0005

1.0015

1.0010

1 . 0005

C1 1 .000
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Table A5.4 Results For Inelastic Zone 1-5

Parameter Value

C
P

R
1

R
5

N
1

N
5

B
1

A
1

0 . 2

1 .283

1 . 0

4 . 0

1 . 0

50 . 0

0 . 0

1 . 0

0 . 2

1 .283

1 . 0

4 . 0

1 . 0

200 . 0

0 . 0

1 . 0

Result Curve 1 Curve 2 Curve 1 Curve 2

R2

%

R
4

1.2123

1.1415

1.0708

1.2123

1.1415

1.0708

1.2124

1.1416

1.0709

1.2123

1.1415

1.0708

A
2

*3

0.255587

0.507404

0.75519

0.25218

0.502765

0.751968

0 . 339377

0.61844

0.838281

0 .284 868

0.544258

0.781499

0
1

°2

°3

0
4

°5

0.020G

0.020295

0.01999G

0.019703

0.019415

-0.020244

-0.0220108

-0.019989

-0.019887

-0.019801

0 .00739 8

0.006181

0 .0049 85

0 .0038 1 2

0.0026G 1

- 0 .005975 

-0.005431

-0.004955

-0.004546

-0.004205

N2

N3

N4

EQ . FG . EQ . FG . EQ . FG . EQ . FG .

3.9293

3.8585

3.7877

3.5000

2.5000

1.5000

1.6618

1.4412

1 .2206

3 .5000

2.5000

1 . 5000

3.9293

3 .8582

3.7865

3 . 5000

2.5000

1 . 5000

1 . 6624

1.4417

1.2209

3 .5000

2.5000

1 . 5000

C 1 . 7 G 6
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Table A5.5 Results For Inelastic Zone 1-5

Parameter Value

C
P

R
1

R
5

N
1

N5

B
1

A
1 

%

0 . 2

1 .283

1 . 000

4 . 0

1 . 0

50 . 0

0 . 0

20 . 0

0 . 2

1 .283

1.000

4 . 0

1 . 0

200 . 0

0 . 0

20 . 0

Result Curve 1 Curve 2 Curve 1 Curve 2

R2

R
3

R4

1.2123

1.1415

1.0708

1.2123

1.1415

1.0708

1.2124

1.1416

1.0709

1.2123

1.1415

1.0708

A
3

\

5.005587

10.007404

1 5.0055 1 9

5.00218

1 0 .002765

15.001968

5 .089377

10.11844

15.088281

5.034 888

1 0.04 4 258

1 5 . 03 1 499

0
1 

02 

°3 

0
4 

°5

0.40060

0 .4 00295

0.399996

0 . 399703

0.3994 1 5

-0.400244

-0.400108

-0.399989

-0.399887

-0.399801

0 . 1 02398

0.101181

0.099985

0.098812

0.097661

-0 . 1 00976

-0. 1 0043 1

-0 . 099955

-0 . 099546

-0 . 099205

N2

'S

N4

EQ . FG . EQ . FG . EQ . FG . EQ . FG .

3.9293

3 . 8585

3.7877

3.5000

2 .5000

1.5000

1 . 661 8

1.4412

1 . 2206

3.5000

2.5000

1.5000

3 .9293

3 . 8582

3.7865

3 .5000

2 . 5000

1 . 5000

1.6624

1.4417

1.2209

3.5000

2.5000

1.5000

C1 1.766
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Table A5.5 Results For Inelastic Zone 1-5

Parameter Value

C
P

R
1

R
5

N
1

N5

8
1

A
1

A
5

0.001

1.155

1.002

5.0

1 . 002

50 . 0

0 . 0

1 . 0

0.001

1.155

1 .002

5 . 0

1 .002

200 . 0

0 . 0

1 . 0

Result Curve 1 Curve 2 Curve 1 Curve 2

r 2

R3

R
4

1.1168

1.0785

1.0403

1 . 11G8

1.0785

1.0403

1.11G8

1.0785

1.0403

1.1168

1 . 07B5

1.0403

S

A
4

0 .25882

0 . 5 1 1 7G

0.7588

0.25251

0.50325

0.7523

0.39172

0.68856

0.8910

0.28991

0.55105

0.7867

Q1 

02 

% 

0
4 

°5

0 . 020949

0.02047

0.019997

0.019527

0.019002

-0.020277

-0.020125

-0.019990

-0.01987

-0.0197G6

0.008791

0.006883

0.00499

0.003112

0.001248

-0.006106 

-0 . 0055

-0.004958

-0.004479

-0 . 004063

N2

N3

N4

EQ . FG . EQ . FG . EQ . FG . EQ . FG .

