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Purpose: To describe a novel algorithm (MEDTEG) for dynamically adding new test
locations to a perimetric grid—to provide a more personalized/comprehensive visual
field (VF) assessment.

Methods: MEDTEG operates by finding the most informative new test location. First,
Voronoi tessellation is used to construct a list of candidate locations (i.e., points that lie
in between the current test locations, even when the current grid is sparse or irregular).
Next, each candidate’s probability mass function is computed using natural neighbor
interpolation. Finally, the most informative candidate is determined by computing the
expected reduction in entropy (after trial t + 1) and then multiplying this value by the
area of its Voronoi cell, to estimate the overall volume of expected information gain.
Optional weighting coefficients can be applied to encourage/restrict testing to
particular spatial locations (e.g., to avoid the midline, target the macula, or prioritize
regions exhibiting structural damage).

Results:Using a combination ofmathematics, graphics, andMATLAB code, we describe
the algorithm and simulate possible use cases. These include ways of providing more
detailed evaluations of small scotomas (“enhanced perimetry”), more efficiently
assessing patients with extensive loss (“personalized perimetry”), or maximizing
VF information in patients with limited attention spans (“indeterminate duration
perimetry”).

Conclusions: Simulations of perimetric data indicate that MEDTEG provides a logical
andflexiblewayof automatically adding test locations to anexistingperimetric test grid,
or of constructing entirely novel grids based on a handful of seed locations.

Translational Relevance: MEDTEG may facilitate more informative VF assessments or
allow testing in challenging populations.

Introduction

What to Present Next?
In standard automated perimetry (SAP), a key

function of the automated algorithm is to determine
“what stimulus intensity to present next?” Numer-
ous potential solutions have been proposed1 (“advance
in –4/+2 dB steps following each correct/incorrect
response,”2 “present the mean of the posterior mass
function,”3 and various other heuristics).4 Many

believe,5–7 however, that as a general rule (i.e., in
the absence of any countervailing imperative), one
should present the most informative stimulus. In
technical terms, this can be operationalized as the
stimulus that minimizes expected entropy6 (i.e., that
minimizes threshold estimation uncertainty). This
“entropy minimization” approach is simple, flexible,
and powerful and lies at the heart of several popular
and highly efficient psychophysical algorithms, includ-
ing QUEST+8 and the quick contrast sensitivity
function (qCSF).9
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Where to Present Next?

The question of “where to present next?” is less
often considered (though see other studies10–12). This is
understandable. Simplicity is important, and so too is
standardization (both across patients and for compar-
ison within a patient over time). Using the same fixed
test grid to assess every patient on every visit is there-
fore attractive.

Yet, a one-size-fits-all solution is seldom ideal,
and situations exist where assessing alternative and/or
additional visual field (VF) locationsmight be advanta-
geous. A patient may be at floor (no measurable vision)
at many of the standard locations, and so benefit from
redistributing test points to regions of residual vision
(“personalized perimetry”). Or one may want to more
precisely delineate a small scotoma (“enhanced perime-
try”) (e.g., due to diabetic retinopathy or a localized
vascular lesion).

Regardless of the reason why, this article consid-
ers how to automatically determine a new VF
location to assess. And it shall propose that the
answer remains fundamentally the same as when
selecting a new stimulus intensity: one should select
the most informative stimulus. Or, in more techni-
cal terms: the test location that minimizes expected
entropy.

Overview of the Present Work

The novel minimum entropy dynamic test grids
(MEDTEG) algorithm is detailed in the next section.
In brief, this algorithm (1) automatically determines a
list of candidate locations and (2) selects themost infor-
mative candidate. The sections that follow then briefly
describe four simple simulations designed to illustrate
possible use cases for the MEDTEG algorithm.

Note that for tractability, we shall restrict ourselves
purely to the question of “where to assess next?”
and assume that the decision to test a new location
has already been made. We shall not consider related
questions, such as, “Should we test a new location or
continue to test the current location(s)?” although in
principle, the present approach could be extended to
address such questions also (see Discussion).

The MEDTEG Algorithm

Overview

The MEDTEG algorithm is described in more
detail below and is available as executable MATLAB

code at www.github.com/petejonze/MEDTEG. In
brief, MEDTEG proceeds in two stages:

A. Compile a list of candidate locations. First,
bounded Voronoi tessellation (see below) is used
to compile a list of possible test locations (i.e.,
points that lie in between the current, preexisting
test locations, even when the current locations are
sparse or irregularly distributed).

B. Score each candidate. Second, the most informa-
tive candidate location is determined. To achieve
this, for each candidate we:
i. ComputeH. To compute current entropy,H, a
predicted probability mass function (PMF) is
estimated for each candidate by averaging the
PMFs of the candidate’s natural neighbors.

ii. Compute E(�H). The expected reduction
in entropy after the next trial, E(�H), is
computed for each candidate using a preexist-
ing algorithm such as QUEST+.

iii. Compute E(�Hdeg2). E(�H) is multiplied by
the spatial area of the candidate’s Voronoi cell
to determine the overall volume of expected
information gain.

iv. Compute ωE(�Hdeg2). By applying optional
weighting coefficients, one can encour-
age/restrict testing to particular spatial
locations (e.g., to avoid the midline, target
the macula, or prioritize regions exhibiting
structural damage).

The best (most informative) candidate is the one
that maximizes ωE(�Hdeg2). This is the location that
MEDTEG will recommend assessing on the next
trial.

