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SYNOPSIS

The total wave induced loading on a vertical surface-piercing 

cylinder can be considered to be the sum of the linear drag and 

inertia components, and a number of second order forces. This study 

investigates the second order forces, both theoretically and 

experimentally. The second order waterline, dynamic pressure and 

Stokes' wave forces have each been shown to make a significant 

contribution to the theoretical wave loading under certain conditions.

In the experimental facility used, the wave environment was 

found to include a significant free second harmonic wave. This 

imposed an additional second order force on the test cylinder, which 

was dependent on the amplitude and phase of the free wave. An 

experimental technique has therefore been developed and used to 

deduce the amplitudes and phases of the individual waves present, 

from measured wave records. The wave results highlighted some 

important characteristics of the wave generator and flume.

The wave induced loading on the test cylinders has been 

measured, and analysed by means of a Fast Fourier Transform to 

separate the Fourier components of the force. The measured force 

components were compared with the theoretical forces calculated 

using the measured wave data. The first order force results were 

used to compute values for the drag and inertia coefficients. These 

were in reasonable accord with previous published results.

The theoretical second order force components were the sum 



of a large number of forces, which could not be separated experimentally. 

Numerical comparison between the total theoretical second order force 

components and the measured results showed good agreement in a large 

number of cases. The agreement was less good in those cases where 

the theoretical forces were dominated by the free second harmonic 

wave. Recommendations are made for further experimentation under 

conditions in which the free wave amplitude is minimized.
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CHAPTER 1 - INTRODUCTION

1.1 Background

The severe wave conditions encountered by offshore structures 

and the forces which they impose must be clearly understood, and yet 

simply described, in the development of a useful design technique.

The design wave conditions, statistically determined to 

represent the worst conditions which will occur during the lifetime 

of the structure, are commonly simplified to a regular wavetrain of 

given height and period. Alternatively the use of spectral 

techniques allows the wave environment, and hence the forces imposed 

on the structure, to be represented by a spectral density function. 

The particle kinematics under the wave cannot be exactly described, 

but may be approximated by either a linear or higher order wave 

theory, as appropriate to the wave conditions.

Whatever method is used to determine the particle kinematics, 

the design forces are calculated by Morison's equation. This expression, 

derived by Morison, O'Brien, Johnson and Schaaf ( 1950) in response 

to demand for a simple design formula, expresses the total force 

as the sum of drag and inertia components, each governed by an 

empirical coefficient. A great deal of work has since been done to 

determine suitable values for the drag and inertia coefficients. 

The results have tended to be rather diverse, with the measured 

coefficients depending as much on the way in which they were defined 

and measured, as on anything else.
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The uncertainties involved in the application of Morison's 

equation have lead to the use of large safety factors. As the 

exploration for oil, particularly in the North Sea, pushes out into 

deeper, more hostile conditions, the design can become uneconomical. 

Thus if the oil reserves in these locations are to be fully exploited, 

a better understanding of the wave loading mechanism is essential.

Lighthill (1979) was critical of Morison's equation and its 

assumption that the inertia force arises from the linear interaction 

between the structure and the irrotational flow field, even where the 

fluid kinematics are described by a highly non-linear theory. He 

suggested that the mathematical representation of wave induced 

loading would be improved by the inclusion of a number of second 

order forces, arising from the non-linear interaction between the 

structure and the wave.

1.2 Scope of the Present Study

This study sets out to demonstrate the theoretical derivation 

of Lighthill's second order forces, for the case of a vertical 

surface-piercing cylinder, and to identify them experimentally.

The theoretical description of wave induced loading is extended 

from the linear approximation, given by Morison's equation, by 

considering the effect of a number of second order forces.

The second order-Stokes' wave forces arise from the 

correction to the velocity potential, which results from the 

extension of the wave theory to its second order of approximation.
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The waterline forces (Lighthill) are calculated by taking 

the upper limit of the integration of the elemental forces to be 

the instantaneous free surface, rather than the undisturbed water 

level.

The second order forces which arise from the convective 

acceleration, and from the variation in dynamic pressure (Lighthill), 

are also considered0

The experimental facility used in this study consists of a 

long rectangular wave flume, with a wedge type wavemaker at one end 

and an absorbing beach at the other. The wave environment produced 

in the flume includes a significant free second harmonic wave, which 

imposes an additional second order force on the test cylinder.

In order to determine the amplitudes and phases of the waves 

present in the flume, an experimental technique is developed, based 

on the analysis of wave records by the Fast Fourier Transform. The 

measured wave data is then used to calculate the theoretical force 

components, and at the same time identifies several characteristics 

of the wave generator, the beach and the interaction between the wave 

components.

The wave loading on the test cylinders is measured by means 

of force transducers at the top and bottom. The Fast Fourier 

Transform is used to compute the Fourier compositions of the top and 

bottom end reactions. These allow the Fourier components of the 

resultant force to be evaluated, together with their respective 

depths of action.
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The forces on the cylinder are analysed by considering the 

first, second and third harmonic components separately. The first 

order wave and force results are used to calculate the drag and 

inertia coefficients Cm and Cd* The deviation of these coefficients 

from some previously published results demonstrates the scale effects 

associated with this study, where the Reynolds' numbers are very low.

The first order coefficients are used in conjunction with the 

second order wave data to calculate the theoretical second order 

forces. These are then compared with the measured results. In 

those cases where the agreement is not very good, the discrepancy 

is attributed to the limitations in the experimental set up, 

particularly the presence of the free second harmonic wave.

The measured third order forces are used to test the 

validity of the mathematical expression for the drag force.

It is recognized that the experimental work has covered 

only a limited range of conditions in terms of the Reynolds' number, 

and also that the free second harmonic wave caused problems in a 

number of tests. Further study to explicitly identify the 

second order components requires refinements which are listed in the 

subsequent chapters.
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CHAPTER 2 - LITERATURE SURVEY

2.1_____ Introduction

The state of the art reviews carried out on the subject of 

wave induced loading; Hogben et al.(1977), Sarpkaya and Isaacson 

(1981), have demonstrated that the measurement and prediction of 

wave forces involves two distinct stages.

Firstly, the wave environment must be described in a manner 

which allows certain parameters of the fluid motion, such as the 

velocity field beneath the wave, to be either measured, or predicted 

by a suitable theory.

Secondly, a framework must be developed to relate the forces 

to the wave environment. This framework must correlate measured wave 

force data, and allow the prediction of the forces on structures due 

to other wave environments.

Any sensible review of the literature on the subject must make 

this same distinction. This chapter therefore deals with the 

broader subject of waves and wave hydrodynamics, before considering 

the more specialized area of wave induced loading.

A great deal of work has been done in developing theoretical 

descriptions of wave motion. The various theories are each 

applicable over certain ranges of wave conditions, as governed by 

water depth, wavelength and wave height. Simple theories have been 

developed which are easily applied to give approximate solutions, 
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while higher order theories, which are computationally more 

involved, lead to more accurate solutions.

The situation of waves in a laboratory test facility has 

been extensively researched. The effects of the wave generator and 

the wave flume have been considered both analytically and 

experimentally.

The loading on structures in waves has been of increasing 

interest since the development of offshore oil fields. Morison 

et al.(1950) proposed a simple formula, termed Morison's equation, 

expressing the total load on an element of a vertical cylinder as 

the sum of two components. Since then, much of the work has been 

concentrated on empirical determination of the two coefficients in 

Morison's equation.

Morison's equation has always been subject to the criticism 

that it over-simplifies the true mechanics of the loading. 

Recently Lighthill (1979) has suggested that a number of second 

order effects should be taken into account, in order to give a 

better representation.

2.2_____Wave Hydrodynamics

Much of the classical theoretical work on the hydrodynamics 

of wave motion was carried out in the second half of the last 

century. One of the most important papers of this period was by 

Stokes (1847), reprinted with a supplement in 1880.
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Stokes assumed that waves were propagated without change of 

form, and that the problem could be reduced to one of two dimensions 

for the case of long-crested waves. He further assumed that the 

fluid through which the waves travelled was incompressible, 

homogeneous and inviscid.

The problem was therefore set out as a solution of Laplace's 

equation of continuity, subject to a number of boundary conditions, 

and expressed in terms of the velocity potential. The first of the 

boundary conditions was one of no flow through the rigid bottom on 

which the fluid rested. Two further conditions were applied at 

the free surface of the fluid. One expressed the condition that 

fluid particles initially at the surface remained at the surface, 

and the other was an application of the unsteady state Bernouilli 

equation. These three conditions are referred to as the bottom, 

surface kinematic, and surface dynamic boundary conditions 

respectively.

Stokes solved the problem to a first order of approximation 

by neglecting small quantities such as the squares of the particle 

velocities and the slope of the free surface. In addition he 

applied the surface boundary conditions at the still water level, 

rather than at the unknown free surface position.

This derivation, commonly referred to as small amplitude 

or linear wave theory, predicted the surface profile to be a 

sinusoid travelling in the positive x-directi on without change of 

shape. The velocity potential determined in this solution showed 

that the fluid particles moved in closed orbits, with no net 
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displacement at the end of a complete wave period. The particle 

orbits were shown to be circular in deep water and elliptical in 

water of finite depth, and their amplitude was found to decrease with 

the depth of the particle below the surface.

The celerity of propagation of the waveform was shown to 

depend on the wavelength and water depth, indicating that water 

surface waves represent a dispersive system. In this linear 

approximation, the celerity was found to be independent of the wave 

hei ght.

Stokes extended his solution to a second order of approximation 

by substituting the first order velocity potential into the smaller 

terms neglected in the linear derivation. The surface boundary 

conditions were effectively applied at the instantaneous free surface 

by means of a Taylor's series expansion about the undisturbed water 

level.

The second order solution introduced terms at twice the 

frequency into both the wave profile and velocity potential. The 

second order correction to the wave profile had the effect of 

sharpening the wave crests and flattening the troughs. The particle 

orbits were no longer closed, but there was now a net velocity in 

the positive x-direction, termed the drift or mass transport 

velocity. The linear formula for celerity was shown to be correct 

to the second order of approximation.

Stokes introduced a perturbation technique, which allowed
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the theory to be extended to any order of accuracy, by utlizing 

the result from the proceeding order. However, as Stokes observed, 

this process involved increasingly lengthy mathematical effort at 

the higher orders of approximation.

Standard solutions for Stokes fifth order waves were 

determined by Skjelbreia and Hendrickson (1961). They demonstrated 

that the expressions for the wave profile and the velocity potential 

were Fourier series with twenty unknown coefficients A,B and a 

perturbation parameter X. Explicit expressions were given for each 

of these coefficients and the results were presented in tabular form 

for a range of depth to wavelength ratios.

The authors assumed that the wave would be described in 

terms of the water depth, wave height and period. They gave a pair 

of simultaneous equations to be solved for the wavelength to depth 

ratio and for the perturbation parameter, in order that the 

tabulated results could be used for the Fourier coefficients. As 

noted by Sarpkaya and Isaacson (1981), the development of a computer 

program based on this formulation of Stokes' fifth order wave 

theory would not be unduly difficult.

The requirement for convergence in the Stokes wave expansion 

method is that each term in the velocity potential series is an 

order of magnitude smaller than the preceeding term. This places a 

restriction on the wave height in shallow water, beyond which a 

separate shallow wave expansion must be used.
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Steep waves moving in very shallow water are outside the 

range of the present study, but brief consideration will be given 

to the wave theories appropriate for these conditions. Korteweg 

and de Vries (1895) developed a shallow water wave theory in 

which the wave characteristics were expressed in terms of the 

Jacobian elliptic function, cn. This was termed the cnoidal wave 

theory.

The cnoidal wave theory was derived by changing the horizontal 

and vertical length scales. The vertical ordinate was 'stretched' 

by non-dimensionalizing the vertical and horizontal by the water 

depth and wavelength respectively. A typical cnoidal wave profile 

has short steep crests separated by long flat troughs. Use of the 

elliptic function maintained the periodicity of the wave profile.

A limiting case of the cnoidal wave is one in which the 

crests are so far apart that they can be considered as totally 

separate from one another. In this case the wavelength can be 

considered to be infinite, and the wave will be defined solely by 

the undisturbed water depth and the wave height. Solitary waves, 

as such waves are called, were first reported by Scott Russell 

(1844) on the basis of experimental observation.

A review of work carried out on the cnoidal and solitary 

wave theories, including their extension to higher orders of 

approximation, was given by Sarpkaya and Isaacson (1981).

A numerical method for predicting two dimensional wave

characteristics based on a stream function representation was



11

introduced by Dean (1965). He tackled two separate problems: 

firstly to provide a fit to a measured wave profile, and secondly 

to represent a theoretical wave given by its period, wave height 

and water depth.

The method derived for fitting a measured profile v'as a 

least squares perturbation technique to minimize the errors in both 

the dynamic boundary condition and the fit to the measured profile. 

In each successive iteration small changes were made to the assumed 

wavelength and period and to the Fourier coefficients of the stream 

function expression. After three or four cycles the changes were 

found to be negligible.

In the second problem of a theoretical wave profile, the 

period was not an unknown and the solution was of a slightly different 

form. The stream function representation was shown to have two 

advantages over the velocity potential method. One set of coefficients 

defined all the characteristics of the wave system, and the stream 

function expression exactly satisfied the kinematic free surface 

boundary condition.

Dean compared the velocity potential and stream function 

representations for the particular case of a highly non-linear 

theoretical wave, with both approximations taken to the seventh 

order. The stream function method gave a better fit to the dynamic 

surface boundary conditions, and also resulted in a smoother wave 

profile.
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Dean further demonstrated that the stream function method 

could take account of a uniform current flowing in the x-direction and 

of a pressure distribution at the surface.

With the number of wave theories available, it is important, 

from an engineering point of view, that the ranges of validity of 

each theory should be known. For a particular location, where a 

proposed structure is to be sited, the wave environment may be specified 

in terms of a design wave.

The design wave is generally described by its height, period 

and still water depth. Theoretical and experimental work has been 

carried out to assess which wave theory is appropriate for different 

ratios of these parameters.

Dean (1970) undertook a theoretical comparison of a number

of wave theories on the basis of the fit to the dynamic surface 

boundary condition. He considered waves of between 25% and 100% 

of the breaking height. The wave theories included in Dean's 

study were linear wave theory, third and fifth order Stokes, first 

and second order cnoidal, first and second order solitary, and fifth 

order stream function theory.

Initially considering only the analytical wave theories,

Dean found that Stokes fifth order theory gave the best fit in deep 

water. In shallow water the closest fit was given by first order 

cnoidal theory, while in the intermediate range the linear wave 

theory was most applicable. When the numerical stream function 

theory was included, it was found to give the closest fit to the 
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dynamic surface boundary condition, in all except the very shallowest 

water.

In order to test the justification for using boundary 

condition fit as a guide to the choice of theory, Dean calculated 

the total drag force on a cylinder in the wave using the different 

wave theories. In shallow water he found that the cnoidal and linear 

wave theories, which had both given good fits to the boundary 

condition, gave vastly different estimates for the force. Thus he 

concluded that the boundary condition fit might not be an appropriate 

measure of wave theory validity in shallow water.

Iwagaki and Sakai (1970) compared various wave theories 

in an experimental study of the horizontal particle velocities. Under 

a range of wave conditions, the vertical distribution of horizontal 

velocity under the wave crest was measured by tracing the motion of 

hydrogen bubbles. The time variation of the horizontal velocity at 

a fixed level below the surface was recorded using a pair of hot wire 

anenometers.

These results were compared with the horizontal particle 

velocities predicted by the linear wave theory, Stokes third order 

theory, and hyperbolic wave theory representing an approximation of 

the cnoidal theory.

There was some scatter in the results, but the velocities 

were closely predicted by Stokes third order theory in deep water, 

and by the hyperbolic wave theory in shallow water.
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Chakrabarti (1980b) performed a series of experiments in 

which the horizontal and vertical velocities, together with the 

dynamic pressure, were measured under a range of wave conditions. 

Waves were generated in relatively deep water, then travelled over a 

sloping bottom to a shallower test section. For the shorter waves 

tested, this change in water depth had little or no effect, and the 

measurements made in the test section showed good agreement with 

linear wave theory.

However, for the longer waves, the shoaling bottom caused the 

waves to break down, giving rise to multiple peaks, or solitons, in 

their profiles. These solitons travelled independently of the 

main wave, causing the waveform to vary as it travelled down the 

flume. In comparing these waves with the cnoidal and stream function 

theories, Chakrabarti assumed that the waves were of constant form. 

Thus his results and conclusions are subject to the criticism that 

they have not accounted for the wave conditions existing in the flume.

Other comparisons of the wave theories, as summarized by 

Sarpkaya and Isaacson (1981), generally agree that deep water waves 

are well represented by higher order Stokes or stream function 

theory, and the shallow water waves by cnoidal theory.

2.3______Laboratory Wave Environment

In a laboratory test facility waves are generated at one 

end of a long rectangular flume. The wave environment in the flume 

will be subject to effects caused by the wave generator and by the 

flume itself. Amongst the effects which must be considered are 
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the generation of free second harmonic waves, and the reflection of 

waves from the beach at the far end of the flume.

Havelock (1929) considered waves in which the fluid velocity 

had an assigned value at every point on a given vertical surface. 

These he described as forced waves. The forcing was shown to impose 

an additional boundary condition on the fluid motion. This 

boundary condition was applied on the prescribed surface, which could 

be considered to be the face of a wave generator.

Havelock analysed the important case in which the surface 

oscillated horizontally in simple harmonic motion, representing a 

piston type generator. His solution for this situation, based on 

small amplitude wave theory, introduced an additional term into the 

expressions for both the velocity potential and the surface profile. 

These terms were shown to be large in the immediate vicinity of 

the generator, but to decay exponentially with the distance from it.

Ursell, Dean and Yu (1960) were concerned with the amplitude 

of the waves produced by both piston and paddle type wavemakers. 

Following on from Havelock's (1929) work, they applied the boundary 

condition of no flow through the face of the generator. Their 

solution gave expressions for the ratio of wave heiqht to wavemaker 

stroke for both types of wavemaker. This wave amplitude ratio was 

shown to depend solely on the ratio of wavelength to water depth 

in both cases.

The theoretically derived relationship for the wave 

amplitude ratio was tested experimentally for the piston type wave 
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generator. The results showed that the theory overestimated the wave 

amplitude ratio by between 3% and 10%, increasing with wave steepness.

Madsen (1971) analysed the generation of waves by a piston 

wavemaker to the second order of approximation. By limiting his 

consideration to long waves, he was able to neglect the exponentially 

decaying terms in the velocity potential near the generator. The 

second order velocity potential was assumed to be the sum of two 

components. The first was found by considering the second order 

surface boundary conditions, and consequently corresponded to the 

second order term associated with a Stokes progressive wave. The 

second component was due to a significant non-linear forcing term in 

the wavemaker and was shown to give rise to a free second harmonic 

wave travelling independently of the main wave.

Madsen derived an expression for the amplitude of the free 

second harmonic wave in terms of the first order wave amplitude, 

wavelength and water depth. This was tested experimentally for two 

wave settings by comparing the measured wave profile at two locations 

in the wave flume with the predicted profile. The agreement was 

reasonable for waves of moderate steepness, but not as good for the 

steeper waves.

The author also suggested that introducing a second order 

component into the wavemaker motion should reduce the amplitude of the 

free wave. This was based on the intuitive concept that to generate 

a wave of permanent form, the wavemaker motion should correspond, 

as closely as possible, to the particle motion under the desired wave. 

This was tested experimentally with moderate success.
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Buhr Hansen and Svendsen (1974) analysed the interaction 

between the second order Stokes term and the free second harmonic 

wave. They derived an expression for the theoretical beating effect 

in the total second harmonic motion. The maximum second harmonic 

amplitude was shown to be the sum of the Stokes component and the free 

wave, and the minimum to be the difference.

A series of experiments were carried out in which the 

variation in the second harmonic wave amplitude was recorded. This 

was done by takinq a continuous record of the output from a wave probe 

as it moved slowly down the flume. The output was passed through a 

band-pass filter to remove the first harmonic motion. This gave a 

record of the second harmonic variation, from which the amplitudes of 

the two components could be determined.

The measured value of the second order Stokes component was 

compared to the theoretical value, calculated from the first order 

wave amplitude, for each test run. The agreement was found to be 

reasonable.

The measured second harmonic wave amplitudes were compared 

with the predicted values of Madsen (1971), but showed very poor 

agreement. It was likely that the shallow water assumption made in 

Madsen's derivation was not justified in this case, where the depth 

to wavelength ratio was somewhat greater.

Buhr Hansen and Svendsen were able to make a very considerable 

reduction in the amplitude of the free second harmonic wave by 

including a second harmonic component in the wave generator motion,
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as had been suggested by Madsen (1971).

The generation of waves by a body oscillating in the water 

surface is analytically more complex than generation by a moving 

vertical surface. Possibly for this reason plunger type wavemakers 

are less widely used in laboratory facilities than are pistons or 

paddl es.

Ursell (1949) analysed the simplest case of a circular 

cylinder oscillating in the surface of water of infinite depth. The 

formulation of the problem was similar to that of Havelock (1929), in 

that an additional boundary condition was imposed on the surface of 

the wavemaker. In the case of the oscillating cylinder, this 

boundary condition stated that the velocity component of the fluid 

normal to the boundary was equal to the corresponding component of 

the velocity of the cylinder.

The shape of the boundary made it more convenient to express 

the problem in polar co-ordinates. Ursell used a multipole technique 

to determine an expression for the amplitude of the generated wave at 

a distance from the cylinder. The wave amplitude ratio, in this 

case the ratio of the wave amplitude to the cylinder oscillation 

amplitude, was shown to depend on the ratio of the cylinder radius 

to the wavelength.

Wang (1974) considered plungers of more general shape.

By using a two parameter conformal transformation, he was able to 

represent any plunger shape by its depth, breadth and cross sectional 

area. He showed, similarly to Ursell*s case for the cylinder, that 
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in deep water the wave amplitude ratio for a given plunger geometry 

depended on the ratio of its breadth to the wavelength. He produced 

a series of theoretical curves for wave amplitude ratio, covering a 

range of plunger geometries.

The theoretical relationships were tested experimentally with 

two triangular plungers of different depth to breadth ratio. The 

results showed good agreement over the whole range of wave conditions 

covered.

The theory of wave generation by a plunger type wavemaker 

has not been successfully extended to its second order of approximation 

in any published work. Particularly lacking from the literature is 

any account of the generation of free second harmonic waves or any 

estimation of their amplitudes. This point has been noted by the 

writer, Ellix and Arumugam (1984).

A major problem in any wave flume facility is the dissipation 

of the wave energy at the far end of the flume. This is normally 

achieved by means of a spending beach, which essentially represents 

a gradual reduction in the water depth. The mechanism by which the 

energy is dissipated is generally recognised as being wave breaking, 

which converts the energy into water circulations or heat. Mahony 

and Pritchard (1980) suggested that in cases where the slope of the 

beach was very gradual, viscous effects including bottom friction 

made a significant contribution to the energy dissipation.

Some observers, for example Buhr Hansen and Svendsen (1974), 

produced beach layouts which, they assumed, absorbed all of the wave 
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energy. It is generally accepted however that some energy will be 

reflected in the form of a small wave travelling back down the flume. 

The reflected wave is predominantly of the same frequency as the 

incident wave, and its amplitude is given by a reflection coefficient 

times that of the incident wave.

Eagleson and Dean (1966) discussed the interaction, or 

beating, between the incident and reflected waves, and its effect 

on the particle orbits. The first order wave amplitude was shown 

to vary down the flume between a maximum of the sum of the incident 

and reflected waves, and a minimum of the difference.

A simple procedure, based on measurement of the beating 

effect, was used, for example, by Ursell, Dean and Yu (1960) to 

estimate the amplitudes of the incident and reflected waves. The 

wave amplitude was measured at approximately 25 positions in the 

flume, spread over one wavelength. From the pattern of the variation 

in the wave motion, the amplitudes of the incident and reflected 

waves were easily evaluated.

An alternative technique for estimating the amplitudes of the 

incident and reflected waves was proposed by Goda and Suzuki (1976). 

The procedure was based on the Fast Fourier Transform, and could be 

extended to cover random wave tests.

Expressions were developed for the amplitudes of the 

incident and reflected waves, in terms of the amplitudes and relative 

phases in records taken from two wave probes a small distance apart.
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The technique was tested experimentally for a number of 

regular wave conditions. The amplitudes of the incident and 

reflected waves calculated in this manner compared very well with 

those calculated by the more established maximum and minimum wave 

amplitude method.

Although this technique gave a very rapid estimation of 

the wave amplitudes, it was subject to a number of assumptions and 

limitations. The wavelength was assumed to be known, and the wave 

probe separation could not be a multiple of half the wavelength. 

Because records were only taken at two positions in the flume, the 

results were susceptible to signal noise and randon variations in 

the wave amplitude.

A method chosen by some observers to eliminate the effect 

of reflection is the 'burst' method. In this method, the wavemaker 

is started from rest and produces a small number of waves. All 

observations are made in the unsteady conditions before any 

reflected waves have had time to return to the test section. 

Madsen (1970) considered the variability of the wave height in a 

short burst of approximately 15 waves. He experimentally observed 

the wave height to be unstable, and in particular noted that the 

first and last waves were considerably larger than the others.

Madsen derived a relationship between the height of a 

given wave and the steady wave height which would be present if the 

generator was left running. This remains, however, a difficult 

method to use, and most observers prefer to make small corrections 

to their results to allow for the reflected wave.
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2.4_____Wave Loading

In response to demand for a design formula for the loading 

on offshore structures due to waves, Morison et al.(1950) proposed 

a formula in which the total force on an element of a vertical 

cylinder was expressed as the sum of two components. The first 

component was a drag force, having a similar form to the steady flow 

situation, and proportional to the square of the fluid velocity. 

The drag force was represented by a drag coefficient C^, which it 

was expected, would assume substantially the same value as for 

steady flow.

The second force component was due to the pressure field 

causing the fluid acceleration. This force was proportional to the 

accelerative force exerted on the mass of water displaced by the 

cylinder. A coefficient was introduced into the expression for this 

force to account for the added mass effects of the flow of water 

around the cylinder. This was termed the coefficient of mass, 

Cm, later referred to as the inertia coefficient.

A major criticism of Morison's equation is that it assumes 

that the two force components are respectively equal to zero at the 

instants of zero velocity and acceleration in the wave cycle. 

Morison et al. conducted a series of experiments in which the total 

moment exerted on a vertical cylinder was recorded over a number of 

wave cycles. The measured moments at the times of zero velocity 

and acceleration, as determined from the wave profile and linear 

theory, were used to evaluate Cm and Cd respectively. In spite of 

the foregoing criticism, the authors found that the remainder of 
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the moment trace, calculated using these coefficients, agreed very 

well with the measured trace.

Morison's equation has been, and remains, the main technique 

used in the estimation of wave forces on structures, in cases where 

the structure is small relative to the wavelength. Where the size of 

the structure becomes a greater proportion of the wavelength, 

scattering effects become significant and a diffraction technique, 

such as that of MacCamy and Fuchs (1954), must be employed. The use 

of diffraction theory to estimate the wave forces on large bodies 

was examined at length by Sarpkaya and Isaacson (1981), and will not 

be considered further in this review.

