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ABSTRACT

Accurate models of complex systems are, of 
necessity of a higher order. It is often convenient to 
use a simpler model when investigating characteristics 
Of such a system. For this purpose a method of model 
reduction is required. Much work has been carried out 
in recent years on model reduction techniques. A 
comprehensive survey of these has been carried out and 
is presented here.

The reviewed works do not deal with first 
order plus time delay models which can in certain cases 
be used for controller design. For this purpose the 
simple model must be less stable than the system itself. 
Many models do not fulfil this requirement. An 
investigation into the adequacy of first order plus time 
delay models obtained using the Pade technique has been 
carried out and its findings are given in section 3.

Finally an examination is carried out into 
the performance of closed loop systems using controllers 
obtained from first order plus time delay models. It 
is shown that adequate Pade models can be used to give 
suitable controllers and that if no adequate Pade model 
exists then an alternative method can be used to give 
acceptable results.
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I. INTRODUCTION.

The study and analysis of any process or system is 
commonly carried out by engineers using mathematical models. 
Accurate and precise models of complex systems are themselves 
by definition, very complex and complicated,consisting 
usually of either a large number of simultaneous first order 
differential equations or of one or more differential 
equations of a higher order.

To facilitate the study of a system and to design a 
suitable controller for it, it is often advantageous to 
produce a simplified model of the system, the obiect being 
to produce a model which is computationally simpler than 
the original system but which nevertheless represents the 
system sufficiently adequately for investigation of certain 
of its properties to be possible.

Much work has recently been done on the reduction of 
higher order mathematical models of complex systems to ones 
of lower order and a survey of this work appears as the first 
of the three major sections of this thesis.

The second major section is devoted to the investigation 
of the adequacy, in terms of open-loop stability, of simple 

models containing only a single time constant and a pure time 
delay.Although many practical systems, particularly in the 
process industry, can be represented by such a model,very 
little work has been done in this field.lt is a fact, however, 
that if an adequate first order model of a system can be 

produced, the design of a simple contoller for the system is 
greatly facilitated since published data exists which enables 
Proportional and Integral (PI) and Proportional, Integral and 
Differential (PID) controller parameters for specified perform-
ance criteria to be calculated from first order model parameters.

The third major section of this thesis examines the 
application of model reduction techniques to controller design. 
Incorporating information derived from the adequacy investigation 
mathematical models of vaporisers are reduced to first order 
models which are then used in the design of appropriate 
controllers.The performance of these controllers is reviewed 
and the effects on them of using various reduced models for
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their design is thoroughly explored. Additionally, the 
potential dangers of designing such controllers using 
unsuitable reduced models are also considered.

This thesis, therefore, undertakes a positive contribution 
to the existing knowledge on the adequacy of very simple 
reduced models for use in controller design, whilst, at the 
same time incorporating a comprehensive review of existing 
model reduction techniques.
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2. A SURVEY OF EXISTING MODEL REDUCTION TECHNIQUES.

Since the early 1960s much interest has been shown in 
model reduction and many techniques have been developed for 
dealing with this subject.

The majority of these techniques can be broadly sub-
divided into ten groups and in this survey they have been so 
dealt with, any techniques which do not fall into one of the 
ten groups being included in an additional eleventh group.

The survey refers, in the main, to those papers which 
deal with the reduction of single input-single output models. 
In the case of those systems specified in state variable form 
the reduction technique is identical whether a single input-
single output system is being considered or whether the system 
under consideration is multivariable, therefore all such 
systems have been covered in this survey.

However, in those cases where the system is described by 
a single transfer function, or, in the case of a multivariable 
system, by a number of transfer functions in matrix form, the 
reduction of the multivariable system is a more complicated 
procedure, but since this procedure is effectively an extension 
into matrix form of the single input-single output method, no 
additional investigation has been done into the finer points 
of divergence.

It must be noted at this stage that all previous comments 
refer essentially to linear systems whereas, in reality, a 
high proportion of systems are non-linear. A possible method 
of reduction of such systems is to linearize the system about 
a definite operating point and then to apply a linear reduction 
technique to the resulting equations, this technique being 
the same as that normally used for lipear systems.Since such 
a reduced model, being suitable only around the point about 
which the system was linearized, requires the incorporation 
of a function generator if it is to be used to represent the 
whole operating range and this is felt to be outside the scope 
of this thesis, the reduction of non-linear systems has not 
been dealt with as a separate issue.
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2.1 MODEL REDUCTION BY MINIMISING THE ERROR OF THE 
THE RESPONSE.

This method of model reduction endeavours to obtain a 
reduced model whose response approaches that of the original 
system, by minimising the mean square error between the two 
responses over a given finite time interval.

The first investigation of this method appears to have 
been undertaken in 1967 by ANDERSON (1), who describes the 
method as one based on the evaluation of the proiection of 
a specified vector onto a linear subspace.

Initially, the original continuous system, described in 
state variable form is converted to an equivalent set of n 
first order difference equations describing the discrete-time 
form of the system, thus

X jjk+l)lQ = 0(T)x |\t J + a (T)u  (1)

where
T = the sampling period
0(T) - n x n discrete transition matrix
A(T) = n x n discrete driving matrix

Assuming ’r' to be the order of the simplified system 
the above equations may then be reduced to a set of r 
equations as follows

x ^(k+l)T^j = 0(T)x ^kTj + a (T)u kTM (2)

where
ff(T) = r x r reduced transition matrix
£(T) = r x m reduced driving matrix

To achieve this, values for ^(T) and A(T) are selected 

which will minimise the differences occuring at each sampling 
point between X and the first r elements of X, referred to as 
x(r).
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(3)

Under ideal conditions 
satisfy the equation -

these selected values would

x(r)|jk+l)lQ = J(T)x(r)^kTj + a (T)u  ^kT?

which when expanded will give

for
i = 1, 2, ....................... k+1

and q = 1, 2, ....................... r

assuming ~ J_r(0) at t = 0

This can be expressed in matrix form as 

(5)

where
b and c are vectors given by _q -q

x^r)(T)

i

©
i

__
__

1

x<r>(2T) V

*ql

A oq2

x(r)((k+l)T)
q

A qm

and M is a (k+1) x (r+m) matrix whose (i+l)th row is
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given by

Equation 5 can now be solved by putting

c = bq ...........(8)

which according to the Theory of Linear Spaces minimises 
the inner product-

where

(9)

xq((k+l)T)

Since this also satisfies the equation -

...........(10)

B and C can now be defined as
— • •

b< bo : .......... b : .......... : b-1 -2 : -q . . -r

£1 c« * c I .......... ’ c-2 : -q . . -r
: • j



(12)

giving

C’ (13)= B'M(M'M)'1

In this way, ^(T) and Z(T) can be evaluated to give a 
least squares fit between the response of the reduced model 
and that of the full system bearing in mind that the time 
interval (k+l)T, over which the model is to be evaluated 
must be chosen with care so as to be longer than the largest 
time constant but not so large as to give rise to singularity 
of M’M.

The main limitations of this method are that it provides 
a reduced model which is valid only for the particular input 
disturbance used to evaluate it, and is susceptible to steady 
state error. Additionally, it is relatively complex from a 
computational viewpoint.

However, some of these computational problems, together 
with certain other difficulties associated with this reduction 
technique are tackled by ANDERSON in further papers published 
in 1967 and 1963 ( 2 , 3,4, 5 ), in which he observes that 
for a system which takes a comparatively long time to settle, 
the matrices M and B can become extremely large, thus requiring 
a considerable amount of computer store,(M having a dimension 
of (k+1) x (r+m) and B having a dimension of (k+1) x r.).

To overcome this difficulty, ANDERSON suggests that 
equation 12 be partitioned into 1 blocks so that -

C .......... (14)
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(15)

The least squares solution for C’ is now given by -

-1

1=

and can now be evaluated immediately after
the evaluation of B^ and thus eliminating the necessity 
of storing all the values of B and M and consequently reducing 
the maximum size of matrix to be stored from (k+1) x (r+m) 
to (r+m) x (r+m).

In a further publication (3), ANDERSO'J considers the case 
where certain elements of the reduced system matrices are 
known.

Thus, expressing equation 10 in the format -

(16)

C.

Cr+m

^r+m

or

14 = Mj-Cq (17b)
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where

and C =
q

C _U~r+m

The unknown elements of the qth row of ^(T) and a (T) 
can now be obtained by solving equation 17 putting

(18)

A fourth paper(5) by ANDERSON deals with those cases 
where the response of the reduced model varies widely from 
that of the full model at specific points,for example - in 
the steady state or during the initial transient (t - 0).

The author suggests the use of weighting factors to 
overcome this problem and recommends the multiplication of 
those rows of M and B,which correspond to the time at which 
greater accuracy is required, by a weighting factor of N, 
which must be greater than 1.

A similar approach is used by SINHA and PILLE (6), 
whose work on the discrete time form of the model, published 
In 1971, can be considered as a refinement of ANDERSON’s 

technique.
Their method uses the matrix pseudoinverse to estimate 

the parameters of the model.This minimises the sum of the 
squares of the errors between the response of the actual
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system and that of the model at sampling intervals.
This approach gives a satisfactory fit on the transient 

but still does not eliminate the steady state error which 
occurs with ANDERSON'S technique.

Later in 1971 another paper was published by SINHA and 
BEREZNA ( 7) putting forward an optimisation technique for 
model reduction which uses the pattern search algorithm of 
Hooke and Jeeves to minimise the error according to a given 
criterion between the reduced model and the original system.

Work on similar lines by other authors includes an 
optimisation technique for model reduction published by 
WILSON ( 8) in 1970 and followed up in 1974 (9) with an algorithm 
for this method,and also papers published in 1973 by APLEVICH 
(10) and GALIANA (11) whose techniques minimise quadratic 
functions of the error of the time response.

Thereafter, in 1974, RIGGS and EDGAR (12) published a 
paper on the reduction of linear systems using a least squares 
fit of the impulse response, in which they concluded that

(i) Reduced models can be rapidly computed using 
optimisation techniques

(ii) Optimal reduced models can be distinctly superior 
to reduced models obtained by non-optimal methods as measured 
by the integral square error

(iii) More flexibility and control over development of 
the reduced model is available using optimisation techniques.

EDGAR followed this up, in 1975, with a publication (13) in 
which, after quoting from his previous work, he detailed a 
reduction method which, by using the step response, minimises 
the function

(19)

He then produced an example which he compared with results 
obtained by CHEN and SHIEH (14). However, although both methods 
guarantee an exact steady state fit, EDGAR’S method necessarily 
gives the better result since the comparison is based on the 

Integral square error.
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Further work on model reduction using optimisation in 

the time domain was published in 1975 by HIRZINGER and 
KREISSELMEIER (15), who, working in state variable notation, 

reduced the model

x = Ax + Bu ...........(20 )

y = Cx  (21)

to

X = Ax + Bu  (22)

y = Cx  (23)
where x is of order n 

x is of order r<n

by minimising the function

J = /" (v - *v)TQ(y - *y) dt. .......... (24)

and selecting suitable A, B and C matrices.

In the above function, Q is a weighting matrix which can 
be selected as a diagonal matrix whose elements are to q^ 
where p is the dimension of y and y.

q^ is given by -

yi2dt)'1 for 1=1,2.......... p ............. (25)

where

*1 is a weighting coefficient whose value is ascertained 
by relating the importance of output y^ to the other outputs 
and the expression in the brackets is the integral square of 
the output y^.

The value thus considered represents the percentage square 
error since, when expanded within function J, the integral 
square error of output y^ is multiplied by the inverse of the 
bracketed expression preseit in q^.

The effect of selecting J in this manner is to eliminate 
any unintentional weighting of output errors.

The authors suggest that this method can be used to minimise 
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the error of the response obtained from a variety of inputs 
including unit impulse functions, unit step functions and 
unit impulse response of linear shaping filters.

However, as with all optimisation reduction techniques, 
the reduced model obtained in this way is dependent on the 
specific input function used and cannot be applied to give 
a general model.

The final method examined was that proposed by OBINATA 
and INOOKA (16) in 1976.In this case the authors reduced

x = Ax + Bu .......... (26 )

y = Cx .......... (27)

to

z = Fz + Gu .......... (28 ) 

where the error e is given by

e = y - z. .......... (29)

As previously shown, if an error criterion of the form - 

J eQe dt.
is considered,

.......... (30)
the reduced model

can be obtained by minimising J.
However, this is somewhat difficult to achieve due to 

the non-linear manner in which the reduced model parameters 
appear in e.

To facilitate this optimisation OBINATA and INOOKA have 
suggested an error criterion based on the derivative of the 
error e.

Thu- -

e = y - 2  (31)

= Cx - £  (32)

- CAx + CBu - Fz - Gu  (33)

- Fe + (CA - FC)x + (CB - G)u  (34)
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This can be re-specified as

e = Fe + d ...........( 35)

where

d = (CA - FC)x + (CB - G)u. ...........(36)

Then, since e = 0 at time t - 0, an ideal reduced model can
be obtained if d = 0, i.e. if CA = FC and CB = G.

If an error function based on d is then minimised, an
optimum model will result.

Since it can be further shown that

d = y - (Fe+z) ...........(37)

= y - (Fy + Gu) ...........(38)

it can then be seen that d is a linear function of the reduced
model parameters F and G.

To obtain optimum values for these parameters it is 
suggested that the error criterion to be minimised should be -

J =/ d .Q.d.dt ...........(39)

where Q is a positive definite m x m matrix.

If G - CB and CW C’ is non singular X
where

W = / x(t).x’(t)dt.
x ■■'0

...........(40)

then F which minimises J is given bv -

F = CAW C’ (CW C’ )“!• ...........(41)x x

If, however, G CB

3 can be minimised if

(FC - CA)W C* + (G - CB)W ’C’ = 0 ...........(42)x xu
and

(FC - CA)M , + (G - CB)W = 0 ...........(43)
XU u
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where

W = / x(t)u'(t)dt ...........(44)
xu JQ

W = fTu(t)u’(t)dt. ...........(45)
u Jo

Then, if is non singular

W = W - W (W ’ ...........(46)
X XU U XU

and
F = CAWC' (CWC' )_1 ...........(47)

and
G = CA(I - WC' (CWC' )'XC)I4 (W,,)'1. ...........(48)

A Li LI

As can be seen from the above equations, explicit 
expressions can be obtained for F and G which minimise J, 
given the parameters of the original system together with 
its time response to a given input.

This is an advantage of this particular reduction technique 
over those others which also minimise error functions in the 
time domain. However, as with all previously described methods 
this final example of this particular reduction technique still 
results in a reduced model which is dependent on the input 
used for the reduction calculations.
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2.2 MODEL REDUCTION BY MODAL ELIMINATION.

The second method of model reduction considered is that 
of modal elimination. This was introduced in the early 1960s 
by NICHOLSON, who, in his paper 'Dynamic Optimisation 

of a Boiler' (August 1964 (17), suggests that the reduction 
of the system order can be achieved analytically by neglecting 
higher order modes.

With the system equations in state variable form, his 
proposed reduction method is as follows

Original System : x = Ax + Bu ...........(49)

where x = n - vector of state variable
u = m - vector of system inputs
A = n x n - system matrix describing a continuous

time system
B = n x m - forcing matrix driving a continuous time 

system.

This is reduced to a rth order system

x = A x + B u ...........(50)

★

where x = r - vector of state variables consisting of 
selected elements from the original vector x

★

A = r x r - system matrix
★ 

B = r x m - forcing matrix.

The system equations can be rewritten using A instead of 
A, where A is a diagonal matrix containing the n eigen values 
of A, arranged in increasing modulus order.

Each eigen value,has an associated eigen vector,u^, 
which satisfies the equation

( Xt I - A)u^ - 0 . ...........( 51)

The square modal matrix, U, consists of the n eigen
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vector,U| , and satisfies the equation

AU = UA . ...........(52)

By introducing a new state variable vector, z, given by -

x = Uz .......... (53 )

the original system equation (49)can be rewritten as

Ui = AUz + Bu ...........(54 ) 

or, using equation 52 as

Uz = Uaz  + Bu 

and

z = AZ + U_1Bu.

...........(55 )

.......... (56 )

To obtain the reduced model, the equation is then 
partitioned, giving

...........(57 )

where

is

X1 is the vector of r

x2 is the vector of n

Z1 is the vector of r
r dominant modes

z2 is the vector of n

U1 is a r x r )
)

”3 is a (n - r) x r )
)

U2 is a r x (n - r)
aU4 (n - r) x (n

state variables to be retained
- r remaining state variables 
varables corresponding to the

r remaining variables.

matrix of modal
associated with
modes

matrix of

r)

vectors
the r

modal
associated with
remaining modes.

dominant

vectors
the

)
)

)
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The higher modes are then eliminated by allocating a 
value of zero to z2» thus giving

X1 = Ulzl .......... (58)

and

x2 = U3Z1 ...........(59)

and hence

x2 = U3.U1"1x1 . ...........(60)

The original system equation (49) is then similarly 
partitioned giving

u ...........(61)

The reduced rth order system then becomes

X1 ~ Alxl + A2x 2 + b H ...........(62)

or

X1 “ <Ai + A2-U3-Ui"1)xi + • ...........(63)

B can then be evaluated seperately by equating the responses 
due to forcing and is given by

B* = ^.^.B ...........(64 )

where

U1 is the normalised form of
Q. is a r x n matrix associated with the first r rows 

A -1of U 1

and q a is obtained from QA using row multiplying factors.

Next to tackle the model reduction problem using modal 
elimination , in an almost identical manner, was DAVISON (18) 
(1966), whose approach differs from that of NICHOLSON only 

in that DAVISON partitions the equation in the following
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...........(65)

manner

where

is a diagonal matrix containing the r dominant eigen 
values

A2 is a diagonal matrix containing the other n - r eigen 
values.

By equating Z£ to zero DAVISON then obtains

zt = A1Z;l + U_1Bu ...........(66)

giving, as the reduced system -

xx = U1A1U1'1x1 + U1(u’1B)u ...........(67)

with

A* = Uj/j Uj'1 " At + A2U,U1'1 ...........(68)

(as obtained by NICHOLSON)

and B* = U1(U*1B) ...........(69 )

where

(U ^B) are the first r rows of the n x m matrix U ^B.

However, neither of the reduced models developed by 
NICHOLSON and DAVISON, has eliminated the steady state error 
which tends to zero as r tends to n.

In late 1966, a method which does Include such an 
elimination was published by MARSHALL (19), who obtained his 

simple model by putting z9 (rather than Z2) equal to zero.

By putting U”1 ■ V, MARSHALL represents equation 65 in 

the following format -
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zt = A1Z1 + (V1B1 + V2B2)u  ...........(71)

and

0 = A2z 2 + (V^B^ + V4B2)u  ...........(72) 

which, in turn gives

z2 = -A2’1(V^B1 + V4B?)u . ...........(

The reduced model can then be obtained from equations 
57, 71, and 73 giving

A* = U1A1U1'1 ...........(74)

and

B* - Bt - A2V4'1A2’1(V?B1 + V4B2) . ...........(75)

A similar suggestion was also made by CHIDAMBARA (20), 
who, in correspondence with DAVISON, entered into after the 
publication of DAVISON*s paper, proposed that Z£ would be 
more correctly eliminated by putting Z2 = Fu . ...........(76)

CHIDAMBARA’s initial communication unfortunately contained 
an algebraic error. However, in his second note (21) to DAVISON 
he corrected this error and produced two models Cl and C2.

To show the advantage of his methods over that of 
DAVISON, CHIDAMBARA Included in this second note an example 
which he gave in state variable form, but is here shown in 
transfer function form.

For

CHIDAMBARA's two methods give the following

...........(77)
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For Cl

1 -

1 + s

For C2

G(s) =-J-
1 + s

while DAVISON’s method gives

G(s) =i^33
1 + s

...........(79)

...........(80)

(As can be seen, CHIDAMBARA's second model, C2, is 
identical to that obtained by MARSHALL, while his first model, 
Cl, varies in that it is obtained by evaluating F, (in 
equation 76),separately.)

DAVISON, however, criticised CHIDAMBARA’s models specify-
ing that C2, although giving a correct sready state response 
to a step function disturbance, would give transient errors, 
since it would not excite the same proportion of modes of the 
model's response as were excited in the original system.

He was, however, prepared to acknowledge that this 
criticism did not apply to model Cl and possibly as a result of 
this,he suggested,in 1967, (22) the following correction for 
the elimination of steady state error to his own model (see
eqns.50, 68 and 69)

★ ★

X| A X| + B u ...........(81 )

x* = XT + £1_1B* - (A‘1B)^u ...........(82)

where
x is the output

and A~^B is a vector whose elements correspond to the 

variables retained in the reduced model.

Summarising the various models discussed so far,it can 
seen that NICHOLSON’S model and DAVISON’s original model 

have a steady state error and tend to contain non-minimum 
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phase properties which do not exist in the full model.
DAVISON’S modified model of April 1967 and CHIDAMBARA’s 

model, Cl, which produce identical results, eliminate 
steady state error but still retain the non-minimum phase 
tendencies.

MARSHALL’S model and CHIDAMBARA’s model, C2, which are 

also identical, do not have this tendency.
Although both these models were developed in the state 

variable form, they are more easily understood if presented 
in the transfer function form, thus -

If the original model is presented as follows -

G(s) = -----------------------------=------------------------------
(1 + 10s)(l + 5s)(l + 2s)(l + s)

reduced models become

G1(s) = ------1------
1 1 + 10s

G,(s) = ------------- i-----------------
z (1 + 10s)(l + 5s)

and G,(s) = ----------------------- ------------------------
(1 + 10s)(l + 5s)(l + 2s)

.......... (83">

...........(84)

...........(85)

.......... (86)

This can be considered as modal elimination in its 
simplest form.

It is worth mentioning at this stage, that all the models 
considered thus far i.e. those obtined by modal elimination, 
have a system matrix, A , given by -

A* = = A| + A2U3U1'1 ...........(87)

However, in a further paper published in 1968, DAVISON (23) 
Introduced a new modification where this does not applv.

For this new model

.......... (88)
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where

Xj is obtained as shown in equation 68

where

.......... (89)

*"•1* — 1 ’A'(A B \ being the ith element of the r vector A ”iB

-1 * ’
and (A B)i being the element of the r vector A B which 

corresponds to the ith state retained in the 
reduced system.

This system can also be presented in the format

•k * -1 ★ *
x = DA D x + DB u. ...........(90)

Model reduction by modal elimination has further been 
considered by several other authors, including KUPPURAJULU 
and ELANGOVAN (24), GOLD (25), TWILL AND MEHDI (26), FOSSARD 
(27) and WILSON, FISHER and SEBORG (28).

KUPPURAJULU and ELANGOVAN (1970) (24) recommend using 
different models to represent the system at different points 
in the transient response. These different models are obtained 
by eliminating differing modes. Models containing poles further 
from the imaginary axis are used to represent the initial 
transient responses, whereas poles nearer to this imaginary 
axis are used to represent the final transients.

GOLD (1970) (25) examines the effect of eliminating 

various types of modes from the system.
He concludes that real or complex poles much more remote from 
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the s-plane origin than the dominant poles have little effect 
on the resultant time response. However, poles, zeroes or 
dipoles located closer to the origin than the dominant poles 
must be included in the transfer function.

To illustrate this point, GOLD produces the following 
example -

G(s) =

_________________________ (1+0.5s)(1+0.25s)_______________________________  

(1+0. 51s)(l+0. 21sXl+(0.013±0.16 i)sKl+(O. 31±1.98 i )xl0’3s>( 1+0.001s)

...........(91)

Eliminating(l+(0.31±1.98i)xl0"3s) and/or (1+0.001s) has 

little effect.

However, eliminating —‘s and/or —* 2 s would
1+0.51s 1+0.21s

have a greater effect.

Evidence for this example can be obtained using the 
transient response to a unit step input.

In January 1970, TOWILL and MEHDI (26) published a paper 
which included a description of three different model reduction 
techniques, one of which, referred to by the authors as the 
s-plane model, is , in fact a modal elimination technique.

The original system is represented thus -

1 + b^ s + b«s2 +............. + b sm
G(s) = K. ----------1±---------------------------- —

1 + axs + a2s2 +................ + ansn

- K. I I j“l- (1 + TJS)

i*n
i=1 (1 + T^s)

...........(92)

...........(93)
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When reduced, this becomes

.it ;:; <■ *
-TT-£=r

11=1 (1 + Tis)
e -TS .......... (94 )

where t  is given by the MATSUBARA (1965) (29 ) equivalent time 
theorem as

T =

i=n 
y t i  

i=r+l

.......... (95 )

This theorem was derived by MATSUBARA from

T (u(t) ’ £ } ) dt
........... (96)

where u(t) is a unit step function
Kt) is the indicial response of G^(s)

and K is the final value of the response.

Figure 2.1 Basic definition of r
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Then, if - 

2
1 + a.s + ao s +.............

G.(s) = K --------- 1--------- U,-----------------
1 + b^s + b2s + ......

(b1 - a1) + (b9 - a9)s + ....
t = —ii±i....................... .......... (100)

1 + b|S + b2s + .............

Applying the Final Value Theorem, this gives -

t = bt - at .......... (101)

Thus, if -

1 + Tds
G1 = ----------— .......... (102)

1 1 + T2s

then

t = T2 - Tt .......... (103)

By simply adding the original time delay to that obtained 
by the above equation, the reduction method of TWILL and 
MEHDI can thus deal with transfer functions having pure time 
delay.

As an example, TOWILL and MEHDI reduce a sixth order 
model of an aircraft - asimuth channel blind landing system 
to a third order model.

The transient response of the model thus obtained is 
extremely close to that of the full sixth order model and is, 
in fact, closer than the response of those models obtained 
using CHEN and SHIEN’s Continued Fraction method and the 
Updated Open Loop Bode Plot method, also described in this 
paper. (See Section 2.4)

The work of FOSSARD (27) also published in 1970, consists 
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of a comparison of the 1967 models of DAVISON andCHIDAMBARA. 
FOSSARD firstly suggests a correction that can be applied 
to DAVISON’s original model eliminating the steady state error.
This corrected model is as follows -

'A* Ar
X| = A X| + B u (as in equation 81) .......... (104)

x* = xt - U2A2_1 (V3Bx + V4B2) ...........(105)

Then, using as an example, the evaluation of the time response 
to a single input of a chosen fourth order system, FOSSARD 
compares the two models obtained from it using DAVISON’s 
method (incorporating his own correction) and CHIDAMBARA’s 
method, and goes on to claim that the DAVISON model as 
corrected by himself gives a closer fit to the original time 
response than does the model obtined using CHIDAMBARA’s 
method.

WILSON, FISHER and SEBORG (1972) (28) extend MARSHALL’S 
and DAVISON’s methods to linear descrete-time models and 
produce two approaches for reducing a high order continuous 
time model to a low order discrete-time model.
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2.3 MODEL REDUCTION USING AGGREGATED MODELS.

A certain quantity of work on model reduction has been 
directed towards aggregated models.

These models are expressed in state variable form and 
the reduced model state variables are related to those of 
the original model by a matrix known as the aggregation 
matrix.

Hence, the system -

x = Ax + Bu .......... (106)

(where x is of dimension n)

is reduced to

.* * * . * / x = A x + B u .......... (107)

/ *
(where x is of dimension 1

and 1 << n)

and

x* = Cx .......... (108)

(where C is the aggregation matrix
with the dimensions 1 x n)

From these relationships it follows that -

A*C = CA .......... (109)

and

B* = CB .......... (110)

Now, if C were a square matrix, A would be related to A by 

the equation -

.......... (Ill)

However, since C is not a square matrix and therefore has no 
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simple inverse, a pseudo inverse must be used instead. This 
pseudo inverse is equal to -

C'(CC')_1 
...........(112)

and defines the relationship between A and A as

A* = CAC' (CC' )_1 ...........(113)

Now, from

* _A C = CA (eqn. 109)

CA9i = A*C\>i .......... (114)

= XiCvjL .......... (115)

where X^ is the ith eigen value of A

and is the ith eigen vector of A

Then, if Cx^ > 0

X^ is also an eigen value of A*

and is the equivalent eigen vector of A*

Cvt 0 for 1 s i $ 1

Cv^ = 0 for d+1^ i £ n.

From the above it can be seen that this method of model 
reduction is effectively a form of modal elimination where the 
main problem is the selection of a suitable value for C i.e. 
the aggregation matrix.

Work along these lines has been carried out by a number of 
authors including MITRA (30, 31 ) who tackled the problem over 
the years 1967 - 1969, and AOKI (32) who published work on 
this method of model reduction in 1968. Neither of these authors 
was, however, able to define a suitable method for finding C.

Then, tn 1970, CHIDAMBARA and SCHAINKER (33) published a 
paper, in which they suggested an alternative reduction method,
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simplifying

± = Ax + Bu

y = Hx

to

.* * * *
x = A x + B u

* * *
y = H x

.......... (116)

.......... (117)

.......... (118)

.......... (119)

However, the reduced model thus obtained would,include an 

error e in the output y.
To overcome this problem, the authors suggest that the

reduced model be amended to -

* * * *•X =A.x + f.e..+ B .u .......... (120)
* * *

y = H x .......... (121)

where
★ ★ ★

e == y - y = Hx-Hx .......... (122)

This then gives

5c* = Q\* - f.H* J x* + f.Hx + B*u .......... (123)

* _ *
= Dx + f.H.x. + B u .......... (124)

where
D = A* - f.H* ...........(125)

and
★

x = Cx ...........(126)

where
C is again the aggregation matrix.

By relating the states of the original system to those of the 
model, the authors obtain the relationship

CA - DC = f.H .......... (127)

CB = B* .......... (128) 
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which corresponds to

CA = A*C .......... (129)

and

CB = B* ............ (130)
as given by AOKI.

The ouput equations then give

H = H*C ............ (131)

CHIDAMBARA and SCHAINKER further suggest a number of 

optimisation techniques to minimise f and thus to give an 
optimum aggregation matrix and hence a much improved reduced 
model.

Approaching this method of model reduction from another 
viewpoint, LAMBA and VITTAL RAO (34,35,36,37) chose, over the 
years 1973 - 1975, to examine the models obtained by DAVISON 
and CHIDAMBARA with aggregation in mind.

Reducing

x = Ax + Bu ...........(132)

to

z = Fz + Gu ...........(133)

gives

z = Cx  (134)

F = CAC' (CC’ )_1  (135)

and G = CB  (136)

where

C is the aggregation matrix.