Compiling a List of Candidates

The first stage of the algorithm is to compile a list
of possible new test locations to evaluate (“the candi-
dates”). The prima facie simplest solution would be to
manually prespecify all possible candidates in advance.
For example, as shown in Figure 1A, if the starting grid
is composed of points spaced ±6°, one might specify a
second, high-density grid of interdigitating candidates,
spaced ±2°.

However, this “manual” approach is arbitrary and
brittle (i.e., candidates would need to be respecified
for every test grid). It is also somewhat computation-
ally inefficient (i.e., high spatial resolution at any one
location would require hundreds or even thousands of
possible candidate locations to be specified across the
whole VF13,14).
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Figure 1. Compiling a list of candidates. (A) The naive/manual method applied to a 24-2 grid. Here we simply prespecify candidates inter-
digitating at 2° intervals. Blue circles indicate the previously tested locations. Numbers indicate the possible new candidate locations. Note
the large number of candidates required here even for 2 degrees spatial precision (N = 348). (B) The proposed/automated method applied
to a 24-2 grid. Voronoi tessellation (blue lines) is used to find all those points lying equidistant to three or more previously tested locations,
excluding any points lying outside of their convex hull (red lines). Note that since in this example we are starting with a regular grid, and
so the candidate locations are also initially equally spaced and predictable. However, after every new test location is added, the grid of
possible candidates will become increasingly irregular and unpredictable (hence the need for Voronoi tessellation when compiling a list
of possible candidates, even when using a regular starting grid). (C) Proposed method applied to arbitrary seed locations. This illustrates
how the proposedmethod can be applied even to sparse or irregular starting grids. Note these images, along with those shown in Figure 2,
were generated using the MATLAB code available at www.github.com/petejonze/MEDTEG. This repository also provides a video showing
the MEDTEG algorithm running step-by-step.

A different, more flexible approach would be to
simply consider as candidates all those locations that lie
in between the existing test locations, wherever they lie.
As shown in Figure 1B, this can be achieved by using
a well-established mathematical technique known as a
Voronoi diagram.15,16 In brief, the Voronoi diagram
divides the VF into N discrete regions (“Voronoi
cells”), with each cell representing all those points
that lie closer to one test location than any other.
In other words, each existing test location becomes
the “nucleus” of a Voronoi cell (see Fig. 2 for a
graphical illustration). The locations where the bound-
aries of neighboring cell walls meet (the “Voronoi
vertices”) represent points equidistant from three or
more of the current test locations. It is these Voronoi
vertices that we shall take as our candidate locations
(Figs. 1B, 1C, numbers). This approach is as attrac-
tive as it is computationally efficient and, as shown
in Figure 1C, works even with irregular test grids. As
described in “Simulated Examples of Use,” it could
even be used to “grow” a fully bespoke grid based on a
handful of random or prespecified seed points.

At a later stage of theMEDTEG algorithm, weight-
ing coefficients shall be applied to each candidate
to express the user’s preference for/against assess-
ing particular VF locations. Attentive readers will
note that in the associated MATLAB code, these
weights are actually computed now, when compil-

ing the list of candidates. This is for computational
expediency since any candidate assigned a weight
of 0 will ultimately yield a value of ωE(�Hdeg2)
= 0 and so will never be selected. Such candidates
can therefore be discarded immediately without any
further evaluation. This is not mathematically neces-
sary, however, and for ease of exposition, we shall
postpone describing these weighting coefficients until
later (section “Scoring Each Candidate (4 of 4):
Computing ωE(�Hdeg2)”).

Scoring Each Candidate (1 of 4): ComputingH

For each candidate, we begin by computing its
current entropy,H (i.e., how uncertain we are about the
patient’s estimated differential light sensitivity [DLSdB]
threshold at this location). In information theory,17
entropy,H, is computed from the PMF of an estimated
random variable; thus:

H =
∑

P(s) log [P(s)] (1)

where P(s) is the posterior probability of the vector
of psychometric function parameters, s. Note that
where the parameter domain has only one dimen-
sion, H will be proportional to the variance of
the PMF,18 with more sharply peaked distributions
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Figure 2. Computing a candidate’s PMF. Here we show how a given candidate’s PMF is initially predicted using natural-neighbor interpola-
tion. This consists of selecting the candidate’s neighbours (in the Voronoi diagram), and averaging their PMFs, with weights proportional to
the degree of overlap between the candidate and each neighbor. Thus, in the example shown, the candidate’s PMF is strongly determined
by test points i= 2–5, withminimal input from points i= 1 and i= 6, where there is minimal overlap (despite these locations not necessarily
lying farther away from the candidate). Although not shown here, we could additionally force a weight of zero (ω = 0) for any test locations
lying on the other side of the horizontal meridian (i.e., to reflect the fact that superior/inferior retinal nerve fibers terminate at the horizontal
raphe and do not cross over into the opposing hemifield)19 and/or could force ω = 0 for points on the other side of the vertical meridian
(i.e., in cases of suspected hemianopia).

having lower entropy (i.e., outcome more certain/
predictable).

In order to compute H, we must first determine
the PMF for each candidate. And since, by defini-

tion, we have not yet empirically tested the candidate
location(s), we shall predict the candidate’s PMF by
interpolating the PMFs of its neighbors, as illustrated
in Figure 2 (i.e., assuming that these have been calcu-

Downloaded from tvst.arvojournals.org on 04/01/2025
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lated already due to the routine use of a maximum
likelihood algorithm such as Zest or QUEST+; see
Discussion).