The widespread use of Morison's equation has led to great 

interest in ascertaining appropriate values for the drag and inertia 

coefficients. In the absence of any adequate theoretical description, 

the coefficients have been determined by a variety of experimental 

techniques. The experimental programmes undertaken can be broadly 

classified into three categories.

In the most fundamental series of experiments, the complex 

kinematics of the fluid under a wave were replaced by a simple 

harmonic oscillation of water past the body. This was achieved by 

Sarpkaya (.1976) by oscillating water in a U-tube past a fixed 

cylinder, and by Garrison et al.(1977) by moving a cylinder through 

still water. This form of experimentation is subject to the 

criticism that the kinematics are oversimplified and that the 

results obtained cannot be applied directly to waves. It has, 

however, allowed the wave force mechanism to be tested over a wide 
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range of simulated conditions.

Experiments carried out under laboratory wave conditions give 

a better representation of the wave structure interaction. In tests, 

such as those of Chakrabarti et al.(1976) on vertical cylinders, the 

particle kinematics can be described by a suitable wave theory. 

These experiments are carried out under controlled repeatable 

conditions, but are subject to significant scale effects.

Several studies have been carried out to measure the forces 

exerted on a test structure under actual sea conditions. The test 

structures were located some distance offshore and the loading under 

storm conditions was recorded. These real sea tests give a good 

representation of wave forces under the conditions which a prototype 

structure would encounter. The results are, however, difficult to 

correlate, because the wave environment is highly irregular, and 

subject to currents of unknown magnitude.

A critical review of the work on the determination of 

Morison's coefficients was presented by Hogben, Miller, Searle and 

Ward (1977). They considered the range of test conditions covered, 

the trends and scatter in the results for Cm and Cd, and recommended 

values to be taken under various wave conditions. A few of the 

important papers are discussed below.

Keulegan and Carpenter (1958) carried out a series of 

experiments to investigate the dependence of the Morison coefficients 

on the period parameter. This parameter, which subsequent 

observers termed the Keulegan Carpenter number, KC, expressed the 
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ratio of the particle motion to the cylinder diameter. Their 

experiments were carried out with horizontal cylinders positioned under 

the node of a standing wave. Since the fluid motion was assumed to 

be uni-directional and simple harmonic, this study fits into the 

same category as the later U-tube experiments.

The Keulegan Carpenter number is an important parameter in 

assessing the relative magnitudes of the drag and inertia forces. 

For constant drag and inertia coefficients, the ratio of drag to 

inertia force is directly proportional to KC. Thus at low values of 

KC the inertia force dominates, while at higher values the loading is 

predominantly drag.

The results for Cm and indicated the existence of a 

critical Keulegan Carpenter number at which Cm reached a minimum, 

while Cd was at its maximum. The authors gave a physical 

explanation for this in terms of separation effects. This was based 

on an examination of the eddy shedding frequency, and was supported 

by flow visualization tests.

At low values of KC, no vortices were shed during the wave 

cycle. The drag coefficient was therefore relatively low, while 

the inertia coefficient approximated to its theoretical values of 2. I 

Conversely at very high values of KC, a continuous von Karman !

street of vortices was shed from alternate sides of the cylinder. 

Under these conditions the drag coefficient tended towards its 

steady flow value. The critical Keulegan Carpenter number was 

shown to correspond to the formation and shedding of a single eddy 

in each half cycle.
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Keulegan and Carpenter stated that they could find no trend 

with Reynolds' Number, Re, in either of the coefficients. However, 

their results were re-analysed by Sarpkaya (1976a) using an additional 

dimensionless variable known as the frequency parameter, 8, which is 

the ratio of the Reynolds' number to the Keulegan Carpenter number. 

In this way, Sarpkaya was able to show that the results of Keulegan 

and Carpenter for Cm and C^ did indeed have clearly defined trends 

with Reynolds' number.

Sarpkaya performed a series of experiments in which the forces 

on cylinders, due to the harmonically oscillating flow in a U-tube, 

were measured. The use of the frequency parameter as an intermediate 

step in assessing Reynolds' number dependence was very convenient 

for Sarpkaya, and for other observers carrying out U-tube experiments. 

The period of oscillation was constant for any given U-tube arrangement, 

thus the frequency parameter varied solely with the cylinder diameter.

Sarpkaya was able to identify the variation of the Morison 

coefficients with both KC and Re. As the Reynolds' number increased, 

the drag coefficient reduced to a minimum, the value of which 

depended on KC, and then began to increase with further increases in 

Re. The inertia coefficient was found to increase with Re, reach 

a maximum, and then gradually approach a constant value of about 1.75. 

The two coefficients were found to be independent of Reynolds' 

number for values below about 20,000, which may explain the 

conclusions reached by Keulegan and Carpenter. Sarpkaya's results 

for the variation of Cm and C^ with KC showed very much the same 

trends as those of Keulegan and Carpenter.
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The variations of the two coefficients with Reynolds' number 

was independently observed by Garrison, Field and May (1977) at 

about the same time as Sarpkaya. They carried out a series of 

tests in which a cylinder was oscillated through still water. The 

hydrodynamics were somewhat different in this case, in that the 

pressure field due to fluid acceleration was absent. Thus there 

was no Froude-Krylov force, and the inertia force was due solely 

to added mass effects. The effective inertia coefficient recorded in 

this arrangement was equivalent to Cm - 1.

The advantage of this set up was that the speed of the 

oscillation could be varied while its amplitude was left unchanged. 

In this way a range of Reynolds' numbers could be covered for constant 

values of the Keulegan Carpenter number.

After making allowance for the hydrodynamic differences, 

the results of Garrison et al. for the variation of Cm and Crf with 

Re were substantially the same as those of Sarpkaya (1976).

Maull and Milliner (1978) adopted a different approach in the 

analysis of their U-tube force results. They proposed the use of a 

total force coefficient expressing the non-dimensionalized r.m.s. 

force on the cylinder. Two possible non-dimensionalising 

parameters were considered, differing by a factor of KC squared. 

Depending on which parameter was chosen, the total force coefficient 

would tend to infinity at either very high or very low values of the 

Keulegan Carpenter number. Choosing the former option, the authors 

developed an expression relating the total force coefficient Cp 

to the Morison coefficients Cm and Cj.
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Maul! and Milliner demonstrated that their measured results 

for Cp were consistent with the use of constant values of Cm and C^, 

of 2.0 and 1.45, throughout the range of Keulegan Carpenter numbers 

used. The implication of this finding was that the r.m.s. value 

of total force was less susceptible to changes in Cm and 

with KC, than were the individual drag and inertia components.

A series of experiments were carried out by Chakrabarti, 

Wolbert and Tam (1976) and Chakrabarti (1980a) in which the forces 

on vertical cylinders under laboratory wave conditions were measured. 

The loading in short test sections of the cylinder at depths below 

the water surface was recorded under a range of wave conditions. 

From the measured wave profile the particle kinematics at the depths 

of the test sections were calculated, using linear wave theory in the 

earlier study, and stream function theory in the later. For each 

set of results the Morison coefficients, Keulegan Carpenter and 

Reynolds' numbers were calculated.

The authors compared their results for Cm and C^ against 

Keulegan Carpenter number with those of Sarpkaya (1976a), taken from 

his U-tube results for a similar range in Reynolds' number. They 

found that the values of the drag coefficient from the two classes 

of experiments showed very good agreement for Keulegan Carpenter 

numbers below about 40. There was, however, considerable 

discrepancy in the values of Cm for Keulegan Carpenter numbers less 

than 15. The inertia coefficient measured in the wave tests was 

appreciably higher than was found in the uni-directional flow tests.
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In both studies Chakrabarti (et al.) found that the range 

of Reynolds' number covered was too small, and the scatter in the 

results too great, for the variation of the Morison coefficients 

with Reynolds' number to be inferred.

The total force on the cylinder was measured, and compared 

with a value calculated from the observed drag and inertia coefficients. 

In calculating the total integrated force on the cylinder, the drag 

and inertia coefficients were taken as functions of KC, and allowed 

to vary over the length of the cylinder. The correlation between the 

measured and calculated force was found to be very good.

Jen (1968) was concerned with the wave forces on a vertical 

cylinder in the inertia dominated regime. Fourier analysis was 

used to separate the total loading into in-phase and quadrature 

components at the first five harmonics of the wave frequency. The 

first order quadrature component was used in conjunction with 

linear wave theory to evaluate the inertia coefficient. Cm did not 

vary significantly from its theoretical value, and the r.m.s. force 

on the cylinder was in good agreement with that calculated assuming 

pure inertia loading and a coefficient of 2.0.

In his consideration of the drag loading, Jen did not 

attempt to evaluate C^. The r.m.s. drag force was calculated as 

the sum of all of the Fourier components not attributable to inertia 

loading, and was shown to be far smaller than the inertia force.

It is interesting to note that the author offered no 

explanation for the second harmonic quadrature force component, which 
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under some wave conditions was quite significant.

The use of the drag and inertia coefficients obtained from 

uni-directional flow tests for the estimation of the forces on vertical 

cylinders under wave conditions was criticised by Ramberg and 

Niedzwecki (1979). Their main criticism was of the assumption of 

constant Cm and along the length of the cylinder. The authors 

were also critical of the use of parameters, such as the Keulegan 

Carpenter number, calculated using particle velocities at the still 

water level. Drag and inertia coefficients assumed from the 

surface Keulegan Carpenter number could be inappropriate for the 

overall loading situation.

A small number of tests were carried out in which the drag 

and inertia coefficients were determined from the wave loading 

on a vertical cylinder. These coefficients were compared with 

Sarpkaya's (1976a) U-tube results for similar values of the 

Keulegan Carpenter number and the frequency parameter. The U-tube 

results were significantly greater than the wave results, with the 

overprediction principally in the drag constribution. The 

discrepancy in the inertia loading was successfully removed by 

allowing for a linear variation of Cm with depth. This was not 

possible in the case of the drag loading. The authors gave a 

possible explanation for the large difference between the observed 

and predicted drag force, this being the variation in velocity along 

the cylinder length.

Stansby, Bullock and Short (1983) undertook a comparison 

between the force coefficients obtained from tests in U-tubes and 
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those from vertical cylinders in waves. Their results, taken from 

short sections of a vertical cylinder under wave loading, were 

compared with the corresponding results of Sarpkaya (1976a). In 

their comparison, the authors introduced the orbital shape 

parameter, expressing the ratio of the amplitudes of the vertical 

and horizontal particle velocities. This parameter varied between 

1.0 in deep water waves and 0.0 in U-tubes.

The results showed a clear trend for the variation of the 

drag coefficient with the orbital shape parameter. Under shallow 

water wave conditions, with low values of JV , the two values for 

were in good agreement, while in deep water, as approached 

unity, C,-] was up to 50% lower in waves than in the U-tube. The 

authors' results for Cm displayed a broad band of scatter around 

Sarpkaya's values, from which no obvious trends could be inferred.

To eliminate the scatter in Cm and the results were also 

compared in terms of the r.m.s. total force coefficient Cp. With 

the exception of the case where the particle orbits were very nearly 

circular, the wave test and U-tube values for Cp were in very good 

agreement. In the deep water conditions, however, with-^-equal to 

0.9, Cp was some 25% below the equivalent U-tube value.

The experimental programmes which have been carried out to 

measure the loading on test structures under real sea conditions 

have tended to entail the gathering of data over the course of a 

number of months or years. For this reason such projects have been 

very expensive, and usually jointly funded by oil companies and 

governmental departments. The major problem in all of these test 
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programmes has been in correlating the measured wave profile and 

force data.

Evans (1969) reported two programmes of experiments performed 

in the Gulf of Mexico between 1954 and 1963. Two techniques were 

used in computing the drag and inertia force coefficients, both of 

which analysed the data one wave at a time. In the first method 

Cm and Cj were calculated from points in the wave cycle at which 

the particle velocity and acceleration, as given by the wave profile 

and Stokes' fifth order wave theory, were respectively assumed to be 

zero. The second method was a least squares fit of the Morison 

coefficients to the measured forces over each full wave cycle.

The results obtained for Cm and by both techniques showed 

extreme scatter, and the author was unable to correlate the results 

with either Keulegan Carpenter or Reynolds' number. The only useful 

way in which the results could be presented was as probability 

distributions of the Morison coefficients with the number of waves 

observed. From these, mean and modal values of Cm and Cd were 

presented.

Other reports of real sea tests, for example Wiegel, Beebe 

and Moon (1957), have noted similar scatter in the measured forces 

and force coefficients. The uncertainty in the results places a 

severe limitation on the viability of using the real sea environment 

for full scale testing.

The major defect in any laboratory tests carried out on wave 

induced loading is the effect of scale on the Reynolds' number. The 
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Reynolds' number is the most important parameter governing the 

separation of the boundary layer and the formation of a wake, and 

has a strong influence on the drag coefficient in both steady 

and oscillating flow. Typical laboratory Reynolds' numbers are two 

or three orders of magnitude smaller than occur for the prototype 

under real loading conditions. Thus drag coefficients obtained 

from laboratory tests may not be applicable for the design of 

offshore structures.

A series of experiments were carried out at the Hydraulics 

Research Station (1981) which attempted to simulate high Reynolds' 

numbers in small scale tests. The authors noted that at Re higher 

than a critical value of approximately 2 x 105, the flow is fully 

turbulent and becomes independent of Reynolds' number. 

Following the success of earlier work in steady flow, they attempted 

to 'trip' the boundary layer into turbulence at lower values of the 

Reynolds' number, by means of small wires attached along the length 

of the cylinder.

The tests were carried out in a U-tube and covered a variety 

of trip wire diameters and configurations. The results showed that 

under certain conditions the critical value of Reynolds' number could 

be reduced. However, they did not match the success of the steady 

flow tests, and the critical Reynolds' number could not be reduced 

below 1 x 10$.

An additional series of experiments were carried out which 

attempted to introduce turbulence by injecting water into the boundary 

layer. This was done by applying a static head of water through the 
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porous surface of the cylinder. The results of this were most 

disappointing and had no measurable effect on the drag coefficient.

It has been noted that once a structure has been located 

offshore, it can quickly become encrusted with marine growth. This 

growth has two effects on the structural members - an increase in 

effective diameter, and a roughening of the surface. Provided that 

an estimate can be made of the total build up, the increased 

diameter can easily be accounted for in the calculation of the 

loading on the member. The surface roughness, however, can greatly 

effect the mechanics of the wave loading, and may be best accounted 

for by making appropriate corrections to the drag and inertia 

coefficients.

Sarpkaya (1976b) conducted a series of experiments in which 

the forces on artificially roughened cylinders were measured in 

harmonically oscillating flow. The roughness was achieved by 

attaching grains of sand to the cylinder surface. A range of 

relative roughnesses, expressing the ratio of sand grain to cylinder 

diameter, of between 1/800 and 1/50 was covered. The effect of 

surface roughness on the drag and inertia coefficients was quite 

marked.

The drag coefficient was found to reach a minimum value at a 

lower value of Reynolds1 number than for the smooth cylinder. The 

value of at this critical Reynolds' number increased with 

increasing relative roughness. At larger values of Re, the drag 

coefficient increased rapidly before reaching a steady value 

considerably higher than for the smooth cylinder.
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The inertia coefficient for the roughened cylinders had a 

maximum value at the Reynolds' number corresponding to minimum 

in each case. At high Reynolds' numbers, the inertia 

coefficient tended towards a value somewhat lower than the smooth 

cylinder case, with the difference increasing with relative roughness.

Gaston and Ohmart (1979) carried out experiments to examine 

the effect of surface roughness on the wave loading on vertical 

cylinders. They found the drag coefficient to be significantly 

effected by roughness, having a value almost twice as high for 

rough as for smooth cylinders. Most of the increase in occurred 

for the initial transition between smooth and rough cylinders, with 

further increases in relative roughness having little effect. The 

inertia coefficient was less sensitive to surface roughness, being 

only a few percent higher for rough than for smooth cylinders.

The force on a body under wave motion or oscillatory flow, 

acting in the direction of the motion, is known as the in line 

or longitudinal force. In addition to this, there is a force 

perpendicular to the motion called the transverse or lift force. 

The lift force arises from the asymmetric shedding of vortices from 

the surface of the body. In analogy with the in line drag force, 

the lift force is considered to be proportional to the particle 

velocity squared, and is governed by the lift coefficient C^.

One of the earliest studies of lift forces was by Bidde (1971). 

The development of the lift force was considered in terms of the 

eddy shedding regimes, as observed with flow visualization. At very 
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low Keulegan Carpenter numbers, no separation occurred, and hence 

no lift force was expected. As KC increased, a single eddy was 

shed from one side of the cylinder, marking the onset of lift. 

For larger values of KC a clear von Karman street of vortices 

became visible, before turbulence in the surface disguised the 

pattern of eddies.

Bidde conducted a series of experiments in which the 

longitudinal and lift forces on a vertical cylinder were recorded. 

The results were presented as the ratio of maximum lift to 

longitudinal force. As had been expected, no lift force was 

recorded for Keulegan Carpenter numbers below approximately 4. 

Above this value of KC, the lift force increased, reaching a maximum 

of 60% of the longitudinal force in some cases. The results 

indicated that the lift force may have reached a peak at KC of 

about 15, but there were insufficient results above this value for 

any precise conclusions to be drawn.

Isaacson and Maull (1976) presented what they considered to 

be an extension of Bidde's work on lift forces. The results of 

their study were presented in the form of the r.m.s. lift coefficient. 

The lift coefficient was found to be zero for KC less than 5, reach 

a peak value for KC of about 12, and approach a steady value of 

about 0.3 at higher Keulegan Carpenter numbers. The peak value of 

the lift coefficient varied between 0.5 and 1.2, and was dependent 

on the relative water depth. This water depth dependence was 

explained by the variation of KC along the length of the cylinder, 

and by the use of surface values in its determination.
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The authors undertook a Fourier analysis of the lift force 

in order to establish its frequency composition. They found that 

for KC less than 15, the lift force was predominantly at twice the 

incident wave frequency. The third harmonic was the major component 

for Keulegan Carpenter numbers between 15 and 25, which was the 

upper limit of the observations. They suggested that the ratio of 

the lift frequency to the wave frequency would be given by N+l, where 

N was the number of vortices shed in each half wave cycle.

The fundamental physical mechanisms givinq rise to forces 

on structures in waves were considered at length by Lighthill (1979). 

The fluid motion around the structure was analysed into two components, 

the first of which was the irrotational flow field, which described 

the wave in the absence of the structure. The second component was 

the vortex motion, associated with any vorticity which had been shed 

from the surface of the structure, and which contained the 'memory' 

of the fluid.

Lighthill was critical of the use of Morison's equation and 

its assumption that the inertia force was due to the linear interaction 

between the irrotational flow field and the structure. In Morison's 

formulation the drag force was associated with the increase in the 

kinetic enerqy of the vortex motion. Even where the irrotational 

flow had been described by a higher order theory, it was assumed 

to interact linearly with the structure to give the inertia force. 

Thus any non-linearities in the wave loading were associated with 

the shed vorticity and hence with the drag force. The author 

suggested that there were non-linearities in the force arising from 

the irrotational flow, and that to ignore them would lead to a
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false estimate for the drag coefficient.

Lighthill derived two main second order forces from the 

non-linear interaction between a surface - piercing structure and 

the irrotational flow field. These were shown to exist even when 

the wave was decribed by linear theory. The largest of these forces, 

the waterline force, was due to the integration of the pressure 

between the still water level and the instantaneous free surface. 

The second of Lighthill's forces was caused by the horizontal gradient 

of the particle velocity, and was given by the resultant of the 

dynamic pressure actinq over the body's surface. The second order 

forces were calculated for the simple case of a vertical surface-

piercing cylinder in deep water. With a moderately steep wave, the 

second order forces amounted to almost 20% of the first order 

inertia force, and attributing all non-linearities to drag implied a 

doubling of C^.

For submerged bodies, such as vertical elements and horizontal 

cylinders, the waterline force is not present and Lighthill's 

correction reduces to the dynamic pressure force. In harmonically 

oscillating flow, there is no horizontal gradient of velocity, and 

neither of the second order forces is present. Thus any experimental 

study aimed at identifying the two non-linear force components must 

involve the measurement of the forces on a surface-piercing cylinder 

under wave action. No reports have yet been published of work 

carried out with this intention.
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CHAPTER 3 - THEORETICAL DEVELOPMENT

This chapter deals with the theoretical background to the 

present study. Consideration is given to the development of wave 

theory to a suitable order of approximation, and to the flume effects 

of reflected and free second harmonic waves. The theoretical 

expression for the wave loading on a vertical surface-piercing 

cylinder is developed from the linear Morison's equation. Each of 

the additional force components, including those due to the 

reflected and free waves and those proposed by Lighthill (1979) is 

considered in turn, in order to derive the total non-linear loading.

3.1 _____ Wave Theory

3.1.1 Choice of Wave Theory

The ranges of wave conditions, under which the various 

available wave theories are appropriate, are governed by the ratios 

of water depth, wave height and period. A typical representation of 

the ranges of validity is shown in Figure 3.2. This has been taken 

from Sarpkaya and Isaacson (1981) after Le Mehaute (1976), with only 

the analytical theories considered. The range of wave conditions 

covered in this study are also shown. The clear indication is that 

Stokes' second order theory would be the most appropriate in this 

case.

A further indication of which wave theory should be applied
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comes from the results of Iwagaki and Sakai (1970). Their results, 

from the experimental measurement of horizontal particle velocities, 

showed that for values of the dimensionless parameter T(g/h)i less 

than 10, Stokes' third order theory gave the best representation. 

In the estimation of wave forces on vertical cylinders, it is the 

horizontal velocity which is the most important feature of the wave 

motion. Since the largest value of T(g/h)2 in this study is 7.5, 

Stokes' third order theory would seem to be appropriate. However, 

for waves whose steepness is much less than the breaking limit, the 

third order correction to the horizontal velocity becomes negligible, 

and second order theory gives an identical result.

Thus the ideal wave theory for the present study is Stokes' 

second order approximation.

3.1.2 Linear Have Theory

Linear wave theory represents a first approximation to the 

theoretical description of wave behaviour. The problem is formulated 

as a solution of Laplace's equation of continuity, subject to a 

number of boundary conditions. Assuming it to be irrotational, the 

fluid motion is described by the velocity potential, such that;

u = - ; v = - 9^ (3-1)
3X ay

The equation of continuity states that the rate of flow into 

an elemental space equals the rate of flow out. Assuming the flow 

to be two-dimensional;
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3U
3X

+ av =0 
ay

for all (x,y)

3 + a2^ = 0
9X2 ay2

(3-2)

The bottom boundary condition is one of no flow through 

the solid bottom on which the fluid rests. Thus, the vertical 

velocity must be zero at y = -h;

9^ = 0 @ y = -h
9y

(3-3)

The kinematic free surface boundary condition states that 

there is no flow across the surface, i.e. that particles at the 

surface remain at the surface. This condition is imposed by 

equating the vertical velocity of the particles in the surface with 

that of the surface.

dy =
dt

dn @ y = n

Noting that,

dn = 9n + an 9x
dt at ax at

gives,

-84> = 9n 3n 94> 0 y = n (3-4)
ay at ax ax

The dynamic free surface boundary condition represents an 

application of the unsteady-state Bernoulli equation.
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P + u2 + v2 + y - 1 a^ = 0 @ y = n
pg 2g g at

Variations in the atmospheric pressure will be very small 

for changes in n, thus the pressure term, P, at the surface will be 

negligible. Then;

n 1 (21 " 1((21')2 + f2£\2u @ y - n
g kat 2 ax' W'

(3-5)

In linear theory, the amplitude of the wave is assumed to be 

small, and the two free surface boundary conditions are simplified. 

The slope of the free surface, 21, is assumed to be negligible for all 
a x

values of x. Additionally it is assumed that the water particle
3d) 3d)velocities, — and —, are small and hence that their squares are 

negligible. The boundary conditions are further simplified by applying 

them not at the (unknown) free surface position, y = n, but at the 

still water level, y = 0. Thus the linearized surface boundary 

conditions become;

- 3$ = 9n @ y = 0
ay at

n = J/ x @ y = 0 
g ( 9t'

(3-4a)

(3-5a)

The general solution of Laplace's equation (3-2) is found by 

a separation of variables to give <f> as a function of x, y and t. 

Applying the bottom (3-3), and dynamic free surface (3-5a) boundary 

conditions then yield the solution;
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ajcos(kx - cot)

- 9aj cosh k(y+h) sin(kx - cot) 
co cosh kh

(3-6)

The velocities in the fluid under the wave are then given

by

U = - == a[gk cosh k(y+h) cos(kx - cot)
9X CO cosh kh

(3-8)

V = - =-- aTgk sinh k(y+h) sin(kx - cot)
sy co cosh kh

The physical significance of this result is that the 

surface profile is represented by a sinusoid travelling in the 

positive x-direction. The trajectories of the fluid particles are 

given by closed ellipses (circles in deep water) whose amplitudes 

decay with depth below the surface.

Consideration of the kinematic free surface boundary 

condition (3-4a) gives an expression for the celerity at which the 

waveform travels;

c2 = io2 = g tanh kh (3-9)
k2 k

Equation (3-9) is the dispersion relationship and expresses 

the fact that waves of different wavelengths travel at different 

celerities. In general, longer waves travel faster then shorter
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waves, and any wave travels faster in deep than in shallow water.

3.1.3 Stokes1 Second Order Theory

In proceeding to the second order of approximation, the first 

order solution for $ (3-7) is substituted into the smaller terms 

neglected in the linearization of the surface boundary conditions 

(3-4) and (3-5). A Taylor's series expansion is used to effectively 

apply these boundary conditions at a second order approximation of the 

instantaneous free surface position. A detailed mathematical 

derivation has been given, for example, by Dean and Eagleson (1966), 

and only the result will be considered here. The solution becomes;

n = ajcos(kx - cot) + a2cos2(kx - cot) (3-10)

where a2 = cosh kh(2 + cosh 2kh) kaj2

4 sinh3kh

<J> = <f>1 + (j)2= " 9aj cosh k(y+h) sin(kx - cot)

co cosh kh

- coaj2 cosh 2k(y+h) sin2(kx - cot) (3-11)
8 sinh4 * * * 8 kh

c2 = £ tanh kh (3-9)
k

The horizontal particle velocity becomes;

u = uj + u2 = aT£k cosh k(y+h) cos(kx - cot) 
co cosh kh

+ _3 kcoaj2 cosh 2k(y+h) cos2(kx - wt)
4 sinh^kh

(3-12)
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Second Order Wave Profiles

Figure 33
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The effect of the a2 term on the surface profile is to 

sharpen the wave crests and to flatten the troughs. The scale of the 

effect depends on the ratio a2/aj, as is demonstrated in Figure 3.3. 

For a2/aj greater than 0.25, Stokes' second order wave theory predicts 

a secondary crest at the centre of the wave trough. Such large 

values of a2 arise where the wave is very steep, and therefore 

beyond the limit of validity of second order theory.

The second order expression for the celerity is identical to 

the first order expression (3-9). Thus, to the second order of 

approximation, the wave celerity is independent of the height of the 

wave.

