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Abstract

Shrinkage estimation is a statistical methodology that is used to improve parameter

estimation by reducing the mean square error, which is expected to improve the out-

of-sample performance. This paper focuses on multiple linear regression estimators

since the standard ordinary least square estimator is often computationally insta-

ble. Its penalized variants such as ridge and LASSO are the usual non-parametric

solutions, and such shrinkage methods lead to sparse models and reduce overfitting.

Another shrinkage class is the Stein-type shrinkage estimators that use Bayesian

arguments to leverage prior information so that the resulting estimators dominate

the maximum likelihood estimator. A third class of shrinkage estimators has been

used with great success where various estimators are optimally combined to take

advantage of the positive traits of each estimator. We provide seven non-parametric

multiplicative and linear shrinkage estimators, and provide theoretical guarantees

that these new estimators have a lower mean square error than the ordinary least

square estimator. We illustrate that such theoretical guarantees are reflected in syn-

thetic and real data experiments, and we choose genetics, machine learning, and

finance applications to convince the reader about our contributions.
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1 Introduction

Shrinkage is a statistical method that was propelled by Stein’s Paradox (Stein, 1956, 1960;

James and Stein, 1961), which showed that the high-dimensionalMaximum Likelihood Estimator

(MLE) is not the estimator with the lowest estimation error whenever the data are drawn

from Gaussian populations. Such a puzzling result surprised the statistical community, but

this paradox is explained by the fact that shrinkage introduces a bias-variance tradeoff that

improves estimation in a global sense. Stein’s shrinkage estimator fundamentally changed the

way statisticians could approach high-dimensional estimation, and the main idea stems from

introducing bias, which could improve the overall estimation accuracy, and it has been influential

in various areas such as applied mathematics, finance, machine learning and statistics.

The original Stein’s result showed how to reduce the estimation error for a mean parameter

vector under Gaussian parametric assumptions. Specifically, Stein (1956) demonstrated that

by combining the information across all variables, one may reduce the Mean Squared Error

(MSE) – which is the sum of the component-wise mean squared errors – even if the variables are

independent. Stein’s result was illustrated by applying a multiplicative shrinkage (also known

as contraction) to a standard estimator (e.g., MLE), and therefore, this method is known to

shrink around zero, since the Stein’s estimator is a weighted average of the standard estimator

and zero-valued estimator known as the target estimator. This Stein-type estimator can further

be improved by choosing a more natural target estimator than shrinking around 0, and such

a method is known as linear shrinkage; e.g., see (Lindley, 1962; Efron and Morris, 1972) that

proposed shrinking around the mean of variables’ means, which is a natural choice. A wide range

of shrinkage results under parametric assumptions are extended from Gaussian distributions to

spherically symmetric distributions, and a summary could be found in (Fourdrinier et al., 2018).

There is a wide range of Stein’s Shrinkage applications in the literature, and we take stock of

these applications. First, statistical decision theory was the first to use Stein’s method at large

scale to improve the high-dimensional estimation (Fourdrinier et al., 2018). Second, machine

learning and statistical learning fields massively explored Stein’s idea to achieve sparse and/or

more stable estimation methods; e.g., see Tikhonov penalization (Tikhonov, 1963; Hoerl and

Kennard, 1970), Basic pursuit (Chen and Donoho, 1994), Least Absolute Shrinkage and Selection

Operator (LASSO) (Tibshirani, 1996), Elastic-Net (Zou and Hastie, 2005), Generalized LASSO,

(She, 2009; Tibshirani and Taylor, 2011), and more details are provided in Section 1.1. Third,
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a more recent adoption of Stein’s idea has been in the finance literature where linear shrinkage

has been used to stabilize the erratic behavior of the empirical covariance matrix (Ledoit and

Wolf, 2004, 2022) via distribution-free methods, while multiplicative and linear shrinkage are

used for the weights of industry standard portfolios to optimize the out-of-sample performance

of such shrinkage portfolios (Kan and Zhou, 2007; Tu and Zhou, 2011; Kan and Lassance, 2024;

Lassance et al., 2024) by assuming Gaussian or some elliptically distributed populations.

The aim of this paper is to provide multiplicative and linear shrinkage estimators for multivariate

linear regression parameters that are distribution-free, i.e., without relying on any parametric

assumption on the dependent variable, so that the estimation error (measured in terms of MSE)

is reduced. Under parametric assumptions – e.g., Gaussian distributed dependent variable –

the solution is well-known (Oman, 1991) as the vector parameter in a multivariate linear regres-

sion is Gaussian distributed and thus, the well-known Stein’s contraction/shrinkage method for

mean vectors drawn from multivariate Gaussian populations could be deployed in this particular

setting. We provide five multiplicative shrinkage estimators, one linear shrinkage estimator and

one non-standard shrinkage estimator that show good performance in simulated and real-data

analyses.

Our main contributions are three-fold. First, we introduce seven shrinkage distribution-free

estimators and show their asymptotic properties for multivariate linear regression parameters

when the number of covariates is fixed. Second, we empirically show that two of our shrinkage

estimators significantly outperform the OLS estimator when both the sample size and number of

covariates are large. Third, we find that some shrinkage estimators are very effective in reducing

the notoriously high estimation error in Generalized Linear Modeling (GLM), though such a

conclusion is validated in a follow-up paper of (Asimit et al., 2025a) via extensive simulated and

real-data analyses.

1.1 Literature Review

Penalized multivariate linear regression (MLR) is a widely studied technique in multivariate

analysis to produce accurate and/or parsimonious prediction models. That is, for a response

vector y ∈ ℜn, covariates matrix X ∈ ℜn×(p+1) corresponding to the p covariates/features and

penalty function g : ℜp → ℜ+, the problem is to understand the properties of the following
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estimator:

β̂ := argmin
β∈ℜp+1

1

2
||y−Xβ||22 + g(β), (1.1)

where || · ||p is the usual p-norm on a real vector space. From the computational perspective,

(1.1) implies solving an (optimization) instance that may or may not have a unique solution;

some of these optimal solutions may be boundary solutions of the feasibility set, which could be

problematic if boundary around infinity regions are attained. Such undesirable realizations are

controlled through appropriate penalty functions g that have been effective to deploy accurate

and/or parsimonious prediction models.

The trivial case with no penalization, g(·) = 0 on ℜp+1, is the Ordinary Least Square (OLS)

estimator known as the Best Linear Unbiased Estimator (BLUE), in the sense that there is no

other linear and unbiased estimator with lower MSE; this property is a consequence of theGauss–

Markov Theorem and it has been vastly investigated in the linear modeling literature. One class

of (convex) penalty functions is known as the Tikhonov penalization with g(β) = λ||Dβ||22
where λ ≥ 0 and D ∈ ℜq×(p+1) with q ≥ 1 (Tikhonov, 1963); D is known as the Tikhonov

matrix and a special case is the identity matrix setting, i.e., D = Ip+1, which is known as Ridge

Regression (RR) that was formalized in (Hoerl and Kennard, 1970) but the authors discussed a

natural extension known as Generalized RR where g(β) = ||diag(λ)β||22 where λ ≥ 0. Another

class of (convex) penalty functions is known as Least Absolute Shrinkage and Selection Operator

(LASSO) with g(β) = λ||β||1 where λ ≥ 0 and it was formalized in the seminal paper of

(Tibshirani, 1996) which is mathematically equivalent to the Basic pursuit problem defined

in (Chen and Donoho, 1994); an interesting generalization, known as Generalized LASSO, is

defined in (Tibshirani and Taylor, 2011) with a similar formulation discussed in (She, 2009),

where g(β) = λ||Dβ||1 with λ ≥ 0 and D ∈ ℜq×(p+1) such that q ≥ 1. Such penalization

methods are convex and thus, solving (1.1) would require convex optimization algorithms that

are scalable and have nice convergence properties. Elastic-Net is introduced by (Zou and Hastie,

2005) and combines the good properties of RR and LASSO.

There are other penalized regressions beyond L1 and L2 formulations. Bridge regression is

defined in (Fu, 1998) g(β) = λ||Dβ||γγ where λ ≥ 0, γ > 0 and D = Ip+1. A wide class of

concave penalization is introduced in (Fan and Li, 2001) that is shown to equally apply to

MLR and its well-known extension, Generalized Linear Model (GLM) discussed in (Nelder and
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Wedderburn, 1972; McCullagh et al., 1989; Wood, 2017); solving such a general problem does

not come without additional computational drawbacks and a Newton-Raphson-like algorithm

is provided which (in principle) makes the parameters’ tuning even more challenging than the

convex 1-norm and 2-norm penalizations.

This paper aims to produce shrinkage MLR estimators that do not require cross-validation and

do not consider variable selection aspects. For this reason, Σ := XTX is assumed to have full

rank, and thus, the OLS and RR estimators β̂OLS = Σ−1XTy and β̂RR(λ) = (Σ + λIp)
−1XTy

are uniquely determined; since β̂RR(0) = β̂OLS and β̂RR(∞) = 0, it is sometimes inferred that

RR is a shrinkage estimator around the origin. Similar arguments could be used to infer that

all previously mentioned penalized MLR estimators are indeed shrinkage estimators, but all of

them require cross-validation to estimate the penalty parameters. We aim not to rely on cross-

validation that would likely improve the out-of-sample performance. The shrinkage methods

considered in this paper are as follows

i) multiplicative shrinkage – β̂(D) = Dβ̂OLS , where D ∈ ℜ(p+1)×(p+1), and we say that

shrinkage is made around 0 since β̂(0) = 0;

ii) linear shrinkage – β̂(ρ) = (1− ρ)β̂OLS + ρβ̂target, where ρ is the shrinkage intensity, while

β̂target is a target estimator.

The optimal choices for D and ρ are made such that the theoretical MSE of β̂(D) and β̂(ρ) are

minimized. The choice of the target estimator is expected to be a simplified model; e.g., assume

a target estimator with uncorrelated covariates meaning that β̂ind =
(
diag(Σ)

)−1
XTy.

The paper is organized as follows: our main results are amassed in Section 2; a summary of

our numerical experiments are in Section 3, while the summary conclusions are gathered in

Section 4. All proofs and supporting information are provided in the SI Appendices.

