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ABSTRACT

This thesis considers the theoretical and experimental analysis of plane 
layered structures subjected to impact. A new approach combining tne 
finite element technique with the theories of propagation wave, which is 
appropriate for design purposes, has been proposed. This approach is 
suitable for the analysis of multi-layered half-space structures subjected 
to impact forces. Such structures include aircraft pavements or runways. 
It is intended to be a realistic and a versatile method to be used for the 
analysis and design of structures or structural components which may be 
considered to act as plane or axisymmetric systems subjected to impact.

Some special features related to the propagation of elastic waves in 
solids are considered. In addition, problems involving the response of 
multi-layered structures which arise from the different types of waves 
created at interfaces have been discussed. A review of the analytical 
solutions of wave propagation in solids and multi-layered structures 
are summarized in this thesis.

A numerical model has been developed using the finite element technique. 
This technique has certain advantages for analysis of a multi-1ayered 
half-space structure subjected to an impact force. The simulation of 
complex applied load distribution, the representation of stress wave 
propagation and the reflection and refraction at interfaces are included. 
The different stiffness and damping characteristics in each layer are 
represented. The theory which has been developed has been incorporated 
in a complete program called DFEM to study the dynamic response and 
also important features such as the damping, reflection and refraction 
of stress waves.

The accuracy of the results obtained is demonstrated by comparison with 
results obtained by other published methods. In addition, an experi-
mental investigation was carried out by using the dynamic photoelastitity 
technique which provides a convenient method to study stress wave 
propagation. A series of a multi-1ayered models were tested to further 
substantiate the theoretical results. The model dimensions and materials 
were chosen to minimize the effects of reflection from both boundary and 
free surfaces. The degree of correlation obtained shows that the 
theoretical developments proposed in this thesis may be applied 
successfully to the analysis of plane multi-layered structures 
subjected to impact.

The objective of the method of analysis which has been developed was 
the.direct analysis of pavement or runway structures. Therefore, the 
basic methods which deal with the design of flexible airfield pavements 
are summarized. A dynamic factor has been assessed which depends on 
the time of impact force and maximum tyre deflection to be used in the 
analysis and design of airfield pavements.
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NOTATION

A Amplitude of incident wave

A Amplitude of reflected wave

[b] Strain matrix

W Damping matrix

[Ce] Element damping Matrix

c Wave velocity

H Elasticity matrix

Ds Damping coefficient

E Modulus of elasticity

e Volume Expansion

f Unit fringe value

G Shear modulus

h Thickness of layer

I Intensity of light

J

W

Damping constant

Stiffness matrix

[Kej Element stiffness matrix

L Wavelength

M Mass matrix

[Me] Element mass matrix

N Fringe order

[NJ Shape function

n Damping exponent

Ps Static load per leg

p ’ p p
x y’ z Time dependent forcing functions

q
n

R

Admittance ratio

Raleigh wave

Force vector

S Distortional wave

Fundamental period of the system



Pavement thickness

t Time

{u} Displacement vector

(u| Velocity vector

{fi} Acceleration vector

U, V, W Displacement in x, y, and z directions

V ,V Wave velocities
P s

W Weight

X,Y,Z Global coordinates

x,y,x Local coordinates

Z Factor defining the character of discontinuity

a,g Rayleigh constants

v Poison’s ratio

£ Strain

Lame's constants

Eigenvalue

Efficiency factor

°l,02 Principal stresses

°a Stress in incident wave

°b Stress in reflected wave

°x’°y Stress components in the x and y directions

T
X Shear stress

P Density

Eigenvector

GO Circular frequency

CO
O Natural frequency

0 Parameter for Wilson--0 method

V2
Laplacian operator

Only the main symbols have been listed. Other symbols are 

defined as they first appear in the text.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 INTRODUCTORY REMARKS

The analysis and design of structures which are subjected 

to impact loading are a particular part of the work of a 

civil engineer. Although a considerable amount of 

information is available on the subject, certain areas 

require further investigation. In particular, the effect 

of significant impact loading upon the analysis and 

design of aircraft runways, is an area requiring further 

attention.

Excepting the United States Air Force [1], all authorities 

which are responsible for the design of airfield runways, 

use static considerations. These considerations usually 

dictate that the runway ends have a greater thickness 

than elsewhere.

Since runway ends are critical, their design to resist 

impact forces will be considered in this thesis. The 

results of the proposed method, which takes account of 

dynamic effects, is compared with the results of the 

five basic methods that deal with the design of 

flexible airfield pavements [2, 3, 4].
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An impact event usually consists of at least a transient 

state with wave propagation throughout the impacting and 

impacted bodies followed by more-or-less steady state in 

which the bodies involved vibrate in modes and frequencies 

that are natural to the system. The landing of aircraft 

on runways can be considered to be an impact problem in 

a multi-layered half space.

Impact problems are complicated and few cases can be 

solved directly by analytical methods [o]. Therefore, 

numerical methods such as the finite element technique may 

be used to solve all but the simplest problems. This 

method has several advantages, since it can account for 

the complex wave forms which occur, the interaction 

between loads and the structure and different material 

properties.

A finite element programme for the elastic analysis of 

plane and axisymmetric conditions has been developed to 

obtain the dynamic response of a half-space subjected 

to arbitrary impact loading. To verify the numerical 

results which have been obtained, an experimental 

investigation has been carried out using a multi-layered 

photo-elastic model.

The dynamic response of a multi-layered half-space 

subjected to impact has been obtained as a result of the 

work presented in this thesis. Also, the effect of impact 

on the design of runway ends has been considered.
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It is worthwhile noting that the proposed method of analysis 

is also applicable to structures or structural components 

which may be considered to act as plane or axisymmetric 

systems subjected to impact.

1.2 OBJECTIVES

The objectives of the present project may be summarised as 

follows:

(1) To develop a plane strain, plane stress and 

axisymmetric linear finite element analysis so that 

the dynamic response of a multi-layered half space 

subjected to impulsive or continuous dynamic loading 

may be obtained.

(2) To include within the analysis a means by which a 

wide variety of boundary conditions, damping, wave 

reflection and wave refraction phenomena can be 

considered.

(3) To carry out an experimental investigation of the 

response of different multi-layered systems subjected 

to impact and to compare this response with the 

analytical formulation.

(4) To establish important parameters for the design of 

multi-layered structures to be used in runway 

construction.
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1.3 GENERAL OUTLINE OF THE METHOD OF ANALYSIS AND

EXPERIMENTATION

This thesis is presented in a form which is compatible with 

the objectives of the project. In this chapter, the impact 

phenomena is briefly descirbed and existing analytical 

methods leading to the present study are reviewed. Basic 

considerations and assumptions are established for further 

investigation.

In Chapter 2, a brief description of some special features 

related to the propagation of elastic waves in solids is 

given. The distribution of wave energy at boundaries in 

cases of reflection and refraction of stress waves is 

considered. A discussion of the dissipation of energy 

by damping and its mathematical treatment concludes 

Chapter 3.

Following the mathematical formulation of the problems 

stated in Chapter 2, the finite element method for solution 

is summarised in Chapter 4. The method is extended to 

include within the analysis a means by which a wide 

variety of boundary conditions, damping effects and wave 

reflection and refraction phenomena can be considered.

The verification and application of the present study are 

given in Chapters 5 to 7. In Chapter 5, results from 

selected examples are given. Chapter 6 describes further 

the experimental scheme of the multi-layered photoelastic 
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model subjected to impact forces. The numerical and 

experimental results are compared and discussed in 

Chapter 6.

A brief description of the basic methods of the design of 

airfield pavements are reviewed in Chapter 7. Also the 

effects of aircraft characteristics and performance on the 

design of pavements is discussed. This discussion is 

included since this thesis is concerned with the study of 

impact forces on multi-layered half spaces and their effect 

on the design of runway ends. In Chapter 7, the dynamic 

factor, which may be related to an effective static loading 

has been assessed and its use in the structural design of 

pavement has been demonstrated.

Finally, in Chapter 8, the conclusions to which the present 

study leads and the proposals for further studies are given. 

The finite element programme is discussed in Appendix 1 

together with a listing and information concerning the 

preparation of data.
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1.4 IMPACT PROBLEMS

1.4.1 Brief Description of the Phenomenon of Impact

The progress of an impact may be described as follows. If 

it is assumed that one body is at rest and is approached 

by another body with a certain initial momentum and kinetic 

energy, both bodies deform locally, either elastically or 

plastically after collision and thereby generate a contact 

force. This force decelerates the contact zone of one body 

and accelerates the contact zone of the other. At this 

stage only part of the mass of either body is involved.

The positions and types of support, if any, of the impacted 

body have no influence in its response.

The effects of the contact force may be so severe that a 

local failure occurs in one or other body before there has 

been any significant transfer of momentum or energy. If 

local failure does not occur, the impinging body continues 

to decelerate and contact may end [12]. Considering the 

case of high loading rates and that no local failure 

occurred, then wave propagation effects must be considered 

to determine the initial response.

Impact is characterized also by the generation of relatively 

large contact forces which act over a very short time. 

During this time-interval the contact area grows rapidly 

to a peak value as deformation increases and then reduces 

to zero during the restoration.
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1.4.2 Contact Zone

The conditions in the contact zone between impacting bodies 

and contact problems have received considerable attention 

in the literature. Much of the literature in this area 

deals with an elastic slab, either loaded symmetrically 

from both surfaces or loaded from one surface and rigidly 

fixed on the other surface.

Sahlin and Milson [5] discuss an analytical method for 

calculating the depth of penetration of an object 

travelling at a very high velocity. This type of impact 

is somewhat less important for the purpose of this project 

than in relation to ballistic problems. A useful applica-

tion of this phenomena has been used in rapid soil 

investigations, however, using high-speed earth 

penetrating projectiles [6]. The entire determination can 

be achieved from the air to assess soil or rock conditions.

By using elasticity theory Chen and Engel [7], have analysed 

the contact problem in a multi-layered to determine their 

results, they assumed that the surface compresses gradually 

and the dissipation of energy during impact was neglected. 

The quasi-static assumption of the Hertz impact theory was 

also assumed [7 ] . Chen and Engel determined the variation 

of contact force and surface displacements as a function of 

time during which rigid ball is dropped from a height 

on the layered medium.

7



1.4.3 Force-Time Relation of Impact

The force-time relationship of the impact depends upon 

the properties of the colloiding bodies. Sahlin and Nilson 

[5] provide formulae for impact times and contact forces. 

Also, Chen and Angel [7], discuss the contact duration 

analytically and verify the results experimentally.

1.5 METHODS OF SOLUTION OF IMPACT PROBLEMS

Few analytical solutions exist for impact problems 

[S, 9, 10]. Only those cases in which the characteristic 

of wave propagation and the boundary conditions are simpler 

can be solved analytically [11]. Many practical problems 

are too complicated for solution by analytical techniques. 

In these cases, if a detailed description of the response 

is required, it is more convenient to use a numerical 

method assumption such as the finite element technique [12].

1.6 BASIC CONSIDERATIONS AND ASSUMPTION

The general topic of the research was the determination of 

the response of multi-layered media subjected to impact 

loading. In particular, the effect of impact upon the 

design of runway ends has been considered. Although the 

five basic methods of the design of airport paving will be 

discussed in Chapter 7, it is useful to discuss the basic 

considerations and assumptions of the problem in this 

section.
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Airport pavements are constructed to provide adequate support 

for the loads imposed by aircraft. They should provide a 

firm, stable, and durable surface. Airport pavements are 

subjected to impact and static loads [13]. The load on 

the pavement is static and equal to the gross weight of the 

aircraft when it is standing with the motors dead. This is 

the heaviest load imposed on the pavement. Tests and 

observations have disclosed that the gross load transmitted 

to the pavement is reduced when the plane is standing 

and the propellers operating at high speed as well as when 

the plane is taxing. This may be explained by the aero-

dynamical forces acting on the wings producing an airborne 

condition to a certain degree. Since the aircraft is at 

least partially airborne when taxing and largely airborne 

when landing and taking off, the dynamic (moving) and 

impact loads are less critical than the static loads. Hence, 

pavements designed for static loads will be adequate for 

all conditions of loading [13],

The development of different types of aircraft for civil 

and military use has increased the various landing 

characteristics to which a runway is subjected and gives 

rise to impact phenomenon as an important design criterion. 

The results of a research programme [14], which has been 

conducted in the United States of America to determine the 

dynamic properties of soil associated with aircraft loading 

indicate that current flotation formulae do not predict 

the observed break up of concrete runways due to impact. 

Clearly, the impact of runways requires further investigation.
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Runways are usually constructed from 2 to 3 layers of 

asphaltic concrete which rest upon a well compacted soil 

sub-base. Experimental evidence obtained from the 

determination of the dynamic properties of asphaltic 

mixes shows that the response is approximately linear for 

small strain conditions. Although the stress-strain 

characteristics of asphaltic concrete are complex and 

influenced by many factors [2], the assumption of linear 

behaviour at low stress levels seems reasonable.

The behaviour of the granular material and soil which form 

the sub-base to the asphaltic layers may also be considered 

to be linear for small strain of the order of 10 [15].

This assumption of linearity enables the secant modulii 

and the damping factors to be considered independently of 

the strain amplitude [16].

The variation of the contact area and contact force of the 

impacting object with respect to time will be considered 

in the analysis. The performance of aircraft during 

landing has great effect on the direction and magnitude 

of the impacting force and also must be considered in the 

analysis.

Plane and axisymmetric conditions have been assumed for 

the work considered in this thesis.
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CHAPTER 2

THEORETICAL ANALYSIS OF ELASTIC-WAVE 
PROPAGATION DURING IMPACT

2.1 INTRODUCTION

Theoretical aspects of elastic-wave propagation are well 

established and have been summarized in texts by Kolsky 

[17], Ewing, Jardetsky and Press [18], and Desi [19]. In 

spite of the broad theoretical background, however, it 

is very difficult to obtain quantitative information in 

terms of stress magnitudes for real types of impact, real 

geometries, and combinations of materials with different 

properties which may occur in practice [5].

In the more specific area of reflection and refraction of 

stress waves at an interface between two different 

materials, much of the theoretical work is concerned with 

the plane strain wave forms caused by a line source [19].

Thus in this chapter, a brief description of some special 

features related to the propagation of elastic waves in 

solids is given. Problems involving the response of 

multi-layered structures subjected to impact which arise 

from the different types of waves created at interfaces 

will be briefly discussed • Thus all the basic material 

which is relevant to the work in this thesis is being 

reviewed.
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2.2 GENERAL WAVE THEORY

The theory of the propagation of elastic waves in solids 

was developed during the last century by Stokes, Poisson, 

Rayleigh, Kelvin and others as an extension of the theory 

of elasticity to the problem of vibrating bodies [18]. 

Significant recent progress has been made in developing 

theoretical procedures in elasto-dynamics [19].

In an infinite homogeneous media, waves from a source 

will propagate at two distinct speeds. Two types of waves 

can be distinguished namely waves of dilation and waves 

of distortion. Introduction of a plane surface of the 

body (half space) gives rise to additional waves with 

different velocities. The mathematical formulation of 

all these waves will now be considered.

2.2.1 Waves of Dilation and Distortion in an Isotropic

Elastic Medium

The equation of motion for an isotropic elastic medium 

can be written as follows in cartesian coordinates 

[5, 19, 17]
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G V2U -

3e 

ay + gv 2v - 3 v
P 23tZ

3e 9 a2w

al + G V w - p 2 (2.1)

The symbol e denotes the volume expansion, and the

2
symbol y represents the operator

(2.2)

while u, v and w are the displacement in the x, y and 

z-directions. If the volume expansion e is equal to 

zero, the following equations result which represent 

waves of distortion (S-waves) with rotational deformation 

only.

G V2U
.23 u 

P 23tJ
= 0

G v2v
.2 a v

P 2 
at

= 0

G v2w
-2 a w

P 2 
at

= 0 .................. ... ............................... (2.3)
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If on the other hand the rotational deformations

= ArAw _
2k3y dz'

1 z 9u _ 3w~ 
2{dz dx}

1z 3v _ 3u.
2 Y$x 3 y'

“y

are suppressed, the equations take the form

(x + 2 G)V2U - P
a2u
at2

= 0

(X + 2 G)V2V - P
32v

at2
= 0

(X + 2 G)V2W - P
a2w 
at2

= 0

OR

(X + 2 p)V2e - P
a2e
at2

= 0

(2.4)

(2.5)

(2.6)

Representing irrotational waves or waves of dilation 

(P-waves).

The above mentioned waves can be superimposed to give a 

more general case of combined waves in an elastic medium. 

Both kinds of wave obey the common equation of motion of the 

the form

(2.7)
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elastic constants

With the constant a = Cg = V'G/p for the case of waves

of distortion and a = c^ = y/(X + 2 G)/p for the case of

waves of dilation. With more common notation for the

C2 y 2(1 + Y)P

r Ed ~ v)

= \ (1 + y)(l - 2 Y)p

and

r = r /(I - 2~ ....... ............  (2.8)
U2 U1V 2(1 - y )

For y = 0.25, Cg = C^/y/3” showing that the rotational waves

are slower than the dilation waves.

2.2.2 Surface Waves or Rayleigh Waves in a Half-Space

(Single Boundary)

At a great distance from the source the surface waves

can be considered to be two-dimensional. The wave 

generated displacements can generally (with the displace-

ments denoted as u, v, w) be put in the form

U-l = Se ry sin(pt - Sx)

V1 = - re ry cos(pt - Sx)

= 0 ........................... (2.9)
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where p, r and s are constants. These equations are 

assumed to represent waves of dilation. The velocity 

of these waves is thus Cg = p/s. If the expressions 

are substituted in Equation (2.5), the following relation-

ship must hold

r2 = S2 - .......................... (2.10)

If again the solutions to Equation (2.3) are written as

Ug = Abe sin(pt - Sx)

Vg = - ASe by cos(pt - Sx)

Wg = 0 ................................. ... (2.11) 

where A is a constant and b a positive number, the 

following relationships must hold

The general wave can then be obtained by superposition

U = U1 + U2

and

V = Vx + V2

16



Then constants A, h, p, r and s have to be determined. 

Making use of the fact that the body surface is stress 

free, it is found that the speed of the surface wave is

C3 _ a ^2

For y = 0.25, a would be 0.9194 and for y = 0.5, a would 

take the value 0.9553. In both cases the velocity is 

always slightly less than the velocity of waves of 

distortion propagated through the body.

2.2.3 Plane Waves

By assuming a line source of relatively large length, or 

by considering only the effects at some distance from the 

source, the problem can be reduced to a two-dimensional 

one, where all the waves propagate in a directions parallel 

to a plane (x z plane), and the motion is therefore 

independent of the third coordinate (y in this case). By 

this assumption, the equation of motion are reduced to be

(X + 2 G)V2e = p-Ml
3tJ

(2.12)

G V2 (2.13)

(2.14)

where

(2.15)

G V2 Q

2
V

17



And the general solution for a steady state harmonic 

motion is [19]

u A £ f + A £ f
X p x p sy z s

uy = Ash f
s

u A £ f - A £ f .............. ... (2.16)z p z p SV X s

where £ = sina
X

, £ = cosa and
y

a is the angle between

the direction of propagation of the wave and the z axis.

This shows that in the case of plane waves, which is the 

case under investigation, the displacement in the 

y direction is uncoupled from the displacements U and 

Uz in the x and z directions respectively. The first 

one results only from the propagation of SH waves while 

the other two are functions of both SV and P waves. Each 

problem can thus be studied independently [19].

18



2.2.4 Longitudinal Wave Propagation

As longitudinal waves are simplier to analyze than three- 

dimensional waves, more has been published on this subject 

Also the problem of the measurement of the magnitude of 

longitudinal disturbances is less difficult, so that more 

experimental data have been published.

The simplest theory of longitudinal wave propagation in 

a horizontal column or cylendrical bar is that for a 

perfectly elastic material, it is assumed that plane 

cross sections remain plane and that only axial stresses 

are present. The governing equation can be written 

as one second-order partial-differential equation for one 

of the variables and the resulting equation is the well 

known wave Equation (2.5) mentioned before. The general 

solution of (2.5) is of the form

U = fl(x " Cot) + f2(x + Cot) ............... (2.17) 

with the constant C Po

Equation (2.17) represents the sum of two travelling waves, 

one in positive and one in negative x-direction and their 

shapes are preserved since dispersion is neglected.

Pochhammer (1876) and Chree (1889), independently studied 

a bar with a solid circular cross section, infinite in 

length, of homogeneous linear elastic material and free 
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from restraint on the lateral surface. The results show 

that the shape of the pulse will change due to dispersions 

as it propagates along the rod [11].

The Pochhammer-Chree theory is applicable only to an 

infinitely long bar in which sinusoidal wave trains of 

infinite length propagate in either direction. It cannot 

be used to develop a solution for a finite or even semi-

infinite bar. As a result approximate theories have been 

constructed which contain the essential features of the 

exact problem in a simplified form.

In Love’s approximate theory (1927), the assumption of the 

elementary theory are used, but terms which take account 

of the mass acceleration associated with the lateral 

expansion or contraction are added. An approximate theory 

which considers the change of lateral dimensions, with the 

associated shearing strain, has been proposed by Mindlin 

and Herrmann (1951). Bishop (1952) has given an alternative 

theory for longitudinal waves [11] .

2.3 STRESS WAVE PROPAGATION IN SOIL AND GRANULAR

MATERIALS

The transmission of waves in soil is important and is the 

means by which the propagation of energy arising from 

impact is distributed. Whatever the source of the distur-

bance, waves of different types are generated and propagated 

through the medium and along the surface. Such waves 
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generally are attenuated as they travel and change in 

shape and in duration with distance from the source of 

disturbance. For most engineering purposes, particularly 

in the design of structures or of cavities in the ground, 

designers are interested in the maximum particle displace-

ments, velocities, and accelerations in the ground. 

Consideration must be given to the effect of layering 

or stratification of the soil and the possible channelling 

of the transmitted energy in particular strata.

A detailed discussion of stress waves in soils has been 

presented by Richart, Hall and Woods' [20] . The review 

by Selig [21] has been thought to be useful and some 

results have been incorporated in the latter analysis of pave-

ment , ,Chapter (7). Selig summarized the experimental results 

of stress wave propagation in constrained bars of sand.

These wave propagation tests were designed to permit the 

study of the inter-relationship between the stress-strain 

characteristics and wave transmission phenomenon. The 

testing was limited to dry sand, principally a 20-30 mesh 

Ottawa Sand. Short duration loads were applied by a 

50 pound ram striking against one end of the horizontally 

positioned, long cylindrical sample of sand confined 

under constant pressure.

Measurements were made of the impact velocity of the ram , 

wave propagation velocity and the stress-time relationship 

at the impact and reaction ends of the specimen. The wave
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velocities computed from these tests ranged from 1080 

to 1420 feet per second with the majority of the values 

falling around 1250 f.p.s. A pronounced initial stress 

peak was developed with the higher impact velocities.

This peak was several times the strength of the sand under 

static loading at the impact and the specimen. This 

phenomena was attributed to the inertia of sand against 

lateral expansion and the frictional restraint of the 

end cap.

In general, especially with lower impact velocities applied 

to the shorter samples, the impact and stress-time curves 

dropped to a minimum after the initial peak and then began 

to increase once more. The second increase in the stress 

level was thought to be the result of reflection of the 

pressure waves from the fixed end of the sample. It is 

suggested that the stress levels which would have been 

induced in the samples by various impact velocities had 

no lateral inertia or strain, rate effect and can be 

represented by the stress level immediately after the 

peak. These values were seen to increase gradually with 

an increase in initial impact velocity.

22



2.4 STRESS WAVE PROPAGATION IN MULTI-LAYERED

HALF-SPACE

The impulsive loading of a multi-layered half-space can 

be considered as a stress wave propagation problem. It 

can be assumed that for each layer in a multi-layered

half-space, the solution of the one-dimensional amplifi-

cation problem is of the form [18, 19]?
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Fig. (2.1) Reflection and refraction of SH wave for layer cn half-space.
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The compatibility condition at the interface of two layers 

is

= fs2(X,t) = ••• fsm(x>t) = ’ • (2-19)
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is called the admittance ratio between two layers and

its inverse is the impedance ratio [19].

Since in the top layer (due to the free boundary condition)

A-. = A’ and expressing Aq in terms of Aotr , all other
1 1 1 on

amplitudes can then be computed as a function of the 
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frequency w for a steady state harmonic motion. The explicit 

expression for these amplification functions becomes too 

long even for two layers. However, the numerical computa-

tion, proceeding from layer to layer, is simple and is 

conveniently carried out on a digital computer.

2.5 PREVIOUS WORK

In recent years, the attention of many investigators in 

civil engineering has been focused on the problem concerning 

the response of horizontally stratified layers subjected

to dynamic forces.. In particular, investigators in earth-

quake engineering have carried out a considerable amount

of research [22] . Two methods of solution to these problems

are available and these are :

(1) The analytical methods

(2) The numerical methods.

2.5.1 Analytical Methods

Most of the analytical studies are generally based on the 

assumption that each soil layer exhibits "shear-beam" 

behaviour. It is assumed that stress waves that emanate 

from the focus of the source are bent by successive 

refraction and propagation to a near vertical position 

as they reach the rock surface. Further refractions within 

the stratified soil produce a shear wave which propagates 

in an almost vertical direction while the particle 

displacements occur in a direction perpendicular to the 
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direction of propagation. This approach in modelling multi-

layered soil by means of shear beam has recently been 

discussed [22].

Idris and Seed [23] have derived a closed-form solution 

for evaluating the response of soil layers with linearly 

elastic properties varying in a prescribed manner. Bahar 

and Ebner [22] developed a transfer matrix method to 

determine the transfer function governing layered soil 

amplification. The method is direct and does not require 

the evaluation of integration constants for the solution 

of a differential equation governing the motion of each 

individual layer. Gazetas and Roesset [24] studied the 

vertical vibrations of a massive, infinitely-long foundation 

carrying constant-force or rotating-mass type oscillators 

on the surface of linearly-hysteretic, elastic, layered 

half-space. A semi-analytical procedure to determine the 

compliance functions of massless rigid strips has first 

been presented and the results have been subsequantly used 

to evaluate the response of the massive foundation. The 

method was based on a direct solution of the wave equations 

in terms of displacements and accounts for the exact 

physical conditions at the rough layer interfaces and the 

soil surface [24]. Extending these studies by Gazetas [25], 

an analytical numerical formulation presented for a 

heterogeneous multi-layered soils.

26



2.5.2 Numerical Methods

In practical situations numerical solutions are the prefered 

to analytical because of the inherent difficulties of 

problem description. In the last decade there have been 

many applications of numerical techniques to stress wave 

propagation problems [19, 26].

Most numerical techniques are based on the principle of 

discretization; this can be defined as a procedure in 

which a complex problem of large extent is divided, or 

discretized into smaller equivalent units or components.

Alfredo and Others [27, 28] suggested a model for wave 

motion in axisymmetric solids. The model is composed of 

discrete elements of lumped masses and springs. The 

elements in the model are further identified collectively 

as mass points and stress points. The model was described 

in the cylindrical-polar and the spherical-polar coordinate 

systems. It was shown that in both reference systems, the 

model is mathematically consistent with a finite difference 

form of the corresponding classical theory of solid 

continua. Boundary conditions of the model are defined 

by displacements or derivatives of displacements at the 

mass points. Boundary conditions can also be defined by 

specifying externally applied stresses at the boundary 

stress points.
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Costantino et al [29] developed a computer program to 

treat the response of general two-dimensional continuum 

problems subjected to dynamic loading caused by a nuclear 

detonation.

In satisfying the boundary conditions, the equation of 

motion for fixed nodes are ignored. For partially fixed 

nodes, equations of motion are derived in the direction 

in which motion is permitted.

Lysmer and Kuhlmeyer [30, 31], investigated different 

possibilities of expressing boundary conditions analyti-

cally. They found that the most promising way was to 

express it by the conditions

o (2.23)

T bP V u 
s

(2.24)

In which a and t are the normal and shear stress 

respectively, w, u are the normal and tangential velocity 

of s-wave and p-wave respectively. Dimensionless 

parameters are represented by a and b. The proposed 

boundary condition corresponds to a situation in which 

the convex boundary was supported on infinitely small 

dashpots oriented normal and tangential to the boundary.
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A comprehensive study of the finite element discrete 

parameter model of a continuum for the analysis of 

transient loading and wave propagation problems has been 

presented by Shipley, et al [32]. It was observed that 

the finite element model behaves like low pass filters 

having definite passing pounds and cut-off frequencies 

and that the cut-off frequencies depend upon the wave 

type and finite element mesh. It was noted also that 

waves propagating through a continuum at frequencies 

above the cut-off frequency cannot propagate through the 

finite element mesh associated with the particular cut-

off frequency.

Kuhlemeyer and Lysmer [31] presented the results of a 

study concerning the accuracy of the displacement caused 

by a single harmonic, one-dimensional elastic wave 

propagating through a finite element mesh. They found 

that the basic criteria governing the accuracy was the 

ratio of the element length in the direction of propagation

£
£, divided by wavelength, x , as defined £ ~ v • Results

were presented for the four cases of £ , equal to one- 

fourth, one-sixth, one-eighth and one-twelfth. From the 

results it was clear that the high frequency content in 

transient problems cannot be moded unless the element 

dimension is very small. The maximum element dimension 

should correspond to a value of £p equal or less than one- 

fourth when calculated for the highest significant 
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frequency; would also depend upon the type of mass 

matrix utilized.

A numerical technique for the analysis of wave motion in 

layered strata which accounts for the radiation into the 

far field was presented by Wass [15]. Harmonic waves 

in plane strain or antiplane shear as well as the 

axisymmetric waves in a layered stratum were considered. 

The technique was extended by Kausel [33] to nonaxisym- 

metric waves in an axisymmetric region of layered strata.

The solutions were obtained in regions of infinite extent 

on all these developments. Recently, as a further 

extension of the previous work, Kausel [34] developed a 

technique for the numerical analysis of wave motion in 

layered strata. Semidiscrete particular solutions 

satisfying inhomogeneous boundary conditions were 

calculated by the finite element method.
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CHAPTER 3

DAMPING PHENOMENA IN WAVE PROPAGATION

3.1 INTRODUCTION

The effect of damping is usually considered in the detailed 

study of the dynamic behaviour of structures subjected to 

impact. Sometimes, however, its effect may be neglected 

if the impact is associated with structures having a low 

natural frequency. This assumption is not usually made 

in the case of wave propagation in which case information 

concerning the type and magnitude of damping is required.

The effect of damping in dynamic response of pavement 

constructions was found to be important. Therefore, the 

study of the damping parameter has been considered.

The action of an impact force on a half-space cereates 

body and Rayleigh waves which decrease in amplitude with 

increased distance from the point of impact. Material 

internal damping dissipates the wave energy and in addition 

further energy is dissipated at the interfaces between 

material layers.

Although considerable information exist on damping 

phenomena in general, information is still required on the 

magnitude of damping at different frequencies and for 

different materials [5]. For this reason and also for 

the special characteristics of the problem under 
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investigation, the damping problem is represented in a 

particular way. A review of damping phenomena is given 

in this chapter and in particular those methods which 

relate to wave propagation are discussed.

The present study deals with the response of runway 

pavement subjected to impact loading. The idealization 

of the damping parameter and its mathematical model in case 

of pavement construction, therefore, has been investigated. 

The basic assumptions for this mathematical model and the 

numerical formulation for damping analysis are given.

3.2 TYPES OF DAMPING PHENOMENA

The various types of damping phenomena encountered in 

materials and structural systems may be generally classified 

into the four following types [20, 35]:

1. Rate-dependent, recoverable behaviour

2. Rate-dependent, non-recoverable behaviour

3. Rate-independent, recoverable behaviour

4. Rate-independent, non-recoverable behaviour.

The term ’’recoverable” as used above refers to the 

’’recoverability’’ of inelastic strain with time, or its 

reduction to zero, leaving only elastic strain. Figure 

(3.1.a) illustrates rate-dependent, rate-independent, 

recoverable and non-recoverable types of inelastic strain.
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An important characteristic in the damping relation is 

the manner in which energy dissipation varies with stress 

amplitude. Although damping-stress relations are often 

complex for some mechanisms, nevertheless this relation 

can be expressed as follows:

D = J a" ...................................... (3.1)

where J and n are material constants

= damping constant, or the damping energy 

dissipated at a stress amplitude of unity, and 

n = damping exponent

The shape of various types of idealized curves are 

illustrated in Figure (3.2).

At low amplitudes of stress the operative mechanisms 

generally lead to two conditions:

(a) Damping exponent n = 2 (quadratic damping)

(b) The hysteretic loop is elliptical in form.

The term linear damping is used for this case since these 

conditions also characterize linear viscosity. Another 

reason for this usage is that linear differential equations 

and linear superposition are generally appropriate in 

analysis. Classification of types of damping phenomena, 

their characteristics and typical values are given in 

Figure (3.3, 3.4).
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3.3 TYPES OF LINEAR DAMPING

Figure (3.3) illustrates the three types of frequency 

effects which can be identified in linear materials and 

processes. These types are given as follows.

