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1 Introduction

This is the Supplementary Material for the paper appearing in FULL REFERENCE TO PA-
PER WHEN AVAILABLE.

In Sections 2–5 of this document, we derive the model equations used in the main text; this
represents an expansion of the presentation of the model equations appearing in Appendix A of
the paper to a full mathematical derivation from first principles. In Section 2, we present the
mathematical model equations in full. We then simplify the equations for the flow (Section 3)
and albumin transport (Section 4) accounting for the separation of lengthscales between the
thickness of the choroid (and that of the suprachoroidal space, SCS, if present) and the arc
length of the model from anterior to posterior. We summarize the resulting governing equations
in Section 5.

In Section 6, we derive the analogous equations using a more general condition at the inter-
face of the choroidal tissue and the SCS. Finally, in Section 7, we derive a suitable expression
for the thickness of the choroid, as a function of distance from the anterior.

2 Problem formulation

We develop a mathematical model of interstitial fluid (IF) flow and albumin transport in the
tissue of the choroid and the SCS in steady state (see Fig. 1 in the main text and Fig. S1). We
model the sclera as a rigid spherical shell of uniform thickness, hS , that is permeable to IF and
albumin, while we model the choroidal tissue as a perfused layer of tissue of variable thickness,
hC. Between the choroid and sclera we allow for a suprachoroidal space (SCS) whose thickness,
hP , can change in response to changes in the IF pressure. The inner surface of the choroid is
bounded by the retinal pigment epithelium (RPE), across which IF is pumped at a constant
rate. We assume that capillaries in the choriocapillaris (CC) are homogeneously distributed
throughout the choroidal tissue, and fluid and albumin can exchange locally between the CC
and interstitium of the choroidal tissue.

In this model we account for the outer retina (denoted with subscript R), choroid (subscript
C), SCS (subscript P), sclera (subscript S) and orbit (subscript O). Throughout the choroid,
we assume that the capillaries of the CC are homogeneously distributed (subscript CC).

The inner surface of the sclera is assumed perfectly spherical with radius R0, and the centre
of this sphere is used as the origin of a spherical coordinate system (r, θ, ϕ); r denotes the radial
distance from the centre, θ is the polar angle, with θ = 0 pointing to the posterior pole, and
ϕ is the azimuthal angle. We restrict attention to axisymmetric flow (ignoring variations with
respect to the azimuthal angle, ϕ, as well as flows in this direction). The polar angle spans
from the posterior pole (θ = 0) to the anterior limit of the choroid at the iris root (θ = θ0). In
this coordinate system, the choroid occupies R0 − hP − hC < r < R0 − hP , the SCS occupies
R0 − hP < r < R0 and the sclera occupies R0 < r < R0 + hS , where hC(θ), hP(θ), hS denote
the thickness of the choroid, SCS and sclera respectively.

We now outline the governing equations for our model, starting with those governing IF
flow (Section 2.1), followed by those for albumin concentration (Section 2.2).

2.1 IF flow

Within the choroidal tissue and the SCS, we model IF flow as Newtonian and incompressible.
We also incorporate the transport of albumin (as will be discussed in Section 2.2).

Overall, two mechanisms drive this flow of IF. Firstly, a pressure difference between the
inlet of the model (close to the intraocular pressure, IOP) and the orbit (denoted pO) drives
flow posteriorly in the choroid–SCS, as well as outflow from the choroidal tissue across the
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Figure S1: Schematic diagram of the eye highlighting the set up and parameters used in the
mathematical model. The anterior of the eye is at the top of the diagram and the model has
rotational symmetry about the vertical axis θ = 0. The inset zooms into the region we focus
on in the model, which is the outer part of the posterior eye.

sclera. Secondly, mass transport between the choriocapillaris and the interstitium results in
local sources and sinks of IF, which drive IF flow along the choroidal tissue. To model fluid
and solute exchange with the vessels of the choroid, we focus particularly on the fenestrated
CC. We assume that the CC is uniformly distributed throughout the choroidal tissue, and that
it has uniform properties within the layer. We now discuss the mathematical model within the
choroidal tissue and the SCS in turn.

To model IF flow within the choroid, we assume Darcy flow modeling flow in a porous
medium with Darcy velocity vector uC = (uCr, uCθ, uCϕ) (volume flow rate per unit area) in
spherical coordinates

∇ · uC = qC, uC = −kC
µ
∇pC, (1)

where kC is the Darcy permeability of the choroidal tissue, µ is the dynamic viscosity of the
IF and pC(θ) is the IF pressure in the choroid. Within the choroidal tissue, the volume of fluid
entering from the CC per unit time per unit volume of tissue, qC, depends on the difference in
albumin concentration between the blood and choroidal tissue, cCC−cC. According to Starling’s
law, these flows have both pressure-driven and osmotically-driven components due to albumin
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concentrations:

qC =LCC (pCC − pC − σCCRgT (cCC − cC)) , (2)

where LCC is the hydraulic conductance of the vessels, σCC is the corresponding reflection coef-
ficient, Rg is the ideal gas constant and T is the absolute temperature.

The purpose of this study is in part to assess the role of the SCS in the dynamics of the
unconventional flow. Hence, in what follows we either assume the SCS is absent (which we
term Case (i)), or that it is present and can be modelled as either a porous medium (which we
term Case (ii)) or an open space filled with IF (which we term Case (iii)); note that we mainly
assume Case (iii) in this paper.

In Case (i), where the SCS is absent (and hP = 0), the sclera and choroid share a common
interface, while in Cases (ii) and (iii), the thickness of the SCS lying between the choroid and
sclera depends on the local difference between the SCS pressure and that in the surroundings.

Since the sclera is assumed rigid, expansion or collapse of the SCS requires deformation of
the internal compartments of the eye. As a first step, we assume that the choroid is entirely
rigid and that the retina and vitreous can be lumped into one deformable component with
pressure pR. The thickness of the SCS is then assumed to be determined by the pressure
difference between the pressure in the SCS, pP , and the pressure in the retina, pR.