4.9618

4 .9235

4 .8853

3.8000

3.0000

2.4000

1.4988

1 .3332

1.1678

3 .8000

3 . 0000

2.4000

4.9618

4 .9235

4.8853

3.8000

3.0000

2.4000

1 .4 9 88

1 .3332

1 . 1G78

3.8000

3 . 0000

2.4000

C1 2.081

250



Table A5.7 Results For Inelastic Zone 1-5

Parameter Value

C 0.001 0.001
P

R
1 1 . 1 5 5 1 . 155

R
5 1.002 1 .002

N
1 5 . 0 5 . 0

N5 1 .002 1 .002

B
1 50.0 200.0

A1 0 . 0 0 . 0

A5 20 . 0 20 . 0

Result Curve 1 Curve 2 Curve 1 Cur ve 2

R2 1.1168 1 . 1 168 1.1168 1.1168

% 1.0785 1 . 07 85 1.0785 1.0785

R
4 1 . 3 4 03 1 . 04 03 1 . 0 403 1.0403

A2 5 . 00882 5 . 0 0 2 5 1 5.14172 5 .0399 1

1 0 . 01176 1 0 . 0 0 3 2 5 10.18856 10.05105

A
4 1 5 . 0088 15 . 0023 15.141 1 5 . 0367

0
1 0 . 400949 -0 . 400277 0.103791 -0.101106

02 0 . 400470 -0 . 400125 0.101883 - 0 . 1 00500

0
3 0 . 399997 -0 . 399990 0 . 099990 -0 . 099958

0
4 0.399527 -0. 399870 0.098112 -0.099479

% 0.3990G2 -0 . 399766 0 . 09624 8 - 0.099063

EQ . FG . EQ . FG . EQ . FG . EQ . FG .

N2 4.9618 3.8000 1.4988 3.8000 4.9618 3 .8000 1.4988 3.8000

N3 4 .9235 3.0000 1 .3332 3.0000 4 .9235 3 .0000 1.3332 3.0000

\ 4.8853 2.4000 1.1678 2.4000 4 .8853 2.4000 1.1678 2.4000

C1 2.081

251



Table A5.8 Results For Inelastic Zone 1-5

Parameter Value

C
P

R
1

R
5

N
1

N5

B
1

A
1 

%

0.2

1 .358

1.283

5 . 0

4 . 0

50 . 0

0 . 0

1 . 0

0 . 2

1 .358

1.283

5 . 0

4 . 0

200 . 0

0 . 0

1 . 0

Result Curve 1 Curve 2 Curve 1 Curve 2

R2

%

R4

1 .3393

1 .3205

1.3018

1.3393

1.3205

1.3018

1 .3395

1.3205

1 .3020

1 .3395

1 .3205

1 .3020

AZ

A3

\

0 . 257055

0 .509369

0 .756999

0.255988

0 .50794 0

0.755922

0.352899

0 . 639933

0.851990

0 .345836

0 . 627075

0.844774

61

°2

°3

®4

®5

0 .020756

0.020374

0 .0 1 9997

0 . 0 1 9624

0 •. 0 1 9 2 5 6

-0.020642

-0.020317

-0.019996

-0.019682

-0.019372

0.008023

0.006496

0.004988

0.003496

0.002026

-0.007570

-0.006267

-0 . 004986

-0.003726

-0.002487

N2

N3

N4

EQ . FG . EQ . FG . EQ . FG . EQ. FG .