Another feature of second order progressive waves is the 

occurrence of a mean drift of the particles in the direction of 

propagation. This mass transport arises from an inbalance in the 

flux of the motion over a complete wave cycle. The elevation of the 

fluid at a crest is greater than the depression at a trough. Thus 

the total horizontal flux beneath the crest will exceed that beneath 

the trough, and on average a net mass transport will occur. The use 

of a Lagrangian co-ordinate system, which follows the motion of an 

individual particle, gives an expression for the mass transport 

velocity;

u^ = c(kaT)2 cosh 2k(y+h) (3-13)
2s i nh2kh

In a closed system, such as a wave flume, this expression would 

imply a gradual build up of water at one end. Since this situation 

cannot exist in reality, the net drift of the water is assumed to 
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be balanced by a uniform current flowing in the opposite direction.

The mass transport velocity at the free surface in a wave flume 

is therefore given by;

11^ = c(ka j)2 (cosh 2kh - sinh 2kh) (3-14)
2sinh2kh 2kh

3.1.4 Wave Flume Effects

In the generation of waves by an oscillating piston, paddle 

or wedge, the fluid velocity is defined at all times for all points 

on the wavemaker surface. This imposes an additional boundary 

condition on the solution for the velocity potential, and the waves 

produced are called forced waves.

In the linear solutions of Ursell, Dean and Yu (1960) for 

pistons and paddles, and Wang (1974) for wedges, the additional 

boundary condition gave rise to an expression for the wave amplitude, 

ap The wave amplitude in each case was found to be directly 

proportional to the amplitude of the wavemaker motion and dependent 

on the wavelength, water depth and wavemaker geometry. For example, 

for a wedge type wavemaker in deep water;

aj = WA • f(kb, b/d) (3-15)

where WA is the amplitude of the wedge oscillation.

In the second order approximation the wavemaker boundary 

condition becomes incompatible with the Stokes' form of velocity 

potential (3-11). The discrepancy in the second order component of 
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the velocity potential gives rise to a linear wave a twice the 

fundamental frequency

n22 = a22cos(k22X - 2wt + 6) (3-16)

^22 = “S22g cosh k22(y+h) sin(k22x ~ 2wt + 6) (3-17)
2u) cosh k22h

This wave, termed the free second harmonic wave, travels 

independently at a celerity which is given by the dispersion 

relationship and which is somewhat slower than the main wave

= ( B = B tanh k«h <3-18)

An expression for the amplitude of the free second harmonic 

wave produced by a piston wavemaker was given by Madsen (1971). No 

such derivation has been given for a22 in the case of a wedge, but it 

is expected to be a function of wedge amplitude, water depth and 

frequency.

An additional feature of wave flume testing is the occurrence 

of a reflected wave travelling in the negative x-direction. This 

wave is caused by the imperfect absorption of the incident wave 

energy by the beach at the far end of the flume. The main component 

of the reflected wave is at the fundamental incident wave frequency, 

and it travels with a celerity equal and opposite to that of the 

incident wave. Because the reflected wave is generally small, it is 

assumed to be adequately described by linear wave theory.
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Thus,

nR = aR cos(kx + wt + a) (3-19)

= aR9 coshk(y+h) sin(kx + cot + a) (3-20)
~ cosh kh

The amplitudes of the incident and reflected waves are 

related by the reflection coefficient;

Kr — aR x 100% (3-21)

The reflection coefficient depends on water depth, wave-

length, wave height and beach geometry. In the absence of any 

accurate theoretical description, KR must be found empirically for 

each wave flume and set of experiments.

A second reflected wave component occurs at twice the

fundamental frequency. This may be the result of energy transfer 

between the harmonics in the mechanism of wave absorption, and/or 

reflection of the incident second harmonic components. The reflected 

free second harmonic wave travels at a celerity equal and opposite to 

that of the incident free second harmonic wave. The amplitude of this 

wave is very small and linear theory applies;

h22R ” a22R C0S(k22x + 2u)t + y) (3-22)

The total wave motion in a wave flume therefore consists 
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of a second order Stokes' wave, whose amplitude is proportional to the 

wavemaker amplitude, a free second harmonic wave, and reflected waves 

at both the fundamental and second harmonic frequencies.

3.2 Linearized Wave Loading

3.2.1____ Morison's Equation

The total force exerted on a vertical cylinder by surface 

wave action is found by initially considering a small element, <5y, of the 

cylinder at a depth below the free surface. The force on this element 

will be due to its response to a fluctuating fluid velocity. Where 

the cylinder diameter is small relative to the wavelength and 

scattering effects are negligible, Morison et al. (1950) suggested 

that the force on the element is the instantaneous summation of two 

distinct components.

The first of the force components is the drag force, 

analogous to the drag force on a body in uniform flow. This force 

acts over the frontal area of the element, D x 6y, and is 

proportional to the square of the instantaneous fluid velocity, u2. 

It is caused by separation of the flow from some point on the cylinder 

surface, creating a low pressure region behind it. The position at 

which separation occurs, the way in which it occurs, and the 

resultant wake width all influence the pressure difference and hence 

the drag force. A major difference between wave motion and uniform 

flow is that the wave is swept back past the cylinder each time the 

flow reverses. These effects are accounted for by the introduction of
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an empirical drag coefficient Cd. Thus;

Fd = MdD6y u |u| (3-23)

with u2 being replaced by u|u| to maintain the 

directionality of the drag force.

The second component is the inertia force which is 

proportional to the instantaneous fluid acceleration, • 

The acceleration causes a pressure gradient in the fluid which 

acts on the displaced volume, V = tt D2/4 x 6y, of the element. The 

Froude-Krylov part of the inertia force has a similar form to the 

buoyancy force acting on a submerged body, and is given by the mass 

of fluid displaced by the element times the acceleration, pV .

In addition, the acceleration of the fluid increases the 

kinetic energy of the flow field around the cylinder. This in turn 

imposes a force on the cylinder, which is given by Ma (see Lamb 

(1932) Art. 68). The result of this is that the pressure 

distribution caused by the acceleration effectively acts on a mass 

greater than the displaced mass of the fluid. Ma is therefore 

termed the added mass, and the total inertia force on the element 

becomes;

Fi = M + Ma) ir (3-24)

In ideal flow Ma is equal to pV, but in practice it is 

accounted for by an empirical coefficient of mass, Cm also 

referred to as the inertia coefficient
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pv
(3-25)

Thus;

Fi = CmpV au
3t

= p tt D2 Cm au. <5y (3-26)
4 3t

The summation of the drag and inertia forces gives

Morison's equation for the force on a vertical element due to wave

motion;

Fe = ^d + ^i “ spC^D u | u | <5y + pt t D2 8u 6y (3-27)
4 at

In the simplest application of Morison's equation for wave 

forces, the wave is assumed to be of small amplitude, and therefore 

to be described by linear wave theory

n = cos(kx - cot)

u = a^gk cosh k(y+h) cos(kx - cot)

co cosh kh

(3-6)

(3-8)

Assuming the origin of x to be positioned at the centre 

line of the cylinder, the kx term can be omitted and the particle 

kinematics are given by;
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u - aj-gk cosh k(y+h) cos wt 
w cos'h' kh'

3u = - Sj-gk cosh k(y+h) sin wt
cosh kh

(3-28)

Thus the elemental drag and inertia forces become;

Fd = gpCfjD a^k cosh k(y+h)^2 cos wt | coswt 16y 

io cosh kh

(3-29)

Fj = - ptt D2 Cm aj gk cosh k(y+h) sin cot 6y 
cosh kh

(3-30)

The total drag and inertia forces are found by integration of 

the elemental forces between the bottom and the surface. In the 

linear approximation the surface is taken as the still water level, 

y=0.

(3-31)

In the above expression the coefficients Cm and are

taken to vary with depth, i.e. to be functions of y, and are therefore 

placed inside the integrals. Conversely if the coefficients are 

assumed to be constant over the length of the cylinder, an assumption 

which may be necessary if their vertical distributions are unknown, 

they may be left outside the integrals. Evaluation of the integrals 

in this case gives;

FD = j_ pCjDaj2g ( sinh 2kh + 2kh j coscot | coscot | (3-32)
4 sinh 2kh
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XI 01
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THEORETICAL FORCES ON 25.0mm CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 500.0mm; Freq= .60Hz; WL = 3244.1mm; Wave Amp= 30.0mm

DIMENSIONLESS PARAMETERS: KC= 7.91; ka = .058; kh= .968

LOW KEULEGAN CARPENTER NUMBER: INERTIA FORCE DOMINATES

F igure 3-4



- 56 -

THEORETICAL FORCES ON 6.0mm CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 500.0mm; Freq= .60Hz; WL = 3244.1mm; Wave Amp= 30.0mm

DIMENSIONLESS PARAMETERS: KC= 32.98; ka= .058; kh= .968

HIGH KEULEGAN CARPENTER NUMBER: DRAG FORCE DOMINATES

Figure 3-5
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WAVE CONDITIONS: h= 500.0mm; Freq = .90Hz; WL = 1811.1mm; Wave Amp= 30.0mm

DIMENSIONLESS PARAMETERS: KC= 20.33; ka= .104; kh= 1.735

MID RANGE KEULEGAN CARPENTER NUMBER: FD &< FI OF SIMILAR MAGNITUDE

Figure 3-6
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FI = - ptt D2 cmajg tanh kh sin wt
4

(3-33)

The time variations of the drag and inertia forces, as

given by (3-32) and (3-33), are demonstrated in Figures 3.4 to 3.6.

3.2.2 Drag and Inertia Regimes

In assessing the relative importance of the drag and inertia 

forces under given conditions, it should be noted that the drag force 

(3-29) contains the term Daj2, while the inertia force (3-30) includes 

D2ap Thus, if all other parameters are unchanged, the drag force 

becomes more important for increases in the ratio aj/D. The ratio of 

drag to inertia force on an element depends on a dimensionless period 

parameter known as the Keulegan Carpenter number.

KC = umT (3-34)

nr

For an element of a vertical cylinder at a depth below the 

surface subject to linear wave action, the Keulegan Carpenter number 

is given by;

KC = 2^ cosh k(y+h)
D sinh kh

(3-35)

The ratio of maximum drag to inertia force on the element

is given by;
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^dmax = 2a; C^ cosh k(y+h)

F.imax tt D Cm sinh kh

= KC Cd
TT2 Cm

(3-36)

In assigning an equivalent parameter governing the total 

force on a vertical cylinder, it has been common practice to use the 

Keulegan Carpenter number calculated using free surface values for 

um, (see Ramberg and Niedzwecki (1979)).

KCS 2^a J

D tanh kh

(3-37)

The use of this parameter does not, however, account for the 

vertical distribution of the forces, and it does not uniquely define 

the ratio of the total drag and inertia forces. Identical values of 

KCS can result from quite different wave conditions. In this study 

an alternative parameter, KCI, is proposed, such that the ratio of 

total drag to inertia force on the cylinder is given by an equation 

of the same form as that for an element (3-36). Thus;

FD = KCI fdmax
FI TT2 Cmmax m

From (3-32) and (3-33);

(3-38)

FD = C , aT (sinh 2kh + 2kh) (3-39)
max a 1

^max sinh2 khCjT| 2tt D



- 60 -

Thus;

KCI = (sinh 2kh + 2kh) (3-40)

2D sinh2 kh

In the shallow water limit, the expressions for KCS and KCI 

are identical, since KC does not vary with depth. Conversely in deep 

water, KCI has only half the value of KCS. The use of KCI is a 

convenient technique for assessing an1integrated average1 value of 

the Keulegan Carpenter number for a vertical cylinder.

The effect of the Keulegan Carpenter number on the relative 

magnitudes of the drag and inertia forces is demonstrated in the 

total force traces in Figures 3.4 to 3.6. The total drag and 

inertia forces on a vertical cylinder have been determined for the 

given wave conditions and with assumed values of Cm and Cj. The 

values given for the Keulegan Carpenter number have been calculated 

as KCI (3-40). At values of KC less than about 8, the loading is 

inertia dominated, while for KC greater than 30 the drag force 

dominates. At intermediate Keulegan Carpenter numbers the drag 

and inertia forces are of the same order of magnitude.

3.3______Non-linear Force Components

In the foregoing analysis of wave loading using Morison's 

equation, certain simplifying assumptions and linearizations were made. 

This section examines these assumptions and derives a number of 

additional force components. Some of the forces discussed below, 
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such as that due to the free second harmonic wave, are perfectly 

linear, but are an order of magnitude smaller than the first 

order Morison forces. The other force components are non-linear 

for one of two reasons. Some, such as the second order Stokes' wave 

force, are due to the interaction between the cylinder and a 

non-linear wave component. Others, such as the waterline force, are 

due to the non-linear interaction between the cylinder and the 

linear wave kinematics.

Since each of these force components represents a correction 

to the simplified Morison's equation, it is convenient to collect 

them all together under the general heading of "non-linear". They 

are considered individually, and each constitutes a second order 

correction to the loading. Cross terms, such as the waterline line 

force due to the second order Stokes' wave, are considered to be of a 

higher order and are not taken into account.

3.3.1 Forces Due to Second Order Stokes' Have

In Section 3.2.1, the wave kinematics were assumed to be 

described by linear theory. If the second order approximation is 

considered;

<P = -gay cosh k(y+h) sin(kx - tot)

io cosh kh

-3 way2 cosh 2k(y+h) sin 2(kx - tot)
8 sinh^kh
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Taking origin of x at the cylinder, the particle kinematics will be

given by;

u = a^gk cosh k(y+h) coswt 

to cosh kh

+ 3 coa^k cosh 2k(y+h) cos 2cot

4 sinh4 kh
(3-41)

8u = - ajgk cosh k(y+h) s incot
8t cosh kh

_3 w2aj2k cosh 2k(y+h) sin 2cot (3-42)
2 sinh4kh

o UThe second order terms in the expressions for u and

effect the drag and inertia forces. In evaluating the correction to 

the inertia force it is noted that the force varies linearly with the 

instantaneous acceleration. Thus the total inertia force will be 

modified by the inclusion of a component due to the second term in

(3-42)-

FI2 = - 3 p^D2Cmio2aT2 sinh 2kh sin 2wt (3-43)16 m 1

The correction of the drag force is complicated by the 

fact that it does not vary linearly with u, but is proportional to 

u|u|. In the second order approximation,

u u ( a^gk cosh k(y+h)

co cosh kh

coscot + 3 coaj2k cosh k(y+h) cos 2cot)

4 sinh4 kh

x| ajgk cosh k(y+h) cos cot 

co cosh kh

(3-44)
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THEORETICAL FORCES ON 12.0mm CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 500.0mm; Freq= .60Hz; WL = 3244. 1mm; Wave Amp= 30.0mm

DIMENSIONLESS PARAMETERS: KC= 16.49; ka= .058; kh= .968

DEMONSTRATING EFFECT OF STOKES 2ND ORDER WAVE: A2= 2.541mm

Figure 37
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THEORETICAL FORCES ON 12.0mm CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 500.0mm; Freq= .90Hz; WL = 1811.1mm; Wave Amp= 45.0mm

DIMENSIONLESS PARAMETERS: KC= 15.25; ka = .156; kh= 1.735

DEMONSTRATING EFFECT OF STOKES 2ND ORDER WAVE: A2= 4.483mm

L

F i gure 3-8
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The modulus term in equation (3-44) means that it cannot be 

expanded directly. A non-rigorous simplification of trignometric 

expressions of this form has been developed and is presented in 

Appendix 3. This gives the approximate result;

(a cose + f(e))|a cose + f(e)

= a2cose|cose| + 2af(e)|cose (3-45)

provided f << a.

Using this simplification for (3-44);

u|u| = (a^gk cosh k(y+h))2cos iot|coswt

a) cosh kh

+ 2a^gk cosh k(y+h) x 3 coa^k cosh 2k(y+h) cos2wt|coscot 

u cosh kh 4 sinh^kh

(3-46)

The first term in (3-46) in recognizable as being exactly 

the expression for u|u| under a linear wave. Thus the correction to 

the drag force arises from the second term and gives, for the total 

force on the cylinder;

FD2 = pCjDaj3gk (sinh 3kh 4- 3 sinh kh) cos2cot|coscot 
8 cosh kh sinh4kh

(3-47)

The effect of the second order wave on the drag, inertia

and total forces on a vertical cylinder is demonstrated in Figures 3.7 

and 3.8. In Figure 3.7, the water is relatively shallow, kh less than 1,
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and the second order correction to the velocity potential is 

significant. Under these conditions the second order drag and 

inertia forces are as much as 10% of the linear forces. As the 

relative water depth, kh, increases the second order component of the 

velocity potential decreases. Under the conditions in Figure 3.8, 

the correction to the surface profile, a2, is significant, but the 

second order force components are very small.

Thus, the second order corrections to the drag and inertia 

forces are most important where the water depth to wavelength ratio 

is small.

3.3.2_____Convective Acceleration

In the expression for the inertia force on a vertical

element (3-26), the acceleration is
8 Ulocal component, . However, the

is the sum of the local

assumed to be given solely by the

total acceleration in the fluid

and convective components.

du = gu + u 8u + v 8u (3-48)
dt 3t 9x 9y

Using linear wave theory to describe the particle

kinematics, the two components of the convective acceleration are given 

by;

2
U 3U.

9x
a^-gk cosh k(y+h) 

w cosh kh
k coswt s incot 3-49)

(

2
v 9u = aTgk sinh k(y+h) k coscot sincot

— ( 1....................................)
co cosh kh

(3-50)
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If the inertia force is taken to be proportional to the

total rather than the local acceleration, the force due to the

convenctive acceleration must be included

o r
,u 3u + v a_u dy
( ax ay'

= ptt D2 C„aT2gk . kh . sin 2u)t— m 1 (sinh 2kh> (3-51)

The magnitude of the convective acceleration force is 

found by considering the deep and shallow water limits of (3-51). In 

intermediate to deep water, as kh increases, the value of kh/sinh 2 kh 

rapidly approaches zero and the convective acceleration force vanishes. 

In shallow water the ratio of FCA to FI is found from (3-33) and (3-51) 

to be proportional to the wave steepness, ka^

FCA = kar (3-52)
FI 2

The convective acceleration force under the steepest shallow 

water wave conditions covered by the present study is shown in 

Figure 3.9. This demonstrates that FCA can be neglected throught the 

study.

An alternative formulation for the convective acceleration 

force was given by Isaacson (1979). He noted that the force due to 

the vertical component of the horizontal convective acceleration,
s uv —, would not include any added mass effects. Thus the
sy

convective acceleration force would be given by;
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FI

(mN)

FD

(mN)

X101

THEORETICAL FORCES ON 25.0mm CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 500.0mm; f=req= .60Hz; WL= 3244.1mm; Wave Amp= 40.0mm

DIMENSIONLESS PARAMETERS: KC= 10.55; ka= .077; kh= .968

DEMONSTRATING EFFECT OF CONVECTIVE ACCELERATION

Figure 3-9
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for Cm = 2.0 (3.53)

Where is unknown the expression for FCA' is less readily 

determined. Also the presence of FCA' as a force varying with 

sin 2wt, and having a vertical distribution approximately given by 

cosh2k(y+h), make it experimentally inseperable from the dynamic 

pressure force described below. For these reasons the convective 

acceleration force is assumed to be given by the first expression (3-51) 

and is therefore taken to be negligible.

3.3.3 Waterline Force

A major assumption was made in assigning the limits for the 

integration of the elemental force components in (3-31). This was 

that the force distributions could be taken to act up to the 

undisturbed water level, y=0, rather than to the instantaneous level, 

y=n. The force distributions in the surface region were shown by 

Lighthill (1979) to produce a second order force, which he called the 

waterline force. This force was evaluated by integrating the transient 

and hydrostatic pressures around the cylinder in the region y=0 to

y=n.
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A more simplistic approach was suggested by Verley (1975), 

and this has been adopted in the derivation below. The particle 

velocity and acceleration, calculated at the undisturbed water level 

are considered to act on an element of variable height, n = SjCoswt. 

Noting that n is, at different times, positive and negative;

FWD = ^pCdDnu0|u0

COS2cot I COScot (3-54)

FWI = ptt D2 Cm n 9uo
4 St

= - pt t D2 Cm aj2gk sin 2cot
8

(3-55)

Lighthill's expression for the waterline force was of the same form 

as FWI (3-55), except that Cm was given by its theoretical value of 

2.0. A discrepancy arises at this point from the fact that Lighthill 

did not consider the drag force in the waterline region and hence 

found no force equivalent to FWD. However, Lighthill's work covered 

the inertia dominated regime, in which small corrections to the 

drag force would have little effect on the total loading.

The effect of the waterline force on the total loading is 

demonstrated in Figures 3.10 to 3.12. Where the wave steepness is very 

small, as in Figure 3.10, the waterline region is a correspondingly 

small proportion of the total length of the cylinder. The waterline 

force is not therefore a significant part of the total loading. 

In Figures 3.11 and 3.12 the wave is considerably steeper and the 

waterline components have a marked effect on the drag and inertia
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THEORETICAL FORCES ON 6.0mm CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 500.0mm; Freq= .60Hz; WL= 3244.1mm; Wave Amp= 20.0mm

DIMENSIONLESS PARAMETERS: KC= 21.98; ka= .039; kh= .968

DEM0NSTRATIN6 EFFECT OF WATERLINE FORCE

Figure 340
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THEORETICAL FORCES ON 6.0mm CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 500.0mm; Freq= 1.20Hz; WL= 1077.9mm; Wave Amp= ■10.0mm

DIMENSIONLESS PARAMETERS: KC= 21.79; ka = .233; kh= 2.915

F igure 3-11

DEMONSTRATING EFFECT OF WATERLINE FORCE
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THEORETICAL FORCES ON 25.0mm CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 500.0mm; Freq= 1.20HzJ WL = 1077.9mm; Wave Amp = 40.0mm

DIMENSIONLESS PARAMETERS: KC= 5.23; ka = .233; kh= 2.915 

DEMONSTRATING EFFECT OF WATERLINE FORCE

Figure 3-12
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forces. The waterline inertia force does not effect the peak

value of FI as much as it does the phases of the maximum and minimum 

values. FWD is positive for all values of cot and hence imposes a net 

time-averaged force on the cylinder as well as a fluctuating component. 

At high Keulegan Carpenter number, Figure 3.11, the waterline force 

is dominated by FWD , while at lower KC, Figure 3.12, the inertia 

component is most significant.

3.3.4 Dynamic Pressure

Lighthill (1979) proposed the existence of an additional 

non-linear force given by the resultant of the dynamic pressure 

acting on the cylinder. This is due to the horizontal gradient of 

horizontal velocity, — , causing the velocity, and hence the dynamic8 X 
pressure, to vary around the cylinder.

Consider a point P on the circumference of an element

of the cylinder, described in polar co-ordinates by the angle

between its radius and the wave direction as shown in Figure 3.13.

The dynamic pressure at P is;

Pd = (u - D 3u cos e)2
2 3X

(3-56)
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_____________________ __________________Local
Veloci ties 

U- Dlu u u + Dlu
2 ^x 2 ^x

Dynamic Pressure Variation

Figure 3-13

The resultant force on the element due to the dynamic 

pressure is found by integrating the longitudinal component of 

around the circumference;

2 IT
f

Jp(u

0

D 8u cos e)2 _D cose do 6y
2 3X 2

= - pt t D2 u ou 6y
4 3x

(3-57)
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THEORETICAL FORCES ON 25.0mm CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 500.0mm; Freq = 1.20Hzj WL= 1077.9mm; Wave Amp= 60.0mm

DIMENSIONLESS PARAMETERS: KC= 7.8-1; ka= .350; kh= 2.915

DEMONSTRATING EFFECT OF DYNAMIC PRESSURE

Figure 3-14
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The total dynamic pressure force on the cylinder is found

by integrating Fdp over its length. Assuming the kinematics to be

described by linear wave theory;

o
f

FDP = I - pirD2 u 8u dy
J 4 ax

-h

= - ptt D2 aj2gk (sinh 2kh + 2kh) sin 2cot
16 sinh 2kh

(3-58)

The effect of the dynamic pressure force is shown in Figure 3.14. 

The correction to the total loading is of the same form as that of the 

waterline inertia force, but is somewhat smaller. The ratio of the 

forces FDP to FWI depends on the values of Cm and kh, and equals 0.25 

for ideal flow in deep water.

3.3.5 Forces Due to Reflected Wave

The presence of the reflected wave

nD = aDcos(kx + cot + a) (3-19)
K K

introduces an additional term into the first order velocity potential;

p' = Pi + = - a^g cosh k(y+h) sin(kx - wt)

co cosh kh

+ aRg cosh k(y+h) sin(kx + cot + a) (3-59)
cosh kh 
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With the cylinder positioned at the origin of x, the particle 

kinematics are given by;

u = ux + Up = a^gk cosh k(y+h) cos cot 
w cosh kh 

- aRgk cosh k(y+h) cos(wt + a) 

co cosh kh

(3-60)

- - a.gk cosh k (y+h) sincot + aRgk cosh k(y+h) sin(cot + a)
9t cosh kh cosh kh

(3-61)

In assessing the effect of the reflect wave on the loading, 

the observations made in Section 3.3.1, regarding the linearity of 

the inertia force and the dependence of the drag force on u|u|, are 

noted. The expression derived from (3-60) for u|u| is simplified using 

(3-45), and the forces due to the reflected wave are given by;

(3-62)

FIR = pivD2 C an g tanhkh sin(wt + a)- ---- m R 3 ' 
4

(3-63)

The form of the correction to the loading due to FDR and

FIR depends on the phase angle, a, while the magnitude of the 

effect is proportional to the reflection coefficient, Kp. The effect 

of the reflected wave on the total force on a vertical cylinder is 

shown in Figures 3.15 to 3.17 for different values of a, and for a 

reflection coefficient of 10%.
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THEORETICAL FORCES ON 9.0mm CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 500.0mm; Freq= .90Hz; WL= 1811.1mm; Wave Amp= 30.0mm

DIMENSIONLESS PARAMETERS: KC= 13.56; ka= .104; kh= 1.735

DEMONSTRATING EFFECT OF REFLECTED WAVE: KR= 10.0k; ALPHA= .000Rads

Figure 3 J 5
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THEORETICAL FORCES ON 9.0mm CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 500.0mm; Freq= .90Hz; WL= 1811.1mm; Wave Amp= 30.0mm

DIMENSIONLESS PARAMETERS: KC= 13.56; ka = .104; kh= 1.735

DEMONSTRATING EFFECT OF REFLECTED WAVE: KR= 10.0k; ALPHA= 3.l42Rads

Figure 3 J 6
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THEORETICAL FORCES ON 9.0mm CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 500.0mm; Freq= .90Hz; WL= 1811.1mm; rfave Amp= 30.0mm

DIMENSIONLESS PARAMETERS: KC= 13.56; ka = .104; kh= 1.735

DEMONSTRATING EFFECT OF REFLECTED WAVE: KR= 10.02; ALPHA= 1.571Rads

Figure 3 17
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For a=0, Figure 3.15, the incident and reflected waves 

are in phase at the cylinder position, and the amplitude of the 

wave motion at this point is the sum of a^ and aR. Although the 

wave amplitude at the cylinder is increased by the reflected wave, 

the force on the cylinder is significantly reduced. Conversely 

for a=7T, Figure 3.16, the wave amplitude at the cylinder is reduced 

to aj-aR, while the force is increased by a similar ratio.