Formally, the candidate’s PMF, pc(x), is computed
as the linear weighted sum of its n neighbors. Thus,

pc(x) =
n∑

i=1

ωi · pi(x), (2a)

where the weights, ωi, sum to 1 across the candidate’s
n neighbors and are proportional to how much of the
candidate’s Voronoi cell is “stolen”from each neighbor.
Thus,

ωi = Ai

Ac
, (2b)

where Ac is the total area of the candidate’s Voronoi
cell (i.e., when the Voronoi tessellation is repeated
with this point included), and Ai is the area of inter-
section between the candidate’s Voronoi cell and the
Voronoi cell of its ith neighbor (i.e., in the original
Voronoi diagram, with the candidate not included).
In this way, the more the new candidate overlaps
with an existing test location, the more that location’s
DLSdB estimate will determine the candidate’s starting
prior.

Note that such natural-neighbor interpolation20
(aka “Sibsonian interpolation”) is preferable to
simpler, distance-based methods of interpolation (e.g.,
nearest-neighbor interpolation) in that it provides a
smooth surface free from any discontinuities, makes
no statistical assumptions, and is spatially adaptive:
automatically adapting to local variation in data
density or spatial arrangement. It has also been specif-
ically shown to perform well when interpolating VF
data.21 It also poses a negligible computational cost in
the present context since the requisite Voronoi tessel-
lation is required later anyway (when determining the
area of the new Voronoi cell).

Note that, as shown in Figure 3, when the neigh-
bors’ PMFs are very dissimilar, entropy (uncertainty),
H, at the candidate location will be relatively high,
and so the expected information gain associated with
testing this location will also be high too. Conversely,
if the neighbors’ PMFs are all similar, then entropy
at the candidate location will be low and the expected
information gain will be low too. In this way, the
algorithm will be naturally inclined toward selecting
regions of the VF where DLSdB thresholds change
abruptly (e.g., the edges of scotomas). Likewise, as also
shown in Figure 3, candidates where the surround-
ing neighbors have high entropy will be preferred
over candidates whose neighbors have low entropy.
In this way, the algorithm will be naturally inclined

toward selecting regions of the VF where DLSdB
thresholds are not easily predicted by the existing test
data.

Scoring Each Candidate (2 of 4): Computing
E(�H)

To determine which candidate is likely to be most
informative, at each location, we shall compute the
expected change in entropy after the next trial, E(�H).
This can be achieved using any commonly available
MAP algorithm (e.g., QUEST+).

Note that since E(�H) is computed by the core
MAP algorithm, not by MEDTEG itself, a full exposi-
tion of their workings is not provided and can be found
elsewhere.8 A brief overview is nonetheless provided
here, as understanding howE(�H) is computed at each
candidate location is key for understanding the subse-
quent steps that follow.

In short, MAP algorithms require us to specify a
prior distribution (expressing our current beliefs about
sensitivity in this region of the VF) and a psychometric
function (expressing how we expect the probability of
a correct response to vary with stimulus magnitude).

For the candidate location’s prior, we shall use the
PMF already computed in the previous step (using
natural-neighbor interpolation).

For the candidate’s psychometric function, this
“frequency of seeing curve” will have been defined in
advance (before testing). In our example MATLAB
code, the probability of responding correctly,
p(correct), is assumed to be determined by a modified
cumulative Gaussian function, �, with one variable
parameter: μ (i.e., the estimated DLSdB value) and
three fixed parameters (internal noise, σ ; lapse rate, λ;
and guess rate, γ ). Thus,

p (correct)

= γ + (1 − γ − λ) [1 − � (x; {μ, σ, γ , λ})] . (3)

This psychometric function (illustrated graphi-
cally by the blue lines in Fig. 4) is used by the
MAP algorithm to compute the likelihood of each
possible response given each possible stimulus, and
from these values, one can compute the expected
change (reduction) in entropy following the next trial,
E(�H).

Note that the steeper the psychometric slope (and
also the lower the values of λ and γ ), the more infor-
mative the patient’s response will be. Conversely, if—
in extremis—the slope of the psychometric function
were to be completely flat (σ = ∞), then the proba-
bility of responding correctly would always be 50%

Downloaded from tvst.arvojournals.org on 04/01/2025
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Scenario B: Effect of DLS entropy increasing among neighbors

Scenario A: Effect of DLS values diverging between neighbors
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Figure 3. Simplified schematics illustrating how MEDTEG favors testing VF regions with higher measurement uncertainty. In scenario
(A), we see how predicted entropy (uncertainty) at the candidate increases as the estimated sensitivities of its natural neighbors diverge. In
scenario (B), we see how predicted entropy increases as the entropy of its natural neighbors increases. In both cases, and if all other consid-
erations are equal (e.g., the slope of the psychometric function), points of high uncertainty, H, will be points of high information gain, E(�H)
(i.e., H ∝ E(�H)). Thus, the algorithm will be naturally inclined toward testing regions of the VF where visual sensitivity is currently most
uncertain, either because sensitivity suddenly changes (from one existing test location to another) and/or because the estimated sensitivity
at the existing test locations remains uncertain.

regardless of the stimulus magnitude. In which case,
however the patient responds, we would learn nothing
new about what they can or cannot see. In this way,
as shown in Figure 4, the algorithm will be naturally
inclined toward selecting regions of the VF where

the response will be more informative (i.e., where
σ is lower).

