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better resolved in the brain
Highlights
d Recognition of personally familiar voices is robust to within-

speaker variation

d Brain response patterns to these voices show higher within-

speaker dissimilarity

d This suggests finer-grained representations of personally

familiar speech

d The findings complement reports of familiar-talker

intelligibility benefits
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In brief

Kanber et al. report that brain responses

to personally familiar voices are more

dissimilar across stimuli than responses

to lab-trained or unfamiliar voice

identities. The findings suggest that

extensive and varied exposure to

personally familiar voices results in the

development of finer-grained neural

representations of those voices.
ll

mailto:c.mcgettigan@ucl.ac.uk
https://doi.org/10.1016/j.cub.2025.03.081
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2025.03.081&domain=pdf


OPEN ACCESS

ll
Report

Representations of personally familiar
voices are better resolved in the brain
Elise Kanber,1,5 Clare Lally,1,5 Raha Razin,1,2 Victor Rosi,1 Lúcia Garrido,3 Nadine Lavan,4 and Carolyn McGettigan1,6,*
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SUMMARY
The human voice is highly flexible, allowing for diverse expression during communication,1 but presents
perceptual challenges through large acoustic variability.2–11 The ability to recognize an individual person’s
voice depends on the listener’s ability to overcome this within-speaker variability to extract a single identity
percept.2,18 Previous work has found that this process is greatly assisted by familiarity,6,9,13 with evidence
suggesting that more extensive and varied exposure to a voice is associated with the formation of a more
robustmental representation of it.4,8 Here, we used functional magnetic resonance imaging (fMRI) with repre-
sentational similarity analysis14 to characterize how personal familiarity with a voice is reflected in neural rep-
resentations. We measured and compared brain responses with voices of differing familiarity—a personally
familiar voice, a voice familiarized through lab training, and a new (untrained) voice—while listeners identified
these voices from naturally varying, spontaneous speech clips. Personally familiar voices elicited brain
response patterns in voice-, face-, and person-selective corticesthat showed higher within- and between-
speaker dissimilarity, compared with lower-familiarity lab-trained and untrained voices. These findings indi-
cated that representations for the sounds of personally familiar voices are better resolved from each other in
the brain, and they align with other research reporting intelligibility advantages for speech produced by
familiar talkers.15–18 Overall, our findings suggest that extensive and varied exposure to personally familiar
voices results in the development of finer-grained representations of those voices, which cannot be achieved
via short-term lab training.
RESULTS

One proposal for how voice identity could be represented in the

brain is via stimulus-invariant response patterns that are rela-

tively consistent across different encounters with a given iden-

tity (‘‘telling together’’) but are distinct from responses to other

identities (‘‘telling apart’’). Studies of multivariate patterns of

brain responses to voices have indeed found evidence that

the superior temporal cortex can discriminate between identi-

ties, across different vocal stimuli19,20 and across modalities

(from voices to faces and vice versa20,21). These studies

focused on how telling different voices apart might be repre-

sented in the brain but did not explicitly interrogate the role of

within-person variability in shaping representations of voices

(or faces). More recently, Lally et al.,5 harnessed feature films

as sources of naturalistic within- and between-person facial

and vocal variability, finding widespread evidence in voice-,

face-, and person-selective cortical areas for greater within-

person than between-person similarity in brain responses to

people (i.e., faces and voices). However, familiarity was not

manipulated in that study.
2424 Current Biology 35, 2424–2432, May 19, 2025 ª 2025 The Autho
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We therefore designed a novel study to address two research

questions: (1) do brain representations of voice identities align

with a theoretical framework of telling together and telling apart,

and (2) how are brain responses to voice identities shaped by

speaker familiarity? To do this, we analyzed functional magnetic

resonance imaging (fMRI) data from 26 adult participants

listening to naturally varying, spontaneous speech recordings

from 3 voice identities: a personally familiar voice (Familiar), a

voice trained to familiarity via pre-scan training tasks (Lab), and

a voice not learned before the scan (New). Using representa-

tional similarity analysis (RSA)14 of the brain’s response patterns

to these voices, we then tested two predictions about the brain’s

representation of voice identity. First, we predicted that there

would be greater similarity of brain response patterns to the

same speaker, compared with response patterns to different

speakers (i.e., greater similarity for telling together than telling

apart5,22). Second, we predicted familiarity-dependent variation

in the similarity of within-speaker brain response patterns. Spe-

cifically, we expected to see the greatest within-speaker similar-

ity in response to the Familiar voice, in line with behavioral evi-

dence of greater telling together accuracy for familiar voice
r(s). Published by Elsevier Inc.
eativecommons.org/licenses/by/4.0/).

mailto:c.mcgettigan@ucl.ac.uk
https://doi.org/10.1016/j.cub.2025.03.081
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2025.03.081&domain=pdf
http://creativecommons.org/licenses/by/4.0/


A

D

B C

Figure 1. Outline of the study test sessions

(A) Recording session: a friend/partner of each participant attended a recording session to generate experimental stimuli.

(B) Familiarization session: the participant was familiarized with clips of the Familiar and Lab voice, then completed a voice identity categorization task with

feedback.

(C) Refresher session: the participant performed one block of the categorization task and was then familiarized with the New voice.

(D) Scanner session: (i) the participant underwent four runs of continuous fMRI data acquisition while performing a categorization task without feedback; (ii) in-

scanner performance,measuredwith unbiased hit rates (Hu) per participant. Violin plots combine a box plot andmirrored density plot. Box plots show themedian,

25th, and 75th percentile values. Whiskers extend from the boxplots to the highest and lowest values no more than ± 1.5 times the inter-quartile range; (iii) in-

scanner confusions table showing the percentage of trials on which a given presented voice condition (stimulus category) was categorized as the Familiar, Lab, or

New voice (response category). Bold indicates the percentage of hits per voice condition.