4.9416

4 .8832

4 .8247

4 .9000

4.8500

4.8000

4.2072

4.1382

4.0691

4 .9000

4.8500

4.8000

4.9424

4 .8840

4 .8250

4 .9000

4.8500

4 . 8000

4.2084

4.1394

4.0700

4.9000

4.8500

4 . 8000

C1 1 .087
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Table A5.9 Results For Inelastic Zone 1-5

Paramet e Value

C 0 . 2 0 2
P

R
1 1 . 358 1 358

R
5 1 . n 83 1 283

N
1 5 . 0 5 0

N5 4 . 0 4 0

B
1 50 . 0 200 0

a1 0 . 0 0 0

A
5 20 . 0 20 0

Result Curve 1 Curve 2 Curve 1 Curve 2

Ro c.
1 . 3393 1 . 3393 1.3395 1 .3395

R
3 1 . 3 205 1 . 3205 1 .3208 1.3208

% 1 . 3018 1 3018 1 .3020 1.3020

s 5 . 007055 5 005988 5.112899 5.095836

a3 1 0 . 009369 1 0 . 0 0 7 9 4 1 0 . 1 4 9933 10.127075

A4 1 5 . 006999 1 5 . 005922 15.111998 15.094774

®1 0 . 400756 -0 . 400642 0 . 1 03023 -0 . 1 02570

0
2

0 . 400374 -0 . 4003 1 7 0.101496 -0.101267

% 0 . 399997 -0 . 399996 0 . 0999 88 -0 . 099986

°4 0 . 399624 -0 . 399682 0.098498 -0 . 098726

°5 0 . 399256 - 0 . 399372 0 . 097026 - 0 . 0974 87

EQ . FG . EQ . FG . EQ. FG . EQ . FG .

N2 4.9416 4 .9000 4.2072 4 .9000 4 .9424 4 .9000 4 .2084 4 .9000

N3 4 .8832 4.8500 4.1382 4.8500 4 .8840 4 . 8500 4.1394 4.8500

N
4 4 .8 847 4.8000 4.0691 4.8000 4 .8250 4 .8000 4 . 0700 4.8000

C1 1.087
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Table A5.10 Results For End Segment 1-2 For Inelastic Zone 1-5
Considered In Table A5.4

Parameter Value

C
P

0 . 2 0 .

R
1

1.283 1.283

R n c.
1.2123 1.2123

N
1 4 . 0 4 . 0

N2 3 . 5 3 . 5

8^4 12.5 50 . 0

A
1 0 . 0 0 . 0

s 0 .255587 0 .339377

Result Curve 1 Curve 2 Curve 1 Curve 2

% 1.2653 1 . 2653 1 . 2653 1.2653

R7 1.2476 1 . 247 6 1 .2476 1.2476

% 1 . 2300 1 . 2300 1 . 2300 1.2300

% 0 . 064 249 0 . 064223 0 . 09027 8 0.090066

S 0. 1 2826 1 0 . 128227 0.177168 0.177016

CO
 

<

0 . 1 9 2039 0 . 192013 0 . 2 6 0 118 0.259702

°1 0 .020598 -0 . 020587 0 . 00739 1 -0.007347

°6 0.020522 -0 . 020516 0 . 007086 -0 . 007064

°7 0.020446 -0 . 020446 0 .0067 85 -0.006785

0
8 0.020372 -0 . 020377 0 . 0064 88 -0.006510

°2 0.020299 -0 . 0203 1 0 .006 1 94 -0.006239

EQ . FG . EQ . FG . EQ . FG . EQ. FG .

% 3 .9490 3.9500 3.6654 3 .9500 3 .9490 3 .9500 3.6654 3.9500

N7 3.8979 3.8500 3.6103 3 . 8500 3 . 8979 3.8500 3.6103 3 . 8500

N8 3.8 4 6 8 3.7500 3.5551 3.7500 3.8468 3 .7500 3.5551 3.7000

c
1 1 . 039
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Table A5.11 Results For End Segment 1-2 Of Inelastic Zone 1-5
Considered In Table A5.6

Parameter Value

C
P

R
1

R
2

N
1

N2

B,/4

A1

0.001

1.155

1.1168

5 . 0

3 . 8

12.5

0 . 0

0.25882

0.001

1.155

1.1168

5 . 0

3 . 8

50 . 0

0 . 0

0.39172

Result Curve 1 Curve 2 Curve 1 Curve 2

R6

S

R
8

1.1454

1.1359

1.1263

1.1454

1.1359

1.1263

1.1454

1.1359

1.1263

1.1454

1.1359

1.1263

A6

A7

A8

0.065195

0.13011

0.194615

0.065085

0.13000

0.19460

0 . 1 0582

0 .20656

0.30159

0.10491

0.20515

0.30069

°1

°6

°7

%

°2

0.020946

0.020823

0.020705

0.020587

0.020473

-0.020894

-0.020800

-0.020706

-0.020614

-0.020522

0 . 008783

0.008306

0 .007832

0 .00736 1

0.006893

-0.008583

- 0 . 008205

-0.007831

-0.007461

-0 . 007096

N6

N7

N
8

EQ . FG . EQ. FG . EQ . FG . EQ. FG .