In this study we assume a constitutive law in the form

pP − pR = λP

(
hP

hP,nat

−
(

hP

hP,nat

)−n
)
, (3)

where n ≥ 0 is an exponent, hP,nat(θ) is the (nonuniform) thickness that the SCS would adopt if
pP and pR are equal and λP is an elastic stiffness (which could be made a function of θ to reflect
increased tethering towards the inlet). For n = 0 this law mimics a linearly elastic potential
space. However, this assumption alone would mean that the height of the SCS could reach zero
for some finite negative value of the transmural pressure difference. It is mathematically very
challenging to have a collapsible channel that can transiently become completely occluded –
the height of the space approaching zero is a singularity in the governing equations – and there
is no clear way to allow the space to reopen again some time later. To prevent complete closure
of the space we modify the linear constitutive law to include a penalty term with exponent
−n, where n > 0; see plot in Figure S2. As the value of n decreases, the influence of this
penalty term becomes increasingly localised to small channel widths; we use n = 1. With this
model, the SCS can still become very close to zero height as the transmural pressure decreases,
and by choosing a (small) threshold value one could still delineate between open and closed
regions. Note that similar penalty terms are used in preventing complete collapse of veins in
cardiovascular models.1,2,3,4 As a further simplification, we assume that the tissue pressure in
the retinal compartment pR is fixed as the SCS thickness hP changes.

In Case (ii), IF flow within the choroid is modelled as an incompressible Darcy flow with
velocity vector uP = (uCr, uCθ, uCϕ) (flow rate per unit area) in spherical coordinates:

∇ · uP = 0, uP = −kP
µ
∇pP . (4)

In Case (iii), IF flow within the choroid is modelled as an incompressible Stokes flow with
velocity vector uP = (uCr, uCθ, uCϕ) in spherical coordinates

∇ · uP = 0, ∇pP = µ∇2uP . (5)

We now specify boundary conditions between each layer. We will use n̂ij to indicate the
unit normal vector pointing from region j to region i.
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Figure S2: Sketch of the relationship between SCS pressure and thickness given by Equation (3)
for the cases n = 0.5 (green), n = 1 (blue), n = 2 (red). The asymptotes at the left (dashed)
and right (solid) of the graphs are shown in black.

Firstly, at the RPE (boundary between choroid and the retina, r = R0 − hP − hC), we
assume that IF flows at a prescribed rate

n̂R,C · uC|r=R0−hP−hC
= −qR, (6)

where qR is the volume flow rate per unit surface area. The inward pointing unit normal n̂R,C
is given by

n̂R,C = −(R0 − hP − hC)êr + (h′
P + h′

C)êθ√
(R0 − hP − hC)2 + (h′

P + h′
C)

2
. (7)

Secondly, at the interface between the choroid and SCS, r = R0 − hP , we impose continuity of
normal stress. We assume the normal stresses of both the IF in the SCS and the fluid–porous
medium complex are dominated by the IF pressures (which can be verifed a posteriori), giving
the balance

pC|r=R0−hP
= pP |r=R0−hP

. (8)

Additionally, we require continuity of fluid flux normal to the surface

n̂C,P · uC|r=R0−hP
= n̂C,P · uP |r=R0−hP

, (9)

where the inward pointing normal n̂C,P is given by

n̂C,P = −(R0 − hP)êr + h′
P êθ√

(R0 − hP)2 + h
′2
P
. (10)

At the scleral interface, in Case (i) we apply continuity of flux with the choroidal tissue so
that

n̂C,S · uC|r=R0
= −qS ; (11)

in Cases (ii) and (iii) we apply continuity of flux with the SCS so that

n̂P,S · uP |r=R0
= −qS . (12)

The IF flow across the sclera is modelled by the Starling equation:

qS =
kS
µhS

(pP |r=R0 − pO − σSRgT (cP |r=R0 − cS)) , (13)
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where kS is the hydraulic conductivity of the sclera and σS is the reflection coefficient of albumin
(equivalently, this is modeled as unidirectional Darcy flow in the scleral tissue).

When we model the SCS as open (Case (iii)), we require additional boundary conditions.
We denote the tangential vector t̂ij between region i and j directed from the pole towards the
iris root. The equations for no slip at the two boundaries of the SCS are given by

t̂P,S · uP
∣∣
r=R0

= 0, t̂C,P · uP
∣∣
r=R0−hP

= 0, (14)

where the tangent vectors are given by

t̂P,S = êθ, t̂C,P =
−h′

P êr + (R0 − hP)êθ√
(R0 − hP)2 + h

′2
P

. (15)

We also consider the more general Beavers–Joseph condition at these two interfaces in Section 6
Finally, we set boundary conditions on all layers at the pole and iris root. We assume the

tissue between the anterior chamber and iris root has resistance Ricm, leading to the boundary
condition

IOP− p|θ=θ0 = Ricm Q|θ=θ0
, (16)

where Q is the volume flow rate through the tissue. Symmetry at the posterior pole θ = 0
requires two conditions

uC · êθ|θ=0 = uP · êθ|θ=0 = 0. (17)

2.2 Albumin transport

We now determine the governing equations for the albumin that is dissolved in the IF. These
equations complement those found in the previous section for IF flow. Assuming a dilute
solution, we model transport in the choroidal tissue and SCS using steady diffusion-convection
equations in the form

∇ · jC = sC, jC = uCcC −DC∇cC , (18)

∇ · jP = 0, jP = uPcP −DP∇cP , (19)

where cI is albumin concentration, jI is flux in region I, and DI is the diffusion coefficient.
For simplicity, we assume the diffusion coefficients are equal in the choroidal tissue and SCS,
so that DC = DP = D (although the analysis can be made to work if these are not equal). The
choroidal system is supplied by a continuous source of IF from the choroidal vasculature, given
by sC moles of albumin entering the choroidal tissues per unit volume.