Case (a) - Rate Independent Linear Damping

For this case n and D are all independent of frequency, 
s s ~

Case (b) - Linear Dashpot Damping

This is often identified as conventional linear viscosity 

or dashpot damping. This is only a special case of linear 

damping in which P” = C(dx/dt).

where C = coefficient of viscosity of the linear dashpot.

Case (c) - General Rate-dependent Linear Damping

Many inelastic and visco-elastic materials generally 

behave in a manner shown in Figure (3.4.c), particularly 

in the transition region where relaxation phenomena are 

active.

All three types of behaviours are identified as linear 

in this project. This is consistent with the definition 

for linear damping given in Figure (3.4).
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3.4 EVALUATION OF MATERIAL DAMPING

Unfortunately in much of the technical literature dealing 

with damping no distinction is made between (a).

The properties of the system used to perform the damping 

test, (b), the damping properties of the test specimen 

or number of speciments on which the test is performed, 

and (c), the unit damping properties of the material 

itself [35]- Also, because of the variety of viewpoints 

and units used to designate damping properties, considerable 

difficulty is generally encountered in collecting, checking, 

and correlating damping data. It is, therefore, desirable 

to review the various damping units and expressions in 

current use and indicate their relationship to the present 

project.

The main expressions used to define the internal damping 

of materials are specific damping capacity and coefficient 

of attentuation. These two functions occur in the litera-

ture for evaluating of the internal damping in granular 

materials and soils [20 ] .

For steady state conditions such as shown in Figure (3.5) 

the specific damping capacity is given by

(3.2)

The term E represents the strain energy described by the 
a

area under the hystersis loop. For the condition of

decaying vibrations, the relationship between the 
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logarithmic decrement and the specific damping capacity

is 

= 1 - Exp(- 26) (3.3)

in which Kn represents the proportionality factor between 

strain energy and the square of the displacement amplitude 

for the nth cycle of decaying vibration. For small values 

of 6, ACg ~ AC^ and the ratio of proportionality constants, 

Kn + ]yKn is approximately unity.

The decrease in amplitude of vibration with distance from 

a source caused by energy losses in soil is designated as 

"attenuation". This is measured in terms of the coefficient 

of attenuation and is related to the logarithmic decrement 

by

6 = g.7Tvq_ = L a . . . i......................... (3.4)
0) '

in which v is the velocity, w denotes the circular 

frequency, and L is the wave length of the propagating 

wave. Attenuation should be distinguished from geometrical 

damping which occurs in elastic system because of the 

spreading out of wave energy from a source.

Internal damping in materials may also be evaluated by 

measuring the angle by which the strain lags the stress 

in a sample undergoing sinusoidal excitation. If the 

material is assumed to be a linear visco-elastic material, 
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the complex shear modulus G is considered :o be composed 

of a real and imaginery component, each of which is a 

function of frequency, as

G*(w) — G-^(to) + i Gg(w) (3.5)

G^w) is the elastic component and G2(w) is :he viscos

component. The loss angle SL is defined by

Tan SL h
Gi

(3.6)

Logarithmic decrement 6 is

6 = ir tan SL (3.7)

Damping in granular materials and soils increases with 

the amplitude of vibration and therefore, ir may be 

convenient to use different methods for different ranges, 

of amplitude. The use of a complex modulus may be valid 

for dynamic situations involving large-amplitude vibrations.

Little information exists regarding the damping properties 

of soil. Grapht and Johnson [36] summarized the results 

of measuring the damping capacity of mixtures of gravel, 

sand and silt in a modified triaxial compression apparatus. 

The soil samples were subjected in the method of testing 

used to a sinusoidal stress at frequency below that of 

resonance for the system. The stress-strain curves were 

recorded. The area of hysteresis loop was measured and 
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used in determining the damping capacity. The range of 

values obtained for specific damping capacity by some 

investigators is presented in Table (1) [20, 36]

TABLE 3.1 - SOME TYPICAL VALUES OF INTERNAL DAMPING

IN SOILS [36]

Soil Type . “Equivalent Ds

Dry Sand and Gravel 0.03 - 0.07

Dry and Saturated Sand 0.01 - 0.03

Dry Sand 0.03

Dry and Saturated Sand and Gravel 0.05 - 0.06

Clay 0.02 - 0.05

Silty Sand 0.03 - 0.10

Dry Sand .01 - 0.03

3.5 INTERFACE EFFECTS IN DAMPING ANALYSIS OF STRUCTURES

The effect of the interface in multi-layered structures 

provides an additional damping mechanism for the propagating 

wave energy which must be considered in addition to the 

conventional material damping. The interfaces in pavement 

construction have different damping characteristics. In 

general, there are three types of interfaces, can be 

identified in structures, and are important in damping 

analysis.

38



(a) a dry interface surface

(b) a lubricated interface surface

(c) adhesively bonded interfaces

The unjoined interfaces of (a) and (b) above are generally 

subjected to a wide range of loads and displacements in 

service. However, only two types of relative motions 

are generally important in damping analysis and these 

are:

(a) a separation of mating surfaces (motion normal to 

interface)

(b) interface shear effects (relative motion of mating 

surfaces in the plane of the interface )

For the case of dry interfaces, Coulomb friction provides 

an important mechanism for dissipating energy under cyclic 

shear displacements. Another different case is when the 

adhesive material has sufficient thickness to permit the 

relative shear motions between layer surfaces to be 

absorbed within the adhesive with no relative slip motion. 

For this case the adhesive layer is a component part of 

the structure. The stresses, strains and the damping effect 

of this adhesive layer can be analysed in the same manner 

as other component parts of the structure.

The above mentioned types of interfaces and their effect 

must be considered in the design of multi-layered 

structures subjected to impact loading. They occur 
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between pavement materials which possess different proper-

ties and characteristics. Figure (3.6) is a typical 

cross-section through the different layers of a flexible 

pavement. Numerical representation of the effect of 

interfaces on the response of the structure will be 

discussed in Chapter (4).

3.6 EXPERIMENTAL MEASUREMENT OF DAMPING

The basic energy-loss mechanisms in practical structures 

are seldom fully understood; and it is not feasible to 

determine the damping coefficient by means of the corres-

ponding of generalized damping expressions [35]. For 

this reason, the damping in most structural systems must 

be evaluated directly by experimental methods.

In general the properties of a material are determined from 

the properties of a testing system. Unfortunately, in 

much of the literature dealing with damping no distinction 

is made between (a) the properties of the system used to 

perform damping test, (b) the damping properties of the 

test specimen or member on which the test is performed, 

and (c) the unit damping properties of the material itself.

The unit damping properties of the mate rial may be 

generally determined directly from the properties of 

the entire specimen. The relationship between material 

and specimen properties were given by Lazan [35] for a 

specimen or a member made of macroscopically uniform 
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materials. Using these relations, the loss coefficient 

of the specimen (n ). When the damping exponent is equal o

to 2 in the damping stress function (Equation (3.1) is 

equal to q . This case of linear materials has been
s

considered in this research.

The damping coefficient of the structure can be measured

by one of the following methods [37, 38]:

(a) Free-vibration decay

(b) Resonant amplification

(c) Half-power (handwidth)

(d) Impedance testing

Method (C) is the most preferable for establishing the 

damping coefficient experimentally in this project. This 

method of evaluating the damping ratio is discussed briefly 

in Chapter (6).

3.7 NUMERICAL FORMULATIONS FOR DAMPING ANALYSIS

The internal dissipation of energy in soils and granular 

materials is generally believed to be a hysteretic nature, 

but the loss of energy due to the propagation of waves is 

frequency dependent [19]. Both types of damping are 

present in the multi-layer half-space considered in this 

project. The continuum may be discretized as an N degree
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of freedom system, thus producing equilibrium equations

of the form

MU + CU + KU = R(t) .................... (3.8)

where [m] / [c] and [k ] are the N x N mass, damping and 

stiffness matrices respectively, and {U} and {R(t)} 

are the corresponding N x 1 displacement and force vectors.

The difficulty in representing a continuum as an N degree 

of freedom, damped system is the determination of the 

form of the damping matrix [C].

Linear viscous damping can be mathematically formulated

by

au au au
x y z

' n nat ^aF~

q describes the energy loss and U , U and U are the
x’ y z

displacements relative to the boundaries. The energy loss 

for each element is thus described by

n [n J {q}

and is introduced into the equilibrium equations. The 

stiffness formulation then becomes
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6{q}T[k]{q} + 6{q}T[c] {q} + 6{q}T[M]{q) = <5{q}T{Q}

(3. 9 )

where [c] (3.10)

which means that [c] is proportional to [M].

but

Alternatively and more reasonably, the damping could be 

related to the strain rates rather than the rates of 

displacement. This would give a loss of energy for each 

element of [n] [b] (q), in which [n] is now a matrix of

damping terms that accounts for the different component 

of strain. When this is introduced into the virtual-work 

expression it must be related to strains and not displace-

ments. An equation similar to Equation (3.10) results,

[C] is now defined by:

= [b]t [n] [B]dV .................... (3.11)
.v

will be similar in form to the stiffness matrix if 

is proportional to the elastic stress-strain relations, 

[cjwill be proportional to [k].

A generalization of these observations is that if [c] can 

be related to [M] and [k ] by.

[C]

This
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= X S[K]([M] 1[K])r 

r
(3.12)

Then

g = £ |(w.)2r+1................................ (3.13)
1 Zj 1

r

This means that knowing the variation of fk with modal 

frequency,computation .of the corresponding [c] can be 

achieved [19]• While the above procedure for evaluating 

the damping matrix is correct theoretically, serious 

numerical difficulties arise which make it impractical 

when the number of degrees of freedom is large.

A more general method was developed by Wilson and Penzin

[39] since:

WT [C] M = 2B2“2

2Si“i

(1) 
m m

(3.14)

which can be abbreviated as

h]T [C] W= [28^] (3. .15)
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and since

[$]T [m] [♦] = [I]................................ (3.16)

it follows that

MT [C] [*] = [*]T [M] [*] [2e.<u.] WT [M] [0]

................................ (3.17)

Therefore

[C] = [M] [$] [2gia>i] [M] .............. (3.18)

The method required the knowledge of the damping ratios 

for each mode and this proves to be a difficulty. The 

damping is thus determined element by element rather than 

mode by mode. Three methods have evolved to evaluate the 

effects of damping when the damping is known as damping 

ratio for each element. These are Rayleigh damping, 

weighted modal damping and the complex formulation [19]. 

Rayleigh method has been adopted to evaluate the effect 

of damping in the numerical model and will be discussed in 

Section (3.8).
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3.8 DAMPING IDEALIZATION AND DAMPING MODEL FOR

PAVEMENT CONSTRUCTION

Soils and pavement constructions are built up using 

granular materials. The vibrating part of a pavement thus 

contains numerous distributed elements with their ..

particular elastic, mass, and loss characteristics which 

all exert their constant values of M, C and K appears to 

give a good approximation [40].

In studying damping problems from a phenomenological 

viewpoint the idealization of properties is an important 

step. In pavement construction, both viscous and hysteretic 

damping exist which are dependent on the amount of asphalt 

in the mix. The published results by Heukelom and Klomb 

[40] show that the dissipation of energy depends on the 

velocity of motion. Also, the internal dissipation of 

energy in soil is generally of a hysteretic nature [19], 

but the loss of energy due to propagation of wave depends 

upon the frequency of the waves. The mathematical 

treatment of dissipation of energy in a flexible pavement 

as a linearly viscous damping offers close correspondence 

with the dynamic response of pavements.

An equivalent linearization procedure may also be used to 

evaluate the response of the granular materials (base 

and sub-base). The procedure involves the determination 

of an equivalent modulus G and an equivalent viscous 

damping ratio r)g, for use in the linear elastic solution
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[41, 42]. Considering these assumptions, it is vital to 

assess the most suitable numerical method to represent 

the damping. There are three numerical methods to 

represent the damping [19].

(1) The weighted modal damping which has been described 

by Roesset et al [43] is a method of obtaining the 

damping ratio 3^ for different modes, when the 

individual elements have different damping ratios. 

The damping fk in each element can be composed of a 

part which is independent of frequency to represent 

hysteretic effects and another part which is depen-

dent of the frequency w . of an element j. This
tj

latter part represents viscous or radiation effects. 

This procedure allows the use of model decomposition 

and superposition. The method tends to underestimate 

the correct damping when there is a significant 

response at frequencies higher than the fundamental 

frequency. It is an excellent method, however, for 

cases in which the response is primarily in the 

lower frequencies [43].

(2) Complex formulation may be used to a particular 

frequency of impact. For more general input it can 

be used only in the frequency domain. For a system 

with both hysteretic and viscous damping, the complex 

stiffness would become

K* = K(1 + 2i + 2i u6v) .............. (3.19) 
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where the subscript H and v indicate hysteretic 

and viscous damping respectively. The complex 

stiffness is computed by expressing the elastic 

coefficients in complex form when the system has 

more than one degree of freedom

[Dj* = [D](l + 2i 6h + 2i u6v) ........ (3.20)

where [D] is the elasticity matrix.

(3) The most commonly used relationship for expressing 

the damping phenomena that proposed by Rayleigh 

[19, 39] in which

C = ct[M] + 3[K] .......................... (3.21)

Figure (3.7) shows that the addition of mass damping and 

stiffness damping produces , a curve that is reasonably 

flat over a limited range of frequencies. The main 

disadvantage is that the damping becomes very large for 

higher frequencies because of the contribution of the 3 

term. Idris and Seed [42] have extended the formulation 

by considering the damping to be strain-dependent . The 

damping value to be used in each element should be based 

on the strain development in that element.

It is important to use the appropriate method for the 

numerical representation of damping. The following main 

points are considered in choosing this method.
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(a) The damping characteristics of pavements must be 

represented as accurately as possible.

(b) The damping properties of the granular materials

must be linearized so that their response may be evaluated.

(c) A convenient method of solving the equations of 

motion must be employed.

The Rayleigh damping formulation was adopted in the 

current work since it was possible to include the three 

features mentioned above. Moreover, this form of damping 

needs no computer storage and no multiplications for a 

damping matrix. The mathematical formulation is given in 

Chapter (4) for this method.
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Fig. (3.2) Idealized damping-stress functions

(stress history effects not shown).

n
(a) Linear dapping: D = . Observed in metals,

a

polymers and elastomers at low stress. Usually rate

dependent (P"cxfc).

(b) Power law damping: D = Jef11 . Often observed at
cl

intermediate stress. May be rate dependent or rate

independent.

(c) Idealized anelastic plastic (two-sequent curve)

(d) Idealized anelastic plastic (three-sequent curve)

(e) Idealized magnetoplasic damping.
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Vs

m CD

(a)

|p>x

Case (a) . Rate-independent linear damping.

Case (b). Linear dashpot danping.

Case (c). General linear danping.

Fig. (3.4) Three classes of linear damping.
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1 Seal Coat

2 Tac Coat

3 Prime Coat

4 Surface Course

5 Binder Course

6 Base Course

Subbase Course

8 Ccnpacted Subgrade

9 Natural Subgrade 

rig. (3.6) Components of flexible pavement.
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CHAPTER A

THE FINITE ELEMENT ANALYSIS NUMERICAL MODEL

4.1 INTRODUCTION

Impact problems are complicated and relatively few cases 

which can be solved by analytical means. For this reason 

numerical techniques, such as the finite element or the 

finite difference method are often used in complex cases [5].

The finite element method was chosen as the method of 

analysis since it possesses certain advantages over alterna-

tive techniques. For a multi-layered half-space subjected 

to an impact force these advantages include, the simulation 

of complex applied load distribution, the representation of 

stress wave propagation and the reflection and refraction 

at interfaces. Also, the different stiffness and damping 

characteristic in each layer may be represented.

The problems encountered in developing the finite element 

programme for dynamic analysis are surveyed. For these 

models the determination of response requires the solution 

of a large set of second order differential equations. 

General methods of solution for these equations, including 

factors affecting accuracy and economy of computation, are 

discussed. The Wilson-0-Method has been used as the 

particular algorithm employed is summarized in Appendix II.
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4.2 THE FINITE ELEMENT METHOD

The finite element method is a numerical technique for 

obtaining approximate solutions to complex boundary value 

problems. The development of the method in the field of 

structural mechanics began in the early 1950's with the 

work of Turner et al [44] . Since then the method has been 

developed extensively and is now widely used in structural 

and continuum mechanics. It has been also applied 

successfully to various other physical problems [45, 46, 47J .

A published text by Zienkiewicz [48], describes in detail 

the application of the finite element method in structural 

and continuum mechanics. The text also contains an exten-

sive list of references on the subject. The finite element 

method has been used very successfully in static and dynamic 

analysis of plane and axisymmetric problems [49, 50, 51], 

It has also been applied to quasi-static and dynamic analysis 

of viscoelastic continua with considerable success .

Since the finite element method is well established only 

the principal steps involved in the particular application 

of the method to the analysis of impact problems and stress 

propagation in multi-layered media are summarized.
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4.3 DISCRETIZATION OF ’’INFINITE” MEDIA AND MESH DESIGN

Applications of the finite element method to structures 

having well defined geometric and boundary conditions can 

be straightforward insofar as their subdivision and 

introduction of the boundary conditions are concerned. 

The situation in a multi-layered half-space, however, 

involves "infinite" media and the boundary conditions are 

not exactly defined.

Besides determining the significant zones to be included 

in the mesh, it is also necessary to arrive at elastic 

boundary conditions. The former is possible since the 

influence of the perturbations such as applied loads and 

potential diminish with increasing distance from the points 

of their applications. The significant distance of the 

boundaries are usually determined by trial-and-error 

procedures in which the boundary distances from the impact 

zone are varied and the resultant effects on the numerical 

solutions are examined.

Criteria for determination of discretized boundaries for 

stress-deformation problems are covered by many texts 

[19, 44, 48, 49]. Stress wave propagation problems

represent a special case and were discussed in Chapter 2.
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The finite element mesh design must produce accurate 

results and be computationally efficient. The internal 

geometry, e.g, zoning, layering, discontinuities and 

interfaces, are introduced, and planes of symmetry are 

sought. At this point the system is ready to be divided 

into finite elements. In general the smaller the element 

the more accurate the solution.

4.4 MATHEMATICAL FORMULATIONS

4.4.1 Linearly Elastic, Undamped Formulation

The equation of dynamic equilibrium for a linearly elastic, 

undamped continuous body are

3a
__ xy
9y

+ p (t)
xv 7

(4.1)

The right hand sides of these equations include both the 

products of mass density (p) and the corresponding 

accelerations and arbitrary, time-dependent forcing 

functions (px, p pz).
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Many techniques can be used to obtain finite element 

formulations from Equations (4.1). The most straightforward 

is as follows.

First, the terms involving the product of the mass and 

acceleration are replaced by equivalent body forces as 

opposite sense, called d’ Alembert forces

f
X

= - p

.2
8 u

X
3t2

f = - p

.2
3 y

y at2

f = - p

3 UZ

z rx ^2
at

(4.2)

where U^, and Uz are components of displacements in the 

x, y and z directions, respectively.

Then the equilibrium at a given instant of time must 

require satisfaction of the principal of virtual work.

where T^ is the prescribed traction over the surface. If 

the interpolation functions are the same for displacement, 

velocity, and acceleration, then

{U}^[N] {q} (4.4)
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{U} = [n ] {q} ................................ (4.5)

{U} = [N] {q} ................................ (4.6) 

where {U} = vector of displacement at point

{q} = vector of nodal displacements

[N] = matrix of interpolation functions

and the dots indicate differentiation with respect to time.

Substitution of these expressions into Equation (4.3) 

together with the usual algebraic and variational operations
I

leads to

<5{q}T[K] {q} = - T f 
«{q} ( P [N]T [n ] dV){q}

T f
+ 6{qr( [N]T{P}dV + [N]T{T}dS)

V

v

(4.7)

The first expression on the right hand side describes the 

inertial part of the system. It can be written in terms 

of the mass matrix [m] as

- 6{q}T [m] {q}

The mass matrix for one element is

T
p [N] [N] dV

v
(4.8)
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This is called the consistent mass matrix because its 

derivation is consistent with that of the stiffness matrix. 

An alternative approach is to assume that the mass is 

concentrated at the nodes, leading to a lumped mass matrix. 

"Roesset" [52] has demonstrated that for one-dimensional 

cases, the lumped mass matrix underestimates the resonant 

frequencies of the system and the consistent mass matrix 

overestimates them by nearly the same amount. Therefore, 

the most satisfactory procedure from the point of view of 

numerical accuracy is to use a mass matrix combining the 

lumped and consistent formulation in equal or nearly equal 

proportions.

The remaining terms on the right hand side of Equation (4.7) 

represent the contribution of externally applied loads.

These can be combined in a nodal load vector {Q}, giving 

a term <5 {q} {Q}. The terms for all elements are added

node by node in the usual manner of assembling finite 

element global equations. If {U} is the global nodal 

displacements vector, {R} the global nodal external load 

vector, [k ] the summation of the element [k*]. matrices and 

[M] the summation of the element [m] matrices then 

s{u}T [kJ {u } = - 6{u}t [mJ [u ] + <5{u}T {r } ... (4.9)

The vectors (U), {U} and {R} are functions of time, but 

at any instant the principals of virtual work and equilibrium 

requires that the variation vanish.
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Thus

[k] {U} + [I<1] {U} = {R} .................... (4.10)

This is the basic finite element formulation of the 

dynamic problems for linearly elastic undamped materials.

4.4.2 Formualtion of Damping Properties

The complete equations of motion for a discrete body or 

structure should include a term to account for energy 

dissipation. This problem has been discussed in Chapter 3, 

where it has been mentioned thus, that damping is linearly 

proportional to the velocity. Hence the equations of 

motion for the damped system are

[m] {U} + [C] {U} + [K] {U} = {R(t)} ... (4.11)

where [C]is the damping matrix of the assemblage of elements.

There are a number of numerical methods for evaluating the 

[c] matrix which have been considered in Chapter 3. From 

this discussion it has been shown that the method originally 

proposed by Rayleigh is particularly suitable [39, 41]. 

Therefore, the damping matrix [c] can be assumed of the 

form

[c] a [M] + 6 [K] (4.12)
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Here a and 3 are proportionality constants which relate 

damping to the velocity of the nodes and the strain 

velocities, respectively. Most of the experimental data 

on damping properties of structures consist of modal 

damping ratios, that is, ratios of actual damping to 

critical damping for particular natural nodes of vibration. 

Therefore, it is useful if values of q and 3 in Equation 

(4.12) can be assigned from known values of modal damping. 

For this, the following relation between a and 3 and the 

damping ratio for the ith mode Ch are defined

q

2w^
(4.13)

where is the natural frequency of the ith mode.

It has been found [41, 43, 53] that the use of a constant 

damping value for a multi-layered structure or the use of 

an overall weighted average can lead to inaccurate results. 

Accordingly, an analytical procedure that permits the use 

of different damping ratio for each individual element has 

been formulated. This formulation is also based on 

utilizing the Rayleigh damping expression, but instead of 

using Equation (4.12) for the entire system, the following 

relationship is used for each element q.

[cl = q^ [ml 
L J q q L J q + PqWq (4.14)

[m] q , and [k] are the damping, mass andIn which [cj^ > 

stiffness submatrices respectively for element q and q^ and 3q 
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are parameters that are functions of the damping charac-

teristics of element q. The parameters a and 6 are 
q q

given by

(4.15)

(4.16)

The value of X , which represents the damping ratio of 

element q depend upon the properties of the material of 

element q. The parameter is equal to the fundamental 

frequency of the system and is obtained from the solution 

of the equation

[k ] {<f>n} = «?[m] {4>n}....................................................................... (4.17)

For n = 1 this Equation (4.17) represents the eigen value 

problem from which the mode shapes and frequencies are 

determined [41]. It was found that the vibration frequen-

2
cies, ok and the corresponding mode shape vectors are 

required for solution of damping problems. It is the 

purpose of the next section to describe the solution 

procedures used to solve the eigenvalue problems of

2 
interest in order to obtain the vibration frequencies oh .
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4.5 SOLUTION OF EIGENVALUE PROBLEMS

It was stated in Section 4.4 that it is necessary to solve 

the eigenproblem and to obtain the eigenvalue X-^ ... Xn

and the corresponding eigenvectors

X M (J> (4.18)

A variety of eigensystem solution methods have been 

developed and are reported in the literature [44] , [54] , [55] . 

Most of the techniques have been devised for rather general 

matrices. The solution of the specific eigenproblem 

summarized above has been considered. The matrices have 

specific properties such as being banded and positive 

definite. The eigensystem solution algorithms should 

take advantage of these properties in order to make a 

more economical solution possible. The vector iteration 

method, in which the basic property used is that

[k] = {A} [M] up .................... (4.19)

The effectiveness of a solution method depends largely on 

two factors, firstly, the possibility of a reliable use of 

the procedure and secondly, the cost of solution. However, 

the real justification for using vector iteration derives 

from the fact that they did work and can be used 

economically by using the same solution algorithm for the 

equations

[K] {U} {R} (4.20)
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Two techniques of vector iterations are used and these 

are the inverse and the forward iteration methods. A 

summary of the two techniques and the particular algorithms 

are given in Appendix II.

4.6 DYNAMIC ANALYSIS OF LAYERED SEMI-INFINITE MEDIA

For the analysis of multi-layered media Youder stated [2]:

(1) The material properties of each layer are homogeneous

(2) Each layer has a finite thickness, except for the 

lower layer and all are infinite in the lateral 

directions

(3) Each layer is isotropic

(4) Full friction is developed between layers at each 

interface.

These items are the basic importance assumptions in most 

theoretical procedures [3, 4]. However, the dynamic

solution presented in this thesis assume all of the condi-

tions previously mentioned. Moreover, it is necessary to 

consider not only the component materials of each layer 

and its effect on the reflection and refraction of stress 

wave, but also the energy dissipation caused by joint 

interface. The method of analysis developed in this 

project takes into account these factors.

Figure (7.8) shows the cross section of a typical plane 

problem in which the geometry, material properties and 

the external loads do not change in the direction 
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perpendicular to the cross section. The structure consist 

of horizontal layers which for pavements consist of the 

sub-base, base and mating surface. These three layers 

are constructed over a sub-grade. The particular 

characteristic of the multi-layered structure is the 

interfaces between layers figure (3.6).

4.6.1 Treatment of the Effect of a Wave Impinging

upon an Interface

When a body wave travelling in an elastic medium encounters 

an interface with another elastic medium, some of the 

incident-wave energy will be reflected into the first 

medium and some energy will be transmitted into the second 

medium. Using the same approach as Sinitsyn [55] and 

Clough and Penzein [37] , the dynamical conditions for 

the nodes on the interface boundary can be written in the 

form

MU + CU + KU = a + u. ......... „......... (4.21)
D

where o stress in incident wavea

a- stress in reflected wave

A continuity and equilibrium are imposed at the node of 

the interface and these are

U + U. = U ...................................... (4.22)
a b c 7
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for the displacement, and

R1 R2

Ra + Rb = Rc ................................. <4’23>

for the forces

These conditions must be satisfied at all times. The time

derivatives of the displacement conditions must be also

satisfied, i.e,

3U 3U
—& + —
at at

From which it is evident that the time and position

derivatives are related by the velocity of wave propagation.

9Uo

at
au
_ o
3x (4.25)

Similar analysis for the reflected and refracted waves

result in

au.b au,b+ C-, ................................ (4.26)at 1 3x

au 3Uc 
at C2

c
3 x ................................ (4.27)
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where the positive sign in (4.26) is due to the negative

direction of the reflected wave propagation using

(4.25, 4.27) in (4.24) yields

9U
c, - + c
1 9 x

9 IL 
b

1 9x

auc _ —
2 9x

(4.28)

but
9U

the strains —
9x

eo can be expressed cl in terms of

the forces acting at the node

£a
%

E1

Ra

A1E1
(4 .29)

hence the compatibility condition of Equation (4.28) can 

be expressed in terms of force waves

C, C-. c9
-I p 1 -1- p — _ p

A1E1 a A1E1 nb A2E2 c (4.30)

i — e

R 
c

where

Z( R - R, ) ............a b7
................... (4.31)

C1 A2E2 /m2E2A2
Z

C2 A1E1 \/mlElAl . . ... . . . . . . (4.32)

For special case of this project

(4.33)
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Equation (4.31) can be introduced in the force equilibrium 

condition to express the refracted and reflected waves in 

terms of the incident wave

% =
P Z"1
a Z+l (4.34)

R
c

r. 2Z
Ra Z+l * * ’ ........................ (4.35)

Similar■ equations for the displacements

ub = -
TT Z-lu
a Z+l .............................. (4.36)

u
c

TT 2Zu
a Z + l .............................. (4.37)

The factor Z defines the character of discontinuity 

between two different materials and controls the relative 

amplitudes of the reflected and refracted waves.

4.6.2 The Scheme for Numerical Analysis of Reflected,

Refracted and Transmitted Waves

Numerical evaluation of stress wave propagation at an 

interface is conducted according to the theoretical 

considerations presented in (4.6.1). The scheme which 

is summarized in the following steps includes the load 

transfer method of Zeinkiewicz and Valliappan [57, 58, 59]
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(1) Solve the problem for the first increment of time At

(2) Calculate U, U, U after first increment of time

(3) Read the elements and nodes of interface

(4) Calculate the nodal forces

BTo dV

v

(5) Calculate = Ra

(6) Solve to obtain U, U, U using these two forces

(.7.) Add the effect of R^ by superposition, hence obtaining 

the final U, U, U in which the effect of reflection 

and refraction is added

(8) Repeat the calculation for each increment of time

This method of evaluation can be developed to include three 

kinds of interface. The method proposed appears to 

present few computational difficulties and resolves 

important questions regarding the behaviour of multi-

layered structures.
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4.7 SOLUTION OF THE EQUILIBRIUM EQUATIONS FOR THE

DYNAMIC FINITE ELEMENT SYSTEM

In Section (4.4), the equations of equilibrium for a finite

element system in motion are

[M] {U} + [C] {U} + [K] {U} = (R(t)} (4.38)

where M, C and K are the mass, damping and stiffness

matrices; R(t) is the external load vector and U, U, U

are the displacement, velocity and acceleration vectors 

of the finite element assemblage.

Mathematically, Equation (4. 38) represents a system of 

linear differential equations of second order and in 

principle the solution to the equation can be obtained 

by standard procedures for the solution of differential 

equations with constant coefficients [60] . However, 

the procedures proposed for the solution of general 

systems of differential equations can become very 

computationally inefficient if the order of the matrices 

is large, unless specific advantage is taken of the 

special characteristics of the coefficient matrices K, C 

and M [ 44, 46, 48, 49] .

The procedures of solution are divided into two methods 

and thes.e are the direct integration and mode superposition 

methods; Bathe and Wilson [44] have stated. Although 

the two techniques may at first sight appear to be quite 
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different, in fact, they are closely related and the 

choice for one method or the other is determined only 

by their numerical effectiveness.

The advantages of mode superposition are essentially, that 

frequencies and mode shapes are obtained and that a variety 

of response history and response spectrum analysis can 

be carried out with relatively small additional cost.

Also, if the structure is slightly changed or more 

eigenvalues and vectors are required, i.e, the frequency 

domain to be considered can be extended, the eigensystem 

which has been already solved can be used to reduce the 

cost of the new eigensystem solution [44J.

The direct step-by-step integration, however, is more 

effective, when many modes need be included in the analysis 

and the response is required over relatively few time 

steps, such as shock and impact problems.
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CHAPTER 5

PROGRAM DESCRIPTION AND NUMERICAL EXAMPLES

5.1 INTRODUCTION

This chapter describes the main features of the computer 

program which has been developed during the course of the 

research work. The implementation of the ideas discussed 

in the previous chapters are represented in the program 

which has been compiled on a Honeywell computer and written 

in the Fortran IV language. The computer program represents 

the effective numerical model of the half-space and may be 

used to study the dynamic response and also important 

features such as the damping, reflection and refraction of 

stress waves.

It is particularly suitable for the analysis of multi-layered 

half-space subjected to an impact force. Although the program 

incorporates facilities for the analysis of the response to 

impulsive loading, other types of loading can be accommodated.

The following sections will describe in brief the various 

subroutines and the structure and organization of the main 

program. Information concerning the preparation of data 

and listing of the program is presented in Appendix (I).
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In order to check the developed program, a number of 

dynamic problems have been solved and compared with 

published results. It should be noted that imperial units 

have been used in some examples instead of SI system to 

conform with published results.

5.2 BRIEF DESCRIPTION

The basic theoretical steps of the finite element procedure 

can be separated into several distinct phases. Each phase 

consists of a number of theoretical operations which are 

performed in separate subroutines. Figure 5.1 shows the 

main structure of the program together with the six primary 

subroutines. The order of calling the primary subroutines 

is controlled by a main or master segment. The function 

of each subroutine is described in the remainder of this 

section.