For intermediate values of a, Figure 3.17, the reflected 

wave changes the phases of the drag and inertia forces as measured 

not only relative to the incident wave but also to the total wave 

motion.

Thus in determining the effect of the reflected wave on the 

loading, the phase angle between the incident and reflected waves is 

at least as important a factor as the amplitude of the reflected 

wave.

3.3.6 Forces Due to Free Second Harmonic Wave

In order to ascertain the forces due to the free second 

harmonic wave, the velocity potential is taken as;

<j) = (j)1 + <j)22 = - a^g cosh k(y+h) sin(kx - cot)
~ cosh kh

- a22a cosh k22(y+h) sin(k22x - 2cot + B)

2co cosh k22h (3-64)
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The particle kinematics are;

u = Uj + u22 = a^gk cosh k(y+h) coswt

co cosh kh

+ a22gk22coshk22(y+h) cos(2u)t - B) (3-65)
2co cosh k22h

au = - a,gk cosh k(y+h) sincot - a22gk22 cosh k22(y+h) sin(2wt - b)
at --------------- ------------------

cosh kh cosh k22h

(3-66)

The expression attained for ulul is simplified by the 

relationship (3-45), and the total forces on the cylinder due to the 

free second harmonic wave are given by;

FD22 - 1 p Cd D aj a22g k22
4 —---------------- --------sinh kh cosh k22h

sinh(k22+ k)h + sinh(k22 - k)h

(k22+ k) (k22- k)
)

X COS (2cot - B) | COSoot (3-67)

FI22 = - puD2 C a22g tanh k22h sin(2cot - B) (3-68)

The effect of the free second harmonic wave on the total wave

loading depends on the phase angle, B, and its magnitude on the

amplitude, a22. This is demonstrated in Figures 3.18 to 3.20 for 

different values of B.
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THEORETICAL FORCES ON 9.0mm CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 500.0mm; Freq= .60Hz; WL = 3244.1mm; Wave Amp= 20.0mm

DIMENSIONLESS PARAMETERS: KC= 14.66; ka = .039; kh= .968

DEMONSTRATING EFFECT OF FREE 2ND WAVE: A22= 1.50mm; BETA = .000Rads

Figure 3-18
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THEORETICAL FORCES ON 9.0mm CYLINDER; CM= 2.0; CD=

WAVE CONDITIONS: h= 500.0mm; Freq= .60Hz; WL = 3244.1mm; Wave

DIMENSIONLESS PARAMETERS: KC= 14.66; ka = .039; kh= .968

DEMONSTRATING EFFECT OF FREE 2ND WAVE: A22= 1.50mm; BETA= 3.l42Rads

Figure 3-19



FI

(mN)

X101

THEORETICAL FORCES ON 25.0mm CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 500.0mm; Freq= ,60Hz; WL= 3244. 1mm; Wave Amp= 20.0mm

DIMENSIONLESS PARAMETERS: KC= 5.28; ka = .039; kh= .958

DEMONSTRATING EFFECT OF FREE 2ND WAVE: A22= 1.50mm; BETA= 1.57lRads

F1gure 3 20
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Where 3=0, Figure 3.18, the main and free waves are in 

phase and the forces due to the free wave have a similar form to 

those due to the second order Stokes' wave, Figure 3.7. However, 

where the waves are in antiphase, Figure 3.19, the effect of the free 

wave is completely opposite to that of the Stokes' wave.

At intermediate values of 3, the magnitude and phase of the 

second order force correction could lead to wrong conclusions being 

drawn if the free wave was not accounted for. For example at high 

Keulegan Carpenter number, Figure 3.20, FI22 has a large cos2wt 

component which could be wrongly attributed to second order drag 

effects.

3.4______Total Loading

3.4.1 Depths of Action of Force Components

Each of the force components described above, with the 

exception of the waterline force, has a vertical distribution 

depending on the mechanism producing it. For example, the linear drag 

force has a distribution of the same shape as that of the square of 

the horizontal particle velocity, cosh2k(y+h). The effective depth 

of action of each force component is determined by equating the 

moment due to the force distribution with the moment due to the 

resultant force, as is demonstrated in Figure 3.21.
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F acts through centroid of distribution

Effective Depth of Action

Figure 3-21

Consider any one of the force components. The force on an

element is given by,

Fe = A f(y) (3-69)

where f(y) represents the vertical distribution. 

The total force is;
o

F = A f(y)dy
-h

(3-70)

and the total moment about y=0 is given by;

o
M = A f(y)y dy

-h

(3-71)
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If the resultant force acts at a depth of y=y, then;

Fy = M

0
y = M = f(y)y dy

F -h
0

f(y) dy
-h

(3-72)

For each of the force components, the distribution f(y) is 

known, and the effective depth of action is found from (3-72).

The results of this are presented in Table 3.1.
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Force ComDonent Depth of action (y)

FI, FIR -1 + 1
k tanh kh k sinh kh

FD, FDR, FDP 1 / -2(kh)2 - cosh 2kh + 1
2k sinh 2kh + 2kh

FI2 -1 + 1
2 k tanh 2kh 2k s'inh 2kh

FD2 1 ( cosh kh - cosh 3kh + 10 < 
k 9 sinh kh + 3 sinh 3kh

R4I, FWD 0.0

FI22 -1_______ +
k22 tanh k22 h

1
k22 sinh k22h

FD22 (1 - cosh(k22-k)h) + (1 - cosh(k22+k)h)

(k22 - k)2 (k22 + k)2

sinh(k22 - k)h + sinh(k22 + k)h 

k22 - k k22 + k

Depths of Action of Force Components

Table 3.1
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3.4.2 Frequency Composition of Force Components

In assessing the total load on the cylinder, it is necessary 

to know the frequency compositions of the force components. This is 

relatively simple for the inertia components, since most of the 

terms are either sin wt or sin 2wt. The phase angles, a and B, in the 

reflected and free wave inertia forces are accounted for by;

sin(wt + a) = sin wt cosa + cos wt sina (3-73)

The drag loading, however, is complicated by the presence of 

terms such as cos wt|cos wt|. Even the first order drag force in 

Figure 3.5 has a distinctly non-linear time variation due to this term. 

A Fourier series for cos wt|cos wt| is derived by considering it to 

be the product of cos2wt and a cosine square wave. The cosine square 

wave is a function which has a value of unity for positive values of 

cos wt, and minus unity for negative cos wt. The Fourier series for 

a cosine square wave is given by;

4 cos wt - 4 cos 3wt + _4_
5tt

cos 5wt - 4 cos 7wt + .......
7 7TTT 3 IT

Thus;

COS wt|COS wt|

= cos2wt x square wave

= 8 cos wt + 8 cos 3wt - 8 cos 5wt + .... (3-74)
3lT 1 5 IT 105tt

In a similar manner the Fourier series for the other drag 

force components have been determined and these are presented in 

Table 3.2.
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Force
Component

FD

FD2

FWD

FDR

f(lx't) Fourier Series

COScot | COScot | 8 COScot + 8 cos3(jt - 8 COs5cot

3 tt 1 5tt 10 5tt

COS2cot COScotI 2 + 28 cos2(jjt + 76 cos4uot
3 TT 1 5 TT 10 5tt

COS2wt COScot | 8
6 IT

+ 8
5 IT

cos2cot + 8
35tt

cos4wt

COS (cot+a) | COSoot I 8 COScot COSa - 4 si ncotsinct
3tt 3 TT

+8 COS3cotCOSa - 4 si n3cotsi na

151T 5 TT

-8 COS5cotCOSa + 4 sin5ootsina

105tt 21 tt

FD22 COS (2cot-e ) I COScot 2 cosg + 28 cos2cotcosg + 32 sin2wtsinB
3tt  1 5tt  1 5tt

+ 76 cos4cotcosB + 64 sin4wtsinB
1O5tt  105-tt

Fourier Series for Drag Force Components

Table 3.2
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3.4.3 Total Non-Linear Loading

The total wave loading on a vertical cylinder is assumed 

to be given by the simple summation of the linear and non-linear 

force components. The resultant and depth of action of each of the 

Fourier components of the total force are found by consideration of 

the Fourier Series of the force components. For example the 

cos 2u>t component of the total force is the resultant of appropriate 

proportions of FWD, FD2, FD22 and FI22.

In taking the simple summation of the drag force components, 

the relationship (3-45) is assumed to be applicable where f(e) is 

the sum of a number of trigonemetrical terms. In Appendix 3, this is 

shown to be the case provided the total value of f(e) remains small 

relative to a. The full expression for u|u| becomes;

u|u| - (Ui + Up + U£ + U22)IUj + Up + U2 + U22I

= U] |Uj | + 2up|u;| + 2u21uT | + 2U22N1 (3-75)

and the linear superposition of the drag force components is valid.

The total force on a cylinder under practical experimental 

combinations of incident, reflected and free second harmonic waves 

has been calculated for a number of cases and these are presented 

both numerically and graphically in Figures 3.22 to 3.25. The 

wave conditions used for this were taken from the results of the 

wave experiments which were carried out, and which are reported 

in Chapter 5.
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THEORETICAL FORCES ON 6.0mm CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 500.0mm; ^req= .586Hz; WL= 3342.6mm; Wave Amp= 21.7mm

A2= 1.370mm; AR= 1.017mm; ALPHA= -.745Rads; A22= 2.736mm; BETA = -.902Rads

DIMENSIONLESS PARAMETERS: KC= 24.53; ka= .041; kh= .940

TOTAL LINEAR AND NON-LINEAR FORCE

Figure 3-22
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THEORETICAL FORCES ON 6.0mm CYLINDER ;CM= 2.0 ;CD= 1.2

WAVE CONDITIONS:
H=500.0mm; FREQ= 0.586Hz; L=3342.6mm; A=21.70mm

STOKES SECOND ORDER WAVE: A2= 1.37mm

REFLECTED WAVE:
AR= 1.02mm; ALPHA=-0.745Rads

FREE SECOND HARMONIC WAVE:
A22= 2.74mm; L22=1128.0mm; BETA=-0.902Rads

DIMENSIONLESS PARAMETERS:
KCI=24.53 ; KA=0.041 ; KH=0.940

LINEAR FORCES:
FD= 11.204coswt + 2.2409cos3wt 4—0.32013cos5wt mN
FI= -8.850sinwt mN

STOKES SECOND ORDER FORCES:
FD2= 0.2047 + 0.5733cos2wt + 0.2223cos4wt mN
FI2= -0.6263sin2wt mN

DYNAMIC PRESSURE FORCE:
FDP= -0.0974sin2wt mN

WATERLINE FORCES:
FWD= 0.3916 + 0.4699cos2wt + 0.06713cos4wt mN
FWI= -0.2455sin2wt mN

FORCES DUE TO REFLECTED WAVE:
FDR= -0.7721coswt + -0.3560sinwt + -0.1544cos3wt

+ -0.2136sin3wt mN
FIR= -0.2812coswt + 0.3049sinwt mN

FORCES DUE TO FREE SECOND HARMONIC WAVE:
FD22= 0.3151 + 0.8822cos2wt + -1.2767sin2wt

+ 0.34206cos4wt + -0.36478sin4wt mN
FI22= -1.1821cos2wt + -0.9335sin2wt mN

(fig. 322)
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THEORETICAL FORCES ON 25.0mm CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 500.0mm; Freq= .586Hz; WL= 3342.6mm; Wave Amp= 21.7mm

A2= 1.370mm; AR= 1.017mm; ALPHA= ~.745Rads; A22= 2.736mm; BETA = -.902Rads

DIMENSIONLESS PARAMETERS: KC= 5.89; ka = .041; kh= .940

TOTAL LINEAR AND NON-LINEAR FORCE

F i gure 3-23
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THEORETICAL FORCES ON 25.0mm CYLINDER ;CM= 2.0 ;CD= 1.2

WAVE CONDITIONS:
H=500.0mm; FREQ= 0.586Hz; L=3342.6mm; A=21.70mm

STOKES SECOND ORDER WAVE: A2= 1.37mm

REFLECTED WAVE:
AR= 1.02mm; ALPHA=-0.745Rads

FREE SECOND HARMONIC WAVE:
A22= 2.74mm; L22=1128.0mm; BETA=-0.902Rads

DIMENSIONLESS PARAMETERS:
KCI= 5.89 ; KA=0.041 ; KH=0.940

LINEAR FORCES:
FD= 46.685coswt + 9.3371cos3wt +-1.33386cos5wt mN
FI=-153.643sinwt mN

STOKES SECOND ORDER FORCES:
FD2= 0.8531 + 2.3886cos2wt + 0.9262cos4wt mN
FI2=>-10.8724sin2wt mN

DYNAMIC PRESSURE FORCE:
FDP= -1.6916sin2wt mN

WATERLINE FORCES:
FWD= 1.6317 + 1.9581cos2wt + 0.27972cos4wt mN
FWI= -4.2624sin2wt mN

FORCES DUE TO REFLECTED WAVE:
FDR= -3.2170coswt + -1.4832sinwt + -0.6434cos3wt

+ -0.8899sin3wt mN
FIR= -4.8813coswt + 5.2936sinwt mN

FORCES DUE TO FREE SECOND HARMONIC WAVE:
FD22= 1.3127 + 3.6756cos2wt + -5.3198sin2wt

+ 1.42525cos4wt + -1.51993sin4wt mN
FI22=-20.5231cos2wt + -16.2060sin2wt mN

(fig. 3-23)
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THEORETICAL FORCES ON 6.0mm CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 500.0mm; Freq= 1.172Hz; WL= 1128.0mm; Wave Amp= 38.4mm

A2= 4.238mm; AR= .304mm; ALPHA= -1.565Rads; A22= .878mm; BETA= .95SRads

DIMENSIONLESS PARAMETERS: KC= 21.13; ka = .214; kh= 2.785

TOTAL LINEAR AND NON-LINEAR FORCE

Figure 324
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THEORETICAL FORCES ON 6.0mm CYLINDER ;CM= 2.0 ;CD= 1.2

WAVE CONDITIONS:
H=500.0mm; FREQ= 1.172Hz; L=1128.0mm; A=38.42mm

STOKES SECOND ORDER WAVE: A2= 4.24mm

REFLECTED WAVE:
AR= 0.30mm; ALPHA=-1.565Rads

FREE SECOND HARMONIC WAVE:
A22= 0.88mm; L22= 284.2mm; BETA= 0.959Rads

DIMENSIONLESS PARAMETERS:
KCI=21.13 ; KA=0.214 ; KH=2.785

LINEAR FORCES:
FD= 23.064coswt + 4.6128cos3wt +-0.65896cos5wt mN
FI= -21.151sinwt mN

STOKES SECOND ORDER FORCES:
FD2= 0.0369 + 0.1034cos2wt + 0.0401cos4wt mN
FI2= -0.1051sin2wt mN

DYNAMIC PRESSURE FORCE:
FDP= -0.5943sin2wt mN

WATERLINE FORCES:
FWD= 4.7709 + 5.7250cos2wt + 0.81786cos4wt mN
FWI= -2.2805sin2wt mN

FORCES DUE TO REFLECTED WAVE:
FDR= -0.0022coswt + -0.1825sinwt + -0.0004cos3wt

+ -0.1095sin3wt mN
FIR= -0.1674coswt + O.OOlOsinwt mN

FORCES DUE TO FREE SECOND HARMONIC WAVE:
FD22= 0.1172 + 0.3281cos2wt + 0.5344sin2wt

+ 0.12721cos4wt + 0.15268sin4wt mN
FI22= 0.3987cos2wt + -0.2797sin2wt mN

(fig. 3 24)
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THEORETICAL FORCES ON 25.0mm CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 500.0mm; Freq = 1.172Hz; WL= 1128.0mm; Wave Amp= 38.4mm

A2= 4.238mm; AR= .304mm; ALPHA= -1,565Rads; A22= .378mm; BETA= ,959Rads

DIMENSIONLESS PARAMETERS: KC= 5.07; ka= .214; kh= 2.785

TOTAL LINEAR AND NON-LINEAR FORCE

Figure 3-25
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THEORETICAL FORCES ON 25.0mm CYLINDER ;CM= 2.0 ;CD= 1.2

WAVE CONDITIONS:
H=500.0mm; FREQ= 1.172Hz; L=1128.0mm; A=38.42mm

STOKES SECOND ORDER WAVE: A2= 4.24mm

REFLECTED WAVE:
AR= 0.30mm; ALPHA—1.56 5Rads

FREE SECOND HARMONIC WAVE:
A22= 0.88mm; L22= 284.2mm; BETA= 0.959Rads

DIMENSIONLESS PARAMETERS:
KCI= 5.07 ; KAO. 214 ; KH=2.785

LINEAR FORCES:
FD= 96.099coswt + 19.2198cos3wt +-2.74568cos5wt mN
FI=-367.212sinwt mN

STOKES SECOND ORDER FORCES:
FD2= 0.1538 + 0.4307cos2wt + 0.1670cos4wt mN
FI2= -1.8242sin2wt mN

DYNAMIC PRESSURE FORCE:
FDP=-10.3182sin2wt mN

WATERLINE FORCES:
FWD= 19.8786 + 23.8544cos2wt + 3.40777cos4wt mN
FWI=-39.5922sin2wt mN

FORCES DUE TO REFLECTED WAVE:
FDR= -0.0093coswt + -0.7604sinwt + -0.0019cos3wt

+ -0.4562sin3wt mN
FIR= -2.9055coswt + 0.0177sinwt mN

FORCES DUE TO FREE SECOND HARMONIC WAVE:
FD22= 0.4882 + 1.3669cos2wt + 2.2266sin2wt

+ 0.53003cos4wt + 0.63618sin4wt mN
FI22= 6.9222cos2wt + -4.8566sin2wt mN

(fig. 3-25)
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Clearly the estimate of wave loading will be considerably in 

error in each case if the non-linear effects are not taken into 

account. In Figures 3.22 and 3.23, the wave conditions are a 

long, shallow water, wave with a considerable degree of reflection 

and a substantial free second harmonic wave. The non-linear effects 

are therefore dominated by the forces due to the reflected and 

free waves.

The conditions in Figures 3.24 and 3.25 are a short steep 

wave in effectively deep water. The reflection coefficient is small 

and there is very little free wave activity. Thus the major non-linear 

effects are the waterline and dynamic pressure forces.

3.4.4 Application to Design

In the design of a structure for offshore applications, the 

wave environment at the proposed location is assumed to be described 

by a design wave, with given amplitude, period and water depth. 

Under such conditions of a single regular wave train, the linear 

forces on a vertical cylinder are given by Morison's equation, FI and

FD. The non linear force components consist of the waterline forces

FWI and FWD, the dynamic pressure force FDP, and the second order 

Stokes' wave forces, FD2 and FI2. Under design conditions the wave 

flume effects of the reflected and free second harmonic waves, and

hence the forces due to them, will be absent.

The effect of the non linear forces on the wave loading on 

a vertical cylinder under design conditions is demonstrated in
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Figures 3.26 to 3.29. The non linear inertia forces are all 

sin 2wt components, while the non linear drag forces are both 

predominantly cos 2wt. Thus the second order forces add 

together to produce a large effect on the force traces.

For the shorter waves, Figures 3.26 and 3.27, the non linear 

loading is dominated by the waterline and dynamic pressure forces. 

As the waves become longer and the water relatively shallower, 

Figures 3.28 and 3.29, the second order Stokes' forces become more 

si gni ficant.
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DESIGN FORCES ON ,60m CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 50.0m; T= 9.0Sec; rfL= 99.56m; Wave Amp = 3.50m

DIMENSIONLESS PARAMETERS-' <C=-- 18.91; ka= .221; kh= 3.155

non  lin ear  desi gn  for ces

Figure 3-26
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DESIGN FORCES ON 2.00m CYLINDER; CN= 2.0; CD= 1.2

WAVE CONDITIONS: h= 50.0m; T= 8.0Sec; »/L = 99.56m; f/ave Amp= 3.50m

DIMENSIONLESS PARAMETERS; KO 5.64; ka = .221; kh- 3.155

NON LINEAR DESIGN FORCES

Figure 3-27
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DESIGN FORCES ON .63m CYLINDER; CM= 2.0; CD= 1.2

WAVE CONDITIONS: h= 50.0m; T= 16.0Sec; WL = 307.91m; tfave Amp= 3.30m

DIMENSIONLESS PARAMETERS: <C= 31.40; ka= .061; 1.021

non  lin ear  design  for ces

Figure 3-2 8
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CHAPTER 4 - EXPERIMENTAL INVESTIGATION

4C1______ Introduction

The purpose of the experimentation was to investigate the 

non-linear wave induced loading on vertical cylinders, having a 

range of diameters and under a range of wave conditions,, The 

Fourier Transform of the total force on the cylinder, and the depths 

of action of the force components, were determined, allowing the 

second order loading predictions put forward by Lighthill (1979) 

to be tested.

A major problem with the experimental programme was found

to arise from the laboratory wave flume itself. Ideally, such 

experiments should be carried out under conditions of a single regular 

wave train travelling in the positive x-direction. In practice, 

however, the wave environment produced, even with the wavemaker 

oscillating at a single frequency, was found to include significant 

free second harmonic and reflected waves, Clearly, in considering 

the total wave loading on the cylinder, the forces due to these 

additional waves must be accounted for.

The experimental programme was, therefore, split into two 

distinct sections. The first requirement was to analyse the wave 

environment in the flume in order to identify and evaluate all of 

the waves present. The second section of the experimentation was to 

record the forces induced on a number of vertical cylinders under 

these known wave conditions.
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In correlating the measured waves and forces, it was 

assumed that the velocity distribution could be obtained directly 

from the wave profile, by means of velocity potential theory. 

Second order Stokes' theory was used for the primary wave, while 

the free second harmonic and reflected waves were assumed to satisfy 

small amplitude linear wave theory. No direction measurement of 

the velocities under the wave was made.

4.2_____ Experimental Apparatus

4.2.1 Nave Flume

The experiments were carried out in a glass-sided flume 

750 mm wide and approximately20 metres long. The water was at a 

constant depth of 500 mm throughout the testing, as shown in 

Figure 4 J o

Waves were generated by means of a wedge oscillating 

vertically in the surface of the water, and driven by a variable 

speed motor, via an eccentric mounting. The mounting converted 

the rotation of the motor into a purely sinusoidal motion of the 

wedge. At its mean position the wedge had a submerged depth of 

300 mm and had a d/b ratio of 1.6. The motion of the water in the 

region behind the wedge was suppressed by a sheet of plywood 

floating in the surface; of which the lateral motion was restrained 

by vertical guides.

At the far end of the flume there was a beach, designed

to absorb as much as possible of the incident wave energy, and
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hence to minimize the amplitude of the reflected waves, The

layout of the beach was based on the results of preliminary 

experiments. These showed that a beach having a long shallow 

slope and a short horizontal section in the water surface 

represented the optimum design. As a compromise to reduce its 

total length, the slope of the beach was split into two sections0 

The top section, near the surface where the wave action was greatest, 

was given a shallow slope, while the bottom section was somewhat 

steeper. Thus the beach was built with three sections as shown 

in Figure 4.1 o

4.2.2 Measurement of surface elevation

The oscillation of the free water surface - defining the 

wave profile - at a fixed location in the flume was recorded using 

a resistance type wave probe. The probe itself consisted of two 

vertical wires, each 3 mm in diameter, held in the water surface 

and separated by a constant distance of 25 mm, perpendicular to 

the direction of wave propagation. It can easily be shown that,

when an A.C. voltage is applied across it, the resistance of the 

probe is inversely proportional to the depth of immersion. The 

AoC„ voltage prevents polarization of the water in the region of 

the probe, which would act as a capacitor for D0C0, while the 

actual value of the resistance depends on the conductivity of the 

water. The variation of resistance with depth of immersion is 

shown in Figure 4O2O The variation of resistance with depth of 

immersion (and hence with instantaneous water level) does not 

give a linear response and this could cause calibration problems. 

This situation was alleviated by wiring the probe in parallel 

with a low value resistor and in series with a larger resistor0
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This had the effect of reducing the change in resistance for a 

given change in depth, and greatly enhanced the linearity as shown 

in Figure 4.2O

The resistance of the probe was measured by wiring it up 

as one arm of a four arm Wheatstone bridge circuit, as shown in 

Figure 4O3. The polarity of the wiring was such that the negative 

slope observed in Figure 4,2 was removed0 The excitation voltage 

was supplied by, and the signal voltage detected by, an SE995 bridge 

conditioning unit. This is a six-channel unit having a range of 

bridge configurations and gain settings, and excellent gain and 

phase response.

4-arm Wheatstone Bridge

Figure 43
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The method of data collection is now considered, The 

fluctuating voltage outputs from the SE995 channels were monitored 

by a high speed scanner module coupled to a PDP-11 mini-computer. 

The scanner performed an analogue to digital conversion of the 

signal voltages, which could then be scanned at regular intervals, 

the data being written in binary form to a diskfile, The scanner 

had a range of sensitivities, or coarse gain settings, which could 

be selected to suit the signal strength. The data was then 

converted to decimal form to give numerical values in 'bits' 

proportional to the signal voltages. The appropriate calibration 

factors were applied to these records to give values of free 

surface displacement in mm (or force in mN as appropriate), The flow 

diagram for data collection is shown in Figure 4.4,

4.2.2.1 Wave Probe Calibration

The purpose of the wave probe calibration was to determine 

the relationship between the output from the wave probe (in bits) 

and the instantaneous surface displacement (in mm).

The wave probe was calibrated by statically varying its 

depth of immersion and recording the scanner output at each position. 

In the first instance, the linearity of the calibration was checked 

by varying the level of water in the flume with the probe 

stationary. The result of this is given in Figure 4.5, which shows 

a good linear relationship. Thereafter the wave probe was 

calibrated prior to each set of experiments, by the more convenient 

procedure of raising and lowering the probe through still water. 

A calibration constant was determined in each case by a linear
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Force
Transducers

Wave
Probe

Surface Forces
Elevation (mm) (mN)

Collection of Data

Figure 4-4
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Wave Probe Calibration

Figure 45
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regression fit to the calibration data pointsD

4,2.3 Test Cylinders

As previously stated, the object of the experiments was to 

measure the forces induced by wave action on vertical cylinderso 

A rig was designed and constructed which would hold the cylinder in 

place and detect the forces on it. Initial calculations showed that, 

because of the small scale of the testing, the total force on the 

cylinder would be very small. This meant that the technique, 

adopted for example by Chakrabarti (1980), of measuring the force 

on short test sections of the cylinder would be impractical,

As it was a requirement that not only the force components, 

but also their resultant depths of action, should be measured, it 

was decided to hold the cylinder in a simply-supported manner and 

record the top and bottom end reactions, In order that the rig 

would be adaptable for the various cylinder diameters, it was 

designed to hold a thin brass rod between two pin-joints. This rod 

acted as a central core, over which P.V.C. sleeves of appropriate 

outside diameters could be fixedo

The final design of the cylinder fixing rig is shown in 

Figure 4.6. Held in this manner the test cylinder would extend 

from a point above the highest wave crest to a point as close as 

possible to the bottom of the flume.
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4.2,4 Measurement of Forces

Preliminary calculations carried out showed that the 

maximum force exerted on the test cylinder would be between 

10 and 100 mN, depending on its diameter and on the wave conditions. 