Note also that if (as is sometimes the case) the
psychometric function is assumed to be constant across
the VF, then this step of the MEDTEG algorithm

Downloaded from tvst.arvojournals.org on 04/01/2025
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Figure 4. Schematic showing the effect of psychometric slope on expected information gain, E(�H). Panels A1–A3 show the effects of
psychometric function slope on expected information gain when current measurement uncertainty (the spread of the PMF) is low. Panels
B1–B3 show the effect of psychometric function slopeon informationgainwhen currentmeasurement uncertainty is high. Thebiggest gains
in information will exist where both entropy,H, and the slope of the psychometric function, 1/σ , are high (panel B1). Conversely, moving left
to right, as the psychometric function becomes flatter, E(�H) decreases. As a result, it may become preferable to test a candidate location
aboutwhichmore is already known (i.e., with a lower entropy,H) if the alternatives have highermeasurement noise (shallower psychometric
functions), as the expected information gain, E(�H), may nonetheless be greater (e.g., compare panel A2 and panel B3).

could be skipped. Thus, instead of computing the
expected change in entropy, E(�H), one could simply
compute predicted entropy, H, and select the region
about which we are currently most uncertain (i.e., “H
max” rather than “E(�H) max”). AnHmax approach
would be conceptually and computationally simpler
but would be unable to take into account changes in
response reliability (i.e., as a function of eccentricity
and/or mean sensitivity). Thus, if there were regions of
the VFwhere the psychometric slope was very flat, then
an H max variant of MEDTEG is liable to get stuck
there, repeatedly testing locations where entropy, H, is
high but where the gain in information, �H, is low.

Scoring Each Candidate (3 of 4): Computing
E(�Hdeg2)

Next, we multiply the expected information gain,
E(�H), by the area of the candidate’s Voronoi cell, Ac,

in order to take into account the total volume of infor-
mation gained across the VF:

E
(
�Hdeg2

)
= E (�H ) · Ac. (4)

In this way, as shown in Figure 5, MEDTEG will
prefer candidates that are informative about greater
expanses of the visual field and will be discour-
aged from testing regions close to where existing test
locations already lie. It will not, therefore, simply
cluster points ever closer to the edge of the deepest
scotoma, in contrast to a simpler “maximum gradient”
algorithm (see section “Simulated Use Case 2”).

Scoring Each Candidate (4 of 4): Computing
ωE(�Hdeg2)

Finally, a scalar weight, ω, is applied to each candi-
date to express any a priori preferences for/against

Downloaded from tvst.arvojournals.org on 04/01/2025
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Figure 5. Schematic showing how, all other factors being equal, the algorithmwill prefer the candidate that will be informative about the
greatest VF extent (in this instance, candidate #8). The top-left panel shows points previously tested (blue circles) and the 11 new candidates
(numbers), plotted as a function of degrees visual angle. Each of the subpanels shows the associated Voronoi cell (shaded polygon) for the
11 candidates. Given their small Voronoi cell size, a candidate such as #1 or #10 would only be selected, for example, if the expected gain in
information, E(�H), was disproportionately large (i.e., if these points had very low measurement error/very high psychometric slopes). Or,
alternatively, if these points were assigned higher weights, ω.

assessing particular VF locations. Thus,

ωE
(
�Hdeg2

) = E
(
�Hdeg2

) · ω, (5)

where ω is a user-specified value between 0 and
1 (0 ≤ ω ≤ 1). Note that these (“per-candidate”)
weights are unrelated to the (“per-neighbor”) weights
in Equation 2a (used when interpolating neighboring
PMFs).

As shown in Figure 6A, all users will likely want to
setω = 0 for any candidates that fall outside the testable
spatial range of the device, and most users (particu-
larly those interested in glaucoma) will want to set ω

= 0 for locations lying close (e.g., <1°) to the horizon-
tal meridian19 or that fall within the physiologic blind
spot. In addition, some users may want to set ω = 0 for
any points that fall outside the convex hull of the origi-
nal points (i.e., to constrain testing to locations inside
the existing grid and not increase its spatial extent).
Finally, more nuanced weights can also be employed.
For example, ω could be set to decrease gradually as a

function of eccentricity to prioritize testing of central
regions, as shown in Figure 6B.

In this way, the algorithm can be made to prefer
candidates that lie in regions of interest, howsoever the
user wishes to define such regions (i.e., based on a priori
anatomic considerations, structural data, or the impor-
tance of certain parts of the VF to the patient or clini-
cian).

Selecting the Best Candidate

Selecting the best (most informative) candidate, x, is
generally a case of simply iterating through the whole
set of possible candidates, S, and selecting the candi-
date with the greatest ωE(�Hdeg2) value:

x = argmax
x∈S

[
ωE

(
�Hdeg2

)]
. (6)

Alternatively, one could select the top N candi-
dates if wanting to add new locations in batches, or
one could randomly select candidates with weights
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ω  = 0.30

ω  = 0.00
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Figure 6. Schematic showing how the user can specify weights, ω, to candidates based on their location (white = high weight; red = low
weight). This can be done to encourage selected test locations to fall within certain parts of the VF or to preclude testing in certain regions.
For example, in (A), new candidates are required to fall within the convex hull of the standard 24-2 test grid and are not permitted to fall
within 1° of the horizontal meridian. Candidates that fail to meet these criteria (i.e., that fall in the red regions) are assigned a weight of 0 and
so never selected. In (B), these binary weights are further supplemented with gradated values that decrease with eccentricity to favor more
central candidate locations (ω inversely proportional to the distance from fixation). Note, however, that a more eccentric location may still
ultimately be selected if, for example, the expected gain in information, E(�H), is much larger and/or the spatial extent of its Voronoi cell, Ac,
much greater.
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proportional to ωE(�Hdeg2), if wanting to introduce
a degree of stochasticity. As with all good psychophys-
ical algorithms (e.g., QUEST+), on any given trial, the
user is free to override MEDTEG’s recommendation
and manually select any test location they choose (e.g.,
if one wanted to insist on a certain, fixed test location
at the start of the test for practice/familiarization
purposes).