On the outer boundary of the SCS (r = R0, or in Case (i) this is the outer boundary of the
choroid), we assume a flux sS of albumin passes through the sclera in the form

n̂P,S · jP |r=R0
= sS . (20)

We also assume that the RPE is impermeable to albumin, so that

n̂R,C · jC|r=R0−hP−hC
= 0. (21)

At the interface between the choroid and SCS (r = R0 − hP), we assume continuity of concen-
tration and normal flux, so that

cC|r=R0−hP
= cP |r=R0−hP

, n̂C,P · jC|r=R0−hP
= n̂C,P · jP |r=R0−hP

. (22)
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Albumin flux across the blood vessel wall is modeled using the Kedem–Katchalsky equation
(scaled per unit volume) for solute transport:5,6,7

sCC = βCC(cCC − cC) +
cC + cCC

2
(1− σCC)qCC, (23)

where βCC is the permeation coefficient of the CC per unit volume multiplied by RgT (also
referred to as albumin conductance), and σCC is the reflection coefficient of the CC walls. The
IF flux qCC is given by (2). In this equation, the first term accounts for transcytosis plus
any other diffusive processes present, while the second term accounts for the advective flow of
albumin (expected to be directed into the CC).

Albumin flux across the sclera is modelled using the Patlak equation:8

sS = qS(1− σS)
cO − cP |r=R0e

PeS

1− ePeS
, (24)

with PeS = qS(1 − σS)/βS . Here βS is the permeation coefficient per unit area of the sclera
multiplied by RgT , which we term the albumin conductance, σS is the reflection coefficient
and cO is the orbital concentration. Moreover, qS is the IF velocity across the sclera, given
by Equation (13). We note that for small PeS , the Patlak equation reduces to the Kedem–
Katchalsky equation, and the expression for the flux would be similar to that for the CC.

Finally, we set boundary conditions at the edges of all the layers at the pole and iris root.
Under the assumption that albumin in the ciliary body region is well mixed, we prescribe
boundary conditions on the concentration at the iris root in the form

∂cC
∂θ

∣∣∣∣
θ=θ0

=
∂cP
∂θ

∣∣∣∣
θ=θ0

= 0. (25)

Finally, we impose symmetry conditions at the posterior pole for continuity of the diffusive flux
of albumin in the form:

∂cC
∂θ

∣∣∣∣
θ=0

=
∂cP
∂θ

∣∣∣∣
θ=0

= 0. (26)

3 Simplification of IF flow equations for small thickness

of the domain

In order to reduce the complexity of the governing equations systematically, we exploit the
observation that the choroidal and SCS domains are both long compared to their typical width,
assuming that ϵC = hC0/R0 ≪ 1, ϵP = hP0/R0 ≪ 1, where hC0 and hP0 are representative values
of hC and hP , respectively.

In Section 3.1 we apply an appropriate scaling to the geometry of the choroidal tissue,
and find the leading-order solution; this analysis spans all three cases for modelling the SCS.
In Sections 3.2–3.4, we close the problem; in Section 3.2, we consider Case (i) and apply the
boundary condition at the inner scleral surface; in Sections 4.3 and 4.4, we consider Cases (ii)
and (iii), respectively, and solve for the flow in the SCS as well as applying the boundary
conditions at the inner scleral surface.

3.1 Flow in the choroidal tissue

In accordance with the assumpation ϵC ≪ 1, mass conservation in the choroidal tissue dictates
that flow velocities in the radial direction must be much less than velocities in the angular
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direction. Therefore, the continuity equation in the choroidal tissue (1a) suggests that uCr
scales as ϵCUC, where UC is the azimuthal velocity scale for uCθ and ϵC is small.

We therefore non-dimensionalise the flow variables in the choroidal tissue according to

r = R0 − hC0r
∗, hC = hC0h

∗
C, pC = P0 p

∗
C, (27)

uCr = ϵCUCu
∗
Cr, uCθ = UCu

∗
Cθ, qR = ϵCUCq

∗
R, qC = q0q

∗
C, (28)

where UC = Q0/(2πR0hC0) and Q0 is 10% of the total aqueous flow, Q0 = 0.25 µl/min, with
10% being taken as a nominal scale for the physiological unconventional flow. Balancing the
θ-component of the Darcy equation (1b) suggests the scale P0 = µR0UC/kC = µQ0/(2πhC0kC),
while balancing the continuity equation (1a) suggests q0 = UC/R0 = Q0/(2πR

2
0hC0).

In Section 2.1, to obtain Eq. (8), we assumed the normal stresses were dominated by IF
pressure and we will now check the scaling at the choroid–SCS interface. Within the choroidal
tissue the IF stress is given by

σC = −pCI+ µ(∇v +∇vT ), (29)

where v is the IF velocity vector and I is the identity matrix. Since v has magnitude of order
UC/ϕ, where ϕ is the porosity of the choroidal tissue, the deviatoric stress has a magnitude of
order µUC/(ϕhC0) = kC P0/(ϕR0hC0). For the parameter values given in Table 1 in the main
paper, this is approximately 4 ·10−9P0/ϕ, which is much smaller than P0 as long as ϕ ≫ 4 ·10−9

(which we assume to be the case). This means the normal stress is dominated by the IF pressure
over the whole surface, as already assumed.

Using the non-dimensionalisation, the governing equations (1) and boundary conditions (6)
become, respectively,

− 1

(1− ϵCr∗)2
∂

∂r∗
(1− ϵCr

∗)2u∗
Cr +

1

(1− ϵCr∗) sin θ

∂

∂θ
u∗
Cθ sin θ = q∗C, (30)

u∗
Cr =

1

ϵ2C

∂p∗C
∂r∗

, u∗
Cθ = − 1

1− ϵCr∗
∂p∗C
∂θ

, (31)

(1− ϵC(h
∗
P + h∗

C))u
∗
Cr + (h

′∗
P + h

′∗
C )u

∗
Cθ√

(1− ϵC(h∗
P + h∗

C))
2 + ϵ2C(h

′∗
P + h

′∗
C )

2

∣∣∣∣∣
r∗=h∗

P+h∗
C

= q∗R. (32)

Eq. (31) implies that r∗-dependent variations of p∗C occur at O(ϵ2C). Neglecting corrections of
O(ϵC), we solve (30), using (31) and (32) to obtain

u∗
Cr =

1

sin θ

∂

∂θ

(
(h∗

P + h∗
C − r∗)

∂p∗C
∂θ

sin θ

)
+ q∗C(h

∗
P + h∗

C − r∗) + q∗R, (33)

where we have assumed that cC is independent of r to leading order (to be shown a posteriori).
Redimensionalising, we derive

uCr =
kC

µR2
0 sin θ

∂

∂θ

(
(r + hP + hC −R0)