2 Main Results

We start with the multiplicative shrinkage estimators in Section 2.1, followed by the linear and

slab shrinkage estimators in Section 2.2 and Section 2.3, respectively. The main features of these

estimators are compared in Section 2.4, where we also provide another novel shrinkage estimator

that is designed to outperform the RR estimator. Finally, empirical evidence is provided in

5



Section 2.5 to understand the performance of our novel estimators when the sample size and

number of covariates are large.

The main set of assumptions used across all sections are given as Assumption 2.1.

Assumption 2.1. Let Σ := XTX with Σ ≻ 0. The linear model assumes that Yi = xTi β + ϵi

for all 1 ≤ i ≤ n, where xi is the ith column of XT and β is the “true” model parameter vector.

Further, the error is independent and identically distributed with zero mean and variance σ2.

We denote al(u) := uTΣ−lu for all l ∈ Z and u ∈ ℜp+1, where by definition, Σ−0 := Ip+1. Note

that al(u) > 0 for all u ∈ ℜp+1 \ {0} and l ∈ Z if Σ ≻ 0 as required by Assumption 2.1.

2.1 Multiplicative Shrinkage

This class – defined as β̂(D) = Dβ̂OLS , where D ∈ ℜ(p+1)×(p+1) – is discussed in (Hocking et al.,

1976) where D is assumed to be a diagonal matrix and data are in canonical form. Specifically,

the authors showed that the optimal shrinkage estimator – in terms of MSE – could be found

over the following sets: i) D = aIp+1, where a ∈ ℜ (though a > 0 is desirable) which is first

discussed in (Stein, 1960) in a Bayesian setting, and ii) D = diag(b), where b ∈ ℜp+1. We

could recover the results in (Hocking et al., 1976) by removing the data assumption of being in

canonical form, but also a new result when the matrix D is no longer diagonal. These results

are summarized in Theorem 1.

Theorem 1. Let Assumption 2.1 hold, and multiplicative shrinkage is sought by solving

min
D∈D

MSE
(
Dβ̂OLS

)
. (2.1)

i) If (2.1) is solved over the feasible set D1 := {aIp+1 : a ∈ ℜ}, then its solution (known

from now on as Stein (St) estimator) is unique and denoted as a∗β̂OLS, where

a∗ =
βTβ

βTβ +M∗
0

∈ [0, 1), M∗
1 := MSE

(
a∗β̂OLS

)
=

βTβM∗
0

βTβ +M∗
0

, (2.2)

where M∗
0 := MSE

(
β̂OLS

)
= σ2Tr

(
Σ−1

)
.

ii) If (2.1) is solved over the feasible set D2 := {diag(b) : b ∈ ℜp+1}, then its solution

(known from now on as Diagonal shrinkage (DSh) estimator) is unique and denoted as
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diag(b∗)β̂OLS, where

b∗k =
β2
k

β2
k + σ2σk

∈ [0, 1), 0≤k≤p, M∗
2 := MSE

(
diag(b∗)β̂OLS

)
=

p∑
k=0

b∗kσ
2σk, (2.3)

where σk =
(
Σ−1

)
kk

> 0 for all 0 ≤ k ≤ p.

iii) If (2.1) is solved over the feasible set D3 :=
{
C ∈ ℜ(p+1)×(p+1)

}
, then its solution (known

from now on as Shrinkage (Sh) estimator) is unique and denoted as C∗β̂OLS, where C∗

is the unique solution of the Sylvester equation (in C) Σ−1C+CββT = ββT and

M∗
3 := MSE

(
C∗β̂OLS

)
= σ2Tr

(
(C∗)T Σ−1C∗

)
+ βT (C∗−Ip+1)

T (C∗−Ip+1)β. (2.4)

iv) It is also true that

M∗
3 ≤ M∗

2 ≤ M∗
1 < M∗

0 . (2.5)

The middle inequality becomes an identity if and only if
β2
k

σk
=

β2
0

σ0
for all 1 ≤ k ≤ p, while

the left-hand side inequality becomes an identity if and only if C∗ is diagonal.

Theorem 1 establishes the optimal shrinkage estimators for three search sets (solving (2.1) over

D1, D2 and D3), but a∗β̂OLS , diag(b∗)β̂OLS and C∗β̂OLS are oracle estimators as all depend

upon the unknown population β and σ2. We could replace β and σ2 by their unbiased estimators

β̂ = β̂OLS and σ̂2 =
1

n− p− 1
||y−Xβ̂OLS ||22 (2.6)

and define the corresponding plug-in bona fide estimators as follows:

â∗β̂OLS , diag(b̂∗)β̂OLS and Ĉ∗β̂OLS , where (2.7)

â∗ :=

(
β̂OLS

)T
β̂OLS(

β̂OLS
)T

β̂OLS + M̂∗
0

, b̂∗k =

(
β̂OLS
k

)2
(
β̂OLS
k

)2
+ σ̂2σk

with 0≤k≤p,

M̂∗
0 := σ̂2Tr

(
Σ−1

)
and Ĉ∗ is the unique solution of the Sylvester equation (in C)

Σ−1C+Cβ̂OLS
(
β̂OLS

)T
= β̂OLS

(
β̂OLS

)T
. (2.8)
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Note that so far, n has been assumed to be fixed and the asymptotic properties of our estimators

would require adding the index n to each quantity to signify the fact that the observed sample

is based on the first n observations, but we refrain from further complicating our notations.

For example, Theorem 2 requires 1
nΣ → Σ0 as n → ∞, which means that the (non-random)

covariates lead to a sequence of real-valued matrices 1
nX

TX that converges to an unknown real-

valued matrix Σ0, though we remove the index n. Theorem 2 shows the consistency of our St

and DSh bona fide estimators, and unfortunately, we could not show the same property for the

Sh bona fide estimator.

Theorem 2. If Assumption 2.1 holds and 1
nΣ → Σ0 as n → ∞ with Σ0 ≻ 0 for a fixed p, then

â∗β̂OLS − a∗β̂OLS p→ 0, (2.9a)

diag(b̂∗)β̂OLS − diag(b∗)β̂OLS p→ 0, (2.9b)

â∗ − a∗
L2→ 0 and b̂∗ − b∗

L2→ 0. (2.9c)

The two bona fide estimators (â∗β̂OLS and diag(b̂∗)β̂OLS) are consistent estimators of their

equivalent oracle estimators (a∗βOLS and diag(b∗)βOLS), i.e., the St and DSh estimators have

the following properties

∣∣∣∣∣∣â∗β̂OLS − a∗β̂OLS
∣∣∣∣∣∣2
2

L2→ 0 and
∣∣∣∣∣∣ diag(b̂∗)β̂OLS − diag(b∗)β̂OLS

∣∣∣∣∣∣2
2

L2→ 0; (2.10)

furthermore, the two pairs of estimators have the same asymptotic expected loss, i.e., â∗β̂OLS and

diag(b̂∗)β̂OLS have the same asymptotic expected loss as a∗βOLS and diag(b∗)βOLS, respectively

since

E
∣∣∣∣∣∣â∗β̂OLS − β

∣∣∣∣∣∣2
2
− E

∣∣∣∣∣∣a∗β̂OLS − β
∣∣∣∣∣∣2
2
→ 0, (2.11a)

E
∣∣∣∣∣∣ diag(b̂∗)β̂OLS − β

∣∣∣∣∣∣2
2
− E

∣∣∣∣∣∣ diag(b∗)β̂OLS − β
∣∣∣∣∣∣2
2
→ 0. (2.11b)

2.2 Linear Shrinkage

We now look at the linear shrinkage case which focuses on identifying the optimal linear shrinkage

estimator that is a weighted average between an OLS estimator and a target estimator β̂target.

We have identified one possible choice for the target estimator, namely, β̂ind, by assuming that

data are standardized, i.e., the dependent variable and covariates have zero mean. Therefore, we
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write the estimation problem in this case by excluding the intercept and looking for estimators

that go through the origin, i.e., yi = β1x1i + . . . βpxpi + ϵi for all 1 ≤ i ≤ n. This means that

Σ ∈ ℜp×p and we aim to choose the minimal MSE estimator from the following set of options

β̂ind(ρ) := (1− ρ)
̂̂
β

OLS

+ ρβ̂ind =
(
ρΣ̃−1Σ+ (1− ρ)Ip

) ̂̂
β

OLS

:= Σ(ρ)
̂̂
β

OLS

, (2.12)

where Σ̃ = diag(Σ) and
̂̂
β

OLS

is the OLS estimator through the origin, while ρ is called the

shrinkage intensity estimator. Note that such an optimal estimator has an MSE that is no

smaller than M∗
3 , but while the oracle Sh and its bona fide estimator are designed to be the

“best” multiplicative shrinkage estimator, the latter has its computational drawbacks since the

numerical solutions for solving a Sylvester equation for large p is very challenging and there is

no theoretical result to ensure that it is a consistent estimator. Thus, one may prefer using a

simpler optimal shrinkage estimator such as DSh or St, which (both or one of them) may have

a smaller or larger MSE than the optimal Linear shrinkage estimator discussed in Theorem 3.

Theorem 3. Let Assumption 2.1 hold, and linear shrinkage is sought by solving

min
ρ∈ℜ

MSE
(
β̂ind(ρ)

)
, (2.13)

where β̂ind = Σ̃−1XTy. Assume that the p covariates are standardized to have a zero mean.