Key Qualities of the MEDTEG Algorithm

The MEDTEG algorithm has several attractive
properties. First, it is flexible, in that it can be applied
to any arbitrary test grid (including irregularly spaced
grids) and/or can be applied recursively to the same
grid (e.g., to progressively grow the grid dynamically).
Second, it is entirely automated, and though its behav-
ior can be customized/constrained by custom parame-
ters, the user is not required to preselect possible candi-
date locations or is tied to a specific starting grid. This
may be particularly attractive to researchers developing

standardized protocols (e.g., for clinical trials), particu-
larlywhen the region of interest is heterogeneous across
eyes and/or where test grids are not strongly prescribed
(e.g., microperimetry). Third, MEDTEG is capable of
automatically balancing multiple competing interests.
Thus, as detailed above, it will attempt to select the
location where measurement uncertainty is greatest,
where the patient’s response will be most informative,
where no nearby region has been tested previously, and
all in accordance with the user’s a priori preferences.

Simulated Examples of Use

Here we describe four simulated use cases. These
are designed to illustrate potential applications of the
MEDTEG algorithm, but not to formally quantify
utility. In each case, SAP threshold estimation and
stimulusmagnitude selection (dB level) were performed
using QUEST+. The probability of the simulated
observer responding correctly to a given stimulus dB
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Figure 7. Simulated use case 1: enhanced perimetry. Here we illustrate MEDTEG’s ability to automatically “follow up” on small regions of
apparent loss. (A) Example simulated observer with three contiguous locations of central loss on the 24-2 grid. Numbers indicate DLSdB
values (i.e., the µ parameter of the frequency of seeing curve given in Equation 3), and the exact values were randomly jittered on every run.
(B) Output from a single run of the simulation, showing where the five new test points were placed (left) and the resultant DLSdB estimates
(right). (C) Summary of n= 200 runs, showing howmany of the new points were located in or around the scotoma (the scotoma, in this case,
being arbitrarily defined as any location where the simulated loss was at least −8 dB, relative to a normal). Note these simulations, along
with the others shown in Figures 8 to 10, were run using the MATLAB code available at https://github.com/petejonze/MEDTEG.
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level was determined stochastically, using the frequency
of seeing curve expressed in Equation 2b. The lapse
rate, λ, and guess rate, γ , parameters were fixed at λ =
0.05 and γ = 0.02. The slope, σ , and true DLSdB sensi-
tivity, μ, varied across the visual field and formed the
simulated observer’s true “hill of vision.” By default,
these values (σ and μ) were randomly jittered versions
of the expected normative values for a normally sighted
young adult.22 The hill of vision was then modified to
include various patterns of VF loss, as detailed in each
simulation. For further technical specifics, see https:
//github.com/petejonze/MEDTEG for the MATLAB
code used to run these simulations.

Simulation Use Case 1: Better Characterizing
a Small, Localized Scotoma (“Enhanced
Perimetry”)

Imagine one is assessing a new patient with optic
neuritis using a 24-2 grid. The VF is largely normal.

However, three adjacent points in the macula show an
apparent scotoma that is cause for concern (Fig. 7A).
A clinician wishing to further assess this central region
of loss could perform a follow-up 10-2 test. However,
this requires an additional n = 68 test points, of which
only around n ≈ 15 points (∼25%) would actually fall
in the impaired region.

In contrast, if a human operator were manually
controlling the process, after performing the initial
24-2 test, they would solely follow up the damaged
region and place any new test points in or around the
estimated region of loss. Is MEDTEG able to mimic
this more efficient, human behavior?

In simulation 1 (Fig. 7), we first simulated responses
at the n = 54 standard locations on the 24-2 grid.
We then tested five additional points (sequentially)
at locations suggested by MEDTEG. As illustrated
in Figure 7B and 7C, these additional five points were
almost always placed in or around the scotoma, as
desired.
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Figure 8. Simulated use case 2: personalized perimetry (figure presented in the same format as Fig. 7). (A) Example simulated observer.
(B) Example result from a single run of the simulation. Left: The numbers indicate the order in which the dynamic points were tested,
following the initial 10 seed points (gray circles). Right: The DLSdB estimates for each location, with the number in red indicating the
new locations suggested by MEDTEG. (C) Summary of results from all n = 200 runs, indicating the proportion of the total test points
(including the 10 initial seed points) located in the preserved hemifield (bigger values = better). The horizontal dashed line indicates
the situation when the number of test points in both hemifields is equal (i.e., as per a standard 24-2 grid). Note that here we simulated
an upper/lower hemifield loss, but the same basic principles would apply to a left/right hemianopia (e.g., if assessing neurology
patients).
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Simulated Use Case 2: More Efficiently
Assessing a Patient With Extensive Loss in
One Hemifield (“Personalized Perimetry”)

Imagine one is assessing a new neurology patient
with a complete loss of sensitivity in one hemifield.
Performing a standard 24-2 test would be inefficient
since half of the test points would fall in a region of
obvious loss. This wastes valuable clinic time, and the
patient is prone to become confused or demoralized as
they will spend the majority of the test not seeing any
targets.

In contrast, a human, once they have established the
hemifield loss, would likely spend longer testing in or
around the preserved hemifield (i.e., rather than repeat-
edly probing regions with no measurable sensitivity).
Thus, while the optimal test strategy is undefined, it
seems uncontentious to suggest that, over time, more
test locations should fall in the preserved hemifield than
in the nonseeing hemifield.