The solution of the equation of motion, Equation (4.1), 

was obtained by direct integration using the Wilson-9- 

method. The algorithm which has been used for this method 

is summarized in Appendix II. It should be noted from 

Chapter 3 that Rayleigh damping within the half-space has 

been assumed. This form of damping is easily taken account 

of in the analysis, because no storage and no multiplications 

of a damping matrix are required to obtain the frequencies 

and vibration mode shapes. Solution routines are used which 

calculate the required eigen value and eigen vectors directly 

without a transformation of the structure stiffness matrix 

and mass matrix to a reduced form.
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The program is based on the finite element displacement 

method. Parabolic plane isoparametric elements have been 

used for the analysis [61] . The method of solving the 

modified simultaneous equations is by a Gaussian Forward 

Elimination Technique which has the advantage of the banded 

form of the reduced stiffness matrix. The solution of the 

equation of motion in the first incremental of time is 

carried out by the subroutines SOLVE and BSUB. To complete 

the solution, the reduced form of equations are operated on 

by RESOLVE and BSUB which is of economic importance.

Although the program is not a general purpose computer 

program, additional options and new elements can easily 

be added. The analyses which are available are as follows:

1. Static analysis

2. Frequency calculation

3. Response history analysis by direct integration.

5.3 PROGRAM STRUCTURE

The structure of the program is shown in Figure (5.1). The 

primary subroutines or modules are described in relation 

to their general functions as follows
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A INPUT MODULE

This is the first module entered and is controlled by the 

subroutine GDATA. it handles input data defining the 

geometry, boundaries and materia] properties. Some data 

is processed into a form compatible with later program 

requirements, and other constant data, such as Gaussian 

integration constants, are set up.

B STIF and MASS MODULE

This is the second module entered and organises the stiffness 

and mass calculations on the concept of numerical integration. 

Control of this phase is held within subroutine STIFM.

Evaluation of stiffness is made according to the stress 

state prevailing in the elements at the time of calculation. 

Stiffnesses are sotred with element identification on 

disc and ordered in the sequence required for assembly and 

solution.

This module also organises the calculation of lumped or 

consistent mass matrices and stored on disc and ordered 

in the same way as stiffness matrices.

A flow diagram of the program organisation for the calculation 

of the structure stiffness matrix and mass matrix is shown 

in Figure (5.2) . With the matrices stored in block form

on tape either a static or a dynamic analysis can be 

carried out.



c LDATA MODULE

The flow of operations through this phase is governed by 

subroutine LDATA, It organises the calculation of nodal 

forces in case of static analysis. In case of a dynamic 

analysis, it organises the calculation of the modified 

effective load vector. Also, for frequency calculation it 

organises the calculation of modified vector of [M] {x } 

for each iteration.

D SOLUTION MODULE

This module consists of the three subroutines SOLVE, RESOLVE 

AND BSUB[62 , 63] . The general purpose of this module is 

to assemble, reduce and solve the governing set of 

simultaneous equations

This module is controlled by the master segment because

the flow of operations is dependent on the solution algorithm.

If the new set of stiffness terms have been evaluated, SOLVE 

and BSUB is used to obtain the solution, whereas if there is 

only a new set of forces, RESOLVE and BSUB obtains the 

solution by using the reduced form of equations started 

during the previous entry into solve.

E STRESS MODULE

This module is controlled by the subroutine stress. It 

organises the calculation of incremental strains which 

are used in the evaluation of total stress and total 

strain. Computation and determination of the equivalent 
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nodal forces due to the total stresses are calculated by 

subroutine B-*stress. All values of stress and strain are 

transferred to disc files for later use in output. This 

module is entered after every increment of time (in case 

of dynamic analysis) after calculation of node displacements 

in LDATA. Figure (5.1) shows the subroutines associated 

with this module.

OUTPUT MODULE

This phase represents the output of the results. Although 

there are no separate subroutines employed to output the 

results by using the subroutine GRAPH,results may be ploted 

automatically. Where a general purpose graphics package 

is available, such programs for output representation 

especially for dynamic problems are important to be devised.

5.4 NUMERICAL EXAMPLES

In the following, results of number of dynamic problems 

are represented and compared with the published results. 

Also problems of elastic waves propagation, for which its 

exact solutions are available, are considered. Numerical 

solution for these problems are calculated by means of the 

dynamic finite element program. The numerical results are 

compared either with exact or numerical published solution 

followed by remarks and discussion. According to the 

results obtained, a brief evaluation of finite element 

method accuracy for wave propagation problems is obtained
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5.4.1 Cantilever Beam with Uniform Load

The linear response of a cantilever beam subjected to uniform 

pressure has been computed. The cantilever dimensions and 

material properties are given in Figure (5.3) . The

finite element model of the cantilever is shown in Figure 

(5.3b) . Five (8-node) plane stress elements were used

along the length with 2x2 Gauss integration points. A lumped 

and consistent mass idealization was used for the dynamic 

analysis. The computed dynamic response of the cantilever 

subjected to a step load is shown in Figure (5.4,6) . The 

computations were carried out using two different time 

steps, namely At-. = 45 psecs T /120) and Ato = 135 psecs

Tq/40), where Tq is the fundamental period of the 

cantilever. The results obtained for the linear analysis 

were compared with this in references [46 , 64] . It can

be seen from Figure (5.4) that good agreement has been 

achieved.

5.4.2 Damping Effect

To check the accuracy of the program, the eigen.problem of 

the cantilever beam example has been solved. The natural fre-

quency was found to be 1089.3638 radians per second which 

is very close to that published in reference [64]

Adopting Rayleigh damping, the constant a and 6 are 

caculated.
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ct = = 1089.3638 r)

3 = w-^.ri = p/1089.3638

assuming n = .01 a = 10.893 3 = 0.0000091.

The following figures (5.7a,b,c) represent the damped 

response of the system,

5.4.3 Dynamic Snap-Through of an Arch

The example is a dynamic analysis of a circular arch 

subjected to a uniform time varying pressure and was used 

by Wilson |65| to justify his solution procedure of solution 

to compare the result with Humphreys'.

The finite element and load idealizations are shown in

Figure (5.8) and (5.9) respectively. The following data

have been used in the example:

8 30° p = = 0.00625 lb m/in3

h 2.0 in E = 3326.2 lb/in2

R 72.95' in At = 0.025, .0125 and 0.006255.

Figures (5.10,11) represent displacement, and the 

variation with.time. Comparison of the dynamic response 

at node number (16) and static solution was given in 

Figure (5.11)
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The comparison between the results obtained by Wilson |65| 

and those obtained using the program presented in this 

project show good agreement.

5.4.4 One-dimensional Wave Propagation Problems

The nature of the axial wave-propagation mechanism will 

be demonstrated by studying the stress wave propagation 

in two examples. In the first, a uniform prismatic bar is 

subjected to a force at the left hand side which travels 

undisturbed and undiminished down the bar. The second 

problem concerns the study of a stress wave generated 

by the impact of a pile-driving hammer at the top of a 

pile. For both, exact solutions are available.

(a) Bar Problem

The first problem considered was the one-dimensional (plane

strain) stress wave problem, in which a step pulse is

applied at the free end of the rod at a particular time

Figure (5.12) . The dynamic response is shown in Figures

( 5.13—5.15).

Comparing the results of this problem with those obtained 

by Costantino [26] , Shipley et al[32] , and Yomada and 

Nagai[66] agree well with the predicted values.
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(b) Pile-Driving Problem

For the purpose of this example, it will be assumed that 

the hammer generates a froce pulse P(t) equals

(266892O.O N) sin (it t/0.005) and the stress distribution 

will be evaluated at the end of the pulse (t^ = 0.0055 sec) 

in both the steel and the concrete piles whose properties 

are shown in Figure (5.16).

Considering the steel pile first, in which the velocity 

of wave propagation C = \/E/p where (E) is Young's 

modulus and (p) is the density

Cg = \/e7p = 513080 cm/sec.

The stress at the origin generated by the hammer blow is

The solution of the one-dimensional wave propagation

problem is written as

cr(x,t) = f^(x - ct) + f2(x + c_t) ..............

Evaluating at the origin and considering only the forward

propagating wave

%(t) = fl(~ ct) ................................
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Hence f^ can be evaluated by equating these expressions

giving

z,x _ z- 2668y2O.O. . ,-it >. ,
%(t) ( 193.548 ) Sin 2550.32 ct

Thus the general expression for the forward-propagating

wave is

og(x,t) =
z- 2668920.0. . tt ,
( 193.548 S1I1256d.32 s t - x )

Evaluating at t-^ = 0.005 sec leads to

x„ , n /" 2668920.0.as(x, 0.005) = (—1Qa -- ) sin
193.548

7T ( 1 )
2560.32

which is plotted in Figure (5.15 )

Following the same procedure for the concrete pile, the

results were

Cc 292608.0 cm/sec

%<x> 005)
-266892O.O
2580.6

) sin -----*------ )
1463.04 ‘

Using the same data, the problems has been solved by the

program, the results are compared and shown in Figure

( ( 1 -

(5.16)
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5.4.5 Two-Dimensional Wave Propagation

Numerical solutions are presented for certain examples of 

plane strain and axisymmetric problems to demonstrate the 

validity of the proposed formulation in obtaining the 

elastic dynamic response of multi-layered half-spaces. 

Rayleigh damping has been considered to be present. The 

problem of an axisymettric uniform half-plane loaded by 

a radial surface pressure pulse fixed in space has been 

considered. The results have been compared with those 

obtained from a finite difference analysis [26] .

The finite element mesh used Figure (5.17) consists of 

36 isoparametric elements. A comparison of the dynamic 

response of- this problem is shown in Figure (5.19)

which show reasonable agreement with those published by 

Constantino [26] .

5.4.6 Response of Half-space Excited by Trapezoidal

Pulse

Another problem of interest is shown in Figure (5.20) 

and consists of a perfectly elastic half-space with the 

mass dencisy p and the elastic constants G and p.

2 4
The constants were, p = • 0 0 0.1 8 7 Ib.s /, n , G - 34OOpsi and P =0.25.

The half-space is excited by trapezoidal pulse, this pulse 

has the property of being constant, equal to 250.000 lb, 

for a period of 0.9 sec, which is considerably larger than 

the natural period of the system. A time 'interval of 

0.5 ms was used. The displacement as a function of time 
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is also shown in Figure (5.20), and may be seen to converge 

on the static solution with increase in time. The 

computed results show good agreement with that published 

by Butterfield [67] as shown in Figures (5.21, 22, 23).

5.4.7 Dynamic Analysis of a Rubber Sheet with a Hole

The purpose of this example was to test the capability 

of predicting the dynamic response of rubber which has 

properties similar to the polyurethane rubber which has 

been used in the experimental investigations. Data for 

this problem are the same as that published by Bate, Ram 

and Wilson [46].

A dynamic plane stress analysis of the rubber sheet shown 

in Figure (5.28) was carried out. The specific material 

constants used for the material were G^ =250 PSI,

Gg =86 PSI. These constants and the finite element mesh 

used in the analysis are presented in Figure (5.27).

The dynamic analysis was performed for the step load shown 

in Figure (5.27 ) using At/T^ = 120. Figure (5.28) compares 

the displacement response predicted with those published 

in reference [46].
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Fig. (5.1) Flow chart of DFEM programme
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p s iE = 12,000 
v =0-2
P=10"6lb- 

b = 1 in 
d = 1 i n
L = 10 in

2/ • 4 sec / in

(a ) BEAM PR OPERTIES

i

I
P/4

(b) fini te  element  mo del

jFl in

(c) LOAD PULSE

Fig. (5.3) CANTILEVER BEAM
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Fig. (5.4) Dynamic response of cantilever beam (displacement).
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Xia3

Fig. (5.5) Dynamic response of cantilever beam (velocity).
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Table (5.1)

Eigenvalue and eigenvector of cantilever beam

Value of eigenvalue O.1186136E 07

Values of eigenvector

1 0.10716294E-O4 0.15561619E-03

2 -0.8O442299E-11 0.15561541E-O3

3 -0.10716294E-O4 0.15561616E-O3

4 0.1O678981E-O4 0.13417912E-O3

5 -0.10678993E-O4 0.13417913E-O3

6 O.211O2926E-O4 O.22578996E-O3

7 -0.15O766O7E-1O O.22577O75E-O3

8 -O.211O2964E-O4 0.22578992E-O3

9 0.1O2615O1E-O4 O.91966899E-O4

10 -0.1O26152OE-O4 O.919669O4E-O4

11 0.19494746E-O4 0.14366948E-O3

12 -0.18457882E-1O 0.1436O576E-O3

13 -0.19494781E-O4 0.14366947E-O3

14 0.89614389E-O5 0.52963748E-O4

15 -0.89614564E-O5 0.5296375OE-O4

16 0.15731620E-04 0.71939229E-O4

17 -0.14944855E-1O 0.71812543E-O4

18 -0.15731651E-O4 0.71939221E-O4
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Table (5.1) cont.

19 0.6435738OE-O5 O.2148O832E-O4

20 -0.64357498E-O5 O.2148O832E-O4

21 O.93O86819E-O5 0.204032 32E-O4

22 -0.8O5O7187E-11 0.20210630E-04

23 -0.93O8697OE-O5 0.20403223E-O4

24 O.2511O585E-O5 O.28442929E-O5

25 -O.2511O625E-O5 O.28442948E-O5

26 0. 0.14106 748E-06

27 0. 0.

28 0. 0.141065O2E-O6
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(a) Displacement

(b) Velocity

(c) Acceleration

Fig. (5.7) Danped response of cantilever beam
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Fig. (5.8)

Time (sec)
Fig. (5.9)
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One-Dimensional Finite Element Model

Plane Wave Response

Plane Wave Response
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element method

One dimensional theory

Fig. (5.12)
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Fig. (5.19) Dynamic response of half-space
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Fig. (5.20) Response under trapezoidal loading.
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Fig. (5.27) Finite element mesh of rubber sheet with hole
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CHAPTER 6

EXPERIMENTAL INVESTIGATION

6.1 INTRODUCTION

Recent developments in electronics have enabled the experi-

mentation associated with stress wave propagation to achieve 

high levels of performance. In particular, the generation 

and detection of high frequency elastic waves due to impact 

can now be achieved with considerable accuracy. In addition, 

when the material under investigation is transparent, the 

dynamic photoelasticity technique provides a convenient 

method to study stress wave propagation^ 68 , 69 , 70 j .

To verify the methods of the numerical analysis part of 

this project, an experimental investigation has been 

conducted. An impact force was applied to a multi-layered 

model whose response was recorded and analysed [71 , 72 ].

Polyurethane rubber with a low modulus of elasticity was 

used as the model material. This material commonly known 

as "polyurethane rubber", can be considered to be elastic 

over a large strain range at room temperature[72 ] .

Since this material has a low modulus of elasticity, the 

velocity of propagation of the stress wave is of a 

sufficient magnitude that enables convenient recording 

by a high speed camera.
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A brief description of photodynamics will be presented 

in this chapter since this was the basis of the experimenta 

tion scheme. This is followed by a description of the 

experimental method used in the current study and the test 

procedure.< The results of the experimental work have been 

analysed and compared with those derived from the numerical 

solutions.

The objectives of the experimental research were to assess 

the validity and versatility of the proposed numerical 

method by means of comparison with the results of model 

tests and to be able to observe the real behaviour and 

response of multi-layered models subjected to impact . 

loading. Thus an understanding of the impact phenomena 

and stress wave propagation action could be obtained, which 

would assist the development of the numerical model.

6.2 PHOTOELASTICITY AND APPLICATIONS TO ELASTODYNAMICS

Photoelasticity has been found to be an excellent technique 

for solution of appropriate stress analysis problems.

Not only can the method provide an overall assessment of 

stress conditions, it can also provide a detailed analysis 

at a point. Compared to mechanical, electrical and 

optical strain measurement methods, photomechanics has 

the advantage of giving an overall assessment of all stress 

distribution, rather than point-by-point information. This 

property allows a relatively easy determination of complete 
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stress fields (direction and magnitude of stress at 

every point).

In principle, photoelasticity is applicable to most states 

of stress, but it can be applied most conveniently in plane 

elasticity. Under these conditions the isochromatic 

fringes are loci of points of the same maximum shear stress 

in the plane of plate. By counting the fringes and 

multiplying their order by the proper calibration constant, 

the maximum shear stress distribution through the plate can 

be obtained.

Photoelasticity had been for many years a method limited 

to determination of static two-dimensional stress distribu-

tion. Recently, methods have been found to use the property of 

the birefringece to solve two-dimensional dynamic problems 

which may be both cyclic or transient [69 r 70 ,72 , 73 J .

A brief review of the application of dynamic photoelasticity 

to each of these areas is given by Dally [74].

6.3 DYNAMIC RECORDING SYSTEMS

Three different recording systems have been developed which 

give adequate results in dynamic photoelastic studies, the 

high-speed framing camera, the multiple-spark-gap assembly 

and the Q-switched laser system. The high-speed framing 

camera operates with constant-intensity source with an 

exposure time t0 which varies with framing rate (tg is
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approximately 7- of the interframe interval). The spark 
o

gap light source provides an exponentially decaying 

intensity independent of framing rate with t0 established 

at the peak intensity points at typically 0.5 p seconds. 

Q-switched lasers provide a triangular pulse of light also 

independent of framing rate; however, the value of t 

measured at the i points is typically 0.10 p sec. The 

ability of each of these systems to record accurately a 

dynamic fringe pattern depends upon the stress wave 

velocity and the stress distribution.

Since the magnitude of the modulus of elasticity of the 

material of the model was very low, the high-speed framing 

camera was used to record the dynamic fringe pattern. The 

type of the camera and its technical properties will be 

represented in the next section.

6.3.1 Rotating Prism High-Speed Camera

The HYCAM is a new concept of high-speed camera design. 

A single shaft carries the film transport sprocket and 

the rotating prism and segmented shutter produce good 

picture quality. The straight forward simplicity of the 

HYCAM design provides advanced technical performance at 

a reasonable cost. The important technical features 

concerning this camera are as follows:

Film sizes: 16 mm any pitch
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Frame rates: 10-10,000 pictures per second full frame

20-20,000 pictures per second half frame

40-40,000 pictures per second ribbon frame

Stop/start operation to half speed

Film capacity: 100,400 and 2000 ft bodies

Lens mount: ’C' type standard lenses

Accessories: Timing light generator

Eastman 4-X negative film which is an extremely high speed 

negative material of medium graininess was used. A Gordon 

timing light generator was used to obtain time 

characteristics of each frame.

6.3.2 Timing Light Generator

A Gordon timing light generator was used to provide high 

resolution film marks with precise timing accuracy. This 

unit is portable and designed to operate using a mains 

supply or internal batteries. The technical specifications 

are as follows:

Accuracy: Timing channel ± 0.01% (O-35°C)

Event operates within 1 milliseconds frame 

initiation

Time marks : Switched choice of:

a) One pulse every 10 ms (100 Hz)

b) One pulse every 1 ms (1000 Hz)
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c) One pulse every 1 ms with one pulse every

0.1 ms between the ninth and tenth.

Event mark: Ten pulses of 0.1 ms separation to make an 

effective 1 ms mark

Film sensitivity suitable for use with 400-400 A.S.A

Power supply 220-250 V 50-60 Hz at 5 VA nom.

6.3.3 Fidelity of Dynamic Recording

The theory for dynamic exposure of a fringe pattern recorded 

in a polariscope was established by Dally, Henzi and Lewis 

[75] for a plane stress wave travelling with the velocity C 

in the x direction. The difference in the principal 

stresses in this plane stress wave was denoted as r(x,t) 

and the instantaneous intensity of light emerging from 

the polariscope was identified as the transmission 

coefficient T(x,t) given by

T
T(x - Ct) = ~- {1 + cos [-^p- t (x - Ct)]} ........ (6.1)

The record of the dynamic fringe pattern which is 

characterized by the transmission coefficient is strongly 

dependent on the light source and camera combination which 

also' controls the recording intensity, I(t). The exposure 
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of the film E(x) is represented by the integral relation

[7 0] given by

co
E(x) = I(t) T(x - ct)dt

. 0

6.4 EXPERIMENTAL SCHEME

The details of the experimental procedure are discussed 

after the following section.

6.4.1 The Impact Force

Basically, the apparatus consists of a means of releasing 

a steel cylinder from a predetermined height above the 

model. The release was accomplished by an electromagnetic 

device . This drop mechanism was carefully examined and 

tested to ensure that no significant rotation, initial 

velocity and acceleration were impacted to the impacting 

mass.

The impacted structure (model) was supported on a surface 

plate which could be levelled to significant accuracy to 

that of the cylinder (faliing mass) would bounce perpendi-

cular to the impact surface, Figure (6.1) . The impact

force was measured in every test using a quartz force 

transducer, Type (9203 Kistler), which has a very high 

resolution, high resonant frequency and small dimensions. 

Table (6.1) gives the technical properties of the force 

125



transducer. The output of the force transducer was 

calibrated and recorded on a tape recorder and oscillograph 

by using a charge amplifier.

TABLE (6.1) - TECHNICAL DATA

Max, measuring range KP + 50

Resolution P 0.1

Max force KP ± 50

Sensitivity PC/KP 480

Deformation at max load pm 12

Resonant frequency KHz 27

Rise-time US 15

Linearity % + 1

Weight gm 13

6.4.2 Material Properties

Five materials with different modulii of elasticity were 

used in the manufacture of the models. Four of these have 

low modulii compared with the fifth. All of these materials 

were photoelastic and have high stress sensitivity. They 

were free from any measurable time-edge effects and did not 

exhibit viscous flow at room temperature [71].

The materials R-300, R-450, R-600 and R-Lcw.E have low 

modulii of elasticity and, therefore, the velocity of 

propagation of stress waves can be conveniently observed. 

The procedures followed for the determination of the 

126



modulii of elasticity, Poisson’s ratio and unit fringe value 

are presented in the following sections with the results 

for the five materials.

(a) Modulus of Elasticity and Poisson's Ratio

For the materials R-300, R-450, R-600 and R- Lcw.E, 

Young's modulus has been obtained from the standard 

tension test.

For the fifth material R-high'.E the modulus of 

elasticity of the model specimen was measured by 

the flexure of a cantilever calibration beam and 

was calculated from the following expression

E = K | ................................ (6.2)

where P is the concentrated load applied at the 

tip of the cantilever beam

6 is the measured deflection of the calibration 

beam

K is a proportionality factor depending on the 

dimension of the beam and the position of 

measurement.

The observed load-deflection curves are shown in

Figure(6.3,4) . The optical properties and the charac-

teristic acoustic velocities of the materials used 

for the models depend on an accurate knowledge of 



the three quantities E, p and y. These values 

were obtained accurately by the expedient methods 

with their variation with strain rate.

It was generally easier and more reliable to measure 

the wave velocities directly to determine the dynamic 

modulus of elasticity. At least two independent 

means were used to measure these velocities, (in 

bars or plates or both). The wave velocities were 

obtained by using an oscilloscope and by using a 

digital counter (PUNDET). The time required for a 

wave to pass between two strain gauges, or for a 

reflected wave to return to a single gauge, was 

measured. Although the variation between the dyanmic 

and static modulii of elasticity is very small, the 

difference was used to obtain the dynamic unit fringe 

value of these materials Figure (6.5)

The results of the tests conducted on the five 

different materials are shown in Table (6.2) .

Poisson’s ratio has also been deduced from these 

tests. The observed stress-strain curves for the 

five materials are shown in Figures (6.3,4).
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(b) Unit Fringe Value

Two inch diameter disks were used in the standard 

diametral compression tost to determine the unit 

fringe value. In the traditional point-matching 

approach,the fringe order at the centre of the 

specimen is compared with the theoretical value of 

the maximum shear stress at the same point. The 

value of the fringe constant required to match the 

two was then computed. The theoretical and the 

experimental distribution of the maximum shear stress 

is not particularly good at the centre of the 

specimen [76J . However, there is a good agreement 

between theoretical and experimental results in the 

region from 0.3 R to 0.5 R. Where R is. the radius of the 

circlar disc.

The tests have been performed by applying the load 

in increments and the standard specimen was marked 

with a surface good marked grid. Photographs were 

taken of the results which have been analysed using 

the approach suggested by Robert[77j.

The analysis of the results can be formulated 

mathematically as follows

N(x,y) = G(x,y) + E(x,y) ............... (6.3)
a

where N = photoelastic fringe order

x,v = cartesian coordinates

t = model thickness
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G(x,y) = the theoretical solution for the difference 

of the principal stresses in cartesian 

coordinates

E(x,y) = an error term included to account for any 

residual birefringence field.

Assume E(x,y) = Ax + By (6.4)+ C

It has been stated by Frocht [68 ] for a disc in

diametral compression

(6.5)

that is for any point having coordinates (x^>

Equation (6.3) can be written as

Ni(xi’ yP = F" Gi/Xi> yi> + Ax± + Byi + C . . 
a

yp

(6.6)

For M points which are arbitrarily selected over the field

(M ,4), an over-determined system of linear equations

of the following forms result

N1 = (?“)G1 + Axl + Byl + C
a

Ng = (^—)G^ + AXg + Byg + C 

a

+ Axm + Bym + C (6.7)
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In matrix notation

W = [a] Ez] (6.8)

Multiplication of the last equation from the left by the 

r i T
transpose of the coefficient matrix, i.e, [a] gives

[a]T [N] = . [a]T [a] [Z] ...
(6.9)

[a]T [N] = [C] [Z] (6.10)

If matrix [c] has an inverse the solution of Equation

(6.10) is given by

[Z] = [C]-1 [a]T [N] (6.11)

In the classical least-squares approach an expression

for the comulative error E has the form

E
M 2
z [(^-)G(xi, y±) + Ax. + Bxi + C ... iq] (6.12)

The least-square criteria requires that

3E 3E 3E 3E „ ,a nOx
- 3A - 3^ = 3C = 0 .................... (6-13)

kfa7

Many results have been obtained using the stereocomparator 

to read every photo at each increment of load. A computer 

program has been written to analyse these data using the
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algorighm which is equivalent to the determination 

of the solution of equations (6.7) in the least 

squares method. A flow chart of the computer 

program is given in Figure (6J.7) and the. calibration 

disc results are given in Table (6.2) for the five 

materials.

(b) Damping Properties

The half-power method was used to investigate 

the values of damping ratio of identical specimens 

as well as the model. This and the other methods were 

discussed in Chapter 3. The major advantage of this 

free vibration method is that equipment and instrumen-

tation requirements are minimal.

The results of these tests are given in Figure (6.18) 

and Table (6.2) . From these results it was expected

that the damping ratio of the model is higher than 

those of the materials. According to the results of 

experiment the difference is insignificant.
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6.5 THE INVESTIGATION OF THE ISOCLINICS

An isoclinic is the locus of points along which the 

principal stresses have parallel directions, as shown in 

figure ( 6-6 ). The parameter is measured from the positive 

end of the x axis in a counterclockwise direction to the 

nearer principal stress. Further, since at a given point 

there exists in general only one definite set of principal 

stresses, it follows that only one isoclinic can pass 

through a given point, unless the particular point happens 

to be an isotropic point.

By removing the two wave plates from the field of

view, the circular polariscope was converted to a plane 

polariscope. A suitable dead load was used so that 

isoclinics would not be obscured by isochromatic fringes. 

A darck field was maintained and the polarizer and 

analyzer elements coupled. With the rotation of this 

unit, relative to a reference, the isoclinics were obtained 

at various values of isoclinic parameter.

Photographs were taken to the model at the various values 

of isoclinic parameters as shown in Figure (6.6). Using 

the stereocomparator to read every photo, the results have 

been obtained and recorded. Isoclinic parameters at certain 

points on the model have been obtained using the procedure 

discussed in Section (6.8).
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6.6 MODEL MANUFACTURING AND ITS PROPERTIES

The material which was used in manufacturing the model 

is polyurethane rubber, commonly known as urethane [71 ] .

The material, which is cast from a mix forming a low 

modulus photoelastic medium having good clarity, high 

fringe/stress sensitivity and is free from time-edge and 

machining stresses. The fringe/strain sensitivity is, 

however, poor. More information about the material is 

given in reference [73& 74 ] . The speed of the camera

10,000 frames/sec required materials of modulii of

2 
elasticity ranging between 200 - 600 N/cm .

Five models were manufactured of dimensions 15.24 x 15.24 cm.

Precautions have been taken to minimize any residual 

stresses by applying the correct method of machining and 

by using the suitable adhesive material.

Each model was mounted in a frame and it was noted that 

plane lateral deflection normal to the impact force did 

not occur. Thus, plane sections remained plane.

6.7 EXPERIMENTAL PROCEDURE

In accordance with the objectives of the research, the 

response of the model was determined by applying an impact 

load. The shapes of the impact pulses which were applied 

to the models are shown in figure ( ^.7)
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The properties of the materials which have been used were 

determined. The calibration tests of the equipments were 

conducted. Certain precautions were adopted to ensure the 

impact event and the photographic recording coincided.

The test procedure adopted for each of the five models 

was similar. Preliminary tests were carried out on each 

model to check the operation of the loading system and 

instrumentation. Five high speed films were taken and 

processed by specialists. The high speed was ranged 

between 8000 to 10000 frames per second, which is the 

maximum speed of the available camera. This film speed 

is sufficient to record the velocity of the propagating 

wave. Overall views of the models, layout of the instrumen-

tation and loading system can be seen in figure(6.i).

The models were instrumented with surface strain gauges 

in a specified points after the photoelasticity investiga-

tion to check the shape of the response by using the same 

impact force, the response of the points in which the 

gauges were bonded was obtained at 12 points and recorded 

on a tape recorder. A check has been done for the shape 

of the response, as well as the damping coefficient at 

those points. The arrangements of the strain gauges of 

the model tests is shown in figure (6.15). The impact 

load and the response of the strain gauges are shown in 

figures (6.15,16).
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6.8 Processing of Photoelastic Results

High speed films were processed and then examined using 

a stereocomparator. This technique was chosen to provide 

accurate results and a convenient method to record results 

for further analysis. Control points on each film were 

recorded for transformation of axes and for calculating 

the scale factor. The coordinates of reasonable number 

points at centre line of each fringe were recorded for 

each frame. A computer program was written to analyse 

the recorded results. This program is to be discussed 

later.

6.9 Interpretation of Photoelastic Results

The interpretation of photoelastic data can be difficult 

and time consuming. This section is concerned with the 

assessment of isoclinics and isochromatics. The results 

of these experimenta are compared with those of the 

numerical analysis. The following stages have been 

considered.

(a) The definition of the area to be analyzed and the 

sub-division of this area into boundary zones.

(b) The selection and spacing of lines along which

data was to be collected.

(c) The collection of isoclinics data.
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(d) The collection of isochromatic data.

(e) The choice of points for which solution was required.

(f) The computer solution.

The information obtained using the photoelastic method 

consists of the principal stress difference(d^ - dg) 

and the direction of the principal stresses (isoclinic).. 

Usually, separation of stresses refers to the individual 

determination of d^ and dg an<^ their respective directions 

or the determination of the stress components o , o and t
x y xy

referred to a given system of coordinates. There are 

several methods for the separation of stresses[78&79]

The method used in this project is based on the integration 

of the differential equations of equilibrium which, for

zero body forces and two-dimensional problems are:

(6.14)

3a
__ y
9y ................................ (6.15)

0

= o

Integration gives

dx

rx

dx (6.16)

dy (6.17)
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OR in finite difference form

x
E Ax

Ay
...(6.18)

From

axis

Txy

ax

Also,

al =

°2

The

the

ey

Mohr's

to the

al -
2

°y +

the

y 
E Ay

Ax
...(6.19)

circle, if 0^ is the angle measured from the

direction in the counterclockwise direction

°2
— sin

<°1 - a2)

values

a + a
x_____y

2

ax
2
+ a

Z

inclination

+

of

20 , (6.20)

cos 20^ • • • (6.21)

and o2 are given by

- °2)
2 . . • (6.22)

<°1 - °2)
2 .. . (6.23)

of maximum shear stress directions to

positive axis 0,0 as follows 
x y

(6.24)

9i+ (6.25)
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where 0( is the angle which related to the isoclinic 

parameter; and (a^ - ) is the difference in principal

stresses and is related to the fringe order by the 

calibration constant.

6.10 THEORY OF COMPUTER DATA ANALYSIS OF EXPERIMENTS AND

THE ANALYSIS OF EXPERIMENTAL RESULTS

A computer program was written to calculate the stresses 

at a specified number of points on the model. A flow chart 

of the program is given in figure (6;19) . The theory of 

this program has been discussed in section (6.9).

Further explanation will be given to show how the analysis 

has been conducted.

Figure (6.20a) shows a photo of frame for which information 

has been obtained concerning the isoclinic and isochromatic 

values. The computer program initially forms a polynomial 

f( isoch. , y) along the centre line of each frame of the 

film. The coefficients of the polynomial are obtained 

at points(0, y,) , (0, y9) ... (0, y ) which represents

the isochromatic values at those points. The same 

procedure was followed for isoclinic values.