The unique solution of (2.13) (known from now on as Linear Shrinkage (LSh) estimator) is

β̂ind(ρ∗) = Σ(ρ∗)
̂̂
β

OLS

, where Σ(·) on ℜ and
̂̂
β

OLS

are defined in (2.12), and

ρ∗ =
t2 − t1

t2 − t1 + t3
∈ [0, 1], M∗ind := MSE

(
β̂ind(ρ∗)

)
=

t2(t1 + t3)− t21
t2 − t1 + t3

, (2.14)

with

t1 := σ2Tr
(
Σ̃−1

)
, t2 := σ2Tr

(
Σ−1

)
, t3 := βT

(
Σ̃−1Σ− Ip

)2
β. (2.15)

Theorem 3 identifies the optimal oracle LSh estimator as it depends upon the unknown popu-

lation β and σ2. As before, we replace these unknown parameters by their unbiased estimators

in (2.6) and define the corresponding plug-in bona fide estimator as follows:

β̂ind(ρ̂∗) where ρ̂∗ =
t̂2 − t̂1

t̂2 − t̂1 + t̂3
, (2.16)
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t̂1 := σ̂2Tr
(
Σ̃−1

)
, t̂2 := σ̂2Tr

(
Σ−1

)
, t̂3 :=

( ̂̂
β

OLS)T (
Σ̃−1Σ− Ip

)2 ̂̂
β

OLS

.

The asymptotic properties of LSh are given as Theorem 4 which is a replica of Theorem 2.

Theorem 4. Let Assumption 2.1 hold for a fixed p such that 1
nΣ → Σ0 as n → ∞ with Σ0 ≻ 0.

If βT
(
Σ̃−1
0 Σ0 − Ip

)2
β ̸= 0 with Σ̃0 := diag(Σ0), then

β̂ind(ρ̂∗)− β̂ind(ρ∗)
p→ 0 and ρ̂∗ − ρ∗

L2→ 0. (2.17)

The bona fide LSh estimator, β̂ind(ρ̂∗), is a consistent estimator of its equivalent oracle estima-

tor, β̂ind(ρ∗), i.e.

∣∣∣∣∣∣β̂ind(ρ̂∗)− β̂ind(ρ∗)
∣∣∣∣∣∣2
2

L2→ 0; (2.18)

furthermore, the bona fide and oracle LSh estimators have the same asymptotic expected loss,

i.e.,

E
∣∣∣∣∣∣β̂ind(ρ̂∗)− β

∣∣∣∣∣∣2
2
− E

∣∣∣∣∣∣β̂ind(ρ∗)− β
∣∣∣∣∣∣2
2
→ 0. (2.19)

Note that Theorem 4 assumes βT
(
Σ̃−1
0 Σ0−Ip

)2
β ̸= 0, which is a mild assumption as βT

(
Σ̃−1
0 Σ0−

Ip
)2
β ≥ 0 is always true.

2.3 Slab Regression

We introduce a new penalized regression model, which is given as in (1.1) with g(β) := µ
(
uTβ)2,

where µ ≥ 0 and u ∈ ℜp+1. The new estimator, named (simple) Slab Regression (SR) estimator,

is defined as follows:

β̂SR(µ;u) := argmin
β∈ℜp+1

1

2
||y−Xβ||22 + µ

(
uTβ)2 = argmin

β∈ℜp+1

βT
(
Σ+ µuuT

)
β − 2βTXTy, (2.20)

and has the following closed-form due to the well-known Sherman-Morrison identity

β̂SR(µ;u) =
(
Σ+ µuuT

)−1
XTy =

(
Σ−1 − µ

1 + µuTΣ−1u
Σ−1uuTΣ−1

)
XTy. (2.21)

Note that Σ ≻ 0 due to Assumption 2.1, and uuT ⪰ 0 is true for any u ∈ ℜp+1, which in turn

implies that Σ + µuuT ≻ 0, and thus, its inverse exists. In Euclidean geometry, “slab” is a
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region between two parallel hyperplanes, which explains the chosen name for our proposed SR

estimator.

It is interesting to note that the SR is a special case of the Generalized LASSO estimator

introduced in (Tibshirani and Taylor, 2011), but SR is aimed to not rely on cross-validation and

is not designed to achieve a parsimonious model as the Generalized LASSO is primarily aiming

to. It is clear the Generalized LASSO has a very general formulation that has some interesting

properties including uniqueness under some conditions (Ali and Tibshirani, 2019), which is very

helpful when characterizing the asymptotic properties of such an estimator.

We are now ready to provide our first main result of this section, stated as Theorem 5, which

provides a mathematical characterization of our proposed SR estimator.

Theorem 5. Let µ ≥ 0 and u ∈ ℜp+1 \ {0} such that Assumption 2.1 is in force.

i) The instance in (2.20) has a unique solution as in (2.21) that is an interior point of its

feasibility set ℜp+1. Further,

MSE
(
β̂SR(µ;u)

)
= σ2Tr

((
Ip+1 −

µ

1 + µδ
A

)T

Σ−1

(
Ip+1 −

µ

1 + µδ
A

))
(2.22)

+

(
µ

1 + µδ

)2

βTATAβ

where δ := uTΣ−1u and A := Σ−1uuTwith δ > 0.

ii) For any µ̃ ≥ 0

min
x∈ℜp+1

1

2
||y−Xβ||22 s.t. − µ̃ ≤ uTx ≤ µ̃, (2.23)

has a unique solution that is bounded away from neighborhoods of infinity, and strong

duality holds in (2.23). There exists µ∗ ≥ 0 such that the unique solution of (2.23)

coincides with the optimal solution in (2.20) with µ = µ∗.

The second main result illustrates how to optimally find the penalty parameter µ, which is given

as Theorem 6. A further MSE reduction is possible by looking within the class of SR estimators

with u that have equal entries, i.e., u = v1 with v > 0.

Theorem 6. Let µ ≥ 0 and Assumption 2.1 holds.
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i) Assume u ∈ ℜp+1 \ {0}. There exists µ∗∗(u) ∈ (0,∞] such that MSE
(
β̂SR(·;u)

)
attains

its global minimum on ℜ+ at µ∗∗(u), where

µ∗∗(u) =


σ2a2(u)
∆(u) , if ∆(u) > 0,

∞, if ∆(u) ≤ 0,
(2.24)

and ∆(u) := σ2
(
a0(u)a3(u)− a1(u)a2(u)

)
+ a3(u)

(
βTu

)2
. Then,

MSE
(
β̂SR(µ∗∗(u);u)

)
< MSE

(
β̂OLS

)
(2.25)

and there exists µ∗∗(u) ≤ µ∗∗
U (u) such that

MSE
(
β̂SR(µ∗∗(u);u)

)
<MSE

(
β̂SR(µ;u)

)
<MSE

(
β̂OLS

)
for all 0<µ <µ∗∗

U (u), (2.26)

where µ∗∗
U (u) < ∞ if and only if µ∗∗(u) < ∞. Further,

β̂SR(µ∗∗ (v1); v1)= β̂SR(µ∗∗(1);1)=

(
Ip+1−

µ∗∗(1)

1+µ∗∗(1)a1(1)
Σ−1Jp+1

)
β̂OLS (2.27)

for all v ∈ (0,∞), where Jp+1 an p+ 1 dimensional square matrix of ones.

ii) Assume that u ∈ ℜp+1
+ \ {0}. Then, µ∗∗(u) < ∞ if and only if

u is not an eigenvector of Σ or βTu ̸= 0. (2.28)

The main advantage of our estimator is the existence of an optimal tuning parameter µ – see

(2.24) – that has a guaranteed lower MSE than the OLS estimator for any possible u ̸= 0. The

next question is how to choose u and the most obvious choice would be 1 due to its simplicity

and the MSE invariance property in (2.27). Recall that our SR estimators – either the one in

(2.27) or it is equivalent with a general vector u, i.e., β̂SR
(
µ∗∗(u);u

)
– are shown to have lower

MSE than M∗
0 (MSE of the OLS estimator), but we are not able to conclude whether the SR

estimators have always a lower or higher MSE than M∗
1 or M∗

2 . By design, our SR estimator

has no lower MSE than M∗
3 . The simulation study in Section 3 shows the performance of these

estimators.

SR estimator could be MSE optimal in many ways depending on the slab constraint βTu, and
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for implementation purposes, β̂SR(µ∗∗(u);u) is chosen for a simple choice u = 1 as in (2.27).

This simple slab regression estimator could be extended to multiple slab constraints, and we call

this new estimator as Generalized Slab Regression (GSR) estimator and is defined as follows:

β̂GSR(µ) := argmin
β∈ℜp+1

1

2
||y−Xβ||22 +

∑
l∈L

µl

(
uT
l β
)2

(2.29)

= argmin
β∈ℜp+1

βT

(
Σ+

∑
l∈L

µlulu
T
l

)
β − 2βTXTy,

where ul are some eigenvectors of Σ indexed through l ∈ L ⊆ {0, . . . , p}. Other slab constraint

choices would be possible, but this choice simplifies the remaining derivations; e.g., by taking

the standard basis in ℜp+1, i.e. by choosing L = {0, . . . , p}, ulk = 1 if 0 ≤ l = k ≤ p and ulk = 0

otherwise, then (2.29) becomes the so called Generalized RR discussed in (Hoerl and Kennard,

1970). The next main result, stated as Theorem 7, provides a mathematical characterization of

our proposed GSR estimator.

Theorem 7. Let µ ≥ 0 such that Assumption 2.1 is in force. Further, {λl, 0 ≤ l ≤ p} and

{ul, 0 ≤ l ≤ p} are the paired eigenvalues and corresponding orthonormal eigenvectors of Σ

meaning that ul is the corresponding unit eigenvector of λl for any 0 ≤ l ≤ p. Let L ⊆ {0, . . . , p}

be an index set.

i) The instance in (2.29) has a unique solution as in (2.30) that is an interior point of its

feasibility set ℜp+1.

β̂GSR(µ) =

(
Ip+1 −

∑
l∈L

µlλ
−1
l

1 + µlλ
−1
l

ulu
T
l

)
β̂OLS . (2.30)

Further, the minimal MSE GSR is unique, it is attained at µ∗
l = σ2/(uT

l β)
2 for all l ∈ L,

and its MSE is given by

MSE
(
β̂GSR(µ∗)

)
=
∑
l /∈L

σ2λ−1
l +

∑
l∈L

σ2λ−1
l

(
uT
l β
)2

σ2λ−1
l +

(
uT
l β
)2 . (2.31)

ii) For any µ̃l ≥ 0 with l ∈ L

min
x∈ℜp+1

1

2
||y−Xβ||22 s.t. − µ̃l ≤ uTx ≤ µ̃l, (2.32)

13



has a unique solution that is bounded away from neighborhoods of infinity, and strong

duality holds in (2.32). Further, there exists µ̃∗
l ≥ 0 with l ∈ L such that the unique

solution of (2.32) coincides with the optimal solution in (2.20) with µ = µ∗.