Now,

x = Mv ...........(137>

where

M is the modal matrix of A

and v 3 Av + Tu .......... (138) 
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where

A = M_1AM  (139)

r = M'1B  (140)

Similarly

z=Mw .......... (141)o
where

M is the modal matrix of F. o

Retaining the first 1 modes, this then gives

w = Tv .......... (142)

where

T = C11 ...... (143)

and hence

w = TAT’w + Tru ...........(I44)

From the above,therefore

z = MoTAT'Mo_1z + M0TM'1Bu .......... (145)

and

z = mq w = Mq TM“1x  .......... (146)

and therefore

C = M^M*1 .......... (147)

Under these conditions, Mq can be selected at will to give 
the desired form of F, so that, if, for example, it is decided 
to retain certain state variables of the original system, an 
appropriate value to achieve this can be allocated to MQ.

Further work on aggregated models was published in 1975 
by MICHAILESCO, SIRET and BERTRAND (38) and by HICKIN and 
SINHA (39),who had previously published a number of shorter 
works on aggregated models.

In December 1975, these authors put forward a method for 
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selecting a suitable aggregation matrix. Working along similar 
lines to LAMBA and VITTAL RAO, they reduce

x = Ax + Bu  (148)

y = Cx  (149)

to

z = Fz + Gu  (150)

yx = Hz  (151)

and r < n

where X is of the nth order
u is of the qth order
z is of the rth order

y & yt are of the pth order

However, at this point the various authors choose to differ, 
for, whereas MITRA and MICHAILESCO, SIRET and BERTRAND have 
chosen to take r = p in their work, HICKIN and SINHA have 
decided to dispense with this restriction.

Now, taking

z = Kx ...........(152)

the aggregation matrix, K, is then defined as

K = M.Kq   (153)

where
|V] #0  (154)

and Ko = Tlr j o"l V*1  (155) 

where

V is the modal matrix of A 

and V’l is the modal matrix of A’

The state equations then give -
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FK = KA  (156)

G = KB  (157)

HK = C  (158)

(as do those of AOKI) 
(see eqns.109-111)

These equations are then re-written as

F = KAK+  (159)

G = KB  (160)

H = CK+  (161)

where

K is a pseudo inverse of K.

Here again, the authors differ in their ideas, since MITRA 
chooses to use Kn instead of K+

where Kn is the right weak generalised inverse of K

and KAK+ - KAKn = 0 ...........(162)

BUT CK+ * CKn .......... (163)

HICKIN and SINHA, however, state that K+is to be preferred as 

it minimises the output error

i.e. ||C(IQ - K+K) ||

An example offered by HICKIN and SINHA to illustrate their 
reduction technique is included at this point.This example, 
although trivial, serves to demonstrate the similarity of 
this technique to others dealing with modal elimination.

which is equivalent to

0 1 0 0
A = 0 0 1 B = 0

-6 -11 -6 1
1

(s 4- 1)

(s + l)(s + 2)(s + 3)
.......... ( 165)
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%3
(166)

For a second order model, Kq is obtained by selecting 2 out 
of 3 rows from

V"1 -3 -4
V2
-1

1

The choice

-3 -4 -1
Ko (167)% Vz

gives

^min u) =(0 , T 0

for all
system was not of minimal

t and u values 
order.

as the original

The reduced system is

-2 0 -1
F = 0 -3 G =

^2

which is equivalent to

H = (-1 -2^ .......... (168)

A 1G(s) = ---------- 1-------------
(s + 2)(s + 3)

as would be expected.

A further contribution to model reduction 
was published by TSE, MEDANIC and PERKINS (40)

.......... (169)

by aggregation 
in 1973.

The system representation

x = Ax + Bu (of order n) .......... (170)

y = Cx (of order r) ...........(171)

is transformed into the generalised HESSENBERG representation
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z = Fz + Gu

y = Dx

.......... (172)

.......... (173)

where

Fll. F12. °-

?21

.......... 0

>■1•
"Fk-lk

G =

(:1 ’

k............. ... JFk,k (5k
J

and .......... (175)

This transformation is achieved in a number of steps which 
are referred to as chained aggregation.

The first step involves replacing the first r states of the 
state vector x by the r output y, i.e.

where

.......... (176)

.......... (177)

.......... (178)
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z' = F'z' + G'u .......... (179)

giving

or

...........(180)

where

F’ = T’AT’ x .......... (181)

and

G’ = T’B .......... (182)

The system will be completely aggregable if “ 0 

giving

y = F’1Y + G’u.

More often than not, however, F^ * 0 and a further trans-
formation is required to be carried out in order to zeroise 
as many elements of F^ as possible.

Thus

.......... (183)

where

I 0 0

yti -a 0 C’ C’

0 0 I

C' ” 1[*

.......... (184)

.......... (185)
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y” = C’x” = E’F|2x "

where

.......... (186)

and 

E’ is the product of elementary GAUSSIAN matrices, 
each differing from the unit matrix only in 
specific rows.

This transformation now gives

z” = F”z” + G"u

or

.......... (187)

— — — — — — —

y
• • • •

F’4i F”h12 0 y G1

y”
• • • •

= F”4i F”42 F”43 y" + G2

X'” F”41
r!f
41 F”43 x’” G3

— — _ _ — —

.......... (188)

where

F”

and

.......... (189)

...........(190)

If F23 = 0 x'" can then be eliminated without any loss 
of accuracy.

Otherwise , the transformation must be continued until
the generalised HESSENBERG representation is reached.
This can then be partitioned to give a reduced order state 
vector of ith order.

However, this involves disregarding a term in F, namely

Fi i+1’ must approach zero to give a good approximation,
consequently i must be selected appropriately.

Although this technique is considerably more complicated 
than the other aggregation techniques described, nevertheless, 
on examples produced by the authors i.e. a ninth order system 
reduced to fifth order, it appears to give satisfactory results.
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2.4 MODEL REDUCTION BY CONTINUOUS FRACTION EXPANSION.

Another method of model reduction was proposed by 
CHEN and SHIEH (19) in 1968.

Working in transfer function notation and using basic 
systems theory, these two authors proposed a method of 
reduction which consists of expanding the transfer function 
into a continued fraction and then truncating it at the point 
required to give a reduced transfer function of the desired 
order.

For example

1 + bd s + b9s^
G(s) = ----- --------------- -......................  .......... (191)

2 21 + a^s + a2S + a^s

= -------------------±.......... (192)
c1 + c9s + c~sz

1 4- s —-------- - ---------------
1 + b^s + b2S^

where C1 = ai “ ^1

.......... (193)

where

56



...............(194)

Reduced models are obtained by truncating the continued 
fraction at any given point.

1

1 + (a1 - b1)s

A 1n - 1

1 + (bx . a2

al
------- ) s
- bl

Un \ s /
1 + s a? ■ b2

1 + s_ 1 + z 2) S

C1 C1 al - bl

dl

.......... ( 195)

The advantage of this method is that, although none of 
of the original poles are retained, the time response of 
models obtained in this way is generally much closer to the 
response of the original system than that of models obtained 
by modal elimination.

The main disadvantage, however, is that if the original 
system is unstable, this method can give a stable reduced 
model and vice versa.

Nevertheless, this method has become quite popular and 
since CHEN and SHIEH’s original paper in 1968 much work has 

been done along these lines.
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In 1970, CHEN and SHIEH themselves published a second 
paper (41) which gave further details of their method and also 
included several examples.

Also in 1970, CHUANG (42) published some observations on 
CHEN and SHIEH's method and proposed the following refinement. 
After pointing out that this method is equivalent to a Taylor 
series expansion about s = 0, thus ensuring that the model 
gives the correct steady state response, but, 
not giving a particularly good approximation to the initial 
transient response, CHUANG goes on to suggest that this latter 
factor, namely the transient response of the reduced model, 
can be improved by obtaining this model from a Taylor series 
expansion of the original system transfer function not only 
about s = 0, but also about s = ci>

He proposes that this be achieved by forming the continuous 

fraction expansion, starting alternatively from ttie constant 
term and the highest order, as follows

1 + b1s + b9s^
G(s) = .............. .............. ......................  ...........(196)

2 31 + a^s + a£S + a^s

= ---------------------i...................................  ...........(197)

1 + -----------------------------------------

h + _J_________
c3 C1 + s_____

dl d2 ■ 1

e2 21 + 2_

«i

where C1 • al bl ’ c2 a2 b2 ’ gl e2 c3 a3 ’

dl - 1 -
b2cl

>
c2

d2 = bi *
^2C2

c3

el “ c2
. cld2 

dl
£1 = dl -

^2el

e2
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In common with CHEN and SHIEH's method, reduced models 
are then obtained by truncating the above fraction at any 
given point.

Hence

Gx(s) = --------i-------------  = ...............    (198)

1 + ------------- 1 + (a^ - b^)s

C3 C1

1 + T.s

1 + T2s + T3s 2
. . (199)

where (a2 “ b9 " b^(a^ " bp)a3

a^2 + (a3 " 2b2)(a1 - bp + (b22 - b^Xa^ - b^)2

(b2 - a2 + (a3 - b1)(a1 - bp - b1(a1 - bp2)a3

T2 “ --------------------------------------------------‘--------------------------
a32 + (a^ - 2b2)(a1 - bp + (b22 - b^Xa^ - bp2

(a? b2 bi/ai ~ bp)a3
T3

a^2 + (a3 - 2b2)(at - bp + (b22 - bp(at - bp2

This was followed in 1971 by work published by AKIN (43) 
in which the author suggests mathematical refinements to the 
computer implementation of CHEN and SHIEH's method.

Two further papers were published in 1971 and 1972 (44,45) 
by CHEN himself, in which he extends his reduction technique 
to the multivariable case by replacing the continuous fraction 

coefficients by matrices.
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Having indicated that even the simplest model obtained 
using this method involves all elements of the state equations, 
CHEN then demonstrates that the matrix continued fraction can 
be represented by a block diagram where n closed loops are 
formed by feedforward links H^ , HQ , .... H2n_|

and feedback links Ho , H, ..... Ho2/s 4/s 2n/s

where
H2n are the coefficients in the matrix 

continued fraction expansion:-

G(s) = (Ht + s (H2 + s (H3 + ... s(H2n)’1 ... )"1 )_1 )_1 

..(200) 
Truncating the continued fraction is then equivalent to 
disregarding the innermost loops.

These two papers also include suggestions by CHEN on how 
this reduction technique could be used for the design of 
multivariable systems.

A further variation of this reduction technique is due to 
D.J. WRIGHT (46) who, in September 1973, issued an analysis of 
the continued fraction method which included some cf its 
shortcomings, his main criticism of CHEN and SHIEH’s method 
being its lack of generality in that not all transfer functions 
can be expanded in this way.

WRIGHT, himself, then proposes another form of continued 
fraction expansion to overcome this drawback.Initially, he 
multiplies both the numerator and the denominator of the 
original transfer function by s n (where n is the order of the 

system) thereby obtaining G(s) as a ratio of two polynomials 
in t (where t - s ^), each of degree n.

R<(t)
Hence G(s) - —........  (201)

R0(t)

This is then expanded as follows

Rl(t) |
G(s) - —------ = —— .......... (202)

R0(t) Rq /R1

60



...(203)
1

1

.......... (204)

where is determined by the recursive equation

Ri-1 = RiQi + Ri+1 ...........(205)

At this point, CHEN and SHIEH’s method of expansion 
would give

(t.h. for i even
Qi = ( 1

1 ( h£ for i odd

where h^is a constant.

WRIGHT, however, suggests the use of a more general form 
of h^, making it a polynomial in t and thus overcoming the 
problem that results if, during the expansion, two functions 

and R^+^ arise, and the terms of these functions are 

related in such a way that R^+^ P degrees less than R^ 

where p > 1.

Under these circumstances, it becomes impossible to use 
CHEN and SHIEH’s method to expand the continued fraction any 
further without resorting to functions R^+^ and Ri+^ etc. 

which progressively increase in degree and are consequentlv 
not suitable for truncation.

This point can be illustrated thus -

1 + s - s2
G(s) - —. ......... ......... ............  .......... (206)

2 31 + s + s + asJ
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.......... (207)1

where h1 = (—-—) + —
1 2 4 2s

At this stage, if h^ is not taken as a function of i, i.e. if 
s

it is considered as a constant, as in CHEN and SHIEH’s method, 
this transfer function cannot be expanded as a continuous 
fraction of this form and so no simplification is possible.

However, if WRIGHT’s method is used, then -

G^s) = ----------- ±-----------
1 + (-^-) s

2 - a

...........(208)

1 + (1 - —) s
G2(s) = ___________ 2......................  (209)

1 + (1 - -) s + 2s2
2

It is worth mentioning that the above transfer function 
was also expanded by CHUANG, who obtained two models, neither 
of which , unfortunately was satisfactory, since both were 
unstable where the original system was stable.

Several papers were published in 1973 and 1974. in which 
the various authors conmented on, compared and criticised 
existing continued fraction expansion techniques.

Thus in September 197°, BOSLEY, KROPHOLLER and LEES (47) 
compared CHEN and SHIEH’s method with the moment matching
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method of GILIBARO and LEES (48) and showed that the two 
methods always give identical results and are therefore 
equivalent to each other.

Some later papers do not differentiate between the two methods & 
in 1974, DAVIDSON and LUCAS (49) proposed a reduction technique 
which they referred to as a continued fraction method but 
which, in fact, involves matching moments rather than a 
continued fraction expansion.(See Section 2.5)

Then, in May 1974, CALFE and HEALEY (50) published a work 
which considered some of the difficulties experienced when 
applying matrix continued fraction reduction techniques to 
multivariable systems, as described by CHEN in 1971 and 1972. 
These two authors point out that if

G(s) = ...........(210)
D(s)

then N(s) must be nonsingular for expansion to be possible 
yet under most circumstances this is simply not the case.

CALFE and HEALEY further indicate that if the order of 
D(s) is reduced by the cancellation of a common factor also 
occuring in N(s), then an attempt at further reduction using 
the continued fraction technique may give a denominator 
polynomial of higher order than D(s).

Consequently the authors conclude that the matrix continued 
fraction method is totally unsuitable as a basis for a method 
of reduction of the order of a multivariable system.

However, it is only fair to say that although the argument 
concerning the unsuitability of this particular method is valid 
for certain specific systems, the criticism levelled by these 
authors appears to be somewhat severe, since the evidence tends 
to suggest that all the reduction techniques examined are 
considerably more suited to certain systems than to others and 
CHEN has, at least, been able to demonstrate that for certain 
systems, the reduced models obtained by his method are very 
close in frequency and time response to the original system.

In August 1974, a further contribution to the work on 
continued fraction truncation as a method of model reduction 
w*s published by SHAMASH (51), who produced a paper extending 
the use of the method to discrete time systems.
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A method of continued fraction expansion and inversion 
for multivariable systems using a generalised form of matrix 
Routh algorithm was published by SHIEH and GAUDIANO in two 
papers issued in 1974 and 1975 (52,53). These papers also 
included the laying out of three types of matrix continued 
fraction expansions referred to as the 1st., 2nd., and °rd. 
Cauer forms.

The 1st. Cauer form is -

G(s) = (H,s + (H, + (H7s + (H + (....)'X )'X )'X )'X )’X 
.......... (211) 

and is an expansion about s =

A model based on this expansion gives a good fit to the 
transient response but results in a steady state error.

The 2nd. Cauer form is -

G(s) = (H1 + (H2i + (Hj + (H^i + (....)’X )’X )"X )'X )_X 
s s

= (H, + s(H? + s(H, + s(H, + s(....)'X )'X )'X )’X )"X
1 J .......... (212)

This is the form used by CHEN in his matrix continued fraction 
expansion and is an expansion about s = 0.

Hence it eliminates steadv state error but is very 
susceptible to error in transient response.

The 3rd. Cauer matrix form is -

G(s) - (H| + H1's + (H2i + H2' + (H3 + H3's + (H^— + H^' + (..

..)-X )’X )’X )‘X )‘X
...........(213) 

This form of the matrix is a simultaneous expansion about 

s * 0 and s = a?

A model obtained by truncating this expansion has no 
steady state error and tends to give a good fit to the initial 
transient response.
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SHIEH and GAUDIANO then go on to suggest a remedy for 
what is considered by CALFE and HEALEY to be one of the 
greatest faults of matrix continued fractions, namely the 
fact that if the determinant of any matrix to be inverted 
is zero then any matrix continued fraction expansion undertaken 
will be prematurely terminated.

The authors suggest that this difficulty can be overcome 
by introducing a constant matrix Qq , which can act on the 
original transfer function either by multiplication of this 
transfer function by (si + Qq ) or by the addition of —-— Qq  
to it. s - x

Meanwhile, in November 1974, a paper was published by 
SHIEH and GOLDMAN (54) in which the authors propose a continued 
fraction technique which bears a striking similarity to that 
previously published by CHUANG in 1970. However, no reference 
is made by the authors to this fact.

The method consists of expanding the original transfer 
function into a continuous fraction, namely the °rd. Cauer or 
mixed Cauer form, and then, as in other continuous fraction 
reduction techniques, truncating this at a given point.

The form of the expansion, which differs slightly from 
that used by CHUANG, is as follows:-

G(s) (214)

where

Ahn+1s +

Al,n+1’A21

A32 A13
Al,n+1'A22

a 31s + A?2s 2 + •••’ + A’,n-lsn 1

A21 + A22s +

(215)

(216)

(217)

1
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and, in general

A3i Al,i+1
AllAZ,i+l

................(218)

for i = 1 to n-1.

Further division gives

.(219)

where

Ai+l,l

Ai,n+2-i

i+1,n+l-i

and

for i = 1 , 2 , 3 n

Aj,k Aj-2,k+l ' hj-2"Aj-l,k+l ’ hJ-2 *Aj-l,k

for j - 3 , 4 ,............ , n+1

and k = 1 , 2 , 3 ,..........

Using this method, each step in the expansion produces 
2 coefficients, one of which is for an expansion about s = 0 
and the other for an expansion about s = <».

CHUANG's method, which produces an almost identical 
reduced model requires 2 separate steps to obtain these 
coefficients and consequently the values of these coefficients 
are different from those obtained bv the method proposed by 

SHIEH and GOLDMAN.

Nevertheless, since both methods use the principle of 
simultaneously expanding the transfer function about s = 0 
and s = cd , both are subject to the same basic advantages and 

disadvantages.
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In 1977, SHIEH made yet another contribution to the 
work on this method of model reduction by publishing, this 
time in combination with PATEL and CHOW, a further paper on 
the application of this method to multivariable systems, a 
topic previously raised by him in the paper published in 
co-operation with GAUDIANO.

SHIEH, PATEL and CHOW (55) extend CHEN’s matrix continued 
fraction method to multivariable systems having a different 
number of inputs and outputs. Since such systems have non-
square transfer function matrices, which consequently cannot 
be inverted in the normal way, a method using pseudo inverses 
is proposed and described.

Then, in 1978, two papers were published by PARTHASARTHY 
and SARASU JOHN (56,57), in which the authors present an 
algorithm for CHUANG's method of model reduction, which they 
subsequently extend into a matrix continued fraction reduction 
technique giving the expansion -

G(s) = (Hx + s(H1'+ (H2 + s (H2'+ ( .... )_1 )_1 J'1 )_1 )‘1

(220)

These papers also include an algorithm based on the 
matrix Routh array for expanding and inverting transfer function 

equations in this way.

Also, in 1973, FIELD and OWEN$(58) presented a technique 
which although based on a continued fraction expansion can 
Incorporate other methods of model reduction.

This technique bears some similarity to that of WRIGHT 
(to whom the authors do not refer), in that both methods 
expand the transfer function in terms of polynomials rather 
than simple constants.

Thus

G( s)

B s - z.) (221)

IT (s - p<) 
i=i 1

where
Bx * 0
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(222)

is expanded to

gx(s)
G(s) =

1 - g^Cs)— .h1(s)
B1

where

h^(s) a strictly proper transfer function of 
order m with poles at z1 to z .r Im

is

and
gx(s) is a transfer function of order n - m

i. e.

B1
gl/s>

skl + 1skl'1 + . . + <Xl,k1

(223)

h|(s) to hr_^(s) can be expanded similarly to G(s)

i. e.

hi
___________ gj+l(s)

1 - gj+i<s>r"
“j+i

• h.+1(s)
(224)

giving

G(s) -
(gf^s) - ^(gz'^s) - ^(g,’1

i _x i _x -i 
•• Br_1^gr ' Br^gr+1

-1
)

-1 -1
) )

-1
)
(225)

= m if , for all h^ to hr» 
is 1 less than that of 

otherwise r is less than m.

where r the
the

order of the numerator
denominator

This expansion is equivalent to the 
Figure 2.2 .

arrangement shown in

The authors suggest that the system can now be reduced
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G( s )

Figure 2.2

Diagrammatic representation of Field and Owens* expansion.
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by approximating hj at any stage, either simply to its steady 
state value or by using any chosen simplification technique.

FIELD and OWEN illustrate their technique with two 
examples.

In the first example, a 5th. order system is reduced to 
to a 3rd. order system by approximating h9 to its steady 
state value.The authors then demonstrate that the resulting 
model approximately retains the dominant pole - zero structure 
and has no steady state error.

In the second example the authors reduce a transfer 
function whose numerator is of 6th. order and denominator is 
of 10th. order to one with a numerator of 2nd. order and a 
denominator of 6th. order.

Four different models are then obtained by using four 
slightly variable techniques.

1) For the first technique
g.(s), g2(s) and g^(s) are retained 

and
h^Cs) is approximated to its steady state value.

2) For the second technique
g1(s) and g9(s) are retained 

and 1 L
b^Cs) is approximated by moment matching.

7) For the third technique
A pair of dominant poles are retained.
The expansion is then carried out on the 3th.order 

transfer function excluding the dominant poles.
g^s), g9(s) and g9(s) are again retained 

and 1 L J
h^Cs) is again approximated to its steady state value. 

This gives a 4th. order transfer function which,together 
with the dominant pole pair gives a 6th. order model.

Finally for the fourth technique
A pair of dominant poles are again retained.
The expansion is then carried out as in the third

technique except that 
g (s) and g9(s) only are retai-necl

and X
h9(s) is again approximated bv moment matching as in 
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the second technique.

None of the models resulting from the above variations 
has a steady state error and the fourth model, in particular, 
gives a very good step response.

The method proves itself to be very versatile and its 
ability to incorporate other techniques is easily discernable.

Despite the fact that continued fraction techniques can 
be seen to have certain disadvantages, overall it would 
appear that, for many cases, very satisfactory models can be 
obtained.

This method of model reduction and its various techniques 
has been shown by certain authors to be related to model 
reduction techniques using moment matching. This latter method 
of model reduction is dealt with in the following section.
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2.5 MODEL REDUCTION BY MOMENT MATCHING

The first full scale introduction of moment matching as 
a method of model reduction was published in 1969 by GILIBARO 
and LEES (48).

However, work on this method had been previously under-
taken, in 1965, by GUSTAFSON (39) (See Section 2.7) who, in turn, 
referred to earlier work carried out in Germany bv PAYNTER in 
1956. (60).

The central principle of thi 
is exemplified by taking the nth. 
origin, M , as

; method of model reduction 
moment of G(s) about the

.......... (226)

.......... (227)

.......... (228)

GUSTAFSON then takes the time moments as the values 

a0 ’ al ’ * ** an etc* apd states that qq  is the area of 

the impulse response of G(s), as defined above.
When this area is normalised to unity, the first moment 

gives the mean time delay of the impulse response measured 
from the time axis.

At this point, GUSTAFSON is in complete agreement with 
GILIBARO and LEES who say that the first moment about the 
origin, Mp localises the response on the time axis.

Subsequently, however, GUSTAFSON states that the second 
moment gives the mean square time delay of the impulse response 
which he considers as a measure of the rise time, whereas 
GILIBARO and LEES state that higher moments taken about IL 
characterise the shape of the curve.

Based on this latter assertion, GILIBARO and LEES suggest 
that it is generally advantageous to work in terms of the
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mean, , and moments about the mean which are unaffected 
by pure time delays.

The nth. moment about the mean,

g(t)dt

T , is then given by:-

.......... (229)

which gives

T| = 0

T3 = M3 - 3M2Mx + 2Mt3

etc.

A reduced model of the required form and order can now 
be obtained by equating the same moments of the full system 
equation and the simple model and solving for the unknown 
reduced model coefficients.

If, however, G(s) is in the form of a single polynomial 
in s , then the reduced model can be obtained by equating 
the coefficients of s.

Following this work, papers were published in 1970 and 
1972 by T.C. HSIA (61,62) who puts forward a reduction method 
which, although ultimately very similar in its method of 
evaluation to that of GILIBARO and LEES, is arrived at in the 
following very different manner.

HSIA continues thus:-

Putting
G(s) - K a(s)

b(s)
............(230)

and

G(s) = K
d(s)

............(231)

and writing

M(s) = a(s).d(s) ............( 232a)

N(s) = b(s).c(s) ............( 232b)
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(233)

Let

E(w) = M( jw)M(- jw)
N(jw)N(-jw)

Mq + M2w 2 + M4w 4 +

Nq + N2w 2 + N,w4 +
(234)

where

M21 (and similarly is given by

M = 1 • d21(M(jw).M(-jw))
21 <21)' dw21

for 1 = 0 , 1 , 2 , •

w=0
(235)

If jw is then replaced by s this then gives

21

M21

k=0

(-1)k+1 M(k)(s).M(21~k)(s)

k! (21-k)*
(236)

s=0

where

M(k)(s) = dk(M(s))

, k ds
(237)

N(s) can also be expressed by similar equations.

Since for a perfect fit E(w) must equal 1, it follows 
that M21 must equal for values of 1. In reality, of 

course, one can only hope for an optimum model of a required 
order and tn this case must equal N21 for all values of 

1 as far as this is possible.

The above equations then give -

Mo - 1 (238)
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(239)

M2 = (m'(s ))2 - M°(s ).M2(s ))

s=0
(240)

M6 " ^(10(M3(s))2 - 15.M2(s ).M4(s ) +

6m'(s ).M5(s ) - M°(s ).M6(s ))
s=0

etc. (241)

As can be seen, the terms obtained using HSIA’s method 
are similar to those given by GILIBARO and LEES for the 
moments about the mean, the difference being that whereas 
HSIA deals in terms of -

M(s) = a(s).d(s) (eqn. 232a)

N(s) = b(s).c(s) (eqn. 232b)

GILIBARO and LEES work in terms of -

M(s) = a(s).c’1(s) ...........(242)

N(s) = b(s).d’1(s) ...........(243)

HSIA does not appear to have been aware of the work of 
GILIBARO and LEES and refers only to the reduction techniques 
of DAVISON and CHIDAMBARA (See Section 2.2), giving examples 
to demonstrate what he considers to be the superiority of 
his method over any techniques produced by these two authors. 
His criterion for this comparison is the integral square 
error (ISE) of the unit step response.

HSIA claims that pure time delays can be adequately dealt 
with using his method.

This, however, is not so since if either G(s) or G(s) 
contains a pure time delay then a(s) or c(s) and consequently 
M(s) or N(s) contain a factor of the form e s .
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The resulting functions Mq , M2 , • • • M21 or Nq , , • • •

are, however, completely independent of this factor.
Hence, if G(s) contains a time delay, this will be 

completely ignored using this method of reduction. Similarly, 
no pure time delay can be included in G(s) since no equations 
exist which could contain t , which can, therefore, not be 
evaluated. (See Appendix).

Further papers on this method were published in 1971 
by BROWN, who describes the use of moment matching techniques 
for modelling discrete time systems.(63,64)

Then, in a paper published in 197^ BOSLEY, KROPHOLLER 
and LEES (47) show that the moment matching method of 
GILIBARO and LEES and the continued fraction method of CHEN 
and SHIEH are equivalent and will give the same reduced models 
in all cases.

Subsequently, in 1974, DAVIDSON and LUCAS (49) published 
a reduction method under the description of ” a continued 
fraction expansion about a general point ”. However, on 
investigation, the work appears to follow moment matching 
lines rather than continued fraction expansion.

Thus, whereas CHUANG’s continued fraction method matches 
alternatively about s=0 and s= 00, and the methods of CHEN and 
SHIEH match about s=0, the method of DAVIDSON and LUCAS matches 
about s=a, where a is selected according to the system 
characteristics.

integrals of the impulse

=0,1,2,... 2m-1

model.

.......... (244)

This method, then, matches the 
response weighted by e -atti for i

where

Thus

Then,

m is the order of the reduced

g(t)dt

by putting s = a + z

F(z) - G(a + z) + Z)t g(t)dt ............(245)
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tL g(t)dt .......... (246)

ct>

i=0

The reduced model is subsequently obtained by equating

g(t)dt tL g(t)dt .......... (247)

for i = 0 , 1 , 2 , ... 2m-1

and G^s) = F(S - a) ...........(248)

In this paper, DAVIDSON and LUCAS also demonstrate that 
the CHEN and SHIEH continued fraction method is equivalent 
to a (m , m-1) Pade approximation.

In October 1974, LAL and MITRA published two papers (65, 
66)• In the first of these, the authors present a moment 
evaluation algorithm for model reduction.The second paper 
presents a comparison of transfer function simplification 
methods and again shows that the moment matching method of 
model reduction is equivalent to the continued fraction method 
of CHEN and SHIEH.

This is demonstrated

Taking
00

G(s) =

k-0

in the following manner -

cksk (249)

and op

G(s) - DRsk

k=0

...........(250)

Moments are given by

Mk = (-l)k k! Ck .......... (251)
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.......... (252)

and 

Mk = (-l)k k!

for k = 0 , 1 , 2 , ...

Matching moments then gives

Mk - Mk ....(253)

and hence

ck " °k ....(254)

for k = 0 , 1 , 2 , ... 2r-l

where r is the order of the reduced model

Using CHEN and SHIEH’s continued fraction expansion - 

1
1

(255)

____1

h3 +

the following cefficients are obtained

hl
1

co
h2

C

C1

h3

h4

C 2
C1__________

C0(Cl2 * C0C2>

(Ct2 - c0c2)2

Cl(C0C22 ’ ClC0C3>

Model reduction by truncating the continued fraction gives 

similar equations for these coefficients in terms of the 

Coefflcients of the reduced model.
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These two sets of equations simplify to

.......... (256)

for k = 0 , 1 , 2 , ... 2r-l as before.

LAL and MITRA also comment on HSIA’s method which they 
describe as a least square fit of frequency response.