Face drawings: Julia Galuzinskaya/Shutterstock.com.
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perception,6,9,13 as well as proposed ‘‘voice recognition units’’22

and other models positing abstracted representations of voice

identities.23

Weexpected tofind representationof voice identities in the tem-

poral lobes, with statistical peaks in the right hemisphere.19,24–30

Within this, we expected familiarity effects in the anterior superior

temporal sulcus (STS)31–34andperson-selectivecorticalareas that

may be implicated inmultimodal representations of familiar identi-

ties (e.g., precuneus35,36). As our hypotheses did not concern

higher-order domain-general processes, we restricted our ana-

lyses to brain regions defined as voice-, face-, and person-
selective in previous research on the neural representations of

voice, face, and multimodal (voice and face) identities.5,20

All participants completed three experimental sessions (Fig-

ure 1). In the first familiarization session, participants listened

to examples of the Familiar and Lab voices and then completed

a three-way forced choice voice identity categorization task with

accuracy feedback, including the Familiar voice, the Lab voice,

and a third, unfamiliarized voice (mean accuracy [final block]:

Familiar 99.6%, Lab 94.7%, unfamiliarized 95.2%). A refresher

session, taking place immediately before the scanning session,

included shortened training on the identity categorization task
Current Biology 35, 2424–2432, May 19, 2025 2425
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Figure 2. Comparing between-speaker (telling apart) and within-speaker (telling together) dissimilarity in the brain responses to voices

(A) Group map of searchlight locations showing significantly greater neural dissimilarity for between- than within-speaker comparisons, across all voice con-

ditions (z > 1.96, with threshold-free cluster enhancement (TFCE) correction).

(B) Group maps of searchlight locations showing significantly greater neural dissimilarity for between- than within-speaker comparisons, for selected pairwise

voice comparisons (z > 1.96; with TFCE correction; see also Table S1).

(legend continued on next page)
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with the same three identities (mean accuracy: Familiar 98.4%,

Lab 96.0%, unfamiliarized 94.2%). Participants were then briefly

familiarizedwith a novel, previously unheard voice identity (New).

In the final fMRI scanning session, we measured neural re-

sponses in the context of an explicit voice identity recognition

task37 to ensure engagement of voice-sensitive processes.

Here, behavioral and fMRI data were collected while participants

again performed a voice identity categorization task—now

without feedback and on previously unheard examples of the

Familiar voice, the Lab voice, and the New voice (mean accu-

racy: Familiar 98.9%, Lab 87.6%, New 85.4%). A comparison

of unbiased hit rates (Hu) across the three voice identity condi-

tions showed a significant effect of familiarity (c
2

2 = 40.19,

p < 0.001), where the Familiar voice was recognized with signif-

icantly greater accuracy than both the Lab (estimate = 0.366, t =

6.53, p < 0.001) and New (estimate =.376, t = 6.70, p < 0.001)

voices.

We used RSA14 with a searchlight approach38 to analyze the

brain responses to the three voices within voice-, face-, and per-

son-selective cortical regions of interest.5,20 Specifically, for

each participant andwithin each searchlight, we computed brain

response patterns to each voice clip, based on the average brain

response pattern to that clip across all runs. We then computed

the dissimilarities (using 1 � r [Pearson correlation]) between the

brain response patterns to each pair of clips, resulting in an

observed neural dissimilarity matrix (ONDM) for that searchlight.

With 8 unique voice clips per 3 voice identities in total, this re-

sulted in a matrix with 276 unique values [i.e., [(24 3 24) � 24]/

2]. Per-searchlight ONDMs were entered into partial correlations

with hypothetical model representational dissimilarity matrices

(RDMs), describing the predicted similarity of neural responses

based on our hypotheses. In all cases, the partial correlations

quantified the relationship between the brain and the hypotheti-

cal model, after controlling for the acoustic dissimilarities

between the experimental stimuli (based on their long-term

average spectra). In line with convention, below we present

and discuss all results in terms of dissimilarity of brain re-

sponses, where higher/lower dissimilarity can be interpreted as

lower/higher similarity.

Do brain representations of voice identities align with a
theoretical framework of telling together and telling
apart?
Our first analysis tested a telling together and telling apart frame-

work for representing voice identity, using a model predicting

greater dissimilarity of brain responses for between-speaker

than within-speaker comparisons. We found evidence for signif-

icantly greater between-speaker than within-speaker dissimi-

larity across our searchlight mask, excluding most of the primary

auditory cortex and adjacent portions of the superior temporal
(C) Group maps of searchlight locations showing significantly greater neural diss

voice comparisons (z > 1.96; with TFCE correction; see also Table S1).

Blue shading indicates the searchlight mask of face-, voice-, and person-select

illustrate group mean dissimilarity values (1 – Pearson’s correlation) per voice c

dissimilarity and yellow the greatest dissimilarity within a 100-voxel searchlight v

shown in Montreal Neurological Institute (MNI) stereotactic space; gray squares

analysis. Peak center voxels were identified from uncorrected group searchlight

Table S1.
gyrus (STG) bilaterally, as well as face-selective right fusiform

and occipital gyri (Figure 2A; Table S1). Pairwise follow-up ana-

lyses revealed familiarity-dependent profiles, now also impli-

cating the face-selective occipitotemporal cortex: specifically,

greater between- versus within-speaker dissimilarity was

observed only for between-speaker comparisons that impli-

cated the Familiar voice (Familiar-Lab and Familiar-New), when

contrasted with within-speaker comparisons that implicated

the less familiar Lab and New voices (i.e., Lab-Lab or New-

New; see Figure 2B and Table S1). However, there was no evi-

dence for greater between- than within-speaker dissimilarity

when analyzing responses to the Lab and New voices only.

These results suggest a more complex picture of telling apart

and telling together than hypothesized: as the representative

matrices in Figure 2 show, neural responses to the Familiar voice

tended to generate the highest dissimilarities within our regions

of interest, for both within- and between-speaker comparisons.