Noting that at two points E and F which are symmetrically 

located with respect to the axis of symmetry, figure (6.20a) 

the shear stresses are equal numerically but are of 

opposite signs. Hence, the difference At ^x between the 

vertical shear stresses at F and E is

1 yx = ^yxh - <Tyx>e = 2<Tyx)f .............. <6-26)
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In order to determine At therefore, it is necessary to 

determine only the vertical shear stresses at one section 

parallel to the axis of symmetry. The steps essential to 

the solution of this problems are

(1)
ai °2

2 across Section AB

(2)
T
yx

at Section AB

(3) At
yx

2t
yx

iE
o

(4) (o )y o At (r^) yx Ax
(U h v y'l

oX(5) Oj - °2) + o
y

The normal stresses across horizontal lines can be 

deduced from the results for a and a at the centre line
x y

using the following formulae.

iE
o

( °y) = - 4Txy
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6.11 THEORETICAL SOLUTIONS

The models were analysed by the finite element method 

of analysis using the DFEM program. The general theory 

has been derived and discussed in previous chapters.

For each impact test, the response of the model was 

recorded by high speed film and the impact force was 

recorded on an oscillograph and also on a tape recorder. 

The recorded pulses were used as the impact forces for 

the computed analysis of the models. The output of the 

computer program provides the dynamic response of the 

model at each node.

The computed results for the shear stresses at selected 

nodes have been compared with those obtained from the 

experimental investigation.

6.12 DISCUSSION OF EXPERIMENTAL RESULTS

The preliminary test concerning the recording of the impact 

force and intensity of light showed perfect results. The 

modeLs which have the same configuration are shown in 

Figure ( 6.9 ). Impact forces recorded by the method 

discussed in Section (6.4.1) are given in Figure (6.7 ).

The material of model 1 was R-300. The results indicate 

good correspondence between the measured and calculated 

stresses. The dimensions of the model showed that wave 

reflection from the free edges would not interfere with 
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the waves at the instant they were being photographed.

In practice, the time of the impact of aircraft landing

is greater than the experiment impact time.

In test number 2, the model had a nominal thickness of 

0.61 cm. The materials were R-300, R-450 and R-600 with 

the low-modulus material as the top, Figure (6.9) )• These 

results can be sharpened by photographic techniques related 

to equidensity methods |80, 81|.

The models numbers 3 and 4 were tested to show the effect 

of the interface. Figure ( 6.9 ), shows the two models.

The results of these two tests will be compared and 

discussed in the next section. Test number 5 was 

conducted by the model of R-300, R-600 and R-450 with 

R-300 as the top layer.

6.13 COMPARISON OF THE THEORETICAL AND EXPERIMENTAL

RESULTS

The values obtained from the experimental test on the models 

numbers 3 and 4 will now be compared with those predicted 

numerically by the DFEM program. Samples from the 

experimental results are given in Appendix IV. Shear 

stresses at nodes numbers 7, 17, 27, 37, 47, 57 and 67 

on the centre line of the model and nodes numbers 9, 18, 29, 

38, 49, 58 and 69 at a distance of 2.54 cm from the centre 

line were obtained numerically and are shown in

Figures (6. 24 - 6 . 37).
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In the comparison of results obtained from the test on 

model 3, the shear stresses at the specified points were 

located on the corresponding graphs obtained from the 

numerical solutions.

In test number 4, the differences between the experimental 

and theoretical results was expected. These differences 

ave been discussed in Chapter (3) and are caused by the 

interface between the layers Tables (6.3,4) •

The observed results of model 3 indicate good correspondence 

between the experimental and calculated stresses. The 

finite element solution provides a better correlation with 

the experimental results when the transmitted and reflected 

stresses have been considered in the numerical analysis.
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Fig. (6.5) Dynamic fringe constant, f for low-modulus materials.

148



Fig. (6.6) Isoclinic values (sanple)
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Fig. (6.7)

The irrpact force

for the five models
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Model 5

R - 300

R - 450
R - 300

15.24 x 15.24 x 0.61

R - 600

Model 1 Model 2

R - Low. E R - Low. E

R - High. E R - Low. E

R - High. E R - High E

Model 3 Model 4

Model Length Width Thickness

R - 300 1 15.24 15.24 0.61 cm

2 15.24 15.24 0.61 cm

R - 600 3 15.24 15.24 1.27 cm

4 15.24 15.24 1.27 cm

5 15.24 15.24 0.61 cm
R - 450

:

Fig. (6.9)
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Fig. (6.10) Sample from high speed film No. 1
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2
Fig. (6.11) Sample from high speed film No. 2.
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Fig. (6.12) Sample from high speed film No. 3.
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Fig. (6.14) Sample from high speed film No. 5.
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Fig. (6.16) Dynamic response of strain gauges on model 4.
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Fig. (6.17)
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Properties of photoelastic model materials

Table 6.2

R-300 R-450 R-600 r -Lcw R-High

Ed 340.0 430 530.232 222.222 27390.14

V 0.46 0.46 0.46 0.46 0.35

p 1.0266 1.0519 1.0549 1.1501 1.3102

C 57.549 63.936 70.881 43.956 457.223o

C 64.800 71.991 79.812 49.494 488.791
P

c 33.666 37.415 41.479 25.723 278.257s

0.436 0.436 0.426 0.438 61.8
f 77.5 76.0 76.0 78.0 11000.4

Ed
2 

Modulus of elesticity N/cm

V Poisson's ratio

p
3

Mass density gm/cm

CQ Longitudnal wave veIosify ( y/E/p ) m/sec

C
P

Dilational wave velocity ( j---- ----------- ) m/sec
V (1-y )

c
s

1 EDistortional wave velocity (, ^‘(I+y)’-) ^/sec 
V

f
2

Material fringe value
g sec cm/cm

ns

Damping ratio for lew modulus material 0.192.

Damping ratio for high modulus material 0.01.
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Fig- (6.19) Flew chart for the programme of analysis of experimental 
results.
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Table (6.3)

Shear stresses from experimental results at specificel points 

(N/crr?) . Model No. 3.

No. of Time point(1) point(2) point(3) point (4)
frames (7.5,12.5) (7.5,10.0) (10.0,12.5) (10.0,10.0)

2 0.0033 1.0059 1.3516 — —

3 0.0049 2.8287 — — —

4 0.0065 2.8010 —

10 0.0161 6.6718 3.4603 2.7032 1.3680

15 0.0250 8.7591 4.9792 2.8477 1.3680

20 0.0323 7.0084 4.1850 2.5703 1.3680

25 0.0404 6.0700 4.0000 1.9151 0.9248

28 0.0453 3.8523 — 1.6935 —

36 0.0580 2.0672 2.0000 1.3088 0.6840

40 0.0640 1.6964 2.0000 1.3088 0.6840

45 0.0728 1.5775 — 1.3088 —

48 0.0777 2.3086 — 1.3088 —

55 0.0890 3.6726 1.9849 1.4755 0.6840

58 0.0939 3.5287 3.9999 1.7539 0.6840

66 0.1668 3.8990 — 1.8576 —

’ 70 0.1133 3.7085 — 1.7656 —

77 0.1246 1.9030 — 1.3088 —

80 0.1290 1.4142 — —

82 0.1327 2.0181 — 1.3088 —

84 0.1359 1.2824 — 1.3088 —
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Table (6.4)

Shear stresses at points of interface (N/cm^) . Model No.4.

No. of 

frames

Time Shear stresses at centre line (7.5,12.5)

Above interface Below interface

1 0.0015 1.7021 —

2 0.0030 0.6878 —

3 0.0045 4.0948 —

4 0.0060 4.7373 2.1151

5 0.0076 6.8970 3.2129

7 0.0106 8.6320 4.3217

10 0.0152 9.8350 4.5312

15 0.0228 12.2532 6.1262

20 0.0304 4.1470 2.0702

25 0.0380 3.3505 1.9033

35 0.0533 3.2301 1.5171

45 0.0685 6.8307 2.3213

50 0.0761 7.2923 3.4318

55 0.0825 5.4718 2.9027

57 0.0868 4.2102 2.4038

60 0.0913 3.1055 2.1025

65 0.0989 3.8362 1.8342

70 0.1066 3.1057 1.5373

80 0.1218 2.6724 1.0224

85 0.1294 1.3678 —

90 0.1370 2.0153 —

. 95 0.1446 1.0519 —
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CHAPTER 7

THE INFLUENCE OF IMPACT LOADING UPON
THE DESIGN OF AIRFIELD PAVEMENTS

7.1 INTRODUCTION

The critical areas for consideration in the design of aircraft 

pavements are the primary taxiway and runway ends. The 

introduction of jet aircraft and the possibility of greater 

dynamic response have resulted in the re-evaluation of the 

design principles to examine what is the critical airfield 

area and critical type of load to be considered[82,83,84]

Several methods of design for airport pavements are available. 

Although there is no one method for flexible pavement design 

accepted by all agencies, there are five basic methods which 

have been briefly summarized [1,2,4,85 ].

The value of the applied load and its description are 

important factors which affect the design of pavements for 

jet aircraft. In this chapter the dynamic and impact loads 

caused by aircraft landing gear are discussed and their 

effect on pavement design evaluated. Procedures for 

design of asphalt pavements, which treat the structure as 

a layered elastic half space, which have been developed 

by the Shell Company and by the Asphalt Institute were 

used to evaluate the impact loading factor. By using the 

DFEP program, a comparison has been made between the method 
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developed by the Shell Company and that presented in this 

thesis. Numerical examples have been given which assess 

the impact factor and the structural pavement design. Since 

the overlay of pavements is considered to be an important 

aspect of airfield operation in the future, recommendation 

for dynamic and impact loading is discussed.

This thesis is primarily concerned with the study of impact 

forces on multi-layered half space and their effect on 

the design of runway ends. The objective of the study, 

therefore, is to assess the dynamic factor and to demonstrate 

its use in the structural design of pavement.

7.2 DESIGN OF AIRCRAFT PAVEMENTS

Pavement design has been approached from two broad and 

different points of view. First, the engineer often 

approaches the problem solely from the standpoint of 

pavement performance. In contrast, researchers approach 

the problem largely from theoretical concepts!2,3 ] .

There are five basic methods which deal with the design of 

flexible airfield pavements. These are:

(a) The Corps of Engineers method (CBR)analysis

(b) The Federal Aviation Administration (FAA) method

(c) The Canadian Department of Transportation (CDOT) 

procedure

(d) The Asphalt Institute method

(e) The Shell method
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(a) Corps of Engineers (CBR) Method

The CBR method of design was first used by the California 

Division of Highway as a result of surveys made during 

the years 1928 and 1929[ 2 ] . The investigations showed

that the principal types of pavement failure were, lateral 

displacement of the subgrade material as a result of the 

pavement absorbing water, differential settlement of 

materials underneath the pavement and the excessive 

deflection of the materials under the pavement. The CBR 

test was devised in 1929 to predict the behaviour of 

paving materials. Tests were performed on a large number 

of typical crusher-run materials which were considered 

representative of base-course materials. The average of 

these test results was designated CBR-100 percent. The 

CBR test is a penetration test and is expressed as a 

percentage of the penetration resistance to that of a 

standard value for crushed stone. The test is valid only 

when a major portion of the penetration of the piston is 

caused by shear deformation. Since the CBR is a percent 

of standard load, it is possible in some cases to measure 

CBR values in excess of 100 percent. Generally, the CBR 

at 0.1 inch penetration is used for design purposes. 

However, if a bearing ratio of 0.2 inch penetration is 

greater, then this value is used.

The Corps of Engineers in the US made an extensive survey 

of the different methods of flexible-pavement design[82] 

As a result of these investigations the CBR method was 
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adopted. The thickness of the different elements 

comprising a pavement is determined by the CBR values.

This method has some advantages and disadvantages, one of 

the advantages is the simplicity with which the design 

test can be performed. A disadvantage of the procedure 

is that the test is empirical and, therefore, the design 

is based upon correlations. However, much research has 

been carried out which permits extrapolation of the data 

from one wheel load and gear configuration to another.

(b) The Federal Aviation Administration (FAA) Method

Civilian airports within the United States are designed 

in accordance with FAA advisory circular standardsfs, 3]. 

Although subgrade CBR tests may be used to evaluate the 

deisgn of subgrade conditions, the FAA design procedure 

uses its own soil classification groups, subsurface 

drainage conditions, and the presence or absence of frost 

problems. Major airfield pavements may be designed 

solely upon soil classification and a quantitative 

assessment of the environmental conditions existing at 

the site.

The general design procedure involves a knowledge of the 

characterization of the pavement materials (subgrade as 

well as pavement components), the effect of the critical 

aircraft load, design repetitions and the condition for 

frost.
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(c) Canadian Department of Transportation (CDOT)

Method

This method, for determining the required thickness of 

flexible airfield pavements, was developed from an 

investigation into the load-carrying capacity of the 

runways at Canadian airports by means of plate bearing 

tests. Tests were made on the surface, base course, and 

subgrade at a large number of test locations. In addition, 

cone-bearing, penetrometer, CBR, and triaxial compression 

tests were performed on the subgrade at each test location 

and were correlated with the corresponding subgrade plate-

bearing tests. From this original investigation, one 

empirical thickness and design equation are developed[2 ].

The thickness design procedure is based upon the selection 

of a critical design aircraft for each new pavement 

facility. The original procedure assumes that the 

thickness obtained is adequate for ’’capacity” operations 

at the airfield. This is generally acknowledged to be 

equivalent to about 5000 coverages of the design aircraft. 

Since cold weather is predominant in Canada, the effects 

of frost upon design thickness is included in the 

analysis. This include a reduction in strength and 

allowance for heave due to frost penetration.

(d) The Asphalt Institute Method

The Asphalt Institute published its airfield pavement 

design manual (MS-11) in 1973 with a computer program
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solution manual[ 3,S6] . The method is applicable to

the design of pavements having asphalt mixtures employed 

for all courses above the subgrade or improved subgrade 

intended for air carrier (generally greater than 60 kip 

gross weight) aircraft. In contrast to most other present 

airfield pavement design methods, the design utilizes the 

concepts of a mixed traffic analysis rather than the 

selection of a critical or design aircraft. This procedure 

is conceptually identical to the traffic analysis 

frequently used in highway design. The standard aircraft 

used is a 358 kip gross weight DC-8-63F and the relative 

destructive effects of 22 major aircraft types are given 

in the manual. The design is based on the theory that a 

full-depth asphalt pavement is a multi-layered elastic 

system and that the application of a load to the pavement 

produces two critical elastic strains. These strains are 

the horizontal tensile strain t at the bottom of the 

asphalt-concrete-layer and vertical compressive strain £c 

at the top of the subgrade layer. Each strain must be 

examined separately in the design analysis. Design 

criteria, in terms of maximum allowable values for both 

critical strains, evaluated at a critical asphalt concrete 

modulus E^, have been established and are used as the 

basis for selection of the design thickness. The failure 

criteria for fatigue cracking of the asphaltic concrete 

is based primarily upon the work of Kinghamja^j. The 

compressive subgrade strain criteria was developed from 

a multilayered analysis of pavement structures designed
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in accordance with the Corps of Engineers Design equation 

for CBR analysis

Since the modulus of asphalt concrete is temperature 

dependent, the period of the year for greatest potential 

damage to the pavement varies with the temperature condi-

tion peculiar to each geographical location. The 

value which is an indicator of permanent deformation, is 

greater when the pavement temperature is high and the 

asphalt modulus is low.

Conversely, during cool conditions when the asphalt modulus 

is high, the horizontal tensile strain £ at the bottom of 

the asphalt bound layre are critical for repetitive 

cracking. Design thickness required to overcome a particu-

lar type of distress, therefore, vary with different 

environmental conditions.

The Asphalt Institute method provides a detailed analysis 

which relates the mean annual air temperature and pavement 

thickness (T^). As the annual average air temperature 

increases, the T^ increases to satisfy deformation 

requirements. On the other hand, thicker pavements are 

required in cooler environments to satisfy the fatigue 

cracking criteria.

This method contains a number of innovative concepts for 

design. It permits an airfield pavement to be designed 

for mixed traffic conditions which is representative for 

most large civil airports. In addition, environmental 
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influences are considered for asphalt-bound layers since 

the influence of temperature on asphalt concrete stiffness 

is significant.

The theoretical design method advocated by the Asphalt 

Institute is a departure from the empirically oriented 

designs of the Corps, FAA and CDOT.

(e) Shell Method

This method of design is applicable for pavement structures 

consisting of asphalt concrete, untreated granular base 

and prepared subgrade or asphalt concrete resting directly 

on subgrade. The structure is represented by a three- 

layer elastic system which assures full friction between 

the layer interfaces [ 3 ] .

The critical conditions for design are:

1. Horizontal Tensile Strain on the Underside of the

Asphalt-Bound Layer (£ , Layer 1, Figure 7. 8 ) 
h

Cracking may occur in the asphalt layer if £h is large. 

The value of tensile strain is dependent on the fatigue 

characteristics of the asphalt mixture with an allowable

-4 6
strain value of 2.3 x 10 associated with 10 cycles of 

strain .

191



2. Vertical Compressive Strain in the Surface of the

Subgrade (ev > Layer n, Figure 7.8 )

If this value exceeds a specific limit, depending on 

traffic, permanent deformation may occur at the top of 

the subgrade leading to further permanent deformation 

(rutting) at the surface of the pavement. The limiting 

value of vertical compressive strain, which is also 

dependent on the number of load applications, has been

-4 6
established as 10.3 x 10 at 10 repetitions.

The fatigue characteristics of asphalt concrete mixtures 

can be represented by an equation of the form

Nf = K(i-)n

et

where = applications to failure

= tensile strain

k,n = experimentally determined coefficients 

dependent on mixtures characteristics.

Materials of the layers are assumed to exhibit linear 

elastic behaviour. For asphalt concrete the time of 

loading and temperature dependency are recognized.

Tensile strains in the asphalt concrete are determined 

at a stiffness (E^) of 900000 lb/in2 (this corresponds to 

a temperature of 50°F and a time of loading of 0.2 s).

For the determination of subgrade strain, the air tempera-

ture is assumed to be 95°F and an effective stiffness 
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modulus in the range 100,000 to 200,000 lb/in2 (depending 

on thickness of asphalt concrete) is selected. The 

modulus of the untreated granular base is a function of 

the subgrade modulus (Eg) an<^ as dependent on the thickness 

of this layer (h2) ranging from two to three times Eg.

The modulus of the subgrade soil has been related to the 

CBR based on dynamic vibratory tests in situ by the 

relation.

E3 = 1500 CBR(lb*in2)

Poisson's ratio, y, for all layers has been assumed to 

be 0.35.

7.3 DYNAMIC PHENOMENA IN AIRFIELD PAVEMENTS

Consideration of dynamic effects under high-rate loading 

is becoming increasingly important both to the aircraft 

landing gear designers and the civil engineer responsible 

for preparation of soil and airfield surfaces. Airfield 

construction engineers are primarily concerned with 

preventing pavement distresses and frequent repairs.

The dynamic response effects of gear loads on the surface 

due to manor roughness can increase pressure in the 

pavement sufficiently to aggrevate the roughness. There 

is also some evidence that these dynamic effects are 

causing break up of runways under conditions where 

conventional flotation formulas indicate that no problems 

should occur^].
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The mode of aircraft operation is primarily concerned 

with the style and speed at which the aircraft operates 

on the design pavement area. It should be noted that 

there are two major but independent considerations in 

defining the total response due to dynamic load. First, 

the variation in operational speeds may affect the response 

of the various pavement component materials. Secondly, 

the dynamic response effects of gear loads on the surface 

due to minor roughness which increase pressures in 

pavement [88] . The roughness may create extreme stresses

in the aircraft as the result of resonant frequencies 

caused by combinations of speed and gear configuration of 

the aircraft and the wavelength of the surface. One 

obvious means of recording runway roughness is by use of 

the profilometer. This is a device that is mounted on a 

vehicle and measures and records the profile of the 

pavement surface. Periodic use of this instrument would 

present a historical picture of the increasing need for 

maintenance to a runway.

Surface irregularities present a problem peculiar to the 

bicycle type landing gear. Bicycle gear aircraft have 

an inherent rocking tendency, called "porpoising", that 

is increased by the rough surface. This presents an 

operational hazard to the pilot while increasing the 

impact loading on the pavement[ 1 ] •
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Heukelom [40] , discussed the factor which governs the

movement under a rolling load against those under sustained 

vibration. He suggested the dynamic tests of soil and 

pavements due to their close correspondence with the 

dynamic character of moving traffic. Figure(7,9) 

represents mechanical elements governing the movements of 

the pavement construction under dynamic loading conditions. 

Much research has also been undertaken to define the 

dynamic aircraft effects for the design of pavements and 

their resistance to deformation [ 89, so, 91,9a ].

In the case of Helicopters the strength requirements for 

the landing and take off area are determined by considering 

the helicopter's dynamic and static wheel loads and the 

landing gear configuration. Especially, on roofs, dynamic 

or impact loads must be considered to ensure that the 

structure will not fail if a helicopter makes a hard 

landing [ 3 ].

From a broad engineering standpoint, both the response of 

aeroplane to runway and the response of runway to aeroplane 

as well as their interaction are of interest [sb ] . In 

this investigation the response of runways to aeroplanes 

was considered ’in'-the dynamic analysis. Since the types 

of landing gears and wheel configuration represent a major 

factor in dynamic response of runway pavement, more informa-

tion and discussion is given in the next section.
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7.4 LANDING GEAR AND DYNAMIC RESPONSE PREDICTION

An aeroplane can land safely with the airplane in various 

altitudes at the instant of ground contact. Figure (7.13) 

illustrates the three altitudes of the aeroplane that were 
i

specified by the government aviation agencies for the 

design of landing gear [s3,84,8 s ] . In addition to these

symmetrical unbraked landing, special landing such as a 

braked condition, landing on one wheel condition and side 

load may occur. These cases must be taken into consideration 

for the design of landing gear and of runways.

The design of landing gear for present day aircraft reduces 

the impact forces involved in landing or in taxiing over 

rough pavements. A special energy absorption unit in the 

landing gear beyond, absorbs the forces.

A diagram for an aeroplane model in which tyres are 

represented by linear elastic springs is shown in Figures 

( 7.4) and (7.11 ) • The impact force during landing can

be determined. Figure (7.12 ) shows a runway profile and 

explains how the dynamic forces during aircraft ground 

motion and take-off may be obtained.

It will be possible to determine the energy absorption 

required for the impact during landing when the 

characteristics of the shock absorber in the landing gear 

leg are known. The maximum dynamic load can then be 

calculated.
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The maximum kinetic energy of the aircraft to be absorbed 

notmal to the runway during touch down is

E v2
2g (7.1)

where v is the ultimate velocity of descent. Assuming that 

this energy will have to be absorbed completely by the main 

undercarriage, thus ignoring the energy transmitted to the 

atmosphere, the required stroke of each shock absorber is 

derived from

E = NsPsX(nt6t + nsS) .......................................................... (7.2)

where N
s

is the number of main gear shock absorbers

P
s

is the static load per leg

X is a reaction factor, or ratio of maximum load

to static load per leg

is the maximum tyre deflection

S is the stroke of the shock absorber, and

n is an efficiency factor, equal to the energy 

absorbed by the tyre or the absorber divided by 

the product of P and the maximum deflection or 

stroke respectively
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The reaction factor X may be assumed equal to 2.0 to 2.5 

for transport aircraft and 3.0 for light aircraft. The 

maximum tyre deflection can be obtained from the tyre 

handbook, or alternatively from the approximation

= constant _____

where L is the static load per wheel and D, and b, are 

the tyre diameter and maximum width respectively. The 

constant is equal to 5.0. A similar assumption is to take 

<5 equal to three times the static deflection of the tyre.

From the above investigation, it is justifiable to assume 

that the dynamic load during landing will be adapted to the 

energy which the tyre is able to absorb at maximum deflection. 

Table (7.2) represent s the tyre characteristics and the 

variation in the contact area due to the dynamic loading 

factor. These data were used in the analysis of airfield 

pavements to evaluate the effect on the response of 

pavements.
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7.5 THE ANALYSIS OF THE DYNAMIC RESPONSE OF AN

AIRFIELD PAVEMENT

For this analysis a finite element model has been used to 

simulate the actual pavement behaviour [95 96 97 ] 

Duncan, J. M, Monismith, C. L, and Wilson, E. L, 

described an application of the finite element technique 

to the analysis of systems respresentative of pavement 

structures [ 96] . They presented the results of the

response systems with linear material properties. 

Comparisons between displacements and stresses computed 

during the finite element technique and those computed 

using elastic half-space and layered system analysis were 

made to establish criteria for boundary conditions in the 

finite element procedure. For the elastic half-space 

subjected to a uniform circular load the displacements 

and stresses computed by the finite element technique 

compared favourably with those determined from the 

Boussinesq solution, where the nodal points in the finite 

element procedure fixed at a depth of 18 radii for the 

bottom boundary and constrained from moving radially on 

the vertical boundary at a distance of about 12 radii 

from the centre. For a three layered system, however, it 

was necessary to move the fixed boundary in the finite 

element procedure to a depth of about 50 radii while 

maintaining the same radial constraints as the single 

layered half-space analysis [96] . A recent finite

element analysis for heavily loaded airfield pavements 
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was presented by Barker [gy] . The computed deflections 

compared favourably with field measurements and it was 

concluded that finite element method may be used as a basis 

Of the design of such pavements.

In the present study the results obtained by the former 

investigators are extended and the response of a pavement 

subjected to a given impulse was considered. By using the 

dynamic finite element program which has been developed 

during the course of this research, a number of examples 

have been solved and compared with those computed using 

multi-layered static solutions [2,37 | .

Conventional data for an airfield pavement system has been 

used as input for the dynamic analysis. Three cases of 

loading have been considered, Table (7.2). The mesh shown 

in Figure (7.14) was used for the.finite element analysis. 

Normal stresses at varying depths on the centre line of the 

model were compared with those calculated using static 

assumptions. Figure (7.157 shows how the impact force 

can create higher stresses than those predicted by the 

elastic layer theory. It is these higher stresses which 

contribute to the accumulated damages which is known to 

occur in certain circumstances in runway ends.
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Fig. (7.3) Landing system. (Scientific American Magazine) .
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Fig. (7.4) Mathematical model for airplane structures |88j.

4

Fig. (7.5) Recorded strain in comparison with deflection of a pavement.
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Fig. (7.6) Reccmrendations for desigen and cross section thicknesses.
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Fig. (7.13)
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Table (7.1)

Elastic analysis

E

in kips/in^

Thickness 

in inches

1 150.0 3

2 108.0 6

3 22.5 24

4 4.4 INF

Data from reference |97| .
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Fig. (7.14) Mesh used for finite element analysis
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Fig. (7.16)
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Fig. (7.19) Dynamic respcnse of pavement with and without interface

effect (Displacement)
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Fig. (7.20) Dynamic response of pavement with and without

interface effect (Velocity)
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Fig. (7.21), Dynamic response of pavement with and without

interface effect (Acceleration)
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATION FOR FURTHER WORK

CONCLUSIONS

A method of analysis which is based upon the finite element 

technique has been developed for the analysis of plane 

layered structures subjected to impact. Important 

parameters for the design of multi-layered structures to 

be used in runway construction has been studied. The 

important steps in the development of the analysis may be 

summarized as follows:

1. Existing methods of design of airfield pavements has 

been extended. This extension considers the dynamic 

effects arising from impact force during landing of 

aeroplanes.

2. The dynamic response of a multi-layered half-space 

subjected to impulsive or continuous dynamic 

loading has been obtained.

3. A finite element approach is proposed for the 

analysis of the multi-layered structures.
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Also, the developed dynamic finite element program 

included a means by which a wide variety of boundary 

conditions, damping, wave reflection and wave refraction 

can be considered.

The above theoretical work has been incorporated into 

a computer program called DFEM which is also applicable 

to structures or structural components which may be 

considered to act as plane or axisymmetric systems 

subjected to dynamic forces.

A number of dynamic problems were solved by the DFEM 

program. The numerical results were compared either with 

exact or other numerical results. The comparison of the 

results of the developed program DFEM and the published 

results shows good agreement. An effective numerical 

evaluation of stress wave propagation at an interface was 

obtained.

The computer program can be modified to incorporate new 

parameters such as material nonlinearity or new element 

types.

Extensive photodynamic tests have been conducted. The 

experimental tests enabled the real behaviour of multi-

layered structures to be observed. Thus an understanding 

of the stress wave propagation action was obtained which 

effectively assisted the development of the theory.
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Comparison of the experimental results with those obtained 

from the developed program shows that the effectiveness 

of the numerical model indicates good correspondence.

Since the practical application of this research is to the 

study of the effect of significant impact loading upon the 

analysis and design of aircraft runways, the author suggests 

the following recommendations:

1. The impact force must be taken into consideration as

a loading case in the design of runway ends.

2. Flexible overlays over rigid pavements are not

recommended. Higher stresses will result in the 

flexible pavement due to the reflection of the 

stress wave.

RECOMMENDATION FOR FURTHER RESEARCH

1. A field study to assess the time of impact and impact 

forces of an aeroplane during landing.