Here the authors demonstrate that the method proposed by 
HSIA will effectively fit the following equations -

.......... (257)

Cx2 - 2Cq C2 = Dt2 - 2Dq D2 .......... (258)

C22 - 2C1C3 + 2Cq C4 = D22 - 2D1D3 + 2Dq D4 .(259)

etc.

Another technique which can best be described in this 
section was put forward in July 1979 by DALY and COLEBOURN 
(67). This technique considers the system equations in state 
variable form and suggests a method for reducing the order of 
the system which matches either time moments, Markov parameters 
or a combination of both.

The basis of this technique can be represented in the 
following manner.

If the original system is expressed as -

x = Ax + Bu ...........( 260)

y - Cx .......... (261)

where x is of the order n

and this is then reduced to

( 262)

( 263)
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and

<

where x+ is of the order m

c =

A =

* 
A AC 0

Ar
A+

0

m-11><n-m >

A A

n-m

V 
A

1
B =

0

B+

n-m

m

m-1 V V

. . .(264)

0 C+

< n-m >< m > ...(265)

•k
where A > Ar

9 Ac are of any form
dimension

but of appropriate

and

A+

a m 1 0..................... .0 (

B a < 1 • .
m m-1. •

0 B ’ * . • „+m-1. . B =
0 * •. • • 0

• •
°2 •1 ()

6. . • .o’-/s2 *1 1

. ..(266)

C+ 0 0 ...(267)

then

J1 ■ Ji+ for 1=0 to 2m-l ...(268)
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where

= CAiB , i = 0 , 1 , 2 ............. .......... (269)

are the Markov parameters of the system.

Consequently the technique is essentially a method for 
transforming A, B and C into the required form, so that they 
can be partitioned to give the reduced model.

The transformation is carried out in 2m steps and can be 
terminated after any even number of steps if the model obtained 
is considered to be sufficiently accurate.

For odd numbered steps (step number 2i - 1)

Al = Fi.Ai-l.Fi"1  (270)

Bi = Fi.Bi-1.  (271)

Ci = Ci-l.Fi’1  (272)

For even numbered steps (step number 21)

Al - Gi_1AiGi  (273)

Bi = Gi_1Bl  (274)

Ci = CiGi  (275)

where

.......... (276)
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...........(277)

for i = 2 to n

Fl =

Vl •

fn-i

0

0 fn-i+1 0

0 0 I. 11-1

...........(278)

f j = - ------Jj-QlliZ— for i = l to n-i

an-i+l,n-i+2

f = ----------1____
n-i+1 a

n-i+1,n-i+2

Vi 0 0

*1 .......... gn-i 1 0

0 0 Vi

.......... (279)
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. .... .................................

an-i+2,n-i+l

If the transformation is carried out on (A \ A ^B, C) or 

(A B, CA 1) instead of (A, B, C) the reduction will give 

((A+) 1, (A+) C+) or ((A+) \ B+, C+(A+) matching

time moments.

If the transformation is applied to (A, A ^B, C), then q time 

moments and a variable number of Markov parameters can be 
matched.

Alternatively, if the transformation is applied to (A \ 

A^ ^B, C), then q Markov parameters and a variable number 

of time moments can be matched.

This reduction technique is essentially another mathema-
tical algorithm for matching time moments and/or Markov para-
meters and is undoubtedly extremely convenient for a system 
expressed in state variable form.

A further method of model reduction which involves time 
moments and/or Markov parameters is that which makes use of 
partial realisation techniques.

This is described in the next section.
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2.6 MODEL REDUCTION USING PARTIAL REALISATION
TECHNIQUES

A number of authors, namely HO and KALMAN (1965) (68), 
SILVERMAN (1971) (69) and ROZSA and SINHA (1974) (70) have 
developed methods for the minimal realisation of a svstem 
model, given as a transfer function, in terms of state 
equations of the form -

x = Ax + Bu ...........(280)

and y = Cx ...........(281)

Assuming a transfer function matrix of order q x p 
where q is the dimension of the output vector y 

and p is the dimension of the input vector u,
A, B and C are found of order n x n, n x p and q x n 
respectively, so as to minimise n.

A modified form of these techniques has since been used 
as a method of model reduction by SHAMASH (1975) (71) and 
HICKIN and SINHA (1976) (72).

The resulting model reduction method employs a matrix 
consisting of the Markov parameters or time moments of the 
original system, which are equivalent to a Taylor series 
expansion of the transfer function about s - oo and s = 0 

respectively.
cx-

i.e. G(s) = y~ Cp1'1 ...........(282)

Time moments about s = 0

D^s'1 ...........(283)

Markov parameters about s = co

As such, this method can be said to be based on principles 

i=l

or &
G(s) = V

i-1
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similar to those of the moment matching or continued fraction 
truncation techniques.

The Hankel matrix for the system is set up as follows -

D1

?2

D2 ..................

?3 ..................

Di-1

D, . i

Di 

?i+l

Hij ■

Di-1 D.........................
j Di+j-2 Di+j-l

_Dj Dj+1.................. Di+j-l Di+j
.......... (284)

The order of the minimal realisation n 
the rank of the matrix H^ . provided that i 
controllability index of the system) and j 
observability index of

is equal to

a
B

the system). (See Kalman

(the
(the

(73).)

£

The Hankel matrix 
normal form which is a

the Hermiteis then transformed into
square matrix of upper triangular form 

with elements on the main diagonal of 1 or 0. Thus, if a 
certain diagonal element is 1, all other elements in the 
column are 0, whereas if the diagonal element is 0, all 
elements of the row are also 0.

When the Hankel matrix is not square, the Hermite form 
produced will not be square either, although it will effect-
ively be a square matrix truncated.

This Hermite form is obtained using an algorithm proposed 
by ROZSA and SINHA (70) which is based on outer products. The 
transformation is completed after n steps and the matrices A, 
B and C which give a minimal realisation of order n are now 
determined by selecting appropriate elements of the Hankel 

matrix in the original and Hermite forms.

Thus C is derived from the top left-hand corner of the 
original Hankel matrix by selecting the appropriate 

number of rows and columns (q x n)

B is derived from the top left-hand corner of the 
Hermite form of the Hankel matrix taking the first 

p columns and the first n rows.
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A is similarly derived from the top of the Hermite 
form of the Hankel matrix taking n columns after 
those selected for the B matrix, and the 1st n rows.

The procedure for obtaining a reduced order model from 
the Hankel matrix follows similar lines in that for a model 
of order r, the transformation is discontinued after r steps.

Using this method of model reduction the first m Markov 
parameters of the reduced model agree exactly with the first 
Markov parameters of the original system when -

m = r + r

_P_
...........(285)

where is the inte ger division of r by p

The following example taken from ROZSA and SINHA 
illustrates this method -

G(s) =

s3 + 6s2 + 11s + 6
...........(286)

The first five Markov parameters of this system are -

1 0 0 -6 36
D1 -

_0_
D2 ‘

_6_ D3~ _-24_
D4 "

_+78_
D5 =

_-240_

and the four

H42

by two Hankel matrix is -

1 : 0 0 -6

0 : 6 -24 78

0 : o -6 36

6 : -24 78 -240

.......... (287)
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Since the system being dealt with is of 3rd. order, this 
can now be transformed into the Hermite form in steps, these 
being -

1) H,,(n = H., -

1--
--

--
--

---
--

--
--

-1
O

 O 
O

 j L1" 0 -6^

0 0 -6

6 -24 78

0 -6 36

-24 78 -204

0

0
.......... (288)

2) 6 -24

3)

1

0

0

0

0 0 -6

1 -4 13

0 -6 36

0 -18 108 (289)

0 -6

1 0

0 1

0 0

0 0

0 -6

0 -11

1 -6

0 0 (290)
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Thus, in general, the kth. 
defined as -

step of the transformation can be

H(k) = H(k-1)

hk-l,k

hk+l,k

...........(291)

The minimal realisation of this 
now obtained from and *

C

3rd. order system is

is made up of

H42

the first 2 rows of the first 3 columns of

i.e. 1
0

0 0
6 -24

B is taken from
H (3)
H42

the first 3 rows of the 1st. column of

A

i.e. 1

0

0

(292)

(293)

is taken from
M (3)
H42

the next 3 columns of the first 3 rows of

i.e.

A «

0 0 -6

1 0 -11

0 1 -6
(294 )
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At this stage, it can easily be verified that the 
system represented by the state equations whose coefficients 
are A, B and C (as evaluated above) has the transfer function 
shown at the beginning of this example.

A 2nd. order reduced model can be obtained in a similar 
(2)manner - from H/n and H/n .42 42

Thus

.......... (295)

function

1 0 0
B =

0
A =

1 -4
_ ...........(296)

The transfer.of this reduced model is - A

.......... (297)

Evaluation of the Markov parameters of this reduced model will 
show that the first three coincide with those of the original 
system.

System reduction can also be achieved using the same 
technique applied to a matrix made up of the coefficients Ci 
of the expansion about s = 0, providing that the system has 
no pole at the origin of the s-plane.

Under these circumstances, B, A 1 and C will be 

obtained.

This method of model reduction is in effect a technique 
°f moment matching or Markov parameter matching for multi- 

friable systems. As such it has the same advantages and 
disadvantages as these methods.

However, this particular method of calculation does have 
°ne specific advantage in that if the reduced model of order 
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r is not considered to be sufficiently accurate, the trans-
formation can be carried further thereby giving a reduced 
model of higher order.

A problem that this technique has in common with certain 
other reduction methods is that numerical difficulties arise 
if a pole or zero occurs at the origin in the original system. 
A possible way of overcoming this feature is to retain this 
pole or zero,that is to reduce the system (ignoring the pole 
or zero) and then to add the retained element to the reduced 
model after reduction.
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2.7 MODEL REDUCTION BY MINIMISING ERROR FUNCTIONS
IN THE FREQUENCY DOMAIN

Minimising error fun ctions in the frequency domain is 
a method of model reduction which was first presented in 
1966 and 1967 by MEIER and LUENBERGER (74,75), who initially 
formulated the problem in the time domain, but subsequently 
solved it in the frequency domain.

Taking the system transfer function as G(s) and the 
reduced model as G(s), with respective outputs of y(t) and 
y(t) and applying a stationary random input u(t), the 
reduced model is obtained by minimising the function

(298)

Using Parseval’s theorem, this can be transformed into -

2
0u(s) ds .......... (299)

where 0^(s) is the power spectral density of the input 
signal u(t).

Taking

as

m

i=l ...........(300)

J is a function of r^ .... r^ and 

be minimised by differentiating with 

parameters giving

6- .... p and can 1 rm

respect to these

3 J = 2
9 a 2 it  1

(G(s) - G(s))
(301)
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.......... (302)

where a is any real parameter of G(s).

Then if

9G(s) _ 1
3ri s - p£

this gives

(G(s) - G(s)) --------.0u(s).ds
s -

.......... (303)

and similarly if

3G(s)

a Pi

1
(s - ;t)2

.......... (304)

this then gives

9J _ 2
9pt 2tt  j

1

(S - pt)2
.0u(s).ds

.......... (305)

To obtain the simple model parameters, J is now partially 
differentiated with respect to each of these parameters, and 

each resulting differential is then set equal to zero, giving 
2m simultaneous equations:-

(G(s) - G(s)) 1— .0u(s).ds = O

s - Pi
(306)

for i - 1, 2, .... m

(G(s) - G(s)) ------- --------  .0 (s).ds-O
* '2 u (s - Pi)z

for i “ 1, 2, .... m

(307)
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The authors recommend that these equations be solved 
using Newton’s method and subsequently cite the following 
examples to illustrate their technique -

G(s) G( s )

1) ___________ 1________
(s + 0.1)(s + 10)

-1
s + 0.1

5)

_______ s 4-0.9_____
(s + 0.1)(s + 10) 

s 4- o,2
(s 4- o.l)(s 4- 10)

(s 4- o.l)(s 4- 10)

0.9
S 4- 7

1
S 4- 10

0.9
s 4- 13.3

____________ S 4- 4 _______________

(s + l)(s 4- ^)(s 4- 5)(s 4- 10)
0.9

(s 4-1 )(s 4- 3)

calculated taking 0^ as 1

models
As can be seen, each of these reduced A has a large steady 

state error and this factor must be considered to be one of 
the greatest disadvantages of this particular technique.

In 1974, VITTAL RAO and LAM BA (76) published a paper, 
in which they proposed a model reduction technique (not unlike 
that of MEIER and LUEBERGER) which is based on the minimisation 
of the integral square error between the frequency response 
of the original system and that of the proposed reduced model 
over a chosen frequency range.

Thus

K(1 + a.s + a_s2 +
G(s) - --------------1----------—

1 4- b^s 4- b2S^ 4-

4- as /m (308)
. v n4- b s n m < n
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is reduced to

. K(1 + c1s + c-s2 +
G(s) = ------------- 1--------- 2__

1 + d^s + d2S2 +

+ cpsP>

+ d sq 
q

.......... (309)

P < q < n

By substituting jw for s

G(jw) = K.P(w) ............ (310)
F + jwL Q(w)

where
R = 1 - 2 4a2W + a^w

1 = al
2 4- a^w + a^w

F = 1 - 2 4b£W + b^wQ

L = bx 2 4- b^w + b^w

and

G(jw) = K<A * jwB>
C + jwD

K.N(w)
M(w)

.......... (311)

where
2 4A = 1 - c^w + c^w - ..........

The error in frequency response is then given by

e(w) - G(jw) - G( jw) .......... (312)

=, K(P(w),M(w) - Q.(w).N(w))
Q(w),M(w)

.......... (313)

. K(S(w) 4- JT(w))
Q(w).M(w)

.......... (314)
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where

S(w) 4- jT(w) = P(w).M(w) - Q(w).N(w) ..........  (315)

- (R + jwI)(C + jwD) - (F + jwL)(A + jwB) . (316) 

= RC - FA - w2ID + w 2LB + jw(IC + RD - LA - FB)
..........  (317)

therefore

S(w) = RC - FA - w^ID + w 2LB .......... (318)

T(w) = (IC + RD - LA - FB)w ........... (319)

By putting

e.(w) = ...........(320)
1 K

Q(w).M(w).e1(w) S(w) + jT(w) ..........  (321)

therefore

Q(w).M(w).e1(w) “ S2(w) 4- t 2(w ) ..........  (322)

A weighted integral square error, E, is now obtained by 
integrating between chosen frequencies given by w^ and w.^

Thus

Q(w).M(w).e1(w) ........... (323)

(S2(w) + T2(w )) dw ........... (324)

This can be re-expressed as

FA - w2ID + w 2LB)2 + w2(IC + RD - LA - FB) dw

.......... (325)
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By minimising E, the reduced model can now be optimised. 
This is done by partially differentiating E with respect to 
each of the unknown coefficients of G(s) in turn and then 
setting these partial differentials to zero.

After performing these differentiations, VITTAL RAO and 
LAMBA produce a matrix equation, the solution of which gives 
values for c. to c and d. to d .1 p 1 q

As an illustration of their technique, these two authors 
published the following example which, unfortunately, contained 
an error in its numerical evaluation -

1

____________ 0.1667______________

1 + 1.3333s + s2 + 0.1667s3
.......... (326)

The reduced model Chus obtained gives

G(S) = °'1667<1 ~ 0-1584s )

1 + 1.6150s + 0.62*6s2

1 + 1.6550s + 0.7850s2

VITTAL RAO and LAMBA numerically inaccurate version is

0.1667(1 - 0.1633s)

1 + 1.6691s + 0.7710s2

By comparison, using CHEN and SHIEH's method, this would be -

*(s) = 0.1667(1 - 0.1667s) ...........(328)

1 + 1.6667s + 0.6944s2

and using HSIA's method -

C, x 0.1667G(s) - .............................................. ...... .. ...........(J“9)
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It is, however, worth noting that since the method 
proposed by HSIA gives an imaginary value for , no 
realisable model of the form

K(1 + cts) 
-------------------------- could be 
1 + d|S + d£s2

obtained in this case using this method.

As the examples given prove, the model obtained using 
VITTAL RAO and LAMBA’s method (in either of its forms) does 
not differ greatly from that obtained using CHEN and SHIEH’s 
method, the main distinction being that the frequency response 
of CHEN and SHIEH’s model is closer to the original model at 
lower frequencies. However, VITTAL RAO and LAMBA’s model is 
less stable and hence is safer for controller design.

Unfortunately, if taken as published, this method of 
model reduction cannot cope with full systems or reduced 
models which contain time delays. There is, however, no 
apparent reason why the technique could not be extended to 
do so, although the calculus involved would be extremely 
complicated and tedious.

Nevertheless, being an analytical optimisation technique, 
the computation is not as complicated as that of a numerical 
optimisation method although it is still far more complex 
than that of other analytical reduction techniques, since, 
being a finite optimisation method, boundaries must be decided 
upon and the frequency range of interest must first be found.

A very similar approach to model reduction uas produced 
in 1976 by REDDY (77), who expresses the full and reduced 
models in exactly the same terms as VITTAL RAO and LAMBA, but 
uses a different error criterion to obtain the reduced model 
parameters. Instead of minimising one error function with 
respect to each of the reduced model parameters, REDDY uses 
four seperate error functions.

Using

G(jw) * K(- -..M2 .......... (330)
F + jwL
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and

G( ]W) = K(A + jwB) .......... (3 
C + jwD

(as did VITTa L RAO and LAM3A), REDDY minimises the integral 
square error between two chosen frequencies of the real and 
imaginary parts of the numerator and the denominator separ-
ately to produce the following four error functions -

E. = /" 2 (R - A)2 dw

W1

E- = (I - B)2 w2 dw

W1

E« = y" 2 (F - C)2 dw

W1

.......... (332)

.......... (333)

.......... (334)

.......... (335)

These error functions are then minimised by partially 
differentiating each function with respect to the relevant
parameters of the reduced model and equating to zero, 1. e.

&E- iE,1 J _ 0 for i = 2, 4, 6 . ...(336)
Sci 6d£

^E-z = Q = 0 for i = 1, 3, 5 . . . . (337)
6dt

These conditions give the following equations -

2(R - A)(— ) dw = 
dci

0

for i = 2, 4, 6

.......... (338)
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£E3 

id1

- /”2 - 

W1
2(F - C)(— ) dw = 

dd£
0 ............(339)

for i = 2, 4, 6

5e 2
ic. W1

2(1 - B)w (— ) dw = 
de.i

0 ............(340)

for i = 1, 3, 5

8E4 . /"2.

W1
2(L - D)w2(— ) dw = 

ddt
= 0 ............(341)

for i = 1, 3, 5

The parameters of the reduced model are now obtained by
solving these equations.

REDDY then cites the same example as that used by VITTAL 
RAO and LAMBA to illustrate his technique

.......... (342)

.......... (34.3)

R = 1 I - 0 F = 1 - w2 L = 1(11 - w2)
6

A = 1 B = c^ C = 1 - d2w2 D = dl

This gives E^ - 0

.......... (345)
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(346)

<£E

<^d

(347)(— -

(348)

(351)

d.) w

(352)

therefore
(353)

1.4333

and thus

( 354)0.16676(s)
.4333s + s2

therefore

and since

therefore

Similarly,

(349)

(350)
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This model gives a greater error in frequency response 
than that obtained by VITTAL RAO and LAMBA as observed on 
a Nyquist plot.

In common with the models of VITTAL RAO and LAMBA, and 
CHEN and SHIEH, among others, the model is not necessarily 
stable if the original model is stable.

However, as the author points out, the calculations 
invol ved in this method of reduction are far simpler than 
those involved in the method of VITTAL RAO and LAMBA, since 
each of the four functions, A, B, C and D which make up the 
simplified model is evaluated seperately using distinctive 
error functions. In this way, it can be claimed that the 
errors in both the phase angle and the magnitude of both the 
numerator and the denominator of the transfer function are 
minimised seperately.This, however, does not guarantee that 
the errors in magnitude and .phase angle of the transfer 
function, as a whole, are minimised.
i.e.

then

E(s) = G - G = K(A + jwB)
C + jwD

K(R + jwl)

F + jwL
. . . .(355)

Let

A = R + r B = I + i C = F + f D - L + 1

where r, 1, f, and 1 are the errors in the four terms of the

reduced model

E(s) - K(rF ~ Rf ~ - ID + W “ If Lr - 1R))
(F + f + jw(L + 1))(F + iwL)

.... X356) 
As shown by the above equation, minimal values of r, i, f and 
1 do not guarantee a minimal value of E(s).

Due to this fact, this technique for model reduction is 
Unlikely to be satisfactory unless each of the four errors is 
extremely small as in the case where the degree of reduction 
ls limited or when E(s) is cotnctdentallv minimised.
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2.8 MODEL REDUCTION USING THE SCHWARZ CANONICAL
FORM.

The Schwarz Canonical form is a form of the system 
equation in which the A matrix is replaced by the Schwarz or 
B matrix, whose elements are derived from the Routh array of 
the system.

Details of the Schwarz form were first given by SARMA, 
PAI and VISWANATHAN in 1968 (78) as follows

The system given as

x = Ax + Cu .......... (357)

where x is of order n

can be transformed into the Schwarz Canonical form

fc = Bz + fu .......... (358)

where z is also of order n

by using the transformation matrix H, where

x = Hz. .......... (359)

Then

0 i 0 .......... 0 0

-bl 0 1 .......... 0 0

0 “b9 0 .......... 0 0
B -

0 0 -b^ .......... 0 0

6 0 0 6 1

0 0 0 ............-bn-l -bnJ
.......... (360)

^here for i “ 1, 2, 3 .
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and

where are the elements of the first column of the Routh 
array, determined from the characteristic equation of A.
(See Section 2.9)

and

f = (0 0 0 .... 0 1)T ...........(361)

for u as a single variable.
If, however, u is a vector, then C and f become matrices 

and the standard form of f, as given above, no longer applies. 
Under these circumstances, the transformation into the Schwarz 
Canonical form becomes rather difficult since it can no longer 
be expressed in explicit equations as in the single variable 
case.

Now, given

x = Hz (eqn.359)

then

Hi = AHz + Cu .......... 362)

and from

n c ...........(363)= Bz + fu

it follows that

HB = AH

and

Hf = C

If B, f, A and C are known, H can be evaluated.

Equations 364 and 365 can be re-expressed in 
form as

.......... (364)

.......... (365)

column vector

.......... ( 366)
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and

h = c .......... (367)
n

where

is the first column of H

h2 is the second column of H etc.

and b. to b are the elements of B as defined earlier.1 n

The transformation matrix, H, is now obtained by 
rewriting the last two equations as -

h = c (eqn.367)n

h.=A.c+b.c .....(368)n-1 n

hn-k = A-hn-k+l + bn-k+l'hn-k+2 ............(369)

for k = 2, 3, .......... , n-1

Once the system equations are in the Schwarz Canonical 
form, the system order can be reduced by eliminating some of 
the states from the Schwarz equation.

This method of model reduction was first proposed by 
ARUMUGAN in a Ph.D.thesis in India tn 1971,(79) and was then more 
widely published by ARUMUGAN and RAMAMOORTY in 1973 (80).

The reduction is carried out by partitioning the Schwarz 
equation (equation 358),which gives

is now taken as zero, giving

— —1 (— — t— -n

m B B. mm mi zm +

l--
-- N
*

1__
_ B. B. ._ im ii _Zi_

.......... (370)

.......... (371)

and hence

+ fju) .......... (372)
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.......... (373)

which gives

Since f = 0, this becomes m

^m “ - B .B..‘1B. )zm -
mm mi 11 Im m

This is the reduced order Schwarz

. * * * *
z = B z + f u

where

* -1
B = B - B , B. . B.mm mi ii im

and
* -i

f = - BmiBii fl

......... <374>

equation -

.......... (375)

.......... (376)

.......... (377)

This system equation can now be transformed back into the 
terms of the original system variables by using the trans-
formation matrix, H, which, for this purpose, is also part-
itioned and reduced as follows

.......... (378)

Substituting for z^ from equation 372, this then gives

*m H zmm m
-1 (B, zmmi 11 im m + fjU)

(H - Hm<B14"1B. )zm 
mm ml 11 Im m

H •B..‘1f.u 
mi ii i

(379)

‘Iow> if £ is again taken as zero, and on this occasion, is 

aPplied to equation 378 giving

H t
mm m

.......... (380)
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*
and z *n> and

★
z = zm are substituted into equation 375

giving

nun
-1.

xm
H ,B. ._1B. )■■*• 

mi li im

Then

(x + m + f*u (381)

H
*

B

* 
B

+

(H mm
H ,B..^B, )_1x 

mi ii im m

* /B (Hmm
H ,B, "1B, )’1H . - B . 

mi ii im mi mi_
Bii'lfiu

(382)

The reduced system 
variables now becomes -

in terms of the original system

★ 
x = A

* * *
x + C u

where

<Hn™ mm mm
WliAn?'1

and

(383)

(384)
* 

A H

*
C [h B* (H - H •B.."1B. )"1 - B , 

I mm mm mi ii im mi (385)

(ARUMUGAN and RAMAMOORTY do not consider a forced system 
in their derivation and hence do not obtain an expression for 
c*.)

There is a marked similarity between the modal elimination 
technique of MARSHALL and CHIDAMBARA (See Section 2.2), in 
which the least dominant modes of the svstem are directly 
eliminated and this technique in which the last states of the 
Schwarz equation are eliminated in that these states are 

related to the least dominant poles of the system. The main 
advantage of this method , as claimed by the authors, is that 
it does not require the evaluation of eigen values or eigen 

vectors.
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A further aspect of this technique concerns the salient 

fact that the coefficients of the Schwarz matrix, which are 
derived from the Routh array of the characteristic equation 
are always positive for a stable system. Elimination of some 
of these coefficients still leaves the remaining coefficients 
all positive and, consequently, the reduced Schwarz Canonical 
equation represents a stable system.

The degree of reduction is determined by evaluating the 
ratio between successive elements b. of the B Schwarz matrix. 
The evaluation of these ratios i.e.

bn-l

b n n-2

b n n-2, > 
b on-3

bn-i
>

b . < n-i-1
is continued until the ratio

b .
< i

b2

bl
has been calculated. However, if the ratio —

b . < n-i-1

then the calculations must be terminated.
Likewise, no reduction is possible if none of the ratios 

is greater than K, where K is normally taken as 10.(However, 
this value depends on the variables which are to be retained.)

When no ratio is greater than 10, then the system eigen 
values are of the same order of magnitude.

If, however, some of the ratios are greater than K, and 

the ith. ratio is the final one to be greater than K, then the 
system can be reduced to an order of m = n-i

An example, which is given by ARUMUGAN and RAMAMOORTY for 
the reduction of a seventh order system to one of fourth order 
is shown to give a model which has a time response closer to 
that of the original seventh order model than that of the 
models obtained using the modal elimination method of 
KUPPURAJULU and ELANGOVAN.(See Section 2.2)

LAL, MITRA and JAIN (1975) (81) also exemplify this 
technique by taking a sixth order system and reducing it pro-
gressively to a fifth, fourth, third and second order model. 
They then compare the time moments of these models and arrive 

at the following conclusions:-

i) The first moment (Mq ) is the same in each case -
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1

This ensures identical steady state behaviour irrespective of 
the order of reduction and hence showa that models obtained in 
this way have no steady state error.

2) The second moment (M^) is the same on system of

even order is reduced to the next lower order.

3) The criterion for reduction to the next lower order

b .
> K (where K = 10)

bn-2

is valid if n is odd, but if n is even then

b .
--------- —-----  > K (where K = 10)
b o + b ~n-2 n-3

is more appropriate.

4) When reducing an nth. order system to an mth. order system 
all ratios i.e.

must be greater than K

and not only the last ratio as had been previously suggested 
by ARUMUGAN and RAMAMOORTY.

LAL, MITRA and JAIN then claim that if K = 10 and the 
above condition is met, the resulting model will have a 
frequency response which is a good approximation of the 
original.

Several observations on this reduction method were 
Published tn June 1976 by DAVIDSON and LUCAS (82) who start 
by pointing out that if the system in Schwarz form is 

reduced, the resultant system can be given as

i =» B z + kf.u r r r i
(386)
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where

Br is the r x r Schwarz matrix formed from the last 
r+1 rows of the Routh array associated with the full 
system

and

k= .......... . ..........  (387)
det |

zt(s)
The transfer function --------- can then be written as

u(s)

k
Dr(s)

.......... (388)

where

Dr(s) is the characteristic polynomial of Br»

The next comment concerns the fact that when reducing 
from an n to an n-1 order, the Schwarz reduction simply 
eliminates the 1st. row of the Routh array.

Thus, if

Dn(s) = sn + an_1sn_1 + .... + a^s + aQ .......... (389)

then for n even

Dn-l(s) n-1 = s + .. . .
a^

)s +
an-l

............(390)
an-l

and for n odd

Dn-l(s) - s"-1 + .... + (— 
a «n-1

ao .
-------------)s

a2 1
n-1

+ a° 

fin-
(391)

1

In this case

k-l
bn

1 ............(392)
a « n-1

Finally , DAVIDSON and LUCAS consider the fact that since
the reduced system is based on the Routh array of the full

system, the reduced system will be stable if the original

system is stable, whereas, if the original system is unstable,
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k (393)

the reduced system could be either stable or unstable.

However, LAL, MITRA and JAIN (81) and also DAVIDSON and 
LUCAS (82) all consider the system in the Schwarz form only. 
Because of this fact, they do not encounter the difficulties 
and disadvantages of this reduction method.

Thus, using DAVIDSON and LUCAS’s observation

z^Cs)

u(s) D(s)
and

u(s) * / XD (s)

and similarly

z2(s) _ ks
and

u(s)u(s) D(s)
(394)

Since the same applies in all other cases, it can be 
seen that the reduced transfer function of z^, Z£ etc. differs
from the original only in the denominator.

This is the characteristic equation of the system and, 
for the reduced system, is based on the Routh array of the 
unreduced system.

Under these conditions, all the conclusions drawn by 
DAVIDSON and LUCAS apply.

If, however, the original system is not in the Schwarz 
form, the situation becomes very different in that, in this 
situation, the transformation matrix plays a very important 
role.

In this case, for the unreduced system -

A = HBH 1 (See equation 364 )

and the characteristic equation of the original system will 
remain the same on transformation into the Schwarz form. 

However, for the reduced system -

(See equation 389 )
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.......... (395)

and the transformation from the Schwarz form back into the 
original form produces a change in the characteristic 
equation unless

Since this occurs only in the special case where

it can be clearly seen that the characteristic equation of the 
reduced system in the original form is now not related to the 
original characteristic equation in the same manner as is the 
characteristic equation of the reduced system in the Schwarz 
form. Hence, the reduced system no longer possesses the 
properties attributed to it by DAVIDSON and LUCAS.