There was some evidence for significant negative correlations

with some hypothetical models, where within-speaker compari-

sons generated greater dissimilarity in brain responses than be-

tween-speaker comparisons. Again, these effects trended with

familiarity: multiple clusters in left and right superior temporal

cortices showed significantly greater dissimilarity of within-

speaker brain responses across familiar voice stimuli than

dissimilarity of between-speaker comparisons with the less

familiar lab-trained voice, while clusters in right fusiform and infe-

rior occipital gyrus similarly showed greater within-speaker

dissimilarity for the lab-trained voice than dissimilarity ofbetw-

een-speaker comparisons with the least familiar, new voice (Fig-

ure 2C; Table S1). Taken together, these results suggest that

while telling together and telling apart offer a useful framework

for describing the behavioral correlates of naturalistic voice iden-

tity perception, where telling together selectively benefits from

familiarity, this is not directly reflected in the responses of

voice-, face-, and person-selective brain regions to voices of

varying familiarity.

Are brain response patterns to individual voice
identities shaped by speaker familiarity?
To test for effects of familiarity on telling together, we compared

within-speaker dissimilarities in brain response patterns with a

model predicting increasing within-speaker dissimilarity with

decreasing voice familiarity (i.e., Familiar < Lab < New). This re-

vealed significant effects in all voice-, face-, and person-selec-

tive regions of interest, except for the primary auditory cortex

and adjacent portions of STG, orbitofrontal cortex, and right

inferior occipital cortex (Figure 3A; Table S2). Here, against our

predictions, we found a negative correlation between brain re-

sponses and the model: the Familiar voice generated the great-

est within-speaker dissimilarity on average, with responses to
imilarity for within- than between-speaker comparisons, for selected pairwise

ive brain regions of interest. Observed neural dissimilarity matrices (ONDMs)

omparison (e.g., Familiar-Lab, New-New), where red indicates the minimum

olume centered on the location indicated by the coordinates. Coordinates are

and blue triangles on the matrices outline the comparisons included in each

maps. STG, superior temporal gyrus; STS, superior temporal sulcus. See also

Current Biology 35, 2424–2432, May 19, 2025 2427



A

B

C

Figure 3. Comparing within-speaker (telling together) dissimilarity in the brain responses to voices of differing familiarity

(A) Group map of searchlight locations showing a significant effect of voice condition (Familiar, Lab, New) (z > 1.96, TFCE correction; see also Table S2) on neural

dissimilarity.

(legend continued on next page)
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the Lab and New voices showing significantly lower and

statistically equivalent within-speaker dissimilarity (Figure 3B;

Table S2). That is, participants recognized the Familiar voice

with greater accuracy while showing better-resolved brain re-

sponses to examples of this voice, compared with lower recog-

nition accuracy and within-speaker resolvability for the Lab

and New voices. Interestingly, while we observe this effect of fa-

miliarity along the length of STS in both hemispheres, the raw

dissimilarity values for within-speaker comparisons (which un-

derlie the results in Figures 3A and 3B) show an anterior-going

hierarchy of processing: within-speaker brain response patterns

to individual stimuli increased in their mutual dissimilarity with

increasing distance from the primary auditory cortex, and this

profile was most pronounced for the familiar voice (Figure 3C).

DISCUSSION

The current study offers important theoretical insights on how

the voices of other people are represented in the human brain.

Across all analyses, responses to the personally familiar voice

showed higher within- and between-speaker dissimilarity, sug-

gesting that greater familiarity is reflected in better-resolved

representations of a voice across different utterances. Brain re-

sponses became increasingly resolved from each other along

the auditory processing hierarchy39–43 and to a greater extent

for the personally familiar identity than for less familiar

speakers, complementing reports of striking familiarity advan-

tages for speech intelligibility,15–18 which are underpinned by

more robust speech representations in the superior temporal

cortex.44 Familiarity effects in person- and face-selective re-

gions within our study potentially reflect engagement of

extended knowledge when listening to a familiar voice—

beyond speech comprehension, listeners may make finer-

grained inferences about the speaker’s appearance, mood,

and intentions for each specific utterance.45–47

Some regions of interest showed no statistically significant ef-

fects: notably, bilateral primary auditory cortices and their imme-

diate surrounds, which in general exhibited very low dissimilarity

of brain response patterns across voice stimuli (Figure 3C). This

aligns with existing models of voice processing22,35 proposing

that voice structural and identity-related cues are extracted at

later stages of the auditory processing hierarchy. Similarly, find-

ings in face-selective regions of the inferior occipito-temporal

cortex implicated the anterior portions of the fusiform gyrus

more than the posterior occipital cortex, reflecting the recent

finding that the fusiform face area (FFA) represents higher-order

information about faces (e.g., gender, traits) while the occipital

face area (OFA) represents image-based information.48 We

note, however, that while we assume that our results reflect
(B) Group maps of searchlight locations showing significantly greater neural with

voices, respectively (z > 1.96, TFCE correction). Blue shading indicates the searc

comparison of the Lab voice with the New voice is not shown as there were no s

(C) Group searchlight maps of mean neural dissimilarity for within-speaker comp

Representational dissimilarity matrices (RDMs) illustrate group mean dissimilarity

speaker comparisons, where red indicates the minimum dissimilarity and yellow t

location indicated by the coordinates. Coordinates are shown inMontreal Neurolo

uncorrected group searchlight maps. STG, superior temporal gyrus; STS, superi

Table S2.
higher-order aspects of voice perception (having partialled out

basic stimulus acoustics), our study was not designed to estab-

lish the informational content of voice representations.

Other areas within our searchlight regions were somewhat

inconsistently implicated in the results. Against the overall

trends, scattered clusters in the OFA/FFA and (mainly left) supe-

rior temporal cortex exhibited effects of greater within-speaker

than between-speaker dissimilarity for some voice pairs (Fig-

ure 2C). These effects should be interpreted in the context of

our overall finding that a telling together and telling apart account

is likely an insufficient framework for capturing how distinct voice

identities are represented in the brain. More consistent was the

overall greater resolution of brain responses to the familiar voice,

where we found that the person-selective orbitofrontal cortex

may be relatively less sensitive to voice familiarity than the other

person-selective regions (Figure 3).