4 .9675

4.9349

4 .9 0 24

4 .7000

4.4000

4.1000

3.9242

3.8830

3.8414

4.7000

4.4000

4.1000

4 .9675

4 .9349

4 .9024

4.7000

4.4000

4.1000

3 .9242

3 .8830

3.8414

4.7000

4.4000

4.1000

C
1 1.128
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1

1.0-

0.5-

(a) Moment Distribution Diagram

0

(b) Deflection Curve

0.
1

0 .02

0.01

0
x

(c) Rotation Distribution Diagram
C = 1.000

N

n

1

5
( 1 ) (2) (3) (4) :s)

I i a ___
0 12.5 25 . 0 37.5 50.0 (mm)

(d) Curvature Distribution Diagram

Fig. A5.2 Deflection Curve And Moment, Rotation And Curvature
Distribution Diagrams For Curves 1 And 2 For Inelastic
Zone Of Length 50.0mm Considered In Table A5.2
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1 X■L

0

(a) Moment Distribution Diagram

(b) Deflection Curve

0.
.I

0 . 4 ---------------------------------------------

0.2

I I
0

x

C = 1.000
(c) Rotation Distribution Diagram

(cl) Curvature Distribution Diagram

Fig. A5.3 Deflection Curve And Moment, Rotation And Curvature
Distribution Diagrams For Curves 1 And 2 For Inelastic
Zone Of Length 50.0mm Considered In Table A5.3
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(a) Moment Distribution Diagram

(b) Deflection Curve

0 .03

x

C = 1 . 7G6
(c) Rotation Distribution Diagram

(d) Curvature Distribution Diagram

Fig. A5.4 Deflection Curve And Moment, Rotation And Curvature
Distribution Diagrams For Curves 1 And 2 For Inelastic
Zone Of Length 50.0mm Considered In Table A5.4
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x
0

(a) Moment Distribution Diagram

(b) Deflection Curve

0 . 2

0
1

C = 1.766
(c) Rotation Distribution Diagram

(d) Curvature Distribution Diagram

Fig. A5.5 Deflection Curve And Moment, Rotation And Curvature
Distribution Diagrams For Curves 1 And 2 For Inelastic
Zone Of Length 50.0mm Considered In Table A5.5
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0
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1 . 0

0 . 5

i 1----------------------------------------- 1------------------------------------------------------------------

(a) Moment Distribution Diagram

(b) Deflection Curve

0 . 03

0.02

0.01

0
x

(c) Rotation Distribution Diagram

(d) Curvature Distribution Diagram

C] = 2.081

Fig. A5.6 Deflection Curve And Moment, Rotation And Curvature
Distribution Diagrams For Curves 1 And 2 For Inelastic
Zone Of Length 50.0mm Considered In Table A5.6
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1 1 X

0 . 5

0

(a) Moment Distribution Diagram

0

(b) Deflection Curve

(c) Rotation Distribution Diagram

(d) Curvature Distribution Diagram

C, = 2.0811

Fig. A5.7 Deflection Curve And Moment, Rotation And Curvature
Distribution Diagrams For Curves 1 And 2 For Inelastic
Zone Of Length 50.0mm Considered In Table A5.7
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R .

(a) Moment Distribution Diagram

0

(b ) Deflection Curve

(c) Rotation Distribution Diagram

1

-

L.