To see whether MEDTEG can also exhibit this
behavior, in simulation 2 (Fig. 8), we first tested
just 10 prespecified “seed” points (Fig. 8B, gray
circles) and then sequentially tested an additional 12
points at locations selected by MEDTEG. As shown
in Figure 8C, while MEDTEG placed test points in
both hemifields, it exhibited a clear preference toward
the preserved hemifield, placing around 50% more.
Again, performing as desired.

Simulated Use Case 3: Integrating A Priori
Structural Data into the VF Assessment
(“Structure Guided Perimetry”)

Exactly how “structure” and “function” are related
in perimetry is a large and complex topic23 outside the
scope of this article. However, simulation 3 (Fig. 9) was
intended to illustrate MEDTEG’s ability-in-principle
to take into account a priori structural information
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Figure 9. Simulated use case 3: structure guided perimetry. (A) Example simulated observer. (B) Example result from a single run of the
simulation. Numbers indicate the estimated DLSdB values for the initial 10 seed points (black) and 14 subsequent dynamic points (red)
presented at locations determined by MEDTEG. Heatmaps indicate the structural weights, which varied from 0.01 to 1.00 (blue: w ≈ 0.01;
yellow: w = 1.0). In the noise conditions, each weight value, w, was jittered by a random value drawn from a Gaussian distribution, N(µ = 0,
σ = 1), and then clamped to the range 0.01 to 1. (C) Summary of results from all n= 200 runs, indicating howmany of the n= 14 new points
were placed within the damaged (upper left) part of the VF (i.e., in regions exhibiting a DLSdB loss of 8 dB or more). Error bars correspond to
mean ± 95% confidence interval (CI) values.
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when deciding which location to test next (i.e., via the
weighting coefficients in Equation 5).

Thus, imagine one is assessing a patient with
diabetic retinopathy and you have prior warning
(e.g., from optical coherence tomography (OCT))
of structural loss in one particular part of the
retina. By assigning weights, ω, to each candi-
date proportional to apparent structural dysfunc-
tion, we could prioritize perimetric testing in affected
parts of the VF (as illustrated by the heatmaps in
Fig. 9B).

To illustrate MEDTEG’s capabilities in this regard,
in simulation 3, we first tested 10 predefined seed points
and then sequentially added n = 14 new locations
(an arbitrary number), using weights to encourage
testing within a region of structural loss. Unsur-
prisingly, when the structural weights were strong,
unambiguous, and corresponded correctly to the area
of functional loss, most new test locations (>75%)
tended to cluster tightly in the scotomatous region
indicated by the structural data (Fig. 9, no noise,
veridical).

This behavior is largely trivial and provided only as
a sanity check. The more interesting question is how
MEDTEG performs if the structural data are noisy
or wrong. In those circumstances, a crude algorithm
that slavishly followed the structural data would behave
erratically and/or fail to ever assess the VF regions
containing the true loss of vision. Would MEDTEG
behave likewise?

When significant noise was added to structural
data, in the form of clamped Gaussian jitter (Fig. 9,
noise, veridical), MEDTEG still placed around half
of the new points in the region where the scotoma
lay, evidencing a degree of robustness to noise. Even
when the structural data were flipped horizontally
(e.g., due to human error and/or confusion about
which eye was being assessed), some points—albeit
a minority (∼20%)—were still nevertheless placed
within the actual scotoma (Fig. 9, noise, x-flipped),
evidencing a degree of robustness to systematic error.
Taken together, these results show that MEDTEG
is able to integrate structural information, and even
when the structural data are wrong or misleading,
it is able to perform in a reasonably intelligent
manner.

Simulated Use Case 4: Assessing a Patient
With an Indeterminate Attention Span
(“Indeterminate Duration Perimetry”)

Imagine one is assessing a young patient with
pediatric glaucoma and a limited attention span,

the precise duration of which cannot be predicted
in advance. A human would keep testing until the
child becomes inattentive and then immediately stop,
thereby maximizing good data while minimizing bad
data. In contrast, automated SAP has historically
relied on a prespecified number of test locations.
For children, this “one-size-fits-all” approach means
either an excessively short test or a longer test
that produces catastrophic measurement error in an
unknown proportion of cases. Since these bad tests
cannot always be easily identified/excluded, all VF tests
also become suspect, making SAP in young children
largely unfeasible.

Instead, let us make the (nontrivial) assumptions
that (1) adherence is binary (either child is paying
attention or not), and (2) we have a reliable way of
knowing when the child becomes inattentive (e.g., a
technician presses a button or some form of automated
sensor).24,25 The question then becomes, Can we make
more accurate VF assessments by using MEDTEG
to prioritize testing the most informative information
during the time available? Or is it equally effective just
to randomly select points from a standard (e.g., 24-2
grid)?

To answer this, in simulation 4 (Fig. 10), each
test was terminated after a random number of test
locations had been assessed (to crudely simulate
a sudden loss of concentration). In half of the
simulations, the preceding test locations were drawn
randomly from a standard 24-2 grid. In the other half,
MEDTEG decided where to place each test point in
turn (after an initial 10 seed points placed at fixed and
largely arbitrary locations). In both cases, the accuracy
of the overall VF assessment was evaluated by fitting a
surface to the final DLSdB estimates and then comput-
ing how closely this fitted surface (Fig. 10B) matched
the simulated observer’s true hill of vision (Fig. 10A).

As shown in Figure 10C, when the number of
locations was large (i.e., a highly compliant patient),
the algorithm was immaterial: there was no meaning-
ful difference between the accuracy of VF estimated
by the two methods. However, when the number of
locations was small (i.e., a patient with a short attention
span), the VF tended to be more accurately delineated
by using MEDTEG to prioritize the testing of more
informative locations.