Although participants spent three experimental sessions

listening to the lab-trained voice and recognized it with high ac-

curacy, the lab-trained voices showed lower within-speaker and

between-speaker dissimilarity in brain response patterns,

compared with personally familiar voices, and were recognized

with significantly lower accuracy during the in-scanner behav-

ioral task. Indeed, the in-scanner drop in recognition accuracy

for the lab-trained voice reflects the vulnerability of recognizing

a weakly familiar voice4 when presented with previously unheard

examples, in the context of a new competitor voice and in a noisy

scanner environment. The profiles of brain response pattern dis-

similarities for the lab-trained voice were also minimally distinct

from the untrained new voice, and these two voice identities

were categorized with equivalent accuracy in the scanner—

although accurate categorization of the new voice can reflect

both emergent familiarity and correct rejection of that voice

from the other categories (i.e., ‘‘It’s not my partner/friend or the

voice I’ve learned, so it must be someone else’’), limiting our

interpretation. Nonetheless, these observations further suggest

fragility in the representation of the lab-trained voice in relation

to the personally familiar identity. This is important when consid-

ering how ‘‘familiarity’’ is operationalized for use in voice identity

research: near-ceiling accuracy of voice recognition, following

brief training, may be built upon ill-formed representations that

generalize poorly to new listening situations. Indeed, voices

learned from different amounts of exposure that can be identified

with equivalent accuracy still show exposure-dependent levels

of familiar-speaker intelligibility benefits.49 Modifications of the

current study design could include two or more voices per famil-

iarity level, thus allowing for telling apart versus telling together

models to be tested at a matched level of familiarity. Similarly,

including multiple lab-trained voices learned from varying

amounts and types of exposure would allow us to more clearly
in-speaker dissimilarity for the Familiar voice compared with the Lab and New

hlight mask of face-, voice-, and person-selective brain regions of interest. The

uprathreshold clusters.

arisons, for each voice condition.

values (1 – Pearson’s correlation) per voice comparison, including only within-

he greatest dissimilarity within a 100-voxel searchlight volume centered on the

gical Institute (MNI) stereotactic space. Peak center voxels were identified from

or temporal sulcus; FFA, fusiform face area; OFA, occipital face area. See also

Current Biology 35, 2424–2432, May 19, 2025 2429
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establish how the resolution of responses to within-speaker vari-

ability emerges with increasing familiarity.

Overall, this study challenges the notion that familiar person

recognition is underpinned by a neural framework in which be-

tween-person variability must exceedwithin-person variability,50

while showing that being more familiar with a person’s voice al-

lows the listener to encode and represent that speaker’s utter-

ances with greater distinction. The latter finding speaks against

a mechanism for voice identity recognition purely based on stim-

ulus-invariant voice recognition units22 or reference patterns,23

instead suggesting that familiarity may be underpinned by neural

representations incorporating more, rather than less, detail

about how a voice sounds across variable stimuli. Indeed, previ-

ous behavioral research has shown that under certain circum-

stances, greater variability of exposure benefits voice identity

learning.8 Further, while there is evidence that listenersmay learn

voice identities by extracting summary statistics of voice pat-

terns (e.g., acoustic averages), memory for variable exemplars

is not discarded in the learning process.51

It is possible that the brain’s mechanism for recognizing voice

identities combines familiar voice pattern matching with repre-

sentations of learned within-speaker variability. Previous neuro-

imaging studies reporting sensitivity to voice identity and famil-

iarity in the univariate magnitude of responses in the (right)

anterior temporal cortex28,31–33 analyzed the brain’s averaged

response to voice identities, thus potentially capturing the acti-

vation of more robust voice averages or reference patterns for

more familiar voices45—an exploratory univariate analysis of

our data also shows greater responses to the familiar voice,

compared with the other two identities, in bilateral anterior tem-

poral lobes (Figure S1; Table S3). However, if representations

incorporate the learned variability of a voice, it follows that

more detailed representations of personally familiar voices

(with which listeners typically have more varied experience)

may simultaneously generate greater variability of brain

response patterns, as different exemplars of a voice will match

with different aspects of its stored variability. Our current RSA

approach emphasized the (dis)similarity of responses to individ-

ual voice stimuli and thus more likely captured this aspect of

voice identity representations. Taking these findings together,

we suggest that familiar voice representations may encode

within-speaker variability in addition to any abstracted familiar

voice pattern, rather than instead of it.
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lme4

emmeans

SPM12

Douglas Bates et al.

Russell V. Lenth

UCL, UK

https://github.com/lme4/lme4/

https://CRAN.R-project.org/package=emmeans

https://www.fil.ion.ucl.ac.uk/spm/software

AFNI

CoSMoMVPA

Mango

Robert W. Cox and others

Nikolaas N. Oosterhof, Andrew C.

Connolly, CoSMoMVPA contributors

Research Imaging Institute, UTHSCSA

https://afni.nimh.nih.gov/

https://www.cosmomvpa.org/

https://mangoviewer.com/

Other

DIAPIX headphone & microphone

Scanner headphones

Scanner projector

Scanner Button Box

Beyerdynamic DT297PV headsets

Sensimetrics S14

EPSON

Nata Technologies

librosa McFee et al. 52 https://librosa.org/
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants
Twenty-seven adult participants completed all the behavioural and fMRI sessions. All were native speakers of British English and

aged between 18 and 50 years old at the time of the scan. Data from 1 participant were excluded following the scan due to issues

with fMRI acquisition (inadequate slice positioning) and with in-scanner task performance (9% timeouts on response trials). The final

sample for data analysis therefore included 26 participants (19 female, 5 male, 1 non-binary, 1 agender; mean age 26.1 years; 4 left-

handed). Ethical approval was obtained from the ethics chair of the Birkbeck-UCL Centre for Neuroimaging (BUCNI) within the UCL

Division of Psychology and Language Sciences (Project ID: fMRI/2019/005). All participants provided informed consent before

completing any of the recordings or tasks. Participants were paid £6 for the voice recording session and an additional £19 for taking

part in the additional behavioural and scanning sessions.

METHOD DETAILS

Stimuli
Familiar Voices

In the behavioural and scanning sessions, all 26 participants listened to a familiar speaker who was personally known to them. The

initial recruitment strategy was to recruit participants in familiar pairs, where each member of the pair would provide the personally-

familiar voice recordings for the other. However, in order to match the personally-familiar voices with the lab-trained and unfamiliar-

ized/new identities used in the experimental tasks, all personally-familiar voices were required to speak with a Southern British En-

glish accent, and it was not possible to find enough pairs where both members met this requirement; some recruited participants

were also found to be ineligible for the scanning experiment due to MR contraindications.