2. It should be recognised that the application of 

charts and tables for the design of pavement may 

have limitations. It is suggested that for 

appropriate cases the pavements be directly 

designed to resist dynamic forces.
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3. Recent developments in digital computers provide

a good facility which can be applied to the optimal

design of pavements.
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APPENDIX 1
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n
n

 
n
o
r
m
 

o
n

CCMMON/CONTR/TITLE (12),NP,NE,NB,NDF, NON, NSFR, NSZF, L
&V,NGAUSR, NPP,
&NSK, NSIZ , N3UF, NT, IT, ILD, ND, NNP, NAVE, NLD, NMAT, NIT, IC
&S,NOORD,NL,
&NRE, DV, KE, KP, LAY, NDLY, NRG, NRT, NRPP, NRC, NRPRS, NSTRS,
&NGAUST,NBAR
CCMMON/GEP/NBC(50) ,NFIX(50) ,U (100) ,R1 (300),ALFA(50)

&,BETA(50),
&N3P(70,8),THICK, ANG (50) ,WGT (50) ,AA(60,4) ,BB(60,4),B
&AREA(60,4)
CCMMON/ELS/

&IMAT(70),CGRD(200,3) ,D(4,4) ,AX,AY,GX,GY,TD,E1,E2,C1
&,C2, G2,Q(2,200)
&,ORT(10,9) ,XM(16,16) ,QN(2,16) ,XG(16) ,UAST(300) ,RT(3
&00),UD2(16)
&,UAC(16) ,UAC2(16) ,UVE (16),UDE (16) ,RT1 (300) ,XR (300), 
&UV2(16) ,ZZ (6)
CCMMON/DK/NDYN, DELT, ROE, ANOT, BNDT, AONE, ATO, ATHRE, AF

&CR,BONE,AFIV,
&AS IX, ASEVN,AET, ANIN, ATEN, SETA, EALPHA, EBETA, IF LAG, GR
&AV, GTH, N2ASE
&, LNBC (50 ), LNFI (50 ), LANG (50), DUS (50,2), XMU (16), LCAS (
&6) ,NLAY(6,20)
&,KFAC(6,20) ,KLD,LELEM,R3 (300),INTER, YF (250) ,XF (250)
&,NPULS,COFR
CCMMON/ADY/SK(24000),R ,ESTIFM(24,24),NN(12)
COMMON

& US (50,2),
& T(200) ,PP(200) ,IONARY(70)

DYNAMIC AbALYSIS OF PLANE STRESS/STRAIN AND AXISY4METRIC CONDITION
FOR LINEAR PARABOLIC CR CUBIC ELEMENTS

IF LAGO
REWIND 8
REWIND 15
REWIND 11
READ ,NPROB,NDYN,N0ASE, LAY,NDLY,KE,KP,LELEM, INTER
READ ,DELT,SETA, CRAV, GTH
write(6,l)nprob,ndyn,delt,seta

1 format(v)
DO 60 NPR=1,NPROB

NPROB =TOTAL NO. OF PRC® LEMS

CALL PTIME(TIMEl)
WRITE(6,101) NPR,TIME1
READ(41,7) TITLE
WRITE (6,7) TITLE

LATA FOR AbALYSIS OF EX. PULSE
READ CONTROL DATA
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READ , NP,NE,NB,NLD,NDF,N4AT,NSFR,NGAUSR,NGAUST,NPP
&,NT, NL, NSIZ,
& NCCRD,bBAR,NONLIN,NTRANG, NRECT

N11=NGAUSR* NRECT4NGAUST*NTRANG
WRITE (11 )NLD, Nil, NE, NP
IF (NCORD .EQ. 0) NCQRD=2
WRITE (6,112 )NP, NE, NB, NLD, NDF, NMAT, NSFR, NCAUSR, NCAU 

&ST, NPP,NT,NL,
& NSIZ, NO CRD, NBAR

112 FORMAT (1H ,15(14))
C IF (NCASE .NE. 7) GO TO 222
C DO 322 1=1,250
C 322 YF(I)=0.0
C REWIND 19
C READ(19,22)(YF(I),1=1,31)
C PRINT,(YF(I),1=1,31)
C REWIND 19
C GO TO 422
C 222 REWIND 19
C 422 CONTINUE
C 22 FORMAT (V)
C READ MATERIAL PROPERTIES
C

WRITE (6,108)
C FOR SPRING EIEMENT (SL/SS/THETA/5X0) FOR CRT

READ , (N, (ORT(N, I),1=1,9) ,L=1,NMAT)
WRITE (6,118) ((N,(ORT(N,I),1=1,6)),N=1,N4AT)

118 FCRMAT(1H ,I4,6F16.3)
C
C PRESET TAPES
C

REWIND 3
REWIND 4

C
ICS=3
IF (NPP .EQ. 2) ICS=4
NCN=4*NSFR
NSZF=NP*NDF
LV=NCN*NDF
WRITE (6,105) NON,LV,NSZF
CALL GDATA

CDO 5432 N=1,NP
C54 32 WRITE (6,6543 )N, (CORD(N,M) ,M=1,NOORD)

6543 FORMAT(1H ,13,6X,F8.2,2X,F8.2)
C
C NLD=NO OF LOAD CASES

KLD=1
DO 40 ILD=1,NLD
IF(ILD .GT. 1) GO TO 72
CALL SET
CALL STIFM

72 CONTINUE
CALL LDATA
IF(INTER .IT. 2) GO TO 35
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IF (ILD .EQ. l.AND.KLD.EQ. 2) CALL STRESS
35 CONTINUE

IF (INTER .LT. 2) GO TO 37
IF (ILD .EQ. l.AND.KLD.EQ.2) GO TO 30

37 CONTINUE
IF (ILD .GT. 1) GO TO 75
CALL PTIME(TIME3)
CALL SOLVE
WRITE (6,103) TIME3
GO TO 80

75 CONTINUE
IF (NDYN .GT. 1) GO TO 55
CALL RESOLV
GO TO 80

55 CALL RESOLV
80 CONTINUE

CALL BSUB
IF (ILD .GT. 1) CALL STRESS

C CALL STRESS
IF(NBAR.EQ.O) GOTO 50
CALL BSTRESS

50 CONTINUE
C200 CONTINUE

CALL PTIME(TIME2)
C WRITE (6,102) TIME2

30 CONTINUE
IF (INTER .LT. 2) GO TO 32
KLD=KLD+1
IF (INTER .GT. 2.AND.KLD.EQ.2) GO TO 72

32 CONTINUE
40 CONTINUE
60 CONTINUE

7 FORMAT (12A4)
101 FORMAT (1H1,13H PROBLEM NO,,13,3X,21HEXECUTION STA 

&RTED AT ,F8.4)
C 102 FORMAT (1H0,3X,23HEXECUTION FINISHED AT ,F8.4)

103 FORMAT (1H0,34H STIFFNESS FORMULATION FINISHED AT
&,F8.4)

C104 FORMAT (1H0, 29H RESULTANT FORCES OBTAINED AT ,A8)
105 FORMAT(1HO,22HND. OF NOEES/ELEMENT =, 13, 2X, 18HSIZE

& OF K MATRIX = ,
& 13, 2X, 19HMAX.N0.CT UNKNOWNS=, 14)

108 FORMAT (1HO,2OH MATERIAL PROPERTIES )
STOP
END

C ============== START SUBROUTINE ==============
SUBROUTINE ODA TA

C
COMMON

& US (50,2) ,R(3 ),
& T(200),PP(200),IONARY(70)

GEOMETRICAL TATA, BOUNDARY CONDITIONS AND GXUSS INTEGRATION DATA

o
 
n
 
n
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READ , NNP,NNE, NNBB, NTAP, II, IMOD
WRITE (6,111) NNP,NNE,NNBB,NTAP,II, IMOD

111 FORMAT (1H ,716)
DO 10 11=1,NP
DO 10 JJ=1,N2QRD

10 CORD(II,JJ) = 0.
C
C

DO 20 L=1,NNP
20 READ , N, (CORD(N,M) ,M=1,NOORD)

C20 WRITE (6,109)N, (CORD(N,M) ,M=l,N0GRD)
109 FORMAT(1H ,16,6H * ,F8.1,2H ,F8.1)

C
C READ ELEMENT DATA
C

IF(NBAR.NE.O) GOTO 50
C FCR SPRING (END1 END2 6X0 PROPERTY NO.
C

READ, (N, (NOP(N,M) ,M=1,8), IMAT(N) ,L=1,NNE)
GOTO 41

50 CONTINUE
C PRESET REINFORCEMENT COORDS TO ZERO

DO 45 L=1,NNE
DO 45 M=l,4
AA(L,M)=0.
BB(L,M)=.O

45 CONTINUE
DO 40 L=1,NNE
READ, (N, (NOP(N,M) ,M=1,8) ,IMAT(N) ,NBARS)

CWRITE (6,106) (N, (NOP(N,M) ,M=1,8) ,IMAT(N), TEARS)
BAREA(N, l)=0.0
IF(NBARS.EQ.0) GOTO 40
READ, ( (AA(N,M) ,BB(N,M) ,BAREA(N,M) ) ,M=1,TEARS)
WRITE (6,107) ((AA(N,M) ,BB(N,M) ,BAREA(N,M) ) ,M=1,TEAR 

&S)
106 FQRMAT(1H ,1116)
107 FORMAT(1H ,3E15.4)

40 CONTINUE
C BAR DATA READ IN
C
C READ BOUNDARY DATA

41 IF (NNBB .IE. 0) GO TO 480
DO 450 1=1,NNBB

450 READ,TEC(I) ,TFIX(I) ,ANG(I), (US (I, J) ,J=1,NEF)
480 CONTINUE

C
C NODEXY IS REMOVED: CAUSS CONTAINS INTEGRATION DATA

CALL CAUSS
IF (Il .NE. 0) GO TO 500

CWRITE (6,102)
CDO 30 N=1,NP
C30CWRITE(6,112) N,(CORD(N,M),M=1,NOORD)

112 FORMAT(1H ,I4,6H 44- ,F10. 2, 2X,F10.2)
WRITE (6,103)
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CWRITE (6,113) (N, (NOP(N,M) ,M=1,8) ,IMAT(N) ,N=1,NE)
113 FORMAT (1H ,1014)

IF (NB .EQ. 0) GO TO 500
WRITE (6,104)
DO 490 1=1, KB

490 WRITE (6,114)NBC(I),NFIX(I), ANG (I), (US (I, J), J=1, NEF
&)

114 FQRMAT(1H , 214,3 (F12.3, 2X))
500 CONTINUE

IC=0
DO 650 1=1,KB
DO 650 J=1,NDF
IC=IC+1

650 U(IC)=US(I,J)
C

102 FORMAT (20H1 NODAL POINTS )
103 FORMAT (20H1 ELEMENTS )
104 FORMAT(21H0 BOUNDARY CONDITIONS)

C105 FORMAT(32H0 GAUSSIAN INTEGRATION CONSTANTS )
RETURN
END

C ============== START SUBROUTINE ============
SUBROUTINE (AUSS
COMMON

& US (50, 2) ,R(3 ),
& T(200) ,PP(200) ,IONARY(70)

C THIS SUB CONTAINS GAUSS QUAERATURE INTEGRATION DATA. RECTANGULAR THEN 
C TRIANGULAR ELEMENT ARE PROVIDED FOR. 2*2,3*3$4*4:RECTANGULAR EIMS. : 
C4*4$5*5
C TRIANGULAR.ARRAYS rAIFA/BETA/WGT.

Al=.577350269189626
A2=.774596669241483
A3=.000000000000000
A4=.8611363115
A5=.3399810435
Wl=l.00000000000000
W2=.555555555555556
W3=.8888888889
W4=.3478548451
W5=.6521451548

C FCR ND RECTANGLES.
IF (NGAUSR. EQ. OJGOTO 3
IF (NGAUSR. GT. 4)GOTO 1

C 2* 2 RECTANGULAR
ALFA(1)=-A1
ALFA(2)=A1
ALFA(3)=-A1
AIFA(4)=A1
BETA(1)=-A1
BETA(2)=-Al
BETA(3)=A1
BETA(4)=A1
DO 10 1=1,4
WGT(I)=W1
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10 CONTINUE
GOTO 3

1 CONTINUE
IF (NGAUSR. GT. 9)GOTO 2

C 3*3 RECTANGULAR
DO 20 1=1,7,3
ALFA(I)=-A2
ALFA(I+1)=A3
ALFA(I+2)=A2

20 CONTINUE
DO 30 1=1,3,1 
BETA(I)=-A2 
BETA (1+3 )=A3 
BETA(1+6)=A2

30 CONTINUE
DO 40 1=2,8,2 
WGT(I)=W2*W3 

40 CONTINUE
DO 50 1=1,9,2
WGT(I)=W2*W2

50 CONTINUE
WGT(5)=W3*W3
GOTO 3

2 CONTINUE
C 4*4 RECTANGULAR

DO 60 1=1,13,4
ALFA(I)=-A4 
ALFA(I+1 )=-A5 
ALFA(I+2)=A5 
ALFA(I+3)=A4

60 CONTINUE
DO 70 1=1,4,1 
BETA(I)=-A4 
BETA(1+4)=-A5 
BETA (1+8 )=A5 
BETA(1+12)=A4 

70 CONTINUE
DO 80 1=2,15,1 
WGT(I)=W4*W5 
W42=W4**2

80 CONTINUE
WGT (1 )=W42
WGT(4)=W42
WGT (13)=W42
WGT(16)=W42 
W52=3V5**2 
WGT (6)=W52 
WGT(7)=W52
WGT(10)=W52
WGT(11)=W52

3 CONTINUE
IF (NGAUST. EQ. 0)GOTO 4

C 4*4 TRIANGULAR
DO 90 1=30,33,1
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ALFA(I)=.0694318443
AIFA(I+4 )=.3300094783
ALFA(1+8 )=.6699905218
AIFA(I+12)=.9305681558

90 CONTINUE
1=45
DO 100 M=30,42,4
DO 100 N=30,42,4
BETA (I) =ALFA (M) * ALFA (N)
1=1-1

100 CONTINUE
WGT (30)=. 05630076615
WGT (31)=. 1055505547
WGT (32) = .1055505547
WGT (33)=. 05630076615
WGT (34)=. 0759942953
WGT (35) = . 1424712409
WGT(36)=.1424712409
WGT (37)=. 0759942953
WGT (38)=. 0374316306
WGT(39)=.0701754105
WGT(40)=.0701754105
WGT (41)=. 0374316306
WGT (42)=. 0042007305
WGT (43)=. 0078537125
WGT (44)=. 0078537125
WGT (45)=. 0042007305
DO 110 JI=30,45
WGT(JI)=WGT(JI)/2.

110 CONTINUE
C WRITE (6, 6) ((AIFA(I),BETA (I) ,WGT (I)), 1=1,45)

4 CONTINUE
RETURN
END

C ============= START SUBROUTINE =============
SUBROUTINE SET
COMMON US (50,2) ,R (3) ,T(200) ,PP (200) ,IONARY(9,200) 

C
DO 156 J=1,9
DO 156 1=1,NP

156 IONARY(J,I)=0
C
C ====================================S ELECT SPAC ING=
C

DO 205 L=1,NE
NCN=8
IF(NOP(L,7),EQ.0)NCN=6

C
IF(NOP(L, 3).EQ.0)NCN=2
IST=NOP(L,l)
MAX=IST
MIN=IST
DO 165 N=2,N0N
NTH=NOP(L,N)
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IF (NTH .EQ. 0) GO TO 166
ND=N
IF ( MAX .LT. NTH) MAX=NTH
IF (MIN .IE. NTH) GO TO 165
MIN=NTH
I=N-1

165 CONTINUE
166 IF (NSIZ .LT. (MAX-MIN)*NDF) NSIZ = (MAX-MIN)*NDF 

I=MIN
DO 200 M=l,9
IF (IONARY(M,I) .NE. 0) GO TO 200
IONARY(M, I)=L
GO TO 205

200 CONTINUE
205 CONTINUE

L=1
DO 230 1=1,NP
DO 225 M=l,9
IF(IONARY(M,I).EQ. 0) GO TO 230
IONARY (L, 1 )=IONARY (M, I)

225 L=L+1
230 CONTINUE

IONARY (L,l)=0
NSK= ((NS IZ +NDF) * (NS IZ 4NDF+1)) /2+1
IF (NSK .IT. NSZF+1) NSK=NSZF+1

C PRINT, 'YOUR BAND WIDTH IS TOO LARGE DUE TO THE MAX 
C&NODE NUMBERING DIFFERENCE BEING',NSIZ,’/2 THEREFOR 
C&GREAIER THAN 65'

IF (NSK .IE. 24000) RETURN
WRITE (6,111)

111 FORMAT(5OHO PROGRAM HALTED IN SET STIFFNESS SEACE 
& EXCEEDED )

STOP
END

C ============== START SUBROUTINE ============ 
SUBROUTINE LDATA
COMMON

& US (50,2) ,R(3 ),
& T (200) ,PP (200), IONARY(70)
& ,P(12) ,DEL(2,12) ,COJ (2,2) ,COJIN(2,2),DET, DI (2,12) 
&,DIJ(2,2)
& ,NOPE(12),XYE(3,12),DISE(2,12)
& ,XYP(3) ,RP,SIRN(4) ,STRS (4) ,STRSP(4)
& ,ESTIFM(24, 24) ,B(4,24) ,DVDB(4,24) ,DVD(4,4)
&,FORCE (16) ,SFQRCE (16) ,R2 (100),DIS (2,200)
IF (ILD .GT. 1) GO TO 822
DO 50 J=1,NSZF
RT(J)=0.0
Rl(J)=0.
XR(J)=0.0

50 CONTINUE
READ (41,7) TITLE
READ, NSTRS
WRITE (6,100) TITIE,ILD,NSTRS
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C READ BOUNDARY CONDITION FCR LOAD CASES
IF (ILD .EQ. l.AND.KLD.EQ.l) GO TO 800
READ, NNBB
DO 777 1=1,NNBB

777 READ,NBC(I) ,JFIX(I) ,ANG(I), (US (I, J) ,J=1,NDF)
NB=NNBB

800 CONTINUE
C READ EXTERNAL LOADS AT NODES
C
CWRITE (6,108)

65 CONTINUE
READ, NQ, (R(K) ,K=1,NDF)

CC WRITE (6,119) NQ, (R(K),K=1,NDF)
C119 FCRMAT(1H ,14,2(F12.3,2X))

DO 70 K=1,NDF
IC= (NQ-1 )*NDF4K
RT(IC)=R(K)

70 CONTINUE
IF (NQ .LT. NP) GO TO 65

7 FORMAT (12A4)
108 FORMAT (1H0,17H LOADS FRCM CARDS )
100 FORMAT(1H1,12A4, 5X, 10HLOAD CASE= ,13,15)

C WRITE LOAD VECTOR TO DISC 2
c REWIND 2
c WRITE (2) (R1 (I), 1=1 ,NSZF)
IF(NDYN .IT. 2) GO TO 300
IF (ILD .GT. 1) GO TO 822
IF (ILD .EQ. l.AND.KLD.EQ. 2) GO TO 822
READ, (LCAS(I),1=1,6)
IF (LAY .LT. 2) GO TO 135
READ, ( (NIAY(I,J),J=1,NDLY) ,I=1,IAY)
PRINT, ( (NLAY(I,J) ,J=1,NDLY) ,I=1,IAY)
READ,(ZZ(L),L=1, LAY)
READ, ( (KFAC(I,J),J=1,IEIEM) ,I=1,IAY)

135 CONTINUE
DO 202 J=1,NSZF
RT1(J)=O.O

202 CONTINUE
REWIND 15
DO 424 LN=1,NE
DO 402 1=1,8

402 NOPE(I)=0
C

READ(15) LNEW,(NOPE(I),1=1,8),((XM(II,J),J=1,LV),I 
&I=1, LV), (XG (II)
&,II=1,LV)

C PRINT, LNEW, (NOPE (I) ,1=1,8) , ( (XM(II, J) ,J=1,LV) ,II=1,LV)
LNEW=IONARY(LN)
NCN=8
DO 406 K=l,N0N

406 NOPE(K)=NOP(LNEW,K)
DO 408 1=1,NON
NRR=NOPE(I)
NR1=NRR* 2-1
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NR=NRR*2
K 21=2*1-1
K2=2*I
XR (NR1) =XR (NR1) +XG (K 21)
XR (NR)=XR (NR)+XG (K2) 

408 CONTINUE
424 CONTINUE

O
 o

 
Q

 Q
 O

 Q
 O

 Q
 Q

DO 206 I=1,NSZF
R1 (I )=XR (I )+RT (I) 
RT1(I)=RT(I)

206 CONTINUE
822 CONTINUE

IF (ILD .EQ. l.AND.KLD.EQ. 1) GO TO 833
CALL LDYN
IF (INTER .LT. 2) GO TO 833
IF (ILD .EQ. l.AND.KLD.EQ.2) GO TO 844

833 CONTINUE
CALL CASES
DO 606 I=1,NSZF
RT1(I)=RT(I)

606 CONTINUE
GD TO 500

300 DO 330 I=1,NSZF
R1(I)=RT(I)

330 CONTINUE
GD TO 477

500 CONTINUE
IF (INTER .LT. 2) GO TO 477

EFFECT OF REFLECTION AND REFRACTION OF STRESS WAVE PROPAGATION 
PRINT, ((ORT(L,I) ,1=1,8) ,L=1,N4AT)

ZZ (1 )=SQRT (ORT (2,2))/SQRT (ORT (1,2))
ZZ (2 )=SQRT (ORT (3,2)) /SQRT (ORT (2,2))
ZZ (3 )=SO<T (ORT (4,2)) /S<^T (ORT (3,2))

C PRINT,(ZZ(I),1=1,IAY)
IF (ILD .EQ. 1) GO TO 477
DO 455 1=1, LAY
DO 466 K=1,NDLY
KK=NIAY(I,K)
K21=2*KK+1
K2=2*KK
R1 (K21 )=R1 (K21 )+ZZ (I )*R3 (K21)
R1 (K2)=R1 (K2J+ZZ (I )*R3 (K2)

466 CONTINUE
455 CONTINUE
477 CONTINUE

REWIND 2
WRITE (2) (R1(I),I=1,NSZF)

C PRINT, (R1 (I), 1=1, NSZF)
844 CONTINUE

RETURN
END
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c ============= START SUBROUTINE ==============
SUBROUTINE CASES
CCMMON

& US (50,2) ,R(3),
& T (200) ,PP (200), IONARY(70)
& , P (12), CEL (2,12) ,COJ (2,2),COJIN (2,2), DET, DI (2,12) 
&,DIJ(2,2)
& ,NOPE (12),XYE(3,12),DISE(2,12)
& ,XYP (3 ) ,RP,STRN(4 ) ,STRS (4 ) ,STRSP(4 )
& ,ESTIFM(24, 24) ,B(4,24) ,DVDB (4,24) ,DVD (4,4)
&,FORCE (16) ,SFORCE(16) ,R2 (100),DIS (2, 200)

C

206

111

IF (NCASE .EQ. 1) GO TO 111
IF (NCASE .EQ. 2) GO TO 222
IF (NCASE .EQ. 3) GO TO 333
IF (NCASE .EQ. 4) GO TO 444
IF (NCASE .EQ. 5) GO TO 555
IF (NCASE .EQ. 6) GO TO 666
IF (NCASE .EQ. 7) GO TO 777
IF (ILD .GT. 1) GO TO 112
DO 206 11==1,NSZF

112

603

R1(II)=XR(II)+RT(II)
GO TO 500
DO 603 11=1,NSZF
R1 (I I) =XR (II) +RT1 (II) +SETA* (RT (I I)-RT1 (II))
CONTINUE
GO TO 500

C
C
C
C
C CASE OF RECTANGULAR PULSE

222 IF (ILD .GT. 1) GO TO 223 
DO 224 I=1,KSZF

224 R1 (I )=XR (I )+RT (I)
GO TO 500

223 IF (ILD .GT. LCAS(l)) GO TO 226
DO 225 1=1, NSZF

225 R1 (I )=XR (I )+RT (I J+SETA* (RT (I )-RTl (I)) 
GO TO 500

226 DO 227 1=1,NSZF
227 R1(I)=XR(I)

GO TO 500
C CASE OF TRINGULAR PULSE

333 IF (ILD .GT. 1) GO TO 342 
DO 353 1=1,NSZF

353 Rl(I)=XR(I)+0.5*RT(I)*SETA
GO TO 500

342 IF (ILD .GT. LCAS(l)) GO TO 363 
DO 373 1=1, NSZF

373 R1 (I )=XR (I )+0.5*RT (I)+ (ILD-2 )*RT (I )+SETA*RT (I) 
GO TO 500

363 IF (ILD .GT. ICAS(2)) GO TO 383
DO 393 1=1, NSZF
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393 R1 (I )=XR (I )+LCAS (1 )*RT (I)- (ILD-LCAS (1 )+l )-SETA*RT ( 
&I)+0.5*RT(I)

GO TO 500
383 DO 394 I=1,NSZF
394 R1(I)=XR(I)

GO TO 500
C CASE OF TRAPEZOIDAL PULSE

444 IF (ILD .GT. 1) GO TO 414
DO 424 I=1,KSZF

424 R1 (I )=XR (I )+0.5*RT (I )*SETA
GO TO 500

414 IF (ILD .GT. LCAS(l)) GO TO 454
DO 404 I=1,NSZF

404 R1 (I )=XR (I)+0.5*RT (I)+ (ILD-2 )*RT (I )+SETA*RT (I) 
GO TO 500

454 IF (ILD .GT. ICAS(2)) GO TO 464
DO 474 I=1,NSZF

474 R1(I)=XR(I)+LCAS(1)*RT(I)
GO TO 500

464 IF (ILD .GT. ICAS(2)) GO TO 484
DO 494 I=l,t6ZF

494 R1 (I )=XR (I )+LCAS (1 )*RT (I)- (ILD-LCAS (2 )+l )*RT (I)- (S 
&ETA-0.5)*RT(I)

GO TO 500
484 DO 488 I=1,NSZF
488 R1(I)=XR(I)

GO TO 500
C CASE OF SURFACE BURSTS OF NUCLEAR WEAPONS

555 IF (ILD .GT. 1) GO TO 515
DO 525 I=1,NSZF

525 R1 (I )=XR (I)+ ((0.5*RT (I )*SETA) /LCAS (1))
GO TO 500

515 IF (ILD .GT. ICAS (1)) GO TO 535
DO 545 I=1,NSZF
CAS =0.0
CAS=RT (I)/LCAS (1)
R1 (I )=XR (I)+0.5*CAS+ (ILD-2 )*CAS4SETA* CAS

545 CONTINUE
GO TO 500

535 IF (ILD .GT. ICAS (2)) GO TO 533
DO 565 I=1,NSZF

565 R1 (I )=XR (I )+RT (I)
GO TO 500

533 IF (ILD .GT. ICAS (3)) GO TO 575
DO 585 I=1,NSZF
CAS =0.0
CAS= (0.66*RT (I)) /(LCAS (3 )-LCAS (2))
R1 (I )=XR (I )+RT (I)- (ILD-LCAS (2 )+l )*CAS-SETA* CAS+0.5 

&*CAS
585 CONTINUE

GO TO 500
575 IF (ILD .GT. ICAS (4)) GO TO 516

DO 517 I=1,NSZF
CAS =0.0

252



CASO. 20*RT (I)/(LCAS (4 )-LCAS (3 ))
R1 (I )=XR (I )+RT(I)- (ILD-LCAS (3 )+l )*CAS-SETA*CAS+U. 5 

&*CAS
517 CONTINUE

03 TO 500
516 IF (ILD .GT. LCAS (5)) GO TO 518

DO 519 1=1, NSZF
CAS=0.0
CASO. 14*RT (I) / (LCAS (5 )-LCAS (4 ))
R1 (I )=XR (I )+0.14*RT (I)- (ILD-LCAS (4 )+l )*CAS-SETA* CA 

&S+0.5*CAS
519 CONTINUE

G3 TO 500
518 DO 520 1=1, NSZF
520 R1(I)=XR(I)

GO TO 500
C
C CASE OF SIN AND HALF SIN WAVE RJLSE

666 TIMO.O
TIM=DELT*ILD
PI=3.1415927
IF (ILD .GT. ICAS(l)) GO TO 626
DO 616 1=1,NSZF
R1 (I )=XR (I )+RT (I )*SIN ((PI*TIM) / (LCAS (1 )*DELT))

616 CONTINUE
G3 TO 500

626 IF (LCAS (2) .EQ. 1) GO TO 636
DO 646 1=1, NSZF

646 R1 (I )=XR (I )+RT (I )*SIN ((PI*TIM) /(LCAS (1 )*DELT))
GO TO 500

636 DO 656 1=1, NSZF
656 R1(I)=XR(I)

GO TO 500
C CASE OF ACTUAL IMPACT FORCE FROM EXPERIMENTS

777 IF (ILD .GT. 1) GO TO 705
DO 710 11=1, NSZF

710 R1 (II )=XR (II )+0.5*SETA* YF (ILD+1 )*RT (II)
GO TO 500

705 KPULS=NPULS-2
IF(ILD .GT. KPULS) GO TO 730
DO 720 11=1,NSZF
R1 (II )=XR (II )+RT(II )*YF (ILD)+SETA* (YF (ILD+1 )-YF (IL 

&D))*RT(II)* .5
720 CONTINUE

G3 TO 500
730 DO 740 I1=1,NSZF

R1(II)=XR(II)
740 CONTINUE
500 CONTINUE

RETURN
END

C ============== START SUBROUTINE ==============
SUBROUTINE IDYN
COMMON
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& US (50,2) ,R(3),
& T(200) ,PP (200), IOKARY (70)
& , P (12), DEL (2,12) ,COJ (2, 2),COJIN (2,2),DET, DI (2,12) 
&,DIJ (2,2)
& ,NOPE(12),XYE(3,12),DISE (2,12)
& ,XYP (3 ) ,RP, STRN(4 ) ,STRS (4 ) ,STRSP (4 )
& ,ESTIFM(24, 24) ,B(4,24) ,DVDB(4,24) ,DVD (4,4)
&,FORCE (16),SFORCE (16),R2 (100), DIS (2,200)

C PRINT, (UAST(I) ,1=1, NSZF)
IF (ILD .GT. 1) GO TO 235
DO 291 1=1,50
LNBC(I)=0
LNFI(I)=0
DANG (I) =0.0
DO 292 J =1,2

292 DUS(I,J)=0.0
291 CONTINUE

NNBB=NB
DO 220 I=1,NNBB
LNBC(I)=NBC(I)
LNFI(I)=NFIX(I)
DANG(I)=ANG(I)
DO 230 J=1,NDF

230 DUS (I,J)=US(I,J)
220 CONTINUE

IC=0
DO 232 1=1, KB
DO 232 J=1,NDF
IC=1+IC

232 U(IC)=US(I,J)
GO TO 250

235 CONTINUE
DO 262 1=1,NDF
DO 262 J=1,NP

262 Q(I,J)=0.0
DO 260 J=1, NSZF
XR(J)=0.0

260 Rl(J)=0.0
DO 240 I=1,NNBB
KBC(I)=LNBC(I)
NFIX (I )=LNFI (I)
ANG(I)=DANG(I)
DO 244 J=1,NDF

244 US (I, J)=DUS (I, J)
240 CONTINUE

IC=0
DO 246 1=1, KB
DO 246 J=1,NDF
IC=IC+1

246 U(IC)=US (I, J)
250 CONTINUE

C CALL FDUMP
CALL SET
LV=16
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IF (IFIAG .EQ. 1) GO TO 555
LI =16
L2=17
IFIAG=1
GO TO 590

555 Ll=17
L2=16
IF IAGO

590 CONTINUE
REWIND 15
REWIND 16
REWIND 17
DO 600 N=1,NE

C
C READ(9) LNEW,(NOPE(I),1=1,8),((XM(II,J),J=1,LV),11=1,LV)

DO 204 1=1,LV
UAC2(I)=0.0
UAC(I)=0.0
UV2(I)=0.0
UVE (I )=0.0
UD2(I)=0.0
UDE (I )=0.0

204 CONTINUE
IF (INTER .LT. 2) GO TO*707
IF (INTER .GT. 2) GO TO 704

707 IF (ILD .GT. 2) GO TO 404
704 IF (ILD .GT. 1) GO TO 404

WRITE (16) LNEW, (NOPE (I), 1=1,8), (UAC (J), J=1, LV), (UV
&E (J), J=l, LV)
&, (UDE (J), J=l, LV)

404 CONTINUE
DO 208 1=1,8
NOPE(I)=0.0

208 CONTINUE
C

READ(15) LNEW,(NOPE (I),1=1,8),((XM(II,J),J=1,LV),I 
&I=1,LV),(XG(II)
&,II=1,LV)
LC=IMAT (LNEW)
IF (LC .GT. N4AT) DC=LC-100
DALPHA=ORT (LC, 7)
DBETA=ORT(LC,8)
CALL CONDY

C PRINT, LNEW, (NOPE (I), 1=1,8), ((XM (II, J), J=1, LV), 11=1, LV)
IF (ILD .EQ. 2) GO TO 505
READ (LI) LNEW, (NOPE (I), 1=1,8), (UAC (J ), J=1, LV), (UVE 

&(J) ,J=1,LV)
&, (UDE (J) ,J=1, LV)

C PRINT, LNEW, (NOPE (I), 1=1,8), (UAC (J), J=1, LV)
505 CONTINUE

NCN=8
LNEW=IONARY(N)
DO 288 1=1,12
NOPE (I)=0
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288 CONTINUE
N0N=8
DO 289 K=1,NON
NOPE (K)=NOP(LNEW,K)

289 CONTINUE
DO 304 JJ=1,NON
NNON=NOPE (JJ)
LR2=NNCN*2-1
LR=NNCN*2
N21=2*JJ-1
N2=2*JJ

C PRINT, N21,N2,LR2,IR
C PRINT, LR2,LR

UAC 2 (N 21) = ((AFOR* UAST (LR2)) + (AF IV*UDE (N 21)) + (AS IX* 
&UVE (N21)) +
&(ASEVN*UAC (N21)))
UAC2 (N2) = ((AFOR* UAST (LR))+ (AFIV*UDE (N2))+ (ASIX*UVE 

&(N2))+
&(ASEVN*UAC (N2)))
UV2 (N21 )= (UVE (N21)+ (AET* (UAC2 (N21 )+UAC (N21))))
UV2 (N2)= (UVE (N2)+ (AET* (UAC2 (N2)+UAC(N2))))
UD2 (N21 )= (UDE (N21)+ (DELT*UVE (N21))+ (ANIN*UAC (N21)) 

&+ (ATEN*UAC2 (N21)))
UD2 (N2)= (UDE (N2)+ (DELT*UVE (N2))+ (ANIN*UAC(N2))+ (AT 

&EN*UAC2 (N2)))
304 CONTINUE

DO 305 L=1,LV
UAC(L)=UAC2(L)
UVE (L)=UV2 (L)
UDE (L)=UD2 (L)

305 CONTINUE

DO 306 1=1,LV
XMU(I)=0.0
DO 308 J=1,LV
XMU (I )=XMU (I )+XM(I, J)* (AONE*UDE (J )+ATO*UVE (J )+ATH 

&RE*UAC(J))
308 CONTINUE
306 CONTINUE

DO 309 1=1,NON
NRR=NOPE (I)
NR1=NRR*2-1
NR=NRR* 2
K 21 =2*1-1
K2=2*I

C PRINT, NR1,FR,K21,K2
XR (NR1) =XR (NR1) +XMU (K 21)
XR (NR)=XR (NR)+XMU (K2)

309 CONTINUE
DO 370 1=1,NON
KD1=2*I-1
KD2=2*I
KD3=NOPE (I)
Q(1,KD3)=UDE(KD1)
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Q (2,KD3)=UDE (KD2)
370 CONTINUE

IF(N .EQ. KE) WRITE(6,307)UDE(KP)
IF(N .EQ. KE) WRITE (19) ILD,UAC(KP) ,UVE (KP) ,UDE (K 

&P)
307 F0RMAT(V)

WRITE(L2) LNEW,(NOPE(I),1=1,8),(UAC(J),J=1,LV),(U
&VE (J),J=l,LV)
&, (UDE (J ) ,J=1,LV)

600 CONTINUE
C READ(9) LNEW,(NOPE (I),1=1,8),((XM(II,J),J=1,LV),11=1,LV)

IF (INTER .LT. 2) GO TO 601
IF (KLD . NE. 2) GO TO 601
DO 602 K=1,NE
DO 603 1=1,LV
UAC2(I)=0.0
UAC(I)=0.0
UV2(I)=0.0
UVE (I)=0.0
UD2(I)=0.0
UDE (I)=0.0