A Note on Simpler, MaximumGradient
Selection Strategies

With respect to the preceding four use cases, could
similar results be obtained—with less computational
overhead—using a simpler algorithm? For example,
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Figure 10. Simulated use case 4: indeterminate duration perimetry. (A) Example simulated observer. (B) Example result from a single run
of the simulation. Numbers indicate the estimated DLSdB values. Heatmaps indicate the “hill of vision” surface, fitted to these DLSdB values
using linear interpolation (and excluding points lying in or around the physiologic blind spot). The numbers indicate the sum of the squared
residuals (i.e., the residuals being the difference between the predicted and trueDLSdB value, evaluated at 0.5° intervals across the VF). Larger
SSR values indicate less accurate hill of vision estimates. (C) Summary of results from all n = 200 runs, indicating SSR values as a function of
the number of locations tested (which varied randomly from 11 to 54). Each marker indicates a single run of the simulation. Lines indicate
best-fitting logarithmic curves of the following form: y = −a · log10(x) + b. Error bars indicate mean ± 95% CI values across all runs, shown
with the associated P value from a two-sample t-test.

could one not simply select the candidate location
with the maximum difference in estimated threshold
between any two existing locations26,27 (i.e., maximiz-
ing threshold gradient in Equation 6, rather than the
expected change in entropy)?

Example simulations using this simpler “maximum
gradient” strategy are shown in Supplementary Figure
S1 and demonstrate that the two algorithms sometimes
agree but sometimes exhibit qualitatively distinct
behaviors.

For use case 1 (better characterizing a small, local-
ized scotoma), the two algorithms do behave in a similar
manner, with both clustering new, additional test points
around the small scotoma (Supplementary Fig. S1A
vs. Fig. 7B). Their behaviors would, however, start
to diverge as the number of additional test points
increases. Thus, the maximum gradient algorithm will
always favor the edge of the deepest scotoma. In
contrast, while MEDTEG’s preference for high uncer-
tainty favors a scotoma’s edge, MEDTEG also values

locations that are informative about larger spatial
extents. The latter preference will cause MEDTEG
to increasingly test other parts of the VF as the
scotoma’s edge becomes congested with test points.
Note also that, in the way that they were imple-
mented here, there was also little difference in compu-
tational overhead between the two algorithms, since
both used Voronoi tessellation to identify the list
of candidates, and Sibson weighting of neighboring
probability mass functions to initialize the selected
candidate (see Discussion for more on computational
considerations).

For use case 2 (more efficiently assessing a
patient with extensive loss in one hemifield), the
maximum gradient algorithm tended to only ever
place new test points along the meridian separating the
preserved/affected hemifields and was as likely to place
new points within the affected hemifield as within the
preserved hemifield. In contrast, as described previ-
ously, MEDTEG tends to place points in the preserved
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hemifield and attempts to distribute them more widely
(Supplementary Fig. S1B vs. Fig. 8B).

For use case 3 (integrating a priori structural data
into the VF assessment), without the information-
theoretic framework provided by MEDTEG, the
maximum gradient algorithm lacks any obvious way to
integrate prior information into the candidate selection
decision.Nomeaningful comparison is therefore possi-
ble.

For use case 4 (assessing a patient with an
indeterminate attention span), the maximum gradient
algorithm tends to tightly cluster test points around
the deepest scotoma, with little investigation of the
rest of the VF. In contrast, MEDTEG attempted
to distribute points across the VF but also exhib-
ited a preference for the region of the VF exhibit-
ing a dense scotoma (Supplementary Fig. S1D vs.
Fig. 10B).

Discussion

This article describes a novel algorithm for dynam-
ically adding new test locations to a perimetric test
grid (MEDTEG). Such an algorithm could be used in
various ways: to add additional test points to standard
test grids (simulated use case 1); replace standard grids
with entirely dynamic/bespoke ones, grown from a
handful of seed points (simulated use case 2); or use an
intermediate approach, where candidates are partially
or completely constrained to follow standardized (e.g.,
24-2) locations but where MEDTEG’s information-
theoretic framework is used to integrate a priori struc-
tural information (simulated use case 3), or prior-
itize the most informative locations (simulated use
case 4).

Limitations of the Present Study

Depending on howMEDTEGwere to be employed,
further careful thought would be required. If grids were
made fully dynamic, then conventional summary statis-
tics (e.g., mean deviation, visual field index) would no
longer be computable. This, in turn, would compli-
cate many trend-based progression algorithms that
rely on established VF metrics. (And even event-
based analyses may become problematic if the number
of test locations is no longer constant.) While in
more practical terms, for dynamic test grids to be
used routinely, clear guidelines would be required
(i.e., precisely when/where/how) and protocols devel-
oped for how such VF data are stored, visualized, or
shared.

Such concerns could in principle be addressed
(e.g., by using grid-invariant summary measures,
such as volume under the hill of vision). However,
it is perhaps more plausible that an algorithm such
as MEDTEG would be used to augment rather
than replace existing practice (e.g., by adding
additional test points to standard grids) or in
domains where there are not already well-established
norms and practices (e.g., microperimetry and/or
fields outside of glaucoma, such as neurology or
pediatrics).