∂pC
∂θ

sin θ

)
+ qC(r + hP + hC −R0) + qR, (34)

and

uCθ = − kC
µR0

∂pC
∂θ

. (35)

The remainder of the analysis of the flow depends on the particular case considered; Case (i)
is considered in Section 3.2, Case (ii) in Section 3.3 and Case (iii) in Section 3.4.
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3.2 Flow in Case (i)

We apply the boundary condition at the interface with the sclera (13) to derive the mass
conservation equation

kC
µR2

0 sin θ

d

dθ

(
hC

dp

dθ
sin θ

)
+ hCqC + qR = qS , (36)

where we have set pC = p. The total flow is a function of position around the eye given by

Q =

∫ R0

R0−hC

2πr sin θ uCθ dr = −2πkChC

µ
sin θ

dp

dθ
, (37)

with the unconventional flow given by Q(θ0); rearranging Eq. (36) and Eq. (37) gives

dp

dθ
=− µQ

2πkChC sin θ
, (38)

dQ

dθ
=2πR2

0 sin θ (hCqC + qR − qS) , (39)

with conditions Eq. (16) and Eq. (17) giving Q = 0 at θ = 0 and IOP− p = RicmQ at θ = θ0.

3.3 Analysis of flow in Case (ii)

In Cases (ii) and (iii), we additionally need to analyse the IF flow in the SCS. In Case (ii),
this is also treated as a porous medium, and we analyse this in Section 3.3.1 and apply the
boundary condition in Section 3.3.2.

3.3.1 Flow in SCS in Case (ii)

Scaling the flow variables in the choroidal tissue as in Section 3.1, we impose additional scalings
on the flow in the SCS such that

hP = hC0h
∗
P , pP = P0 p

∗
P ,

uPr = ϵCUCu
∗
Pr, uPθ = UCu

∗
Pθ, qS = ϵCUCq

∗
S . (40)

In this case the governing equations (4) and boundary conditions (13) become,

− 1

(1− ϵCr∗)2
∂

∂r∗
(1− ϵCr

∗)2u∗
Pr +

1

(1− ϵCr∗) sin θ

∂

∂θ
u∗
Pθ sin θ = 0, (41)

u∗
Pr =

k∗
P
ϵ2C

∂p∗P
∂r∗

, u∗
Pθ = − k∗

P
1− ϵCr∗

∂p∗P
∂θ

, (42)

u∗
Pr|r∗=0 = q∗S , (43)

where k∗
P = kP/kC. To leading order in ϵC, we derive

u∗
Pr = −k∗

Pr
∗

sin θ

∂

∂θ

(
∂p∗P
∂θ

sin θ

)
+ q∗S , (44)

and, redimensionalising, we obtain

uPr =
(r −R0)kP
µR2

0 sin θ

∂

∂θ

(
∂pP
∂θ

sin θ

)
+ qS , uPθ = − kP

µR0

∂pP
∂θ

. (45)
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3.3.2 Matching conditions for flow in Case (ii)

The interstitial flud flows in the SCS (governed by (45)) and in the choroidal tissue (governed
by (34)) must be matched across the interface. The interface conditions are given by Eqs. (8)
and (9). Eq. (8) implies pC = pP = p and so at leading order (9) becomes

uCr +
1

R0

h′
PuCθ

∣∣∣∣
r=R0−hP

= uPr +
1

R0

h′
PuPθ

∣∣∣∣
r=R0−hP

, (46)

which gives
1

µR2
0 sin θ

d

dθ

(
(kPhP + kChC)

dp

dθ
sin θ

)
+ hCqC + qR − qS = 0, (47)

which is to be solved together with conditions (16), (17).
The total flow is a function of the distance around the eye

Q =

∫ R0−hP

R0−hP−hC

2πr sin θ uCθ dr +

∫ R0

R0−hP

2πr sin θ uPθ dr = −2π

µ
(kChC + kPhP)

dp

dθ
sin θ, (48)

with the unconventional flow given by Q(θ0), and hence

dp

dθ
=− µQ

2π sin θ(kChC + kPhP)
, (49)

dQ

dθ
=2πR2

0 sin θ (hCqC + qR − qS) , (50)

with boundary conditions (16), (17) giving Q = 0 at θ = 0 and IOP− p = RicmQ at θ = θ0.

3.4 Analysis of flow in Case (iii)

In Case (ii), the SCS is open, and we analyse the flow in Section 3.4.1 and apply the boundary
condition in Section 3.4.2.

3.4.1 Flow in SCS in Case (iii)

We impose alternative scalings on the variables in the SCS (different from those in the choroid)
in the form

r = R0 − hP0r
†, hP = hP0h

†
P , pP = P0p

†
P , (51)

uPr = ϵPUPu
†
Pr, uPθ = UPu

†
Pθ, qS = ϵPUPq

†
S ; (52)

note that the scale for the pressure in the SCS, P0, is the same as that in the choroidal tissue,
as these two regions share an interface where the pressures are equal (and the primary pressure
drop in these regions is expected to be parallel to this interface). Balancing the viscous drag
in the θ-component of Eq. (5b) in Case (ii) yields UP = ϵ2PR0P0/µ = h2

P0UC/kC.
In a similar way to Section 3.1, we verify our earlier assumption that the normal stresses

are dominated by IF pressure at the choroid–SCS interface (see Section 2.1, Eq. (8)). In this
case, the IF stress is given by σP = −pPI + µ(∇uP +∇uT

P), so that the deviatoric component
of the normal stress at the interface is of order µϵPUP/hP0 = ϵ2PP0, meaning that the normal
stress is also dominated by the IF pressure, consistent with our earlier assumption.