1 1 1 ---------------------------------------------

C, = 1.0871

Fig. A5.8 Deflection Curve And Moment, Rotation And Curvature
Distribution Diagrams For Curves 1 And 2 For Inelastic
Zone Of Length 50.0mm Considered In Table A5.8
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1

(a) Moment Distribution Diagram

0

(b) Deflection Curve

0.
i

1
0 4

0 . 2

1 1 1 X
o

(c) Rotation Distribution Diagram

(d) Curvature Distribution Diagram

C, = 1.0671

Fig. A5.9 Deflection Curve And Moment, Rotation And Curvature
Distribution Diagrams For Curves 1 And 2 For Inelastic
Zone Of Length 12.5mm Considered In Table A5.9
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I

Deflection Curve

Moment Distribution Diagram

0 .03

0 .02

0.01

0

(c) Rotation Distribution Diagram

(d ) Curvature Distribution Diagram

C„ - 1.0391

Fig. A5.10 Deflection Curve And Moment, Rotation And Curvature
Distribution Diagrams For Curves 1 And 2 For Inelastic
Segment Of Length 12.5mm Considered In Table A5.10

264



0

1.5'

1 . 0 -

0 . 5
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0

(b) Deflection Curve

0 . 03

0 .02

0.01

1 x
0

(c) Rotation Distribution Diagram

(cl) Curvature Distribution Diagram

C, = 1.1281

Fig. A5.11 Deflection Curve And Moment, Rotation And Curvature
Distribution Diagrams For Curves 1 And 2 For Inelastic
Segment Of Length 12.5mm Considered In Table A5.11
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Discussion

By examining Figs. A5.2 and A5.3, it is clear that Eqns. (A5.1) 

give accurate values for deflection, rotation and curvature for an 

inelastic zone foi' the ratio, C, = m^/q^ = 1.0. Also by examining Figs. 

A5.4 to A5.11 inclusive, it is clear that as increases above unity, 

due to large differences of either end moments or end curvatures for the 

zone, error is introduced by using Eqns. (A5.1).

The errors in values of deflection and rotation along the zone are 

small and diminish as the rotation due to relative end displacement 

(that is, A/B ) for the zone increases. Also, while improved values of 

deflection and rotation can be obtained by sub-dividing the zone into 

four equal parts, the differences between these values and those 

obtained without sub-division of the zone are small and acceptable.

The relative displacement of the ends of the inelastic zone does 

not affect the curvature variation along the zone (See Eqn. (A5.1c)). 

Thus, the error in curvature values obtained by using Eqn. (A5.1c) is 

not minimized by considering the relative end displacement for the zone. 

The nature of this error is such that at a given cross-section within 

the zone, curvature values obtained for Curve 1 of Fig. A5.1 are higher 

than, and give shapes of curvature distribution diagram different from 

those obtainable from, the true values obtained from Fig. 2.10. By 

contrast, the curvature values obtained for Curve 2 of Fig. A5.1 are 

lower than, and give shapes of curvature distribution diagram similar to 

those obtainable from, the true values obtained from Fig. 2.10. In 

other words, a higher level of error is obtained by using Curve 1 than 

by using Curve 2 of Fig. A5.1. In general, for values of C between 1.0
i

and 1.2, the curvature values for Curves 1 and 2 are reasonably close to 

the true values given in Fig. 2.10. For values of C, greater than 1.2, 
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improved curvature values can be obtained by sub-dividing the inelastic 

zone into smaller segments. Such a refinement of analysis is undertaken

at the expense of much computational, effort. In all cases of analysis,

however, the curvature values for the ends of any inelastic zone are

selected from the moment-curvature- axial force relationships for the

cross-section.

Although this Parametric Study shows differences in curvature

values in certain cases, these do not necessarily translate into 

significant errors in deflections, rotations and tangent flexibility 

coefficients for an inelastic beam-column. This is due to the use of 

exact deflection curve for an elastic zone and to adequate account being 

taken of the deflections of all zone intersection points along the beam-

column at all stages of analysis.
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APPENDIX 6

CONVERSION TABLE

Imperial Unit Equivalent Metric Unit

I in 25.4 mm

1 ft 0.3048 m

1 Ibf 4.448 N

I t o n f 9.964 kN

1 Ibf/ft 14.59 N/m

1 tonf/ft 3 2.69 kN/tn

1 Ibf/in" 0.006895 N/mm2

1 lbf/ft2 47.88 N/m2

2
1 t o n f / i n 15.44 N/mn/

1 tonf/ft2 0.1073 N/mm2

1 Ibf/ft' 157.1 N/m3

1 tonf/ft3 351.9 kN/m3

1 lbf-ft 1.356 N.m

Other Useful Conversions.

1kgf = 9.807N

1 kN = 0.2248 kips

1 k i p = 1000.Olbf

3
1kgf/m = 0.06241bf/ft3
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