Theorem 7 provides a rich set of MSE optimal GSR estimators that depend upon the selection

of eigenvalues that are adjusted in a certain way; for details, see Section 2.4. We get from (2.30)

that GSR estimators share some properties with the MSE optimal SR estimators (β̂SR(µ∗∗(u);u)

in (2.26) with u ∈ ℜp+1\{0}) as defined in Theorem 6 with MSE no lower than M∗
3 , but both are

shrinkage estimators. Besides that, the two sets are quite different and we defer this discussion

to Section 2.4. We could see from (2.31) that it is optimal to adjust all eigenvalues and choose

the largest index set L = {0, . . . , p}.

Theorem 6 and 7 provide oracles estimators, and as before, we replace β and σ2 by their unbiased

estimators in (2.6) and define the corresponding plug-in bona fide estimator for (2.27) and (2.31)

with L = {0, . . . , p} (as it is optimal to adjust all eigenvalues):

β̂SR
(
µ̂∗∗(1);1

)
=

(
Ip+1−

µ̂∗∗(1)

1+µ̂∗∗(1)a1(1)
Σ−1J

)
β̂OLS , (2.33a)

β̂GSR
(
µ̂∗
)
=

(
Ip+1 −

∑
l∈L

µ̂∗
l λ

−1
l

1 + µ̂∗
l λ

−1
l

ulu
T
l

)
β̂OLS , where (2.33b)

µ̂∗∗ (1) =
σ̂2a2(1)

σ̂2
(
a0(1)a3(1)− a1(1)a2(1)

)
+ a3(1)

(
1T β̂OLS

)2 and (2.33c)

µ̂∗
l = σ̂2/

(
uT
l β̂

OLS
)2

for all 0 ≤ l ≤ p. (2.33d)

Note that we assume a mild condition by imposing 1 to not be an eigenvector of Σ which

guarantees µ∗∗(1) < ∞ in (2.33c); for details, see (2.28). In addition, µ̂∗∗(1) and µ̂∗
l are plug-in

estimator by using (2.24) and Theorem 7 i).

The asymptotic properties of our SR and GSR estimators are given as Theorem 8 and is a replica

of Theorem 2 and 4.

Theorem 8. Let Assumption 2.1 hold for a fixed p such that 1
nΣ → Σ0 as n → ∞ with Σ0 ≻ 0.

For any index set L ⊆ {0, . . . , p}, we have that

β̂SR
(
µ̂∗∗(1);1

)
− β̂SR (µ∗∗(1);1)

p→ 0 if 1 is not an eigenvector of Σ, (2.34a)
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β̂GSR
(
µ̂∗
)
− β̂GSR (µ∗)

p→ 0, if Σ have distinct eigenvalues. (2.34b)

Moreover, the following hold.

i) If 1 is not an eigenvector of Σ, and there exists a universal (that does not depend on n)

positive constant M such that 1
a1(1)

∣∣∣∣Σ∣∣∣∣
F

≤ M , where ||A||F :=
√
Tr(ATA) represents

the Frobenius norm of matrix A, then the SR bona fide estimator, β̂SR
(
µ̂∗∗(1);1

)
, is a

consistent estimator of its oracle estimator, β̂SR (µ∗∗(1);1), i.e.,

∣∣∣∣∣∣β̂SR
(
µ̂∗∗(1);1

)
− β̂SR (µ∗∗(1);1)

∣∣∣∣∣∣2
2

L2→ 0; (2.35)

furthermore, the two estimators have the same asymptotic expected loss, i.e.,

E
∣∣∣∣∣∣β̂SR

(
µ̂∗∗(1);1

)
− β

∣∣∣∣∣∣2
2
− E

∣∣∣∣∣∣β̂SR (µ∗∗(1);1)− β
∣∣∣∣∣∣2
2
→ 0. (2.36)

ii) If Σ has distinct eigenvalues, then the GSR bona fide estimator, β̂GSR
(
µ̂∗
)
, is a consistent

estimator of its oracle estimator, β̂GSR(µ∗), i.e.,

∣∣∣∣∣∣β̂GSR
(
µ̂∗
)
− β̂GSR (µ∗)

∣∣∣∣∣∣2
2

L2→ 0; (2.37)

furthermore, the two estimators have the same asymptotic expected loss, i.e.,

E
∣∣∣∣∣∣β̂GSR

(
µ̂∗
)
− β

∣∣∣∣∣∣2
2
− E

∣∣∣∣∣∣β̂GSR (µ∗)− β
∣∣∣∣∣∣2
2
→ 0. (2.38)

2.4 Comparative Description of Shrinkage Estimators

This section provides a succinct comparative description of our shrinkage estimators introduced

in Sections 2.1 – 2.3. We can achieve that by looking at how the eigenvalues of the covari-

ates covariance matrix are changed by various shrinkage methods introduced in this paper. It

interesting to note that all estimators end up becoming multiplicative shrinkage estimators,

β̂∗ = Dβ̂OLS with D ∈ ℜ(p+1)×(p+1). If D has an inverse which is guaranteed for all estimators

except Sh, i.e., St, DSh, LSh, SR, and GSR, then

β̂∗ = Dβ̂OLS = DΣ−1XTy = (Σ∗)−1XTy, with Σ∗ := ΣD−1. (2.39)
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This means that each of the five estimators replaces the empirical (covariates) covariance matrix

estimator with an estimator Σ∗ that is a multiplicative shrinkage estimator; this differs from

the linear covariance shrinkage approach proposed in the seminal paper (Ledoit and Wolf, 2004)

where one looks for covariance shrinkage estimators Σ∗ = ρT+(1−ρ)Σ with T being a shrinkage

target matrix. Note that we primarily aim to shrink the MLR’s parameter vector and not

the covariance matrix, which is indirectly done by our shrinkage estimators. We now analyze

the eigenvalues and eigenvectors of Σ∗ and compare them with the set of paired eigenvalue-

eigenvector’s of Σ, {(λk,uk) : 0 ≤ k ≤ p}. It is not difficult to see that the eigenvectors of Σ∗ for

DSh, LSh, and SR are different than those of Σ, while St and GSR preserve the eigenvectors.

That is, the eigenvalues of Σ∗ for St and GSR are

λ∗St
k = λk +

M∗
0(

βTβ
)2 and λ∗GSR

k = λkI{k/∈L} +

(
λk +

σ2(
uT
k β
)2
)
I{k∈L}, respectively, (2.40)

where I{A} is the indicator of set A that takes the value of 1 is A is true and 0, otherwise.

We explain in SI Appendix III how important the eigenvalues (of the covariates’ covariance

matrix) are in MLR estimation, where we provide an ample discussion about their impact over

the OLS and some shrinkage estimators. It is found in Section 2.5 that St and GSR consistently

outperform OLS when both the sample size and number of covariates become large, and we

believe that (2.40) plays an important role in justifying that empirical finding.

Any linear regression models requires a “good” estimator for the precision matrix and it is

well-known that the inverse of the sample covariance matrix is an unbiased estimator (up to

a multiplicative correction factor) of the inverse of the population covariance matrix if the

multivariate Gaussian assumption is imposed, but no other equivalent result is known. The

conjecture in (Ledoit and Wolf, 2004) suggests that a “good” estimator for Σ−1 would reduce

(and increase) the large (and low) eigenvalues given Result 9 i). There are two practical solutions

to rectify the precision matrix and one way is to adjust large and small eigenvalues of Σ, but

the low eigenvalues (especially those close to 0) are the most influential eigenvalues in the

estimation of Σ−1, while the large eigenvalues are of lower importance in this case; the other

way is to adjust all eigenvalues by keeping their sum (Tr(Σ)) unchanged and reduce MSE of the

shrinkage covariance estimator, which (Ledoit and Wolf, 2004) had indirectly proposed.

Note that the RR estimator, β̂RR(λ) = (Σ∗)−1XTy with Σ∗ = Σ + λIp+1, preserves the eigen-

vectors and λ∗RR
k = λk + λ for all 0 ≤ k ≤ p. Therefore, RR inflates all eigenvalues by the same
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value λ, which is unknown and there is no optimal way to estimate it. On the contrary, St and

GSR regressions inflate the eigenvalues of Σ, while preserving its eigenvectors, which is similar

to RR, though the advantage of St and GSR is that such estimators are optimally estimated

without relying on cross-validation, while RR does need cross-validation, which is expected to

be sub-optimal.

We now provide a new shrinkage estimator that we name as Shrinkage Ridge Regression (SRR),

where Σ is replaced by its linear shrinkage estimator that shrinks around a diagonal matrix with

equal entries, i.e., v := 1
p+1 Tr(Σ), which is similar to (Ledoit and Wolf, 2004). This means that

β̂SRR(ρ) =
(
Σ∗(ρ)

)−1
XTy with Σ∗(ρ) = (1− ρ)Σ + ρvIp+1, (2.41)

and the optimal ρ∗ is chosen so that MSE
(
β̂SRR(ρ)

)
is minimized rather than minimizing

MSE
(
Σ∗(ρ)

)
as in (Ledoit and Wolf, 2004). The main SRR result is given as Proposition 1.

Proposition 1. Let Assumption 2.1 hold. The shrinkage estimator in (2.41) is sought by solving

min
0≤ρ≤1

MSE
(
β̂SRR(ρ)

)∧
. (2.42)

The optimal solution in (2.42) is the Shrinkage Ridge Regression (SRR) estimator

β̂SRR(ρ∗) :=

p∑
k=0

v
1/2
k

(1−ρ∗)λk+ρ∗v
uk with ρ∗ := argmin

0≤ρ≤1
H(ρ), (2.43)

where vk :=
(
yTXuk

)2
for all 0 ≤ k ≤ p and

H(ρ) :=
1

n−p−1

(
yTy−2

p∑
l=0

vl
(1−ρ)λl+ρv

+

p∑
l=0

λlvl(
(1−ρ)λl+ρv

)2
)

p∑
k=0

λk(
(1−ρ)λk+ρv

)2
+ρ2

p∑
k=0

(
λk−v)2vk(

(1−ρ)λk+ρv
)3 .