Using the non-dimensionalisation, we can now simplify our model equations. In Case (iii),
the governing equations (5) and boundary conditions (13) and (14) become, respectively,

− 1

(1− ϵPr†)2
∂

∂r†

(
(1− ϵPr

†)2u†
Pr

)
+

1

(1− ϵPr†) sin θ

∂

∂θ

(
u†
Pθ sin θ

)
= 0, (53)
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∂p†P
∂r†

=− ϵ2P
(1− ϵPr†)2

∂

∂r†

(
(1− ϵPr

†)2
∂u†

Pr

∂r†

)
− ϵ4P

(1− ϵPr†)2
∂

∂θ

(
sin θ

∂u†
Pr

∂θ

)

+
2ϵ4P

(1− ϵPr†)2
u†
Pr +

2ϵ3P
(1− ϵPr†)2 sin θ

∂

∂θ

(
u†
Pθ sin θ

)
, (54)

∂p†P
∂θ

=
1

1− ϵPr†

(
∂

∂r†

(
(1− ϵPr

†)2
∂u†

Pθ

∂r†

)
+

ϵ2P
sin θ

∂

∂θ

(
sin θ

∂u†
Pθ

∂θ

)
− ϵ2Pu

†
Pθ

sin2 θ
+ 2ϵ3P

∂u†
Pr

∂θ

)
,

(55)

u†
Pr

∣∣∣
r†=0

= q†S , u†
Pθ

∣∣∣
r†=0

= 0,
(
−ϵ2Ph

′†
Pu

†
Pr + (1− ϵPh

†
P)u

†
Pθ

)∣∣∣
r†=h†

P

= 0. (56)

Neglecting terms of O(ϵP), p
†
P is independent of r† and

u†
Pθ =− 1

2
r†(h†

P − r†)
∂p†P
∂θ

, (57)

u†
Pr =− r†2

12 sin θ

∂

∂θ

(
(3h†

P − 2r†)
∂p†P
∂θ

sin θ

)
+ q†S . (58)

Re-dimensionalising,

uPθ =− 1

2µR0

(R0 − r)(r − (R0 − hP))
∂pP
∂θ

, (59)

uPr =− (R0 − r)2

6µR2
0 sin θ

∂

∂θ

((
r −

(
R0 −

3

2
hP

))
∂pP
∂θ

sin θ

)
+ qS . (60)

3.4.2 Matching conditions for flow in Case (iii)

Matching flow across the interface between the SCS and the choroid, the interface conditions
(8) and (9) give pC = pP = p and Eq. (46). Eq. (46) implies

1

µR2
0 sin θ

d

dθ

((
kChC

dp

dθ
+

1

12
h3
P
dp

dθ

)
sin θ

)
+ hCqC + qR − qS = 0, (61)

where we have used Eq. (8) to set pC = pP = p. In non-dimensional terms, we have that

1

sin θ

d

dθ

((
Ch∗

C
dp∗

dθ
+

1

12
h†3
P
dp†

dθ

)
sin θ

)
+ Ch∗

Cq
∗
C + Cq∗R − q†S = 0, (62)

where C = hC0kC/h
3
P0 (note that two different sets of nondimensional scales appear in Eq. (62)).

We require C to be O(1); in fact, for C to lie between 0.1 and 10, we need hP0 to be between
around 0.7 and 3 µm. Equation (62) is to be solved together with conditions (16), (17).

The total flow as a function of theta is given by

Q =

∫ R0−hP

R0−hP−hC

2πr sin θ uCθ dr +

∫ R0

R0−hP

2πr sin θ uPθ dr = −2π sin θ

µ

(
kChC

dp

dθ
+

1

12
h3
P
dp

dθ

)
,

(63)

with the unconventional flow given by Q(θ0), and hence

dp

dθ
=− µQ

2π sin θ(kChC + h3
P/12)

, (64)

dQ

dθ
=2πR2

0 sin θ (hCqC + qR − qS) , (65)

with conditions (16), (17) giving Q = 0 at θ = 0 and IOP− p = RicmQ at θ = θ0.
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4 Simplification of albumin transport equations for small

thickness of the domain

In a similar manner to Section 3, we derive reduced equations for the albumin transport in the
choroidal tissue and SCS. As for IF flow, in Section 4.1, we solve for the leading-order transport
in the choroidal tissue, and, in Sections 4.2–4.4, we close the problem in Cases (i)–(iii) by solving
in the SCS, as appropriate, and applying the boundary condition at the sclera.

4.1 Analysis of transport in the choroidal tissue

We scale albumin concentration with c0 = cCC, the concentration in CC plasma. We therefore
set

cC = c0c
∗
C, jCr = ϵCUCc0j

∗
Cr, jCθ = UCc0j

∗
Cθ, sC = s0s

∗
C, (66)

and balancing Eq. (18a) gives s0 = UCc0/R0.
Eqs. (18) and boundary conditions (21b) become, respectively,

− 1

(1− ϵCr∗)2
∂

∂r∗
(1− ϵCr

∗)2j∗Cr +
1

(1− ϵCr∗) sin θ

∂

∂θ
j∗Cθ sin θ = s∗C, (67)

j∗Cr =
1

ϵ2C

(
c∗C
∂p∗C
∂r∗

+
1

PeC

∂c∗C
∂r∗

)
, j∗Cθ = − 1

1− ϵCr∗

(
c∗C
∂p∗C
∂θ

+
1

PeC

∂c∗C
∂θ

)
, (68)(

(1− ϵC(h
∗
P + h∗

C))j
∗
Cr + (h

′∗
P + h

′∗
C )j

∗
Cθ

)∣∣∣
r∗=h∗

P+h∗
C

= 0, (69)

where PeC = R0UC/D is the Péclet number of the choroidal tissue. Eq. (68a) implies that
r∗-dependent variations of c∗C occurs at O(ϵ2CPeC). We check the reduced Péclet number:

ϵ2CPeC =
Q0hC0

2πR2
0D

≈ (0.25× 10−9/60)× (2.66 · 10−4)

2π × 0.01152 × (61 · 10−12)
= 0.02 (1 s.f.), (70)

which is small, confirming that cC is independent of r to leading order. Neglecting corrections
of O(ϵC), we solve (67), using (68b) and (69) to get

j∗Cr =
1

sin θ

∂

∂θ

(
(h∗

P + h∗
C − r∗)

(
c∗C
∂p∗C
∂θ

+
1

PeC

∂c∗C
∂θ

)
sin θ

)
+ s∗C(h

∗
P + h∗

C − r∗). (71)

Redimensionalising,

jCr =
1

R2
0 sin θ

∂

∂θ

(
(r + hP + hC −R0)

(
kC
µ
cC
∂pC
∂θ

+D
∂cC
∂θ

)
sin θ

)
+sC(r+hP+hC−R0), (72)

and

jCθ = − 1

R0

(
kC
µ
cC
∂pC
∂θ

+D
∂cC
∂θ

)
. (73)

As with the flow, the remainder of the analysis of the concentrations depends on the case;
we now consider Cases (i)–(iii) in turn.