The final dataset included 8 mutual pairs (i.e. where each participant provided personally-familiar voice recordings for the other,

and both completed all experimental sessions). Three of these 16 participants provided personally-familiar voice recordings for a

further 5 participants (2 females each heard by 2 additional participants; 1 male heard by 1 additional participant). Finally, 4 partic-

ipants provided voice recordings only, for a further 5 participants (1 female heard by 3 participants, 3 females each heard by
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1 participant) and were not included in the experimental data. In total, there were 21 unique personally-familiar voices in the study

(16 female-sounding, 5 male-sounding).

Eight personally-familiar voices were the romantic partner of participant, and the remainder were friends and colleagues. Partic-

ipants on average reported knowing their familiar partner for 6.9 years (range 3 months – 23 years; median 5.5 years), and speaking

with them for 8.6 hours per week (range 30 mins – 30 hours; median 4.5 hours).

Lab and New Voices

All voices encountered by each participant in the behavioural and in-scanner tasks werematched in regional accent (Southern British

English) and apparent sex (i.e. female-sounding or male-sounding). For each participant, 4 voice identities were needed: 1 person-

ally-familiar voice (labelled with the speaker’s proper forename), 1 lab-trained voice (labelled ‘‘Alex’’), and 2 unfamiliar voices

(1 labelled as ‘‘someone else’’ for the training and refresher sessions; 1 labelled as ‘‘Charlie’’ for the scanning session). Three fe-

male-sounding and 3 male-sounding voices, selected from the LUCID corpus,53 were assigned to the lab-trained and unfamiliar-

speaker roles, with counter-balancing across participants. In total, 27 unique voice identities were heard in the study (19 female-

sounding, 8 male-sounding); there were 23 completely unique combinations of the 4 voice identity conditions (personally-familiar,

lab-trained, unfamiliar, new), including 10 different combinations of the lab-trained and new voices.

Stimulus Recording and Preprocessing

Voice recordings of participants and their personally-familiar partners producing naturally-varying, spontaneous speech were ob-

tained via the DIAPIX task.53 To minimise familiarity with the speech content the participants would hear in the behavioural and

fMRI sessions of our study, we paired all participants and their partners with an experimenter for the recording session, instructed

them not to discuss the DIAPIX task with their partner after the recording session, and where possible assigned different picture sets

to each participant within a pair.

The task required a pair of players, who sat in separate sound-attenuated chambers, to engage in an interactive ‘‘spot the differ-

ence’’ game. Within each of 3 rounds, each player saw one of the images from a pair of pictures, and the players’ joint goal was to

locate all 12 differences between the pictures via spoken discussion. Each participant wore Beyerdynamic DT297PV headsets fitted

with cardioid microphones to enable discussion and enabling each voice to be recorded into a single channel without interference

from the other player. Speechwas recorded and digitised at a sampling rate of 44100Hz. Both participants were required to click with

their mouse at the location of each difference; these data were not analysed. Each round lasted as long as it took to find all 12 dif-

ferences, or until a 10-minute timer ended.

A semi-automated pipeline was then used to identify and preprocess 100 audio stimuli per voice (i.e. all the required personally-

familiar, lab, unfamiliar, and new voice identities) for use in the behavioural training and fMRI sessions. First, within each individual

voice recording (i.e. one speaker), a script written in R54 identified and extracted periods of non-silence lasting 2-3 seconds and con-

taining a maximum pause of 0.5 seconds. These were manually inspected to retain clips containing coherent spoken phrases and

exclude unsuitable tokens. Clips of >3 seconds were also retained and manually trimmed to under 3 seconds where needed to

complete the target number of 100 stimuli. The 100 clips were then amplitude normalised (root-mean-square) for inclusion in the

experimental tasks. For the Lab and New voices, as well as the other unfamiliarized voices used in training, DIAPIX recordings

were obtained from the LUCID corpus53 and preprocessed following the same pipeline.

A second R script was used to select the 9 longest clips from each set of 100, from which 8 were chosen for inclusion in the fMRI

session and the 9th was returned to the set. This was done to ensure that the in-scanner clips would provide robust neural responses.

A third R script selected 4 clips per DIAPIX round for each voice to make a total of 12, which were combined into 2 sequences of

6 clips each (labelled A and B) for use as familiarisation stimuli. Finally, an R script converted all experimental stimuli – 2 familiarisation

sequences (12 clips total) plus 88 individual clips – to MP3 format for inclusion in the experimental tasks.

The fMRI session voice clips from one of the personally familiar voice identities are available as open data (Open Science Frame-

work: http://doi.org/10.17605/OSF.IO/QRZWG).

Procedure
Behavioural training and refresher sessions

Before the scanning session, participants were invited to complete an online familiarisation training experiment on the Gorilla Exper-

iment Builder platform.55 They were encouraged to complete the study using their own computer and headphones, in a quiet envi-

ronment with no distractions. Participants were introduced to the Familiar and Lab voices by listening to the 6-clip familiarisation se-

quences per voice, in the order A-B-A (i.e. 18 clips, with 6 clips each repeated once). The Familiar voice was introduced first, with the

forename of the participant’s personally-familiar partner, followed by the Lab voice, which was introduced as ‘‘Alex’’. Participants

were encouraged to listen carefully to each voice and try tomemorise how it sounded. The participant then performed a voice identity

training task including the Familiar voice, the familiarised Lab voice, and one of the two remaining sex-matched unfamiliar voice iden-

tities. The training took the form of a 3-alternative forced-choice task, where on each trial the participant was presented with one

voice clip and had to choose the identity of the speaker from the three onscreen options ‘‘[Familiar partner’s name]’’, ‘‘Alex’’, and

‘‘Someone else’’. There was no time limit on responses. Feedback was provided on each trial: a correct response was followed

with an onscreen green tick, while an incorrect response was first indicated by an onscreen red X and a new screen providing the

correct answer (e.g. ‘‘Not quite! The correct answer was: Alex’’). The task was divided into 4 blocks, each containing 20 unique trials

per voice in a random order, for a total of 80 trials per voice. To prepare participants for the MRI experiment, the left-to-right assign-

ment of the onscreen response options was different in each block. At the end of each block participants were shown their accuracy
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during that block, as a percentage. They had the opportunity to have a small break before manually proceeding with the next block.