Note that SRR relies on Σ∗(ρ∗) which preserves the eigenvectors, while the eigenvalues are

λ∗SRR
k = (1 − ρ∗)λk + ρ∗v for all 0 ≤ k ≤ p, which is another rotation-equivariant covariance

matrix estimator that is often considered in linear and non-linear shrinkage estimation when the

purpose is to find MSE optimal shrinkage covariance estimators (Donoho et al., 2018; Ledoit and

Wolf, 2021, 2022). Since ρ∗ is not available in closed-form, we cannot provide asymptotic results
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to the SRR estimator, but we can numerically compare SRR to OLS and RR. We conduct a

simulation study where the data generating process (DGP) is described in SI Appendix II.1 – for

details, see the Latent Space Features setting – which consists of an overparametrized regime;

that is, we generate covariates to lie close to a low-dimensional subspace (of dimension f with

f < p) and Gaussian response variable with standard deviation σ = 5. Different scenarios are

created by varying the ratios p/n and f/p so that we understand how effective SRR (when

compared to OLS and RR) is in handling an unstable sample covariance matrix estimator

induced by low-dimensional subspace factor structure.

Table 1: Counts of models achieving the minimum L2 error

Normal Distribution: σ = 5

n = 1,000

p/n 5% 10% 25%

f/p 25% 50% 75% 25% 50% 75% 25% 50% 75%

OLS 0 0 0 0 0 0 0 0 0

RR 54 45 80 43 60 48 0 0 0

SRR 196 205 170 207 190 202 250 250 250

p/n 50% 75% 95%

f/p 25% 50% 75% 25% 50% 75% 25% 50% 75%

OLS 0 0 0 0 0 0 0 0 0

RR 0 0 0 0 0 0 0 0 0

SRR 250 250 250 250 250 250 250 250 250

Note: We tabulate counts of how many times each estimator (OLS, RR, and SRR) achieves the lowest L2-
distance (from the “true” regression parameters) across N = 250 replications of samples of size n = 1, 000 for
various choices of p/n and f/p; the best-performing method highlighted in red.

Our numerical results are summarized in Table 1 where we report how many times each estima-

tor achieves the smallest L2-distance (from the “true” regression parameters) across N = 250

replications under various settings. The SRR estimator consistently achieves the lowest L2 error

by large margins, and the evidence is overwhelming when p/n ≥ 25%. More granular empirical

evidence to capture the outperformance of SRR over RR is available in SI Appendix II.4.

2.5 How Large is Large?

The asymptotic behavior of our shrinkage estimators has been discussed so far under the setting

of fixed p and large n. A key element in our proofs is the uniform integrability of β̂OLS that

allows us to show the equivalence between the oracle shrinkage estimators and their bona fide

estimators. Note that the Kolmogorov setting where p/n → k ∈ (0, 1) as n → ∞ requires a very

different setting and technical tools which is beyond the scope of this paper. We are actively

thinking about how to perform MLR shrinkage in this setting, but a natural question is how
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our estimators would behave under the Kolmogorov setting which is the purpose of this section.

Some recent research outputs have shown that the OLS estimator has a non-zero asymptotic

MSE under the Kolmogorov setting, which is shown via probabilistic heuristics in (El Karoui

et al., 2013), though more rigorous arguments are available in (El Karoui, 2013; Donoho and

Montanari, 2016). These papers assumed covariates as random, which is different than the

classical fixed p setting that we have considered in this paper.

The supplementary material in SI Appendix III amasses a series of interesting findings. First,

we illustrate in SI Appendix III.1 some patterns about the empirical eigenvalues that would

give some empirical evidence about the covariance matrix empirical estimator; such empirical

evidence is relevant as the eigenvalues play an important role in some of our novel shrinkage

estimators as explained in Section 2.4. These findings are summarized as Result 9.

Result 9. i) The largest and lowest empirical eigenvalues are overestimated and underesti-

mated, respectively.

ii) The overall estimation error in empirical eigenvalues is reduced when the strength of de-

pendence becomes more extreme (either positive or negative); e.g., see Figure 3.

iii) The eigenvalues’ bias does not uniformly decrease from the largest to the lowest empirical

eigenvalue, especially when the “true” eigenvalues are clustered; e.g., see Figure 4.

Second, we found in SI Appendix III.2 that the model fitted with independent covariates yields

a lower estimation error than the one with dependent covariates as long as the eigenvalues are

preserved. This property is true for the fixed p and large n case, but also under the Kolmogorov

setting, which implies that running MLR in a very high dimension would be more efficient

by considering a sparse model without increasing the estimation error. Third, we also empir-

ically found in SI Appendix III.2 that St and GSR shrinkage estimators outperform OLS in

the Kolmogorov setting (though GSR outperforms St), which gives us confidence to validate

the motivation of this section hoping that some of our novel shrinkage estimators may be more

effective than OLS in the Kolmogorov setting for which we have not established theoretical

results. These findings are summarized as Result 10.

Result 10. i) Assuming that the population eigenvalues are preserved, the empirical eigen-

values for independent and dependent Gaussian covariates are estimated with the same

error. This invariance property is not true for OLS regression parameters where the es-
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timation error is reduced for independent Gaussian covariates as compared to dependent

Gaussian covariates.

ii) Assuming that the population eigenvalues are preserved, the estimation error of St, DSh

and GSR estimators are lower for independent Gaussian covariates as compared to their

corresponding dependent Gaussian covariates.

iii) Assuming the Kolmogorov setting with large n and p, St and GSR consistently outperform

OLS. St and GSR perform similarly in estimation error for small p/n though St shows a

slight advantage in such settings, while GSR clearly outperforms St for big choices of p/n.

3 Numerical Experiments

The theoretical properties of multiple shrinkage estimators have been investigated in the previous

section and we now evaluate their performance through synthetic data (see Section 3.1) and three

real datasets. We choose three applications from very different fields. The first application is

given in Section 3.2 and examines how helpful our shrinkage estimators are to improve statistical

fine-mapping; these methods aim to identify causal variants underlying genetic associations with

a trait (response variable). The second application is given in Section 3.3 where we show that

our shrinkage estimators could reduce the prediction error in GLM modeling; we chose a cyber-

sickness dataset to make our point to predict motion sickness which is a research question raised

in the virtual reality field. The implications of our findings go well beyond the small application

in Section 3.3, and in parallel to this paper, we have finished another paper (Asimit et al., 2025a)

that provides ample evidence that the estimation error could be massively reduced by using our

shrinkage estimators. The third application is discussed in Section 3.4 where shrinkage estimators

are shown to be very effective in enhancing investors’ decisions under uncertainty, which is in

accordance with the fast-growing finance literature focusing on shrinkage methodologies.

Note that the RR and SRR estimators are included only in Section 3.4, which is the only case

where covariates may exhibit an ill-conditioned covariance matrix. These two estimators have

performed much worse than OLS in most simulation scenarios considered in Section 3.1, which

explains why we have discarded RR and SRR.
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3.1 Simulation Results Analysis

Two sets of simulation studies are considered in this section, one is for continuous data and

another one for counting data. We compare the performance of i) OLS estimator, ii) St estimator

as in (2.2), iii) DSh estimator as in (2.3), iv) Sh estimator as in (2.4), v) SR estimator as in

(2.27), and vi) GSR estimator as in (2.30). Note that the LSh estimator is not included, as it

behaves similarly to OLS when applied to centered data. The simulation settings are described

in SI Appendix II.1, with results being summarized in SI Appendix II.2 as Tables 3 – 6.

The first simulation study examines continuous dependent Gaussian covariates and all results are

presented in Tables 3 – 5. This study compares performance across different dependent variable’s

distributions, distinguishing between lighter-tailed cases (see Tables 3 and 4) and heavier-tailed

cases (see Table 5). The overall conclusions are that SR and GSR consistently outperform OLS

and the other three shrinkage estimators in most scenarios. A further improvement of the St,

DSh and GSR estimators is investigated in Section II.3 where cross-validation is introduced

to provide different weights between bias and variance when selecting the optimal shrinkage

estimator; we find that GSR may benefit from such adjustment, but a neutral effect is observed

on St and DSh estimators.

The second simulation study considers counting covariates with Gaussian dependence, with

results being summarized in Table 6. This setting is common in genetics applications, where

covariates are genotype scores at genetic variants. The genotype score counts the number of

effect alleles at a variant and follows a binomial distribution with Nq = 2 number of trials and

q0 = EAF success probability, where EAF is the effect allele frequency. The picture is a tad

different than what we have found for continuous covariates, and we note that OLS behaves very

well only for cases with small variability and small sample size, while DSh and GSR outperform

all estimators in the remaining settings. On the contrary, St is by far the best estimator when

a larger variability in the response variable is observed.

3.2 Application to Statistical Fine-mapping in Genetics

Based on the results from our second simulation study in Section 3.1, where DSh, GSR, and

St performed better in handling discrete correlated Gaussian covariates, we use these three

estimators for this realistic simulation study and and compare them with the standard OLS
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estimator. The Sh and SR estimators are not included because they showed weaker performance

in the simulations. This choice ensures that the selected methods are suitable for statistical

fine-mapping in genetics, where genetic variants are often highly correlated, and accurate effect

estimation is important.

There is potential for our new regression effect estimates to improve current genetic analysis

approaches, such as fine-mapping. In genome-wide association studies (GWAS), genetic vari-

ants are each tested for association with a quantitative (e.g., cholesterol level) or binary trait

(presence/absence of coronary artery disease) using a linear model. As many genetic variants

are highly correlated, GWAS report the genetic variants with the lowest genome-wide signifi-

cant (P < 5× 10−8) p-value among correlated variants. However, the variant with the smallest

p-value (lead variant) is not necessarily causal and may be detected because of correlation (i.e.

linkage-disequilibrium (LD)) with the causal variant(s). The identification of causal variants

that underlie genetic associations is key to facilitating translation into new therapeutic targets

or elucidating new biological insights. Statistical fine-mapping is therefore needed to refine sets

of potential causal variants within a region constructed around a lead variant (Hutchinson et al.,

2020). Fine-mapping prioritization of likely causal variants (i.e., those with a high Marginal Pos-

terior Probability (MPP) of causality) may be improved through joint analyses of multiple traits,

as biologically related traits often share causal variants.