4.2 Analysis of transport in Case (i)

In Case (i), we assume no SCS so need only apply suitable boundary conditions at the sclera
r = R0. We apply the boundary condition (21a) to give

1

R2
0 sin θ

d

dθ

(
hC

(
kC
µ
c
dp

dθ
+D

dc

dθ

)
sin θ

)
+ hCsC = sS , (74)
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where we have set cC = c.
The total albumin flow rate is a function of θ, given by

J =

∫ R0

R0−hC

2πr sin θ jCθ dr,

=− 2π sin θ

(
kChC

µ
c
dp

dθ
+DhC

dc

dθ

)
,

=cQ− 2πDhC sin θ
dc

dθ
, (75)

and hence

dc

dθ
=

cQ− J

2πDhC sin θ
, (76)

dJ

dθ
=2πR2

0 sin θ (hCsC − sS) , (77)

with the boundary conditions (26) giving J = cQ at both the inlet θ = θ0 and the pole θ = 0.

4.3 Analysis of transport in Case (ii)

In Case (ii), we model the SCS as a porous medium.

4.3.1 Transport in the SCS in Case (ii)

Scaling the variables as in Section 4.1, the governing equations (19) and boundary condi-
tions (21a) become, respectively,

− 1

(1− ϵCr∗)2
∂

∂r∗
(1− ϵCr

∗)2j∗Pr +
1

(1− ϵCr∗) sin θ

∂

∂θ
j∗Pθ sin θ = 0, (78)

j∗Pr =
1

ϵ2C

(
k∗
Pc

∗
P
∂p∗P
∂r∗

+
1

PeP

∂c∗P
∂r∗

)
, (79)

j∗Pθ = − 1

1− ϵCr∗

(
k∗
Pc

∗
P
∂p∗P
∂θ

+
1

PeP

∂c∗P
∂θ

)
, (80)

j∗Pr|r∗=0 = s∗S , (81)

where sS = ϵCUCc0s
∗
S and PeP = R0UC/D is the Péclet number of the flow in the SCS. Eq. (80a)

implies that r∗ dependent variations of c∗P occur at O(ϵ2CPeP). The reduced Péclet number in
the SCS is around 0.2, which is small, meaning that cC is independent of r to leading order.
Neglecting corrections of O(ϵC), we solve (78), using (80b) and (81) to get

j∗Pr = − r∗

sin θ

∂

∂θ

((
k∗
Pc

∗
P
∂p∗P
∂θ

+
1

PeP

∂c∗P
∂θ

)
sin θ

)
+ s∗S . (82)

Redimensionalising,

jPr =
(r −R0)

R2
0 sin θ

∂

∂θ

((
kP
µ
cP

∂pP
∂θ

+D
∂cP
∂θ

)
sin θ

)
+ sS , (83)

and

jPθ = − 1

R0

(
kP
µ
cP

∂pP
∂θ

+D
∂cP
∂θ

)
. (84)
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4.3.2 Matching conditions for transport in Case (ii)

We now match between the choroidal tissue and SCS, applying the interface conditions (22).
Eq. (22a) implies cC = cP = c, and, at leading order, (22b) becomes

jCr +
1

R0

h′
PjCθ

∣∣∣∣
r=R0−hP−

= jPr +
1

R0

h′
PjPθ

∣∣∣∣
r=R0−hP+

, (85)

giving

1

R2
0 sin θ

d

dθ

((
1

µ
(hCkC + hPkP) c

dp

dθ
+ (hCD + hPD)

dc

dθ

)
sin θ

)
+ hCsC − sS = 0. (86)

The total albumin flow rate is a function of theta, given by

J =

∫ R0−hP

R0−hP−hC

2πr sin θ jCθ dr +

∫ R0

R0−hP

2πr sin θ jPθ dr

=− 2π sin θ

(
kChC + kPhP

µ
c
dp

dθ
+DhC

dc

dθ
+DhP

dc

dθ

)
=cQ− 2π sin θ (DhC +DhP)

dc

dθ
, (87)

and hence

dc

dθ
=

cQ− J

2π sin θ(DhC +DhP)
, (88)

dJ

dθ
=2πR2

0 sin θ (hCsC − sS) , (89)

with J = cQ at θ = 0, θ0.

4.4 Analysis of transport in Case (iii)

In Case (iii), we model the SCS as open.

4.4.1 Transport in the SCS in Case (iii)

In the SCS, we scale the fluxes according to

cP = c0c
†
P , jPr = ϵPUPc0j

†
Pr, jPθ = UPc0j

†
Pθ, sS = ϵPUPc0s

†
S . (90)

The governing equation (19) and boundary conditions (21a) become, respectively,

− 1

(1− ϵPr†)2
∂

∂r†

(
(1− ϵPr

†)2j†Pr

)
+

1

(1− ϵPr†) sin θ

∂

∂θ

(
j†Pθ sin θ

)
= 0, (91)

j†Pr = u†
Prc

†
P +

1

ϵ2PPeP

∂c†P
∂r†

, j†Pθ = −1

2
r†(h†

P − r†)c†P
∂p†P
∂θ

− 1

(1− ϵPr†)PeP

∂c†P
∂θ

, (92)

j†Pr

∣∣∣
r†=0

= s†S . (93)

As long as ϵ2PPeP ≪ 1, we may neglect the terms j†Pr and u†
Prc

†
P appearing in Eq. (92a), and

we find that c†P is independent of r† to leading order, O(ϵ2PPeP). We estimate as follows:

ϵ2PPeP =
h2
P0

R2
0

× R0UP

D
=

Q0h
5
P0

2πR3
0hC0DkC

≈ 0.1

(
hP0 (µm)

21

)5

, (94)
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which suggests hP0 must be less than about 21 µm for this argument to be correct to within 10%.
For the value we actually use, hP0 = 2.4 µm, ϵ2PPeP ≈ 2× 10−6, suggesting the approximation
is a very good one. We solve (91) at leading order, using (92b) and (93) to obtain

j†Pr = − 1

sin θ

∂

∂θ

((
1

12
r†2(3h†

P − 2r†)c†P
∂p†P
∂θ

+
r†

PeP

∂c†P
∂θ

)
sin θ

)
+ s†S . (95)