To illustrate this point more clearly, the following 
reduction has been detailed step by step:-

A third order system, as defined below, is reduced to a 
second order system.

x = Ax + Cu .......... (396)

where

0 1 0 1

0 0 1 C “ -2

-6 -11 -6 3

The transfer functions are therefore:

^l(s)-------- s2 + 4s + 2____

s3 + 6s2 + 11s + 6
.......... (397)

.......... (398)
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(399)
u

3s2 + 16s + 12

+ 6s2 + 11s + 6

2(1 + -s + 0.25s2)
3

The poles of the original system are at s = -1, -2 and -3 
and the Routh array is:-

..s = 0 Rl,l = a n

II
 

03
 |H* Rl, 2 = a . = 11 

n"2 .6

A2 = 0 R2,l = an-l = 1 R2,2 = an-3 = a0 = 1

a 3 II
 

po
 I po

 
r r |i~* R3,l = Rl,2 A3‘R2,2 R3,2 = R1,3 ’ A3 ’ R2,3

= i 11 _ 1 1 = 10 = 0
6 6 6* 6

A4
-r M

R3,l
R4,l = R2,2 A4’R3,2

= 6 _ 1
10

(See Section 2.9 for a detailed explanation of Routh array.)

Schwarz 3 matrix are -theThe coefficients

^4 1 1
b1 = = 1=1

R2,l 1

b, = _ j_ - 6
Ri,i 1

6

giving the Schwarz form

i ■ Bz + f.u

10

6

(eqn.358)
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where

r 0 1 0 0

B = -1 0 1 f = 0

0 -10 -6 1

The relationship between x and z is given by -

x = Hz (eqn.359) 

where the transformation matrix, H, is

The transfer function between the Schwarz variable vector z 
and the input u is now -

.......... (400)

To test for the reduciblity of a third order system, 

b« b£
the ratio — must be examined. In this case, — = 10, and 

bl bl

hence, according to the criteria given by ARUMUGA.N and 
KAMAMOORTY, this system can be reduced.

Now, by putting

i3 = 0

^hich gives

.......... (401)

.......... ( 402)
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0.* z

(403)

The reduced system in Schwarz 
stage, as -

form can be given, at this

-1
u

and

*
(s) = 

u
(404)

10s + 6s2

Partitioning the

Hmi
transformation matrix, H, now gives H and ' ’ mm

Z1

— —. —

X1 1 4 1

x2 -4 -9 -2
M _

Z2

z3
(405)

Next, by substituting for z?, we obtain

1

-4

u

X 406)

6 +

1
s

^hich gives

12
11

17
11 u

(407)

Substituting this 

^ben gives -
into the reduced Schwarz system equation
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+ u

,(408)

•
Z1

=

z2
■ n ___

Partitioning H,
now obtain

and taking

12 _3
11 11

_3 _2
11 11

as above

X1

x2

1
11

3
11

= 0, as before, we

0

21
11

.......... (410)

. . . . X409)

which is the reduced system tn the original form i.e.

These values give

,* * * * 
x = A x + C u (eqn.383)

with poles at -0.715 + 0.137J

—(1 + 1.57s)
3

*

u 1 + 1.43s + 0.52s2
...........(411)

*
(s) - ~(1 + l-095s)

1 + 1.43s + 0.52s2

An alternative approach for the last step of the trans-
formation would be to take -

(412)
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1

(413)

which is obtained by differentiating the expression for x*.

This would then give

(414)

This system equation is, however, not of the desired form and 
gives the following transfer functions

(415)

*

u
(416)

with poles at -0.3333 + 1.1056j

The characteristic equation is now the same as that of 
the reduced Schwarz equation and hence the properties, as 
described by DAVIDSON and LUCAS, do apply. However, these 
transfer functions contain an element of pure transfer between 
the input and the output, and, therefore, cannot be considered 
as satisfactory reductions of systems which contain no such 
transfer.

Examining x^ more carefully shows that the moments of the 
reduced system obtained using the first method, are a good 
deal closer to those of the original system than are those
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obtained using the second method, i.e.

—(s) (Original System) = 
u

1(1 + 0.1667s - 0.8056s2 + 
3

*
X1
— (s) (1st. Reduced Model) = 
u

1(1 + 0.1429s - 0.7279s2 + 
3

*
X1
— (s) (2nd. Reduced Model) = 
u

1(1 + 0.3333s - 1.0556s2 +
3

1.1435s3 - 1.3138s4 .......... )

(417)

0.9650s3 - 0.9973s4 .......... )
(418)

1.4259sJ - 1.3210s .......... )
(419)

Comparing the Markov parameters of the original system 
with those of the two reduced models in a similar manner, we 
discover that whereas the first three Markov parameters of 
the first reduced model are quite close to those of the 
original system, those of the second reduced model are not. 
i.e.

X1
—(s) (Original System) =

s'1 - 2s"2 + 3s"3 - 2s"4 - 9s*5 + ..........

X1
~(s) (1st. Reduced System) -

s*1 - 2.0909s*2 + 3.7934s*3 - 6.3539s*4 ..........

X1
(s) (2nd. Reduced System) ®

u

0.1667 + 0.3889s"1 - 0.4815s"2 + 0.4135s"3 - ..........
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From this comparison of the moments and also the Markov 
parameters of the three systems, it can be seen that the first 
model is considerably closer to the original system than is 
the second model, even though, as previously mentioned, it 
does not possess the properties attributed to this reduction 
technique by DAVIDSON and LUCAS.

If a system represented by a given single input, single 
output transfer function is to be reduced using this method, 
it must first be represented in state variable form. Since 
this involves choosing a suitable A matrix, and since this 
choice is not unique, the final reduced model is heavily dep-
endent on the astuteness of this choice.

To expound on this point -

A close examination has already been made of the reduction of 
the transfer function -

G(s) = ^l(s) =

u s3

s^ + 4s + 2_____

+ 6s^ + Us + 6
(423)

using a state variable form where

-6 -11 -6

This system can 

corresponding C
matrices andbe realised using other A 

vectors.
In each case, of course, the Schwarz 

same (since this is dependent on the denominator of the 
transfer 
vary.

form will be the

function), but the transformation matrix, H, will

A =

0

0

1 0

0 1

Thus if, are used:-for example,

A »

the following values

0 0 -6 1

1 0 -11 C - 1.5

0 1 -6
1
3

_ _ —
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(424)

then, the reduced model obtained is

* / X G (s)

1(1 + 1.68s)
3_________________

1 + 1.52s + 0.55s2

= 1(1 + 0.1667s - 0.7980s2 + 1.118s3 - 1.2589s4 .......... )
3

= 1.0273s”1 - 2.2438s’2 + 4.3486s’3 - 7.9657s"4 + ..........

If we now compare the moments of this reduced model with 
those of the first reduced model and the original system, we 
discover that this model does, in fact, give better agreement 

with the original system.

However, if we compare the Markov parameters of these 
two models we see that the first reduced model gives better 
agreement with the original system than does this final version.

According to these criteria, therefore both these models 
are reasonably close to the original system and neither can 
be said to be definitely superior to the other. Nevertheless, 
the A matrix must always be chosen with extreme care since 
the above situation is unlikely to be typical for all cases.

As a general assessment of this method of model reduction 
it can be said that, with the exception of models obtained 
using moment matching techniques, the first few moments of 
models obtained using this method have a better agreement with 
those of the original system than those of models obtained 
using, for example, either MARSHALL’S or DAVISON’s modal 
elimination techniques or VITTAL RAO and LAMBA’s or REDDY’s 
techniques for the minimisation of error functions in the 
frequency domain.

Much the same can be said for the Markov parameters, 
although here it can be definitely stated that the agreement 
achieved using this method of model reduction is considerably 
superior to that obtained using CHEN and SHIEH’s continued 
fraction expansion method.
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2.9 OTHER MODEL REDUCTION TECHNIQUES USING THE 
ROUTH ARRAY.

A number of authors have published papers describing 
methods of model reduction which use the Routh array without 
using the Schwarz Canonical form.

The oldest of these papers, which dates back to 1965, is 
that published by GUSTAFSON, (59) in which the author recommends 
the reduction of the original system to two different models, 
using two distinct methods of reduction, and, subsequently 
utilising both models, together, for controller design.

Taking the original system as 

. . . . <425)

the first suggested reduction is

K
2

1 + a^s + a2S
....<426)

At this point, GUSTAFSON observes that for
model 
below

the first three time moments, mg, and 
agree.

mg = lim
s ♦ 0

Ka,m. = lim ~(-l) G(s)"| C3

s . 0 1 ds J

m2 - lim
s ♦ 0

is given by

this simple
m2* as shown

.....(427)

.... .(428)

.....(429)

The second model

KG (s)
Rn+l,l + Rn,ls + Rn-l,ls2 1 + **, 1 

K
8 + Rn-l,ls2

.....(430)
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where the Rs are the last 3 elements of the first column of 

the Routh array.

This array is constructed using the coefficients of the 
denominator of the system equation, and is then utilized for 
determining the stability of the system - thus, if the elements 
in the first column of the array are all positive, the system 
is stable.

The array construction is as follows -

Rl,l Rl,2 ............. R. ol>zt-2 Ri il,zx-i

R2,l R2,2 2,z 2-1 R2,z 2

*1 R3,l R3,2 ............. R3,z 3-1 R3,z 3

“2 %1 R4,2 ................ r 4 -% z4

*3 R5,l R5,2 ............. Re5,z 5

an-3 Rn-l,l Rn-1,2

shown for even
dn-2 Rn,l value of n

°*n-l Rn+l,l

The first two rows of the array are made up of the coefficients 
of the denominator of the system equation, i.e.

Rl,i an+2-2i for i = 1, 2, .... z^ ..(431)

R2,i = an+l-2i for i = 1, 2, .... z2 . .(432)

Where,if n is even

Zi “ n~*~2 and
1 2

n
z71 2

but, if n is odd zt = n+1= zo -----
2 2
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Other elements in the array are evaluated from the elements 
of the preceding rows using the equations -

Rj,i = ^-2,1+1-^-

where
R. , « - 1>1

1 Rj+l,l

and z. = zb2 - 1

Rn+l,l = 1 ' Since a0

Rj-l,i+l  (433)

for i = 1, 2, 3, .... Zj

.......... (434)

both for j = 3, 4, .... n+1

.......... (435)

= 1

The model obtained by GUSTAFSON using the Routh array has 
the same integral square impulse response (ISIR) as that poss-
essed by the original system, and the first three frequency 
moments are matched, thus -

ISIR of G(s) = - ----------- - ------------- = i —— .......... (436)
2 <Rn,l)(Rn+l,l> 2 Rn,l

* 1 1ISIR of G (s)= i ----------- - ------------- = - —— ...........(437)
2 2Rn,l

ISIR of G(s) - 1 ...........(438)
2 a.

Both the models produced by GUSTAFSON are accurate in 
the steady state and are always stable if the full system is 
stable (although this latter fact could be true even if the 
full system were unstable.). The first model has close agree-
ment with the full system at low frequencies, since both 
systems possess the same first three time moments. The second 
model, whose integral square impulse response is the same as 
that of the full model is dependent on all the coefficients 
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of the full model.

GUSTAFSON now recommends that these two reduced models be 
considered as boundaries between which the actual system can 
be found and further advocates their combined use for the design 
of a controller for the system.

Another method using the Routh array was put forward in March 
1975, by SHAMASH (83) who included, in his method, the use of 
the Pade' approximation technique.

Taking the original system as -

b0 + bts + .... + b^s"*1

a0 + a^s + .... + n-1
an-ls ans

= c0 + c< s
2 + Cn S + CjS^ + ..

1 2

where

b0 
c° r

a0
and ci=

; <bi - Zaici-P

J=i

with

for i > 0

.......... (439)

b^ = 0 for i > n-1

(c. = ------- x ith. time moment of the system)
1 (il)

Representing the reduced model G(s) of order k as -

....1440)

the reduction proceeds as follows.

The denominator coefficients eg to e^ are obtained by 
using the first k ex parameters of G(s).

These are produced by performing a continued fraction 
expansion on the elements of the denominator of the system 

equation as shown -
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1Q(s) =
a0 + a2s2 + 

a^s + a^s^ +

taking n as even

giving
.......... (441)

+

an

a2 ~ °*ia3

a3 ‘ *2(a4 - °<la5)

It will be noticed that these are the o parameters (as 
defined on page (122 ) for the Routh array of

aosn + a1sn‘1 + a2sn'2 + ........... an

^hich is the characteristic equation of G(i).
s

The denominator of the reduced model is now obtained by 
truncating the expansion after c<k and reconstituting Q, whereas 
the numerator is obtained by evaluating the coefficients Cq to 
ck-i and using the first k Pade equations to give dg to dk_^.

i.e.

do " eoco
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dl = eOcl + elc2

dk-l = eOck-l + elck-2 + •••• + ek-2cl + ek-lcO 
.......... (442)

SHAMASH illustrates this method using an example taken 
from HUTTON (1971) (84) (See overleaf)

x 2400 + 1300s + 496s2 + 28s3 ..........
G(s) = .............................................................................  (443)

240 + 360s + 204s2 + 36s3 + 2s4

= 10 - 7.5s + 3.5667s2 +

1Q(s) -
+ 2.1

3 s 2.1
s 451 + 1

8 s 16.1
s

1 +
+

1
1

for k = 2

1

(444)

6s
1 11 + 2

3
+ 4 + 6s + 3s2

s

(445)

2.1
s

since
4do “ eoco x 10 40

and dx = eoC1 elc0 4.(-7.5) + 6 x 10 30+

this gives

d0 + dls
G(s)

4 + 6s + 3s2

40 + 30s

4 + 6s + 3s2
(446)

The main advantage of the above method is the resultant 

stability of the reduced model if the original transfer function 
Is stable.
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This is further exemplified in the work done bv HUTTON 
(1971,1974) (84,85) and subsequently by HUTTON and FRIEDLAND 
in 1975 (86), who, despite using a different algorithm to 
obtain their reduced model, produce a model which is identical 
to that obtained by SHAMASH. The technique used is, however, 
considerably more complicated, as is shown below.

Taking the original transfer function as

.......... (447)

a reciprocal transformation is first performed on G(s) giving

b sn 1 + .... + bos + b^ 
n 2 1

   (448) 
ans" + ansn'1 + + als + a0

Next, an alpha - beta expansion of H(s) is computed, in which 
H(s) is represented as a function of s and n coefficients 
and n [i coefficients, i.e.

H(s) 3 f(s, .......... , °<n, £ .......... , £n) .......... (449)

H(s) = iG(i) =
s s

This expansion is defined as -

H(s) = ^>1F1(s) + ^2F1(s )F2(s ) + .... + X>nF1(s)F2(s) .... Fn(s)

n
(450)

Fi = —
*1S +-------------

O( q +i+lS

1 
1

1

ai+2s + ’

+

for 1-2 to n

1

* s + — n-1
c* s n

(451)
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and r - 1
1 1+^s ...........<452>

The values of the alpha coefficients can now be obtained from 
the Routh array for the denominator of H(s) and the beta 
coefficients from a similar table for the numerator of H(s).

The reduced model is obtained by truncating H(s) to give

H(s) = f(s, ..........., .......... , £k) .......... (453)

d, s^ +.......... + d«s + d1
= --------- - ------------------------------ - --------- i............  .......... (454 )

k , k-1
cks + ck-ls +.......... + cls + c0

A

H(s) can now be reconstituted in the polynomial form from the 
alpha - beta coefficients using the recursive equations:

Cq/S) = °<k-S-Ck-l/S) + °k-2(S) .......... (455)

and

Dk(s) =<*k-s-Dk-l(s> + Dk-2(s) +^k .......... (456) 

where ^k^s^ an^ ^k(s) are the denominator and the numerator 

respectively of the kth. order reduced version of H(s).

C_1(s) - 1, D,x(s) » 0, CQ(s) = 1, Dq (s ) = 0

The final reduced model, G(s), can now be obtained by once 

wore performing a reciprocal transformation on H(s).

The same example as that used by SHAMASH is now cited 
by HUTTON and FRIEDLAND to illustrate this technique, i.e.

G(s) - 2400 + 1800s + 496s + 28sJ ...........(457)
240 + 360s + 204s2 + 36s3 + 2s4

^ich gives

H(s) -
2400s3 + 1800s2 + 496s + 28

...........(458)
240s4 + 360s3 + 204s2 + 36s + 2
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Routh (Alpha) Array of H(s)

a° = 240 a° = 204 a° = 2
4

aj = 360 a* = 36

<x - a0 - 240
1 a1 360

a0

ag = 180 a2 - 2

ex - a0 - 360
2 .2 180 

a0

a3 = 32

ol = ^0 = 180
3 a3 32

a0

a0 ” 2

<x _ a0 _ 32
4 7 ~ 

a0

Beta Array

bg - 2400 b* = 496

bg = 1800 b| = 28

. 1
f> - 0 = 2400

a1 360
___ a0

b0 = b2~ ^la2 " 256 b2 = b4'M = 0

h2
£>2 = _2 = 1800 

a2 180 
 a0

b0 ■ b2~ ^2a2 = 3

a3 32
a0

h4
\ , 8 

aA 2
 a0
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Therefore

*1 =
2
3

*2 = 2
o< = *5

3 8
*4 = 16

20
3

P>2 = 10 *3 = 8

and

A 40s + 30
H(s) ............ (459)

4s 2 + 6s + 3

therefore

30s + 40
G(s) = — .............(460)

3s2 + 6s + 4

On comparison, it can be seen that these results are 
identical to those obtained by SHAMASH using a far simpler 

method.

As stated previously, the main advantage of this method 
of model reduction lies in the fact that when the original 
system is stable, the reduced model is also stable. This is 
due to the fact that the model is based on the Routh array 
whose elements, ag to ag, are entirely positive in the case 
of a stable system, as are the resultant alpha coefficients. 
Elimination of any number of these coefficients will, there-
fore, leave the remainder positive, indicating that the 
system represented by them is also stable.

In 1976, KRISHNAMURTHY and SESHADRI (87) presented an 
algorithm for carrying out model reduction using what amounts 
to a simplified version of the principles put forward by 
HUTTON and FRIEDLAND and thus tending towards the technique 

°f SHAMASH.
For their algorithm, these two authors use the same alpha 

and beta arrays as those used by HUTTON and FRIEDLAND, but 
then, instead of using reciprocal transformation to give H(s) 

and hence the first two rows of the two arrays, the array 
c°efficients are derived directly from G(s).
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........... (461)

If G (s) is taken as 

then the alpha and beta arrays are set up according to the 
proposals of HUTTON and FRIEDLAND.

However, if G(s) is taken as

........... (462)

is given asthen the first row of the alpha array

0
ai = a . n-i for i = 0, 2, 4, .... n

2
(or 211)

2
...........(463)

and the second row as

4
" an-l -i for i = 0, 2, 4............. n

2
(or ----- )

2
....X464)

Similar ly, the first two rows of the beta table are given as

4 = bn-l
)
) for i

bl = bn-l-i
)

....X465)
= 0, 2, 4, ....

....1466)

Having obtained the alpha and beta coefficients, the 
reduced model is then calculated directly using the following 
algorithm:-

Bk(s) - |4k.sk’1 + s2.Bk.2(s) + 0(k.Bk.1(s) ....(467)

A^(s) a‘ s + ^k'^k-l^s)

^here

B-t(s) - B0(s) - 0

. . ..(468)
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and A_t(s) = A_1(s) = 1

giving

Bk(s) 
s) = ---------

Ak(s)
........... (469)

This work was followed by the presentation of a method 
for extending this reduction technique which was published in 
1977 by HUTTON (88).

Then, in 1978, a number of papers were published in which 
this method of model reduction was either derived in a different 
manner or was further extended.

The first of these, presented in May 1978, was that of 
1ANGH0LZ and FEINMESSER (89), who reviewed the use of this 
method for reducing transfer functions whose numerator has an 
order more than one less than the order of the denominator.

Thereafter, in September 1978, an equivalent reduction 
technique using Hurwitz polynomials was proposed by APPIAH (90)• 

Taking

bn + b1 s +.......... + b 1 sn 1
G(s)-----------2--------1------------------------ 211.................... .......... (470)

a0 + alS +.......... + + an®n

2 3
= c0 + C1S + C2S + c3s + ..........

APPIAH derives the numerator using the Pade approximation 
technique and matching the first k C parameters, after having 
determined the denominator coefficients. This he does using a 

Procedure similar to that employed by SHAMASH.
From the denominator coefficients, he then produces a 

function of .2
z s

giving

f(z) 8S

a^ + a^z +
n

(shown for n even)

+ anZ /2

- ’0 + ¥ + *2Z + ........... (471)
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The denominator parameters of the reduced transfer function 
can now be obtained from the parameters of a similar function 
fr(z), by matching to using Pade' approximation once

again.

It can then be shown that this technique is equivalent 
to those of SHAMASH, and HUTTON and FRIEDLAND. The same example 
applied to all three techniques will result in the same reduced 

model in all cases.

Two further papers extending this reduction principle to 
state space representation were published in October 197^ by 
RAO, LAMBA and VITTAL RAO (91) and SHAMASH (92).

The first of these assumes a system represented by

x = Ax + Bu

y = Cx

where

...........(472)

.......... (473)

— f— —

00 1 0............. . . .0 0

0 0
• • •

0

0 0 0. • .• • • • .0 6
• • •

0 B =• •• •• • •. 1

6 6 6............. ?.. 0 i
6

’a0 -al “a2.......... “an-2 -an-l i

[b0
bl b2.......... ’ *bn-2

1

giving

G(s)

.(474)

This is then transformed into

v = Rv + Mu

y = Ev .......... (476)
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where

for n odd

A 0 0 -*5 .......... -o( n 1

0 0 *3 0 *5........... c/ n 0

-y2 0 "*5 ........... -cX n M = 1

0 0 0 0 ........... *n 0

-*1 -*2 '*3 ’*4 “* ^*5 • • • • • -(X n 1

whereas

for n even

0

’*1

*2

-«2

0

0

o'
4

-“4

0 ...........

0 ..........

0( 
n

-(X n

0

1

0 0 0 o', 0 .......... ex 0
4 n

R = M =
-oc -<x* - ex, 0 .......... -of 1

1 2 .3 4 n

- « - c< -of - of. - of 11 2 3 4
£— • • • • • n

— —

and where

E = [»1
•••

(The coefficients to <^n and 

given by HUTTON and FRIEDLAND.)

Now -

v = Px

where

to A used are those n

............(477)
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and

1
4 0
°. . 3q

1 ..........0
a2..................

2

• •• • a3 ........... .......... 0
# • e • a0.............• •

# •
• *

4
an-5

0

1

0 for n odd

for n even

0

0

thus giving

R = PAP

M = PB

E = CP’

............(478)

............(479)

............(480)

order of R,M and E. 
number all three 
a reduction by an 

ssed in a suitable

The system is then reduced by reducing t e 
In the case of a reduction by an even 

matrices are simply truncated, whereas or 
°dd number, R and M must first be P
form although E can be readily truncat
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RAO, LAMBA and VITTAL RAO illustrate their technique by 
using the same example as that used by HUTTON and FRIEDLAND, 
and obtaining equivalent results. Nevertheless, as proposed, 
this particular technique is rather limited since it restricts 
the original form of A,B and C. However, the possibility of 
further expansion of this technique appears to exist.

SHAMASH, in the second of the papers which propose the 
extension of this model reduction method to state space repre-
sentation, uses the Schwarz Canonical form.

The system is again taken as

x = Ax + Bu ...........(481)

y = Cx ...........(482)

In this case, A,B and C are not limited in form as in the 

previous technique. However, the system itself is limited to 
a single input and a single output.

As in HUTTON and FRIEDLAND’S technique, the first step 
taken is an inverse transformation giving

7 = S7 + Bu  ...........<483>

y = Cx ...........<484)

where

I = A'1

and B = A"1B

These equation, .« then tr.n.te™- Schwarz Canonical
form giving

x _ ...........(485)z = F z + Gu

where

...........(486)x « T z

(See Section 2.8)

Th. sy.ts. equation la Chen reduced <•■ previously described)
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to give

Gru (487)

A second inverse transformation is now carried out giving

Gru (488)

z = F z + r r r

z r F z + r r

where

Fr

and

= Fr’X

G = Tr r r

The output matrix, H, in the output equation

y = Hzr (489)

is now carefully selected to 
of the original system, i.e.

match the r initial time moments

H.Fr“J.Gr = C.A"j.B for j = 1, 2, , r ..(490)

Finally, if any of the initial states are to be retained, the 
reduced system equations can be transformed using the inverse 
of a suitably partitioned form of T.

Meanwhile, in August 1978, KRISHNAMURTHY and SESHADRI (93) 
expanded their work on this method of model reduction by pro-
posing 
on the

another, somewhat different, reduction technique based 
Routh array.

Taking the system transfer function as

v m 1 , m—1 i l m—2 | i m—3 < bHs + b21s + b12s + b22s + 

a||Sn + a21sn 1 + a12sn + a22sn
.<491)

and using the usual 
are formed from the

Routh algorithm, separate 
denominator and numerator

Routh arrays 
polynomials.

+
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Thus, the denominator array is given as

all a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 • • • •

a41 a42 a43 • • • •

a 1 n,l

an+l,l

and the numerator array is given as

bll b12

b21 b22

b31 b32

b41 b42

b13 b14

b23 b24

bm+l, 1

The reduced order model is then obtained by using different 
rows of the array to form the numerator and denominator poly-
nomials .

As an example , if the orders of both the denominator and 
the numerator are to be reduced by 1, the 2nd and 3rd row of 
each array is used, giving

v _m— 1 i _m- 2.i m- 3 .
b21s b31s b22s................ ..........

a2^sn 1 + a^s1"1 + a99sn +..........  
........... (492)
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Thus, for a reduced order model of order k, the rows used for 
the numerator are the m+2-k and the m+3-k rows, and the 
rows used for the denominator are the n+l-k and the n+2-k 
rows.

The authors themselves then present an eighth order example 
to illustrate their technique, but for ease of comparison, the 
example of HUTTON and FRIEDLAND is cited below -

_ 2400 + 1800s + 496s2 + 28s3
GQs)------------------------------------ -------------;--------- -  .....(493)

240 + 360s + 204s + 36s + 2s

Denominator array

2

36

204

360 *

240

1/18 184 240

9/46 313.05

1.304 240

Numerator array

28

496

1800

2400

0.056 1664.51

0.694 2400

Hence

G (s) = 2400 + 1664.51s + 496s2

240 + 360s + 184s2 + 36s3
............(494)
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^2(s) — 2400 + 1664.51s

...........(495)

240 + 313.05s + 184s

40 + 27.742s

4 + 5.297s + 7.067s2

= 10 - 6.307s + 0.6845s2 + ...........

As can be seen, the model obtained from this example is comp-
aratively similar to that obtained using the technique of 
HUTTON and FRIEDLAND, and can be said to give a consistent 
steady state match although it does not succeed in matching 
time moments.

In April 1979, a further technique based on those referred 
to in this section was published by PAL (94), who obtains the 
denominator of his reduced model in the same manner as that 
employed by KRISHNAMURTHY and SESHADRI but produces the numer-
ator using a Pade approximation.

For the example of HUTTON and FRIEDLAND, previously quoted, this 
technique gives -

G2 ( s ) 40 + 22.97s

4 + 5.297s + 3.067s2
...........(496)

This last reduction technique was subsequently criticised 
by MARSHALL (95), as having a bad transient fit. PAL replied 
to this criticism by stating that the technique was aimed at 
giving stable Pade approximation for stable systems and that 
it is an established fact that Pade approximation leads to 
unstable models if the step response has a large overshoot. 
However, if some Markov parameters are fitted, a good transient 
response can be obtained using this technique.

139



2.10 MODEL REDUCTION BY COMBINED METHODS INVOLVING

MODAL ELIMINATION.

In the last few years several methods of model reduction 

have been published which combine modal elimination with other 

techniques in some way. Two examples of this are reduction 

techniques proposed by CHIDAMBARA (96) in 1969, and NAGARAJAN 

(97) in 1971 in which modal elimination was followed by a form 

of optimisation technique.

the lines of DAVISON'S

The first of these, CHIDAMBARA, initially proceeds along 

original reduction method, reducing

x =■ Ax + Bu (497)

y = Cx where x is of order n (498)

to

. * * * * 
x = A x + B u (499)

★ ★
y = C x

*
where x is of order 1 << n (500)

The original system can be rewritten as

z = Az + Gu (501)

y = Kz (502)

where A is a diagonal matrix containing the n eigen values 

A, arranged in increasing order.
of

The two sets of state variables x and z 

each other by the equation

are related to

x = Uz (503)

where

U is the square modal matrix 

Actors associated with A.

consisting of the n eigen

The system equations can now be written as

............(504)

140



and

K1 K2
21

Z2
............(505)

where

A1 contains the 1 dominant poles

and A r contains the remaining (n-1) poles

If z2 is

are retained,

then taken as 0 and only the 1 dominant poles 

the system equations become

il = Alzl + Glu

and

............(506)

............(507)

As observed by CHIDAMBARA in his first paper on model 

reduction (20 ) , this reduced system has a steady state error. 

To eliminate this, the author now recommends that the output 

equation be replaced by

(Kx + Q)z1 (508)

where

due to the j th

input,
yi’in the ith output, 

by the equation

constant chosen to eliminate the steady state error 

and to minimise the integral

ror, Ei j , 

is given

square error in y.

It can therefore be seen that for E . = 0

........... (510)

y

y

With the exception of the elements of Q, this equation consists
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only of system constants, and, hence, appropriate selection of 

Q will minimise the error.

The ith column of Q, is obtained by minimising

............(511)

where r is the order of the input vector.

With this method CHIDAMBARA overcomes some of the dis-

advantages of model reduction using modal elimination.

Unlike CHIDAMBARA, NAGARAJAN adopts a 

minimisation for his technique and reduces

to

in

G(s)

G(s)
1 + b^s +

the following two steps

F(s)

1

F(s)

purely numerical

the transfer function

(512)

(513)

1 + a. s +
i

1 1

1

+ a s n n

+ b s m

m < n

1) Using modal elimination and supressing the modes associated 

with large eigen values ,which NAGARAJAN describes as those 

that fall outside a circle of radius K multiplied by the 

magnitude of the smallest eigen value.