Highly sensitive force measuring equipment was therefore required,

No force transducers of the required sensitivity were found 

to be commercially available, and it was therefore necessary to 

design and construct suitable transducerso This design is shown in 

Figure 4.7.

The end reaction, passed through the pin joint, was 

detected as a bending strain in the short cantilever length of the 

force transducer. By using Kyowa semi-conductor strain gauges with 

their large gauge factors, it was possible, by utilizing the gain 

of SE995 and sensitivity of the scanner, to produce a measurable 

signal for even the smallest loading case,

4.2.4.1 Force Transducer Calibration

The purpose of the force transducer calibration was to 

establish a relationship between the outputs from the two 

transducers and the resultant force on the cylinder together with 

its depth of action. The calibration procedure needed to give 

information, not only about the sensitivities of the two strain 

gauge pairs, but also about the behaviour of the pin joints,

If the joints could be assumed to behave as perfect pins,

that is that they were frictionless and passed no bending moment, the
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cylinder would be truly simply-supported, Conversely, any friction 

in the joints would introduce a degree of fixity into the cylinder 

arrangemento The most obvious way of detecting any fixity in the 

pin joints was to consider the influence lines of the force transducer 

outputs. The influence lines represent the variation in the 

sensitivities of the transducers to loads applied at different 

positions between the two pin joints, Calibration was therefore 

carried out by applying loads at a number of positions on the 

cylinder as shown in Figure 4.8, This was carried out with the cylinder 

rig fixed out of the water prior to each set of experiments,

Force Transducer Calibration Arrangment

Figure 4- 8
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At each loading position the procedure was to apply 

varying loads to the cylinder and record the output from the 

two transducers. The three wire, triangle of forces, arrangement 

for applying the loads was used, because the loads were too small 

to allow the use of pulleys. A problem with the force transducer 

arrangement observed at this time was that of instrumental drift. 

The balance position of the transducer output was found to vary 

considerably with time, a problem attributable to the very high 

sensitivity of the equipment. To overcome this problem the 

effect of each load on the transducer was found by recording the 

output before the load was applied, with the load applied and 

after it had been removed, and taking the average difference, 

The sensitivity of each transducer to loads applied at each position 

was then evaluated by a linear regression fit to the observed 

readings.

The variation of sensitivity, in bits/mN, with depth of 

action, (measured down from the top pin joint) in mm, defined 

the influence line for each transducer. The equations of the 

influence lines were found by a least squares cubic fit as shown 

in Figure 4.9. A cubic fit was chosen because the equation of the 

influence line for a fixed ended beam is of that order, while that 

for a simply-supported beam is linear. From the shape of the 

influence lines in Figure 4.9 it is clear that the cylinder was 

predominantly simply-supported, but that some fixity was present.

With the influence lines defined, any pair of readings 

from the top and bottom transducers would give two equations, which 

could then be solved for the resultant force and its depth of action.



- 123 -

Sensitivity
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Force Transducer Calibration - Influence Lines

Figure 4-9
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4,2.4.2 Filtering of Force Transducer Output

In a number of the experiments carried out, the force 

transducer output was found to include a high level of noise. This 

was a combination of 'bounce' of the cylinder at its natural 

frequency, and mains noise at 50 Hz. It was therefore necessary 

to introduce an electronic filter into the output which would pass 

the signal, but not the relatively high frequency noise.

The circuit diagram of the filter is shown in Figure 4.10. 

The first stage is a simple 10 times amplifier, while the second 

two stages are a fourth order low-pass filter. The components in 

the filter stages were chosen for a cut-off frequency of 10 Hz 

and for optimum linear gain and phase response. Two filter channels 

were constructed, one for each force transducer.

The variations with frequency of the gain and phase delay 

of the filter were determined by a series of experiments comparing 

input and output signals. Although both channels were nominally 

identical, wide tolerances in the electronic components meant that 

each had to be tested separately.

The gain results are shown in Figure 4.11. There was some 

difference between the two channels, but both showed an approximately 

linear fall to 96% of the D.C. gain at 4 Hz, and a rapid fall off 

in the gain beyond 7 or 8 Hz.

The phase results are shown in Figure 4.12. Both channels 

had linear phase reponses up to approximately 4 Hz. This implied
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Channel 
o F1
x F2

Frequency (Hz)

Phase Response of Filter

Figure 4-12
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a constant time delay of 0.042 seconds for channel Fl and 0-040 

seconds for channel F20

The effect of the filter on the transducer output is 

demonstrated in the oscillograph traces in Figure 4O13O The signal 

to noise ratio was vastly improved, while the small time delay can 

be seen by comparing the phases of the two traceso

Before
Filter

After
Filter

Effect of Filter on Force Transducer Output

Figure 4-13
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4.3 Waveform Experiments

A technique has been developed for identifying and 

evaluating the waves present in a laboratory flume, by observing 

the change in the shape of the wave, or waveform, as it travels 

down the flume. The technique and the results of the experimentation 

have been presented in a paper by the writer, Ellix and Arumugam 

(1984)0

4.3J Waveform Analysis

In analysing the total wave motion in the flume, to the 

second order of approximation, there are several wave components 

which must be considered. The incident wave, travelling in the 

positive x-direction away from the generator, comprises a second 

order Stokes wave travelling without change of shape, together 

with a free second harmonic wave:

n = ajcos(kx - cot) + a2cos2(kx - cot) + a22cos(k22x - 2c?t + 6)

(4-1)

The reflected wave, returning from the beach, has components 

at both the fundamental and second harmonic frequencies:

nR = aRcos(kx + cot + a) + a22RCos(k22X + 2cot + y) (4-2)

The shape of the waveform at any position in the flume 

depends on the magnitudes of the individual components and on their 

relative phases at that position. The analysis of the waveform 

variation down the flume is carried out by consideration of the 
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first and second order wave components separately.

4.3,1.1 First Order Components

The first order wave motion consists of the fundamental

frequency incident and reflected waves,

nz = ajcos(kx - cot) + aRcos(kx + cot + a) (4-3)

In considering only the shape of the waveform at a single 

position, x, the time base can be arbitrarily set such that an 

incident wave crest passes at t equals zero.

Thus,

(kx - cot) = 0 at t = 0

Then,

ni = ajcoswt + apcos(wt + 2kx + a)

= (aj + a^cos(2kx + a))coscot - apsin(2kx + a)sinwt

= Aicosfeot - 6) (4-4)

where A = y/(aj + apCos(2kx + a))2+ (a^sin(2kx + a))2

= amplitude of first order wave motion

and

= phase angle by which the incident wave peak leads the

total wave peak.
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For the purpose of the waveform experimentation, two 

non-rigorous simplifying assumptions are made, which can be shown 

to be reasonable as long as aj2>>aR2. The first assumption is 

that the second term in Ai is negligible, and the second is 

that 6 is zero for all values of x. Thus equation (4-4) reduces 

to:

n1 = (aj + aRcos(2kx + a))coswt

Thus if the envelope of first order amplitude down the flume 

is considered, it would consist of a mean value of aj, plus a 

sinusoidal variation having an amplitude of a^ and a wavelength of 

LR, equal to L/2. This represents the beating effect between 

two waves travelling with equal and opposite velocities.

The angle a is the phase difference between the incident 

and reflected first order waves at the origin of x0 The origin 

of x may be located, for example, at the wave generator, or as 

will be convenient for the force experiments, at the centre line 

of the test cylinder.

4.3.1.2 Second Order Components

The second order wave motion comprises the second order 

Stokes component and the incident and reflected free second harmonic 

waves.

n2 = a2cos2(kx - cot) + a22cos(k22X - 2ojt + 3)

+ a22Rcos(k22x + 2wt + y) (4-5)
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To maintain compatibility between the first and second 

order terms, the same time base must be used as described above,

Then,

n2 = [ a2 + a22cos(kgx + 6) + a22Rcos(k2pX + y)]cos2wt

+ [ a22sin(kgX + 3) - a22Rsin(k2Rx + y)] sin2wt (4-6)

where

kg — k22 ~ ^k

k£R — ^22 +

From equation (4-6) it is clear that, to evaluate the 

unknown second order wave parameters, it is necessary to consider 

the second harmonic component of the wave in two parts; that which 

is in-phase with the fundamental component - the cos2a)t term -, and 

that which is in quadrature - the sin2wt term.

The in-phase second harmonic amplitude envelope has a mean 

value of a2 plus a sinusoidal variation having an amplitude of a22 

and a wavelength of Lg = 2iT/kg. This represents the beating 

effect between two waves travelling in the same direction at 

different speeds.

The quadrature envelope has a similar beating pattern, 

but has a zero mean and its sinusoidal variation lags that in the 

in-phase envelope by Lg/4.

Both envelopes include an additional term due to beating 
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between the incident and reflected second order waves. In both 

cases this variation has an amplitude of a02^ and a wavelength

4.3,2 Experimental Procedure

The technique entailed the observation of the waveform 

shape at a number of discrete locations along the centre line of 

the flume. From these discrete data points, the pattern of 

waveform variation down the flume could be identified.

The selection of observation locations varied with the 

wave conditionSo They were always in the central portion of the 

flume, approximately half way between the generator and the beacho 

The total spread of the points was set to cover at least one and a 

quarter of the longest beat wavelenghts (Lg), while their spacing 

was such that there would be at least four points to every one of 

the shortest beat wavelengths (L2r )« Thus, for each wave setting 

an average 20 locations were used, separated by between 50 and 

200 mm.

With the wave probe at each location in turn, a record 

was taken of the waveform over a number of cycles. These records 

were then calibrated and analysed using a Fast Fourier Transform, 

described in Appendix 1, to give the magnitudes of the fundamental, 

second harmonic in-phase and second harmonic quadrature wave 

components, in mm, at the respective positions in the flume. This 

procedure was carried out twice at each location to give some 

measure of the variability of the waveform. The result of each 
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waveform run was, therefore, a tabulation of the three Fourier 

components of the wave against the position in the flume. An 

example is shown in Table 4.1. X in this case is measured on a 

tape running backwards up the flume with zero at the beach.

4.3.2.1 Range of Testing

A limitation on the wave frequencies which could be used 

was imposed by a combination of the Fast Fourier Transform, and the 

available scanning rates on the PDP-11. To operate efficiently, 

the F.F.T. requires a power of 2 number of data points covering an 

exact whole number of cycles, while the PDP-11 could only have 

multiples of 0.02 seconds as the delay time between successive 

scans. In order that a good range of frequencies could be covered, 

and that the F.F.T. should have sufficient points to give a reliable 

result, it was decided to take 128 points with a delay time of 

0.08 seconds. This gave a total sample time of 10.24 seconds, 

and meant that only those frequencies having a whole number of 

cycles in that time could be used0 Thus the fundamental wave 

frequencies covered in the experiments were; 0o586, 0.684, 0.781, 

0.879, 0.977, 1.074 and 1.172 Hz.

The frequency of the wavemaker was adjusted by means of a 

variator coupled to the motor gearing, and was 'tuned in' by 

monitoring the output from a wave probe on a Gould TC22 Time Counter. 

With some care, it was possible to achieve the desired periods, 

and hence frequencies, to within 0.2%.

The other variable parameter was the amplitude of the 
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wave motion, and this was governed by the amplitude of the wedge 

oscillations. The wedge amplitude was set by changing the 

eccentricity of its mounting onto the motor. To cover a range of 

wave steepnesses, wedge amplitudes of between 20 and 70 mm, in 

steps of 10 mm, were used at each frequency0 A few of the 

largest waves were found to be unstable, while a few of the 

smaller ones were too small to measure. These wave conditions 

were therefore omitted from the study, but a good range between 

long, shallow water waves and short, steep, deep water waves was 

covered.

4.3.3 Analysis of Data

The results of the form of Table 4.1 were analysed by 

considering separately the variations of Al, A2 and B2 with 

Each variation was analysed using the least squares sine fitting 

routine described in Appendix 2. One sine component was fitted 

to Al against x and two were fitted to each of A2 and B2 against xo 

The axis of x was modified to run forwards up the flume with its 

origin at the wavemaker. As well as the numerical coefficients of 

the sine fitting, the results were presented graphically as shown 

in Figure 4O14O

The amplitudes of the various incident and reflected wave 

components, together with the beat wavelengths, were determined from 

the sine fitting results. An example is demonstrated in Figure 4J4,
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WAVEFORM VARIATION: WEDGE AMP. 50.0MM; FREQ. 0.586HZ
WATER DEFTH 500.OMM; WAVELENGTH 3350.OMM

X(M) Al (MM) A2 (MM) B2 (MM)
12.000 14.06 1.05 1.24
12.000 14.07 1.06 1.27
11.800 14.22 0.26 1.19
11.800 14.21 0.24 1.18
11.600 14.58 -0.18 1.36
11.600 14.60 -0.15 1.40
11.400 14.96 -0.29 0.91
11.400 14.98 -0.29 0.92
11.200 15.15 -0.78 0.19
11.200 15.14 -0.72 0.19
11.000 15.01 -0.99 -0.08
11.000 15.00 -1.00 -0.13
10.800 14.69 -0.52 -0.44
10.800 14.69 -0.50 -0.42
10.600 14.27 -0.21 -1.14
10.600 14.27 -0.18 -1.14
10.400 13.97 -0.20 -1.37
10.400 13.97 -0.12 -1.39
10.200 14.00 0.45 -1.19
10.200 14.03 0.42 -1.15
10.000 14.41 1.03 -1.45
10.000 14.42 1.04 -1.47
9.800 14.85 1.19 -1.41
9.800 14.89 1.20 -1.43
9.600 15.05 1.50 -0.65
9.600 15.07 1.50 -0.68
9.400 15.00 2.14 -0.26
9.400 14.99 2.13 -0.30
9.200 14.62 2.02 0.02
9.200 14.62 2.02 -0.01
9.000 14.13 1.61 0.75
9.000 14.15 1.63 0.75
8.800 13.88 1.66 1.26
8.800 13.90 1.69 1.27
8.600 13.93 1.38 1.06
8.600 13.95 1.40 1.04
8.400 14.26 0.62 1.27
8.400 14.21 0.59 1.27
8.200 14.72 0.32 1.58
8.200 14.74 0.36 1.62
8.000 15.05 0.03 1.19
8.000 15.07 0.07 1.18
7.800 15.11 -0.71 0.65
7.800 15.10 -0.76 0.62
7.600 14.86 -1.05 0.43
7.600 14.89 -1.04 0.40
7.400 14.55 -0.67 -0.07
7.400 14.51 -0.67 -0.12

Table 4.1 Waveform Variation
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SECOND ORDER 
QUADRATURE 
AMP (MM).

WAVEFORM VARIATION: WEDGE AMP. 50.0MM; FREQ. 0.58GHZ

WATER DEPTH 500.0MM; WAVELENGTH 3350.0MM

Analysis of Waveform Variation

Figure 4-14
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4.4 Have Loading Experiments

4c4J Wave Environment

The importance of quantifying the wave environment when 

carrying out any wave loading experiments has been demonstrated in 

Chapter 3. The effect of the reflected and free second harmonic 

waves was shown to depend not only on their magnitudes, but also on 

their phases relative to the primary wave. As a result of this 

it was necessary to measure the wave activity in the flume at the 

same time as recording the forces on the test cylinders,,

The waveform results showed that the reflected free second 

harmonic wave was negligible in comparison to the total wave motion, 

(see Chapter 5 and Ellix and Arumugam, 1984) and this was therefore 

not considered in the loading experiments,,

4.4.2 Experimental Procedure

To determine the wave environment, it was necessary to 

carry out a waveform experimental run for each cylinder and wave 

condition combination. With the cylinder in place, a waveform 

run was performed centred on the cylinder and covering suitable 

upstream and downstream lengths,, The presence of the fixing rig 

restricted the wave probe to positions greater than 300 mm away 

from the cylinder, with the exception of a single location in line 

with it. For the higher frequency shorter waves, this left a 

significant gap in the waveform data.

Three sets of records were taken of the forces on the 
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cylinder; before, in the middle of, and after, the waveform run. 

The output from a wave probe in line with the cylinder, as well 

as those from the top and bottom force transducers, was recorded. 

As with the waveform experiments the sample time was set at 10=24 

seconds with 128 data pointsQ

The F.F.T. was used to compute the uncalibrated Fourier 

components of the top and bottom force transducer outputs. The 

first, second and third harmonic, in phase and quadrature components 

were calculated for each transducer. The transforms were evaluated 

with their phases relative to the total first order wave motion, as 

recorded by the in-line wave probe.

Instrumental drift of the force transducer output continued 

to be a problem throughout the testing. Frequent rebalancing of the 

bridge conditioning unit was necessary, and as a result the 

time-averaged force on the cylinder could not be measured. Analysis 

of the loading results had to depend on the fluctuating components of 

the forces.

4.4.2.1 Range of Experiments

The wave force experiments were carried out over a similar 

range of wave conditions as the waveform experiments. A total of 

fifteen wave settings were used to cover all of the frequencies and 

a range of wave steepnesses.

The cylinder diameters were chosen to cover a range of

loading conditions in the drag and inertia regime, as governed by the 
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Keulegan-Carpenter number KCI. The smallest cylinder diameter for 

which the forces were measurable, was 9.55 mm. The loading on this 

cylinder was drag dominated for most wave conditions, though the 

inertia force was always significant. Two other cylinders of 

diameters 21.45 and 3356 mm were also used, to give a range of 

KCI between 2.0 and 20.0.

4.4c3 Analysis of Data

4.4.3.1 Waveform Data

The results of the waveform runs with the cylinder in place 

were analysed as described in Section 4.3O3O The amplitudes of the 

waves aj, aR and a22 were computed, and with the origin of x 

positioned at the cylinder centre line, the calculated angles of 

a and p represented the phases of the waves at the cylinder position. 

In those cases where the gap in the data caused by the cylinder 

fixing rig was a problem, it was necessary to constrain the range of 

values of k in the sine fitting routine in order to produce a 

sensible fit0

Thus the wave environment around the cylinder was determined, 

including all significant components to the second order of 

approximation.

£.4,3.2 Corrections to Force Transforms

A number of corrections had to be made to the Fourier 

Transforms of the force transducer outputs to make them compatible 
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with the wave data. These are considered below in the order in 

which they were applied.

(i) Correction for Filter,

In those cases where the transducer outputs were passed 

through the filter, they were subjected to the gain and phase 

delay of its circuits, The force transducer calibrations had been 

carried out with the filter in line, but since this was a static 

procedure, the gain of the filter corresponded to its D.C. value as 

shown in Figure 4.11o Each of the components of the force transforms, 

acting at its appropriate frequency was subject to a gain somewhat 

less than the D.C. value. It was therefore necessary to multiply 

all of the components by a factor equal to the ratio of the D.C. 

gain to the gain at that frequency.

The filter channels also introduced a time delay into the 

force transducer outputs, giving a phase change that varied with 

frequency as shown in Figure 4.12, To account for this phase delay 

it was necessary to adjust the relative magnitudes of the in-phase 

and quadrature components of the transforms at each frequency. This 

constituted a simple trigonometrical adjustment,

(ii) Correction for Force on Bottom Force Transducer

The bottom force transducer, though small and positioned 

near the flume bottom, was subject to a measurable force caused by 

water motion in that region. To eliminate this effect from the force 

readings, a series of experiments were carried out with no cylinder 

in the rig, so that the forces imposed on the bottom transducer 

could be measured. The Fourier Transform of the bottom transducer 
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output for each of these tests gave values of the force components, 

which were then deducted from the respective transforms in the wave 

loading experiments. Only forces at the fundamental frequency were 

found to be significant.

(iii) Correction for Phase of Wave Motion

As stated in Section 4.4.1, the transforms were calculated 

with their phases relative to the total first order wave motion.

It was desirable, however, that they should be relative to the 

incident first order wave. The phases of the transforms were 

therefore adjusted by an angle <5, as defined under equation (4-4) and 

calculated at the cylinder position. Again this was a simple 

trigonometrical adjustment of the relative magnitudes of the in-phase 

and quadrature components at each frequency.

4.4.3.3 Resultant Force Components

The corrected transforms of the force transducer outputs 

were used to determine the resultant force components acting on the 

cylinder. Each Fourier component - first, second and third order, 

in-phase and quadrature - was considered separately. The respective 

components of the top and bottom transforms were taken as pairs of 

readings, which, in conjunction with the calibration influence line 

coefficients, gave pairs of equations in the force components and 

their depths of action.

Solution of these equations gave a total of six force 

components acting on the cylinder, together with their respective 

points of action.
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4C 5______Estimation of Experimental Error

A measure of the reliability of the experimental results is 

found by considering the probable magnitude of the experimental 

error. Three broad areas of possible error existed in this testing - 

errors in the wave setting, errors in the measurement of the wave 

and errors in the measurement of the forces.

Errors in the wave setting would be relatively unimportant, 

provided that all the features of the wave were being measured. 

Since only the wave profile was measured, it is worth considering the 

effect of these errors. The water depth was measured by means of a 

scale on the glass side of the flume, and could be recorded to within 

- 1 mm or 0.2%. The significance of the water depth came in the 

evaluation of tanh kh. For the shorter waves, small changes in water 

depth had no effect whatever on tanh kh, while for the longest waves 

used, this variability in depth led to an uncertainty in tanh kh of 

only i 0.1%.

The small uncertainty in the wave frequency discussed 

previously can be shown to have no measurable effect on the components 

of the wave and force Fourier Transforms. A more significant error 

was probable, however, in the measurement of the wedge amplitude. 

This was read directly from a tape fixed to the motor mounting, and 

could only be read to - 1 mm. Thus the typical uncertainty in the 

wedge amplitude was i 3%, leading to a lack of repeatability in the 

wave settings, and necessitating a separate waveform run on every 

test.
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Any errors in the measurement of the wave profile would 

result from uncertainty in the calibration of the wave probe. 

The justification for a linear calibration is demonstrated in 

Figure 4.5, In raising and lowering the wave probe through the 

water surface, its position was measured at each point to within 

- 05 mm. Such small random errors in the individual points had a 

limited effect on the calculation of the calibration constant, for 

which a least squares analysis was used. It is probable therefore 

that the calibration constants for the wave probe were accurate to 

within 1%.

Two major sources of error existed in the calibration of the 

force transducers. The inclination of the tie wire was measured by 

eye using a protractor, and was correct to i 0,5°, This gave an 

uncertainty in the tangent of the angle, and hence in the force on 

the cylinder, of - 2%. The other source of calibration error was 

in the position of application of the force on the cylinder's length. 

The required points of application were marked by lines around the 

cylinder, but the fixing technique meant that the actual points could 

be as much as 2 mm away. The uncertainty in the calibration influence 

lines is therefore reasonably estimated at - 3%.

The uncertainties in the wave and force measurements discussed 

above are realistic estimates of the errors in the first order 

results. The smaller second and third order results were almost 

certainly subject to higher relative errors.
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CHAPTER 5 - RESULTS AND DISCUSSION

5.1 Waveform Results

The results of the sine fitting analyses of the waveform 

variations are Dresented both numerically and graphically in 

Figures 5.1 to 5.15, for a range of the wave conditions covered. 

Referring to the graphical results, it is clear that in the 

majority of cases the fitting of one sine component to the first 

order variation, and two to each of the second order variations, 

gives a good fit to the measured data. Random errors in the data 

points and local peculiarities in the variations, Figures 5.11 and 

5.8, cause the fitted sine curves to deviate from some of the 

individual points, while still giving a good estimation of their 

variations. These local deviations justify the use of the time 

consuming technique of taking records of the wave at a number of 

locations, rather than the more raDid method of Goda and Suzuki 

(1976),which relies on wave records from just two positions. Under 

the steepest wave conditions covered in this study, Figure 5.15, 

the waveform was somewhat unstable, causing scatter in the first 

order amplitude.