Re-dimensionalising, we obtain

jPr = − 1

R2
0 sin θ

∂

∂θ

((
1

6µ
(R0 − r)2

(
r −

(
R0 −

3

2
hP

))
cP

∂pP
∂θ

+D(R0 − r)
∂cP
∂θ

)
sin θ

)
+ sS , (96)

jPθ = − 1

R0

(
1

2µ
(R0 − r) (r − (R0 − hP)) cP

∂pP
∂θ

+D
∂cP
∂θ

)
. (97)

4.4.2 Matching conditions for transport in Case (iii)

As in Case (ii) we match at the interface between the SCS and choroid. The interface condition
(22b) implies that

1

R2
0 sin θ

d

dθ

((
kChC

µ
cC
dpC
dθ

+
h3
P

12µ
cP

dpP
dθ

+DhC
dcC
dθ

+DhP
dcP
dθ

)
sin θ

)
+ hCsC − sS = 0, (98)

or, in non-dimensional terms,

1

sin θ

d

dθ

((
Ch∗

Cc
∗
C
dp∗C
dθ

+
1

12
h†3
P c†P

dp†P
dθ

+
C

PeC
h∗
C
dc∗C
dθ

+
1

PeP
h†
P
dc†P
dθ

)
sin θ

)
+Cs∗C−s†S = 0, (99)

while condition (22a) implies that cC = cP = c; these constraints are to be solved together with
conditions (26) (note that, as with the fluid flow derivation, two different sets of nondimensional
scales appear in Eq. (99)).

The total flow rate of albumin is a function of θ, given by

J =

∫ R0−hP

R0−hP−hC

2πr sin θ jCθ dr +

∫ R0

R0−hP

2πr sin θ jPθ dr

=− 2π sin θ

(
kChC

µ
c
dp

dθ
+

h3
P

12µ
c
dp

dθ
+DhC

dc

dθ
+DhP

dc

dθ

)
=cQ− 2π sin θ (DhC +DhP)

dc

dθ
, (100)

and hence

dc

dθ
=

cQ− J

2π sin θ(DhC +DhP)
, (101)

dJ

dθ
=2πR2

0 sin θ (hCsC − sS) , (102)

with J = cQ at θ = 0, θ0.
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5 Summary

In this Section, we review and summarize the governing equations and boundary conditions
that were derived in Sections 3 and 4. Since we consider the choroidal tissue and SCS together,
it is convenient to define the term ‘choroid–SCS’ to denote both of these regions.

In each of the Cases (i)–(iii), the four governing equations may be written as:

dp

dθ
=− µQ

2π sin θ(kChC + kPhm
P )

, (103)

dQ

dθ
=2πR2

0 sin θ (hCqC + qR − qS) , (104)

dc

dθ
=

cQ− J

2π sin θ(DhC +DhP)
, (105)

dJ

dθ
=2πR2

0 sin θ (hCsC − sS) , (106)

with boundary conditions

Q = 0, J = cQ at θ = 0, (107)

IOP− p = RicmQ, J = cQ at θ = θ0. (108)

We account for all three Cases (i)–(iii) in this formulation, and definitions of all the symbols
appearing in the equations and boundary conditions along with details of how to adapt the
model to each case are given in Table 1. In this Table, we classify the expressions according to
their mathematical type:

• independent variable: θ ranges from 0 to θ0 (θ0 must be specified);

• primary dependent variables: all functions of θ that are outputs of the model;

• parameters: fixed constants that are inputs to the model and must be specified by the
user;

• parametric expression: hC(θ) is a fixed function of θ that must be specified by the user;

• subsidiary dependent variables: functions of the primary dependent variables and outputs
of the model;

• the special case of hP(θ), which is zero in Case (i), and in Cases (ii) and (iii) in the
physiological case it is equal to a fixed parameter, hP0. If a non-physiological solution is
required, hP is given by Eq. (3), which depends on hP,nat(θ), and this function must be
found before solving.

Note that the equations have a removable singularity at θ = 0 owing to division by sin θ.

Table 1: List of expressions appearing in the model equa-
tions and boundary conditions with descriptions. These
are classified according to their type (see text for descrip-
tion). SI units are provided in some cases for clarity.

Symbol Description

Independent variable
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Table 1: (continued)

Symbol Description

θ angle subtended at the center of coordinates between the point
and posterior pole of the eye

Primary dependent variables

p(θ) IF pressure in the choroid–SCS
Q(θ) IF flow rate along the choroid–SCS
c(θ) albumin concentration in the choroid–SCS
J(θ) albumin flow rate along the choroid–SCS

Parameters

µ dynamic viscosity of IF
kC Darcy permeability of choroidal interstitial tissue
kP Case (i): not applicable; Case (ii): Darcy permeability of SCS;

Case (iii): equal to 1/12
m Case (i): not applicable; Case (ii): equal to 1; Case (iii): equal

to 3
R0 inner scleral radius
qR flux of fluid from RPE (m/s)
D diffusion coefficient of albumin
µ dynamic viscosity of IF
θ0 angular extent of choroid and SCS from posterior pole
Ricm resistance of the iris root and ciliary muscle (Pa s/m3)
IOP intraocular pressure

Parametric expression

hC(θ) thickness of choroid

Subsidiary dependent variables

qC(θ) flux of fluid out of CC (s−1), see Eq. (2)
qS(θ) flux of fluid across sclera (m/s), see Eq. (13)
sC(θ) flux of albumin out of CC (mol/(m3s)), see Eq. (23)
sS(θ) flux of albumin across sclera (mol/(m2s)), see Eq. (24)

Special

hP(θ) thickness of SCS: zero in Case (i), equal to a specified con-
stant parameter in the physiological case, otherwise it is a
subsidiary dependent variable, see Eq. (3)

To solve these equations numerically, we first non-dimensionalise with respect to the scalings
of Sections 3.1 and 4.1:

dp∗

dθ
=− Q∗

sin θ(h∗
C + k∗

Ph
∗m
P )