K, which then determines the accuracy of the approximation 
is taken as 25, after GUSTAFSON (1968).
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2) Obtaining optimum parameters, based on the Feedback Error 
Correlation (FEC) performance index, considering the original 

system as the reference. The FEC is maximised using RosenbrOck's

optimisation technique (1968), thus -

....X514)

1

2lTj
.... X515)

where e^(t) and e^Ct) are the feedback errors 

and reduced systems due to inputs.

of the original

When e^t) = e^Ct),

the F.E.C. = 1.

both systems respond identically and

Figure 2.3 Comparison of feedback errors of original 

and reduced systems.
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To illustrate this technique, NAGARAJAN offers the 

following example

An original system

G(s) 1

1 + 11.03s + 41.33s2 + 55.17s3 + 15.91s4 + 1.50s5 + 0.4s6 

(518)
1 + 4.85s + 31.91s2 + 36.54s3

Despite the fact that the technique is illustrated using 

an example which contains no zeros, there seems to be no apparent 

reason why the method should not be extended to systems contain-
ing zero s.

Additionally, there are two factors worthy of mention 

concerning this technique -

Firstly, the function used for optimising the reduced model 

ls not directly based on the outputs of the two systems and, 
hence, might be difficult to obtain in practice.

Secondly, it would appear that the modal elimination is 

used only to give initial values for the optimisation since the 

modes retained in the final reduced nodel can differ widely from 
those originally obtained due to the fact that the character-

ise equation of the system is altered during the optimisation.

In October 1974 and February 1975, SHAMASH published two 

Papers (98,99) describing a moment matching (Pade approximation) 

r®duction method, which is unusual in that it retains dominant 
Poles.

Employing the same notation as that subsequently used in
his paper of March 1975 . (83),(See section 2.9), including the

is reduced by modal elimination to

A

G(s)

(516)

(517)1

1 + 10.91s + 33.42s2 + 39.62s3

This is optimised by maximising the Feedback Error Cor-

relation (FEC) index to give

1
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+ + .(519)

identical forms of the system equation and the reduced model, 

SHAMASH proceeds in the following manner -

After initially evaluating the coefficients cQ, c.^ to 

C2k-l-j’ where j is the number of poles to be retained, he 

next evaluates the denominator coefficients using the Pade'

equations -

e0Ck + elCk-l ek-lCl + ekco = 0

e0ck+l + elCk ek-lc2 + ekCl 58 0 .(520)

e0C2k-l-j elC2k-2-j + e, , c.k-1 k-j + e, c, , . = 0

+ +

+ +

and

eo elsl
2

e2Sl
, , x k k+ (-1) sx = 0 .(522)

eo
2

e2SJ
/ i\k k _. . . + (-1) s . = 0

J
.(523)e.s .

1 J

+

+

where

"S1 ’ 
retained.

-S2* -s .
J

are the known poles which are to be

as 1, there are then k unknownTaking eQ 

coefficients and k equations and, hence, the 
he calculated.

denominator

denominator can

The evaluation of the numerator is then 
the same method as described under SHAMASH’s 

2.9) from the first k Pad£

carried out (using

work in Section

equations

do = e c0 0 .(524)

dl eocl + elC2 .(525)

dk-l e0Ck-l + elCk-2 + + ek-2Cl ek-lC0 -..(526)

This technique is then illustrated with the following two
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examples:-

1)

G(s) (s 4- 1.5)(s 4- 4) (527)
(S 4- 1) (s 4- 2)(S 4- 6)

0.5(1.0 - 0.75s 4- 0.6667s2 - 0.63194s3 4-

0.615741s4 0.607832s5 4- 0.603910s6 )

Retaining poles at s = 1 and s = -2 then gives

G(s) 1 4- 0.75s (528)
2

2 4- 3s 4- s

2) The second example is taken from CHIDAMBARA 1969.

G(s) 1 2----------  + -----------
1 4- S 2 4* S

6 44- -
3 4- s 4 + s

(529)

Using the above technique of SHAMASH, this gives

G(s ) 1.166 0.332 (530)
1 4- s 2 4- s

whereas, CHIDAMBARA 's method C2 gives

G(s) = 0.8333 +
1 4- S

0.0833 (531)
2 4- s

and DAVISON'S method D2 gives

G(s) 0.6111 ------------ 4- 0.1944 (532)

1 4- S 2 + s

demonstrates that the model due to his combinedSHAMASH thus
technique gives a

the two other methods, both of which have a steady state 
error.

better fit in the frequency domain than either
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In June and October 1975, two further papers on model 

reduction methods for multivariable systems were published by 

SHIEH and WEI (100,101) whose technique is a combination of the 

matrix continued fraction methods and dominant pole retention.

This technique is, in effect, equivalent to that of 

SHAMASH (Feb.'75 and Oct. '74), displaying the same advantages 

and disadvantages. However, when extended to the multivariable 

case, it appears somewhat over-complicated.

Another reduction technique which is very similar to that 

of SHAMASH (Oct.'74, Feb.'75) is that due to HICKIN and SINHA 
(September 1976 and 1978)(102,103) . In this technique, the 

authors consider a transfer function -

G( s )
bo b^^s +

, n-1+ b . s n-1 (.533)
n-1 n+ a , s + s n-1aQ + axs +

-J_ls - J-2S - J-3s2

-1 . -2
Jos + Jis + J

-3
2S +

A minimal 

following
realisation of the

terms: -

J-k+1 J-k + 2

system

-a

"ai

“*2

is

~an-l

then formed in the

J-k+n-l J-k+n

(534)

x

y

0 0 0 0

1 0 0

0

0

1 0 x + £, u 
k

0 1

x

whe re 

k < n and
the kth row and zeroes

1 denotes the unit vector having a 1 in

elsewhere.

(535)
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A reduced model can now be produced in one of two ways, 
the first being a method of modal elimination. The denominator 

of the reduced system is obtained by eliminating less dominant 

poles from the denominator of the original system transfer 

function. If k dominant poles are retained, the reduced system 

can be represented as -

G(s)
d^s + +

............(536)

and realised as -

0 0........................0

1 * 0.......................0

0 1.........................0 A 
X

0 0.......................1
............(537)

............<538)

e0 to

method,

e are then obtained as described in SHAMASH’s
k-1

whereas d^ to d. depend on c to c and i which
0 k-1 1K

can be chosen to minimise the output error.

Alternatively, the output vector, c, can be obtained 

using the same method as that used for the original realisation 

This results in moment matching with retention of dominant 

Poles.

This reduction technique can be illustrated using the 

system -

x 1/3(1 + 2s + 0.5s2)
G ( s ) = ----------------------------------------------

1 + ll/6s + s + l/6s

............(539)
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s2 + 4s + 2

(s + l)(s + 2)(s + 3)

= 1/3 + l/18s - 0.2685s2 + ...........

-1 s 2s”2 + 3s*3

This can

poles at
then be reduced

-1 and

to a second order model retaining the 

= -2, and giving the reduced model
as

-2

-3 (540)

If i =

3-i + l J-i + 2

(541)

-1/3 1
(542)

and the reduced transfer function becomes

X

y

y

s s

2

0

1

A 
X +

A
X

A 
X

G(s) = 1/3(1 * 1>5s) ............(543)

1 + 1.5s + 0.5s2

Using further examples, however, it has been found that 

n°t all values of i give good reduced models in that values of 
less than 2 tend to give steady state error, which is not 

Present for i > 2.

Comparison of this model with those obtained using the 
Schwarz Canonical form and also CHEN and SHIEH's method (14) 

indicate that in all three cases results obtained are very 
similar.

In February 1977, OBINATA and INOOKA published a paper (103) 

in which they put forward a reduction technique similar, in 

Certain respects, to that of CHIDAMBARA 1969, but which the 

Authors describe as a mixed method of aggregation and first
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criterion approach.

Reducing

where

X = Ax + Bu ..(544)

y = Ex where x is of order n .. (545)

to

z = Fz + Gu ..(546)

A
y = Hz where z is of order 1 . . ( 547)

OBINATA and INOOKA then relate the two state vectors by the

aggregation matrix, C. i.e.

z = Cx ..(548)

where C is ichosen so as to retain the 1 dominant poles giving

C = VTU 1 . . (549)

U is the modal matrix of A

V is the modal matrix of F

where

I is the lxl unit matrix.

v can then be chosen at will either to retain certain state 

variables from the original system or to be set to the unit 

matrix.

F and G are then given by -

_1 ............(5
F = CAC'(CC*)

............ (551)and G = CB

where

C'(CC')"'1 is the pseudo inverse of C.

The authors then recommend that H be determined so as to 

minimise the integral square error between y and y by
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minimising J where

dt ............(552)

This is minimised by putting

H = EWC’(CWC')_1

where

............(553)

............(554)

Tf W is then put equal to 1

H = EC’(CC*) ............(555)

and the model becomes identical to the aggregated model of 

HICKIN and SINHA (May 1975).

OBINATA and INOOKA illustrate their technique using a

comparatively simple example. They reduce

............ (556)

............ (557)

...........  (558)

............ (559)

having taken

0 0

1 0
............ (560)
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Assuming that the input factor is given by

............(561)

(where d is a constant)

and minimising

............(562)

the authors obtain

14d2 + 185<X + 435
h = -------------------------------------

132( d + 3) ( <X + 10) 

and.
u 5d2 + 67or + 158
h = -----------------------------------

11(<* + 3) ( (X + 10)

............(563)

............(564)

Then, for cX = o, which corresponds to the step response,

hx = 0.10985 and h2 = 0.47879

giving

G(s) = 1 - 0.09848s ........... (565)
21 + 1.5s + 0.5s

-O.197(s - 10.154)

(s + 1)(s + 2)

= 1 - 1.59848s + 1.8977s2 - 2.0473s3 + ...........

while

G(s) = ................................... .................................... ............(566)
1 + 1.6s + 0.65s2 + 0.05s3

20

(s + 1)(s + 2)(s + 10)

= 1 - 1.6s + 1.91s - 2.066s + ...........
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For <y = oo, which corresponds to the impulse response

h^ = 0.106 and h^ = 0.455

giving

£ 0.985(1 - 0.077s)
(a = --------------------------------------------------------- e t

1 + 1.5s + 0.5s2

-0.1515(s - 13)

(s + 1)(s + 2)

= 0.985 - 1.5533s + 1.8375s2 - 1.9796s3 + ...........

As shown above, this model has a steady state error.

Using this form of input, the steady state is only matched if

c< = 0

since, for all other values of , the final value of y is 

equal to zero and no steady state error can be detected in the 

minimisation.

The authors subsequently compare the integral square impulse 

response error of this model with that of four other models. 
They are able to demonstrate that their model gives a better 

result than that obtained from three of these other models but 

worse than that of WILSON’s model obtained by minimising the 
ISE of the impulse response without retaining any particular 

Poles.

This result is not surprising since the two models designed 
by minimising the ISE of the impulse response give the lowest 

ISE values of all.

It can also be seen that the initial time moments of the 

step response model are closer to those of the full system than 

are those of the impulse response model. This is also to be 

e*pe.cted since the former model matches the steady state.

For comparison, CHEN and SHIEH's method gives -

1 - 0.077s

1 + 1.523s + 0.528s2

-0.146(s - 13)

(s + 1.882)(s + 1.008) 

............(568)
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This closely resembles the impulse response model but does not 

contain the steady state error.

A technique similar to that of OBINATA and INOOKA was 

published by GRUCA and BERTRAND in December 1978.(104).

For this technique, the authors obtain the F and G matrices 

in the same manner as OBINATA and INOOKA, but then, instead of 

taking -

y = Hz (eqn.597)

GRUCA and BERTRAND allow for a time delay giving

v = Hz ............( 569 )

and

y = v(t - O' ) ............(570)

and then proceed to evaluate H and 0 by minimising the integral 

square error of the time response.

The examples subsequently given indicate that by introducing 

this time delay, the authors have succeeded in reducing the 

least square error.
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2,11 OTHER MODEL REDUCTION TECHNIQUES.

In addition to the reduction methods already covered in 

the preceding sections, various methods of model reduction have 

been proposed which do not fall into the categories with which 

these sections deal.

The first of these is the updated Bode Plot method published 

by TOWILL and MEHDI (26) in January 1970, which is based on the 

Kan Chen Curve Fitting Technique of 1957,(105)and utilises the 

Open Loop Bode Plot.

the

For the purpose of

Open Loop Bode Plot

model reduction, Chen

be divided into three

dB

recommends that

regions:-

> -15dB
I

and

-15dB > dB

approximately to theThese regions correspond

near the origin; dominant poles and zeroes; and far-off poles 

and zeroes respectively.

presence of dipoles

The model is then based in that section of the Bode Plot

which falls between +_ 15dB, and thus takes into account the 

dominant poles and zeroes which this area represents. Although 

these boundaries are, to a certain extent, arbitrary, they have 

apparently, proved to be satisfactory. However, inaccuracies 

can and do appear when break points occur just outside 

boundaries.

the

In order to reduce these inaccuracies, TOWILL and 

order lag be substituted in place

MEHDI
propose that a first 

eliminated poles and zeroes.

of the

Thus

They exemplify this by reducing -

(571)
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G(s) ........... (572)
K(1 + T .s) r

s (1 + T •s) (1+T •s)n a

to

a  K(1 + T .s)
G ( s ) = ---------------------------

s2(1 + T . s )
eq

. . . . <573)

Now, T is a dominant zero which falls between + 15dB on ther —
Bode Plot and, consequently, it is retained.

T and T , however, fall outside these boundaries, and are, a n
therefore, replaced by an equivalent time lag -

T = 3T + T ........... (574)eq n a

The closed loop model obtained using this method of model 

reduction proves to be almost identical to that obtained using 

the continued fraction technique of CHEN and SHIEH.

In 1972 DE SARKAR and DHARMA RAO (106) put forward a 

significant reduction technique which is based on the geometric 

properties of the Lyapunov Function.

An unforced system, represented by the equation -

x = Ax .....(575)

which has unique eigen_values, i.e.

\(A) - X (A) k 0 (for all i and j) .....(576)
J

is examined and is found to be asymptotically stable if its 

Lyapunov Function ,V, is positive definite.

This Lyapunov Function is given by:

V = x' Px ....<577)

where P is a symmetric matrix satisfying the equation

PA + A * P = Q . . . . .(578)
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Q, here, is any positive definite matrix.

(579)

If these conditions are satisfied,

I

v = -x Qx

The reduced model is then derived

then

to give a Lyapunov Function

which will satisfy the equation

(.580)

taken as equal to V and the 

reduction is achieved by the elimination of some of the 

of the system.

After deciding which states are to be retained, Q,

For the sake of convenience V is m
states

is

V m

v m V

selected as follows:-

Q = diag (qx, q2, 91. ••• %> (581)

where

for all retained states

for eliminated states.

q± = 1

and q. = 0

Using this Q matrix, the P matrix can now be found from the

equation
PA + A'P = Q (582)

This involves the solution of —(n + 1) linear simultaneous
2

equations and can be achieved by employing an iterative method 

of solving Lyapunov matrix equations.

The elements of P associated with the eliminated modes 

should be 20% or less than those for retained modes.

Once Q, P and A are known, it is then possible to evaluate

S, which is defined as:-

S = PA + Q
2

P 
m

Q

2
- A p -

and S for m the reduced model can then be evaluated by elim-

(583)
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P m

inating, from P and S, those rows and columns which are

(584)

associated with the eliminated states.

Then, when and Q are known, the system matrix, A , m m

can be calculated, by applying the equation

A = P 1(S
m m m 2

DE SARKAR and DHARMA RAO use an example taken from 

KUPPURAJULU and ELANGOVAN (24) to illustrate this technique. 

Thus

............(.585)

To eliminate X4 ’

1 0 0

0 =
0 1 0

0 0 1

which gives

0 0 0

3.063 2.381

P =
2.381 2.759

1.266 1.489

0.103 0.122

0

0

0

0

1.266

1.489

1.237

0.099

0.103

0.122

0.099

0.008

............ (586)

is then obtained by eliminating the last row and last 

column of P and is subsequently used to calculate A which 
becomes -

...........  (587)
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0 1.003 0.00623

............(588)

0.21 -1.0025 0.9495

0 -0.0776 -1.5532

The poles of the original system were

-0.264, -0.847, -1.875, -10.014.

Those of the reduced system are

-0.264, -0.869, -1.423.

Thus, the pole farthest from the origin has been eliminated and 

the others have been retained with slight modification to take 

into account the eliminated mode.

This technique can therefore be described as a modified 

method of modal elimination.

The authors also produce time response curves which are 

used to demonstrate that this model has a closer agreement with 

the original system than those models produced by KUPPURAJULU 

and ELANGOVAN.

Although designed around an unforced system, this technique 

can be extended to forced systems with little difficulty.

A is obtained as before and B is selected to eliminate m m
steady state error between the states in the reduced model and 

the corresponding states of the original system.

Thus, if

x = Ax + Bu

and

X » A X + B um mm m

then, in the steady state

x = -A_iBu

and

ax = -A B um mm

Atting C = A 1 and partitioning then gives

............(589)

........... (590)

............(591)

............(592)
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............(.593)

X. c,, C, o B,1 11 12 1
— —.

X2 C21 C22 B2

_ — M —

where

are the retained states 

and

1x

are the eliminated states

This gives:

X1 = ”^11B1 + ^12B2^U

Now, putting xm = Xi, this gives

............ (594)

A 1B

Hence,

m m

B = A (Cm m

given A, m

11B1 + C12B2’

C11B1 + C12B2 (595)

(596)

which has already been found, and also the

original system parameters, B can be calculated with relative m
ease.

The main advantage of this technique lies in the fact that 

if the original system is asymptotically stable then the reduced 

model obtained will also be asymptotically stable.

The main disadvantage, however, is the relative complexity 

of the method with regard to the calculation of P. This is 

especially true for higher order systems.

Other work concerning 'non-standard’ reduction methods 

includes a paper published in 1974 by SCHWARTZ and EDGAR (107). 

These two authors examine second order models, obtained by 

using continuous fraction techniques, whose parameters have 

a particular physical relevance.

In such cases, there is a requirement for the relationship 

of certain specified parameters of the reduced model to the 

Physical parameters of the system to be noted, thus enabling 

any change in one of these physical parameters to be easily 

r^flected as a corresponding change in the reduced model.

160



An original but somewhat complicated method of model 

reduction is that put forward by SHAKED and KARCANIAS (108),and 

published in 1976.

This method uses state feedback, which is applied to the 

original system in such a way that the dimension of the observ-

able subspace of the modified system is reduced and thus a 

lower minimal realisation of the system can be found.

Another original reduction technique is that of BISTRITZ 

and LANGHOLZ (109),published in August 1979, which the authors 

describe as model reduction by best Chebyshev rational approx-

imations in the complex plane.

Thus G(s) is reduced to G(s) so as to minimise the absolute 

impulse response error.

e(t) = |g(t) - g(t)|

A
- G(s))exp(st) ds

. . . . <597)

BISTRITZ and LANGHOLZ recommend that the approximation be 

carried out in the z domain where

1 - z

1 + z
........... (598)

To achieve this, is transformed into F(z)

and G(s) is transformed into F( z)

G (s )

giving

e(t) - i
it

(F(z) - F(z)) exp(--------- t)
1 + z

viz

(1 + z)2 . .(599)

£
g

where the contour $ is the unit circle centred on the origin 

the complex z plane, corresponding to the imaginary axis in 
the s plane, with the interior of the circle matching the right 

hand side of the s plane.

An approximation to F(z) in the z plane is then obtained 
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by using least square fitting techniques, and G(s) can then 

be derived by inverse transformation.

As described by the authors, this technique appears to be 

over-complicated and an investigation of its effects has not, 

therefore been carried out.
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2.12 CONCLUSIONS.

As can be seen from the whole of section 2 

many methods of model reduction have been developed 

since the early 1960’s. Each method has its own 

particular advantages and disadvantages. Some methods 

give a good fit in the time domain for a given input, 

others give a relatively good fit at certain frequencies 

in the frequency domain. Still others guarantee that 

a model obtained from a stable system will also be 

stable. If a reduced model is obtained using one given 

reduction technique, according to one particular criterion 

it might or might not be a good model as tested according 

to another criterion. Because of this if a given
e 

condition is to be satisfied by a reduced model developed 

for any given purpose this condition should be included 

in the criteria which are used in obtaining the reduced 

model. It is for this reason that much work has recently 

been carried out on combined reduction techniques which 

attempt to satisfy more than one criterion, giving models 

which, for example, are stable for stable systems and also 

have a close fit in the frequency domain.

An alternative method for guaranteeing that a 

model satisfies certain conditions is to test the model 

to see if this is so. If a series of models are to be 

obtained, all of which satisfy given criteria, tests can 

be carried out to find under what conditions a given 

reduction technique produces models which satisfy the 

desired criteria. This approach has been used in the 

next section.
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The reduction techniques reviewed in this 

section can be divided into optimisation techniques or 

analytical techniques. Optimisation techniques in 

general give very good fits in the range over which the 

optimisation was carried out and, in the case of time 

domain optimisation, for the particular input used 

during the optimisation. However for other inputs or 

at a different frequency the fit can be very poor indeed. 

On the other hand analytical methods are not so much 

tied to the input signal, as normally the analysis is 

carried out in the frequency domain but is very dependent 

on the particular criteria chosen. Hence model reduction 

using moment matching matches the frequency response 

about s = 0 while matching Markov parameters fits the 

frequency response about s = ou. Any combination of the 

two gives a better match between these two points but a 

worse match at these points themselves.

It can easily be seen that no reduced model 

can match perfectly the original system although in 

many cases the fit can be very close. For this reason, 

great care must be taken in model reduction to ensure that 

the reduced model is obtained using the best criteria 

for the purpose for which the model is intended. In 

the case of controller design the closed loop response 

of the reduced model is very important, as it is the 

closed loop response of the system that is ultimately 

the point of interest. Because of this the effect of 

the model reduction technique on the closed loop response 

must be taken into account.
164



3.0 THE ADEQUACY OF FIRST ORDER MODELS OF

HIGHER ORDER SYSTEMS

As shown by the prece ding review, much work 
has been done on reducing higher order mathematical models 
to ones of lower order, which can then be used either to 
represent the system in the investigation of certain system 
characteristics (which have been carefully retained in the 
reduction) or for other specific purposes. General 
reduction techniques have been considered, with emphasis 
being applied to the reduction of models to second, third, 
fourth and fifth order models and little attention being 
paid either to first order models or to models containing 
time delays. However, a combination of these two features 
giving a first ordermodel with time delay can conveniently 
be used for the design of controllers for the system under 
consideration. If an adequate representation of this type 
can be produced for the system, the parameters can then be 
used to evaluate parameters for proportional and integral 
(PI) and proportional, integral and derivative (PID) 
controllers. This is further faciliated by the fact that 
published data is available for this purpose.

Controller design using this method requires 
a model of the form:-

- k-G<8>=T+fc- <A1>

This section is devoted to the investigation 
of the adequacy of such models for controller design.

When designing a controller for a system, one 
of the prime considerations must be that the closed loop 
system including the controller be stable. For this 
reason when considering the adequacy of the simple model 
for controller design, the greatest attention must be paid 
to the stability of the simple model. It is de & i ra. b It 

that the simple model of the plant be less stable than, or 
equally stable to the plant itself, so that any controller 
based on the model should give stable control when used 
with the plant itself. Although these measures do not 
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guarantee stable control they make it far more probable.
The question that now arises, is how to obtain 

suitable parameters for this simple model; this is dealt 
with in the next sub-section.
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3.1 EVALUATION OF SIMPLE MODEL PARAMETERS

The prece ding review indicates that simple 
parameters can be selected in a number of different ways. 
Some of these, however, cannot be considered suitable for 
controller design. Optimisation techniques, for example, 
eliminate almost entirely the advantages of designing a 
controller using model reduction since the controller 
parameters can be optimised equally as well as the model 
parameters with a probability of better results. 
Alternatively, if the model parameters were obtained by 
modal elimination no account would be taken of any modes 
other than the one retained.

The Pad6 approximation method as used by 
Gilibaro and Lees in their moment matching
technique, and by Chen and Shieh in their continued
fraction technique would seem to be the most suitable 
choice for controller design. Simple model parameters 
can be obtained by expanding both the first order and 
higher order models into polynomial series and equating 
the coefficients to obtain expressions for t  and T.

Thus when considering a general higher order 
system represented by the transfer function:-

Ke-TS(l+b1s+b„s2+..,+b sm)

3 bll2
+ “b2T+ ~~2— +2a^a2-a3-a^+b1a^-b^a9

alt2
-Ta2+Ta2-a1b2---- 2— +a1b1T )s 3+. . . . ) .......... (A3)

G(s) = ----------------- i------- ---------------2— ...........(A2)
l+ans+a„s2+... +a s12 n

for a real process n>m
The expansion can be given as:-

G(s) = K(l+b1s+b2s2+b3s3 + . .. )(1-ts + + ...)

(l + a1s+a2s2 +a3s 3+...)“1

2
■ K(l + (b1-T-a1 )s+(b2+ -bj^T+a^-ag-a^^b^^+a^x )s2
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Similarly, the first order plus time delay

model:-

G(s)
Ke’TS
1+Ts

can^be expanded to give:
G(s) = K(l-(f +T)s+(-^ +T2+fT)s2-

+T3+ +fT2)s3 + . . . . ) ...........(A4)

Equating the coefficients of s in these two 
expansions gives

-(f+T) = b1-T-a1

Similarly, equating the coefficients of s2 

produces:-
? t  21 +T2+?T - b2+ 2----- biT+al~a2_albl+alT

Solving these two equations simultaneously 
expressions for T and f can be obtained. Thus

T = (a2-b2-2a2+2b2)i ...........(A5)

f = i + a^-b^-T ...........(A6)

Explicit expressions for the simple model 
parameters are thus obtained and these can now be evaluated 
by substituting appropriate system parameters.

By equating the coefficients of s and s2 a good 
fit can be guaranteed at lower frequencies. At higher 
frequencies however the error can be quite substantial. 
A possible course of action in these circumstances would 
be to equate the coefficients of higher orders of s in 
the two expansions above, and take any two of these 
equations thus obtaining different expressions for t and T. 
However these expressions will not then be explicit but 
implicit functions of t and T. Thus by equating 
coefficients of s and also s3 expressions for t  and T are 
obtained which include a third order polynomial which must 
be solved to give t and T. A model obtained in this way 
would give a better fit at higher frequencies at the expense 
of lower frequencies. However, since no explicit solution 
exists for the simple model parameters when coefficients of 
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higher orders of s are used, it is in general more 
practical to use the Pade technique of solving the first 
two equations.
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3.2 REALIZABILITY AND STABILITY OF FIRST ORDER MODELS

For the simple model to be useable it is 
necessary for it to be both realizable and stable. Such 
models cannot be obtained from higher order models of all 
systems.

The conditions which must be satisfied by the 
simple model parameters for the model to be realizable are 
that the time delay t  must not be negative and that T must 
be real.
i.e. ,

T2^0
For the model to be open-loop stable T must 

also be positive 
i.e., T^O

These conditions indicate that for realizability 
and stability of the simple model, the higher order model 
parameters must satisfy the following conditions 

a2-b2-2a2+2b2^0 ...........(A7)

(as Tz=a|-b|-2a2+2b2)

and
T+a1-b1-(a|-b|+2a2+2b2)*>0

(as ?=T + a1-b1-T) .......... (A8)

For given values of t , a^ , b^ , b2 these 
inequalities place upper and lower limits on the value of 
a2 which can be used to give a realizable and stable simple 
model.

2

i.e., a24b2+b1T+a1b1-Ta1~b^- ...........(A9)

a2«b2+i(a|-bp ...........(A10)

Hence, any higher order model whose parameters 
do not satisfy these inequalities will not give a realizable 

and stable first order plus time delay model. This 
limitation greatly reduces the number of higher order models 

which can be simplified in this way. Furthermore, not all 
°i the simple models obtained from these higher order models, 
will satisfy the adequacy conditions for controller design.
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3.3 ADEQUACY

When designing a closed-loop control system, 
the minimum requirement is that it be stable in all 
circumstances. Consequently when using a simple model to 
design a controller for such a system the model must be one 
that will result in stable control. To ensure this the
closed-loop system containing the simple model must be less 
stable than the closed-loop system containing the process 
itself. This requirement is fulfilled if the open loop 
frequency response plots of the process and simple model 
are such that the locus of the first order model passes to 
the left of the locus of the process when crossing the 
negative real axis. Alternatively we may say that the 
model is considered adequate if the gain margin of the 
closed loop system containing the model is not greater 
than the gain margin of the closed loop system containing 
the process.
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|G(jUc)| |g (jg Sc )|

where does not necessarily equal aSQ .

FIGURE 3.1

EXAMPLE OF OPENLOOP FREQUENCY RESPONSES OF

A HIGHER ORDER SYSTEM AND ITS ADEQUATE LOWER

ORDER MODEL



3.4 SIMPLE MODEL CHARACTERISTICS

Prior to considering the detailed adequacy 
boundaries of higher order systems it is relevant to 
examine the characteristics of the first order plus time 
delay model paying particular attention to the model at 
the critical frequency fi^, where the frequency response 
plot first crosses the negative real axis.

For the model

G(s) 1+Ts .......... (All)

putting s=ju) gives

G(ju>) K (cosu)?-u)Tsinu)f)- j (u)Tcosu)?+sinu)T )
1+(i)^Ti

At fic Im(G(jfic)) = 0

.......... (A12)

.......... (A13)

tan ficf = -ficT .......... (A14)

G,. = Re(G(jfl_)) = ----- - -----  = Kcosfi f .......... (A15)
C c /"l+fic2T2 c

G(jw ) Solving these equations simultaneously shows 
that —• is a function of the ratio t :T.

These relationships are shown in Figures
3.2 and 3.3.
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FIGURE 3.2
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3.5 ADEQUACY BOUNDARY FOR 2ND ORDER SYSTEMS

WITHOUT TIME DELAY

The simplest system to which reduction
techniques can be applied is a second order system without 
time delay.

Consider the second order system

G(s)
K(l+bxs) 

l+aiS+a£S2 ...........(A16)

The realizability and stability boundaries
(eqns.A7-A10) require that

al+bl
(a1-b1)b1<a2^(a1-b1) ( -■ 2 - ) ...........(A17) 

since a2 must be positive for a stable system,-a^^b^^a^ 
for a realizable and stable model. Analysis of G(jw)
shows that for such a system 

/bl-al
wc /a2b1 .......... (A18)

For 0<b^^a^ cu is imaginary i.e., the 
frequency response does not cross the negative real axis. 
As a consequence all realizable stable first order plus 
time delay models obtained from stable second order models 
without time delay and with positive values for b^ will 
satisfy the adequacy conditions.