From the numerical results, the amplitudes of the wave 

components and the beat wavelengths were found as follows. From the 

first order fit, a^ was the mean value, a^ was the amplitude of the 

variation, S, and L gave the beat wavelength, LR. a£ was given by 

the mean value in the second order in phase fit. The in phase

and quadratic fits gave two estimates for a^ and Lg, as the
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respective values of S and L. Similarly, two estimates for

a22R ar|d ^2R were 9iven by the 

fits.

additional terms in the second order

The measured amplitudes of the wave components from all of the

waveform experiments are given in Table 5.1.
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WAVEFORM VARIATION: WEDGE AMP. 50.0MM; FREQ. 0.586HZ
WATER DEPTH 500.OMM; WAVELENGTH 3350.OMM

FIRST ORDER FIT

K= 3.768 L= 1.668
MEAN= 14.538
A= 0.583 B= 0.063
SUM OF ERROR**2= 0.222

S= 0.586
STAND. DEV.= 0.068

MAX. & MIN. POSITIONS
5.032 5.865 6.699 7.533 8.367

SECOND ORDER IN PHASE FIT

K= 1.770 L= 3.550
MEAN= 0.606
A= 1.366 B= -0.248 S = 1.388
SUM OF ERRCR**2 = 1.407 STAND. DEV. = 0.171

MAX. & MIN. POSITIONS
3.449 5.224 6.999

ADDITIONAL TERM

K= 9.341 L= 0.673
MEAN= -0.005
A= 0.042 B= 0.215
SUM OF ERROR**2= 0.221

8.775 10.550

S = 0.219
STAND. DEV.= 0.068

MAX. & MIN. POSITIONS
5.865 6.201 6.538 6.874 7.210

SECOND ORDER QUADRATURE FIT

K= 1.754 L= 3.582
MEAN= -0.003
A= 0.454 B= 1.340
SUM OF ERROR**2= 1.278

S = 1.415
STAND. DEV.= 0.163

MAX. & MIN. POSITIONS
2.500 4.291 6.082

ADDITIONAL TERM

K= 9.354 L= 0.672
MEAN= -0.000
A= 0.220 B= -0.020
SUM OF ERROR**2= 0.142

7.872 9.663

S= 0.221
STAND. DEV.= 0.054

MAX. & MIN. POSITIONS
5.700 6.036 6.372 6.707 7.043

(fig. 5-1)
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WAVEFORM VARIATION: WEDGE AMP. 60. OMM; FREQ. 0.586HZ
WATER DEPTH 500. OMM; WAVELENGTH 3360.OMM

FIRST ORDER FIT

K= 3.743 L= 1.679
MEAN= 18.380
A= 0.843 B= -0.319 S= 0.901
SLM OF ERROR* *2 = 0.969 STAND. DEV.= 0.142

MAX. & MIN. POSITIONS
4.940 5.779 6.619 7.458 8.298

SECOND ORDER IN PHASE FIT

K= 1.788 L= 3.513
MEAN= 0.871
A= 2.018 B= 0.479
SLM OF ERROR**2= 2.902

S= 2.074
STAND. DEV.= 0.246

MAX. & MIN. POSITIONS
3.644 5.401 7.157 8.914 10.671

ADDITIONAL TERM

K= 9.227 L= 0.681
MEAN= -0.002
A= 0.301 B= -0.050
SUM OF ERROR**2= 0.668

S = 0.305
STAND. DEV.= 0.118

MAX. & MIN. POSITIONS
5.770 6.111 6.451 6.792 7.132

SECOND ORDER QUADRATURE FIT

K= 1.801 L= 3.488
MEAN= -0.048
A= -0.547 B= 1.955
SLM OF ERROR**2= 2.135

S= 2.030
STAND. DEV.= 0.211

MAX. & MIN. POSITIONS
2.767 4.511 6.255 7.999 9.743

ADDITIONAL TERM

K= 9.269 L= 0.678
MEAN= 0.002
A= 0.061 B= -0.266
SLM OF ERROR**2= 0.357

S = 0.273
STAND. DEV. = 0.086

MAX. & MIN. POSITIONS
5.956 6.295 6.634 6.973 7.312

(fig. 5-2)
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WAVEFORM VARIATION: WEDGE AMP. 70.OMM; FREQ. 0.586HZ
WATER DEPTH 500. OMM; WAVE1ENGTH 3335. OMM

FIRST ORDER FIT

K= 3.808 L= 1.650
MEAN= 21.700
A= 0.970 B= 0.307
SUM OF ERROR**2= 1.454

S = 1.017
STAND. DEV.= 0.174

MAX. & MIN. POSITIONS
5.031 5.856 6.681 7.506 8.331

SECOND ORDER IN FHASE FIT

K= 1.857 L= 3.384
MEAN= 1.110
A= 2.456 B= 1.086
SIM OF ERROR**2= 1.585

S= 2.685
STAND. DEV.= 0.182

MAX. & MIN. POSITIONS
3.608 5.300 6.992 8.684 10.376

ADDITIONAL TERM

K= 9.328 L= 0.674
MEAN= 0.005
A= 0.032 B= 0.137
SUM OF ERROR**2= 1.097

S= 0.141
STAND. DEV.= 0.151

MAX. & MIN. POSITIONS
5.870 6.207 6.543 6.880 7.217

SECOND ORDER QUADRATURE FIT

K= 1.846 L= 3.403
MEAN= -0.010
A= -0.746 B= 2.686
SUM CF ERRCR**2= 1.028

S= 2.787
STAND. DEV.= 0.146

MAX. & MIN. POSITIONS
2.699 4.400 6.102

ADDITIONAL TERM

7.803 9.504

K= 9.624 L= 0.653
MEAN= -0.005
A= -0.058 B= 0.130
SUM CF ERROR**2= 0.575

S = 0.142
STAND. DEV. = 0.109

MAX. & MIN. POSITIONS
5.756 6.083 6.409 6.735 7.062

(fig. 53)
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WAVEFORM VARIATION: WEDGE AMP. 50. (MM; FREQ. 0.684HZ
WATER DEPTH 500. (MM; WAVELENGTH 2720. OMM

FIRST ORDER FIT

K= 4.820 L= 1.303
MEAN= 13.887
A= 0.187 B= 0.115
SIM OF ERROR**2= 0.257

S= 0.219
STAND. DEV. = 0.080

MAX. & MIN. POSITIONS
5.329 5.980 6.632 7.284 7.935

SECOND ORDER IN PHASE FIT

K= 2.846 L= 2.208
MEAN= 0.406
A= 0.107 B= -1.551 S= 1.555
SIM OF ERR®* *2 = 0.360 STAND. DEV.= 0.095

MAX. & MIN. POSITIONS
3.888 4.992 6.096

ADDITIONAL TERM

7.199 8.303

K= 12.440 L= 0.505
MEAN= -0.000
A= 0.014 B= -0.106
SIM OF ERROR**2= 0.136

S= 0.107
STAND. DEV.= 0.058

MAX. & MIN. POSITIONS
5.946 6.198 6.451 6.703 6.956

SECOND ORDER QUADRATURE FIT

K= 2.861 L= 2.196
MEAN= 0.043
A= 1.518 B= 0.309
SIM OF ERR®* *2= 0.349

S= 1.549
STAND. EEV.= 0.093

MAX. & MIN. POSITIONS
4.463 5.561 6.659

ADDITIONAL TERM

7.757 8.855

K= 11.896 L= 0.528
MEAN= -0.002
A= 0.071 B= -0.068
SIM OF ERROR**2= 0.158

S= 0.098
STAND. DEV.= 0.063

MAX. & MIN. POSITIONS
6.010 6.274 6.538 6.802 7.066

(fig. 5-4)
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WAVEFORM VARIATION: WEDGE AMP. 40.OMM; FREQ. 0.781HZ
WATER DEPTH 500.OMM; WAVELENGTH 2260.OMM

FIRST ORDER FIT

K = 5.489 L=
MEAN = 17.569
A = 0.226 B=
SUM OF ERROR**2=

1.145

-0.034
0.106

S = 0.229
STAND. DEV.= 0.054

MAX. & MIN. POSITIONS
5. 124 5. 696 6. 269 6.841 7. 414

SECOND ORDER IN PHASE FIT

K = 4.581 L =
MEAN= 1.310
A = -0 . 099 B =
SUM OF ERROR**2=

1.372

0. 656
1.487

S= 0.664
STAND. DEV.= 0.203

MAX. & MIN. POSITIONS
5. 176 5. 862 6. 548

ADDITIONAL TERM

7. 234 7. 920

K= 10.397 L =
MEAN= 0.017
A = 0.056 B=
SUM OF ERROR**2=

0. 604

0. 225
0. 525

S= 0.231
STAND. DEV.= 0.121

MAX. & MIN. POSITIONS
5.868 6.171 6.473 6. 775 7. 077

SECOND ORDER QUADRATURE FIT

K= 4.336 L=
MEAN= -0.010
A = -0.083 B =
SUM OF ERROR**2=

1.449

0. 643
1. 550

S = 0.648
STAND. DEV.= 0.208

MAX. & MIN. POSITIONS
4.740 5.464

ADDITIONAL TERM

6. 189 6. 913 7. 638

K = 10. 256 L =
MEAN= -0.003
A = 0.134 B =
SUM OF ERROR**2=

0. 613

-0.213
0. 440

S= 0.252
STAND. DEV. = 0.111

MAX. & MIN. POSITIONS
6.028 6.334 6.641 6. 947 7. 253

(fig. 5-5)
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WAVEFORM VARIATION: WED® AMP. 50.OMM; FREQ. 0.781HZ
WATER DEPTH 500.OMM; WAVELENGTH 2260.OMM

FIRST ORDER FIT

K= 5.559 L= 1.130
MEAN= 21.487
A= 0.319 B= 0.252
SIM OF ERROR**2= 0.381

S= 0.407
STAND. DEV. = 0.103

MAX. & MIN. POSITIONS
5.207 5.772 6.337 6.902 7.468

SECOND ORDER IN PHASE FIT

K= 3.998 L= 1.572
MEAN= 0.894
A= -0.643 B= -0.490 S= 0.809
SLM OF ERROR**2 = 4.404 STAND. DEV.= 0.350

MAX. & MIN. POSITIONS
4.878 5.663 6.449

ADDITIONAL TERM

7.235 8.021

K= 10.973 L= 0.573
MEAN= -0.011
A= 0.106 B= 0.331
SLM CF ERR®* *2= 2.185

S = 0.348
STAND. DEV. = 0.246

MAX. & MIN. POSITIONS
5.841 6.127 6.414 6.700 6.986

SECOND ORDER QUADRATURE FIT

K= 4.269 L= 1.472
MEAN= 0.304
A= 0.715 B= 0.469
SUM OF ERROR**2= 3.149

S= 0.855
STAND. DEV.= 0.296

MAX. & MIN. POSITIONS
5.287 6.023 6.759 7.495 8.231

ADDITIONAL TERM

K= 11.409 L= 0.551
MEAN= 0.007
A= -0.259 B= 0.249
SLM OF ERROR**2= 0.880

S= 0.359
STAND. DEV. = 0.156

MAX. & MIN. POSITIONS
5.991 6.266 6.541 6.817 7.092

(fig. 5-6)
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WATER DEPTH 500.0MM; WAVELENGTH 2270.0MM

Figure 5-7
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WAVEFORM VARIATION: WEDGE AMP. 60. OMM; FREQ. 0. 781HZ
WATER DEPTH 500. CMM; WAVELENGTH 2270.OMM

FIRST ORDER FIT

K= 5.532 L= 1.136
MEAN= 25.588
A= 0.501 B= -0.080
SLM OF ERROR**2= 0.266

S = 0.508
STAND. DEV.= 0.086

MAX. & MIN. POSITIONS
5.082 5.650 6.218 6.786 7.354

SECOND ORDER IN PHASE FIT

K= 4.334 L= 1.450
MEAN= 1.490
A= 1.266 B= 0.108
SIM OF ERROR**2= 3.860

S= 1.271
STAND. DEV.= 0.327

MAX. & MIN. POSITIONS
5.093 5.818 6.543

ADDITIONAL TERM

K= 10.379 L= 0.605
MEAN= 0.030
A= 0.177 B= 0.382
SLM OF ERROR**2= 0.677

7.268 7.992

S = 0.421
STAND. DEV.= 0.137

MAX. & MIN. POSITIONS
5.860 6.163 6.466 6.769 7.071

SECOND ORDER QUADRATURE FIT

MAX. & MIN. POSITIONS

K= 4.084 L= 1.538
MEAN= -0.038
A= 1.252 B= 0.176 S = 1.264
SLM OF ERROR* *2 = 4.215 STAND. DEV. = 0.342

4.649 5.418 6.188 6.957 7.726

ADDITIONAL TERM

K= 10.073 L= 0.624
MEAN= -0.010
A= -0.304 B= -0.307
SUM OF ERROR**2= 0.990

S= 0.432
STAND. DEV.= 0.166

MAX. & MIN. POSITIONS
6.004 6.316 6.628 6.940 7.252

(fig. 5-7)
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WAVEFORM VARIATION: WEDGE AMP. 50.0MM; FREQ. 0.879HZ
WATER DEPTH 500.0MM; WAVELENGTH 1890.0MM

P1gure 5-8
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WAVEFORM VARIATION: WEDGE AMP. 50.OMM; FREQ. 0. 879HZ 
WATER DEPTH 500.OMM; WAVELENGTH 1890.OMM

FIRST ORDER FIT

K = 7.122 L = 0.882
MEAN= 26.367
A = -0.249 B = 0.247
SUM OF ERROR**2= 1.428

MAX. & MIN. POSITIONS
5. 625 6.066 6.507

S = 0.351
STAND. DEV.= 0.184

6.948 7.389

SECOND ORDER IN PHASE FIT

K = 5.355 L=
MEAN= 1.576
A = -0.194 B =
SUM OF ERROR**2=

1. 173

-0.622
3.993

S = 0.651
STAND. DEV.= 0.308

MAX. & MIN. POSITIONS
5. 517 6.103 6. 690 7.277 7.863

ADDITIONAL TERM

K= 15.721 L =
MEAN= -0.008
A= -0.001 B =
SUM OF ERROR**2=

0. 400

-0.208
3. 068

S= 0.208
STAND. DEV.= 0.270

MAX. & MIN. POSITIONS
6. 094 6. 294 6. 494 6.694 6. 894

SECOND ORDER QUADRATURE FIT

MAX. & MIN.

K = 5.926 L = 1.060
MEAN= 0.018
A = -0.502 B = -0.214 S = 0. 545
SUM OF ERROR**2 = 5.331 STAND. DEV.= 0.356

POSITIONS
5. 370 5. 900 6.430 6.960 7.491

ADDITIONAL TERM

K = 16.421 L= 0.383
MEAN= 0.014
A = 0.148 B = 0.185
SUM OF ERROR**2= 4.159

S = 0.237
STAND. DEV.= 0.315

MAX. & MIN. POSITIONS
6.176 6.368 6.559 6. 750 6. 942

(fig. 5-8)
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Figure 5-9
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WAVEFORM VARIATION: WEDGE AMP. 30.OMM; FREQ.
WATER DEPTH 500.OMM; WAVELENGTH 1585.OMM

FIRST ORDER FIT

K = 8.072 L=
MEAN= 19.733
A= 0.100 B =
SUM OF ERROR**2=

0. 778

-0.368
0.165

S = 0.382
STAND. DEV.=

MAX. & MIN. POSITIONS
5.677 6.066 6.455 6. 844 7

SECOND ORDER IN PHASE FIT

K = 7.046 L= 0.892
MEAN= 0.787
A= 0.205 B = -0.261
SUM OF ERROR**2= 0.888

MAX. & MIN. POSITIONS
5. 668 6. 113 6. 559

ADDITIONAL TERM

K= 20.376 L= 0.308
MEAN= -0.004
A= 0.087 B = 0.105
SUM OF ERROR**2= 0.514

MAX. & MIN. POSITIONS
6. 210 6. 364 6. 519

S = 0.332
STAND. DEV.=

7.005 7

S = 0.137
STAND. DEV.=

6.673 6

SECOND ORDER QUADRATURE FIT

K= 6.708 L = 0.937
MEAN = -0.019
A = 0.007 B = -0.388
SUM OF ERROR**2= 0.564

S= 0.388
STAND. DEV.=

MAX. & MIN. POSITIONS
5.389 5.857 6.325

ADDITIONAL TERM

K= 19.612 L = 0.320
MEAN= -0.001
A = 0.062 B = 0.085
SUM OF ERROR**2= 0.329

6. 794 7

S= 0.105
STAND. DEV.=

MAX. & MIN. POSITIONS
6. 135 6. 296 6. 456 6.616 6

0.977HZ

0. 063

233

0.145

451

0.111

827

0.116

262

0. 088

776

(fig. 5-9)
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Figure 5-10
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WAVEFORM VARIATION: WEDGE AMP. 40.CMM; FREQ. 0.977HZ
WATER DEPTH 500. OMM; WAVELENGTH 1585. OMM

FIRST CRIER FIT

K= 7.942 L= 0.791
MEAN= 26.474
A= -0.274 B= -0.699
SLM OF ERRCR**2= 0.436

S = 0.751
STAND. DEV.= 0.102

MAX. & MIN. POSITIONS
5.689 6.084 6.480 6.875 7.271

SECOND ORDER IN PHASE FIT'

K= 6.711 L= 0.936
MEAN= 1.372
A= -0.085 B- -0.305
SLM OF ERRCR**2= 0.584

S= 0.317
STAND. DEV.= 0.118

MAX. & MIN. POSITIONS
5.343 5.811 6.279

ADDITIONAL TERM

K= 4.387 L= 1.432
MEAN= -0.024
A= 0.098 B= 0.056
SLM OF ERROR**2= 0.334

6.747 7.215

S= 0.113
STAND. DEV.= 0.089

MAX. & MIN. POSITIONS
5.132 5.848 6.565 7.281 7.997

SECOND ORDER QUADRATURE FIT

K= 6.039 L= 1.040
MEAN= -0.064
A= 0.052 B= 0.282 S= 0.286
SLM CF ERROR**2 = 0.547 STAND. DEV.= 0.114

MAX. & MIN. POSITIONS
5.432 5.952 6.473

ADDITIONAL TERM

6.993 7.513

K= 8.412 L= 0.747
MEAN= -0.005
A= 0.058 B= -0.083
SUM CF ERROR**2= 0.336

S= 0.101
STAND. DEV.= 0.089

MAX. & MIN. POSITIONS
5.862 6. 235 6.609 6.982 7.356

(fig. 5-10)
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WATER DEPTH 500.0MM; WAVELENGTH 1590.OMM

Figure 5-11
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WAVEFORM VARIATION: WEDGE AMP. 50.0MM; FREQ. 0.977HZ
WATER DEPTH 500.OMM; WAVELENGTH 1590. OMM

FIRST ORDER FIT

K= 8.051 L= 0.780
MEAN= 31.590
A= 0.400 B= -0.536 S = 0.669
SLM OF ERROR* *2 = 2.160 STAND. DEV. = 0.227

MAX. & MIN. POSITIONS
5.738 6.128 6.518 6.909 7.299

SECOND ORDER IN EHASE FIT

MAX. & MIN. POSITIONS

K= 5.114 L= 1.229
MEAN= 2.111
A= -0.013 B= 0.342 S= 0.342
SLM OF ERROR**2 = 1.280 STAND. DEV. = 0.175

5. 229 5.843 6.457 7.072 7.686

ADDITIONAL TERM

K= 22.478 L= 0.280
MEAN= -0.002
A= -0.082 B= -0.108
SLM OF ERROR**2= 0.893

S= 0.136
STAND. DEV. = 0.146

MAX. & MIN. POSITIONS
6.191 6.330 6.470 6.610 6.750

SECOND ORDER QUADRATURE FIT

K= 5.466 L= 1.150
MEAN= -0.211
A= 0.179 B= -0.234
SLM OF ERROR**2= 1.002

S= 0.295
STAND. DEV. = 0.154

MAX. & MIN. POSITIONS
5.580 6.155 6.729

ADDITIONAL TERM

7.304 7.879

K= 22.227 L= 0.283
MEAN= 0.005
A= 0.024 B= 0.140
STM OF ERRCR**2= 0.581

S= 0.142
STAND. DEV. = 0.118

MAX. & MIN. POSITIONS
6. 282 6.423 6.564 6.706 6.847

(fig. 5-11)
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c i gure 5-12



170 -
WAVEFORM VARIATION: WEDGE AMP. 40.OMM; FREQ. 1.074HZ
WATER DEPTH 500. OMM; WAVELENGTH 1340. OMM

FIRST ORDER FIT

K = 9.520 L=
MEAN= 29.204
A = -0.607 B =
SUM OF ERROR**2=

0. 660

-0.327
1. 037

S = 0.690
STAND. DEV.= 0.147

MAX. & MIN. POSITIONS
5. 992 6. 322 6.652 6. 982 7. 312

SECOND ORDER IN PHASE FIT

K = 17.929 L=
MEAN= 1.842
A = -0.090 B =
SUM OF ERROR**2=

0. 350

-0.271
2. 541

S= 0.286
STAND. DEV.= 0.230

MAX. & MIN. POSITIONS
6. 203 6. 378 6. 553

ADDITIONAL TERM

K= 7.778 L =
MEAN= -0.001
A= 0.060 B =
SUM OF ERROR**2=

0.808

-0.248
1. 095

MAX. & MIN. POSITIONS
5. 887 6. 291 6. 695

6.728 6.904

S= 0.255
STAND. DEV.= 0.151

7.099 7.503

SECOND ORDER QUADRATURE FIT

K= 7.811 L = 0.804
MEAN= -0.074
A = 0.365 B = 0.165 S = 0. 400
SUM OF ERROR**2 = 2.302 STAND. DEV. = 0.219

MAX. & MIN. POSITIONS
5. 685 6. 087

ADDITIONAL TERM

6.490 6. 892 7. 294

K= 17.841 L = 0.352
MEAN = 0.005
A= -0.151 B = 0.166
SUM OF ERROR**2= 1.078

S= 0.224
STAND. DEV.= 0.150

MAX. & MIN. POSITIONS
6. 117 6. 293 6. 469 6. 645 6. 821

(fig. 5-12)
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Figure 5-13
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WAVEFORM VARIATION: WEDGE AMP. 20.OMM; FREQ. 1.172HZ
WATER DEPTH 500. OMM; WAVELENGTH 1135. OMM

FIRST ORDER FIT

K = 11.264 L = 0.558
MEAN= 15.891
A = -0.094 B = -0.024
SUM OF ERROR**2= 0.026

S= 0.097
STAND. DEV.= 0.025

MAX. & MIN. POSITIONS
5. 879 6. 158 6.437 6. 716 6. 995

SECOND ORDER IN PHASE FIT

MAX. & MIN. POSITIONS

K = 10.438 L= 0.602
MEAN= 0.592
A = -0.027 B= 0.310 S = 0. 312
SUM OF ERROR**2 = 0.450 STAND. DEV.= 0.106

5. 878 6.179 6. 480 6. 781 7. 082

ADDITIONAL TERM

K= 26.121 L = 0.241
MEAN= -0.001
A= -0.007 B = 0.091
SUM OF ERROR**2= 0.290

S= 0.091
STAND. DEV.= 0.085

MAX. & MIN. POSITIONS
6. 317 6. 437 6. 558 6. 678 6. 798

SECOND ORDER QUADRATURE FIT

MAX. & MIN. POSITIONS

K = 9.893 L = 0.635
MEAN= -0.003
A = 0.277 B= -0.058 S = 0.283
SUM OF ERROR**2 = 0.183 STAND. DEV.= 0.068

6. 013 6.330 6. 648 6.965 7.283

ADDITIONAL TERM

K= 26.663 L= 0.236
MEAN= -0.004
A = -0.060 B = -0.050
SUM OF ERROR**2= 0.055

S = 0.078
STAND. DEV.= 0.037

MAX. & MIN. POSITIONS
6. 271 6. 389 6. 507 6.624 6.742

(fig. 5-13)
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WAVEFORM VARIATION: WEDGE AMP. 30.OMM; FREQ. 
WATER DEPTH 500. OMM; WAVELENGTH 1140. OMM

FIRST ORDER FIT

K= 11. 599 L =
MEAN= 24.781
A = 0.010 B =
SUM OF ERROR**2=

0. 542

-0.193
0. 359

S = 0.193
STAND. DEV.=

MAX. & MIN. POSITIONS
5.828 6.099 6.369 6.640 6

SECOND ORDER IN PHASE FIT

K = 9.118 L= 0.689
MEAN= 1.483
A = -0.362 B = -0.290
SUM OF ERROR**2= 0.647

S = 0.464
STAND. DEV.=

MAX. & MIN. POSITIONS
5. 931 6. 276

ADDITIONAL TERM

6. 620

K = 35. 645 L= 0.176
MEAN= 0.002
A = 0.099 B = -0.029
SUM OF ERROR**2= 0.434

MAX. & MIN. POSITIONS
6. 338 6. 426 6. 514

6. 965 7

S= 0.103
STAND. DEV.=

6.602 6

SECOND ORDER QUADRATURE FIT

K = 8.955 L= 0.702
MEAN= -0.224
A= -0.151 B = -0.464 S= 0.488
SUM OF ERROR**2 = 0.616 STAND. DEV.=

MAX. & MIN. POSITIONS
5.753 6.104 6.455

ADDITIONAL TERM

K= 34.727 L = 0.181
MEAN= 0.005
A= 0.029 B = -0.126
SUM CF ERROR**2= 0.253

6.806 7

S= 0.129
STAND. DEV.=

MAX. & MIN. POSITIONS
6. 294 6. 384 6. 475 6. 565 6

1. 17 2HZ

0. 095

911

0.127

310

0.104

690

0. 124

156

0. 080

656

(fig. 5-14)
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WAVEFORM VARIATION: WEDGE AMP. 40.0MM; FREQ. 1.172HZ
WATER DEPTH 500.0MM; WAVELENGTH 1160.0MM

Figure 5-15
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WAVEFORM VARIATION: WEDGE AMP. 40.OMM; FREQ. 
WATER DEPTH 500.OMM; WAVELENGTH 1160.OMM

FIRST ORDER FIT

K = 5.083 L = 1.236
MEAN= 32.424
A = 0.114 B= -0.131
SUM OF ERROR**2= 1.386

MAX. & MIN. POSITIONS
5. 394 6. 012 6. 630

SECOND ORDER IN PHASE FIT

K = 8.458 L = 0.743
MEAN= 3.013
A = -0.118 B = -0.904
SUM OF ERROR**2= 3.520

MAX. & MIN. POSITIONS
6. 484 6.856 75. 742 6. 113

ADDITIONAL TERM

K = 34.588 L = 0.182
MEAN= -0. 003
A = 0.065 B= - 0. 180 S= 0.191
SUM OF ERROR**2= 2. 488 STAND. DEV.=

MAX. & MIN. POSITIONS
6.323 6.414 6.504

SECOND ORDER QUADRATURE FIT

K= 8.854 L =
MEAN= -0.622
A= -0.772 B =
SUM OF ERROR**2=

0. 710

0. 543
3.120

MAX. & MIN. POSITIONS
5.963 6.318 6.672

ADDITIONAL TERM

K= 26.524 L = 0.237
MEAN= -0.007
A = -0.223 B = -0.072
SUM OF ERROR**2= 1.592

MAX. & MIN. POSITIONS
6.289 6.408 6.526

1.172HZ

0.156

866

0. 249

227

0. 209

686

0. 234

382

0.167

763

S = 0.174
STAND. DEV.=

7. 248 7.

S = 0.912
STAND. DEV.=

6.595 6

S = 0.944
STAND. DEV.=

7. 027 7

S= 0.234
STAND. DEV.=

6. 645 6.

(fig. 5-15)



177 -

Freq. WA ^meas aI aR a2 a22(I) a22(Q) a22R(I) a22R(Q)
(Hz) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)
0.586 50 3350 14.54 0.59 0.61 1.39 1.42 0.22 0.22
0.586 60 3360 18.38 0.90 0.87 2.07 2.03 0.31 0.27
0.586 70 3335 21.70 1 .02 1.11 2.69 2.79 0.14 0.14
0.684 40 2720 11.22 0.21 0.31 1.12 1.13 0.15 0.18
0.684 50 2720 13.89 0.22 0.41 1.56 1.55 0.11 0.10
0.684 60 2720 16.89 0.27 0.54 2.16 2.12 0.09 0.07
0.684 70 2720 20.03 0.36 0.84 2.63 2.54 0.17 0.19
0.781 30 2260 12.80 0.31 0.56 0.48 0.46 0.27 0.25
0.781 40 2260 17.57 0.23 1.31 0.66 0.65 0.23 0.25
0.781 50 2260 21 .49 0.41 0.89 0.80 0.86 0.35 0.36
0.781 60 2270 25.59 0.51 1.49 1.27 1.26 0.42 0.43
0.781 70 2260 30.46 0.40 2.23 1.59 1.69 0.44 0.35
0.879 20 1870 10.52 0.07 0.13 0.27 0.23 0.24 0.24
0.879 30 1890 16.49 0.10 0.52 0.36 0.37 0.10 0.09
0.879 40 1885 22.25 0.20 0.97 0.48 0.40 0.21 0.18
0.879 50 1890 26.37 0.35 1.58 0.65 0.55 0.21 0.24
0.879 60 1880 32.58 0.28 2.09 0.73 0.72 0.27 0.15
0.879 70 1890 37.38 0.27 2.86 0.73 0.75 0.18 0.25
0.977 20 1570 12.60 0.34 0.25 0.24 0.24 0.08 0.07
0.977 30 1585 19.73 0.38 0.79 0.33 0.39 0.14 0.11
0.977 40 1585 26.47 0.75 1.37 0.32 0.29 0.11 0.10
0.977 50 1590 31 .59 0.67 2.11 0.34 0.30 0.14 0.14
0.977 60 1590 38.83 1 .06 3.14 0.48 0.60 0.29 0.47
0.977 70 1610 44.67 1.03 4.33 1 .00 0.90 0.21 0.72
1 .074 20 1330 14.22 0.21 0.39 0.23 0.26 0.13 0.14
1.074 30 1350 22.39 0.34 0.99 0.31 0.38 0.18 0.14
1.074 40 1340 29.20 0.69 1.84 0.26 0.40 0.29 0.22
1.074 50 1350 35.26 0.61 2.81 0.77 0.55 0.20 0.19
1.074 60 1350 43.10 1.02 4.60 1.15 1.15 0.37 0.31
1.172 20 1135 15.89 0.10 0.59 0.31 0.28 0.09 0.08
1.172 30 1140 24.78 0.19 1 .48 0.46 0.49 0.10 0.13
1.172 40 1160 32.42 0.17 3.01 0.91 0.94 0.19 0.23
1.172 50 1170 38.42 0.30 5.97 0.79 0.97 0.34 0.31

Waveform Analysis Results

Table 5.1
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5.1.1 Wave Amplitude Ratio

The wave amplitude ratio for a wedge type generator was shown

by Wang (1974) to be;

az = f(kb,b/d)
WA

(5-1)

Wang derived a relationship for the wave amplitude ratio for 

various values of b/d, which he presented in the form of curves 

against kb.