, (109)

dQ∗

dθ
=sin θ (h∗

Cq
∗
CC + q∗R − q∗S) , (110)

dc∗

dθ
=
Pe(c∗Q∗ − J∗)

sin θ(h∗
C + h∗

P)
, (111)

dJ∗

dθ
=sin θ (h∗

Cs
∗
CC − s∗S) , (112)
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subject to the boundary conditions

Q∗ = J∗ = 0 at θ = 0, (113)

IOP∗ − p∗ = R∗
icmQ

∗, J∗ = c∗Q∗ at θ = θ0 (114)

note that we do not use the scalings applied in the derivations of flow and transport in the SCS
in our numerical model. In these equations, the non-dimensional fluxes are given by

q∗CC =L∗
CC(p

∗
CC − p∗ − σ∗

CC(c
∗
CC − c∗)), (115)

q∗S =k∗
S(p

∗ − p∗O − σ∗
S(c

∗ − c∗O)), (116)

s∗CC =β∗
CC(c

∗
CC − c∗) + (1− σCC)

c∗ + c∗CC
2

q∗CC, (117)

s∗S =q∗S(1− σS)
c∗O − c∗ePeS

1− ePeS
, (118)

In these equations, the non-dimensional variables are related to the dimensional variables of
the model by

hC = hC0h
∗
C, hP = hC0h

∗
P , Q = Q0Q

∗, (119)

p = P0p
∗, pCC = P0p

∗
CC, pO = P0p

∗
O, IOP = P0IOP∗, (120)

c = c0c
∗, cCC = c0c

∗
CC, co = c0c

∗
o, (121)

J = Q0c0J
∗, Ricm = P0R

∗
icm/Q0, (122)

and the constants appearing in the non-dimensional equations are given by

q∗R =
2πR2

0

Q0

qR, k∗
P =

{
kP/kC if m = 1
h2
C0/(12kC) if m = 3

, Pe =
Q0

2πhC0D
, (123)

L∗
CC =

µR2
0

kC
LCC, σ∗

CC =
σCCRgTc0

P0

, k∗
S =

R2
0kS

hC0hSkC
, (124)

β∗
CC =

2πR2
0hC0

Q0

βCC, σ∗
S =

σSRgTc0
P0

, (125)

where c0 = cCC.
We solve the non-dimensional equations numerically using the MATLAB R2024a (Math-

works) solver bvp4c. Note that we need to use the nondimensional equations, as the orders of
magnitude of the different terms in the dimensional equations are so different that the solver
does not converge to a satisfactory solution when using the dimensional variables. In non-
physiological cases, we need to run the solver twice, first for the physiological case (with hP
equal to a fixed constant hP0) to find the function hP,nat(θ), and then (with the appropriate
parameter values changed) to find the solution. We also avoided numerical singularities at
θ = 0 by solving on the domain [δθ, θ0], where δθ = θ0/npts is the grid spacing and npts is the
number of grid points in θ. Throughout the main paper we redimensionalise all variables before
presenting our results.

6 Use of a Beavers–Joseph boundary condition

In the paper, we assumed a no-slip boundary condition (14) on the IF in the SCS at both
the interfaces with the sclera and the choroid; however, it is common to use a Beavers–Joseph
condition at the interface between a freely flowing fluid and the fluid within a porous medium.9

This states that the shear rate of the shear rate at the boundary equals the discontinuity in the
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fluid velocity between the free fluid and that in the porous medium divided by the square root
of the permeability of the porous medium, multiplied by a dimensionless slip constant. In our
analysis, to leading order in the small parameters ϵC and ϵP and, neglecting the fluid velocity in
the porous medium as it is small, the boundary conditions at the SCS–sclera and SCS–choroid
interfaces may be stated

uPθ =

√
kS
αS

∂uPθ

∂r
, uPθ = −

√
kC
αC

∂uPθ

∂r
, (126)

at r = R, and at r = R − hP , respectively, where αS and αC are dimensionless positive slip
constants that depend only on the properties of the porous materials comprising the sclera
and choroid (the no-slip case considered earlier may be recovered in the limit αS , αC → ∞).
The analysis proceeds in a similar way, and we obtain governing equations similar to Equa-
tions (103)–(106), but with Equation (103) replaced by

dp

dθ
= − µQ

2π sin θ(kChC + h2
P h̃P/12)

, (127)

where

h̃P =
(h2

P + 4CChP0hP + 4CShP0hP + 12CCCSh
2
P0)

(hP + CShP0 + CChP0)
, (128)

with

CS =

√
kS

hP0αS
≈ 1.0 · 10−3

αS
, CC =

√
kC

hP0αC
≈ 0.045

αC
. (129)

Slip constants at the interface of a freely flowing fluid and a porous medium are typically of
order one,9,10 meaning that the change in the solution with this boundary condition is likely to
be fairly small.

7 Fitting the choroidal thickness profile

Our expression for the choroidal thickness profile was derived by fitting a cubic polynomial
(using MATLAB’s curve fitting toolbox, with default settings) to measurements in human
emmetropes;11 that is, individuals with no refractive error or visual defects. The choroidal
thickness was found to be 394± 70 µm at the fovea (0 to 1 mm eccentricity), 386± 68 µm in
the parafovea (1 to 3 mm eccentricity), 368± 61 µm in the perifovea (3 to 5 mm eccentricity),
329± 51 µm in the near-periphery (5 to 8 mm eccentricity), and 277± 37 µm in the periphery
(8 to 14 mm eccentricity). From inspection of a physiological image of an eye, the eccentricity
of the iris root, θ0, is about 140 degrees, and it is commonly agreed that the choroidal thickness
there is around 100 µm. We represented these six regions as having respective eccentricities
of 0, 3, 5, 8, 14 and 28.1 mm, equivalent to 0, 0.25, 0.42, 0.67, 1.17, 2.44 rad. We used the
minimum eccentricity in the fovea, since the choroidal thickness is essentially uniform in this
region, but the maximum eccentricity for the other retinal regions since, from inspection of
Figure 2 of Hoseini–Yazdi et al. (2019), the average choroidal width is achieved (or comes close
to being achieved) on these outer boundaries. Results are shown in Figure S3. We take the
typical choroidal thickness as approximately the volume of the choroid divided by its surface
area, setting hC0 = 266 µm.
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