Bayesian methods are common in fine-mapping – e.g. JAM (Newcombe et al., 2016), FINEMAP

(Benner et al., 2016) – and a Bayes’ factor (BF) is used to summarize the evidence of association

for each combination of variants (SNPs) compared to the null model of no causal variants. The

Joint Analysis of Marginal summary statistics (JAM) fine-mapping approach uses a sparse

Bayesian regression framework and infers joint LD-adjusted multi-SNP models, highlighting

the best multi-SNP models (high posterior probability) considering a thinned subset of SNPs

that are not in high correlation (Newcombe et al., 2016). JAM (and many other fine-mapping

methods) uses the GWAS effect estimates from the thinned subset of SNPs to fit the multi-

SNP models. JAM was expanded to account for all thinned out SNPs by considering all the

possible models formed by all the combinations of SNPs in the JAM model, replacing SNPs

in the model with highly correlated SNPs that were previously thinned out. The expanded

version of JAM has been integrated into flashfm (flexible and shared information fine-mapping)

multi-trait fine-mapping, where multi-trait model priors are upweighted when causal variant(s)

are shared among traits (Hernández et al., 2021).
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Both JAM and flashfm make use of GWAS summary statistics, in particular the genetic effect

estimates at each genetic variant. In the case where a study consists of unrelated individuals,

these effect estimates are calculated using ordinary least squares. Here, we modify JAM (ex-

panded version) and flashfm such that the effect estimates for single-SNP and multi-SNP models

are calculated using GSR, St, and DSh. In simulations within the region harboring the gene

IL2RA, we show that estimates based on DSh have the potential to outperform those from OLS

and that multi-trait fine-mapping gives further power improvements over each of the single-trait

approaches.

Table 2: Power and FDR (false discovery rate) comparison for single and multi-trait
fine-mapping based on four different estimators.

Power FDR

Method Trait 1 Trait 2 Trait 1 Trait 2

single-OLS 0.76 0.7 0.01 0.01

multi-OLS 0.835 0.815 0.01 0.005

single-St 0.78 0.65 0.005 0.035

multi-St 0.855 0.77 0.005 0.03

single-DSh 0.815 0.68 0.063 0.063

multi-DSh 0.865 0.785 0.063 0.058

single-GSR 0.78 0.645 0.005 0.025

multi-GSR 0.855 0.77 0.005 0.02

In our IL2RA simulations of 100 replications, we set plausible causal variants that have been

extensively explored in previous studies SI Appendix IV and set uniform random effect sizes

(between 0.15 and 0.4). Power is evaluated by using an MPP threshold of 0.9; all results are

displayed in Table 2. Among the four single-trait versions of JAM (expanded), the highest power

of 0.815 is attained by DSh estimation, which is an increase of 0.055 over that from OLS (power

= 0.760). A further increase of 0.05 is achieved by DSh estimation within the flashfm multi-

trait approach (power = 0.865), which is an increase of 0.03 over OLS estimation within flashfm

(power = 0.835). For trait 2, the power attained by OLS and DSh are similar for single-trait

fine-mapping (single-OLS power = 0.70; single-DSh power = 0.68) and multi-trait fine-mapping

gives a further increase of more than 0.10 for each (multi-OLS power = 0.815; single-DSh power

= 0.785).

The observed improvement with DSh is consistent with our previous simulation results, where

DSh gave the best-performing regression model in the setting of two causal variants and low

trait variability (see Table 6 when σ = 1).
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3.3 Application to GLM Modeling – Cyber-sickness Data

GLM is a generalization of MLR by including a non-Gaussian response variable assumption and

the standard implementation is through the Iteratively Reweighted Least Squares (IRLS) method

that iteratively solves OLS instances – in fact, Weighted Least Squares (WLS) instances with

known weights – which explains its computational efficiency (Nelder and Wedderburn, 1972;

McCullagh et al., 1989; Wood, 2017); for details, also see SI Appendix VII. We show in this

section that one may replace deploying IRLS with OLS by one of our five shrinkage methods –

we choose SR, GSR, St, DSh, and Sh in this real data analysis – so that the estimation error is

improved. Our small data analysis compares an OLS solver to solvers based on the five shrinkage

methods when solving Logistic and Poisson GLMs. We conclude that improvement is i) very

limited for Logistic regression (see Tables 7 and 8) and ii) 3% to 7% improvement when using

St shrinkage for Poisson regression (see Table 9). The latter conclusion may look as an obsolete

result and we further extend this analysis in a follow-up paper (Asimit et al., 2025a) where we

found that St, DSh, SR and GSR consistently outperform OLS in IRLS implementations for

Poisson and Gamma GLMs via extensive simulated and real-data analyses.

The real data analyses in this section rely on a cyber-sickness dataset∗ used in the machine

learning literature. Cyber-sickness is similar to motion sickness, but it happens while using

electronic screens rather than through actual movement. It refers to a set of symptoms that fall

into three categories: nausea, oculomotor issues (such as eye strain and fatigue), and general dis-

orientation. People may experience cyber-sickness when using virtual reality (VR) systems but

also through using everyday electronic devices. Automatic real-time detection of cyber-sickness

may help get a better understanding of the phenomenon and develop effective countermeasures,

which in turn could reduce visual discomfort and improve the user’s experience.

This physiological dataset includes recordings from 23 participants who were immersed in a VR

roller coaster simulation. The data are labeled with cyber-sickness severity scores on a scale

from 0 (no cyber-sickness) to 10 (high cyber-sickness), which is the target/response variable,

but a more detailed data description is available in SI Appendix V. Two types of models are

formulated to evaluate the effectiveness of our proposed estimators. First, a binary classification

problem is performed, which is a Logistic GLM with a logit link function, where the Fast Motion

Scale (FMS) scores are reduced to binary outcomes for specific pairs of classes. Second, a Poisson

∗Available at https://github.com/shovonis/CyberSicknessClassification
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GLM with a log link function is performed to mimic a multi-class classification by dividing the

cyber-sickness severity into four ordinal levels, grouping the FMS scores into distinct categories.

Details of these models and their formulations are provided in SI Appendices V.1 and V.2.

Logistic GLM with a logit link function and Poisson GLM with a log link function are deployed

for two feature sets from the physiological dataset to represent different levels of multicollinearity

within the feature space i) a smaller set with 13 features and ii) a larger set with 130 features,

which exhibits a more pronounced multicollinearity effect. Our analyses include the features in

both raw and standardized forms in order to understand whether the estimation error is influ-

enced by this choice of data. The comparative performance among different models (measured

by the estimated MSE) shows some positive and neutral benefits of using our proposed shrink-

age estimators in solving GLMs through IRLS. First, solving Logistic GLMs with St, Sh, SR or

GSR would lead to similar performance as compared to the baseline OLS solver, while the DSh

estimator performed poorly in comparison to all the other methods; for details, see Tables 7

and 8. Second, solving Poisson GLMs with St clearly improves the estimation error as compared

to the benchmark OLS solver when features are standardized (see Table 9).

3.4 Real Data Analysis – Portfolio Investment

As mentioned in Section 1, there is growing finance literature that adopts shrinkage methods

to enhance investors’ decisions under uncertainty, and portfolio theory has benefited the most

from adopting shrinkage methodologies. Since L2 linear regressions and investment decisions

where investors orders their decisions (measure risk) via variance preferences are mathematically

equivalent, we now compare OLS and our shrinkage estimators (St, DSh, Sh, SR, GSR, and

SRR) to construct risk-minimizing portfolios. Factor models have been massively explored in

the finance literature, where it is argued that asset returns can be represented by a smaller

set of observable or engineered covariates. Thus, we include in our analysis the RR and SRR

estimators.

Investment decisions with variance preferences mean constructing Global Minimum Variance

(GMV) portfolios as defined in (VI.1) and discussed in SI Appendix VI.1. Unlike the mean-

variance portfolio introduced by Markowitz (1952), which makes investment decisions by balanc-

ing risk (measured by variance) and reward (measured by realized expected return), the GMV

portfolio focuses only on minimizing the risk. The mean-variance approach requires estimates
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of both the mean and covariance matrix of asset returns, but mean return estimates often have

large errors, making portfolios unstable and leading to poor out-of-sample performance (Mer-

ton, 1980). In contrast, the GMV portfolio relies only on covariance matrix estimates, reducing

sensitivity to errors in mean estimates and achieving better out-of-sample performance; GMV

remains affected by covariance estimation errors, for which robust methods have been proposed

to improve its out-of-sample performance (DeMiguel and Nogales, 2009).

In this analysis, we construct GMV portfolios to S&P500 (Standard & Poor’s 500) data, which is

an index of 500 large U.S. firms widely used to measure the US market performance. Our dataset

– that denoted as DA441 – contains daily asset returns about 441 firms that had been S&P500

constituents for at least one time during the observation period (January 1, 2000 to December

31, 2023); note that these 441 firms are selected among the 1,070 S&P500 constituents that had

been during the observation period, and the 441 selected firms are those that had been listed

on the US stock exchanges without interruption. Additional details on the dataset are in SI

Appendix VI.1 and (Asimit et al., 2025b), while details about the portfolio construction are also

given in SI Appendix VI.1. Numerical experiments are made across periods with various market

conditions in SI Appendix VI.2. The out-of-sample performance is investigated by applying a

rolling-window scheme with five-year and ten-year training periods, each followed by a three-

month testing window.

The main conclusions of our analyses are three-fold. First, eigenvalue-driven methods (RR, GSR

and SRR) are useful to stabilize the risk, but are not effective in terms of reward (low expected

returns) and risk-adjusted performance (low Sharpe ratios, which are calculated as expected

return per a unit of risk). Second, St, DSh and Sh show very good performance in terms of

reward and risk-adjusted performances with St being the “best” option. Third, OLS is showing

very poor performance irrespective of the market conditions.