Figure 5-16
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The experimentally determined values of a^/WA from this study 

are plotted against kb in Figure 5.16. Also shown is the theoretical 

curve for a d/b ratio of 1.6, found by interpolation between Wang's 

curves for d/b of 1.5 and 2.0.

The results show that the theory overestimates the wave 

amplitude ratio by typically 20%. The discrepancy is worse at lower 

frequencies, especially at 0.684 Hz, where the measured ratio is 

almost 50% less than theory. This is due,at least in part, to 

leakage underneath the wedge causing motion in the water behind it. 

A similar reduction in the wave amplitude ratio was found by Flick and 

Guza (1980) for a piston type wavemaker. They found that the wave 

amplitude ratio was up to 20% less than predicted, until the leaks 

around the piston were sealed, whereupon the agreement with theory 

became very good.

Wang's derivation is strictly only applicable to water of 

infinite depth, but this cannot account for the discrepancy. 

Theoretical work with circular cylindrical plungers on deep and 

shallow water by Kim (1969) showed that the wave amplitude becomes 

greater, rather than smaller, in shallower water.

5.1.2 First Order Reflection

In most cases the first order amplitude envelope was found 

to conform very well to the expected pattern. The obvious 

exceptions were those where the waves were unstable and results 

scattered, as in Figure 5.15.



- 180 -

2 000-1

1500 -

1000-

500-

WA (mm)
* 20
v 30
+ 40
x 50
d 60
0 70
— L/2

°0-4 0-5 0-6 0-7 0-8 0-9 1-0 1-1 1-2 13

Frequency (Hz)

Reflection Beat Wavelength 

Figure 5-17

Reflection Coefficient

Figure 5-18



181

The measured values of the reflection beat wavelength, Lp, 

are shown in Figure 5.17, and generally agree to within 3% with the 

theoretical value of L/2.

The measured reflection coefficients, Kp, as given by (3-21) 

are shown in Figure 5.18. The results show that this beach 

arrangement is an efficient absorber of wave energy, with no more 

than 5% of the incident wave amplitude being reflected. There is 

a general trend for the shorter waves to be reflected less than the 

longer waves, but the scatter in the results means that the 

relationshiD cannot easily be inferred.

The results do not indicate any well defined variation of 

Kp with the wave steepness. For example, at 0.781 Hz the steepest 

wave has the lowest reflection coefficient, while the steepest wave 

at 1.074 Hz has the largest Kp

5.1.3 Second Order Stokes1 Wave

The measured amplitude of the second order Stokes' component, 

a^, was taken as the mean value of the second order in-phase 

amplitude in each case, as demonstrated in Figure 4.14. The 

measured results are compared with the theoretical values, as given 

by (3-10), in Figure 5.19. This figure is shown in two parts 

solely for the sake of clarity.

From the plotted results it can be seen that the measured 

values of a? closely follow the theoretical curves, but are on
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Figure 5-19
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average approximately 10% less than predicted. The wave steepness, 

ka^, and relative water depth, kh, are not beyond the limits of 

validity of Stokes' second order wave theory, so the reason for the 

difference is not clear. It may be indicative of systematic 

instrumental effects such as a non-linear gain response in one of the 

amplifier stages. This possibility has not been investigated, 

and it is noted that the actual magnitude of the discrepancy, being 

less than 0.5 mm, is less significant when compared with the total 

wave motion.

In their experiments with a paddle type wavemaker, Buhr 

Hansen and Svendsen (1974) found a similar order of deviation between 

the measured and theoretical second order Stokes' components.

5.1.4 Free Second Harmonic Wave

With a few exceptions, the in-phase and quadrature second 

order amplitude envelopes followed the expected pattern. In some 

cases, such as in Figures 5.1 to 5.4, the closeness of the fit to 

the data points was excellent. In others, such as Figures 5.6 and 

5.8, the curves were less close to the individual points, but clearly 

followed their trends.

The two estimates in each case for Lg and a22R

generally differed by only a few percent, meaning that the average 

value could be taken. The sinusoidal variation in the in phase 

envelope, due to beating between a2 and a22, was found to lead that 

in the quadrature envelooe by almost exactly the expected Lg/4.
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The maximum deviation from this was approximately 50 mm, or 3%

of Lb.

As noted in Section 3.1.4, no adequate theory exists to 

predict the amplitude of the free second harmonic wave produced by 

a wedge. For this reason, it has only been possible to undertake 

a comparative study, in which the relative magnitudes of the free 

wave and the second order Stokes' component have been considered. 

The ratio a2 9lven its theoretical value (3-10), is

plotted against the wave steeoness in Figure 5.20, from which a number 

of observations can be made.

2-

f0 (Hz) 
A 0-586 
vO-684 
-0-781 
*0-879 
o0-977 
*1-074 
°1-172

+

005

Free Second Harmonic Wave Amplitude

Figure 5-20
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At the lower frequencies, particularly at f = 0.684 Hz, 

a££ is considerably greater than a^. This conflicts with the results, 

both experimental and theoretical, Buhr Hansen and Svendsen (1974) and 

Madsen (1971), for piston type generators, which showed a^ to be 

always less than a£. This represents a major disadvantage of wedge 

type wavemakers, since the free wave is an undesirable feature in most 

experimentation.

For the less steep waves, the ratio a^/a^ ^ends fall 

with wave steepness. This is a logical result, since a^ is 

approximately proportional to the wedge amplitude and hence to ap 

while a? varies with a^2. Finally for the steeper waves, ka^ greater 

than 0.1, a^la^ assumes a near constant value of between 0.15 and 

0.25.

5.1.5 Free Wave Celerity

From the measured beat wavelength, Lg, it was possible to 

calculate the wavelength, and hence the celerity of the free wave.

1 = _L " _L
L/2 LB

C22m = L22m x 2fo

(5-2)

(5-3)

These results were compared with the theoretical dispersion 

celerity, C^, given by (3-18). The ratio C22rr/C22t is Plotted 

against wave steepness, ka^, in Figure 5.21.



186 -

1-2n
^22m
c22t

1-1-

f0 (Hz)
^0-586 
vO-684 
-0-781
*0-879
□ 0-977
o 1-074
o 1-1 72

0-9-
0 0-05 0-1 0-15 0-2 0-25

kaj

Free Wave CeLerity

Figure 5-21

Although there is some scatter in the results, the free 

wave tends to travel faster than theoretically predicted, increasingly 

with wave steepness. This effect is borne out by the findings of 

Buhr Hansen and Svendsen (1974), who observed a similar increase in 

the celerity of the free wave produced by a piston. It is almost 

certainly due to the much larger wave through which the free wave 

travels. It would seem that the free wave is being carried along 

by the main wave to some extent, rather than travelling totally 

independently through it.
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One possible explanation for this is the phenomenon of mass

transport, as discussed in Section 3.1.3. The free wave activity

is mainly in the surface region, thus the frame of reference through 

which it travels is subject to a net drift velocity, U (3-14).

Assuming a simple superposition, the free wave can be considered to 

travel with a celerity equal to ^22t + % • The ratio (C22t + ut^C22t

has been calculated and is also shown in Figure 5.21. For clarity,

only the curve for one typical fundamental frequency, fQ = 1.074 Hz, 

is shown, but the other curves all lie very close to this. Clearly

the mass transport effect accounts for some, but not all, of the 

additional celerity of the free second harmonic wave.

A further explanation may be the effect which the main wave 

has on the surface boundary conditions applied to the free wave. 

In the linear solution for the free wave (3-16) and (3-17), the 

wave amplitude is assumed to be small and the surface boundary 

conditions are applied at the still water level, y=0. However, 

these assumptions can hardly be justified in the presence of the 

large surface displacement, n> and slope ~~ > of the main wave.
oX

5.1.6 Second Order Reflection

The presence of a second harmonic reflected wave is apparent

from the additional terms in the second order waveform variations,

Figures 5.1 to

as Fi gure 5.1,

5.15. The closeness of the fit in some cases, such

implies a higher degree of confidence in the measured

values of a22R and l_2R, than in those cases where the fit is not so 

good, e.g. Figure 5.12. In a very few cases, of which Figure 5.10
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is an example, no beating effect due to reflected second harmonic 

waves was apparent, and the additional terms in the sine fitting are 

meaningless.

The equivalent second order reflection coefficients, defined 

by a22R//a22 are s^own 1n figure 5.22. Their values, being typically 

between 30 and 40% are very large in comparison to the first order 

values of 1 to 5%. The reflected second harmonic waves are very 

probably due, not only to reflection of incident second harmonic 

components, but also the mechanism of the interaction between the 

beach and the first order waves.

The second order reflection beat wavelengths, L?^, are shown 

in Figure 5.23, and compared with the theoretical value as given by;

1 = 1 + 1 (5-4)

The measured beat wavelengths agree very well with theory 

at the two lowest frequencies, but tend to be somewhat longer at the 

higher frequencies. The worst case of this is at a fundamental 

frequency of 0.781 Hz, where measured is 50% greater than theory. 

One possible explanation for this, that the reflected second harmonic 

wave travels 'locked-in' with the first order reflected wave, is 

implausible in view of the very small values of a^. The second order 

Stokes' component associated with a^ would have an insignificant 

amplitude equal to (kR)2a2-
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Referring to the tabulated results, Table 5.1, it can be

seen that a^p generally constitutes less than 1% of the total wave

motion. In view of this, and of the uncertainties mentioned above, 

the reflected harmonic wave is neglected in the discussion of the 

wave cylinder interaction, in the remainder of this Chapter.

5.1.7 Wave Environment Around Test Cylinders

The waveform variations observed with the test cylinders in 

place were essentially of the same form as those without. There 

were, however, a few noticeable differences.

The wave amplitude, tended to reach a high maximum just 

upstream of the cylinder, and fall to an extreme low just downstream, 

as shown in Figure 5.24. This demonstrates the effect of the cylinder 

on the velocity potential under the wave, with the local high and low 

representing the exponentially decaying term of Havelock (1929).

A further effect of the cylinder on the wave is clearly 

visible in the first order variation in Figure 5.25. The wave 

amplitude is considerably reduced as it passes the cylinder. This is 

due to the energy lost by the wave in exerting the forces on the 

cylinder, and represents the blockage effect of the cylinder in the 

finite width of the flume. Quantitatively, a^ was found to be as 

much as 2% lower downstream of the cylinder than upstream.

Neither of these effects was accounted for in the analysis 

of the wave loading, and the waves were assumed to be described by
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the sine curves, as shown in Figures 5.24 and 5.25.

The full waveform results with the test cylinders in place 

are given in Table 5.2. Significant differences were recorded in 

the amplitudes and phases of the wave components under nominally 

identical wave conditions. This is symptomatic of the lack of 

repeatability noted in Section 4.5, and explains the need for a 

seoarate waveform run on every test.

5.2____ Wave Loading Results

5.2.1 Wave and Force Time Variations

A number of the records taken from the wave probe and force 

transducers are presented graphically in Figures 5.26 to 5.37. The 

data is presented in an uncalibrated form, so that the shapes, but 

not the amplitudes, of the time variations are discernable. In those 

cases where the force transducer outputs were filtered, Figures 5.26 

to 5.28, the traces have been corrected for the time delay only, by 

a simple shift along the time axis.

The relative importance of the drag and inertia forces is 

apparent from the phase differences between the wave and force traces. 

Where the Keulegan Carpenter number is relatively high, as in 

Figures 5.26 and 5.29, the force is approximately in phase with the 

wave profile indicating the dominance of drag loading. Conversely, 

at lower values of KCI, Figures 5.36 and 5.37, the force traces lead 
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the wave by almost tt /2, indicating inertia dominance. In almost 

every case the bottom force fractionally leads the top force. This 

demonstrates that the inertia force has a greater resultant depth 

of action than the drag force, consistent with the results in Table 

3.1.

The waterline force can be seen in the top transducer traces 

in Figures 5.29, 5.30, 5.32, 5.33, 5.36 and 5.37. For the 9.55 mm 

cylinder, Figures 5.29 and 5.30, the waterline force is dominated by 

FWD and the force traces show good agreement with the theoretical 

result of Figure 3.11. The inertia waterline force is evident in 

Figures 5.36 and 5.37, where the force traces follow the pattern of 

Figure 3.12. The waterline force on the 21.45 mm cylinder, Figures 

5.32 and 5.33, is a combination of FWD and FWI.

The effect of the free second harmonic wave is shown in

Figures 5.31, 5.34 and 5.35. In Figure 5.34, the free wave has a 

very noticeable effect on the observed wave profile as well as on the 

force traces. The importance of the phase of the free wave is 

demonstrated in Figure 5.31, where the force traces have flattened 

peaks and sharpened troughs. This effect is in contrast to the 

generally exoected second order forces, and agrees with the predicted 

result of Figure 3.20. In Figure 5.35 the free wave forces and the 

waterline forces reinforce each other to give a pronounced effect 

on the force traces.

An important feature of the wave loading mechanism on a very 

small cylinder - vortex shedding - is visible in Figures 5.26 and 5.28. 
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In Figure 5.26, the Keulegan Carpenter number is high, particularly 

in the surface region, and the top transducer trace shows evidence 

of the shedding of 3 or 4 vortices in each wave cycle. The shedding 

of a vortex as a wave crest passes the cylinder can have a marked 

effect on the shaoe of the force traces, as demonstrated in

Figure 5.28. This reduces the apparent phase difference between the 

wave Drofile and force trace and influences the measured values of 

the drag and inertia coefficients.
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5.2.2 First Order Forces

As stated in Section 4.4.3.3, the force results were obtained 

in the form of six Fourier components of the total force, each 

with its respective depth of action. Three sets of results were 

obtained for each of the cylinder and wave combinations. These 

agreed to within 1% in most cases, allowing the average values to be 

taken for the force components. The first order force results, 

then,consisted of the coswt and sinwt components and their depths of 

action.

The measured forces were equated with the theoretical first 

order forces, as calculated from the measured wave conditions, in 

order to give estimates for the drag and inertia coefficients. The 

theoretical forces acting at the fundamental frequency are the linear 

Morison forces, FI and FD((3-33) and (3-32)),and the forces due to 

the reflected wave, FIR and FDR ((3-63) and (3-62)).

The calculated values of FD and FDR were multiplied by the 

appropriate factors from their Fourier series, Table 3.2, to 

obtain their first order components. A correction was also made to 

the theoretical forces to allow for the fact that the cylinder did 

not extend right to the bottom of the flume, Figure 4.6. The 

cylinder was assumed to end 75 mm above the bottom in each case. 

This effectively changed the bottom limit of integration in (3-31) from 

-h to -0.85 h and introduced correction factors into the drag and 

inertia forces given by;
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C0RRd = 1 - sinh 0.3 kh + 0,3 kh (5-5)
sinh 2 kh + 2kh

CORRj = 1 - sinh 0.15 kh (5-6)
sinh kh

In the limit of deep or shallow water, CORR^ and CORRj have 

identical values which tend towards 1.0 or 0.85 respectively. At 

intermediate depths, CORRj is somewhat lower than CORR^.

Having obtained expressions for the theoretical first order 

forces, Cm and were easily calculated from the measured forces, 

and the results are given in Table 5.3 a, b, and c. Also shown in 

Table 5.3 are the Keulegan Carpenter number, KCI, given by (3-40) 

and the Reynolds' number, calculated using the free surface particle 

velocity;

Re = Umd
0

= atgkD (5-7)
OJ v

— 6with the kinematic viscosity, v, taken as 1.1 x 10 m2/s.

5.2,2.1 Inertia Coefficient

The measured inertia coefficients are plotted against the

Keulegan Carpenter number in Figure 5.38. Also shown are the 

results of Sarpkaya (1976a). obtained from U-tube tests, and

Chakrabarti's (1980a) results from elements of vertical cylinders.
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At low values of KCI, Cm approaches its theoretical value 

of 2.0. This agrees with the results of Sarpkaya and of Jen (1968). 

Chakrabarti1s results for vertical elements have a slightly larger 

value of Cm at the limit of low KC.

As the Keulegan Carpenter number increases, Cm tends to 

become lower. This trend is displayed in both Sarpkaya1s and 

Chakrabarti1s results, although the rate at which Cm falls is 

somewhat less in this case.

A number of high values for Cm have been found for the

9.55 mm cylinder at the higher values of KCI. These may be due 

to the dependence of Cm on the Reynolds' number. At this range of 

KCI, Cn was found to be very dependent on Re, Figure 5.39. Although 

Sarpkaya (1976a) found Cm to be independent of Reynolds' number for 

Re below 20,000, the typical Re in this study is a full order of 

magnitude below that value. Thus at high KCI, Cm was found to be 

dependent on Re, for values of Re below those covered by previous 

published work.

Apart from these few high points, the measured inertia 

coefficients follow the generally accepted trends, and are well 

within the limits of previous results.

5.2.2.2 Drag Coefficient

The measured drag coefficients are plotted against Keulegan

Carpenter number in Figure 5.40, and against Reynolds' number in

Figure 5.41. Also shown on Figure 5.40, as for the inertia
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coefficient, are the results of Sarpkaya (1976a) and Chakrabarti 

(1980a).

The variation of Cd with KCI is well defined. At low 

Keulegan Carpenter numbers Cd is small; the drag coefficient then 

increases with KCI, before reaching a peak value for KCI about 15. 

This trend agrees with the results of both Sarpkaya and Chakrabarti, 

although the observed values of Cd are generally higher in this study.

The difference between the values of Cd from this study and 

from the previous results is due to its dependence on the Reynolds' 

number. Although C^ does not appear to vary with Re over the range 

covered by this work, Figure 5.41, over a much wider range C^ tends 

to fall with Re. Thus the drag coefficients measured in these 

tests, with typical Reynolds' numbers of 1,000 to 5,000,are higher 

than those from the previous work, where Re was approximately 

30,000.

5.2.3 Second Order Forces

The measured second order forces consisted of cos 2wt and 

sin 2u>t force components and their depths of action. The theoretical

second order force components were calculated from the measured wave 

data using the first order values for C and Cj . The forces havingJ m d

components at the second harmonic frequency were; FI2 (3-43), 

FD2 (3-47), FWD (3-54), FWI (3-55), FDP (3-58), FD22 (3-67) and 

FI22 (3-68). Because of the number of theoretical forces contributing 

to the two measured components, it was not possible to directly 
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evaluate the magnitude of any one of them from the experimental 

results.

As a first stage in the analysis of the second order forces, 

the measured and theoretical force components are compared in 

Figures 5.42 to 5.62. These figures cover the three cylinder 

diameters at each of the seven fundamental frequencies. The 

theoretical forces are presented pictorially, with each of the force 

components and their depths of action (calculated from Table 3.1) 

shown approximately to scale. Comparison of the measured and 

theoretical resultant forces allows a number of observations to be 

made.

In considering the ratios of measured to theoretical forces 

given in Figures 5.42 to 5.62, it must be remembered that the second 

order loading generally constitutes less than 10% of the total 

loading. Thus a difference of 10% between the measured and 

theoretical second order forces amounts to only 1% of the total 

loading on the cylinder.

In a significant number of the results, for example 

Figures 5.46, 5.48, 5.52, 5.58 and 5.60, both components of the 

measured second order force agree very well with the theoretical 

resultant force, in both magnitude and position of action.

Where the phase of the free wave, B, varies significantly 

from zero, the forces FI22 and FD22 have components of the opposite 

sign to the second order forces due to the main wave. This has the 

effect, for example on the cos 2wt components in Figures 5.44, 5.49, 
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5.51 and 5.62, of giving a resultant equal to the small difference 

between large forces of opposite sign. In these cases the 

resultant force is subject to much larger relative errors, and 

the agreement between theory and experiment is, not unexpectedly, 

poor.

The measured force tends to be somewhat less than the 

theoretical resultant, in those cases where the second order 

loading is dominated by the forces due to the free wave, as in 

Figures 5.42, 5.43, 5.49 and 5.56. This shows that the free wave 

does not exert as great a force on the cylinder as it would in the 

absence of the main wave. If the force due to the free wave could 

be isolated from the overall second order loading, the difference 

could be accounted for by introducing different drag and inertia 

coefficients for FD22 and FI22.

In one or two cases, such as the cos 2wt component in 

Figure 5.53 and the sin 2cot component in Figure 5.45, there is no 

obvious explanation for the large discrepancy between theory 

and experiment.
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Figure 5-48
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Figure 5-58
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Figure 5-62
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A second method used for comparing the measured and 

theoretical second order forces involved the use of equivalent second 

order Morison coefficients. The first order coefficients, Cm and C^, 

were replaced by and C in the expressions for the theoretical 

second order forces. Equating the measured and theoretical 

cos 2wt and sin 2wt resultant forces then gave values for and 

C^2- The full second order force results, including the measured 

and theoretical forces, and second order Morison coefficients are 

given in Table 5.4 a, b and c. In a few of the tests, for example 

Figures 5.43, 5.50, 5.56 and 5.57, both the cos 2cot and sin 2wt 

components are dominated by inertia forces. Thus, the solutions 

for C.o in these cases are ill-conditioned, and the values obtained dz
are unreliable.

The remainder of the values of Cm2 ar|d are shown 

plotted against KCI in Figure 5.63. The results show a considerable 

degree of scatter and no clear trends. Obviously having a total of 

nine unknown forces contributing to the two second order force 

components makes any quantitative analysis difficult.

The second order results do show that, in those cases where 

the resultant is not the difference between forces of opposite sign, 

the resultant measured forces agree well with theory. The agreement 

is generally at its best where the free wave forces are small and the 

waterline and dynamic pressure forces, suggested by Lighthill (1979),

are dominant.
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5.2.4 Third Order Forces

A theoretical force at the third harmonic frequency 

arises from the Fourier series, Table 3.2, of the first order drag 

forces, FD (3-32) and FDR (3-62). The measured and theoretical 

third order forces are given in Table 5.5 a, b and c.

In every case the measured third order force is less than 

theoretically predicted. There are two possible reasons for this. 

The drag force is theoretically proportional to u|u| and should 

therefore vary with cos wtjcos wt|. However, the physical mechanism 

producing the force, the formation of a wake, may not be completely 

described by the mathematical expression (3-32). In particular, 

the inflexions at the zero crossing points in the theoretical drag 

force traces in Figures 3.4 to 3.6 may not be so strongly present 

in reality. There is little evidence of any inflexions in the 

measured force traces in Figures 5.26 to 5.37.

Alternatively, the difference between the measured and 

theoretical third order forces may be explained by the variation in 

the drag and inertia coefficients throughout the wave cycle. 

Since the instantaneous values of the Keulegan Carpenter and Reynolds' 

numbers are continuously changing, it is unlikely that Cm and 

remain constant.

Keulegan and Carpenter (1958) suggested that the difference 

between the measured and theoretical forces should be termed the 

remainder force, of the form;

ARe = pum2 D A3cos 3cot <5y + pum2DB3sin 3cut 6y (5-8)
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Keulegan and Carpenter's experiments were carried out on a 

horizontal cylinder under the node of a standing wave. Thus the 

velocity um did not vary along the length of the cylinder, and 

replacing 6y by the cylinder length gave the total remainder force aR. 

The equivalent expression for a vertical cylinder is found by 

integrating (5-8) between the bottom and the surface.

aR sinh 2kh + 2kh
sinh 2kh

A3COS 3u)t + B3sin 3u)tj
(5-9)

The remainder force, AR, and the coefficients, A^ and B^, 

are given in Table 5.5, and the remainder force coefficients are 

plotted against KCI in Figures 5.64 and 5.65, together with the 

results of Keulegan and Carpenter (1958).

The cos 3wt coefficient, A^, in Figure 5.64 is negative for 

all values of KCI. At low values of KCI, A^ falls sharply reaching 

a minimum at KCI of approximately 4. A^ then increases gradually 

with KCI and may be expected to tend toward zero for very high 

Keulegan Carpenter numbers.

The measured values of the sin 3wt coefficient, Figure 5.65, 

have a large degree of scatter which disguises any definite trends. 

B^ tends to be close to zero for KCI less than 3 or greater than 10, 

and there is some evidence of a weak minimum in between.

•44

Neither of the coefficients displays a trend which agrees 

with the results of Keulegan and Carpenter (1958). However, the 

experimental arrangement is very different in the two sets of 
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experiments, especially with regard to the variation in velocity 

along the cylinder length. Also, no account is taken of third 

order particle kinematics in either study.
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CHAPTER 6 - SUMMARY AND CONCLUSIONS

6.1 Laboratory Wave Environment

The derivation of wave theory to its linear and second 

order approximations has been explained in terms of velocity 

potential theory with suitable boundary conditions. The generation 

of waves in a laboratory flume has also been discussed, together 

with the mechanisms producing the reflected and free second harmonic 

waves..

An experimental technique has been developed to measure the 

waves present in a wave flume. The Fast Fourier Transform has been 

used to analyse wave records taken at a number of known positions in 

the flume, and hence to identify the variation in the waveform down 

the flume. A least-squares sine-fitting analysis of the waveform 

variation has allowed the magnitudes and relative phases of the 

individual wave components to be evaluated0

The technique has been employed with considerable success 

in the case of a long rectangular flume, with water of constant depth, 

an oscillating wedge wavemaker and a solid three part absorbing beach, 

The waveform analysis results identified several characteristics of the 

wavemaker, the beach and the interaction between the wave components.

Mt

The wave amplitude ratio was found to be lower than 

theoretically predicted by on average 20%, and at worst 50%. This 

discrepancy was explained by the movement of the water in the region 

behind the wedge.
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The wedge wavemaker was shown to produce a significant 

free second harmonic wave, especially at lower frequencies, where its 

amplitude was as much as 12% of the total wave motion. This 

demonstrates that the free wave cannot be neglected in any experimentation 

carried out in this flume.

The interaction between the wave components was highlighted 

in the celerity of the free second harmonic wave, which was found to 

be greater than the dispersion value it would have had in the absence 

of the main wave. The free wave was being carried along by the main 

wave, with the effect of being accounted for in part by the phenomenon 

of mass transport.

The beach was found to be an efficient absorber of wave 

energy, with no more than 5% of the first order incident wave 

amplitude being reflected. The reflection coefficient was generally 

lower at higher frequencies, but no obvious relationship could be 

inferred from the results. The reflected second harmonic wave had a 

disproportionately large amplitude, when compared to the incident 

free second harmonic wave. It was, however, found to be small enough, 

relative to the total wave motion, to be neglected.

The wave environment was not substantially altered by the 

presence of a test cylinder, but two effects were noted. In the 

immediate vicinity of the cylinder the wave amplitude tended 

towards local high or low values. The wave amplitude was found to 

be slightly reduced as it passed the cylinder, this being a blockage 

effect due to the energy lost by the wave in exerting the forces on 

the cylinder.