Another limitation of the present study is that
it does not provide strong, quantitative evidence of
MEDTEG’s benefits/limitations versus conventional
static grids. The simulations provided are only intended
as illustrative, and for tractability, various simplifying
assumptions were made (e.g., that DLS variance, σ 2,
does not vary with sensitivity, μ, which we know to
be false,28 or that the observer’s psychometric function
remains stationary throughout the test—also likely
false).29 Even if the simulations were made more
complex, however, they still would not evidence real-
world utility. Instead, any truly meaningful test would
require a prospective study in real patients. At which
point, additional care and consideration would also
have to be given to the vagaries of human observers.
For example, while in the simulations, individual VF
locations were tested sequentially, in humans, any new
locations would likely need to be added in batches
to avoid the test becoming too predictable. Relat-
edly, many of the parameters used in the simulations
were arbitrary and could be optimized (e.g., the exact
number and location of seed points). In general, no
other values were ever attempted (both for ease and to
avoid “overfitting”), and it is likely that other values
would yield more accurate and/or reliable VF assess-
ments.

Theoretical Limitations of the MEDTEG
Algorithm

MEDTEG makes several simplifying assumptions.
When considering how informative each potential
candidate is, MEDTEG only considers the spatial
geometry of the VF (i.e., we assume that a bigger
Voronoi cell is always better; see Fig. 5). No consid-
eration is given to the underlying structure of the
retina and the fact that, for example, certain parts
of the VF may be more clinically useful to assess
than others.30,31 Similarly, MEDTEG assumes that
the observer’s vision is constant within each Voronoi
cell (i.e., that their true DLS is flat within the candi-
date region), which we know is not true. These are
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limitations that MEDTEG could be modified in future
to address. Furthermore, as described in “Scoring
Each Candidate (1 of 4): Computing H,” MEDTEG
also requires various assumptions to be made regard-
ing the shape of the observer’s “frequency of seeing
curve.” These such assumptions, however, will gener-
ally have been made already by the core psychophys-
ical algorithm, independent of whether MEDTEG is
used.

More generally, MEDTEG is designed only to
answer questions of the form “where,” not “when.”
For it to be deployed effectively, one would also
have to develop additional algorithms to determine
whether or not to test a new location, when to stop
adding new points, and/or when to stop the assess-
ment altogether. These “when” questions might also
be answered by further generalizing the information-
theoretic (“entropyminimization”) approach proposed
in this article, just as MEDTEG itself is a general-
ization of algorithms such as QUEST+ that deter-
mine “what”to present. For example, one could employ
some form of global VF entropy criterion to deter-
mine when to stop testing the whole visual field (just
as one might currently employ to determine when to
stop testing at a single, given location). Alternatively,
one could develop some simple heuristics (e.g., a rule
whereby the presence of an apparent central defect
triggers an additional N test locations). Such consid-
erations lie outside of the scope of the present article,
however.

Practical Limitations of the MEDTEG
Algorithm

One key practical consideration is that the
MEDTEG algorithm requires access to the raw
probability (PMF) information at each preexisting
test location, not simply the point estimates typically
reported in the final report (i.e., it needs to know the
likelihood of each possible DLSdB value, not just what
the most likely DLSdB value is). Such information can
be computed at runtime by the SAP software from the
trial-by-trial response data but cannot be reconstructed
retrospectively from a typical perimetric printout. As
such (and unlike simpler gradient maximization
algorithms), MEDTEG cannot be retrofitted to old
data. Instead, MEDTEG is primarily intended for
users of perimetric control packages such as the Open
Perimetry Interface32 (OPI) or for manufacturers of
perimeters.

MEDTEG also requires nontrivial computing
power (e.g., since, like QUEST+, it uses a brute-force
approach to evaluate every possible response, to every

possible stimulus, at every possible test location—albeit
only looking ahead by a single trial, since beyond that,
any additional benefits appear marginal at best).5,33 So
long as the number and range of parameters are kept
reasonably constrained (e.g., 1 dB stimulus spacing,
not 0.01 dB), the search for a new test location can
often be completed on the order of tens or hundreds
of milliseconds (as evaluated on a MacBook Pro 2023
laptop, with Apple M2 Max CPU). However, if the
number of possible test locations is large (i.e., if the
existing grid is dense), then it may take a second or
more for MEDTEG to determine a new test location.
At a minimum, MEDTEG therefore demands modern
hardware and sensible programming practices (e.g.,
asynchronous coding) to absorb this computational
period into the pacing of the test without any obvious
lag or jitter. If this proved insufficient, then signifi-
cant speed gains could be achieved by optimizing key
components (e.g., porting some or all of the code to
native C libraries). While in extremis, the MEDTEG
algorithm itself could be modified (e.g., by only evalu-
ating candidates above a certain weight threshold)
or key components redesigned (e.g., developing an
algorithm to only reevaluate the Voronoi diagram
locally, around where new points are inserted, rather
than recomputing the whole diagram every time).

Conclusions and Future Work

We have described a novel algorithm (MEDTEG)
for selecting new perimetric test locations using a
maximum information gain criterion. We have also
demonstrated, by simulation, possible clinical appli-
cations, including ways of performing more detailed
mapping of scotomas34 (“enhanced perimetry”), more
efficiently assessing patients with extensive loss in
one hemifield (“personalized perimetry”), or maximiz-
ing the VF information acquired in a patient with
a limited attention span (“indeterminate duration
perimetry”).

Code for implementing MEDTEG and also the
simulations described is available at www.github.com/
petejonze/MEDTEG. In future, it would be partic-
ularly desirable to translate this code to R, as an
OPI plug-in (https://opi.lei.org.au/). This would allow
MEDTEG to be used in conjunction with well-
established perimeters such as the Octopus, Heidel-
berg Edge, IMO, or CenterVue Compass (i.e., pending
any MATLAB OPI implementation). We would
warmly encourage anybody interested in develop-
ing such an R package to fork/modify the GitHub
repository.
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