603 CONTINUE
WRITE (L2) LNEW,(NOPE(I),1=1,8),(UAC(J),J=1,LV), (U

&VE (J), J=1, LV)
&, (UDE (J) ,J=1, LV)

602 CONTINUE
601 CONTINUE

RETURN
END

C =============== START SUBROUTINE ============
SUBROUTINE CONDY
COMMON

& US (50,2) ,R(3 ),
& T(200) ,PP(200) ,IONARY(70)
& ,P(12) ,CEL(2,12) ,COJ(2,2),COJIN(2, 2),DET, DI (2,12
&) ,DIJ(2,2)
& ,NOPE(12),XYE(3,12),DISE(2,12)
& ,XYP (3 ) ,RP,STRN(4 ) ,STRS (4 ) ,STRSP (4 )
& ,ESTIFM(24, 24) ,B(4,24) ,DVDB(4,24) ,DVD (4,4)
&,FORCE (16) ,SFORCE (16) ,R2 (100),DIS (2, 200)
TAW=SETA* DELT
AN0T= (6. +3 .*DALPHA*TAW) / (TAW** 2+3 .*DBETA*TAW) 
BNOT=DALFHA-DBETA* ANOT
AONE = (6 / (TAW* * 2)) +3 .* BNOT/TAW
ATO=(6/TAW)+2.*BNOT
ATHRE=2. +TAW* BNOT/2.0
AFCR=6./ (SETA* (3 .* DBETA*TAW+TAW** 2))
BONE=DBETA* AFOR
AFIV= (3 .* BONE/TAW)-6./( (TAW**2)*SETA)
ASIX=2 .* BONE-6./ (TAW* SETA)
ASEVN=BONE*TAW/2.0+1.0-3.0/SETA
AET=DELT/2.0
ANIN=DELT** 2/3.0
ATEN=ANIN/2.0
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CTH=GTH/57.295779514
c write(6,1)taw,anot,bnot,aone,ato,athre,afor
c wr ite(6,1)bone,afiv,asix,asevn,aet,anin,aten

1 FORMAT (V)
RETURN

C ============= START SUBROUTINE =============
END
SUBROUTINE STIFM
CCMMON

& US (50,2) ,R(3 ),
& T(200) ,PP (200) ,IOhARY(70)
& ,P (12) ,DEL (2,12) ,COJ (2, 2),COJIN (2,2),DET,DI (2,12 
&) ,DIJ(2,2)
& ,NOPE (12),XYE (3,12),DISE(2,12)
& ,XYP (3 ) ,RP,STRN(4 ) ,STRS (4 ) ,STRSP(4 )
& ,ESTIFM(24,24) ,B(4,24) ,DVDB(4,24) ,DVD (4,4)
&,FCRCE (16),SFORCE(16),R2(100),DIS(2,200)

DO 400 M=1,NE
N0N=8
DO 11 J=1,8
NOPE (J )=0

11 CONTINUE
C INITIAL ESTIFM AND B

DO 2 1=1,16
DO 2 J =1,16
ESTIFM(I, J)=. 0
XM(I,J)=0.0
IF (I. IE. 4)B(I, J) = . 0

2 CONTINUE
LNEW=IONARY(M)

CWRITE (6,987 )LNEW
987 FORMAT (1H , 6HLNEW= ,13)

IF(NOP (LNEW,3) .GT. 0.01E-8) GO TO 12
C SPRING ELEMENT

CALL SPRING (LNEW)
DO 13 K=1,N2N
NOPE (K)=NOP(LNEW,K)

13 CONTINUE
GOTO 350

12 CONTINUE
N0N=8
DO 955 1=1,16
XG(I)=0.0

955 CONTINUE
LV=16
KK=1
NGAUS=NGAUSR
IF(NOP(LNEW,7).NE.0) GOTO 30

C
N0N=6
LV=12
KK=30
N(AUS=45

30 CONTINUE
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CORRECTION FCR TRIANGLES
FORMATION OF STIFFNESSES AND CAICULATION OF BODY FCRCES

L=IMAT (LNEW)

NOTE MATERIAL NO OF EIEMENT ALONG SLOPING BOUNDARY IS GT.BY. 100

IF (L. GT. N4AT)L=L-100
DO 200 K=1,NON
MASH=NOP (LNEW,K)
DO 300 1=1, NO ORD
XYE(I,K)=CQRD(MASH,I)

300 CONTINUE
NOPE (K)=MASH

200 CONTINUE
E1=ORT(L,1)
E2=ORT(L,2)
G2=ORT(L,3)
C1=ORT(L,4)
C2=ORT(L,5)
ROE=ORT(L,6)
DALPHA=ORT(L,7)
DBETA=ORT(L, 8)
THICK=ORT(L, 9)
CALL CONDY
CALL MODU

FQRMUIATION OF STIFFNESS

DO 100 IGAUS=KK,NGAUS
G=ALFA(IGAUS)
H=BETA(IGAUS)

C WRITE (6,10)G,H
CIO FCRMAT(1H ,*G =\F13.8/H =',F13.8)

CALL SFR(G,H)
CALL AUX (LNEW)
IJAUS=IGAUS
CALL FEM(IJAUS)

C WRITE (6,5000) ((DI (I, J) ,J=1,8) ,1=1,2)
C5000 FORMAT(1H /DI I, J\8E15.4)

DO 21 1=1,NEF
DO 22 J=1,LV
QN(I,J)=0.0

22 CONTINUE
21 CONTINUE

FASH=0
DO 10 1=1,NON
MASH=NASH+1
NASH=MASH+1
QN (1,MASH)=P (I)
QN(2,NASH)=P(I)

10 continue
GXC =ROE* GRAV*S IN (GTH)
GY0 =-ROE*GRAV* COS (GTH)
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do 900 i=l,ncn 
lr= (i-1 )*ndf+l 
lrr= (i-1 )*ndf+2
XG (LR) =XG (LR)+GXC* DV*P (I)
XG (LRR) =XG (LRR) +G^C* DV*P (I)

900 continue
DO 910 1=1,LV
DO 910 J=1,LV
DO 915 K=1,NDF
XM(I, J)=XM(I, J)+QN (K, I)*QN(K, J)*ROE*DV

915 CONTINUE
910 CONTINUE

DO 20 1=1,LV 
DO 20 J=I,LV 
GASH=ESTIFM (I, J) 
DO 18 K=1,ICS 
GASH=GASH-FB (K, I )*DVDB (K, J)

18 CONTINUE
ESTIFM(I,J)=GASH 
ESTIFM(J,I)=GASH

20 CONTINUE
100 CONTINUE

IF (IMAT(LNEW) .GT. KMAT) CALL ROSB(LNEW) 
FCR BAR REINFORCEMENT IN QUAD ELEMENTS. 
IF bEAR GT 0 THEN REINFORCED.

IF(NBAR.EQ. 0.GR.N0N.EQ. 6) GOTO 350
IF(BAREA(LNEW,1) .LT. 0.01E-8) GO TO 350 
CALL BAR(LNEW)

350 CONTINUE
DO 915 1=1,16
DO 915 J =1,16
XM(I,J)=0.0 
XM(I,I)=1.0

915 CONTINUE
DO 920 1=1,16
DO 920 J=1,16

920 XM(I, J)=ROE*1.0*2.0/8.0* (XM(I, J)) 
IF(NDYN .LT. 2) GO TO 935 
DO 930 1=1,16 
DO 930 J=1,16

930 ESTIFM(I, J)=ESTIFM(I, JJ+ANOT* (XM(I,J))
935 CONTINUE

WRITE(3) LNEW,(NOPE (I),1=1,8),((ESTIFM(I,J),J=1,1 
&6),I=1,16)
WRITE (15) LNEW,(NOPE (I),1=1,8),((XM(II,J),J=1,LV) 

&,11=1,LV),(XG(II)
&,II=1,LV)
IF (ILD .GT. 1) GO TO 400
WRITE (6,3) LNEW,(NOPE(I),1=1,8)

C WRITE (6,4) ((ESTIFM(I,J),J=l,16),1=1,16)
3 FORMATS ’,’ELEMENT NO. ’ ,13,'NODES ' ,814)
4 FORMAT(8 (2X,E9.3) ,/8 (2X,E9.3))

400 CONTINUE
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A=0.
N=0
WRITE (3) N,(N,1=1,8),((A,J=l,16),1=1,16)

C PUT TERMINA TER IN FCR BAR DATA
A1=.O
B1=.O

C FCR CASE OF REINFOCIMENT EE IE 5342,5344 KAREAM
ASTEEL=0.0
ESTEELO. 0
WRITE (8) (ASTEEL, ESTEEL, LNEW, Al, Bl, (NOPE (I),1=1,8) 
&,((B(I,J
& ),J=1,16),1=1,4))
REWIND 3
RETURN
END

C ============== START SUBROUTINE =
SUBROUTINE ROSB(LNEW)
COMMON

& US(50,2),R(3),
& T(200) ,PP (200) ,IONARY(70 )
& ,P(12) ,EEL(2,12) ,COJ (2, 2),COJIN (2,2),DET, DI (2,12 
&) ,DIJ(2,2)
& ,N0PE (12),XYE(3,12),DISE(2,12)
& ,XYP (3 ) ,RP,STRN(4 ) ,STRS (4) ,STRSP (4 )
& ,ESTIFM(24,24) ,B(4,24) ,DVDB(4,24) ,DVD(4,4)
&,FORCE (16),SFORCE (16) ,R2 (100) ,DIS (2,200)

C
C WRITE (6,30) ((ESTIFM(I,J),I=1,LV),J=1,LV)

DO 250 1=1, NON
DO 150 M=1,NB
IF (NOP (LNEW, I) .EQ. NBC(M)) GO TO 140

150 CONTINUE
CD TO 250

140 IF (ANG(M) .LT. 0.01E-8) GO TO 250
CASH=ANG (M) * 0.0174 53 2 92
CS=COS(GASH)
TN=TAN((ASH)
MASH=2*I-1
NASH=MASH+1
DO 20 K=1,LV
STFUC=ESTIFM(MASH,K)*CS
STFV0=ESTIFM(NASH,K)*CS
ESTIFM (MASH, K)=S TFUC 4STFV0* TN
ESTIFM (NASH, K) =S TF V0 -S TFUC* TN

20 CONTINUE
DO 40 K=MASH,NASH
STFUC=ESTIFM(K,MASH)* CS
STFV0=ESTIFM(K,NASH)* CS
ESTIFM (K, MASH) =S TFUC-+STF VO* TN
ESTIFM (K, NASH) =STFVC-STFUC* TN

40 CONTINUE
DO 60 J=MASH,NASH
DO 60 K=1,LV
ESTIFM (K, J) =ESTIFM (J, K)
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60 CONTINUE

250 CONTINUE 
WRITE (6,30) ((ESTIFM (I, J), 1=1, LV), J=1, LV)

RETURN
============== START SUBROUTINE ============ 

END
SUBROUTINE FEM(IG\US) 
COMMON

& US (50,2) ,R(3),
& T(200) ,PP (200) ,IONARY(70)
& ,P(12) ,EEL(2,12) ,COJ (2, 2),COJIN(2, 2),LET,DI (2,12 
&) ,DIJ(2,2)
& ,NDPE (12),XYE (3,12),DISE(2,12)
& ,XYP (3 ) ,RP,STRN (4 ) ,STRS (4 ) ,STRSP (4 )
& ,ESTIFM(24,24),B(4,24),DVDB(4,24),DVD(4,4)
&,FORCE (16),SFQRCE (16),R2 (100),DIS (2, 200)

CAICUIATE B MATRIX FROM DI MATRIX

KASH=O
DO 10 1=1,NON
MASH=NASH+1
NASH=MASH+1
B(1,MASH)=DI(1,1)
B(2,NASH)=DI(2,1)
B(3,MASH)=DI(2,1)
B(3,NASH)=DI(1,1)
IF (NPP .EQ. 2) B(4,MASH)=P(I)/RP

10 CONTINUE
DV=ABS (DET)*WGT (KAUS)
IF (NPP .EQ. 2) DV=DV*RP*6.2831853072
IF (NCQRD .EQ. 3) DV=DV*XYP (3)
IF (NCORD .EQ. 2) DV=DV*THICK
CAICUIATE DVD MATRIX

DO 12 1=1, ICS
DO 12 J=1,ICS
DVD (I, J)=DV*D (I, J)

12 CONTINUE
DO 16 1=1, ICS
DO 16 J=1,LV 
(ASH=0.
DO 14 K=1,ICS 
(ASH=GASH4DVD (I, K)* B(K, J)

14 CONTINUE
DVDB(I,J)=GASH

16 CONTINUE
RETURN
END

C ============== START SUBROUTINE =============
SUBROUTINE AUX (LNEW)
COMMON

& US (50, 2),R (3),
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& T(200) ,PP(200) ,IONARY(70)
& ,P(12) ,EEL(2,12) ,COJ(2,2) ,C0JIN(2,2) , DET, DI (2,12
&) ,DIJ(2,2)
& ,NOPE(12),XYE(3,12),DISE (2,12)
& ,XYP (3 ) ,RP,STRN(4 ) ,STRS (4 ) ,STRSP(4 )
& ,ESTIFM(24, 24) ,B(4,24) ,DVDB (4,24) ,DVD (4,4)
&,FORCE (16) ,SFORCE(16) ,R2 (100),DIS (2,200)

C
C CREATE COORDINATE JACOBIAN 0 INTERPOLATE X, YOCOJ (I, J) ,XY (1) ,XY (2 )
C ARE COORDINATE JACOBIAN MATRIX, X COORDINATE AND Y COORDINATE
C
C WRITE (6,19JNCN
C19 FORMAT(1H /NCN=/',I4)
C WRITE (6,20) ((XYE (I, J) ,1=1,2) ,J=1,NCN)
C WRITE (6,20) ((DEL(I, J) ,1=1,2) ,J=1,NON)
C WRITE(6,20) (P (I), 1=1, NON)
C20 FORMAT(1H ,2E15.7)

DO 8 1=1,2
DO 8 J =1,2
GASH=O.
DO 4 K=l,N0N
GASH=GASH+XYE (I,K)*DEL (J,K)

4 CONTINUE
COJ(I,J)=GASH

8 CONTINUE
C WRITE(6,20) ((COJ (I, J), 1=1,2) ,J=l,N0N)

DO 16 1=1,NOORD
GASH=0.
DO 6 K=1,NCN
GASH=GASH+XYE (I,K)*P (K)

6 CONTINUE
XYP(I)=GASH

16 CONTINUE
RP=XYP (1)

C
C CALCULATE DETERMINATE AND INVERSE OF COORDINATE JACOBIAN
C DET AND COJIN (I, J) ARE DETERMINANT AND INVERSE COORD. JACOBIAN
C

DETCOJ (1,1 )*COJ (2,2)-COJ (1,2)*COJ (2,1)
DET=ABS (DET)

C WRITE (6,20)DET
C IF (DET) 100,200,300

IF(DET) 300,200,300
C100 CONTINUE
C WRITE (6,101) LNEW
C 101 FORMAT (1HO,38H NEGATIVE DET STOPPED AT ELEMENT NO = ,13)
C STOP

200 DET=0.0000000001
300 CONTINUE

COJIN (1,1 )=COJ (2,2) /DET
COJIN (2, 2) =COJ (1,1) /DET
COJIN (1,2 )=-COJ (1,2) /DET
COJIN (2,1 )=-COJ (2,1) /DET

C
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C CALCULATE CARTESIAN DERIVATIVES OF SHALE FUNCTIONS,DI (I,K), I=X, Y,
C

DO 14 1=1,2
DO 12 K=1,NCN
GASH=O.
DO 10 J =1,2
G\SH=GASH4DEL (J, K)* COJIN (J, I)

10 CONTINUE
DI(I,K)=GASH

12 CONTINUE
14 CONTINUE

RETURN
END

C ============= START SUBROUTINE =============
SUBROUTINE MODU
CN=E1/E2
CQ=CN*C2*C2
D(3,3)=G2
D(l,3)=0.
D(3,l)=0.
D(2,3)=0.
D(3,2)=0.
IF(NPP ,NE. 0) 00 TO 20

C
C D MATRIX FOR PLALE STRESS CASE
C

CD=E2/(1.-CQ)
D (1,1)=CD*CN
D(2,2)=CD
D (1,2)=CD*CN*C2
D (2,1)=CD*CN*C2
GO TO 24

20 CONTINUE
C
C D MATRIX FOR PLALE STRAIN CASE
C

CD=E2/((1.4C1)* (l.-Cl-2.*CQ))
D(1,1)=CD*CN* (l.-CQ)
D (2, 2)=CD* (1.-C1*C1)
D(1,2)=CD*CN* (1.4C1)*C2
D(2,1)=D( 1,2)
IF (NPP ,NE. 2) GO TO 24

C
C D MATRIX FOR AXISY4METRIC CASE
C

D(4,4)=D (1,1)
D (4,1)=CD* (C14CQ)
D(1,4)=D (4,1)
D(4,2)=D (1,2)
D(2,4)=D (1,2)
D(3,4)=0.
D(4,3)=0.

24 CONTINUE
RETURN
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END
C ============== START SUBROUTINE ============= 

SUBROUTINE STRP(LNEW)
COMMON

& US (50, 2) ,R(3 ),
& T (200) ,PP (200), IOFARY(70)
& ,P(12),DEL(2,12) ,COJ(2,2) ,COJIN(2,2),DET,DI (2,12
&) ,DIJ(2,2)
& ,NOPE (12),XYE (3,12),DISE (2,12)
& ,XYP (3 ) ,RP,STRN(4 ) ,STRS (4 ) ,STRSP (4 )
& ,ESTIFM(24,24),B(4,24) ,DVDB(4,24) ,DVD(4,4)
&,FCRCE (16),SFQRCE (16),R2 (100), DIS (2, 200)

C
DO 18 1=1,2
DO 18 J=1,2 
GASH=0.
DO 16 K=1,NSN
G\SH= GASH + DISE(I,K)*DI(J,K)

16 CONTINUE
DIJ (I, J)=GASH

18 CONTINUE
DO 9 1=1,3
DO 9 J=1,LV 
B(I,J)=0.

9 CONTINUE
C LOOP 10 IS FOR NUN-LINEARISATION OF MATERIAL RESPONSE. 

LASH=0
DO 10 1=1, NON
MASH=NASH+1
NASH=MASH+1
B(1,MASH)=DI(1,1)
B(2,NASH)=DI (2,1)
B(3,MASH)=DI(2,1)
B(3,FASH)=DI (1,1)

10 CONTINUE
IF (NPP .NE. 2) GO TO 30
GISH=0.
DO 20 K=l,N0N
GISH=GISH4DISE (1,K)*P (K)

20 CONTINUE
IF (RP .EQ. 0.0) RP=0.000001
STRN(4)=GISH/RP

30 CONTINUE
C
C CALCULATE STRAIN AT A POINT
C

STRN(1)=DIJ(1,1)
STRN(2 )=DIJ (2,2)
STRN (3 )=DIJ (1,2)+DIJ (2,1)

C
C CALCULATE STRESSES AT A POINT
C

DO 24 1=1, ICS
GASH=O.
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DO 22 J=1,ICS
GASH=GASH+D (I, J )*STRN (J)

22 CONTINUE
SIRS (I )=GASH

24 CONTINUE
IF (NPP-1) 26,28,32

26 STRN(4)=0.
SIRS (4 )=C1*STRS (1 )+C2*STRS (2 )*E1/E2
GO TO 32

28 STRS(4)=0.
STRN (4 )=- (C1*STRS (1) /El)- (C2*STRS (2) /E2)

32 CONTINUE
CASH= (SIRS (1 )+STRS (2) )*0.5
GISH=STRS (1 )-GASH
GESH=SIRS (3)
GOSH=Sa*T (GISH*GISH4GESH*GESH)
STRSP(1)=GASH+GOSH
STRSP(2)=CASH-GOSH
STRSP (3 )=45. 0
IF (GISH.NE. 0.0) STRSP (3 )=ATAN (GESH/GISH)*28. 6478

&89757
STRSP (4 )=SIRS (4)
RP=GOSH

C
CICN=1
C WRITE (19, 50) ICN, XYP (1) ,XYP (2), (STRSP (I), 1=1,3)
C WRITE (6,51) (SIRS (I), 1=1,4)
C WRITE (6,51) ((B(I, J),J=l,LV), 1=1,3)
C51 FORMAT(1H ,8E15.3)
C LOOP 11 IS FCR NON-LINEAR WORK.

DO 11 J=1,LV
SUM=O.
DO 12 1=1,3
SLM=SUM4STRS (I )* B (I, J)

12 CONTINUE
FQRCE(J)=SCM

11 CONTINUE
C FORCE VECTOR FCR ELEMENT POINT.

RETURN
END

C ============= START SUBROUTINE =============
SUBROUTINE STRESS
COMMON

& US(50,2),R(3),
& T(200) ,PP (200), IONARY(70)
& ,P(12) ,DEL (2,12) ,COJ (2, 2),COJIN(2, 2) ,DET,DI (2,12 
&) ,DIJ(2,2)
& ,NOPE (12),XYE(3,12),DISE (2,12)
& ,XYP(3) ,RP,SIRN(4),SIRS (4),STRSP (4)
& ,ESTIFM(24, 24) ,B(4,24) ,DVDB(4,24) ,DVD(4,4)
&,FORCE (16) ,SFCRCE (16) ,R2(100),DIS (2,200)

C INITIALISE R2 VECTOR
DO 900 1=1, NSZF

900 R3(I)=0.0
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REWIND 2
READ(2) (R2 (I) ,1=1,NSZF)

C APPLIED LOAD READ FROM DISC 2.
DO 402 1=1, NSZF
R2(I)=R1 (I)+R2(I)

402 CONTINUE
C R1 IS THE REACTIVE LOAD VECTOR.
C WRITE (6,403) (R1 (I) ,1=1,NSZF)
C WRITE (6,403 ) (R2 (I), 1=1, NSZF)

403 FORMAT(1H ,8E13.4)
DO 902 1=1,2
DO 902 J=1,200

902 DIS(I,J)=0.0
DO 400 N=1,NE

C IF (N .GT. 1) GO TO 4444
IF(NOP(N,3).EQ.0)GOTO 405
NCN=8

C
C

LV=16
KK=1
NGAUS=NGAUSR

C
IF (NOP (N, 7) .NE.O)GOTO 30
NCN=6
LV=12
KK=30
NGAUS=45

30 CONTINUE
L=IMAT(N)
IF (L .GT. LMAT) L=L-100
E1=ORT(L,1)
E2=ORT(L,2)
G2=ORT(L,3)
C1=ORT (L, 4)
C2=ORT(L,5)
CALL MODU
DO 500 K=1,NCN
MASH=NOP (N,K)
DO 600 1=1,2
IF(NDYN.EQ. 1) DISE (I,K)=DIS (I,MASH)
IF(NDYN.GT. 1) DISE (I,K)=Q(I,MASH)
XYE(I,K)=CQRD(MASH,I)

600 CONTINUE
NOPE (K)=MASH

500 CONTINUE
C WRITE (6,7) N

7 FORMAT (1H0,13H ELEMENT NO = ,13)
IF (NSTRS .EQ. 1) GO TO 300

C AL ULATE STRAINS AND STRESSES AT G\USS IAN POINTS
C WRITE (6,8)
C WRITE (6,9)
C

8 FORMAT(' STRAINS AND STRESSES AT GAUSSIAN PO
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&INTS.
& PRINCIPAL VALUES’)

9 FORMAT (' ’,'COORDS (X,Y), XX ZZ XZ
& YY
& (1) (2) THETA MAX SHEAR'

C LOOP 101 IS FCR NON-L WORK.
DO 101 1=1,LV
SFCRCE(I)=0.

101 CONTINUE
DO 100 I(AUS=KK,N(AUS
ICN=I(AUS
G=ALFA(IGAUS)
HMBETA(IGkUS)
CALL SFR(G,H)
NNNN=N
CALL AUX(NNNN)
CALL STRP(NNNN)

C WRITE (6,2) ICN,XYP (1) ,XYP (2), (SIRS (J),J=l, 4), (STRSP (J),J=l, 3) ,RP
2 FORMAT(14, 2F9. 3,4 (E13.5, 2X) ,2X, 2 (E12. 4,2X), 
&F8.3,E12.4)

C WRITE (6,5) (STRN(J), J=l, 4)
5 FORMAT(14X, 8HSTRAINS , 4 (E13. 5, 2X))

C WRITE (11) XYP (1) ,XYP (2), (SIRS (J) ,J=1,4), (STRSP (J) ,J=1,4),
C & (STRN(I), 1=1,4)
C LOOP 102 IS FCR NON-L WORK.

DO 102 1=1,LV
SFCRCE (I )=SFCRCE (I )+FORCE (I )*WGT (IGXUS )*DET

102 CONTINUE
100 CONTINUE

C WRITE (6,104) (SFCRCE (I), 1=1, LV)
300 CONTINUE

IF (NSTRS .EQ. 2) GO TO 401
C
C CALCULATE STRAINS AND STRESSES AT NOEAL POINTS
C
C PRINT, ’ STRAINS AND STRESSES AT NODE POINTS
C& PRINCIPAL VALUES '

IF (NCN. EQ. 6)GOTO 140
XI1=-1.
ETA1=-1.
ETA2=-1.
XI2=1.
ANSFR=NSFR
DO 200 NLV=1, NON, NSFR
DO 80 1=1, NSFR
KNEW=NLV+I-1
GISH=I-1
GOSH=ANSFR-GISH
G= (GOSH*XI1+GISH*XI 2) /ANSFR
H=(GOSH*ETA1+GISH*ETA2)/ANSFR
CALL SFR(G,H)
CALL AUX(NNNN)
CALL STRP(NNNN)
MNEW=NOPE (KNEW)
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n 
n 

n
IF(N .EQ. 3) GO TO 222
IF(N .EQ. 9) GO TO 222
GO TO 224

222 CONTINUE
WRITE (6,2) MNEW, XYP (1) ,XYP (2), (STRS (J), J=1,4), (ST

&RSP(J) ,J=1,3) ,RP
WRITE (11) ILD,MNEW, XYP (1) ,XYP (2), (STRS (J), J=1,4), (STRSP (J), J=1,3) ,RP 

IF(MNEW .EQ. 14) WRITE (19) MNEW, ILD,SIRS (2)
WRITE (6,5) (STRN(J) ,J=1,4)

224 CONTINUE
80 CONTINUE

GISH=-XI1
GOSH=~ETA1
XI1=XI2
ETA1=ETA2
XI2=GISH
ETA2=GOSH

200 CONTINUE
GOTO 400

140 CONTINUE
DO 150 IKI=1,6
FIKI=IKI
IF (IKI. GT. 3 )GOTO 160
G= (3.-FIKI)/2.
H=0.0
GOTO 180

160 IF (IKI.GT.5)GOTO 170
G=0.0
H=(FIKI-3.)/2.
GOTO 180

170 CONTINUE
G=. 5
H=.5

180 CONTINUE
CALL SFR(G,H)
CALL AUX (NNNN)
CALL STRP(NNNN)
MNEW=NOPE(IKI)

PRINT, G, H,MNEW, XYP (1) ,XYP (2), (STRS (J), J=1,4), (STRSP (J), J=1,3) 
PRINT, (STRN (J), J=1,4)

150 CONTINUE
401 CONTINUE

IF (NSTRS.NE. 2) GOTO 400
C LOOP 103 IS FOR NON-L WORK

DO 103 1=1, NON
NNCN=NOPE(I)
N21=NNCN*2-1
N2=NNCN*2
R2 (N21 )=-SFORCE (2*1-1 )+R2 (N21)
R2 (N2 )=-SFORCE (1*2 )+R2 (N2)

103 CONTINUE
C INCREMENTAL LOAD FOR INTERFACE EFFECT

DO 701 1=1, IAY
DO 701 J=1,LELEM
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KJJ=KFAC(I,J)
IF (KJJ .EQ. N) GO TO 702

701 CONTINUE
GO TO 703

702 DO 704 K=l,N0N
K2=K*2-1
K1=K*2
KNCN=NOPE (K)
KN2=KNCN*2-1
KN=KNCN*2
IF (K .GT. 3) SFQRCE (K2)=0.0
IF (K .GT. 3) SFQRCE (KI) =0.0
R3 (KN2)=-SFQRCE (K2)+R3 (KN2)
R3 (KN) =-SFQRCE (Kl)+R3 (KN)

704 CONTINUE
703 CONTINUE

C
C
C

GOTO 400
405 CONTINUE

N1=NOP(N,1)
N2=NOP(N, 2)
DD1=DIS (1, N1) -DIS (1, N2)
DD2=DIS (2, N1) -DIS (2, N2)
F1=ORT(IMAT(N) ,4)
F2=ORT(IMAT(N),5)
F3=ORT(IMAT(N) ,6)
F1=F1*DD14F2*DD2
F 3=F2*DD14F3*DD2
WRITE (6,37)N,N1,N2
WRITE (6,38) Fl, F3

37 FORMAT(1H ,"FCRCES ON SPRING ELEMENT ", 15,"NUDES" 
&,2I5)

38 FQRMAT(1H ,"X CCMP. = ",E16.3," Y CCMP. = ",E16.3 
&)

400 CONTINUE
4444 CONTINUE

C WRITE (6,104) (R3(I),I=1,NSZF)
104 FORMAT(1H ,8E12.3)

CWRITE(6,105)((J,(DIS(I,J),1=1,2)),J=1,NSZF)
105 FORMAT(1H ,13,3X,2E16.3)

RETURN
END

C ============= START SUBROUTINE =============
SUBROUTINE BSTRESS
COMMON

& US (50,2) ,R(3),
& T(200) ,PP (200), IOLARY(70)
& ,P(12) ,DEL(2,12) ,COJ (2,2),COJIN (2, 2),DET, DI (2,12 
&) ,DIJ(2,2)
& ,N0PE (12),XYE (3,12),DISE(24)
& ,XYP (3 ) ,RP,STRN (4 ) ,STRS (4 ) ,STRSP (4 )
& ,ESTIFM(24, 24) ,B(4,24) ,DVDB(4,24) ,DVD(4,4)
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&,FORCE (16), SFQRCE (16), R2 (100), DIS (2,200)
REWIND 8
NCN=8
WRITE (6,20)

10 CONTINUE
READ(8)(ASTEEL,ESTEEL, LNEW,Al,Bl,(NOEE (I),1=1,8)

&,((B(I,J),J=l,16),1=1,4))
CWRITE (6,6OO)ASTEEL,ESTEEL,INEW,A1,B1, (NOEE (I) ,1=1,8)

600 FORMAT (1H , 20H A E LNEW A B NSIS , 2E10.3,14,2E10 
&.3,8I1O)

CWRITE (6,601)((B(I,J),J=1,16),1=1,4)
601 FORMAT(1H ,8E10.3)

C MUST SELECT DIRECTION OF DISPLACEMENT IE X OR Y BUT FIRST
C TEST FCR EAST BAR DATA

IF (Al .LT. 0.01E-8.AND.B1 .LT. 0.01E-8) GO TO 500 
K=1
IF (Bl .LT. 0.01E-8)K=2

C K=1 FOR BAR ALONG X AXIS.
KF =14+K
DO 100 I=1,NCN

100 DISE (I)=DIS (K, NOEE (I))
C WRITE (6,602) (DISE (I), 1=1, NON)

602 FORMAT(1H ,8E10.3)
C STRAIN STRESS AND FCRCE AT EACH G POINT

DO 300 1=1,4
STRN(I)=.O

300 CONTINUE
DO 400 1=1,4
JJJ=0
DO 200 J=K,KF,2
JJJ=JJJ+1
STRN (I) =STRN (I) +B (I, J )*DISE (JJJ)

200 CONTINUE
SIRS (I )=ESTEEL*STRN (I)
STRSP (I )=ASTEEL*STRS (I)

400 CONTINUE
WRITE (6,21 )LNEW,Al, Bl
WRITE (6,22) ((STRN (I),SIRS (I),STRSP (I)), 1=1,4)
GOTO 10

500 CONTINUE
20 FORMAT(1H /'ELEMENT X Y STRAIN STRESS FCR 

&CE")
21 FORMAT(1H ,14,10X,F9.3,10X,F9.3)
22 FORMAT(1H ,E15.4,10X,E15.4,10X,E15.4)

RETURN
END

C ============== START SUBROUTINE ==============
SUBROUTINE SFR(G,H)
CCMMON

& US (50,2),R (3),
& T(200) ,PP(200) ,IONARY(70)
& , P (12), DEL (2,12) ,COJ (2, 2),COJIN (2,2), DET, DI (2,12
&) ,DIJ(2,2)
& ,NDPE(12),XYE(3,12),DISE(2,12)
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& ,XYP(3) ,RP,STRN(4),STRS(4) ,STRSP(4)
& ,ESTIFM(24,24) ,B(4,24) ,DVDB(4,24) ,DVD (4,4)
&, FORCE (16) ,SFQRCE(16) ,R2 (100),DIS (2, 200)

C
IF(NCN. EQ.6)GOTO 10

C G AND H DENOTE THE XI AND ETA VALUES AT THE POINT COSIDERED 
C

Qi = G*H
GG = G*G
HH = H*H
GGH = GG*H
GiH =G*HH

C
C
C
C PARABOLIC SHAPE FUNCTIONS AND THEIR FIRST DERIVATIVES FCR
C CURVED 8-NODAL ARBITRARY QUADRILATERAL
C

G2 = G*2.
H2 = H*2.
012 = GH*2.
P( 1)= (-1.+GH4GG-FHH-GGH-GHH)/4.
P( 2) = ( l.-H-GG+GGH)/2.
P( 3) = (-l.-GH4GG-HLH-GGL4OHH)/4.
P( 4) = ( 1.+G-HH-GHH)/2.
P( 5) = (-1.+GH+GG4HH+GGH+GHH)/4.
P( 6) = ( 1.4H-GG-GGH )/2.
P( 7) = (-1.-GH4GG4HH-FGGH-GHH)/4.
P( 8) = ( 1.-G-HH4GHH)/2.
EEL (1,1 )= (H+G2-GH2-HH) /4.
DEL (1, 2)=-G+GH
EEL (1,3 )= (-H+G2-GH2+HH)/4.
DEL (1,4)= (1.-HHJ/2.
DE L (1,5) = (H +G2+GH 2-+HH) /4.
DEL(1,6)=-G-GH
EEL (1,7)= (-H+G2+GH2-HH) /4.
EEL(l,8)=(-1.4HH)/2.
DEL (2,1)= (G-FH2-GG-GH2)/4.
DEL(2, 2)= (-1.+GG)/2.
DEL(2,3)= (-G+H2-GG+GH2 )/4.
DEL(2,4)=-H-GH
EEL (2,5) = (G-FH2+GG4GH2) /4.
EEL(2,6)= (l.-GG)/2.
DEL (2, 7) = (-G-+H2+GG-GH2) /4.
EEL(2,8)=-H-K3H

C
GOTO 20

10 CONTINUE
C SHAPE FUNCTIONS FOR TRIANGLE ELEMENT
C 6 NODE TRIANGLE

X2G2=2.*G*G
X2H2=2.*H*H
X2GH=2.*G*H
P(1)=X2G2-G
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P (2 )=4 .* G-2 .* (X2G2+X2GH)
P(3)=l.-3.* (G4H)+X2G24X2H2+2.*X2GH
P(4 )=4.*H-2.* (X2GH+X2H2)
P(5)=X2H2-H
P(6)=2.*X2GH
DEL(1,1)=4 .*G-1.
EEL(l,2)=4.-8.*G-4 ,*H
EEL(l,3)=-3.+4.* (G4H)
DEL(1,4)=-4.*H
EEL(l,5)=0.
DEL(1,6)=4 ,*H
EEL(2,l)=0.
DEL(2,2)=-4.*G
DEL(2,3)=-3.+4.* (G4H)
DEL(2,4)=4.-4.*G-8.*H
EEL(2,5)=4.*H-1.
EEL(2,6)=4.*G

20 CONTINUE
RETURN
END

C ============== START SUBROUTINE ============ 
SUBROUTINE SOLVE
CCMMON/ADY/SK(24000),R ,ESTIFM(24,24),NN(12)

C
C WRITE (6,50)
C50 FORMAT(1H /REACTIONS')
C WRITE (6,51) (R1 (I), 1=1, NSZF)
C51 FORMAT(1H ,60E15.4)

NCN=8
C CORRECT FCR 8. CR 6.