258 -

6.2 Non Linear Wave Loading

The theoretical wave induced loading on a vertical surface 

piercing cylinder has been developed from its linear approximation 

by considering the effect of various non-linear forces, both 

individually and collectively.

The linear approximation to the loading was found by using 

Morison's equation, to give the drag and inertia forces on an element 

of the cylinder. Linear wave theory was used to calculate the particle 

kinematics, and the total force was found by integrating up to the 

sti11 water 1evel.

The use of drag and inertia coefficients in determining the 

elemental force has been explained, and the relative importance of 

the drag and inertia forces has been shown to depend on the Keulegan 

Carpenter number. An alternative expression for the Keulegan 

Carpenter number, giving its integrated average value, has been 

proposed for the case of a vertical cylinder.

As a next approximation, the particle kinematics were 

described by Stokes' second order wave theory. This correction 

predicted significant forces at the second harmonic frequency under 

the conditions of steep waves in shallow water.

The use of the'docal fluid acceleration in calculating the 

inertia force was investigated by considering the effect of including 

the convective acceleration. Under all except the steepest shallow 

water waves, the force due to the convective acceleration was shown 

to be negligible.
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The use of undisturbed water level as the upper limit for

the integration of the elemental forces was shown to be an 

oversimplification. The velocities and accelerations in the waterline 

region were found to produce significant second order drag and inertia 

forces, termed the waterline forces.

A further second order force was derived from the variation

in the dynamic pressure around the cylinder circumference. The 

dynamic pressure force was shown to have a similar form to, but be 

somewhat smaller than, the waterline inertia force.

The effect that the additional wave components present in a 

laboratory flume have on a test cylinder was also investigated. The 

importance of considering the phases, as well as the amplitudes, of 

the free and reflected waves was established.

The Fourier compositions and depths of action of the force 

components were evaluated to allow the theoretical resultant force 

acting at each harmonic frequency to be determined.

The total linear and non-linear forces acting on a cylinder, 

under both measured laboratory conditions and design wave conditions, 

were calculated. The results demonstrated that the non linear forces 

make a very significant contribution to the total loading.

A series of experiments have been conducted to measure the 

wave forces on vertical cylinders of three diameters. In each case 

the cylinder was simply-supported between force transducers to allow 

the resultant force components and their depths of action to be 
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computed. A Fast Fourier Transform technique was employed to separate 

the harmonics of the total force and determine their phase 

relationships. The amplitudes and phases of the various wave 

components were measured at the same time, so that their effect on 

the loading could be considered.

Graphical examination of the force transducer outputs 

identified a number of features of the wave loading. The phase 

difference between the wave and force traces indicated the relative 

importance of the drag and inertia forces in each case. Under 

appropriate wave conditions, the drag and inertia waterline forces 

and the forces due to the free wave were observed in the transducer 

outputs, whose time variations showed good agreement with the 

theoretical predictions.

The graphical records of the forces on the smallest 

cylinder also highlighted the phenomenon of vortex shedding and its 

effect on the total loading.

The numerical force results were analysed by considering the 

first, second and third order forces separately. The measured first 

order forces and wave data were used to calculate values for the drag 

and inertia coefficients. Both of these coefficients showed good 

correlation with the Keulegan Carpenter number, and their general 

trends agreed with those found by previous investigators. A few 

high values of Cm, and the generally slightly higher values of Cd, 

were explained by the dependence of the coefficients on the Reynolds' 

number.
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The measured second order force components were compared 

with the theoretical forces, calculated using the measured wave data 

and the first order Morison coefficients. In a good number of cases 

the measured and theoretical forces agreed to within 20% of the 

second order force, equivalent to 2% of the total force. The 

measured second order force was somewhat less than theory in those 

cases where it was dominated by the forces due to the free second 

harmonic wave, indicating that the first order Morison coefficients 

may be inappropriate in calculating those forces. In a few 

unavoidable instances the resultant force was given by the small 

difference between forces of opposite sign, leading to a poor agreement 

between theory and experiment.

Because of the large number of theoretical forces contributing 

to the second order components, it was not possible to quantify them 

individually. Attempts to assign equivalent second order Morison 

coefficients gave scattered results and no clear trends.

The measured third order forces were compared with the 

theoretical components arising from the Fourier series of the first 

order drag forces. The measured force was less than theory in every 

case, indicating the inadequacy of the mathematical description of 

the drag force.

6.3 Limitations and Recommendations for Further Work

The experimental work carried out in this study was subject 

to a number of limitations, which were features of the facilities 

used. The wedge wavemaker was found to produce a very significant 
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free second harmonic wave. This in turn imposed a large second order 

force on the test cylinder, in some cases outweighing the other 

non linear components, and necessitated a lengthy procedure to measure 

its amplitude and phase in each case. In an experimental study aiming 

to identify the non-linear forces proposed by Lighthill (1979), the 

free wave is an undesirable feature, and two possible remedies exist. 

Either the experimental conditions should be limited to those in which 

the free wave is small, or the free wave amplitude should be reduced 

by introducing a second harmonic component into the wedge motion, in 

a similar manner to that used by Buhr Hansen and Svendsen (1974) for 

a piston.

The very small scale of the testing gave rise to a number of 

limitations, which could be reduced by working in a larger facility. 

The Reynolds' numbers covered by this study were as much as 1000 times 

smaller than those encountered in real sea conditions. This means 

that the measured drag and inertia coefficients, and possibly the 

observed second order effects, cannot be extrapolated to design 

condi tions.

The very small forces exerted on the cylinders required 

highly sensitive equipment for their detection. Even with the 

equipment used the forces on the smallest cylinder were only just 

measurable, and no cylinder smaller than this could be used. This 

limited the Keulegan Carpenter number to values below 20. Larger 

scale testing could use cylinders of smaller relative diameter, and 

hence cover a wider range of conditions.
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A further feature of the force measurement which might be 

eliminated by larger scale testing is instrumental drift. Where the 

force outputs do not need such powerful amplification the Wheatstone 

bridge balance point may be more stable, allowing the time averaged 

force to be measured.
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APPENDIX 1 - THE FAST FOURIER TRANSFORM

Fourier's Theorem states that any periodic function may be 

represented by the sum of an infinite number of trigonometric functions 

at its harmonic frequencies.

x(t) = a^ + 2 e (amcos 2^ + b„sin 2iTmt) (Al-1)
U *11 _ Ji] -■ ----

m=l 1 T

where a^ is the mean value of the function, and a and b are the o mm
Fourier coefficients given by;

J
x(t) cos 27Tmt dt

T
o

T (Al-2)

x(t) sin 2iTmt dt
J T
o

Complex notation is used to combine (Al-2) into a single

equation for each frequency by defining;

(Al-3)

and de Moivre's theorem gives;

x(t)e-i(2^mt/T) dt (Al-4)
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In a digitized experimental record, the continuous function x(t) is 

represented by a number of sample points - a discrete time series 

{xf}, r = 0,1,2,.... (N-l), where t = rA and A = T/N. Equation 

(Al-4) is modified as the integral becomes a summation;

x e-i (2nnir/N ) (Al-5)

The real and imaginary parts of {xm> in (Al-5) define the 

discrete Fourier Transform (D.F.T.) of the time series {x }. The 

D.F.T. does not contain enough information for the continuous 

fuction x(t) to be obtained, but the discrete time series can be 

reconstructed exactly using the inverse D.F.T.;

x r
N-l

2 e
m=0

i (27rmr/N) 
xme (Al-6)

The number of complex calculations required to evaluate the 

complete D.F.T. of the series is N for each of the N components,
2giving a total of N . Since N can run into thousands, this involves 

a great deal of computer processor time. The Fast Fourier Transform 

(F.F.T.) technique reduces this workload by dividing the full time 

series into a number of shorter sequences and determining their 

D.F.T.s. These are then combined to give the D.F.T. of the full 

sequence.
•b*

Consider a discrete time series {xf} divided into two 

shorter sequences {y } and {z^}, such that they take alternate
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terms from the full sequence;

(Al-7)
z = xor 2r+l

The D.F.T.s of these sequences are;

N/2-1
1 E

N/2 r=0

e-i2Trmr/ (N/2)

(Al-8)

N/2-1
= 1 I

N/2 r_Q

-i 2iTmr/(N/2)
zr

The D.F.T.s of the full and half sequences are related by;

-12Km/N
2 k m m' (Al-9)

In a similar manner the transforms {Ym} and {Z } can bem m
found by sub-dividing the sequence into quarters. In the limit, 

provided N is a power of 2 (a requirement for the F.F.T.), the time 

series can be repeatedly divided until the sub-sequences contain 

only one term each.

The D.F.T. of a sequence containing only one term is;
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Xm
N-l

1 E
N r=0

-i 2-iTmr/N

(Al-10)

= xQ for N=1, r=0

Thus, the D.F.T. of a single term sequence is simply the term itself.

The subroutine DFT4 employed in this study represents a 

logical procedure for combining single term D.F.T.s to give the 

overall transform for the full series.

Numerous texts have been written, for example Newland (1975), 

where discuss the limitations and applications of the Fast Fourier 

Transform. A variety of computer algorithms have been developed, 

each having a particular application and inherent time saving.
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U
U

U
U

U
U

U
U

U
U

 
u> 

u o o o

SUBROUTINE DFT4
DATE 7-MAY-82

PERFORM A FAST FOURIER TRANSFORM ON N DATA POINTS STORED 
AS TWO DATA SETS EACH 'NN=N/2' POINTS LONG

DATA= DATA POINT ARRAY
N= NUMBER OF DATA POINTS (WHERE N=2**M)
RX= REAL PART (IN PHASE) OF TRANSFORM
AIX= IMAGINARY PART (OUT OF PHASE) OF TRANSFORM

DIMENSION DATA (128) , RX (6 5 ) , Al X (6 5 ) , RFI (6 4 ) ,AIFI (64) 
DIMENSION IR(128)
COMMON/DFT4A/N,DATA,RX,AlX

TYPE 50,N
50 FORMAT(/,' START OF FFT FOR'15,' DATA POINTS') 

NN=N/2
IF(NN.GT.512) GO TO 120

100 M=0
L=1

110 L=2*L
M=M+1
IF(L-NN) 110,130,120

120 WRITE(7,1004 )
1004 FORMAT(' N IS LARGER THAN 1024 OR NOT AN INTEGER

& POWER OF 2')
STOP 'DFT1 ERROR'

130 CONTINUE

FIND NN/2 ROOTS OF UNITY AND NN/4 INTEGERS IN REVERSE 
BINARY ORDER

PI=3.14159
IR(1)=1
RFI (1 )=1
AIFI (1 )=0.0
RFI (2)=0.0
AIFI (2)=1.0

/CONT'D OVER
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o 

n 
o 

q 
q 

n 
n

II=NN/2
KJ=NN/2
J0=M-2
DO 140 J=1,JO
KO=KJ/II
11=11/2
RC=COS(PI/4.O/FLOAT (KO))
AIC=SIN(PI/4.O/FLOAT (KO))
DO 140 K=1,KO
KK=K+KO
IR (KK ) =11+1R (K )
RFI(2*KK-1)=RC*RFI(2*K-1)-AIC*AIFI (2*K-1) 
AIFI(2*KK-1)=RC*AIFI(2*K-1)+AIC*RFI (2*K-1)
RFI(2*KK)=RC*RFI(2*K)-AIC*AIFI (2*K)
AIFI(2*KK)=RC*AIFI(2*K)+AIC*RFI (2*K)

140 CONTINUE

STORE 2NN REAL NUMBERS AS NN 'COMPLEX NUMBERS
DO 150 1=1, NN
RX (I )=DATA(2*I-1)
AIX(I)=DATA(2*I)

150 CONTINUE

PERFORM DISCRETE FOURIER TRANSFORM ON 2NN DATA POINTS

RESULT WILL BE IN REVERSE BINARY ORDER

JO=NN
DO 160L=l,M
KO=NN/JO
JO=JO/2
J 2=0
DO 160 K=1,KO
RC=RFI (K)
AIC=AIFI (K)
J1=J2
DO 160 J=1,JO
J1=J1+1
J2=J1+JO
RA=RX (JI)
AIA=AIX (JI)
RB=RX(J2)
AIB=AIX (J2)
RBC=RB*RC-AIB*AIC
AIBC=RB*AIC+AIB*RC
RX (J1)=RA+RBC
AIX(JI)=AIA+AIBC
RX (J2)=RA-RBC
AIX (J2 )=AIA-AIBC

160 CONTINUE
/CONT'D OVER
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C
C UNSCRAMBLE TO CORRECT ORDER 
C

KK=NN/2 
KO=NN/4 
DO 180 K=1,KO
K1=2*K-1
K2=IR (K) 
J1=K1+1 
J2=K2+KK
RA=RX (JI) 
AIA=AIX (JI) 
RX (J 1) =RX (J 2 )
AIX (JI) =AIX (J2 )
RX (J2)=RA 
AIX(J2)=AIA 
IF(K2.LE.K1) GO TO 180 
RA=RX (KI)
AIA=AIX(K1) 
RX (KI) =RX (K2 ) 
AIX(K1)=AIX (K2) 
RX (K2)=RA 
AIX(K2)=AIA

C
J1=K1+KK+1 
J2=K2+KK+1 
RA=RX (JI) 
AIA=AIX(J1) 
RX (J1)=RX (J2) 
AIX(J1)=AIX (J2) 
RX (J2)=RA 
AIX(J2)=AIA

180 CONTINUE
/CONT'D OVER
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 Q
 Q

 
O

 n
 Q

 
Q

 Q
 Q

 O
UNSCRAMBLE 2NN POINT TRANSFORM TO NN COMPLEX FOURIER

COMPONENTS

XN=0.25/FLOAT (NN)
RPSI=COS (PI/FLOAT (NN) )
AIPSI=SIN (PI/FLOAT (NN) )
RAI=0 . 0
AIAI=1.0
RX (NN+1 )=RX (1)
AIX (NN+1 )=AIX (1 )
NNI=NN/2+l
DO 190 1=1,NNI
NI=NN-I+2
RA1=XN*RX (I )
AIA1=XN*AIX (I )
RA2=XN*RX (NI )
AIA2=-XN*AIX(NI)
RB1=RA1+RA2
AIB1=AIA1+AIA2
RB2 =(RA1-RA2)*RAI-(AIA1-AIA2)*AIAI
AIB 2=(RA1-RA2)*AIAI+(AIA1-AIA2)*RAI
RX (NI )=RB1+RB2
AIX (NI) =AIB1+AIB2
RX(I)=RB1-RB2
AIX (I)=AIB2-AIB1
RAI1=RAI*RPSI-AIAI*AIPSI
AIAI=RAI*AIPSI+AIAI*RPSI
RAI=RAI1

190 CONTINUE

HALVE THE NN+1 COMPONENTS FOR POSITVE FREQUENCIES ONLY

RX (NN+1 )=0 . 5*RX (NN+1 )
AIX (NN+1 ) =0.5*AIX (NN+1 )

DOUBLE ALL OPTS FOR SINGLE SIDED SPECTRUM

DO 20 1=1, NN
RX (I) =RX (I) *2.0
AIX (I) =AIX (I) *2 .0

20 CONTINUE
TYPE 70

70 FORMAT(' FFT ENDS ')
RETURN

END
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APPENDIX 2 - LEAST SQUARES SINE FITTING

A2.1_____ Least Squares Formulation

Consider a function which has the form of a sine wave of 

unknown amplitude, wavelength and phase superimposed on an unknown 

mean value. The function is approximated by a series of discrete 

data points {x^yp, i=l,n as shown in Figure A2.1.

Sine Fitting

Figure A2-1

The requirement is to assign values to the parameters of the

sine curve, such that it gives the best fit to the n data points.

f(x) = aQ + a-j cos kx + b-j sin kx (A2-1)
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At each data point, x., there will be a difference between 

f(x) and the measured yp

e = yi - f(x) = y• - aQ - a1coskxi - b1sinkxi (A2-2)

The sum of the squares of the errors for all of the data points 

(dropping the suffix i) is;

Ee2 = Ey2 - 2aQEy - 2a^Eycoskx - 2b-|Eysinkx + naQ2 + 2aQa-|Ecoskx + 

2aQb-]_Esinkx + a-|2ECos2kx + b-|2Esin2kx + 2a-j bj scoskxsi nkx

(A2-3)

The best solution is found by minimizing the value of Ee2.

This is done by putting;

9E£2 := 9EE2 := 9Ee2 = 9Es2 = 0

3ao 9a j 9b-] 9k
(A2-4)

Clearly from the form of equation (A2-3), there will be no

explicit solution for k. Initially, therefore, k is assumed to be

known and the problem is solved for aQ, a-] and b-j.

A2.2 Solution for Known k

Where k is assumed to be known, (A2-3) and (A2-4) yield

three simultaneous equations;
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axe2 = -2xy +
a 3 o

3Xe2 = -2xy cos
aa-|

aza2 = -2xy cos
ab -|

2naQ + 2a-|Xcos

kx + 2a Xcos kx o

kx + 2a Esin kx

kx + 2b-|Xsin kx =

+ 2b-]£sin kx cos kx

+ 2a-jXcos2kx = 0

+ 2a-|Xsin kx cos kx

+ 2b-|£sin2kx = 0

0 (A2-5)

(A2-6)

(A2-7)

These equations are readily solved to give the optimum 

values of a , a-j and bp A measure of the closeness of the fit is 

given by the residual sum of squares of errors.

SE = x(y - a - a-jcoskx - b-|Sinkx)2 (A2-8)

The subroutine SINFIT forms a matrix for the solution of

equations (A2-5), (A2-6) and (A2-7) using the given data points 

{x^y-j} and the assumed value of k. It returns values for aQ, ap 

bj and SE.

A2.3 Determination of k

The optimum value of k is found by a technique of successive 

approximations. The procedure adopted in the subroutine KFIND is as 

fol 1ows.

(i) For a wide range of values of k, separated by intervals of

Ak, the associated values of aQ, ap b-j and SE are found using the 
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procedure described above (SINFIT).

(ii) The first approximation to k is taken as being the one with 

the smallest residual error, SE.

(iii) The process is repeated for a range of values of k in the 

vicinity of the first approximation, with a smaller value of Ak, to 

give a second approximation.

(iv) Successive iterations are carried out to determine k to 

the required accuracy.

The optimum value of k, and the associated values of a , a-j, 

and b-| define the best-fit sine wave, f(x) to the data points.

The residual of SE is now a measure of how closely the sine function 

follows the given data points.

A2.4_____Second Sine Component

Consider the case where the expected form of the data is the 

sum of two unknown sine waves. The function to be fitted is

h(x) = f(x) + g(x) (A2-9)

where f(x) = aQ + a-jcoskx + b-]Sinkx (A2-1)

9(x) = aQ' + a-|'cosk'x + b^'sink'x (A2-10)
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Treating the data as in Sections A2.2 and A2.3 gives

f(x) as the more significant of the two sine wave components, with 

a relatively large residual error, SE.

The data points are then adjusted to take out the first 

sine wave;

y'. = y. - f(xp for all data points (A2-11)

The function g(x) is found by fitting a sine curve to y1 

in a similar manner, a-j' , b-j' and k-j* describe the second sine 

components, while a ' represents a small correction to the mean 

value.

It would be possible to continue to include a third term.

However, with experimental errors and the smoothing effect of the 

first two terms it is likely to be both small and meaningless.
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SUBROUTINE SINFIT(N,X,Y,RK,C,SE)
DOUBLE PRECISION A ( 3,3) , B(3) , C(3) , AA(3,3) , 

&WKS1 (3 ) ,WKS2 (3 )
DIMENSION X (N) ,Y(N)

SET UP ARRAYS A(3,3) & B(3) TO SOLVE FOR 
BEST SIN FIT

DO 10 1=1,3
B(I)=0.0
DO 10 J =1,3
A(I,J)=0.0

10 CONTINUE
A(1,1)=N
DO 20 I =1, N
CO=COS (RK*X (I) )
SI=SIN (RK*X (I ) )
A(l,2)=A(1,2)+CO
A(1,3)=A(1,3)+SI
A(2,2)=A(2,2)+CO**2
A(2,3)=A(2,3)+CO*SI
A(3,3)=A(3,3)+SI**2
B (1) =B (1)+Y (I)
B(2)=B(2)+Y(I)*CO
B(3)=B(3)+Y (I)*SI

20 CONTINUE
A(2,1)=A(1,2)
A(3,1)=A(1,3)
A(3,2)=A(2,3)

CALL NAG ROUTINE TO SOLVE
ANSWERS IN C MATRIX

IFAIL=0
CALL F04ATF(A,3,B,3,C,AA,3,WKS1,WKS2,IFAIL)
IF(IFAIL.EQ.0) GO TO 30
PRINT 40,IFAIL

40 FORMAT(/,’ FAIL AT',12)
STOP

30 CONTINUE

COMPUTE RESIDUAL SUM OF ERRORS**2

SE=0 . 0
DO 50 I =1, N
SE=SE+(Y (I)-C(1)-C(2)*COS (RK*X (I) )-

&C(3 ) *SIN (RK*X (I ) ) ) **2
50 CONTINUE

RETURN
END
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SUBROUTINE KFIND(M,X,Y,RKOPT,C,SE)
DOUBLE PRECISION 0(3)
DIMENSION X(M) ,Y(M)
N=M

FIND OPT. VAL. OF K BY SUCCESSIVE APPROX.
INITIALLY CONSIDER K=l,36,l FIND CLOSEST FIT 
(ALLOWABLE VALUES OF K DEPEND ALSO ON TOTAL

LENGTH OF SAMPLE AND SAMPLING INTERVAL)
THEN REDUCE INTERVAL IN K

FIND RANGE OF X VALUES

XMAX=0 . 0
XMIN=100.0
DO 5 I =1, N
IF (X (I ) .LT. XMAX) GO TO 6
XMAX=X (I )

6 IF (X (I ) .GT. XMIN) GO TO 5
XMIN=X(I)

5 CONTINUE

CALC. MAX & MIN ALLOWABLE VALUES OF K

RKMIN=2.0*3.1415/(XMAX-XMIN)
RKMAX=RKMIN*0 . 25*N
RKOPT=10. 0
DO 10 J=1,5
RINT=10.0**(1-J)
SMIN=10.0**6
NINT=19
IF(J.EQ.l) NINT=NINT+16
DO 20 I=1,NINT
RK=RKOPT+ (I -10 ) *RINT
IF(RK.LT.RKMIN.OR.RK.GT.RKMAX) GO TO 20

FOR EACH K FIND LEAST SQUARES SINE FIT
AND RESIDUAL SUM OF ERRORS**2

CALL SINF IT(N,X,Y,RK,C,S)
IF(S.GE.SMIN) GO TO 20
IOPT=I
SMIN=S

20 CONTINUE
RKOPT=RKOPT+ (IOPT-10 ) *RINT

10 CONTINUE

FOR OPT K. EVALUATE A0,Al,Bl&SE

CALL S INF IT (N,X,Y, RKOPT, C , SE )
RETURN
END
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APPENDIX 3 - SIMPLIFICATION OF TRIGONOMETRIC EXPRESSIONS

A simplification is required for the trigonometric expressions 

which arise from u|u| in the determination of the drag force 

components. These are of the form;

(a cose + f(9))|a cose + f(e)| (A3-1)

The simplification is found by considering the combinations 

of positive and negative values of coso and f(e). In order that a

single expression can be used for all of the combinations, two limiting 

assumptions must be made. These are;

f « a (A3-2)

such that f2(e) is negligible, and where cose and f(e) are of opposite 

sign;

|f(e)| < |a cose| (A3-3)

Subject to these limitations, (A3-1) is simplified by;

(acose + f(e))|acose + f(e)| = a2cose|cose| + 2a|cose|f(e)

(A3-4)

The validity of this approximation is demonstrated in

Figure A3.1, for a=l and f(e)=O.l (sine + sin2e + cos2e), representing 

the extreme of the range of its use in this study.
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The approximation breaks down in two regions; firstly at the 

peak values where f2(e) is not negligible, and secondly at the zero 

crossing point where the condition (A3-3) is not satisfied. In 

spite of these deviations, the overall fit shown in Figure A3.1 is 

very good, and for practical purposes, (A3-4) is a valid simplification.

-------(cos 0 + 01 (sin 0 + sin 20 +cos 20)) x
|cos 0 + 01 (sin 0 + sin 20+cos 20) |

-------cosO|cos0| + 0*2(sin 0 + sin 20+cos 20)|cos 0|

Simplification of a Trigonometric Expression

Figure A31
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NOMENCLATURE

A,B

aI amplitude of

aR : amplitude of

a2 : amplitude of

a22 : amplitude of

a22R : amplitude of

A1

first order incident wave

first order reflected wave

second order Stokes' component

free second harmonic wave

reflected second harmonic wave

Fourier coefficients

amplitude of first order wave motion

A3 remainder force - in phase coefficient

b breadth of wedge at still water level

B3 remainder force - quadrature coefficient

c celeri ty

c22 celerity of free second harmonic wave

Cd drag coefficient

Cd2 second order drag coefficient

Cm inertia coefficient

Cm2 second order inertia coefficient

CF total force coefficient

CL lift coefficient

CORRd correction to drag force

CORR correction to inertia force

d mean submergence of wedge

D cylinder diameter

fo fundamental wave frequency

Fe elemental force

Fd elemental drag force

F, elemental inertia force
1
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Fdp elemental dynamic pressure force

FT total force

FD drag force

FI inertia force

FD2 drag force due to Stokes' second order wave

FI2 inertia force due to Stokes' second order wave

FCA convective acceleration force

FWD waterline drag force

FWI waterline inertia force

FDP dynamic pressure force

FDR drag force due to reflected wave

FIR inertia force due to reflected wave

FD22 drag force due to free wave

FI22 inertia force due to free wave

g acceleration due to gravity

h water depth

H wave height

k wave number

k22 wave number of free second harmonic

kB wave number of second order beat wavelength

k2R wave number of second order reflection beat wavelength

k r reflection coefficient

KC Keulegan Carpenter number

KCS surface value of KC

KCI integrated average of KC

L wavelength

L22 wavelength of free second harmonic

l r first order reflection beat wavelength

l b second order beat wavelength
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WA

WL

I >■>

second order reflection beat wavelength 

moment 

added mass

number of vortices shed per half wave cycle 

pressure

dynamic pressure 

Reynolds' number 

amplitude of best fit sine component 

residual sum of squares of errors 

time

wave period 

horizontal particle velocity 

horizontal velocity at free surface 

first order horizontal velocity 

second order component of horizontal velocity 

horizontal velocity due to reflected wave 

horizontal velocity due to free wave 

mass transport velocity

surface value of mass transport velocity 

vertical particle velocity 

volume of element of cylinder 

amplitude of wedge oscillations 

wavelength 

cartesian coordinates 

term in a discrete time series 

term in a discrete Fourier transform 

depth of action 

phase angles

6 : frequency parameter
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5 : phase angle between incident and total wave motion

£ : residual error

n : free surface displacement

9 : polar coordinate

: perturbation parameter

v : kinematic viscosity

p : density

f : velocity potential

w : angular frequency

ft : orbital shape parameter
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