On the day of the scan, participants completed a refresher training experiment in a quiet room at the Birkbeck-UCL Neuroimaging

Centre. The experiment was run on Gorilla, using a MacBook Air laptop and headphones. The procedure was similar to the previous

training session, beginning with the same familiarisation of the Familiar and Lab voices and continuing with a forced-choice catego-

risation of the 3 voice identities with feedback, but this time using only one block of the familiarisation training task (i.e. 20 clips per

voice). Following this refresher task, the participants completed a short task in which they received the instructions for theMRI exper-

iment, including a description of the in-scanner response button box and the assignment of buttons to responses, plus a warning that

they would not receive task feedback in the scanner. Finally, the participant was informed that in the scanner they would hear their

familiar partner’s voice, ‘‘Alex’’, and a new voice labelled ‘‘Charlie’’. The task ended with one familiarisation sequence (6 clips) in the

voice of ‘‘Charlie’’. Importantly, participants received no training to recognise the voice of ‘‘Charlie’’ before they entered the scanner,

with listening-only familiarization being provided to simply ensure that the participants would not be confused by the presence of this

new voice in the scanner task.

The median gap between the familiarisation training and the refresher training / MRI session was 1 day (range: 0 - 31 days).

MRI session

The MRI session task comprised 4 functional runs of continuous data acquisition. Within each run, participants performed a voice

identity categorisation task programmed in MATLAB (The Mathworks, Natick, MA) using the Psychtoolbox extension.56 Each exper-

imental trial began with audio presentation of a voice stimulus (lasting 2000-3000ms; jittered onset with mean = 375ms and std =

125ms), followed by a brief visual fixation cross (500ms) and a visual response prompt (‘‘Whose voice did you hear?’’ with 3 options

displayed left to right onscreen). Participants had 2000ms to provide a response via a button box (Nata Technologies, Coquitlam,

Canada), where the buttons beneath their index, middle, and ring fingers corresponded to the left-to-right onscreen arrangement

of the response labels. No feedback was given. After the response window, the participant saw a fixation cross for a jittered interval

of 250-1000ms. Each run included 96 trials (maximum duration 6000ms), comprising 72 experimental trials (3 voices x 8 stimuli x 3

repetitions each) and 24 null trials (fixation only; mean duration = 5000ms). Stimulus order was pseudorandomised within each run,

and the left-to-right assignment of response options was randomised between runs.

Audio stimuli were delivered at a comfortable volume using MR-compatible earbuds (S14; Sensimetrics, Malden, MA). Visual dis-

plays were projected (Seiko Epson Corporation, Shinjuku, Japan) to a screen in the scanner bore. The total duration of scanning ses-

sion was approximately 1 hour per participant.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of behavioral data
All of the behavioural data from the familiarisation training, refresher training, and in-scanner tasks was analysed in RStudio (Version

2023.12.1.402).

For the familiarisation and refresher training, responses were coded as correct or incorrect per trial. Mean accuracy was then

calculated as a percentage per voice condition (Familiar, Lab, unfamiliar) per participant. Group performance was summarised using

means and standard deviations per voice and task. Refresher session data were not recorded for 1 participant due to them

completing the task in preview mode on Gorilla.

For the in-scanner task, trial-wise data were coded in terms of accuracy (1 = correct, 0 = incorrect), whether a timeout occurred,

and the selected response category (Familiar, Lab, or New). Overall accuracy per voice condition (Familiar, Lab, New) and per partic-

ipant was calculated as a percentage, and group performance was summarised with means. To statistically compare performance

across the three conditions, data per voice condition were summarised as unbiased hit rates (Hu scores) using the following formula

(using the ‘‘Alex’’ voice as the example):

ðHitsð“Alex”Þ =Total “Alex” trialsÞ x ðHitsð“Alex”Þ =Total “Alex” responsesÞ
Hu scores were arcsine transformed and entered into a linear mixed model, which was estimated using the lme4 package57 in R

with voice condition as a fixed effect and participant as a random intercept:

Hu � Condition+ ð1jppidÞ
Significance of the fixed effect of Condition was estimated using ANOVA to compare the full model with a model lacking the fixed

effect. Post-hoc pairwise comparisons with Bonferroni correction were performed using the emmeans package.58

Imaging Methods
MRI data were acquired on a 3T Siemens MAGNETOM Prisma scanner with a 32-channel head coil (Siemens Healthcare, Erlangen,

Germany). EPI data were collected using x4 multiband acceleration59,60 with no in-plane acceleration (TR = 1000 ms, TE = 35.2 ms,

flip angle = 60 deg., slice tilt = 35 deg., phase-encoding direction = A-P, bandwidth = 2620 Hz/Px, echo spacing = 0.56 ms, excite

pulse duration = 4060 us; 48 interleaved slices, slice thickness = 2.0mm, in-plane resolution = 2.0 mm). Two phase-encode reversed

volumes were acquired per run for unwarping. Each participant also underwent a GRAPPA-accelerated, T1-weighted MPRAGE

anatomical MRI scan (TR = 2.3 seconds, TE = 2.98 ms, 208 sagittal slices, slice thickness = 1.0mm, resolution = 1.0 mm).
Current Biology 35, 2424–2432.e1–e6, May 19, 2025 e3



ll
OPEN ACCESS Report
Imaging pre-processing
The fMRI data were preprocessed using SPM12 (Version 7771) and AFNI (Version AFNI_23.3.07). After the first 5 functional volumes

were discarded to account magnetic saturation effects, the functional and anatomical images for each participant were manually

aligned with the origin. The EPI data were then unwarped in AFNI using the phase-encode reversed images. In SPM12, the images

were then realigned, co-registered with the anatomical image, and normalised to the MNI template using parameters generated via

the segmentation of the anatomical image.