FBF=24000
NSIZ=0
NNP=0
NBUF=NSK-1
NZ=1
ND=1
NLKI=0

C
L=0
IF (NT) 230,235,230

230 WRITE(6,101)
READ , NRON, NROF, NOON, bCCF, XST
WRITE (6,1) NRON, NRCF, NOON, NOOF, XST

1 FORMAT(1H ,4I3,2X,E9.3)
101 FORMAT (13H0 STIFFFESSES )
235 CONTINUE

DO 236 N=l,bBF
236 SK(N)=0.

N0=l
READ (3)

& N,(NN(I),1=1,8),((ESTIFM(I,J),J=1,16),1=1,16) 
CWRITE(6,265)(N,(NN(I),1=1,8))

265 FORMAT(1H /'ELEMENT NO.",14,"STIFF .. .NODES" ,814) 
C WRITE (6,266) ((ESTIFM(I, J) ,J=1,16), 1=1,16)
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C266 FORMAT (1H ,8E12.4)
NCN=8
IF (NN (7) .EQ. 0)NCN=6
IF (NN (3) .EQ. 0)NCN=2

C CORRECT FOR 8. OR 6.
242 L=L+1

DO 300 M=l,9
IF (N.EQ.O) GO TO 303
DO 245 1=1, NON
IF (NN(I) .EQ. L) GO TO 250

245 CONTINUE
GO TO 303

250 NC=NC+1
DO 280 1=1,NON
IF (NN(I).EQ.O) GO TO 280
II=(NN(I)-L)*NDF
DO 270 J=l,N0N
IF (NN(J) .EQ. 0) GO TO 270
JJ=(NN(J)-L)*NDF
DO 260 IL=1,NDF
IA=II4TL
IC=(I-1)*NDF+IL
DO 260 JM=1,NDF
JB=JJ4JM
IF (IA.GT.JB) GO TO 260
JD= (J-l )*NDF4JM
IAB=( (JB-1 )*JB) /2+IA

CO WRITE (6,3000)10, JD,ESTIFM(IC, JD) ,IAB
C3000 FCRMAT(1H ,*E(",2I3,') = ',E12.3/ ON SK/, 13/) ")

SK (IAB) =SK (IAB) +ESTIFM (IC, JD)
260 CONTINUE
270 CONTINUE

NX= (NN (I )-L)*NDF
IF (NSIZ.IT.NX) NSIZ=NX

280 CONTINUE
READ (3)

& N,(NN(I),1=1,8),((ESTIFM(I,J),J=1,16),1=1,16) 
CWRITE (6,265)(N,(NN(I),1=1,8))
CC WRITE (6,266) ((ESTIFM (I, J), J=1,16), 1=1,16)

NCN=8
IF (NN (7) .EQ. 0)NCN=6
IF (NN (3 ) .EQ. 0)NCN=2

300 CONTINUE
C

C
303 CONTINUE

IF (NT) 318,318,304
304 IF (L-NRON) 318,305,318
305 JB = NEE* (NCON-NRON) + NO OF

IA = (JB* (JB-1 ))/2 + NROF
SK(IA) = SK(IA) + XST
READ , NRON,NRCF, NOON, N0CF, XST

CWRITE (6,1) NRON,NROF,NOON,NCCE,XST
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GO TO 304
318 CONTINUE

NSZ=NSIZ+NDF
JZ = 0
IF (NZ.EQ.bB+1) GO TO 320
IF (L. NE. NBC (NZ)) GO TO 320
JZ =NFIX(NZ)
IZ=10** (NDF-1)
NZ=NZ+1

320 DO 500 1=1,NDF
N3Z=NSZ-1
IC= I+NDF* (L-l)
R=R1(IC)
NBD=O
IF(JZ.EQ.O) GO TO 400
IF (JZ.LT. IZ) GO TO 340
LZ = (NZ-2 )*NDF+I
U(ND)=U(LZ)
RS=-R
R=U (ND)
ND=ND+1
NBD=1 
JZ=JZ-IZ 

340 IZ=IZ/10 
400 CONTINUE

IF (SK(1) .GE. 0.) GO TO 700
CWRITE (6,701) L,I,SK(1)

701 FORMAT(1HO,8HN3DE ND. ,15,110,01 D.F. ,7HSK(1) =
& ,E15.6)

700 CONTINUE
NBLK=NSZ+4
IF((NBUF+NBLK).IE.NBF) GO TO 408
NLKI=NLKI+1
WRITE (4) NLKI, bBUF, (SK (J), J=NSK, NBUF)
PRINT,'WRITING',NLKI,' RECCED TO DISC 4 SK(NBUF 

&)=',SK (NBUF)
NBUF=NSK-1
NNP=0

408 NNP=NNP+1
NBUF=NBUF+1
SK(NBUF)=NSZ
NBUF=NBUF+1
SK(NBUF)=NBD
NBUF=NBUF+1
IA=NBUF+1

=================================INVERT diagona l  term

IF(NBD.EQ.l) GO TO 411
IF (SK(1) .NE. 0.) GO TO 99
PRINT,'PROGRAM HALTED IN ELIM '
PRINT,'NEGATIVE OR ZERO DIAGONAL STIFFNESS NODE N 

&O',L, '
& ',1,' DEGREE OF FREEDOM'

q
 
n
 

q
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STOP
99 CONTINUE

XK=1./SK (1)
SK(NBUF)=XK

========================MODIFY LOADS AND OFF DIAGONAL TERMS

410 R1(IC)=XK*R
GO TO 412

411 SK (NBUF)=-SK (1)
R1 (IC)=SK(1)*R4RS
XK=1.
R=-R

412 CONTINUE
IF (L+I-NP-NDF) 415,600,415

415 NBUF=NBUF+1
KJ=1
DO 420 J=1,NSZ
KJ=KJ4J
SK (NBUF)=XK*SK (KJ)
IF(NBD.EQ.l) SK(NBUF)=-SK(NBUF)

420 NBUF=NBUF+1
SK(NBUF)=NSZ
NBUF=NBUF+1
SK(NBUF)=NNP
DO 440 J=1,NSZ
IF(SK(IA) .EQ. 0.) GO TO 440
IF(NBD.EQ.l) GO TO 435
JB=(J* (J+l))/2+l
KJ=1
DO 430 K=1,J
KJ=KJ4K
IJ =JB4K

430 SK(IJ)=SK(IJ)-SK(KJ)*SK(IA)
435 JB=IC-+J

R1 (JB) =R1 (JB) -SK (IA )*R
440 IA=IA+1

DO 460 J=1,NSZ
IK=(J* (J-l))/2
IJ=IK4J+1
DO 460 K=1,J
IA =IK+K
JB=IJ-FK

460 SK(IA)=SK(JB)
IJ=(NSZ* (NSZ+l))/2+l
IK=IJ+NSZ
DO 480 K=IJ,IK

480 SK(K)=0.
500 CONTINUE

NS IZ =NS IZ-NDF
GO TO 242

600 CONTINUE
NLKI=NLKI+1
WRITE (4) NLKI,NBUF, (SK (J), J=NSK, NBUF )
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PRINT,'WRITING',NLKI,' RECORD TO DISC*4* SK(NBUF 
&)=',SK(NBUF)
IF(NSIZ.EQ.O) NSIZ=NDF
PRINT,'THERE ARE ',NLKI,' RECORDS ON DISC FILE 4' 
RETURN
END

C ============= START SUBROUTINE ============
SUBROUTINE RESOLV
CCMMON/ADY/SK(24000),R
REWIND 4
READ(4) NLKI,NTP, (SK(I) ,I=NSK,NTP)
NBUF=NSK-1
ND=1
NNP=1
DO 500 L=1,NP
DO 490 1=1,NDF
IC=I-FNDF* (L-l)
R=R1(IC) 
NBUF=NBUF+1
NSZ=SK (NBUF)
NBUF=NBUF+1
NBD=SK(NBUF)
NBUF=NBUF+1
IF(NBD.EQ.O) GO TO 420
RS=-R
R=HJ (ND)
ND=ND+1
R1 (IC) =SK (NBUF) *R4RS
GJ TO 425

420 CONTINUE
R1(IC)=SK(NBUF)*R

425 CONTINUE
IF(L+I-NP-NDF) 450,600,450

450 NBUF=NBUF+1
DO 470 J=1,NSZ
IK=IC4J
R1 (IK)=R1 (IK)-SK (NBUF)*R

470 NBUF=NBUF+1
NBUF=NBUF+1
IF(NBUF.LT.NTP) GO TO 490
READ(4) NLKI,NTP,(SK(II),II=NSK,NTP) 
NBUF=NSK-1
NNP=0

490 NNP=NNP+1
500 CONTINUE
600 RETURN

END
C ============== START SUBROUTINE =============

SUBROUTINE BSUB
DIMENSION DIS (2, 200)
CCMMON/ADY/SK (24000) ,R 
EQUIVALENCE (SK (1) ,DIS (1,1))

WRITE (6,49)q
 o
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C49 FORMAT(1H /REACTIONS")
C WRITE (6,50) (R1(I),I=1,NSZF)
C50 FORMAT(1H ,60E15.4)

REWIND 3
C BACKSPACE 4
C PRINT,’BACKSPACE 4 AT 15820'

ND=ND-1
KJ=NEF*NP
DIS (NEF,NP)=R1 (KJ) 
Rl(KJ)=0.
I=NDF
L=NP
NBUF=NBUF-1
NBD=SK(NBUF)
NBUF=NBUF-2

C IF(NNP.EQ.1) EACKSPACE 4
C IF (NNP. EQ. 1) PRINT,'BACKSPACE 4 AT 15920'

GO TO 641
C
C==========================START SYSTEMATIC BACK SUBSTITN=
C

620 L=L-1
625 1=1-1

NNP=SK(NBUF)
C IF(NNP.EQ.l.AND.KIMI.NE.l) BACKSPACE 4
C IF (NNP.EQ. 1. AND.KIMI.KE. 1) PRINT,'BACKSPACE 4 AT 16000'

NBUF=NBUF-1
NSZ=SK(NBUF)
IA=NBUF-NSZ
KBUF=IA-2
NBD=SK(NBUF)
NBUF=NBUF-2
KJ=NDF* (L-l )+I
DIS (I,L)=R1 (KJ)
Rl(KJ)=0.
DO 640 J=1,NSZ
U=L+(J+I-1)/NEF
K=I4J-(LJ-L)*NEF
DIS (I,L)=DIS (I, L)-SK (IA)*DIS (K,U)

640 IA=IA+1
641 IF(NBD.EQ. 0) GO TO 642

R1(KJ)=DIS (I,L)
DIS (I,L)=U(ND)
ND=ND-1

642 CONTINUE
IF(I+L-2) 645,655,645

645 IF(NNP.KE.l) GO TO 650
READ(4) KIMI,KBUF, (SK(II),II=NSK,KBUF)

C PRINT,'READING',KIMI,' RECORD ON 4 SK (NBUF)= ' ,SK (NBUF)
C BACKSPACE 4
C PRINT,'BACKSPACE 4 AT 16230'

650 IF(I.NE.l) GO TO 625
652 I=NDF+1

GO TO 620
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655 CONTINUE
D

O
 

O
 Q

 
Q

 
nQ

Q
Q

Q
O

nn
 

Q
 

Q
 O

 n
 Q

 Q
 Q

BOUNDARY DISPLACEMENTS AND REACTION TRANSFORMATION

WRITE (6,113)
PRINT, NB

WRITE (6,704)(NBC(M) ,M=1,NB)
DO 250 M=1,N3
N=NBC(M)
MASH=2*N-1
NASH=MASH+1

WRITE (6,111) N, (DIS (I,N) , 1=1,NDF) , (R1 (J ), J=MASH, NASH)
IF (ANG(M) .EQ. 0.0) GO TO 250
GASH=ANG(M) * 0.0174 53 2 92
CS=COS ((ASH)
TN=TAN(GASH)
DXC=DIS (1,N)*CS
DYC=DIS (2,N)*CS
DIS (1, N)=DXC-DYC*TN
DIS (2, N)=DYS+DXC*TN
RXC=R1(MASH)*CS
RYC=R1 (NASH)*CS
RX=RXC-RYC*TN
RY=RYC4RX2*TN

WRITE (6,111) N, (DIS (I, N) , 1=1, NDF) ,RX, RY
250 CONTINUE

WRITE (6,10)
10 FORMAT (’ ' ,' NOLAL DISPLACEMENTS FORCES ’)
WRITE (6,11) ( N,DIS (1,N) ,DIS (2,N) ,R1 (N*2-l) ,R1 (N*2) ,N=1,NP)

PRINT, (DIS (1, N) ,DIS (2,N) ,R1 (N*2-l) ,R1 (N*2) ,N=1,NP)
11 FORMAT(’ ’/NODE NO. ’ ,13,' U=',E9.3, ' V=',E9.3, ’ RX=’,E9.3,
i' RY=’,E9.3)

IF(NDYN .LT. 2) GO TO 700
DO 701 1=1,NSZF
UAST(I)=0.0

701 CONTINUE
DO 702 J=1,NP
DO 703 1=1,NDF
N=I+2* (J-l)
UAST (N)=DIS(I,J)

703 CONTINUE
702 CONTINUE

WRITE (6,704) (UAST(N) ,N=1,NSZF)
704 FORMAT (V)
700 CONTINUE

WRITE (6,110)
WRITE TO TAPE SPECIAL ELEMENT LATA.

DO 600 N=1,NE
IF(NOP(N,7) .GT. 0.01E-8) GO TO 600
WRITE (19,500) (N, (NOP (N, I) ,1=1,6))
CALL SFWRITE(NOP(N,1),6,IRELPY)
DO 610 NN=1,6
K=NOP (N,NN)
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Q 
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C WRITE (19,501)((CORD(K,I),1=1,2),(DIS(I,K),1=1,2)) 
610 CONTINUE

C500 FORMAT(715)
C501 FORMAT(4E12. 6)

600 CONTINUE
CALL SFWCIOSE (IREPLY)

110 FORMAT (1H0,14H DISPLACEMENTS )
111 FCRMAT(I10,6(F12.3,2X))
113 FORMAT (1HO,14H DISPLACEMENTS ,40X,10H REACTIONS 

&)

WRITE (6,49)
WRITE (6,50) (R1 (I), 1=1, IEZF)
RETURN
END

280



Input data for pavement analysis

1
0

133
1
2
3
4

133
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

3 1 3 13 1 14 6 5
.0001 1.4 0.0 0.0
AXY
36 37 600 2 4 2 4 16 1 0 0 0 2 0 0 0 36
1500000.0 1500000.0 506756.7 0.48 0.48 0.0002 .5 .0003 
1080000.0 1080000.0 385714.3 0.4 0.4 0.00015 .5 .0003 
225000.0 225000.0 80357.142 0.4 0.4 0.000149 0.5 .0003 
44000.0 44000.0 15714.285 0.4 0.4 0.000127 0.5 0.0003 
36 37 0 0 0
0.0 81.0
4.7623 81.0
9.5246 81.0
14.7623 81.0
20.0 81.0
26.0 81.0
32.0 81.0
38.0 81.0
44.0 81.0
50.0 81.0
56.0 81.0
62.0 81.0
68.0 81.0
0.0 79.5
9.5246 79.5
20.0 79.5
32.0 79.5
44.0 79.5
56.0 79.5
68.0 79.5
0.0 78.5
4.7623 78.0
9.5246 78.0
14.7624 78.0
20.0 78.0
26.0 78.0
32.0 78.0
38.0 78.0
44.0 78.0
50.0 78.0
56.0 78.0
62.0 78.0
68.0 78.0
0.0 75.0
9.5246 75.0
20.0 75.0
32.0 75.0
44.0 75.0
56.0 75.0
68.0 75.0
0.0 72.0
4.7623 72.0
9.5246 72.0
14.7623 72.0
20.0 72.0

281



46 26.0 72.0
47 32.0 72.0
48 38.0 72.0
49 44.0 72.0
50 50.0 72.0
51 56.0 72.0
52 62.0 72.0
53 68.0 72.0
54 0.0 66.0
55 9.5246 66.0
56 20.0 66.0
57 32.0 66.0
58 44.0 66.0
59 56.0 66.0
60 68.0 66.0
61 0.0 60.0
62 4.7623 60.0
63 9.5246 60.0
64 14.7623 6O.i
65 20.0 60.0
66 26.0 60.0
67 32.0 60.0
68 38.0 60.0
69 44.0 60.0
70 50.0 60.0
71 56.0 60.0
72 62.0 60.0
73 68.0 60.0
74 0.0 54.0
75 9.5246 54.0
76 20.0 54.0
77 32.0 54.0
78 44.0 54.0
79 56.0 54.0
80 68.0 54.0
81 0.0 48.0
82 4.7623 48.0
83 9.5246 48.0
84 14.7623 48.
85 20.0 48.0
86 26.0 48.0
87 32.0 48.0
88 38.0 48.0
89 44.0 48.0
90 50.0 48.0
91 56.0 48.0
92 62.0 48.0
93 68.0 48.0
94 0.0 36.0
95 9.5246 36.0
96 20.0 36.0
97 32.0 36.0
98 44.0 36.0
99 56.0 36.0
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100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

68.0 36.0 
0.0 24.0
4.7623 24.0
9.5246 24.0
14.7623 24,0 
20.0 24.0 
26.0 24.0 
32.0 24.0 
38.0 24.0 
44.0 24.0 
50.0 24.0 
56.0 24.0 
62.0 24.0 
68.0 24.0 
0.0 12.0
9.5246 12.0 
20.0 12.0 
32.0 12.0 
44.0 12.0 
56.0 12.0 
68.0 12.0 
0.0 0.0
4.7623 0.0
9.5246 0.0
14.7623 0.0 
20.0 0.0 
26.0 0.0 
32.0 0.0 
38.0 0.0 
44.0 0.0 
50.0 0.0 
56.0 0.0 
62.0 0,0 
68.0 0.0
21 22 23 15 3 2: 1 14 1
23 24 25 16 5 4: 3 15 1
25 26 27 17 7 6i 5 16 1
27 28 29 18 9 81 7 17 1
29 30 31 19 11 10 9 18 1
31 32 33 20 13 12 11 19 1
41 42 43 35 23 22 21 34 2
43 44 45 36 25 24 23 35 2
45 46 47 37 27 26 25 36 2
47 48 49 38 29 28 27 37 2
49 50 51 39 31 30 29 38 2
51 52 53 40 33 32 31 39 2
61 62 63 55 43 42 41 54 3
63 64 65 56 45 44 43 55 3
65 66 67 57 47 46 45 56 3
67 68 69 58 49 48 47 57 3
69 70 71 59 51 50 49 58 3
71 72 73 60 53 52 51 59 3
81 82 83 75 63 62 61 74 3
83 84 85 76 65 64 63 75 3
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LCAD

21 85 86 87 77 67 66 65 76 3
22 87 88 89• 78 69 68 67 77 3
23 89 90 91 79 71 70 69 78 3
24 91 92 93 80 73 72 71 79 3
25 101 102 103 95 83 82 81 94 4
26 103 104 105 96 85 84 83 95 4
27 105 106 107 97 87 86 85 96 4
28 107 108 109 98 89 88 87 97 4
29 109 110 111 99 91 90 89 98 4
30 111 112 113 100 93 '92 91. 99 4
31 121 122 123 115 103 102 101 114
32 123 124 125 116 105 104 103 115
33 125 126 127 117 107 106 105 116
34 127 128 129 118 109 108 107 117
35 129 130 131 119 111 no 109 118
36 131 132 133 120 113 112 111 119

1 10 0.0 0.0 0.0
13 10 0.0 0.0 0.0
14 10 0.0 0.0 0.0
20 10 0.0 0.0 0.0
21 10 0.0 0.0 0.0
33 10 0.0 0.0 0.0
34 10 0.0 0.0 0.0
40 10 0.0 0.0 0.0
41 10 0.0 0.0 0.0
53 10 0.0 0.0 0.0
54 10 0.0 0.0 0.0
60 10 0.0 0.0 0.0
61 10 0.0 0.0 0.0
73 10 0.0 0.0 0.0
74 10 0.0 0.0 0.0
80 10 0.0 0.0 0.0
81 10 0.0 0.0 0.0
93 10 0.0 0.0 0.0
94 10 0.0 0.0 0.0

100 10 0.0 0.0 0.0
101 10 0.0 0.0 0.0
113 10 0.0 0,0 0.0
114 10 0.0 0.0 0.0
120 10 0.0 0.0 0.0
121 11 0.0 0.0 0.0
122 11 0.0 0.0 0.0
123 11 0.0 0.0 0.0
124 11 0.0 0.0 0.0
125 11 0.0 0.0 0.0
126 11 0.0 0.0 0.0
127 11 0.0 0.0 0.0
128 11 0.0 0.0 0.0
129 11 0.0 0.0 0.0
130 11 0.0 0.0 0.0
131 11 0.0 0.0 0.0
132 11 0.0 0.0 0.0
133 11 0.0 0.0 0.0

4
4
4
4
4
4
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2
1 0.0 -250.66
2 0.0 -501.32
3 0.0 -250.66

133 0.0 0.0
5 795 800 0 0 0

21 22 23 24 25 26 27 28 29 30 31 32 33
41 42 43 44 45 46 47 48 49 50 51 52 53
81 82 83 84 85 86 87 88 89 90 91 92 93

0 .0 0.0 0.0
1 2 3 4 5 6
7 8 9 10 11 12

19 20 21 22 23 24
LCAD

2
37

1 10 0.0 0.0 0.0
13 10 0.0 0.0 0.0
14 10 0.0 0.0 0.0
20 10 0.0 0.0 0.0
21 10 0.0 0.0 0.0
33 10 0.0 0.0 0.0
34 10 0.0 0.0 0.0
40 10 0.0 0.0 0.0
41 10 0.0 0.0 0.0
53 10 0.0 0.0 0.0
54 10 0.0 0.0 0.0
60 10 0.0 0.0 0.0
61 10 0.0 0.0 0.0
73 10 0.0 0.0 0.0
74 10 0.0 0.0 0.0
80 10 0.0 0.0 0.0
81 10 0.0 0.0 0.0
93 10 0.0 0.0 0.0
94 10 0.0 0.0 0.0

100 10 0.0 0.0 0.0
101 10 0.0 0.0 0.0
113 10 0.0 0.0 0.0
114 10 0.0 0.0 0.0
120 10 0.0 0.0 0.0
121 11 0.0 0.0 0.0
122 11 0.0 0.0 0.0
123 11 0.0 0.0 0.0
124 11 0.0 0.0 0.0
125 11 0.0 0.0 0.0
126 11 0.0 0.0 0.0
127 11 0.0 0.0 0.0
128 11 0.0 0.0 0.0
129 11 0.0 0.0 0.0
130 11 0.0 0.0 0.0
131 11 0.0 0.0 0.0
132 11 0.0 0.0 0.0
133 11 0.0 0.0 0.0
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APPENDIX II

THE WILSON e-METHOD

Let the acceleration, velocity and displacement at time t, 

i.e, and , where the subscript denotes time t,

be known quantities. For solution of U. 1A., U,,A.
n t+At’ t+At

and assuming that the acceleration varies linearly

during the time interval 0 At, where 0^1.

The parameter 0 is chosen to obtain accuracy and stability 

in the integration. The linear acceleration method is 

defined by 0=1 and is known to be only conditionally 

stable. In Wilson’s averaging method 0 equals 2 and the 

integration is unconditionally stable. Without loosing 

unconditional stability, 0 can be selected to obtain a 

scheme which has less integration error.

If t denotes the increase in time, where 0 t 0 At,

then for the time interval t to t + 0 At

6t+T
= +

••• ................

= + V +
T2
20 At^Ut+0 At - up

Ut+T = Ut + UtT +
1 V2 + <«t+At

Up6At

(1)

(2)

(3)

At time t+At
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^t+At
+ <fit+At + 6t>F

(4)

^t+At

2
Ut + UtAt + (2iit + Ut+At)^- (5)

Writing the equation governing the motion of a single 

degree of freedom system with free vibration period T, 

damping ratio £ and applied load r

U + 2£ wU + w2U = R (6)

Equation (6) should be satisfied at time t + 6 At, which

gives

Ut+ 6 At + 2? wUt+ 9 At + W Ut+6 At Rt+ 6 At (7)

Using Equations(l) and (3) at time T = 9 At and substi-

tute into Equation (7), an equation is obtained with

U, , . . as the 
t+At

only unknown. Solving

substituting into Equations(4) and (5) the following

is establishedrelationship

e. -
Ut+At 5t

Ut+At = A + L R t+ e At

Ut+ t - ut -

(8)
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where A is the approximation operator and L is the load 

operator; both are given in Table 1. This recurrence 

relation is used to study the stability and accuracy of 

the integration scheme, when the solution at time 

t + n At with an integer is given by

u uJ 1ut+n At t

Ut+n At = A“ 6t

_Ut + n At ut .

n-1
L Rt+At+(0-l)At+ A

+ ... + L R^.+n At + (0-l)At .. .( 9 )

The complete algorithm used in the integration is given 

in Table (2).
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Table (1), Load Operator at the Wilson-0-Mechod.

(1
B02

3
1 - KO)^- 36 - 2K)-^( - 6) 

At

A At(l
1
20

B02 K0V, B0
6 2 K 2

and

L

At2(l - 1
60

B__
2a  + 2co At

B
2co2At

B
6co2

where

; K

Table

Using

_ Ke)At(1 _
18 6

R = ( 6 +
( 2 . 2 coAt 6 ) 

co At

CB 
coAt

(2) Step-by-Step Solution

Be
6 6'

Wilson-0 Integration Method ( 44 )

A INITIAL CALCULATION

1. Formation of stiffness matrix [K], mass matrix [m] 
and damping matrix [c].

2. Initialize U , U and U 
o u o
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3. Select time step At and calculate integration constants

0 = 1.4

6 3 „ 6 At

stiffness matrik K

a
o (6 At)2 ’ 1 6 At ’

a4

a ~~ an
„ o . x 2

0 ’ a5 r 0 a6 =

a^
 At2

8 6

4. Formation of effective

* 
K = K + a M + a ,C

o 1

* *
5. Triangularize K : K

B For Each time step

1. Calculation of effecti'

T
LDL

load vector at time t + At:

Rt+0At Rt + 6(Rt+At Rt + M(a b + aoU, + 2U,)
O zu L "C

2. Solve for displacements at time t+0 At:

LDL Ut+0 At Rt+e At
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3. Calculate displacements, velocities and accelerations 

at time t + At:

>+ a5Ut

Ut+At + a7(Ut+At

Ut+At + At6t + a8(fjt+At + 2Ut)

291



APPENDIX III

THE El GENPROBLEM

VECTOR ITERATION METHODS

The basic relation considered is

K (J) X M <t> (1)

The aim is to satisfy the above equation by directly 

operating upon it. Two techniques of inverse iteration 

are used, inverse iteration and forward iteration.

(a) INVERSE ITERATION

Assuming that [k ] is positive definite,[m]is the diagonal 

mass matrix or alternatively it may be a handed matrix. 

The basic equations used are presented in the following.

Assuming a starting iteration vector evaluate in each 

iteration step K = 1, 2 ... as follows

(2)

and

(3)
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where provided that is not M-orthogonal to meaning

that X? M (j>i 0 

then X,
k+1

as K---- >

the basic step in the iteration is the solution of Equation

(2). In the actual computer program it is assumed that

Y1 MXX

K xk+l Yk (4)

Yk+1 M xk+1 (5)

P<Xk+P =
—T
xk+lY

— TY VAk+1 K+l

(6)

Yk+1
Yk+1

<Xk+l Yk+l>1/2
(7)

where
T

provided that / 0

Yk+1 M and P(XR+1)--

as K
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Using the second iteration procedure, an approximation 

to the eigenvalue is giVen by the Rayleigh quotient 

P(Xr +i). The solution has convergence when

[x<k+1>- hk>]
\ (k+l) < To* ........................................ w
A1

-25
where To£ should be 10 or smaller when the eigenvalue

X1 is required to 25 digit accuracy. The eigenvector 

will then be accurate to about 8 or more digits. If £ 

is the last iteration then

h p(x(£+ip ............ ................... (9)

and

*1
x(£+l)

................... (10)

lx£+l y£+1; z

(b) FORWARD ITERATION

The method of forward iteration is complementary to the

inverse iteration technique. The method yields the 

eigenvector corresponding to the largest eigenvalue. 