For negative values of bn 
Kb-

G(ju) ) - —± ...........(A19)
c

and an adequacy boundary exists which occurs when
A

G(jw_)=G(jo) ). Although this boundary cannot be 
positioned analytically it has been found numerically to 
be as represented in Fig.3.4.
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3.6 ADEQUACY BOUNDARIES FOR HIGHER ORDER SYSTEMS

WITH TIME DELAY

Let us now consider higher order systems with

time delay.
For such systems there is a point on the 

adequacy boundary where the simple model is exactly 
equivalent to the higher order model, that is to say when 
the higher order model contains factors which can be 
cancelled to give a first order model. This can be 
illustrated with the following general fourth order system:-

G(s) .......... (A20)

If the numerator polynomial is divided into the 
denominator a quotient of l+(a1-b^)s is obtained leaving 

a remainder of
s2+[a3-b3-b2(a1-b1)] s' ,(A21)

If this remainder is equal to zero, then

G(s) » l+(a1-b1)s
...........(A22)

and we have a simple first order plus time delay model 
in which

? = t

and T=a1-b1

For this however we must have

a2-b2-bl(al'bl)’°

a3-b3_b2(al-bl)"°

a4 -b3(a1-b1)»0

Therefore, the adequacy criteria for the model 

should be expressed in terms of conditions 
satisfied by these coefficients. These con 
depend on the order of the full model and

ror • Cull model - *
reason different orders of full models are 
separately in the following sub-sections.
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A computer programme has been written which
for an nth order 

a^_1 and aj+1 to 
according to the

system (given t , b^ to b a^, a^ to 
a ) will calculate the limits of a£ 
stability and relizability criteria and

evaluate simple models at various values between ao A 2m 1 n
and a2max- It then evaluates G(jfic)for each simple model 
and subsequently proceeds to evaluate G(jwc) for various 
processes, for each value of a9, by varying a. between 

ajmin and ajmax’ these having been previously determined, 
j being an input parameter and for a third order system 
always equal to 3, for a 
Boundary values are then 

fourth order model 3 or 4 etc.
recorded between processes which

give adequate models and those that give inadequate models. 
The programme also gives boundaries between real and 
imaginary and positive and negative roots of the 
characteristic equation (see Appendix II). This programme 
has been used to find adequacy boundaries for 3rd and higher 

order systems and the results obtained are presented in the 
individual sections dealing with each order of full model.
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3.7 ADEQUACY BOUNDARIES FOR 2ND ORDER SYSTEMS
WTTH TIME DELAY

The second order system is a special case. 

As can be shown all the coefficients of the full model 
effect the parameters of the simple model. Thus the
second order system

G(s) ...........(A24)

can be reduced to the simple model

Ke'*3
1+Ts

where T=(a|-b|-2a2)‘

G(s)

and +a^-b^-T

.......... (A25)

.......... (A26)

.......... (A27)

From the conditions for realizability and 
stability stated previously it can be deduced that for a 
second order model to give a realizable and stable model 

&2 must satisfy the following inequalities:-

a2>,b1T+aib1-Tai- f -b’ ...........<A28)

a2<}(a|-bp .......... (A29)

For positive values of bj, the only adequacy 
boundary is that given by the cancellation conditions.

Hence the model is adequate if 

a2)biai-bi .......... (A30)

This is the lower realizability boundary for 

a second order model without time delay. The time e ay^ 
does not affect the adequacy area for systems w p 
values of b„ which give stable, realizable and adequate 

f^dels using this technique only if (A3

blal"bl*a2**(ai"bl)

Riving a range of values 

a2max”a2min"^al bl^

(see Fig.3.5)

.......... (A32)
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FIGURE 3 5

REALISABILITY ANO ADEOUACY BOUNDARIES FOR 

2ND ORDER PLUS TIME DELAY SYSTEMS IN o, , o.



However for negative values of b^ , the 
adequacy boundary can only be found using a search 
technique. This boundary is of similar shape to that for 
positive values of b^ but for t =2 gives a slightly larger 
adequacy area (see Fig.3.4)
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3.8 NORMALISATION WITH RESPECT TO ax

For full models of 3rd or higher order the 
complete adequacy boundary can only be found using a systematic 
search. In order to simplify this search the process 
equation can be normalised with respect to a^ thus effectively 
reducing the number of parameters of the full model and 
consequently reducing the number of searches that have to be 
carried out. This normalisation can be illustrated using 
the following third order model -

.......... (A33)

This is a dimensionless form of G(s), since a1 has dimensions 
time, whereas s has dimensions of (time ^).

G(s)

with

The simple model now becomes:-

Ke 1 
1+<F

ai

*
)s

.......... (A35)

b9 b. 2 a, “I*
1 + 2(4) - (-1) - 2(^) 

al al al
.......... (A36)

and
A

It will be noticed that normalisation in no 
affects the relationship between the full and simple 

m°dels and can therefore be used to reduce the required 
nUmber of searches. These need now only be carried out 
f°r results for other values of aT being obtained

y multipiying out.
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conditions

a2

S

b2

*1

and

a2
*1 %

b2
^1

In normalised terms
become

+

+

expressed in

b2 
*1*4,

that if T
ai

the realizability

1 i bi

2 2 al
....(A38)

h 

al

The
the

+ —ir.
2

. bl 2 

ai

second
form:-

‘ bl

al

2”1

T

al
1-

of these

in
2 al

b-
r-+ * <£-> ai ai
conditions can also be

h 

al
+ 1

“12

(A39)

(A40)

itgrom the above form
- — +1=0 then no simple 

al

can easily be seen 
models are realizable

a2
since the minimum realizable value of —r then becomes 

a 2 ai
equal to the maximum value of —r which would give a 

al
realizable simple model.
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319 ADEQUACY BOUNDARIES FOR 3RD ORDER SYSTEMS
WITH TIME DELAY

In order to obtain the adequacy boundaries for 
a third order system it is first necessary to determine the 
stability boundary. This can be obtained using the Routh 
array.

The characteristic equation of a third order 
system can be given in the form:-

1 + a-s + aQs2 + a?s3 = 0

From the resulting Routh array the following 
conditions for stability can be obtained:-

...........(A41)

...........(A42)

a3 a3
0 which can be rewritten as a. —

a2 1 a2
...........(A43)

normalised terms these become

2
q o

.......... (A44)

.......... (A45)

...........(A46)

These stability conditions limit the area for 
^eQuate models to:-
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and realizable
The requirement that the simple model be stable 

further limits this area as it requires that:-

a2
*1

a2

1 min al

b b 2
— - (—) 
al al

T

ai

T 

ai
(A48)

and

a2

max al
1.
2

blx1 - (l1) 
al

(A49)

(see Section 3.8) .
This gives minimum and maximum limits

If however the minimum limit given by 
A48 is less than zero, it must be taken as zero to 
the stability criterion for the full model. 

(a2x

1 max
0. To ensure this

bi 2 b2
2 £ +al

1

f a2 
for iq- 

eqn.
satisfy

Likewise

(A50)

and consequently,
bl b2

as — must be real —7 % -0.5. 
al al

Some points on the adequacy boundaries are given
bV the cancellation conditions (see eqn. A23 ) i.e.,

..........  (A51)

..........  (A52)

as the equation of lines of constant in the
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bl (A53)

and

a2 b2
^1

a«
(J)

(^)
al

■

(A54)

as the

values

^2 
equation of curves of constant —7 in the same place.

al

The intersection of these curves for given

bl b2
of — and —t

al al
gives one point on the adequacy boundary

for these parameters 

conditions only give 
b2
by and for values of

Thus cancellation 
for positive values of

(see Fig.3.6).
boundary values

bl— between 0 and 1. This is to be 
al

expected as the system is open-loop stable

Positive poles boundaries and boundaries
Other points on tnese

bl bfor other values of — and
al

Q4 can only be found using a 
al

computer search. Such a 
the following manner.

search has been carried out in

For each run T

al ’
h
al

b2
and -4 were pre-

al

determined thus giving maximum and
a2 

minimum values for —
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a2
q was then set in turn to each of a number of values

between 
these a

the permitted minimum and maximum, 
simple model was evaluated, giving

a  
magnitude of G(s) at s=jw being the point

a3
the negative real axis. —3- was then varied

al

For each of
A

G , i.e. the 
where it first

e.

crosses

between a2
0 and —3F , determining values for G which is 

al c

def ined as the largest magnitude of G(juj) crossing the 
negative real axis. Since G(jw) is not always monotonic 
this does not necessarily occur at the first crossing, 
(see Fig.3.7).

Values of —a were then recorded at points
1

Consequently an adequacy boundary in the

plane was obtained for selected values of

T 
al f ai ’

b2 
and —t

al

bl
Thus initially —

al

^2
and —7- were both set to4

was varied between 0 and 10. This produced

Fig.3.8.
be adequate if the full 

The

zero and —
al

adequacy boundaries as shown in
Simple models will

model parameters lie below the adequacy boundary.
figure indicates that for all values of — the adequacy 

al
boundary passes through the origin. This is to be expected 

since it is at the point on the boundary given by the 

cancellation conditions that the full model exactly equals 
the simple model irrespective of the value of —- which will

* 1
always equal — under these circumstances. As — increases, 

al al
the area of adequacy decreases. This is very marked between 
0 and 1, falls off between 1 and 2 and then virtually 

disappears, so that for values of — above 2. the adequacy 
al
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FIGURE 3.6

THE EFFECT OF VARYING ON THE ADEQUACY

BOUNDARY



boundary stays almost constant.

Similar conclusions were reached when — and 
al

were next set to different values and — was again 
al

varied. It is however worth noting that 
circumstances the value of — can affect

al

an adequate model is obtained by altering

under certain
the area in which

min. If

* 0 and — < 2 
al al

^1 ao(-1 -1 ) , then (-£)
al al

min will be increased

and hence the area in which a realizable model can be formed

a2
( —t  ) min will be decreased and 

al
hence the area of realizability will be increased. This

will be reduced; otherwise

a2 
situation only applies if —7 is not less than zero. If

al
t  ^1 a2

however — = — -1, therf —7 ) min reaches its maximum value 
al al al

a2 
and becomes equal to ( —7 ) max eliminating the area

al
of

realizability completely, as previously indicated. All

further investigations were carried out with — 
al

2.0.

^2 bl
Thus —r was next set to zero and — 

al al
was

varied between -1 and +1. The resulting adequacy 
boundaries for positive values are shown in Fig.3.9. As 
bl <

increases from zero, so the area of adequacy decreases

rapidly, since not
a2only does (—r ) max decrease, but
al

simultaneously the
a2minimum value of — for adequacy
al
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FIGURE 39

ADEQUACY BOUNDARIES FOR THIRD ORDER SYSTEMS WITH

— •2 0 AND -X - 0 AND POSITIVE VALUES BETWEEN 
a,

0 AND 1



increases, this latter value being given by the 

cancellation conditions. In fact, the adequacy boundary 

a2 bl a3
in the (—£),( -^)plane at -4 = 0 is, as expected, that of 

al al al

a second order system as shown in Fig.3.4. With the

bl
exception of the fact that for -ve values of — the area

al

of adequacy is slightly larger (as for second order systems)

the adequacy boundaries are very similar,meeting for each

bl
value of + — at

a2—z max and the maximum value of
a3

for
al al *1

adequacy.

b2
was subsequently set to 0.5 and

bl 

al
was again

varied between -1 and +1, giving the adequacy boundaries as 

shown in Fig.3.10. Again the greatest adequacy area occurs

for = 
al

until — 
al

bl
and decreases as — is

al

+1 when the system only

a3
and -4=0. This is the 

al

increased or decreased,

gives an adequate model for

case

the area of adequacy is

to a single point at

ao aqthe (^) , (^)
al al

b2 
for all values of —z ;

al

plane always reduces

0

........... (A55)

Points given 

in Fig.3.io.
by cancellation conditions have also been shown

To examine the effect of varying

a2 
area of realizability was kept constant, — 

b. al
as 1.0 and — was varied between -1 and +1, 

al

bf
— when the
al

max was chosen
b2—z being varied
al

appropriately. The resulting adequacy boundaries are shown
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I
b2

in Fig.3.11. Values of —? for -ve values of
al

^1
— are the 
al

same as for corresponding positive values.

From Fig.3.11 it can be seen that
bf

varying — and
al

b2

rr in this way gives a very regular family of
1

curves which

r 
could be interpolated between with reasonable accuacy.A It

will also be noticed that systems with negative values
f bl 

of

have a greater tendency to retain 

bl
boundary at — = 0 than those with

al

the shape of the adequacy

positive values, whose

a2
(r?) max
al

^2
was kept constant while —7 was

al

boundary tends to retreat towards at a greater rate.

bl
Finally — 

al
varied. Initially

bl
V was set ai

Figs. 3.12 and

to
^2

0 and —z was varied between ~0.2 and 
al

3.5 (see

3.13).

its basic shape but

became elongated in

The adequacy boundary seemed 

b2 

ai

a3
the -4

to retain

as was increased

direction.

the

The

adequacy area

adequacy area

increased slowly as
b2

was increased but the realizability

area increased much 

realizable models which were adequate fell rapidly.

faster and hence the proportion of

The

Process was repeated with other values of — giving similar 
al

results (see Figs. 3.14 and 3.15).
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The boundary between real and imaginary zeroes

is given by

............ (A56)

However this does not appear to be relevant as far as 

adequacy boundaries are concerned. The same can be said of 

the boundary between real and imaginary poles. Fig.3.16

^1 ^2
shows lines of constant — and —r on an argand diagram.

al al

It does not however indicate any further correlation between 

system zeroes and adequacy boundaries.
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FIGURE 3 16

SYSTEM ZEROES AND LINES OF CONSTANT AND ANDa, a/
REALISABILITY BOUNDARY FOR THIRD ORDER SYSTEMS

SYSTEMS WITHIN THIS BOUNDARY CANNOT 
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ADEQUACY BOUNDARIES FOUND ALONG THIS 
LOCUS

ZEROES OF SO»<r THE SYSTEMS ANALYSED



3.10 ADEQUACY BOUNDARIES FOR FOURTH ORDER

SYSTEMS WITH TIME DELAY

As with third order systems the first factor to

be considered is the stability boundary.

Writing the characteristic equation as

1 + a-s + a9s2 + aqs3 + a.s4 . ...XA57)

the Routh array gives the following stability conditions

a3 » 0

or a2a3 }

. . . . XA58) 

....XA59)

... . XA60)

....XA61)

If these conditions are normalised with respect

to a^ we obtain

and

a2 a3 a4 z a3x 2
*1 * +<

As
4 and

a3
—r must always be
al

....(A62)

....XA63)

....(A64)

....(A65)

positive for the system to be
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stable the third condition will 

final condition is satisfied. 

always be satisfied if the

This final condition can be

rewritten as

a2 
TT al

.(A66)

or to give an explicit boundary
a4

condition for —r
al

as

a4 a3

*1 .(A67)

which
a4

since —r
al

0

shows that

a3

*1
a2

(A68)

This condition can also be rewritten explicitly

for -4 giving:-

1_
2 *

which requires

al al
(A70)

or

(A71)

These conditions give a stability boundary which

< a3
shown in Fig.3.17 in the—y 

al
=r plane for various values 

al

189



S
TA

B
IL
IT
Y
 bo

u
n

d
a

r
ie

s fo
r
 fo

u
r

th
 or

d
er

0.
6



Of
a“ 
i

The boundary in the
a4 a2
— , -j- plane is much 
al al

simpler consisting of straight

Other conditions,

lines and has not been shown.

those given by 

of the simple model, 

as those for third order models (see Section 3.9). 

Again certain points on the 

the

including 

stability and realisability requirements 

are the same

are given by cancellation conditions

adequacy boundaries 

(see eqn. A23):-

a2

“T
b2

*1

^1(

al

bl!- ^) = ° 
al

,(A72)

........... (A73)

........... (A74)

Fig.3.18 shows points given by the cancellation 

bl b2
conditions for values of — and —7 between 0 and 1, for al ^1

b3
Ty = 0.1. It is worth noting that there are no cancellation

1
a« ^3

Points for values of —y less than —y for stable systems.
al al

In this area cancellation points would apply to unstable 

systems resulting in unstable simple models. For values of

stable model but although this would imply that the system 
ls stable, the fact is that positive poles are exactly 

cancelled by zeroes and thus the stable system is of first 

order whereas fourth order systems of similar but not identical 

Parameters are in fact unstable.
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I To obtain the full adequacy boundaries, computer 

searches similar to those used for third order

carried out, however, in this case two sets of

systems were 

searches were

required:- one
a3

in the —7
al

plane (as in the case of third

order systems) and one in the
a4 b2
—17 , —r plane.^1 aia; For each run

T

al

b3

*1
a3 

were predetermined, as was either —5-
al

or
h b2

■ ai - -

depending on the plane in which the search was to be

a3 a2 
carried out. In the case of the search in the —y , —7- plane 

al al

a3
a maximum and minimum value of —5- was calculated for each

ai

a2
value of —7 , according to the full model stability criteria

al

, a4 a2
(see eqn. A69) . For the search in the —5- , —y plane only a

al al

a4
maximum value was calculated for —r- and the minimum value

*1

was taken as 0. (see eqn. A.67).

The first fourth order searches were carried out

in
a3 the -J
ai

a2 bl
. Plane with — ,

al al
and

ai

b3
—5- all set to zero, 
al

for values
a4

of between 0 and 0.0345. (see Fig.3.19).

As can be seen the area of adequacy decreases as

4 4
increases until it disappears altogether at = 0.035.

One of the main reasons for this is the stability boundary, 

which cuts off areas which were adequate for lower values of
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a4
A similar search was next carried out in the — ,

a2 a3 1
—7- plane (see Fig.3.20). Here again as —3- was increased
al al
so the area of adequacy decreased (as would be expected 

from the previous results). It can be seen that in certain 

cases the adequacy boundary coincides with the stability 

boundary. In terms of the area in which a realizable stable 

first order plus time delay model can be obtained from a 

stable fourth order model, the area of adequacy decreases
a3

from 100% at --y = 0 through 92% at 0.01, 72% at 0.05,
al

25% at 0.1 to 0 at 0.156. This decrease is non linear and

in certain cases there appear to be slight increases.

Returning to
a3 a2

the —j- , —7- plane, the 
al al

a4
a

effect of

bl
varying — while keeping —y constant was next 

al al

a4
for three different values of —r

investigated

Figs. 3.21, 3.22, 3.23). Again

adequacy area decreases, largely 

realizability boundary moves adequacy

(0.01, 0.02, 0.025) (see

bl
as 1—1 is increased so the

al

due to the fact that the

closer to zero. The

is increased.

bl
The effect of varying — on the adequacy 

al
boundary

a2
, —7 plane can be seen 

al
from Fig.3.24. As in

pig.3.20,

bl
for — e 0 the adequacy boundary

1

the boundaries are made up of straight

coincides with

lines and

the stability

boundary until it reaches the minimum value

a

bl 
adequacy. The adequacy area for — = 0 is

1
relatively large
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the adequacy area decreases until it becomes zero slightly 

bl
above |—| - 0.6. Another point of interest is that the 

al

a2
minimum value of —7 for adequacy varies relatively little 

al

bl
with —

al

a2
It varies between 0.28 and 0.34 while (—7)__ vv a^ 7 max

varies between 0.32 and 0.5.

The
^1 b2

effect of varying — while keeping —7 - 1.0,
al al

b q a. 
—r = 0 and —v al al = 0.025 is shown in Fig.3.25. Figs. 3.26,

3.27 and 3.28
^2 

show the effect of varying —T 
al

while keeping

other parameters constant. All these give boundaries in

a3 
the -4
3rd and

a2
, —7 plane. These results correspond to previous 

al

fourth order results.
a4 a2

Adequacy boundaries in the —5- , —7 plane were 
al al

a3 
and —y = 0.05 while

al

^1 b3
obtained by retaining — = —j- = 0 

al al

Although the general

is present, some surprising

0.2, 0.25 and 0.3 (see

b2
varying —7- between -0.1 and 5.0.

al
trend of decreasing adequacy area

b2 
results were obtained around —r = 

al
Fig.3.29). These unusual boundaries appear to be a

transient stage between the boundaries for lower and higher 
b2

values of -4 .
al

How such an adequacy boundary arises can be seen 
a4

in Fig.3.30 where G„ is shown plotted against —q-. 
c al

a4 
six values of G_ are given for various values of —v 

c al

Up to

and it

is the fourth and fifth values of Gc that cause the reduced
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model to be inadequate for certain of the systems 

represented. Using the previous example, for values of

^2
—7- = 0.1 and 0.15 the adequacy boundary is given by the 
al

^2 
fourth value of G (see Fig.3.31). For values of —7- = 0.2 c ax

to 0.3 the adequacy boundary is of the form shown in Fig.3.30

whereas for higher values of
^2
—r the higher adequacy area 
al

completely disappears as the fourth and fifth G„ curves A C
cross above Gc.

Varying —3- while keeping other parameters constant 
al

gives the boundaries shown in Fig.3.32. These are similar 

to those in Fig.3.29 but more complex.

a3 a2
Returning to the —r , —7 plane Figs. 3.33 and 

al al

„ a4 b2
3.34 show the effect of varying —tt  and — for fourth order 

al al

systems with three zeroes (none of which is at infinity).

The previously established pattern continues to hold under

these circumstances.
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3.11 ADEQUACY BOUNDARIES FOR FIFTH ORDER

SYSTEMS WITH TIME DELAY

Starting again with the stability boundary we

form the Routh array from the characteristic equation

1 + a^s + agS2+ a^s3+ a^su+ a^s5 ............(A75) 

and the following conditions for stability are obtained 

from this array.

0a5 > (A76)

a4 * (A77)0

a3
^5

a4
a2 * 0 or a3a4 * a5a2 (A78)

or

and

al

a5 
a (al“
a4 a4

a3-
s

a4
a2

(A79)

a2a3
_5 a2 > 
a. a2 '

4
ala4 a5 (A80)

a4

a5
a3~ a4 a2

a4al_a5 
a2~ a&

a3~ a^‘a2

(A81)

a2 " 0

0

or
ala2a3a4-a3a4-ala5a2+a5a2a3-ala4+2ala4a5-a5 * 0 (A82)

Normalized these conditions become

a5 . . . .(A83)
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a4
> 0 (A84)

a3

*1

a4

*1

a5 a2

aT (A85)

a2

*1

a3

*1

a4 a5 a2 2 a4 2
*(z*>al al al

a4 a5
• zy (A86)

and

a3 a4

ai ai
-(

a5

£ 0 (A87)

This last condition can 

an explicit expression

be

a3
ai ■’

where

z
1 a2
2-iy

a5 2-4)

As z must be * 0

a. aR 
unless -4 = -5“I zy

rewritten to give 

for the boundary condition for

+ J~z . .(A88)

a5 

al

(A89)

a2 2 a4
»( tt ) £ 4 tv  as  for fourth order systems

1 al

a3
This condition for —r gives a stability 

al
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boundary in the
a3

*1
plane which is asymptotic to the

............(A90)

Consequently as the two arms of

the stability boundary become coincident.

a4By rewriting this condition for —a stability

boundary

This gives a

two straight lines

stability 

which meet at

boundary consisting of 
a2 _ *3
*1 ay

a3 2
( -p-) must be £

a5
4 —r unless

a3 2If ( -4)v a] 7
a54 —2. then the 
ai

area of stability

31 -« 3- Q
reduces to a single line —£ = 4

al 2 al

a2 a5 
Ky - zy (A92)
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Similarly this condition can be rewritten to

give an explicit boundary

The stability boundary m

is asymptotic to the curve

■ ai
(A94)

and is enclosed
a5 1

by the lines —r - -r
al 4

(A95)

which gives the maximum
a5

value of —r-
*1

for stability for

any given value

(A96)

which gives the minimum for stability for

any given value
a4

(see Fig.3.35)

Simple model realizability and stability 

boundaries are, of course, identical for all systems above 

second order. Cancellation conditions are also similar 

(see Sections 3.9 and 3.10).
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Only a limited search was carried out for fifth 

order systems. Fig.3.36 shows the effect of increasing 

a5 a2 a3
—r on the adequacy boundary in the —7- , —r plane.
al al al

The area of adequacy is shown to be reduced by the stability 

boundary. A similar effect can be seen in Fig.3.37 where 

a5 a4
—y is kept constant and —v is varied. In this case, however 
al al

the adequacy boundary also retreats towards the realizability 

a4
boundary as —5- is increased.

al
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3.12 CONCLUSIONS ABOUT ADEQUACY BOUNDARIES FOR

SIMPLE MODELS OBTAINED USING THE PADE

APPROXIMATION TECHNIQUES

In the preceding sub sections, various adequacy 

boundaries for systems up to and including fifth order 

plus time delay systems have been examined. Higher 

order systems have not been investigated, although 

they could be analysed in the same way, since it can be 

expected that the trends displayed by the systems which 

have been examined will be maintained for systems of order 

greater than fifth.

As can be seen from the preceding pages, only a 

small percentage of systems which give stable, realizable 

simple models actually give adequate models. In fact as 

the order of the system increases so the probability that 

the reduced model is adequate decreases.

In general the nearer
max

the upper

realizability boundary, the more likely it is that the 

simple model will be adequate. This is to be expected as 

a 

siiGc“K at<zrUx and 0 at< and in theory, at least,

a2
at ( -4 )

a£ max all systems which can give a realizable, stable,

adequate first order plus time delay model using any 

technique will give one using this method. However, in 

fact all models obtained using this technique from systems 

a2 a2\
with —t  ~ ( —£) have T=0 and consequently cannot be used

a^ a‘ max

for controller design.

From the systems examined, it also appears that

a2
few adequate models are obtained when —7- is less than

al

that is to say few adequate simple models

Gc decreases as T increases so any increase

200



FIGURE 3 37
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in T will reduce the probability that the model will be 

adequate

For other system parameters, it can, in general, 

be said that the nearer a normalised system parameter is to 

its permissible minimum for stability the more likely it is 

that the system will produce an adequate model.

Certain systems which cannot give an adequate 

model using the Pad£ approximation technique, will give an 

adequate model using other methods. These are systems 

for which GC<GC<K, where Gc relates to the simple model 

obtained using the Pade approximation technique. An 

alternative method for these systems is given in the next 

subsection.
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3.13 ADEQUATE SIMPLE MODELS FOR SYSTEMS WHICH

CANNOT GIVE ADEQUATE MODELS USING THE PADE 

APPROXIMATION TECHNIQUE

Methods exist for the calculation of first order 

model parameters which will give a model which crosses the 

-ve real axis at a previously determined point. Hence we 

can produce a first order plus time delay model whose 

frequency plot crosses the negative real axis at the same 

point as the frequency plot of the system itself, given 

that Gc<K.

The equations for T and f are obtained from the 

theory of a first order plus time delay model (see Section 

3.4). They are:-

T = 4—

c
/&>■-* , .(A97)

and

? = 4-

c

G_
cos'1 (^) . . . . ,(A98)

It will be noticed that the terms for T and ?

include uJ which is the frequency at which we wish the 

plot to cross the negative real axis. Originally it was 

thought that setting this equal to the frequency at which 

the process plot crossed the axis at this point might give 

a suitable adequate model. It was however discovered 

that this often caused a model with a perfect fit at w=0 

and but with a very poor fit everywhere else.

Consequently this idea was abandoned.

For the frequency plot of the model to cross the 

-ve real axis at a given point it is not the actual values 

of ? and T that are important but the ratio between them:-
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R

G_
cos”1 (g£)

. . . . XA99)

This ratio has been used in conjunction with the 

equations obtained earlier by equating coefficients of s 

and s2 in the series expansion to give four further 

differencing but similar models.

Model 1 is the model obtained using Pade 

approximation.

Model 2 uses the value of T from Model 1 but 

adjusts f to give the desired ratio.

Model 3 uses the value of f from Model 1 and 

adjusts T to give the desired ratio. This model is the 

least similar of models 2, 3, 4 and 5.

Model 4 is obtained by simultaneously solving 

the ratio equation and the equation obtained by equating 

coefficients of s:-

?=T+a1~b1~T ....<A100)

. _ _ T+al-bl

’ 1+H

and

f = R.T

(see A99)

....1A101)

....XA102)

Model 5 is obtained by simultaneously 

the ratio equation and 

coefficients of s2:-

the equation obtained by

solving 

equating

| = R (see A99)

f2 , ?2
j;— + T* + fT = bg + y- blT + al - a2 ‘ albl + a-t = P

....XA103)
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............(A104)

(as A102)

Fig.3.38 gives an example of how these model

parameters occur for the fourth order system.

G(s)
0.5(1+2.5s+l.5s2+0.5s3)e~ZS
1+3.5s+a2sz+2s 3+0.5su ............(A105)

Lines of =R are shown for various values of a2 and 

model parameters obtained using the five different methods 

are indicated for four values of a2

(A -> a2 = 3.4, B -* a2 = 4.5, C -* a2 = 6.0, D -► a2 = 8.0) 

It will be noticed that only a2 = 3.4 and a2 = 4.5 give 

a realizable model of type 1, and of these only the latter 

is adequate. There is an adequacy boundary at a^ = 4.0, 

which, in fact, satisfies the cancellation conditions and 

for this value all five models coincide as they are equal 

to the full system. Model 1 gives adequate models for a2 

between 4 and 4.5. Since models 2 and 3 are dependent on 

the parameters of model 1 they do not exist if model 1 is 

not realizable and consequently for a2 = 6 and a2 = 8 only 

models 4 and 5 exist. For values of a2 9 model 5 also 

disappears. Thus only model 4 gives a realizable model

for all systems within the stability area, i.e. for all

stable systems having Ge $ K. A
Models 2, 3, 4 and 5 all give Gc = Gc at the

expense of the fit at lower frequencies. They are all

"adequate” for controller design and a comparison of the 

controllers obtained using these various models is given 

in the next section in which the effect of using such 

first order plus time delay models in controller design 

is examined.
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4. THE USE OF FIRST ORDER PLUS TIME DELAY MODELS FOR 

CONTROLLER DESIGN

After obtaining a first order plus time delay 

model of the process under consideration, we can proceed 

to use this to design a controller for the process. In 

this section controller parameters are obtained using 

those models which are less stable or equally stable to 

the process itself. The effect of the resulting controller 

on the original system is then examined. Two methods are 

used for this purpose:-

1) open loop frequency responses of the system together

with the controller, and

2) simulations of the closed loop system including the 

controller..