For each participant, a univariate general linear model was constructed and estimated in SPM12 for use in Representational Sim-

ilarity Analysis. All experimental and null trial onsets, aswell as trial responses, weremodelled as instantaneous events and convolved

with the canonical haemodynamic response function. The 24 unique experimental items were modelled within individual regressors

per run (i.e. 24 voice stimuli containing 3 events each). All 24 null events were modelled within a single regressor per run. Two further

regressorsmodelled the timepoint of correct and incorrect task responses, respectively. For each timeout trialwhere no responsewas

given, the onset was defined by adding the mean response time across all experimental trials to the timepoint at which the response

screen appeared. Movement parameters calculated during realignment were also modelled per run, in six regressors of no interest.

Contrast estimatemapswere then calculated for eachexperimental itemversus the null baseline (averagedacross all runs). Finally, a T

map containing the 24 contrast volumes (24 x item > baseline) was saved per participant for use in the multivariate analyses.

Imaging design
Representational Similarity Analysis

Representational Similarity Analysis (RSA) was performed using a searchlight approach within the CoSMoMVPA toolbox61 in

MATLAB. Specifically, we extracted neural response patterns to between- and within-voice identity comparisons, and compared

these with hypothetical models of ‘‘telling together and ‘‘telling apart’’ while accounting for acoustic properties of the stimuli.

Searchlight volumes comprised 100 voxels were constructed around each voxel in a pre-defined mask that comprised functional

regions of interest previously identified as voice-, face-, and person-selective in a separate study20 (see also RSA searchlight mask

below). For each searchlight volume, an observed neural dissimilarity matrix (ONDM) was then generated for each participant: Taking

the participant’s item-wise T contrast maps (24 x Item > Baseline, averaged across runs) as input, neural response patterns for each

itemwere defined as the T values across all 100 voxels within the searchlight. Neural dissimilarity values for all possible pairwise com-

parisons of the 24 items (i.e. ((24 x 24) - 24) / 2 = 276 unique comparisons) were then calculated as 1 minus the Pearson’s correlation

(1 – r) between the response patterns for each pair. Due to concerns about the effects ofmean-centering on the relationships between

conditions for multivariate correlation analyses,62,63 we did not employ mean-centering before calculating dissimilarity values.

RSA proceeded as follows: For each participant and each tested hypothetical model, a partial Spearman correlation was per-

formed per searchlight volume between the ONDM and the hypothetical model representational dissimilarity matrix (RDM; see hy-

pothetical model representational dissimilarity matrices (RDMs)), while controlling for an acoustic model RDM (see acoustic model

representational dissimilarity matrices (RDMs)). The output correlation coefficients were Fisher-to-z transformed to enable later com-

parisons across participants. The partial correlation procedure thus resulted in a brain map of Fisher-transformed correlation values

at each voxel in the searchlight mask, where the magnitude of correlation values expressed how well the hypothetical model RDM

characterised the observed neural dissimilarity in response to the different stimuli and voice identities.

To test the statistical significance of neural representations, all participant correlation maps per hypothetical model were analysed

at group level via voxel-wise one-sample t-tests to compare correlation values with 0. This produced a group-level brain activation

map of corresponding z-scores per tested model. Statistics were adjusted for multiple comparisons using threshold-free cluster

enhancement (TFCE64) with 10,000 iterations. To test for both positive and negative brain-model relationships, the TFCE-corrected

maps were finally voxel-wise thresholded at both z = +1.96 and z = -1.96, respectively. This threshold corresponds to p <.05 after

correction for multiple comparisons. Due to the possibility of multiplemaximum values within TFCE-correctedmaps, the uncorrected

group maps were used to identify peak voxels for visualisation of ONDMs at those locations. Brain data were visualised and anatom-

ically labelled using Mango (Research Imaging Institute, UTHSCSA). All group searchlight maps are available as open data (Open

Science Framework: http://doi.org/10.17605/OSF.IO/QRZWG).

Hypothetical model Representational Dissimilarity Matrices

To address our research questions about the expected similarity of neural responses based on voice identity, we constructed several

representational dissimilarity matrices (RDMs) that defined our study’s predictions. Each RDM had the same overall structure as the

ONDM, with 276 unique cells defining predicted dissimilarity for a given pair of items in the experiment.

To test whether brain representations of voice identities align with a theoretical framework of telling together and telling apart, we

constructed hypothetical model RDMs in which within-identity comparisons were coded as similar (0), and between-identity com-

parisons were coded as dissimilar (1). Seven such RDMs were constructed in order to inspect representations across all voices

as well as specific voice pairings:

d Between-Speaker > Within-Speaker (All Voices): Familiar-Lab =1, Familiar-New = 1, Lab-New =1; Familiar-Familiar = 0, Lab-

Lab = 0, New-New = 0)

d Between Speaker > Within-Speaker (Voice Pair): Familiar-Lab = 1, Familiar-Familiar = 0

d Between Speaker > Within-Speaker (Voice Pair): Familiar-Lab = 1, Lab-Lab = 0

d Between Speaker > Within-Speaker (Voice Pair): Familiar-New = 1, Familiar-Familiar = 0
e4 Current Biology 35, 2424–2432.e1–e6, May 19, 2025
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d Between Speaker > Within-Speaker (Voice Pair): Familiar-New = 1, New-New = 0

d Between Speaker > Within-Speaker (Voice Pair): Lab-New = 1, Lab-Lab = 0

d Between Speaker > Within-Speaker (Voice Pair): Lab-New = 1, New-New = 0

To test whether brain representations of voice identities are shaped by speaker familiarity, we constructed hypothetical model

RDMs in which within-identity comparisons were coded as more similar (lower values) depending on increasing familiarity. Four

such RDMs were constructed, in order to inspect representations across all voices as well as specific voice pairings :

Within-speaker dissimilarity ðAll VoicesÞ : Familiar-Familiar = 1;Lab-Lab = 2;New-New = 3
Within-speaker dissimilarity ðVoice PairÞ : Familiar-Familiar = 0;Lab-Lab = 1
Within-speaker dissimilarity ðVoice PairÞ : Familiar-Familiar = 0;New-New = 1
Within-speaker dissimilarity ðVoice PairÞ : Lab-Lab = 0;New-New = 1

For all hypothetical model RDMs, the diagonal and all non-relevant item comparisons were excluded from the analysis (i.e. coded

with NaN). The final hypothetical model RDMs are available as open data(Open Science Framework: http://doi.org/10.17605/OSF.