4 Conclusions

A wide range of distribution-free shrinkage estimators have been discussed within the topic of

multivariate linear regression. Our theory is focused on the setting with a fixed number of

covariates, but we empirically show that some of our shrinkage estimators outperform OLS by

large margins when both the sample size and number of covariates get large. The advantage of
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using our novel estimators has been illustrated through three very different applications, where

we also find that our shrinkage estimators are very effective in significantly reducing the high

estimation errors in GLM modeling.
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Supplementary material of “Slab and Shrinkage Linear

Regression Estimation”

I Proofs

I.1 Proof of Theorem 1

We first prove Part i) for which we need to minimize in a ∈ ℜ

MSE
(
aβ̂OLS

)
= a2σ2Tr

(
Σ−1

)
+ (a− 1)2βTβ = a2M∗

0 + (a− 1)2βTβ,

which is strictly convex, and thus, it has a unique solution a∗ ∈ [0, 1). This concludes (2.2) and

thus, Part i) is fully justified.

Part ii) is now argued, where we minimize in b ∈ ℜp+1

MSE
(
diag(b)β̂OLS

)
= σ2Tr

(
diag(b)Σ−1 diag(b)

)
+ βT (diag(b)−Ip+1)

T (diag(b)−Ip+1)β

= σ2Tr
(
Σ−1 diag

(
b2
))

+ βT diag
(
b− 1)2β (I.1)

=

p∑
k=0

(
σ2σkb

2
k + (bk − 1)2β2

k

)
,

where squaring a vector is made component-wise. The above is a sum of separable (with respect

to each bk) strictly convex quadratic functions since σk > 0 for all 0 ≤ k ≤ p. The latter is true

since there exists an orthogonal matrix Q, i.e., QQT = Ip+1, and a diagonal matrix D = diag(d)

with d > 0 (since Σ−1 ≻ 0) such that Σ−1 = QDQT , and in turn, we have that

(
Σ−1

)
kk

=

p∑
k′=0

(
QT
)
kk′

(
D
)
k′k′

(
Q
)
k′k

=

p∑
k′=0

dk′q
2
k′k ≥ 0.

The inequality becomes an identity if and only if q2k′k = 0 for all 0 ≤ k′ ≤ p, but this can not

be true since 1 =
∑p

k′=0 q
2
k′k for all 0 ≤ k ≤ p as QQT = Ip+1, and thus, the above holds with

strict inequality and in turn, σk > 0 for all 0 ≤ k ≤ p. The strict convexity of (I.1) and some

simple algebraic manipulations conclude Part ii).
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We now prove Part iii) for which we need to minimize in C ∈ ℜ(p+1)×(p+1)

MSE
(
Cβ̂OLS

)
= σ2Tr

(
CTΣ−1C

)
+ βT (C − Ip+1)

T (C − Ip+1)β. (I.2)

Note that the above is convex in C and its global minimum is unique if Σ−1 and −βTβ have

no common eigenvalues, which coincides with the well-known result regarding the Sylvester

equation. Specifically, one may find that by first using (I.2) to get that

∂MSE
(
Cβ̂OLS

)
∂C

= σ2∂ Tr
(
CTΣ−1C

)
∂C

− ∂βTCβ

∂C
− ∂βTCTβ

∂C
+

∂βTCTCβ

∂C
(I.3)

= 2Σ−1C − 2ββT + 2CββT

and in turn, any optimal solution in (2.4) is the solution of the Sylvester equation (in C)

Σ−1C + C
(
ββT

)
= ββT . The latter equation has a unique solution if and only if Σ−1 and

−βTβ have no common eigenvalues, which is true since all eigenvalues of Σ−1 are positive (as

Σ−1 ≻ 0) and all eigenvalues of −βTβ are non-positive (as βTβ ⪰ 0). This concludes the proof

of Part iii).

Part iv) is now justified. The non-strict variant of (2.5), namely, M∗
3 ≤ M∗

2 ≤ M∗
1 ≤ M∗

0 , is

clear since the feasibility set obtaining M∗
s is a subset of the feasibility set obtaining M∗

s+1 for

all s ∈ {0, 1, 2}. Clearly, M∗
1 < M∗

0 since M∗
0 = σ2

∑p
k=0 σk > 0 as σk > 0 is proved in Part ii).

It is not difficult to show that M∗
3 < M∗

2 if and only if C∗ is diagonal.

It only remains to find the necessary and sufficient conditions under which M∗
2 < M∗

1 is true.

By taking uk = β2
k and vk = σ2σk for all 0 ≤ k ≤ p in Lemma 1, one may get that

M∗
2 =

p∑
k=0

β2
kσ

2σk
β2
k + σ2σk

≤
(∑p

k=0 β
2
k

) (∑p
k=0 σ

2σk
)∑p

k=0 β
2
k +

∑p
k=0 σ

2σk
= M∗

1 ,

since M∗
0 = σ2Tr

(
Σ−1

)
= σ2

∑p
k=0 σk; note that σk > 0 for all 0 ≤ k ≤ p is proved in Part ii).

The above inequality becomes an identity if and only if
β2
k

σk
=

β2
0

σ0
for all 1 ≤ k ≤ p, which is a

direct consequence of Lemma 1. The proof is now complete.
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I.2 Proof of Theorem 2

It is first noted that due to Assumption 2.1, we have that

β̂OLS p→ β and σ̂2 p→ σ2. (I.4)

In addition, the fact that 1
nΣ → Σ0 and

(
1
nΣ
)−1

= nΣ−1, we get that

Σ−1 = o(n)Jp+1 and Tr(Σ−1) = o(n), (I.5)

where Jp+1 an p + 1 dimensional square matrix of ones. Note that we have used in the latter

that if the convergence of a sequence of matrices, An → A, implies the convergence of their

inverse (assuming that inverses exist), i.e. A−1
n → A−1; this is ensured by the fact that A−1

n =

adj(An)/ det(An) and A−1 = adj(A)/ det(A), where adj(An)(and adj(A)) is the adjugate of

An(and A), and the obvious convergences adj(An) → adj(A) and det(An) → det(A). Therefore,

the continuous mapping property of the convergence in probability, (I.4) and (I.5) imply that

â∗
p→ 1 and a∗

p→ 1 (though the latter convergence is a deterministic convergence), and in turn,

(2.9a) yields due to the continuous mapping property of the convergence in probability and (I.4).

The proof of (2.9b) is quite similar, and one can find that b̂∗k
p→ 1 and b∗k

p→ 1 for all 0 ≤ k ≤ p

by recalling that 0 < σk < Tr(Σ−1) = o(n), which implies that σk = o(n) for all 0 ≤ k ≤ p.

The proof of the first claim in (2.9c) follows from (2.9a) and the uniform integrability of â∗− a∗

which is implied by the fact that â∗ − a∗ is uniformly bounded as |â∗| ≤ 1 and |a∗| ≤ 1 are true.

Finally, the second claim in (2.9c) can be shown in a similar manner.

The first claim in (2.10) holds due to the uniformly integrability of β̂OLS and the fact that

â∗ − a∗ is uniformly bounded. The uniform integrability of β̂OLS is discussed in (Afendras

and Markatou, 2016) that relies on the same conditions as our Assumption 2.1 and asymptotic

covariance condition

1

n
Σ → Σ0 as n → ∞ with Σ0 ≻ 0 for a fixed p, (I.6)

but one may use a much simple proof and use Theorem 4.5.9 in (Bogachev, 2007) with G(t) = t2

and find that there exists M > 0 such that E
[(
β̂OLS
k

)2]
< M for n sufficiency large; for any
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ϵ > 0, there exists n0 ≥ 1 such that the latter claim is concluded as follows:

E
[(
β̂OLS
k

)2]
= β2

k + V
(
β̂OLS
k

)
≤ β2

k +Tr
(
V
(
β̂OLS
k

))
(I.7)

= β2
k + σ2Tr

(
Σ−1

)
≤ β2

k + σ2

(
1

n
Tr
(
Σ−1
0

)
+ ϵ

)
,

which is true for any n > n0, where the latter inequality is a consequence of (I.6). The second

claim in (2.10) follows through similar arguments.

It remained to show (2.11a) and (2.11b), and as before, we have shown only the first one. Note

that

E
∣∣∣∣∣∣∣∣∣∣â∗β̂OLS − β

∣∣∣∣∣∣2
2
−
∣∣∣∣∣∣a∗β̂OLS − β

∣∣∣∣∣∣2
2

∣∣∣∣ (I.8)

≤
√

E
∣∣∣∣∣∣â∗β̂OLS − a∗β̂OLS

∣∣∣∣∣∣2
2

√
E
∣∣∣∣∣∣â∗β̂OLS + a∗β̂OLS − 2β

∣∣∣∣∣∣2
2
,

which is a consequence of the Cauchy-Schwarz inequality. Now, the first term in the right-hand

side of (I.8) convergences to 0 due to (2.10), and second term in the right-hand side of (I.8) is

bounded as E
∣∣∣∣∣∣â∗β̂OLS − β

∣∣∣∣∣∣2
2
and E

∣∣∣∣∣∣a∗β̂OLS − β
∣∣∣∣∣∣2
2
are bounded, and in turn, the left-hand

side of (I.8) convergences to 0. The proof is now complete.

I.3 Proof of Theorem 3

Similar to the proof in Appendix I.1 and by keeping (2.12) in mind, one may find that

MSE
(
β̂ind(ρ)

)
= MSE

(
Σ(ρ)β̂OLS

)
= σ2

(
ρ2Tr(ΣΣ̃−2) + 2ρ(1− ρ) Tr(Σ̃−1) + (1− ρ)2Tr(Σ−1)

)
(I.9)

+ρ2βT (Σ̃−1Σ− Ip)
2β

= t1(2ρ− ρ2) + t2(1− ρ)2 + t3ρ
2,

since Tr
(
Σ̃−1

)
= Tr

(
ΣΣ̃−2

)
=
∑p

k=1(Σkk)
−1 given that Σ̃ = diag(Σ), which in turn justifies

(2.14) via some algebraic manipulations that we skip in this proof. Note that by Lemma 2, one

find that t2 ≥ t1, which in turn we have that ρ∗ ∈ [0, 1] as t3 ≥ 0. The proof is now complete.
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I.4 Proof of Theorem 4

Similar to the proof of Theorem 2, we only need to show that ρ̂∗
p→ 0 and ρ∗ → 0 due to

the linearity of our estimator in order to justify (2.17). The latter is ensured by keeping the

equivalent of (I.4) for
̂̂
β

OLS

and (I.5) in mind, which implies that Σ̃−1 = o(n)Jp and Tr(Σ̃−1) =

o(n), but also the fact that βT
(
Σ̃−1
0 Σ0 − Ip

)2
β ̸= 0. This justifies our claim in (2.17).