For this second method some form of error 

criterion must be used: Three such criteria, in common 

use.are:-

1) Integral Square Error ISE = J^e(t)2dt, which weights

larger errors more than smaller ones. Minimising 

this error criterion in controller design results in 

a relatively small overshoot, with a somewhat drawn- 

out settling time.

T2) Integral Absolute Error, IAE = J |e(t)|dt, which 

weights all error equally. Minimising IAE gives 

larger initial errors but shorter settling time.

3) Integral Time Absolute Error, ITAE = J^|e(t)|t dt,

which weights errors occurring later to a greater 

extent. Minimising ITAE will produce a short total 

response time with large initial errors.
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The ITAE criterion is used throughout this 

section for the comparison of the response of simulated 

systems, although the ISE and IAE are also evaluated on 

occasion.

Two different sets of comparisons are 

presented. Firstly a number of linear fourth order + 

time delay models are looked at, secondly a more 

practical example is examined. This latter is a third 

order non-linear macroscopic model of a vaporiser which 

must be linearised before reduction. Controllers 

obtained using first order plus time delay models are 

then used in a simulation of the system in order to 

evaluate their suitability.
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4.1 THE EVALUATION OF CONTROLLER PARAMETERS

As previously mentioned, standard expressions 

exist which give controller parameters from first order
(R.II details cu<c by SM* TH (no))

plus time delay model parameters^. There are two sets 

of such expressions. The first give parameters for 

controller that deal with load changes and other 

disturbances, while the second set give paramters for 

set point changes. Parameters for both proportional-

integral (PI) and proportional-integral-derivative (PID) 

controllers can be obtained in this way, but in this 

case only PI controllers are used. These are 

represented by transfer functions of the form:-
I

K(s) = Kc(l+ ............(Bl)

The parameters K and T. are given by the 

following expressions:-

Load change parameters

Kc = K (T) ............(B2)

m rn d
Ti = £ <T> ...... <B3>

where a, b, c, d are constants dependent on the criterion

which the controller is to sat isfy, as follows:-

Criterion a b c d

Min.ISE 1.305 -0.960 0.492 -0.739

Min.IAE 0.984 -0.986 0.608 -0.707

Min.ITAE 0.859 -0.977 0.674 -0.680
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Set point parameters

Kc K P (B4)

(B5)
e-f(£)

where

Criterion a b e f

Min.IAE 0.758 -0.861 1.02 0.325

Min.ITAE 0.586 -0.916 1.03 0.165

As shown the va lue of K is a function c of

and is not dependent on the absolute value of t or

T but on the ratio between them. Consequently, if

the simple model used for this purpose is one obtained

using the system gain when the Nyquist plot crosses 

the negative real axis, (as suggested in section 3.13)

then K becomes a function of K and and is the same 
c c

for all simple models obtained in this way i.e.,

............(B6)
a
K

Hence controllers obtained from models 2, 3,

4 and 5 (see section 3.13) differ only in their value 

of Tt.
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4.2 CONTROLLERS BASED ON SIMPLE MODELS OBTAINED FROM 

HIGHER ORDER PLUS TIME DELAY LINEAR MODELS - OPEN 

LOOP FREQUENCY RESPONSE

To examine the effect of designing controllers 

for higher order systems using first order plus time 

delay models a great number of systems were examined. 

From these, four fourth order plus time delay systems 

have been selected to demonstrate various points. In 

each case two different simple models were obtained: 

the first using the Pade reduction technique, the 

second by fitting a model through the point where the 

system frequency response crosses the negative real 

axis with Q - a . As mentioned in section 3.13, c c

fixing ft = w does not always give a very good fit, 

if w does not apply to the first crossing of the 

negative real axis. The results for these four systems 

were, however, obtained before this conclusion was 

reached. Subsequent checks have, nevertheless, shown 

that in all these cases the model obtained in this way 

differs but little from that given by method 4 of 

section 3.13.

The controller parameters used have, in each 

case, been calculated using the expressions for a load 

change controller minimising the ITAE criterion.

The first system under consideration has the 

transfer function:-
________ 0.5 e~2s(l-0.2s)

G(s) = l+s+0.4s2+0.015J+0.0034s“ ............(B7)
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D , - 0.5 e-2-7279s 

1+0.5351s

Polar plots of

system and the two models

The controller

Reduction using the Pade technique gives

an adequate model:

G<s> = l+g.4s ...........(B8)

while the critical point calculations give:-

............(B9)

the frequency response of the

are shown in fig.4.1. 

obtained from the Pade model

is

K(s) = 0.267 (1+ 2.2288s ) ...........(BIO)

The open loop frequency responses of both the system 

and the Pade model with this controller are shown in 

fig.4.2. It should be noted that, at lower 

frequencies, there is a perfect fit between the system 

and the model. Consequently at these frequencies the 

two closed loop systems wUl give very similar error 

index values. At higher frequencies, the model 

deviates from the system but moves to the left of it, 

indicating that the model is less stable than the system 

itself.

Fig.4.3 shows similar plots using the critical 

point model giving

K(s) - 0.3499 (1+ y-4Q55s ) ...........(Bll)

as the controller. Here the two frequency responses 

do not agree at low frequencies but only have a slight

210





^ODEL





difference. Near the real axis the system plot 

crosses to the left of the model plot, indicating it 

to be less stable.

From these plots it would appear that the 

controller obtained from the ADEQUATE Pade model is 

better than that given by the critical point model.

The agreement between system and model at lower 

frequencies, as stated above, indicates that similar 

values for error indicies will be obtained at these 

frequencies. Since the controller has been designed 

to minimise the error criterion for the model, the 

error criterion for the system will also be relatively 

small at these frequencies.

Although the fact that the model plus

controller is more stable than the system plus 

controller has very little significance in this case 

(especially as the difference is very small) this 

could lead to instability in those cases where the 

difference is larger and the gain on the negative real 

axis is nearer -1. This is especially true for a 

non-linear system. (See section 4.4).

The next system to be considered is 

represented by

rz„x . 0.5 e~2s__________
' l+s+0. Is1 +0. Is* +0.033s1

and gives the Pade model:

' _ 0.5 e-2,1056s
k ' 1+0.8944s

............(B12)

............(B13)
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This model is, however, inadequate

according to our definition, (see fig.4.4) although,

again, it gives a very good fit at lower frequencies.

A
G(s) =

The critical point model is:- 

n c -2.0668s
0.5 e

1+0.8015s
(B14)

models so

K(s)

and

K(s)

The controllers obtained from these two

as to minimise the ITAE criterion, are

= 0.7443 (1+

= 0.6809 (1+

respectively.

__ 1__  )2.3753s 7

__ 1__  )2.2647s 7

(B15)

(B16)

As would be expected, the Pade model plus

controller fit perfectly to the system plus controller 

at lower frequencies but at higher frequencies the two 

plots deviate (see fig.4.5). The frequency response 

polar plot of the model moves to the right of that for 

the system when crossing the negative real axis.

In the case of the critical point model the

two plots agree in the vicinity of the negative real

axis, but there is a larger difference between them at

lower frequencies. (see fig.4.6).

Comparison of the frequency plots obtained

for the system with each of the two controllers shows

that at lower frequencies they are identical.

For this system, an inadequate Pade model

gives a controller which could be considered adequate,

but as the model has been rejected as inadequate, the 

critical point model becomes a useful substitute giving
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a suitable controller.

The third system to be considered is

represented by

GCs) 0.5
l + s+0.5s2+0.047s 3 + 0.015s14 (B17)

This gives G(s) = 0.5 as the Pade model,

which would theoretically be adequate, but as t  = 0, no 

meaningful controller parameters are obtainable (see 

fig.4.7)

The critical point model is

Z, . 0.5 e-2-Q760s
1+0.4246s

This again can be considered as a useful

substitute giving:-

K(s) = 0.2844 ( 1+ 272029s >
which appears to be a very suitable controller (see 

fig.4.8).

............ (B18)

(B19)

The last of the four systems being examined

is given by:-

G(s)
0.5 e S(l+O.8s2)

l + s+0.81s2 +0.73s3 +0.01s14 ............ (B20)

The frequency response of this system is

shown in fig.4.9. As can be seen, it passes through 

the origin. This is due to the numerator which contains 

a function of s2 but no other sn terms. Consequently 

the frequency response passes through the origin when 

l+0.8(juj)2 = 0 or when w = ,25, In practice such a
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frequency response is rather unlikely since the complete 

absence of an s term in the numerator is highly 

improbable. However, when this term is small, a 

similar frequency response will be given. This will 

pass close to the origin but not exactly through it.

Reduction of this system using the Pade" 

technique gives

G(S> = 14.9899s ...........<B21>

This model is plainly inadequate (see fig.

4.9). The controller given by this model is:-

K(s) = 0.86 (14- 2 37?5s ) ...........(B22) .

Again this model gives a good fit at lower 

frequencies but at higher frequencies the system and 

controller give a polar plot which lies far to the left 

of that given by the model and controller (see fig.4.10) 

but still lies well to the right of the (-1,0) point 

indicating that the closed loop system will be stable. 

For other systems, however, such an inadequate model 

could lead to instability in the closed loop system.

The critical point model is given by the 

second crossing of the negative real axis by the system 

polar frequency response plot. It is

G(.s)
0.5 e’2-4354s

1+0.6321s (B23)
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and gives the controller

K(s)= 6.4599 l'2.3467s

As shown in fig.4.11, this controller still 

does not guarantee that the model is less stable than 

the system. This is due to the fact that the original 

system has a higher gain than the model below the 

negative real axis. This is reflected on the axis when 

the controller is added as a result of the phase shift 

characteristics of the integral time.

It would appear that when the Pade reduction 

method gives an inadequate model and the system gain 

decreases as it crosses the negative real axis of the 

polar plot then the critical point model can also be 

considered inadequate. A better alternative might be 

considered taking this larger gain into account by, for 

example, fitting the model at the point below the 

negative real axis at which the real part reaches a 

minimum. Alternatively the point nearest to the -1 

point might be considered.

From the foregoing examples it would appear 

that if the Pade' reduction technique gives an"adequate" 

model then the resulting controller is quite likely to 

give almost optimal control at lower frequencies due to 

the good fit that this technique gives at these 

frequencies. If, however, such a model does not exist, 

the critical point model will, in most cases, act as an

(B24)
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acceptable alternative giving suitable controller 

parameters. The exception is the case mentioned above.

The second example also suggests that maybe 

our criterion for adequacy is too strict and that an 

alternative definition should be considered, taking into 

account the expressions that are to be used for the 

design of the controller. This would, however, of 

necessity, be a more complicated criterion.
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4.3 CONTROLLERS BASED ON SIMPLE MODELS OBTAINED FROM

HIGHER ORDER PLUS TIME DELAY LINEAR MODELS -

CLOSED LOOP SIMULATION

It has been shown in the previous section that 

controllers designed using simple models influence the 

open loop frequency response of the original system. 

Another and perhaps clearer way to examine the effect 

of such a controller is to simulate the closed loop 

system including the controller. Simulations of this 

type have been carried out on a large number of systems 

and a selection of the results is presented in this 

sect ion.

By the very nature of model reduction many 

higher order systems will give one and the same reduced 

model. For models obtained using the Pade technique, 

the model will be adequate for some of the systems while 

for others it will be inadequate. A group of such 

systems is represented by the transfer function:-

_ 0.5 e-2s(l+0.5s2)
k ; l+s+0.56s2+a3sJ

where a^ is different for each system. The system is 

open-loop stable if a^ is between 0 and 0.56. Five of 

these systems have been examined, with a^ = 0.05, 0,165, 

0.3, 0.4, 0.5. For two of these, (a^ = 0.165 and

= 0.4) the model is adequate while for the other 

three it is inadequate. (see fig.3.13).

Each of these systems has been simulated with 

each of three controllers obtained from the simple model 

to minimise different error criteria, as has the model

(B25)
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itself. Table 4.1 gives error index values for these 

simulations.

Min. ISE 
Controller

Min. IAE 
Controller

Min. ITAE 
Controller

Kc 1.2254 0.9053 0.7959

Ti 3.4122 2.6925 2.3777

Model 
a2=0.05

I T
25.008
25.005

E VALUE
25.708
25.705

S
24.965
24.962

a2=0.165 25.005 25.705 24.962

a3=0.3 25.006 25.705 24.962

a3=0.4 25.133 25.748 25.024

a3=0.5 26.189 27.552 27.203

Model 
a3=0.05

I A
2.784
2.784

E VALUE
2.974
2.974

5
2.987
2.987

a3=0.165 2.784 2.974 2.987

a3=0.3 2.784 2.976 2.987

a3=°.4 2.787 2.976 2.989

a3=0.5 2.808 3.012 3.035

Model 
a3=0.05

I S
0.6377
0.6111

E VALUE,
0.7272
0.7072

5
0.7569
0.7384

a3=0.165 0.6119 0.7083 0.7396

a3-o.3 0.6187 0.7132 0.7440

a3=°.4 0.6250 0.7177 0.7481

a3=°,5 0.6420 0.7295 0.7588

= 0.5 e~~2s( 1 + 0.5s2 ) 

l+s+0.56sz + a3sJ Pade 
Model G(s)

n _ -2.0619s
0.5 e___________
1+0.9381s

For a3 = 0.05, 0.3 and 0.5 the model is inadequate;

for a3 = 0.165, 0.4 it is adequate (see fig.3.13).

Table 4.1 Error index values over 75 secs for closed loop
=s

simulation of third order systems and their reduced model

using controller parameters based on that model, with set

Point = 0, following a unit disturbance.
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Frequency plots for a3 = 0.3 and a3 = 0.4 are 

shown in figs.4.12 and 4.13 respectively while figs.4.14, 

4.15 and 4.16 show plots of the closed loop time response 

for a3 = 0.3, 0.4 and 0.5 respectively, with the controller 

calculated to minimise ISE.

If we look at the ITAE and IAE values in 

table 4.1 we see that for a3 = 0.5, 0.165 and 0.3, they 

are either identical or nearly identical to those obtained 

with the model, yet for two of these systems the model has 

been found to be inadequate. This would seem to support 

the premise, put forward in the previous sub-section that 

our criterion for adequacy is too strict.

It may be noticed that the controller parameters 

calculated to minimise the IAE values do not, in fact, give 

the lowest IAE values in these examples and that in the 

results presented these are often given by the ISE

controller. This is due to the fact that the expressions

used for calculating the controller parameters have been

obtained by curve fitting using experimental results and

consequently, for a particular simple model inaccuracies 

are possible.

As has been suggested in section 4.2, in the 

absence of an adequate Pade model, a model evaluated at the

critical point might be used. The set of results presented 

in table 4.2 serves to compare controllers obtained from 

such models with controllers obtained from an adequate Pade

model. The system considered is

_ 0.5 e~3s(1+2.5s+l.5s2+0.5s3)

" 1+3.5s+3s2+2s3+0.5su ............(B26)
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ITAE Values IAE Values ISE Values
Pade Model T-1.7321 t =2.2680 / /

Min.ISE Cont.
Kc=2.0149 ) ( P 319.91 10.522 2.345
Ti=4.2965 ) ( M 18.26 2.135 0.464

Min.IAE Cont.
Kc=1.5087 ) ( P 34.82 3.101 0.842
T.=3.4469 ) ( M 18.33 2.288 0.528

Min.ITAE Cont.
Kc=1.3202 ) ( P 22.82 2.595 0.798
Ti=3.0868 ) ( M 18.16 2.341 0.563

•Critical Point Model vj =1 . lw T=0.3760 f=2.8347
Min.ISE Cont.
Kc=0.3753 ) ( P

c c

175.92 8.836 2.240
Ti=3.4005 ) ( M 173.22 8.829 2.233

Min.IAE Cont.
Kc=0.2685 ) ( P 188.59 9.363 2.462
T.=2.5795 ) ( M 185.85 9.352 2.455

Min.ITAE Cont.
Kc=0.2387 ) ( P 175.66 9.049 2.413
Ti=2.2034 > ( M 172.92 9.041 2.406

Critical Point Model Gr =0.9w T=0.4595 t'=3.4646
Min.ISE Cont.
Kc=0.3753 ) ( P

c c

236.75 10.479 2.652
Ti=4.1562 ) ( M 236.16 10.473 2.723

Min.IAE Cont.
Kc=0.2685 ) ( P 253.26 11.094 2.919
Ti«3.1527 ) ( M 252.60 11.087 2.993

Min.ITAE Cont.
Kc=0.2387 ) ( P 238.65 10.768 2.860
T.=2.6930 ) ( M 238.01 10.711 2.935

P - Plant G(s)

A

M - Model G(s)

Table 42 Error index values over 75 secs for closed loop 
simulation of fourth order system and 3 reduced models 
using controller parameters based on these models, with 
set point =0, following a unit disturbance.
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Reduced models of the system have been obtained 

using the Pade technique anJ by fitting through the critical 

point with w = l.lw^ and w =0.9w . Three sets of 

controller parameters were then calculated from each of 

these models. The system was subsequently simulated with 

each of these models, resulting in the error index values 

given in table 4.2. Also given are values obtained by 

simulating each reduced model with the controllers derived 

from it. From these results, it can be seen that, with 

the exception of the controller designed to minimise ISE 

obtained from the Pade model, all the controllers, when 

simulated with the higher order system give error index 

values similar to those given by the model from which they 

are designed. This indicates that these controllers give 

results with the system which are as good as those given 

with the simple model. It should be noted that the best 

control is obtained using the ITAE and IAE controllers 

based on the Pade model. The results obtained from 

controllers based on the critical point model are, 

however, almost as good and are, in most cases, better 

than the results obtained from the Pade ISE controller.

Fitting a model through the critical point 

establishes the ratio ~ and hence the controller gain, 

as obtained using expressions such as those given in 

section 4.1 and used here. The exact values of t and 

T and, consequently, the integral time of the controller, 

depends on the frequency at which the reduced model 
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frequency plot passes through the critical point. This 

could be set directly as, for example, a ratio of wc 

(the frequency at which the system frequency response 

passes through this point) or alternatively it could be
A 

set so that t and T satisfy some other function as 

suggested in section 3.13. A series of simulations has 
A 

been carried out to discover the effect of varying w on 

the final closed loop system.

The system used for this is given by:-

_ 0.5 e~2s( 1 + 2.5s+l. 5s2*+0.5s3 )
} 1+3.5s+4.5s2+2s3+0.5su * ‘ ’

This system gives a Pade model, G(s) =0.5 e_2s 

which does not produce a usable controller. Various 

models were obtained by fitting through the critical 

point and controllers based on these models were then 

used to simulate the closed loop system. ITAE values 

were obtained for these simulations and these, together 

with the relevant parameters, are given in table 4.3. 

Plots of the time response of these closed loop systems 

are given in figs. 4.17 to 4.26.

The best time response was obtained using the 
A 

controller based on the model calculated with w = 1.3w 

but this is just a feature of this particular example. 

As mentioned earlier, when the critical point does not 

occur on the first crossing of the negative real axis 

but on a later one, uj c is relatively high. Under these
A

circumstances m will be much lower than w . For thisc c

(B27)
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reason, models 2, 3, 4 and 5 are suggested in section

3.13. In this case, models 4 and 5 occur at or = 1.08w ’ c c

and u) = 1.16u) , relatively close to the optimum value.

Other examples have also shown these models

to give promising results, and it is suggested that they 

be further investigated.
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A
“c

“c
T

A

T Ti Plant 
ITAE

Model 
ITAE

0.5 2.5964 3.8647 5.0487 56.33 58.52

0.6 2.1637 3.2206 4.2073 40.46 40.97

0.7 1.8546 2.7605 3.6062 30.13 30.23

0.8 1.6228 2.4155 3.1554 23.18 23.22

0.9 1.4425 2.1471 2.8048 18.35 18.37

1.0 1.2982 1.9324 2.5244 14.87 14.89

1.1 1.1802 1.7567 2.2949 12.29 12.29

1.2 1.0818 1.6103 2.1036 10.33 10.34

1.3 0.9986 1.4864 1.9418 9.28 8.80

1.4 0.9273 1.3803 1.8031 9.47 7.57

1.5 0.8655 1.2882 1.6829 10.16 6.62

_ 0.5 e~2s(1+2.5s+l.5s2+0.5s3)
< ; 1 + 3.5s+4.5s2+2s3 +0.5s **

A -3sPade Model G(s) = 0.5 e does not give usable 

controller parameters.

K for all controllers obtained from critical 

point models is 1.1648.

Method 4 (section 13.3) gives T=1.2056 t =1.7944
U)
^=1.°78 
a C

Method 5 (section 13.3) gives T=1.180 t =1.6650
%
—=1.1630)

Table 4.3 Comparison of various critical point models 

using ITAE values obtained over 60 secs ( following a 

unit disturbance with set point =0 ) from closed loop 

simulations of a fourth order system and these critical 

point models, using controller parameters, calculated to 

minimise ITAE values, from these models.
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4.4 CONTROLLERS BASED ON SIMPLE MODELS OBTAINED FROM

NON LINEAR MACROSCOPIC MODELS - OPEN LOOP FREQUENCY

RESPONSE

To investigate further the usefulness of 

employing simple models to design controllers for higher 

order systems, a non-linear macroscopic model of a
(FuU cieJriAls this g ive/n. EZJL/$ (hi ))

vaporiser was examined. Two different versions of the
A

model were considered:-

1. taking the model as a freon vaporiser

2. taking it as a chlorine vaporiser.

To obtain a reduced model from a non-linear

one, the model must first be linearised about a suitable 

operating point. In the case of the freon vaporiser, 

the output value from the macroscopic model is the 

pressure in the vaporiser in terms of inches of water 

above atmospheric pressure. An output value of 10” was 

chosen (from a range 0"-20") as a suitable operating 

point and the model was linearised about this value.

For comparison the model was also linearised about 9" 

and 11". The linearised models are as follows:-

_ 5.62735(1-8.87928s)
1 ' 1+57.2162s+9.27025s2+0.03522sj

10"
_ 5.8159(1-8.9230s)

k } 1+56.8780s+9.6342s2+0.0392s3

G(s) 5.9789(1-8.9667s)
1+56.5219s+9.9617s2+0.0431s5

............ (B28)

............ (B29)

............ (B30)
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Five models have been obtained from each of 

these system equations, using the Pade technique and 

the four critical point methods described in sec. 3.13. 

The parameters resulting from the 10" linearised model 

are given below in table 4.4 together with the load 

change controller parameters obtained from them.

Normalisation of the 10" linearised model 

gives:-

G(s) = 5.8159(1-0.1569s)

l+s+0.00298s*+0.0000002s3

*
where s = 56.8780s

a3
As is so small, the normalised system can

be considered as a second order system. Referring to 

fig.3.4 we see that this system will give an inadequate 

Pade model. This is confirmed by the frequency response 

plot of the linearised model and its reduced models, 

fig.4.27.

Open loop frequency plots have also been 

produced for the linearised third order model with the 

ITAE and ISE controllers obtained from the Pade model 

and the critical point models (see figs. 4.28 and 4.29). 

From these it can be seen that all the critical point 

reduced models, each with its own controller, give the 

same open loop frequency plot although any point on the 

plot occurs at a different frequency for the various 

models.
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Table 4.4 Reduced models and resulting controller 

parameters obtained from a third order linearised model of 

a freon vapouriser (linearised about an output value 

of 10)

Model 1 Model 2 Model 3 Model 4 Model 5

T 56.002 56.002 35.676 51.622 53.333
A
T 9.799 15.382 9.799 14.179 14.649

( Ke 1.1960 0.758 0.7758 0.7758 0.7758
ISE (T°

31.3907 43.8045 27.9054 40.3185 41.7170

IAE ( Kc 0.9436 0.6049 0.6049 0.6049 0.6049
(Ti 26.8588 36.9435 23.5347 34.0542 35.1830

ITAE ( Kc 0.8109 0.5220 0.5220 0.5220 0.5220
(Ti 25.3963 34.5091 21.9839 31.8102 32.8646
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FIGURE 4.2B

OPEN LOOP FREQUENCY PLOTS OF A LINEARISED THIRD ORDER MODEL OF A

FREON VAPORISER LINEARISED ABOUT AN OUTPUT VALUE OF 10, WITH MIN

ITAE CONTROLLERS OBTAINED FROM REDUCED MODELS,THE REDUCED MODEL

PLOTS ALSO BEING SHOWN



FIGURE A.29

OPEN LOOP FREQUENCY PLOTS OF A LINEARISED THIRD ORDER MODEL OF A

FREON VAPORISER LINEARISED ABOUT AN OUTPUT VALUE OF 10 WITH MIN ISE

LOAD CHANGE CONTROLLERS OBTAINED FROM REDUCED MODELS, THE REDUCED

MODEL PLOTS ALSO BEING SHOWN



From fig.4.28 it can be seen that the linearised 

model with the min ISE controller obtained from the Pade 

model is still stable, but far less so than the Pade model 

plus controller itself. Although this controller would 

give stable control for the linear third order system 

from which the reduced models were obtained, this will 

not necessarily be so with the original non-linear system, 

especially if a disturbance moves the system some distance 

from the operating point about which the linearisation 

was carried out.

Fig.4.29 shows that the ITAE controller obtained 

from the Pade model gives an unstable closed loop system 

(see also section 4.5). Note also that all the controllers 

obtained from the critical point models give closed loop 

systems with the linearised model, which are more stable 

than the closed loop models obtained with the corresponding 

critical point model itself.

For the chlorine version of the vaporiser model

the output value is the pressure in the vaporiser in terms 

of inches of water above atmospheric pressure divided by 

20, giving again a range 0 to 20. Linearisation gives:- 

about 9.5

G(s)
0.6128(1-4 3909s)____________

1+28.0316s+31.1875s"+0.08465s3 ....XB32)

and about 10

G(s)
0.4800(1-4.6912s)

1+24.4092s+27.5291s " + 0.0918s ; ....XB33)

Normalisation of these two models gives:-

9,5 0.6128(1-0.1566s)
G(s)= —- -------------------- i----------------------------—

l + s+0.03969s2+ 0.0000038s 3
where

. . . . XB34)

and 10.0

G(s)
0.4800(1-0.1922s)

l+s+0.0462s >0.0000063s 3
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Again referring to fig.3.4 it can be seen that 

Pade models obtained from these two models will be 

inadequate.

As in the case of the Freon Vaporiser, five 

reduced models have been obtained from each linearised 

model. Fig.4.30 shows the frequency plots for the 

linearised model at an output of 10, and its reduced 

models. Parameters of these models and the load 

change controllers obtained from them are given in 

table 4.5 below. Also given are the set point change 

controller parameters.

The open loop frequency response of these 

models with the min. ITAE load change controllers are 

plotted in fig.4.31. These plots are similar to those 

for the freon vaporiser. Again it can be seen that 

the inadequate Pade model gives the least suitable 

controller, as the plot of this controller with the 

linearised model passes very close to the (-1,0) 

point. The linearised system equations given earlier 

show the relatively rapid change in gain in the vicinity 

of the operating point and it can be assumed from these 

results that the controller will give unstable control.

Similar open loop frequency plots are shown 

in fig.4.32 using the min. IAE set point change 

controllers. In this case although the controller 

obtained from the Pade model gives a response which 

passes further to the left that the other plots, it
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FIGURE 4 32

OPEN LOOP FREQUENCY PLOTS OF A LINEARISED THIRD ORDER MODEL OF A

CHLORINE VAPORISER LINEARISED ABOUT AN OUTPUT VALUE OF 10, WITH MIN.

IAE SET POINT CHANGE CONTROLLERS OBTAINED FROM REDUCED MODELS, THE

REDUCED MODEL PLOTS ALSO BEING SHOWN



Table 4.5 Reduced models and resulting controller 

parameters obtained from a third order linearised model of 

a chlorine vaporiser (linearised about an output value 

of 10).

Model 1 Model 2 Model 3 Model 4 Model 5

T 22.7759 22.7759 18.2874 21.6225 22.0397
A 
T 6.3245 7.8768 6.3245 7.4779 7.6222

Load Change Controiler Par ameters

ISE (Kc 9.3025 7.5351 7.5351 7.5351 7.5351
(Ti 17.9595 21.1222 16.9596 20.0525 20.4394

IAE (Kc 7.2519 5.8407 5.8407 5.8407 5.8407
(Ti 15.1413 17.6830 14.1982 16.7875 17.1114

ITAE (Kc 6.2581 6.2581 5.0502 5.0502 5.0502
(T. 14.1394 16.4154 ' 13.1804 15.5841 15.8848

cJet Point Change Controller Parameter s

ISE (Kc 4.6457 3.8975 3.8975 3.8975 3.8975
(Ti 20.4990 20.0081 16.0650 18.9949 19.3614

IAE (Kc 4.7596 3.9400 3.9400 3.9400 3.9400
(Ti 20.5246 20.1253 16.1592 19.1061 19.4748

ITAE (Kc 3.9482 3.2291 3.2291 3.2291 3.2291
(Ti 21.1708 20.9518 16.8228 19.8908 20.2745
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crosses the negative real axis at about -0.47 and will 

give quite adequate control (see section 4.5).

From these frequency plots we can see that 

although inadequate models can sometimes give adequate 

controllers they can also give inadequate ones. 

Controllers which have relatively higher gains are 

more likely to give rise to instability and consequently, 

in considering the adequacy of a model, it might be 

worth considering the type of controller that is to be 

designed. It is worth noting that all controllers 

obtained using the critical point models give open loop 

frequency response with the linearised system.which 

are more stable than those given with the model from 

which they have been designed.
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4.5 CONTROLLERS BASED ON SIMPLE MODELS OBTAINED FROM 

NON-LINEAR MACROSCOPIC MODELS - CLOSED LOOP 

SIMULATION

In section 4.4 simple models were obtained 

from non-linear macroscopic models and controller 

parameters were then calculated from these models. 

Having examined the open loop frequency response of the 

linearised models with these controllers, we can now 

proceed to simulate closed loop systems using these 

controllers with the non-linear macroscopic model. 

Table 4.6 gives ISE and ITAE values for simulations of 

the freon vaporiser model with various controllers 

over 300 seconds, following three different disturbances. 