M is assumed positive definite. Adopting the same 

procedure as in the previous section and assuming that 

Y1 = K xT for K = 1, 2 ...
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M xk+l Yk (11)

Yk+1 K xk+1 (12)

P<Xk+l>
Cl
Cl \

(13)

Yk+1
Yk+1

(XP Y )1/2
1 k+1 k; Z

(14)

Provided that
n Y1

Yk+1 K (j)
Yn

and P(XR+1) as K oc

+ 0

X 
n

Convergence in the iteration could again be measured as 

given in Equ.( 3 ) and if £ is the last iteration, then

P<X£+P (15)

(16)
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Appendix IV

Programme for analysis of experimental results

CCMM0N/CD/NC1(2400),NC2(2400),X(2400),Y(2400),CHROM 
& (1200),
&XX(1200),YY(1200),XF(1200),YF(1200),TXY(1200),XCL(1 
&200)
&,NOEF(1200),AZ(1500),XC(1200),YC(1200),CL(1200) ,W(3
&000)
&,CLINIC(1200),YCL(1200),PQS(40,40)

C
CCMMON/ELS/N, II, NI, NV1, NV2, XV, XY, SCALEX, SCALE Y, XNOT 

&,YNOT,
&NCC,NX,NY,KK2,KK2X,FRTXS (40,40) ,XL,XH,YL,YH

CCMMCN/STRE/SHXY (1200),FMQ(1200),DSH (1200),STYC(120
&0)
&,STXY(1200),XST(40,40),YST(40,40),STXC(100),DXST(10
&0)
NV1=O.O
NV2=0.0
XV=0.0
YV=0.0

c
C CALCULATION OF UNIT FRINGE VALUE

UNIF=1.0
10 FORMAT (V)

READ(41,10)NTF
C NTF ARE NO. OF TOTALL FRAMES IN THE FIIM

READ (41,10)(NOEF(I),1=1,NTF)
C NOEF IS THE NO. OF EACH FRAME

11=0
DO 555 N=1,NTF
11=11+1
NI=II+9
CALL CONTP
CALL ISOCH
IF (NCC .EQ. 1) GO TO 20

C IF (N .GT. 2) GO TO 600
CALL ISOCL

600 CONTINUE
CALL EXST

20 CONTINUE
555 CONTINUE

STOP
END

C
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SUBROUTINE CONTP
CCMM0N/CD/NC1(2400),NC2(2400),X(2400),Y(2400),CHR0M 

& (1200),
&XX(1200) ,YY(1200) ,XF(1200) ,YF(1200) ,TXY(1200) ,XCL(1 
&200)
&,NOEF(1200),AZ(1500),XC(1200),YC(1200),CL(1200),W(3  
&000)
&,CLINIC(1200),YCL(1200),PQS(40,40)
COMMON/ELS/N, II,NI,NV1,NV2, XV, XY, SCALE X, SCALEY, XNOT 

&,YN0T,
&NCC,NX,NY,KK2,KK2X,FRTXS (40,40) ,XL,XH,YL,YH
READ(41,10)(NCI(I),NC2(I),X(I),Y(I),RX,RY,I=II,NI)

10 FORMAT (V)
DO 11 I=II,NI
X(I)=100.0+X(I) 
Y(I)=100.0+Y(I)

11 CONTINUE
C CALCULATION OF SCALE AND COORDINATES OF ORIGEN

SCALE X=10.0/(X(II+6)-X(II+4))
SCALEY=5.0/ (Y (II+6J-Y (II+9))
DO 12 I=II,NI
X (I) =X (I) *SCALEX
Y (I) =Y (I) *SCALEY

12 CONTINUE
KK=II+4
XBARO.O
YBAR=0.0
DO 15 I=KK,NI
XBAR=XBAR+X (I) 
YBAR=YBAR+Y (I)

15 CONTINUE
XBAR=XBAR/ ((NI-KK) +1) 
YBAR=YBAR/ ( (NI-KK) +1)
XN0T=XBAR-3 * ((X (11+9) -X (11+7)) /4)
YN0T=YBAR- (Y (II+4)-Y (11+7))- (Y (II+6J-Y (11+9)) 
PRINT," VALUES OF XBAR AND YBAR"
PRINT, XBAR , YBAR
PRINT'," VALUES OF XNOT AND YNOT "

PRINT, XNOT , YNOT
CALCULATION OF SCALE FACTOR

PRINT," VALUES OF SCALE X AND SCALEY 
PRINT, SCALE X , SCALEY

RETURN
END

U O U U U U U 
u o

SUBROUTINE ISOCH
CCMMCN/CD/NC1 (2400),NC2(2400),X(2400),Y(2400),CHRO 

&M(1200),
&XX(1200),YY(1200),XF(1200),YF(1200),TXY(1200),XCL(
&1200)
&,NOEF(1200),AZ(1500),XC(1200),YC(1200),CL(1200) ,W(
&3000)
&,CLINIC(1200),YCL(1200),PQS (40,40)
COMMON/ELS/N, II, NI, NV1, NV2, XV, XY, SCAIEX, SCALEY, XNO 

&T,YNOT,
&NCC,NX,NY,KK2,KK2X,FRTXS (40,40) ,XL,XH,YL,YH

C LATA FCR ISCCHRCMATIC FRINGES
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11=441
20 CONTINUE

NC1(II)=NV1
NC2(II)=NV2
X(II)=XV
Y(II)=YV 
11=11+1
READ(41,1O)NV1,NV2,XV,YV,RX,RY

10 FORMAT (V)
IF (NV1 .LT. 9999) GO TO 20

C TRANSEFER OF COORDINATES
NCC=(II-NI)
IF(NCC .EQ. 1) GO TO 222
11=11-1
NI =441+1

C
DO 22 1=441,11
X(I)=100.0+X(I)
Y(I)=100.0+Y(I)

22 CONTINUE
C

DO 25 J =441, II
X(J)=X (J)*SCALEX
Y (J)=Y (J)*SCALEY
X(J)=X (J)-XNOT
Y(J)=Y (J)-YNOT

25 CONTINUE
C WRITE(6,30) (X(I) ,Y(I) ,I=NI,II)

30 FORMAT(2(8X,F8.4))
C CALCULATION OF MAXIMUM AND MINIMUM VALUES

XL=100000.0
XH=0.00000
YL=100000.0
YH=0.000000
DO 35 1=441,11
X2=X (I) 
IF (I .EQ. 
X3=X(I+1)

II) GO TO 31

31 CONTINUE
Y2=Y (I) 
IF (I .EQ. 
Y3=Y(I+1)

II) GO TO 32

32 CONTINUE 
IF (I .GT. NI) GO TO 70
XL=AMIN1(X2,X3)

70 CONTINUE
XL=AMIN1(XL,X2,X3)
XH=AMAX1 (XH,X2,X3)
IF (I .GT. NI) GO TO 80
YL=AMIN1 (Y2,Y3)

80 CONTINUE
YLf AMINI(YL,Y2,Y3)
YH=AMAX1 (YH,Y2,Y3)

35 CONTINUE
PRINT," VALUES OF MINX MAXX MINY

&"
WRITE (6,37) XL, XH, YL, YH

37 FORMAT(4(5X,F8.4))

MAXY
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UNIF=1.0
DO 40 1=141,11
K=(I-NI)+1
XX(K)=X (I)
YY(K)=Y (I)
CHROM (K) = (NCI (I )-NOEF (N))/100.0
CHRCM (K) CHROM (K) *UNIF

40 CONTINUE
DO 86 1=1,K
IF (CHROM (K) .GT. 9.) PRINT, "CHECK DATA OF IAST FR 

&AM "
86 CONTINUE

PRINT," NCMBER OF FRAME AS FOLLOW ," 
PRINT,NOEF (N)

C PRINT," VALUES OF XX YY CHRCM"
NP=II-NI
NP=II-NI
PRINT," VALUES OF NX NY NP
NXL=(XL+1.0)
XL =14 XL
NXH=XH
XH=NXH
NYL= (YL+1.0)
YL=NYL
NYH=YH
YH=NYH
NX= (XH-XL)*2+1
NY=(YH-YL)*2+1
PRINT, NX ,NY ,NP
WRITE (6,37)XL,XH, YL, YH
DO 82 1=1,3000

82 W(I)=0.0
DO 84 1=1,1500

84 AZ(I)=0.0
CALL RANGRD(NP,XX,YY,CHROM,NX,XL,XH,NY,YL,YH,AZ,30 

&00,W)
DO 45 1=1,1200
XX(I)=0.0
YY(I)=0.00
xf (i) =0.00
yf (i) =0.0
CHRCM (I) =0.0

45 CONTINUE
H= (XH-XL)/(NX-1)
HK= (YH-YL)/(NY-1)
DO 50 1=1,NX
XX(I)=XL+(I-1)*H

50 CONTINUE
DO 52 1=1,NY
YY (I )=YL+(1-1) *HK

52 CONTINUE
DO 55 J=1,NY
DO 55 1=1,NX
K=I+(J-1)*NX
XF(K)=XX(I)
YF(K)=YY (J)

55 CONTINUE
C SIGM1-SIGMA2 AT GRID POINTS
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no
 

no
 

n 
no

 
nn

nn
n

30 FORMAT (' VALUES OF SHEAR STRESS AT ®ID POIN 
STS')

WRITE (6,8) (SHXY (I) ,I=1,KK2)
IF (NCC .GT. 1) GO TO 44
NORMAL STRESES ACROSS CENTER LINE OF THE MODEL 
FIRST STEP SUMMATION OF SHEAR STRESS DIFRENCE ON LINES 
SYMMETRICALLY LOCATED WITH AXES OF SYMMETRY

DO 12 1=1,NY
L=(NX*I)-1
DSH (I )= (SHXY (L) *2+DSH (I))

12 CONTINUE
STYC(1)=2*TXY (14)

ASSUMING AT END OF CL SEGMA X EQ ZERO
DO 14 1=1,NY
STYC(I)=STYC(1)-DSH(I)
STXC (I )= (2*TXY (NX* (1-1 ) +14)) +STYC (I)

14 CONTINUE
\

PRINT," VALUES OF NORMAL STRESS ON CENTER LINE 
& OF MODDEL"

WRITE (6,16) (STYC (I) ,STXC (I) ,1=1,NY)
16 FORMAT(2(8X,F8.4))

NORMALL STRESS AT ALL GRID POINTS
DO 18 1=2,NY
DO 20 J=1,NX
K= (NX*I)-(J-l)
KH=K+NX
KL=K-NX
IF (KH .GT. K) TXY(KH)=0.0
IF(KL .LT. 1) TXY(KL)=0.0
DXST (J) = (DXST (J) + (SHXY (KH) -SHXY (KL)))
XST (I, J) =STXC (I) -DXST (J)
PQS (I,J)=(TXY (K)*2)**2
FRTXS (I, J) =4 * (SHXY (K) **2)
YST (I, J) =XST (I, J)-SQRT (PQS (I, J)-FRTXS (I, J))

20 CONTINUE
18 CONTINUE

PRINT," VALUES OF NORMALL STRESSES AT GRID 
&POINTS"

C WRITE (6,22)((XST(I,J),YST(I,J),J=1,NX),1=2,NY)
22 FORMAT(4(8X,F8.4))
44 CONTINUE

RETURN
END

C
SUBROUTINE ISOCL
CCMMON/CD/NC1(2400),NC2(2400),X(2400),Y(2400),CHRO 

&M(1200),
&XX(1200),YY(1200),XF(1200),YF(1200),TXY(1200),XCL( 
&1200)
&,NOEF(1200),AZ(1500),XC(1200),YC(1200),CL(1200),W(  
&3000)
&,CLINIC(1200),YCL(1200),PQS(40,40)
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o DO 60 1=1,NY

DO 60 J=1,NX
K=J+(I-1)*NY
TXY (K)=AZ(I,J)
TXY(K)=2*TXY (K)

60 CONTINUE
WRITE(6,90)

90 FORMAT (' VALUES OF SIGMA2-SIGM1 AT 
&GRID POINTS')
NT=NX*NY
DO 60 1=1,NT

60 TXY (I )=2*AZ (I)
WRITE (6,65) (TXY(I) ,1=1,NT)

65 FORMAT(3(6X,F8.4))
GO TO 220

222 WRITE (6,95)
95 FORMAT(' THE FORMER IS THE CASE OF FIRST FRAME OF 

& ZERO FRINGES')
220 CONTINUE

RETURN
END

SUBROUTINE EXST
CCMMCN/CD/NC1 (2400),NC2(2400),X(2400),Y(2400),CHRO 

&M(1200),
&XX(1200),YY(1200),XF(1200),YF(1200),TXY(1200),XCL( 
&1200)
&,NOEF(1200),AZ(1500),XC(1200),YC(1200),CL(1200),W( 
&3000)
&,CLINIC(1200),YCL(1200),PQS(40,40)

CCMMON/ELS/N,II,NI,NV1,NV2,XV,XY,SCALEX,SCALEY,XNO 
&T,YNOT,
&NCC,NX,NY,KK2,KK2X,FRTXS (40,40) ,XL,XH,YL,YH 
CCMMCN/STRE/SHXY(1200),EMQ(1200),DSH(1200),STYC(12 

&00)
&,STXY(1200),XST(40,40),YST(40,40),STXC(100),DXST (1 
&00)

C SHEAR STRESS AT GRID POINTS
DO 2 1=1,KK2
CL (I) =CL (I) *3.1415/180.0

2 CONTINUE
c KK2X=KK2+NX
C DO 4 I=NX,KK2X
c K=(I-NX)+1
c CL(I)=CLINIC(K)
c 4 CONTINUE
c DO 6 1=1,NX
c CL(I)=0.0
c 6 CONTINUE
c PRINT," VALUES OF ISOCLINIC AT GRID POI 

&NTS "
C WRITE(6,8)(CL(I),1=1,KK2X)

8 FORMAT(6(3X,F8.4))
DO 10 I=1,KK2
SHXY (I) =TXY (I) *SIN (2 *CL (I))

10 CONTINUE
WRITE (6,30)
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CCMMON/ELS/N, II, NI,NV1, NV2, XV, XY, SCALEX, SCALEY, XNO 
&T, YNOT,
&NCC,NX,NY,KK2,KK2X,FRTXS (40,40) ,XL,XH,YL,YH

C DATA AND CALCULATION OF ISOCLINIC VALUES AT GRID POINTS
IF (N .GT. 2) GO TO 600
READ(5,10)NCL
READ(5,10) (XCL(I) ,YCL(I) ,CLINIC (I) ,I=1,NCL)

600 CONTINUE
KCL=NCL

10 FORMAT (V)
THE FOLOWING DO LOOP TO FORMULATE VALUES OF ISOCLINIC IN THE 
HALF PART OF MODEL BY SYMETRY
DO 24 1=1,1200
XC(I)=0.0
YC(I)=0.0
CL(I)=0.0

24 CONTINUE
DO 602 I=1,KCL
N2=(2*I)-1
N21=2*1
XC(N2)=XCL(I)
XC(N21)=(7.5-XCL(I))+7.5
YC(N2)=YCL(I)
YC(N21)=YCL(I)
CL (N2)=CLINIC (I)
CL (N 21) =90.0-CLINIC (I)

602 CONTINUE
DO 12 1=1, NCL
XC(I)=XCL(I)
YC(I)=YCL(I)
CL(I)=CLINIC(I)

12 CONTINUE
DO 14 1=1,1500
AZ(I)=0.0

14 CONTINUE
DO 16 1=1,3000

16 W(I)=0.0
C CALCULATION OF MAXIMUM AND MINUMUM VALUES FOR ISOCLINIC

IF(N .GT. 2) GO TO 22
NCL=2*NCL

22 CONTINUE
CALL RANGRD(NCL,XC,YC,CL,NX,XL,XH,NY,YL,YH, AZ,3000

&,W)
DO 604 1=1,1200
XC(I)=0.0
YC(I)=0.0
Yf (I)=0.0
Xf(I)=0.0
CL(I)=0.0

604 CONTINUE
H= (XH-XL)/(NX-1)
HK= (YH-YL)/(NY-1)
DO 606 1=1,NX
XC(I)=XL+(I-1)*H

606 CONTINUE
DO 607 1=1,NY
YC (I)=YL+(1-1) *HK
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607 CONTINUE
DO 608 J=1,NY
DO 608 1=1,NX
K=I+(J-1)*NX
Xf (K)=XC(I)
Yf (K)=YC(J)

608 CONTINUE
DO 610 1=1,NY
DO 610 J=1,NX
K=J+(I-1)*NX
KK2=K
CL(K)=AZ (K)

610 CONTINUE
C PRINT," VALUES OF ISOCLINIC VALUES AT GRID POINTS" 

NTT=NX*NY
2 FORMAT (3 (8X,F8.4))

RETURN
END

F:/SUBR/
IB
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EXPERIMENTAL RESULTS OF MODEL 3 (SAMPLE RESULT)
THE FORMER IS THE CASE OF FIRST FRAME OF ZERO FRINGES

2.7510
3.0000

8.6206
8.0000

9.8343
10.0000

14.2803
14.0000

—VALUES OF SIGMA2-SIGM1 AT GRID POINTS
==X-COR Y-COR SIGI-SIG2-------

3.0000 10.0000 2.0000 3.5000 10.0000 2.0000
4.0000 10.0000 2.0000 4.5000 10.0000 2.0000
5.0000 10.0000 2.0000 5.5000 10.0000 2.0000
6.0000 10.0000 1.9871 6.5000 10.0000 1.8610
7.0000 10.0000 1.6269 7.5000 10.0000 1.3516
8.0000 10.0000 1.0377 3.0000 10.5000 2.0000
3.5000 10.5000 2.0002 4.0000 10.5000 2.0000
4.5000 10.5000 2.0000 5.0000 10.5000 2.0002
5.5000 10.5000 1.9100 6.0000 10.5000 1.6358
6.5000 10.5000 2.0000 7.0000 10.5000 2.0000
7.5000 10.5000 0.4271 8.0000 10.5000 -0.5124
3.0000 11.0000 2.0000 3.5000 11.0000 2.0000
4.0000 11.0000 2.0000 4.5000 11.0000 2.0000
5.0000 11.0000 2.0000 5.5000 11.0000 2.0000
6.0000 11.0000 2.0000 6.5000 11.0000 2.0000
7.0000 11.0000 2.0000 7.5000 11.0000 2.0000
8.0000 11.0000 1.9998 3.0000 11.5000 2.0000
3.5000 11.5000 2.0000 4.0000 11.5000 2.0000
4.5000 11.5000 2.0000 5.0000 11.5000 2.0000
5.5000 11.5000 2.0000 6.0000 11.5000 2.0000
6.5000 11.5000 1.9516 7.0000 11.5000 1.7568
7.5000 11.5000 1.2673 8.0000 11.5000 0.3493
3.0000 12.0000 2.0000 3.5000 12.0000 2.0000
4.0000 12.0000 2.0000 4.5000 12.0000 2.0000
5.0000 12.0000 2.0000 5.5000 12.0000 1.9993
6.0000 12.0000 1.9777 6.5000 12.0000 1.7737
7.0000 12.0000 1.4717 7.5000 12.0000 0.8505
8.0000 12.0000 -0.2030 3.0000 12.5000 2.0000
3.5000 12.5000 2.0109 4.0000 12.5000 2.0000
4.5000 12.5000 2.0000 5.0000 12.5000 1.9990
5.5000 12.5000 1.9824 6.0000 12.5000 1.9813
6.5000 12.5000 1.8176 7.0000 12.5000 1.6608
7.5000 12.5000 1.4226 8.0000 12.5000 0.9464
3.0000 13.0000 2.0000 3.5000 13.0000 1.9718
4.0000 13.0000 2.0000 4.5000 13.0000 2.0000
5.0000 13.0000 1.8828 5.5000 13.0000 1.6843
6.0000 13.0000 1.8257 6.5000 13.0000 1.9812
7.0000 13.0000 2.0724 7.5000 13.0000 2.6296
8.0000 13.0000 2.4775 3.0000 13.5000 2.0000
3.5000 13.5000 1.6402 4.0000 13.5000 2.0000
4.5000 13.5000 1.9997 5.0000 13.5000 1.2522
5.5000 13.5000 1.1743 6.0000 13.5000 1.5875
6.5000 13.5000 2.1259 7.0000 13.5000 3.3328
7.5000 13.5000 4.0674 8.0000 13.5000 3.8623
3.0000 14.0000 1.9877 3.5000 14.0000 0.7426
4.0000 14.0000 2.0000 4.5000 14.0000 1.8664
5.0000 14.0000 0.5147 5.5000 14.0000 0.6504
6.0000 14.0000 1.1625 6.5000 14.0000 2.0572
7.0000 14.0000 3.5416 7.5000 14.0000 4.4179
8.0000 14.0000 3.8224

304



:==VALUES OF SHEAR STRESS AT GRID POINTS
=X-C0R Y-COR SH.ST==

3.0000 10.0000 1.8907 3.5000 10.0000 1.8692
4.0000 10.0000 1.7469 4.5000 10.0000 1.8035
5.0000 10.0000 1.8794 5.5000 10.0000 1.9448
6.0000 10.0000 1.9850 6.5000 10.0000 1.8533
7.0000 10.0000 1.6237 7.5000 10.0000 1.3516
8.0000 10.0000 0.0657 3.0000 10.5000 1.8024
3.5000 10.5000 1.7798 4.0000 10.5000 1.7375
4.5000 10.5000 1.7666 5.0000 10.5000 1.8927
5.5000 10.5000 1.8700 6.0000 10.5000 1.6357
6.5000 10.5000 1.9969 7.0000 10.5000 1.9827
7.5000 10.5000 0.3020 8.0000 10.5000 -0.0672
3.0000 11.0000 1.7047 3.5000 11.0000 1.6807
4.0000 11.0000 1.6732 4.5000 11.0000 1.7320
5.0000 11.0000 1.8794 5.5000 11.0000 1.9350
6.0000 11.0000 1.9967 6.5000 11.0000 1.9978
7.0000 11.0000 1.9696 7.5000 11.0000 2.0000
8.0000 11.0000 0.3473 3.0000 11.5000 1.5831
3.5000 11.5000 1.5637 4.0000 11.5000 1.5917
4.5000 11.5000 1.6824 5.0000 11.5000 1.7916
5.5000 11.5000 1.8419 6.0000 11.5000 1.9183
6.5000 11.5000 1.9224 7.0000 11.5000 1.7285
7.5000 11.5000 0.8961 8.0000 11.5000 0.0625
3.0000 12.0000 1.4799 3.5000 12.0000 1.4799
4.0000 12.0000 1.5139 4.5000 12.0000 1.5793
5.0000 12.0000 1.6471 5.5000 12.0000 1.7183
6.0000 12.0000 1.8238 6.5000 12.0000 1.6805
7.0000 12.0000 1.4493 7.5000 12.0000 0.8505
8.0000 12.0000 -0.0353 3.0000 12.5000 1.3671
3.5000 12.5000 1.4028 4.0000 12.5000 1.3990
4.5000 12.5000 1.4464 5.0000 12.5000 1.5115
5.5000 12.5000 1.6152 6.0000 12.5000 1.7658
6.5000 12.5000 1.7090 7.0000 12.5000 1.5593
7.5000 12.5000 1.0059 8.0000 12.5000 0.3257
3.0000 13.0000 1.0161 3.5000 13.0000 1.2030
4.0000 13.0000 1.2017 4.5000 13.0000 1.2465
5.0000 13.0000 1.2457 5.5000 13.0000 1.2443
6.0000 13.0000 1.4998 6.5000 13.0000 1.7158
7.0000 13.0000 1.9187 7.5000 13.0000 2.6296
8.0000 13.0000 0.9361 3.0000 13.5000 0.5829
3.5000 13.5000 0.7232 4.0000 13.5000 0.7459
4.5000 13.5000 0.8708 5.0000 13.5000 0.6158
5.5000 13.5000 0.7173 6.0000 13.5000 1.1997
6.5000 13.5000 1.8169 7.0000 13.5000 2.9955
7.5000 13.5000 2.8760 8.0000 13.5000 1.6930
3.0000 14.0000 0.5379 3.5000 14.0000 0.2765
4.0000 14.0000 0.2466 4.5000 14.0000 0.4157
5.0000 14.0000 0.1663 5.5000 14.0000 0.2781
6.0000 14.0000 0.6937 6.5000 14.0000 1.4650
7.0000 14.0000 3.0671 7.5000 14.0000 4.4179
8.0000 14.0000 1.9112
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:===VALUES OF SIGMA2-SIGM1 AT GRID POINTS
===X-C0R Y-COR SIG1-SIG2==

6.0000 11.0000 2.0000 6.5000 11.0000 2.0000
7.0000 11.0000 2.0000 7.5000 11.0000 2.0000
8.0000 11.0000 2.0000 8.5000 11.0000 2.0000
9.0000 11.0000 2.0000 6.0000 11.5000 2.0000
6.5000 11.5000 2.0000 7.0000 11.5000 2.0000
7.5000 11.5000 2.0000 8.0000 11.5000 2.0000
8.5000 11.5000 2.0000 9.0000 11.5000 2.0000
6.0000 12.0000 2.0000 6.5000 12.0000 2.4731
7.0000 12.0000 2.6800 7.5000 12.0000 3.6009
8.0000 12.0000 3.0981 8.5000 12.0000 2.9396
9.0000 12.0000 2.0000 6.0000 12.5000 2.0000
6.5000 12.5000 2.7921 7.0000 12.5000 4.0000
7.5000 12.5000 4.0004 8.0000 12.5000 4.0003
8.5000 12.5000 1.9091 9.0000 12.5000 3.2736
6.0000 13.0000 2.4794 6.5000 13.0000 3.1687
7.0000 13.0000 0.5061 7.5000 13.0000 1.8283
8.0000 13.0000 1.3457 8.5000 13.0000 3.2045
9.0000 13.0000 3.6250 6.0000 13.5000 2.6426
6.5000 13.5000 2.6389 7.0000 13.5000 4.0011
7.5000 13.5000 4.9230 8.0000 13.5000 4.2810
8.5000 13.5000 2.9997 9.0000 13.5000 2.7639
6.0000 14.0000 1.9234 6.5000 14.0000 2.6604
7.0000 14.0000 5.1295 7.5000 14.0000 7.8684
8.0000 14.0000 5.8770 8.5000 14.0000 3.1339
9.0000 14.0000 2.0533

==VALUES OF SHEAR STRESS AT GRID POINTS
===X-COR Y-COR SH.ST==

6.0000 11.0000 1.9967 6.5000 11.0000 1.9978
7.0000 11.0000 1.9696 7.5000 11.0000 2.0000
8.0000 11.0000 0.3473 8.5000 11.0000 -0.0939
9.0000 11.0000 0.1148 6.0000 11.5000 1.9183
6.5000 11.5000 1.9701 7.0000 11.5000 1.9677
7.5000 11.5000 1.4142 8.0000 11.5000 0.3580
8.5000 11.5000 0.3446 9.0000 11.5000 0.5656
6.0000 12.0000 1.8444 6.5000 12.0000 2.3430
7.0000 12.0000 2.6392 7.5000 12.0000 3.6009
8.0000 12.0000 0.5380 8.5000 12.0000 0.9405
9.0000 12.0000 0.7734 6.0000 12.5000 1.7825
6.5000 12.5000 2.6252 7.0000 12.5000 3.7555
7.5000 12.5000 2.8287 8.0000 12.5000 1.3769
8.5000 12.5000 0.6501 9.0000 12.5000 1.4845
6.0000 13.0000 2.0367 6.5000 13.0000 2.7441
7.0000 13.0000 0.4685 7.5000 13.0000 1.8283
8.0000 13.0000 0.5085 8.5000 13.0000 1.6022
9.0000 13.0000 2.0670 6.0000 13.5000 1.9971
6.5000 13.5000 2.2553 7.0000 13.5000 3.5962
7.5000 13.5000 3.4810 8.0000 13.5000 1.8765
8.5000 13.5000 1.5574 9.0000 13.5000 1.8099
6.0000 14.0000 1.1477 6.5000 14.0000 1.8944
7.0000 14.0000 4.4422 7.5000 14.0000 7.8684
8.0000 14.0000 2.9384 8.5000 14.0000 2.2002
9.0000 14.0000 1.6476
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===VALUES OF SIGMA2-SIGM1 AT GRID POINTS
------- X-COR Y-COR SIG1-SIG2-------

2.0000 11.0000 2.0000 2.5000 11.0000 2.0000
3.0000 11.0000 2.0000 3.5000 11.0000 2.0000
4.0000 11.0000 2.0000 4.5000 11.0000 2.0000
5.0000 11.0000 2.0000 5.5000 11.0000 2.0000
6.0000 11.0000 2.0000 6.5000 11.0000 2.0000
7.0000 11.0000 2.7198 7.5000 11.0000 2.7129
8.0000 11.0000 2.5011 8.5000 11.0000 2.0000
9.0000 11.0000 2.0000 9.5000 11.0000 2.0000

10.0000 11.0000 2.0000 10.5000 11.0000 2.0000
11.0000 11.0000 2.0000 11.5000 11.0000 2.0000
12.0000 11.0000 2.0000 2.0000 11.5000 2.0000
2.5000 11.5000 2.0000 3.0000 11.5000 2.0000
3.5000 11.5000 2.0000 4.0000 11.5000 2.0000
4.5000 11.5000 2.0000 5.0000 11.5000 2.0000
5.5000 11.5000 2.0000 6.0000 11.5000 2.7880
6.5000 11.5000 3.0758 7.0000 11.5000 3.3691
7.5000 11.5000 3.4225 8.0000 11.5000 3.3100
8.5000 11.5000 3.2173 9.0000 11.5000 2.4071
9.5000 11.5000 2.0000 10.0000 11.5000 2.0000

10.5000 11.5000 2.0000 11.0000 11.5000 2.0000
11.5000 11.5000 2.0000 12.0000 11.5000 2.0000
2.0000 12.0000 2.0000 2.5000 12.0000 2.0000
3.0000 12.0000 2.0000 3.5000 12.0000 2.0000
4.0000 12.0000 2.0000 4.5000 12.0000 2.0000
5.0000 12.0000 2.0000 5.5000 12.0000 2.3662
6.0000 12.0000 3.1750 6.5000 12.0000 2.7734
7.0000 12.0000 1.2711 7.5000 12.0000 1.3372
8.0000 12.0000 0.7771 8.5000 12.0000 2.8261
9.0000 12.0000 2.9868 9.5000 12.0000 2.0575

10.0000 12.0000 2.0000 10.5000 12.0000 2.0000
11.0000 12.0000 2.0000 11.5000 12.0000 2.0000
12.0000 12.0000 2.0000 2.0000 12.5000 2.0000

2.5000 12.5000 2.0000 3.0000 12.5000 2.0000
3.5000 12.5000 2.0000 4.0000 12.5000 2.0000
4.5000 12.5000 2.0000 5.0000 12.5000 2.0000
5.5000 12.5000 3.2074 6.0000 12.5000 3.0313
6.5000 12.5000 2.1147 7.0000 12.5000 3.4353
7.5000 12.5000 3.9613 8.0000 12.5000 3.4651
8.5000 12.5000 2.1472 9.0000 12.5000 3.3165
9.5000 12.5000 3.0156 10.0000 12.5000 2.0000

10.5000 12.5000 2.0000 11.0000 12.5000 2.0000
11.5000 12.5000 2.0000 12.0000 12.5000 2.0000

2.0000 13.0000 2.0000 2.5000 13.0000 2.0000
3.0000 13.0000 2.0000 3.5000 13.0000 2.0000
4.0000 13.0000 2.0000 4.5000 13.0000 2.0000
5.0000 13.0000 2.0213 5.5000 13.0000 3.1050
6.0000 13.0000 3.1391 6.5000 13.0000 3.6321
7.0000 13.0000 4.6226 7.5000 13.0000 4.8140
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Appendix V

IMPLIC IT REAL*8 (A-H, 0-Z)
DIMENSION N(800) ,G(800) ,CTOP(800) ,GP(800) ,GPO(800) ,X(800) 

&,Y(800),AM(800,4),C(4,4),B(800),Z(4),aa(20,20),wksl(4),wks2(4) 
&,xam(4,800),NCF(800),NT1(800),NT2(800),XNF(800)

c program for least squar method for unit fringe value
READ (3,20)M,R,T,PIE

20 FORMAT (V)
READ(3,20) (N (I) ,NCF(I) ,NT1(I) ,X(I) ,Y(I) ,NT2 (I) , 1=1 ,M)
c the folowing statement for scale of foto
ORX= (X (3)+X (8) )/2
ORY= (Y (3)+Y(8))/2
SCX= (X(5)-X (1) )/5.08
SCY= (Y (6)-Y (10))/5.08
do 22 i=l,m
X(I)=(X (I)-ORX)*SCX
Y(I)=(Y (I)-ORY)*SCY
XNF (I)= (N (I)-N (1)) *.124*32. 2*12.0

22 continue
DO 40 1=1, M
F=0.0
GTOP (I) =R**2- (X (I) **2+Y (I) **2)
GP (I) = (X (I) **2+Y (I) **2+R**2) **2
GPO (I)=GP (I)-4*(Y(I)**2*r**2)
F=XNF(I)
G (I) = (4*F*R*GTOP (I)) / (PIE*T*GPO (I))

40 CONTINUE
DO 50 1=1,M
xaM(l,i)=G (I)
xaM(2,i)=X(I)
xaM(3,i)=Y (I)
xaM(4,i)=1.0d0

50 CONTINUE
do 45 i=l,4
do 45 j=l,M

45 am(j,i)=xam(i,j)
DO 35 1=1,4
DO 35 J =1,4
C(I,J)=0.0d0
DO 35 K=1,M
C(I,J)=C(I,J)+AM(K,J)*AM(K,I)

35 CONTINUE
DO 55 1=1,4
DO 55 J=1,M
B(I)=B(I)+(AM(J,I)*N(J))

55 CONTINUE
IA=4
IAA=4
L=4
IFAIL=0
CALL FO4ATF(C,IA,B,L,Z,AA,IAA,WKS1,WKS2,IFAIL)
DO 60 1=1,L
WRITE (6,70) Z(I)

60 CONTINUE
70 FORMAT (V)

STOP
END
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