IO/QRZWG).

Acoustic model Representational Dissimilarity Matrices

As our focus was on the perceptual representation of voices rather than basic auditory processing, we constructed an additional

acoustic representational dissimilarity matrix (RDM) per participant to account for the basic acoustic similarities of the voice stimuli.

Acoustic dissimilarity was calculated by computing the Long-Term Average Spectra (LTAS) of voice samples using the librosa pack-

age within Python.52 For each voice stimulus (8 items x 3 identities per participant), we first performed a Short-Term Fourier Trans-

form (STFT). Second, we averaged the power spectra obtained for all windows of the STFT across the time axis. Third, for all pairs of

voice samples presented in a task to a participant, we calculated the cosine similarity between averaged power spectra. Finally, we

deduced dissimilarity scores from the cosine similarities and compiled them in a matrix with dimensions matching the hypothetical

model RDMs. The final acoustic model RDMs per participant are available as open data (Open Science Framework: http://doi.org/10.

17605/OSF.IO/QRZWG).

RSA Searchlight mask

We conducted searchlight analyses within a pre-defined binarisedmask, informed by previous work in the person identity perception

literature. The mask was based on group-level probabilistic maps of face-selective, voice-selective, and multi-modal person-selec-

tive regions, based on functional localiser experiments run by Tsantani et al.,20 with a separate sample of participants. Voice-selec-

tive regions were identified by contrasting listeners’ neural responses to human (verbal and non-verbal) vocalisations compared to

man-made or environmental sounds in two separate localiser tasks.20,24 These regions included bilateral superior temporal sulci

(STS) and superior temporal gyri (STG), and the bilateral temporal voice areas (TVAs24), and encompassed primary auditory cortex

in both hemispheres. Face-selective regions were identified by comparing neural responses to silent non-speaking videos of famous

and non-famous faces to silent videos of moving natural or man-made objects. These regions comprised tissue within the right oc-

cipital gyrus (‘‘occipital face area’’/OFA) and the right fusiform gyrus (‘‘fusiform face area’’/FFA), as well as the right posterior STS.

Multi-modal person-selective regions were established by comparing neural responses to audio-visual speaking clips of famous

and non-famous people to audio-visual clips of moving human-made objects or natural scenes. These regions comprised the pre-

cuneus/posterior cingulate, frontal pole/superior frontal gyrus, and orbitofrontal cortex/ventromedial prefrontal cortex, and bilateral

temporal poles/anterior inferior temporal cortex.

Using the imcalc tools in SPM, a probabilistic mask of each of the regions of interest from Tsantani et al.,20 was thresholded to

include voxels present in the individual normalised masks of at least 10 participants (33.3%) in their sample. The final mask image

was formed by summing the thresholded ROI images into a single image, binarising this combined image, and finally reslicing to voxel

dimensions of 2 x 2 x 2mm to match the resolution of the current study’s EPI images. The final mask image is available as open data

(Open Science Framework: http://doi.org/10.17605/OSF.IO/QRZWG).

For some participants with larger heads, the EPI data acquisition field of view failed to capture all voxels in the searchlight mask.

This affected parts of the precuneus region of interest and, more rarely, the most posterior parts of the STG/STS regions, in a subset

of participants. The CosMoMVPA toolbox accounts for missing voxels by adjusting the degrees of freedom in statistical tests, such

that group results could be reported for the full searchlight mask. A heatmap of coverage across the 26 participants is included as

open data (Open Science Framework: http://doi.org/10.17605/OSF.IO/QRZWG).

Exploratory univariate analysis

An exploratory univariate analysis was conducted in SPM12 in order to compare the magnitude of the BOLD response to the three

voice identities in the experiment. For this, the preprocessed fMRI data were smoothed using a Gaussian kernel of 6mm full width at

half maximum (FWHM). For each participant, a univariate general linear model was then constructed and estimated in SPM12. All
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experimental and null trial onsets, as well as trial responses, were modelled as instantaneous events and convolved with the canon-

ical haemodynamic response function. The 8 experimental items per voice weremodelled as a single regressor per voice and per run.

The null events, responses, and movement parameters were modelled as for the RSA analysis (see imaging pre-processing). To ac-

count for participants missing some voxels in the searchlight mask, implicit masking was removed by setting the threshold to -Inf for

model estimation. Contrast estimate maps were calculated per participant for each voice condition versus null baseline (averaged

across all runs), as well as for Familiar > Lab [1 -1], Familiar > New [1 -1], and Lab > New [1 -1].

Four group models were estimated in SPM12:

d One-way within subjects ANOVA: This included the per-participant contrast images Familiar > Baseline, Lab > Baseline, and

New > Baseline. A Main Effect of Voice Condition was estimated using the contrast [1 -1 0; 0 1 -1].

d One-sample t-test Familiar vs Lab: This included the per-participant contrast image Familiar > Lab. The effect Familiar > Lab

was estimated using the contrast [1], and Lab > Familiar estimated using the contrast [-1].

d One-sample t-test Familiar vs New: This included the per-participant contrast image Familiar > New. The effect Familiar > New

was estimated using the contrast [1], and New > Familiar estimated using the contrast [-1].

d One-sample t-test Lab vs New: This included the per-participant contrast image Lab > New. The effect Lab > New was esti-

mated using the contrast [1], and New > Lab estimated using the contrast [-1].

All group models included an explicit mask comprising the same searchlight mask as applied for RSA. All group results are dis-

played and reported at a voxel height threshold of p <.05 with familywise error correction for multiple comparisons. Brain data

were visualised and anatomically labelled using Mango (Research Imaging Institute, UTHSCSA). Please see Figure S1 and Table S3.
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