All the values obtained using the minimum ISE 

controller calculated from the Pade model are extremely 

high, since, with this controller, the system enters 

a limit cycle following all three disturbances. This 

result is, however, to be expected as shown by the open 

loop frequency plot in fig.4.29. Since the disturbances 

can be seen to affect the system in different ways it 

would appear that for optimum control the source of the 

disturbance should be taken into account. Despite 

this the results obtained using controllers based on 

adequate models seem to be satisfactory.

Results from these simulations are also shown 

in figs.4.33 to 4.41. Figs.4.33 to 4.35 give responses 

to a down stream pressure change from 101825 to 101325 N/m2.
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Model K T.1 Disturbance Disturbance Disturbance
No. c 1 2 3

I S E VALUES

r i 1.1960 31.3907 6131.2 6818.6 951.5
<1) 

r—< 3 0.7758 27.9054 209.3 6.5 110.6
W rH 
w o < 4 99 40.3785 122.3 7.8 89.6

• p 
c c 5 99 41.7170 118.5 8.0 88.5

•H 0
2 O . 2 99 42.8045 114.3 8.3 87.0

r T A E VALUES
’ 1 1.1960 31.3907 164818.0 167978.0 12030.7

0) 3 0.7758 27.9054 1443.1 666.2 1044.0
W r-! <

CO 0 4 99 40.3785 940.8 1330.9 1396.0

.1
 tr 5 It 41.7170 935.5 1414.5 1433.4

M
in

C
on 2 99 43.8045 948.4 1549.2 1490.9

’ 1 0.8109 25.3963 3469.1 531.7 1200.6

0.5220 15.0000 2135.3 978.4 4923.6

E er 99 21.0000 1073.4 883.7 2727.1
«£ r-(
E-t r“1 3 99 21.9839 996.8 898.6 2594.4

in
. I

 
nt

rc 4 It 31.8102 605.1 1397.3 2143.8

M C
o 5 It 32.8646 578.8 1486.3 2146.8

2 If 34.5091 532.5 1630.4 2164.7
99 35.0000 517.4 1674.4 2173.1

k 99 40.0000 334.1 2156.6 2327.7

Disturbance 1 - change 
101825

of downstream pressure from
to 101325 N/m2.

Disturbance 2 - change
125325

of 
to

input pressure 
120525 N/m!-.

from

Disturbance 3 - change of 
from 364

vaporiser wall 
to 359 K.

temperature

Comparison of various controllers using ISE and 

ITAE values over 300 sec following 3 different disturbances 

applied to a closed loop simulation of the macroscopic model 

of a freon vaporiser. Controller parameters are mostly 

based on simple models obtained from the 10” linearised model.
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Fig.4.33 shows the closed loop system output using 

controllers calculated to minimise the ISE criterion 

from simple models obtained using methods 3 and 4 at 

the critical point. Fig.4.34 shows results using 

min. ITAE controllers based on the Pade model (1), and 

on the critical point model 4. For comparison fig.4.35 

gives the response using controllers having the gain 

obtained using the ITAE calculations with the critical 

point models and the integral time constant set in turn 

to a relatively small and relatively large value.

From these output plots it can be seen that the last 

mentioned controller gives the best results for this 

disturbance. This is also evident from table 4.6.

Figs.4.36 to 4.38 show responses of these 

same six closed loop systems to the second disturbance 

which is a change of input pressure from 125325 to 

120525 N/m2. This disturbance has a much smaller 

effect on the output and adequate control is achieved 

with all six controllers, although even in the best 

case the settling time is longer than that following 

the first disturbance. For this disturbance the best 

control is obtained using the min. ITAE controller 

calculated from the Pade model. This is again 

confirmed by results in table 4.6.

Figs.4.39 to 4.41 give corresponding results 

for these same six closed loop systems following the 

third and final disturbance. In this case the vaporiser
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w all  t e m p er at ur e w a s  c h a n g e d fr o m 3 6 4  t o 3 5 9  K. T hi s  

di st ur b a n c e  h a d  a  gr e at er  eff e ct  o n t h e o ut p ut  t h a n 

t h e s e c o n d a n d  it i s m or e  diffi c ult  t o d et er mi n e  w hi c h  

c o ntr oll er  gi v e s  t h e b e st  r e s p o n s e. T h e  l o w e st I T A E 

v al u e i s gi v e n  u si n g  t h e c o ntr oll er  c al c ul at e d  u si n g  

t h e mi n.I S E  f or m ul a e o n  t h e m o d el  p ar a m et er s  o bt ai n e d  

u si n g  m et h o d  3. T hi s  c o ntr oll er  gi v e s  t h e s h ort e st  

s ettli n g  ti m e alt h o u g h  it gi v e s  a r el ati v el y l ar g e 

m a xi m u m  err or. O n  t h e ot h er  h a n d, t h e s m o ot h e st  

r e s p o n s e a p p e ar s  t o b e  gi v e n  b y  t h e l a st c o ntr oll er  

( K =  0. 5 2 2 0,  T.  = 4 0. 0)  w hi c h  gi v e s  t h e s m all e st  m a xi m u m  

err or  of  t h e si x  c o ntr oll er s,  w hil e  gi vi n g  a r el ati v el y 

l o n g s ettli n g  ti m e. A  g o o d  I S E v al u e  w o ul d  pr o b a bl y  

b e  gi v e n  b ut  n o  s u c h v al u e  w a s  c al c ul at e d.

Fr o m  t h e s e pl ot s  a n d  t h e err or  crit eri o n  

v al u e s li st e d i n t a bl e 4. 6,  t h e c o ntr oll er s  w hi c h  ar e  

s h o w n t o b e  s uit a bl e  b y  t h e fr e q u e n c y pl ot s  i n t h e 

pr e vi o u s  s u b s e cti o n  ar e  c o nfir m e d  t o b e  s o. All  t h e 

c o ntr oll er s  o bt ai n e d  fr o m t h e criti c al  p oi nt  m o d el s  

gi v e  st a bl e  c o ntr ol, a s  d o e s  t h e I T A E c o ntr oll er

✓  
o bt ai n e d  fr o m t h e i n a d e q u at e P a d e  m o d el.

Si mil ar  cl o s e d l o o p si m ul ati o n s  h a v e  al s o

b e e n  c arri e d  o ut  o n  t h e m a cr o s c o pi c  m o d el  of  t h e 

c hl ori n e  v a p ori s er. F or  t h e s e si m ul ati o n s  c o ntr oll er  

p ar a m et er s  c al c ul at e d  u si n g  t h e mi n.I S E  f or m ul a e wit h  

m o d el s  1 t o 4 w er e  u s e d. (I S E a n d I T A E v al u e s ar e  

gi v e n  i n t a bl e 4. 7), A g ai n  t hr e e diff er e nt

2 3 5



Model K T.1 Disturbance Disturbance Disturbance
No. c 1 2 3

I . S.E. VALUES
1 9.0379 17.7264 82.45 1.19 41.18

3 7.3729 16.7718 1.11 1.26 28.13

4 H 19.8815 0.92 1.34 25.44

2 fl 20.7345 0.89 1.37 24.94
1/r.A.E. VALUES

1 9.0379 17.7264 22451.5 123.5 5396.7

3 7.3729 16.7718 277.9 143.5 684.0

4 If 19.8815 194.9 202.2 555.6

2 ft 20.7345 182.0 220.1 550.5

Disturbance 1 - Change of downstream pressure from

276,000 to 246,000 N/m2.

Disturbance 2 - Change of input pressure from

760,000 to 680,000 N/m2.

Disturbance 3 - Change of vaporiser wall temperature

from 388 to 368 K.

Note that disturbance 1 produces a limit cycle in the 

closed loop system containing the controller based on 

the Pade model(1).

Table 4.7 Comparison of min. ISE controllers obtained

using simple models calculated from a linearised third 

order model of a chlorine vaporiser, (linearised about an 

output value of 9.5), the comparison using ISE and ITAE values 

over 300 secs following 3 different disturbances.
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di st ur b a n c e s  w er e  u s e d. T h e  o ut p ut  fr o m t w o of  t h e s e 

cl o s e d l o o p s y st e m s (i n cl u di n g c o ntr oll er s  1 a n d  4) i s 

pl ott e d  i n fi g s.4. 4 2  t o 4. 4 4. Fi g. 4. 4 2  s h o w s t h e 

r e s p o n s e t o a d o w n str e a m  pr e s s ur e  c h a n g e fr o m 2 7 6, 0 0 0  

t o 2 4 6, 0 0 0  N/ m 2 . T hi s  di st ur b a n c e  c a u s e s t h e s y st e m,

✓  
i n cl u di n g t h e c o ntr oll er  b a s e d o n  t h e i n a d e q u at e P a d e  

m o d el,  t o e nt er  a li mit c y cl e. T h e  ot h er  c o ntr oll er  

( b a s e d o n  m o d el  4)  gi v e s  a d e q u at e, if sli g htl y  u n d er -

d a m p e d  c o ntr ol. Err or  v al u e s i n t a bl e 4. 7  s h o w t h at 

f or t hi s di st ur b a n c e  m o d el  2 gi v e s  b e st  r e s ult s.

Fi g. 4. 4 3  s h o w s t h e r e s p o n s e of  t h e s e t w o

cl o s e d l o o p s y st e m s  t o a c h a n g e i n i n p ut pr e s s ur e  fr o m 

7 6 0, 0 0 0  t o 6 8 0, 0 0 0  N/ M 2 . A s  i n t h e c a s e of  t h e fr e o n 

v a p ori s er, a c h a n g e i n t h e i n p ut pr e s s ur e  d o e s  n ot  

gr e atl y  aff e ct  t h e v a p ori s er  o ut p ut  a n d  c o n s e q u e ntl y  

all  f o ur c o ntr oll er s  gi v e  q uit e  a d e q u at e  r e s ult s. Err or  

v al u e s i n di c at e t h at m o d el  1 gi v e s  b e st  r e s ult s.

Fi g. 4. 4 4  s h o w s t h e r e s p o n s e t o a c h a n g e i n

t h e v a p ori s er  w all  t e m p er at ur e fr o m 3 8 8  t o 3 6 8  K.

A s  s h o w n, t h e c o ntr oll er  b a s e d  o n  t h e P a d e  

m o d el  gi v e s  st a bl e  c o ntr ol, b ut  it i s v er y  u n d er d a m p e d  

a n d  c a n n ot b e  c o n si d er e d a d e q u at e. M o d el  4 gi v e s  m u c h  

b ett er  r e s ult s alt h o u g h  t h e o ut p ut  fr o m t h e cl o s e d l o o p 

s y st e m b a s e d  o n t hi s m o d el  i s still  u n d er d a m p e d.

O v er all,  f or t hi s di st ur b a n c e,  m o d el  2 g a v e  t h e b e st  

r e s ult s.

F urt h er  cl o s e d l o o p si m ul ati o n s  w er e  c arri e d  

o ut  u si n g  c o ntr oll er s  c al c ul at e d  u si n g  t h e I A E f or m ul a e

2 3 7
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Table 4.8 Comparison of min. IAE controllers based 

on simple models obtained from a linearised third 

order model of a chlorine vaporiser, linearised about 

an output value of 10, the comparison using ISE and 

ITAE values over 300 secs, following 3 different set 

point changes for closed loop simulation of the 

macroscopic model.

Model
No.

Kc Ti

Set Point Changes

10-8 10-6 10-12 \

I JS E VALUES

1 4.7596 20.5246 62.75 365.88 60.45

2 3.9400 20.1253 60.60 360.37 64.33

4 ti 19.1061 61.62 364.80 63.35

3 ii 16.1592 65.57 378.71 60.70

I rr A E VA LUES

1 4.7596 20.5246 930.73 6436.19 2911.41

2 3.9400 20.1253 818.68 6069.73 3854.92

4 it 19.1061 837.00 6135.63 3516.25

3 it 16.1592 883.62 6340.67 2530.77
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for set point change controllers from each of the four 

models previously evaluated. Each of these closed loop 

systems was simulated with three different set point 

changes: 10 to 8, 10 to 6 and 10 to 12. Error values

from these sinulations are given in table 4,8 and 

responses to these three set point changes of two of 

the systems are shown in figs.4.45 to 4.47. The 

results show that similar responses are given by all 

four systems. Tt will be noticed, however, that for 

a set point change from 10->12 the response is over-

damped and due to the non-linearity of the macroscopic 

model, the final value at 300 sec. is only approximately 

11.97.

It would therefore appear that for complete 

optimum control the non-linearity of the macroscopic 

model should be catered for in the design of the 

controller.
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5. CONCLUSIONS

As can be seen from section 2 of this thesis 

much work has been carried out in recent years on model 

reduction techniques. This work has been very varied 

and many different reduction methods have been put 

forward. Authors have viewed this subject from diverse 

angles. These works have been studied and a 

comprehensive review of those published up to 1979 is 

contained in section 2. First order models have, 

however, scarcely been mentioned in these works despite 

the fact that they are very suitable for controller 

design as can be seen in section 4. So as to obtain 

the best possible controller it is desirable to design 

it using a simple model which fits the system as 

closely as possible. For this reason the Pade 

reduction technique was initially chosen for the 

calculation of the first order plus time delay model, 

as at lower frequencies it gives a very good fit in 

terms of frequency response. It has been shown that 

not all first order plus time delay models can be used 

to design usable controllers, as models which are "too” 

stable will produce controllers which will result in 

unstable closed loop systems. For this reason a 

criterion is required for determining which models are 

suitable for controller design. Such a criterion has 

been suggested in section 3 and various systems up to 

and including fifth order systems, reduced using the 

Pade technique have been tested for adequacy according 
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to this criterion. From these tests adequacy boundaries 

have been obtained and these are given in section 3.

For systems that are covered by these charts the adequacy 

of their Pade model can be checked by simply normalising 

the system transfer function and referring to the 

appropriate diagram. If the model is shown to be 

adequate no further investigation is required and the 

reduced model can safely be used for controller design.

For higher order systems the adequacy of the Pade reduced 

model can be ascertained by using the computer program 

MALG, listed in appendix 2, which has been written for 

this purpose and which was used to determine the adequacy 

boundaries. From the charts, it can be seen that there 

are large areas of inadequacy. For these systems 

alternative reduction techniques have been suggested 

which guarantee adequacy according to our criterion.

These however give a less accurate fit at lower 

frequencies. Results in section 4 suggest that the 

adequacy criterion used might be too strict, as models 

considered to be inadequate according to this criterion 

have given very suitable controllers. It is 

consequently suggested that the adaptation of this 

criterion be attempted so as to make the adequacy 

boundary correspond more closely with the boundary
s

between satisfactory and unsatifactory controllers 

obtained from the reduced models.
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It can thus be concluded that, in this thesis, 
it has been established that suitable controllers can be 
designed using reduced models for single-input single-output 
systems, and that the Pade reduction technique can be used 
for this purpose with certain systems. For other systems 
alternative methods give acceptable results.

It has also been shown that the certain adequacy 
of a Pade model can easily be established.
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APPENDIX I

HSIA'S REDUCTION TECHNIQUE AS APPLIED TO SYSTEMS

CONTAINING PURE TIME DELAY

If we write ^g^'^ as m' and consider a function

m(s) = y(s)e-TS then  (Cl)

m' = (y,-Ty)e“TS  (C2)

m" = (y”-2Ty'+T2y)e_TS  (C3)

m’" = (y’n -3Ty” + 3T2y'-T3y)e“TS  (C4)

m'v = (y,v -4Ty'”+6t 2y'-4t  3y'+Tuy)e_TS  (C5)

etc

Substituting into eqn. 239 and taking e TS/
S vJ 

= r<m') 

s=o *—

as 1 gives

M2
2-m°m "J

s=o

= ^(y'-Ty)2-y(y"-2Ty'+T2y)^

= Jjy’)2-yy""|
(C6)

similarly substituting into eqn.240

M4
^3(m”)2-4m»m”' +m°mN

s=o

£j3( y"-2ty'+T2y) 2-4( y ’-ry) (y’” -3Ty"+3T2y’-t 3y)

+y(y'v -4Ty’" +6T2y”-4T3y'+Tuy)J

s=o

03( y ") 2-4y' y"' +yy,v

s=o (C7)

1 
" 12

1 
“ 12

similarly

m6 ^10(m’n )2-15m"m'v +6m’mv-m°m

£10(y”» )2-15y"y*v +6y'yv-y°y

s=o

1
360

s=o

1
360

s=o (C8)
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As can be seen, the e”TS term in m(s) completely 

disappears in the terms Mg, , Mg etc.

This result is self evident if we consider the 

basis of this reduction technique. As can be seen from 

equation 233, the technique is based on the minimisation 

of the error in magnitude between the original system and 

the reduced model without considering the phase difference 

and of course a pure time delay will only affect the phase 

difference. In the second half of the equation we find

— T i w 
the term M(jw).M(-jw). If as previously (M(jw)=y(jw)e 

then

M(jw).M(-jw) = y(jw)e"T^w y(-jw)e+T^w

= y(jw)y(-jw) .... (C9)
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APPENDIX II

COMPUTER PROGRAM LISTING

A listing follows of program MALG which was

used to determine the adequacy boundaries for Pade 

reduction

A model of order N1 given by

GAIN(1+B(1)S+B(2)S2+...
1+A(1)S+A(2)S2+A(3)S3+ A(N1)S«1

is reduced to

1+T(1)S

All the parameters of the full model are input, 

apart from A(2) and A(NX), where NX is also an input 

value between 3 and N1 inclusive. A2MAX and A2MIN are 

calculated according to the stability and realisability 

criteria. Simple models are then evaluated for values 

of A(2) between A2MIN and A2MAX giving G(jfl ). ANXMIN 

and ANXMAX are then calculated from the stability criteria 

and full models are evaluated for the same values of A(2) 

and values of A(NX) between ANXMIN and ANXMAX giving

G(juj) for each model. From these calculations an 

adequacy boundary is obtained in the A(2), A(NX) plane.

The program also evaluates roots of the characteristic 

equation and gives boundaries between real and imaginary 

and positive and negative roots.
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’ “ 0 0 2

^ 0 0 0 5

I F_,  LAJ M A Xjj. g  0 1

1 0 0 F D R M A T( 8 H  A 3 M A X  =, F 1 0 < 5, B H A 3 DI F  =, £ 1 0. 5)

I F L N  .. E Q. 4 « J L N D 4 _ N X ^  E Q. 3) G O  T O 5 4
I 3 M A X o A 3  * A  ( 2) ’■ ■
G O  T O  5 5  _ _ _ _

5 4  A 3  Y «  ( A ( 2)/ 2. 0 1 1 H » £ « A £ 4 J ^ ~-.- ------ j
T F J A 3 Y . L T. 0. 0)  A 3 Y  = 0. 0  

= = A 3  8 S Q R T( A 3 Y)

I

_ _I 3 MI N.  8 . ^ A C a V ^ g- A Sl Zt A Xll w A S DI L L J L J ^. 
I 3 M A X.* ( A C 2)/ 2. 0* A 3)/( A(l)* A 3 DI Fl- > 2. 0

5 5. 0 0  2 3  . 1 3 . = 1 3 HI N,  1 3 M A X _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
A  ( N X) = ( 1 3- 1)* ~-

C A L L  A N A L  C N 1 ,Ml, J, A, B, V, Z, W 2, w 1  , £ AI N, T O RI, A 3 DI F)_ _ _
2 3  C O N TI N U E
2 4  W RI T E  ( 2, 1 2) (V( K, J) , K  =  1 , 6),X Z X L, J) , L »1 » 4)

J 6 c II _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1 5 F O R M A T ( 1H 0, 4 X, 4 H A ( 2),9 X, 4 h G ( 1 1,2 0 X, 1 9 H A D E Q U A C Y B O U N D A RI E S, 1 2 X, 3 1 H  
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- 2 B X, 1 0 2 HI N A D Q T/ A D Q T A D Q T/I N A D Q T I N A D Q T/ A D Q T A D Q T/I N A D Q T S O M Et V  
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D O  3 5  . I = 4, 6

D O.  7 0 J S  . J 5, J 6
A C 2 O  = V C 1, J O
D O  3 4 K « U < _ _ — .
U( K 0  S  V( 3, J 0

^. P R O G R A M M A L G-:-.  7 6/ 7 6  0 P T  =  2  T R A C E. ’

1 2 F O R M A T ( 1 0 E 1 3. 6 O
3 1 C O N TI N U E

KI  = 0
1 5  = J 5- 1
1 6 = J 6

V(I » J)  = V(I, J 0  - A 3 DI F

6 0 C O N TI N U E _ _ _ _ _ _ _

_ J _ F _  (Z  c  I7  J ~f T e Q.  " 9 9 7 0  0 G O  T 0 ~ 6 1

2 ^ d i j o i z ci, J 0 - o a u ------- g = =
_ _ _ K  1 e KI  + 1

( J-1. 0  0.  1 5

I F ( K1 . G T, 0 . AN D , K 2 J 6 0 1 6 c jfi

_  _ W RI T E _ J[ 2, m _ _ _ A. 3 DI F
1 4 F O R M A T _ Cl H 0, 1 0 X lf8 H A 3 Q _I F
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P R O G R A M  M A L G  7 6/ 7 6 0 P T  =  2 T R A C E U M R C C  F T N  4. 2. 1 7 8  0

C A L L , A 3 DI H

A L L O C A TI O N

S U B R O U T I N E  C RI T  I Nj T 0  R ^ V J)

U M R C C. F T N  4, 2. 1 7 8  f 0

3 6  C O N TI N U E

ZI J _r  Z H U)
J) 0 3 7 _ _  1 3 = 1/ 1 2
A C N X)  =  ZI J  * (I 3- 1 5* A 3 D J F  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

C L A L A N  A L _(  N 1  j J J Lr J Lr  A  f B ^ Vj Z , W  G  AI N , T  0  R 1  / A  3  DI F )
3 7  C O N TI N U E _
3 8  C O N TI N U E

D O  2 9 1 =  1, 4

I F ( U(I ) . E Q. -9 9. 0 J
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P = 0
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G DI F 1  ■  G DI F
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9 CONTINUE
GX_J» GDIF/GC3^<LL____________
IF (6(3) ,LE, 0,5 .AND. GDIF ,NE. 0.0) GTX 5 ABS(0,10/GDIF)
IF(G(3) ,GT, 0.5 .ANO. GX ,NE. 0,0) GTX =ABS(0.45/GX) - 0.125 ”
IF (PDIF.NE. 0,0) PX c 15.0/PDIF________

.^*WR1TE^7.) K»J,A(2),A(NX),W,G,Wl,PDIF,GDIF,P4

LfMKEILETN 4,2 ,17 8

-270.0) GO TO 3
P4 = 1.1

KX a 0

1 -175.0) GO TO A

M
M

3 P4 = P2/PDIF

IF _( ABS ( A (2) 0^820)_. L E, 0.001 ,AND, ABS C A (NX)- 0,8060), L T, 0.000 1 )

0. IE-2 .ANO._P3 .GT

IF CP2 .LE. 30,0 .AND. P2..GE, -90.0)GO TQ 3 
Pl^LT L W.0 -AND^ePl

I EL IE__ ..G ta_ -18 0.0 )_J»J3—IQ—

W. 8..-W f W1 ___ ____ _^===

IF (J ,LE. 15) GO TO 1
GO TO 13

_____ IF(A0S(P4) ..Gt.JSIX. ) PA = . SIGN (GTX/p4 )
CABSCP4) .GT. ABSCPXn P4 = SIGN(PX*?4) 

IF (P4 ,LT, -1,0) P4 = -1.0

XX
X

IF (W .LT, 1.0E-10) w = 1.0E-10 ________
IF (W .EQ, U0E-_£0 ,AND, W1 .LT. -10.0) GO TO 13 _

CALL FREQ(W,M,N,A,B,G,GAIN,TOR)

PDIF = Pi-P ^2
IF(P1 .LT, -180.0'.AND.P.GT, -90.0.AND.W1.GT.0.0)PDIF=PDIF+360,0 

16 GO « G(3)-G3 _ ___
GDIF = AB'S(GD)
IF (GDIF . LE . 0,000'1) GOiF = 0.0001
GW s GD/W1 -=~-L_LI
i£_ <.G* i •E Q • M } g-° J° 9

IF ( (GW/Gw 1) TGTT.AND. GW ,6T, IY"«"T“
IF (CGW/GW1) .GT, 1.5\AND;LG^-5Ti2-W)0 IY = 3
IF ( A B S (GDI F/GD IF 1) ,GT. 10~,0 .AND, 'GDIF .GT, J

A.

: , z j t itz" # * *»ruww 1 r j r « _
2 CONTINUE^ ______________________________ ;_________

IF CG(1) LLT^(-2.0*GAIN)) GDTD1.3LL- LL;W^-
IF (ABS(Wl) .LE. 0.1E-2 .AND. P3 ,GT, 5.0) GO TO 8 
IF (ABSfWl) .LE-, 0.1E-6) GO TO 13

„7_fORMAU 2J4,11 £.11*4 )________________________________
IF (K .GT..59) GO TO 13

I

II
F
F
F
F

_______________________________________________ ____
IF CPJ)JF^LE*_g*l^ANi*^^ PDIF1__.GU__0.0)_GO TO 6
IF(P1•GT.-90.0.AND.P.LT*-180.0.AND.P.GT.-270.0.AND.(G3fG(3))*LT« 
0.2) GO TO 13 p

g.AND. Pl .GT. -270/0) G0T03 *
L
W
L
M
M
M

M
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Wl*0.5

GO TO 10

W = W4W1

85 "

GO TO 1
12 G C1)_»_!

G(2) = 0,0
RETURN

18 GC1) |
13 IF CN ,LE,2) RETURN

IJ ’ IJ _________
I F_ J Gd) .L T« V C2fJJ))_RETUR N______________
IF (Gtl) ,GT» G1 ,ANP^IJ2.GE^V^TBRN^
IF (CGX-GC1)) ,LT. 0.001 .AND, IJ ,GE. 4) RETURN
Cl « G<1)
jCjfjb

'5UBRqutin E„CBII 76/76 I* ACE UMRCC FTN 4.2.178
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j F.. (G S 2 , EQ, g.g)RETUR_N

UMRCC FTN 4.2.178 0

x.

^...SUBROUTINE FREQ

SUBROUTINE FREQ (Wf*,N,A,B,G,GAIN,TDR)_ _ \

THIS SUBROUTINE EVALUATES THE FREQUENCY RESPONSE OF A GIVEN 
SYSTEM AT A GIVEN FREQUENCY

76/76 0PT=2 TRACE

t

_ G(l)_= REAU1GSJ___
GC2T;«AIMAG(GS1^
G(3) a CABS (QS)____

^i^AT_______________
___ IF_(G(4) .GE, gjg.)_G_(4) » G(42>360.e 
.. RETURN

END

_DI MENS I ON A (1 0) , B (10) »G_(4) 
COMPLEX S,GS1,GS2,GS

_S = CMPLX(0,grW) 
GS1 * GAIN * CEXPC-TOR*S)

J*S2 = CMPLX (1,0 f  0,0J___
IF (M .EQ, 0T-GO TO 2
DO l_ls _lrM__________

1 GS2 = GS2 + Bf I).»S*«IsgZ
_G81 = GS1 * GS2______

GS2 = CMPLXtl.gf^ffF^
2 DO 3__ I s j»N_____________
3 GS2 = GS2 * A (I)*S**I

ubro utine _roo 7_$ZZ6

DIMENS10N AClg)>D(NhX (10) >Y(10)rF(IB)

A (

IF_fIFAIL
RET.UR
END

UMRCC. FTN 4.2, 178 C
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0

S O  T O 1 1

A 3  = A C N X)
R E T U R N
E N D

D- Q-l ____ I_ ® 1 /_ N 1

7 6/ 7 6 _ _ _ _ 0 P T = 2 T R A C E

k

S U B R O U TI N E  A N A L

- 9 9. 0 J _ _ J G £ _I Q _ 7

S U B R O U TI N E  A N A L  C N 1 ,M 1 ,J ,A, B ,V, Z, W 2 ,w 1, G AI N ,T O R  1, A 3 DI F)  
DI M E N SI O N  A C N 1 ), B( N 1),V C 6, 1 0 0), Z( 4, 1 0 0) ,g ( 4)

_ C O M P L E Xi R _t Wl

C O M M O N ^ N X _ _ _ _ _

U M R C C  F T N  4. 2. 1 7 8

_I F_ C A C N X 1_. L T_._ L.  0 E-_ Z 1_ A  C N  ) Q_  =  _ 1. 0 £  - 7  
c all  r o ot z  C N U A.- N n a. a ai ^ M R- ^ Llt oJ

_, _I F  C R E A L C R CI )) „•G E.  0. 0) K = _ K ± 1 _  _
_.I F  ( A B S C AI M A G C R Wl) . G T. 0. 0}  K 2 K 2 + 1  
1 C O N TI N U E   _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

E a u N_ x ) ^ m- ^j ^ sij g ^ L ^
_ _I F_ CJI.  N E ^_J 1_ G O__I  Q_  2 ______________

I F ( A C N X) . G T. ( A 3 > A 3 DI F* 1. U; G O  J O 2
I F ( A( N X) . L T. A 3)  G O  T O _ 2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _
I F _ ( K . E Q. 0 . A N Q. KI  . G T. J 0)  _ - 2.( 1, J) s A C N X)
l F. X K ^ G T ^ „ 0 _f cj A. N D*. Ki _ _a £ G L...ll _ = J Z C 2j _ J) « A C N X)
I E _( K 3 . E Q. 0 . A N D. K 2  . 5 E. 2). J) = A( N X)

..I F. J K 3 .G E.  _ 2_. AJ U L ^J C 2_ ^ 1.._ 0 ) ____ 1I_ 4 ^J 1_ A  C N X )__
2 K  1 - ^ 1 6-

I £ _ C A( N X) . L E. 0. 0 0 0 1)  G 0 _I 0 _ L L _ _ _

I E C A C N X). L T.  A 3)  G O  J O 1 1

, _ J E _ _ C G O L ^ J L Ki J) . A N D. G L ^ G T.  V C 2,  J 1 _. O R. G C 1 J _. L T  
j = a & A N D _i _ Gl . L T. V C 2 U)).. G D. _ T Qrll W*

I F C G C 1) . G E. V C 2, J 1  . A N D. G 1  . L E
I F ( V C 4. J) . N E. - 9 9. 0 J G Q. J C L 5- 

_ _ _ V( 4,  J) _v , AI N X)
G O  T O 1 1

6 _I F C V C 3. J)  . N E. 
= Mtf 3, J)  « A C N X)
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