The remaining claims, namely (2.18) and (2.19), could be shown in the same manner as their

counterparts in Theorem 2, and thus, we skip the details. We should note that the uniform

integrability of
̂̂
β

OLS

can be concluded in the same manner as (I.7). The proof is now complete.

I.5 Proof of Theorem 5

We first prove Part i). The interior point claim follows from the fact that

lim
||β||∞→∞

1
2 ||y−Xβ||22 + µ

(
uTβ)2

||β||2∞
> 0,

since Σ + µuuT ≻ 0 and in turn the diagonal elements of Σ + µuuT are positive, where ||β||∞

is the max norm. Clearly, δ > 0 since Σ−1 ≻ 0 and u ̸= 0. Now, (2.21) yields that

β̂SR(µ;u) =

(
Ip+1 −

µ

1 + µδ
A

)
Σ−1XTy =

(
Ip+1 −

µ

1 + µδ
A

)
β̂OLS (I.10)

for any feasible µ and u, and in turn, we have that

MSE
(
β̂SR(µ;u)

)
= Tr

(
Cov

(
β̂SR(µ;u)

))
+
(
bias

(
β̂SR(µ;u)

))2
. (I.11)

Equation (I.10) together with some algebraic manipulations and well-known standard properties

of the OLS estimator imply that

Tr
(
Cov

(
β̂SR(µ;u)

))
= Tr

((
Ip+1 −

µ

1+µδ
A

)T

Cov
(
β̂OLS

)(
Ip+1 −

µ

1+µδ
A

))
(I.12)

= σ2Tr

((
Ip+1 −

µ

1+µδ
A

)T

Σ−1

(
Ip+1 −

µ

1+µδ
A

))
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and

(
bias

(
β̂SR(µ;u)

))2
=

∣∣∣∣∣∣E[(β̂SR(µ;u)
]
− β

∣∣∣∣∣∣2
2

=
∣∣∣∣∣∣ (Ip+1 −

µ

1 + µδ
A

)
β − β

∣∣∣∣∣∣2
2

(I.13)

=

(
µ

1 + µδ

)2

βTATAβ.

Putting together (I.11)–(I.13), we get (2.22), which concludes the proof of part i).

Part ii) is a clear implication of the Karush-Kuhn-Tucker conditions, the fact that the objective

function in (2.23) is strictly convex and strong duality holds which is a consequence of the fact

that the Slater’s condition holds in (2.23) as those constraints are linear. The proof is now

complete.

I.6 Proof of Theorem 6

We first prove part i). Theorem 5 i) and the fact that A and Σ−1 are symmetric matrices, one

may use some basic matrix trace properties to get that

∂ Tr
(
Cov

(
β̂SR(µ;u)

))
∂µ

(I.14)

= σ2 ∂

∂µ
Tr

((
Ip+1 −

µ

1+µa1(u)
Σ−1uuT

)T

Σ−1

(
Ip+1 −

µ

1+µa1(u)
Σ−1uuT

))

= σ2 ∂

∂µ
Tr

((
− 2µ

1+µa1(u)
Σ−2uuT +

(
µ

1+µa1(u)

)2

uuTΣ−3uuT

))

=
2σ2

(1+µa1(u))2

(
−Tr

(
Σ−2uuT

)
+

µ

1 + µa1(u)
Tr
(
uuTΣ−3uuT

))

and

∂
(
bias

(
β̂SR(µ;u)

))2
∂µ

=
∂

∂µ

(
µ

1 + µa1(u)

)2

βT
(
Σ−1uuT

)T (
Σ−1uuT

)
β

=
2µ

(1 + µa1(u))3
βT
(
Σ−1uuT

)T (
Σ−1uuT

)
β (I.15)

=
2µ

(1 + µa1(u))3
a3(u)

(
βTu

)2
.
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Now,

Tr
(
uuTΣ−3uuT

)
= a0(u)a3(u) > 0 and Tr

(
Σ−2uuT

)
= a2(u) > 0. (I.16)

Thus, (I.11) and (I.14)–(I.16) imply that

∂MSE
(
β̂SR(µ;u)

)
∂µ

=
2

(1 + µa1(u))2

(
− σ2a2(u)+

µ

1 + µa1(u)

(
∆(u)+σ2a1(u)a2(u)

))
. (I.17)

Since ∆(u)+σ2a1(u)a2(u) > 0, (I.16) and (I.17) imply (2.24)–(2.26).

Note that µ∗∗(v1) = v−2µ∗∗(1) for all v ∈ (0,∞), and together with (2.22), one may conclude

(2.27). This concludes the proof for part i).

We now argue part ii) for which u ∈ ℜp+1
+ \ {0} is assumed. It is first shown that

a1(u)

a0(u)
≤ a3(u)

a2(u)
for any u ∈ ℜp+1

+ \ {0}. (I.18)

Proposition 1 in (Coppersmith et al., 1997) tells us that

uTZu

uTu
≤ uTZ3u

uTZ2u
for any u ∈ ℜp+1

+ \ {0} and Z ⪰ 0 such that Zu ̸= 0. (I.19)

By taking Z = Σ−1 in (I.19), and noting that Zu ̸= 0 since otherwise uTZu = 0, which would

be impossible as Σ−1 ≻ 0 and u ̸= 0, and in turn, (I.18) holds. Consequently, a3(u)
(
βTu

)2 ≤

∆(u) with equality if and only if (I.18) becomes a strict inequality or βTu = 0. By applying

Proposition 1 in (Coppersmith et al., 1997), one may find that (I.18) becomes an equality if and

only if u is an eigenvector of Σ−1, which is equivalent to u being an eigenvector of Σ(0). This

concludes that ∆(u) > 0 if and if and only (2.28) holds, and thus, µ∗∗(u) < ∞ if and if and

only (2.28) holds. The proof is now complete.

I.7 Proof of Theorem 7

We first prove Part i). The interior point claim can be proved as in the proof of Theorem 5

in Appendix I.5 since Σ +
∑

l∈L µlulu
T
l ≻ 0 is clearly true since the Spectral Decomposition
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Theorem implies that Σ =
∑p

k=0 λlulu
T
l and Σ−1 =

∑p
k=0 λ

−1
l ulu

T
l . Now, (2.30) follows from

β̂GSR(µ) =

(
Σ+

∑
l∈L

µlulu
T
l

)−1

XTy

=

(
Σ+

∑
l∈L

µlulu
T
l

)−1

Σβ̂OLS (I.20)

=

(
Ip+1 −

∑
l∈L

µlλ
−1
l

1 + µlλ
−1
l

ulu
T
l

)
β̂OLS ,

where the latter is an implication of the Sherman-Morrison identity that could be proved by

induction. We prove this result by considering the cases in which L = {1} and L = {1, 2}, since

the general case follows the same idea. First, the Sherman-Morrison identity yields the case

L = {1} as follows

(
Σ+ µ1u1u

T
1

)−1
= Σ−1 − µ1Σ

−1u1u
T
1 Σ

−1

1 + µ1uT
1 Σ

−1u1
= Σ−1 − µ1λ

−1
1

1 + µ1λ
−1
1

u1u
T
1 Σ

−1, (I.21)

where the latter is a consequence of the fact that ul’s are orthonormal vectors; specifically,

uT
1 Σ

−1u1 =

p∑
k=0

λ−1
k uT

1 uku
T
k u1 = λ−1

1 uT
1 u1u

T
1 u1 = λ−1

1 (I.22)

and

Σ−1u1u
T
1 =

p∑
k=0

λ−1
k uku

T
k u1u

T
1 = λ−1

1 u1u
T
1 u1u

T
1 = λ−1

1 u1u
T
1 . (I.23)

Second, the Sherman-Morrison identity yields the case L = {1, 2} as follows

(
Σ+µ1u1u

T
1 + µ1u2u

T
2

)−1
=
(
Σ+µ1u1u

T
1

)−1 −
µ2

(
Σ+µ1u1u

T
1

)−1
u2u

T
2

(
Σ+µ1u1u

T
1

)−1

1+µ2uT
2

(
Σ+µ1u1uT

1

)−1
u2

= Σ−1 − µ1λ
−1
1

1 + µ1λ
−1
1

u1u
T
1 Σ

−1 − µ2λ
−1
2

1 + µ2λ
−1
2

u2u
T
2 Σ

−1, (I.24)

which are consequences of the fact that ul’s are orthonormal vectors and (I.21). Specifically,

uT
2

(
Σ+µ1u1u

T
1

)−1
u2 = uT

2

(
Σ−1 − µ1λ

−1
1

1 + µ1λ
−1
1

u1u
T
1 Σ

−1

)
u2

= uT
2 Σ

−1u2 −
µ1λ

−1
1

1 + µ1λ
−1
1

uT
2 u1u

T
1 Σ

−1u2,
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= λ−1
2 + 0

which is due to (I.21) and (I.22); further,

(
Σ+µ1u1u

T
1

)−1
u2u

T
2

(
Σ+µ1u1u

T
1

)−1

=

(
Σ−1 − µ1λ

−1
1

1 + µ1λ
−1
1

u1u
T
1 Σ

−1

)
u2u

T
2

(
Σ−1 − µ1λ

−1
1

1 + µ1λ
−1
1

u1u
T
1 Σ

−1

)
, (I.25)

:= T1 + T2 − T3 − T4

= λ−1
2 u2u

T
2 Σ

−1 + 0− 0− 0,

which is due to (I.21), where

T1 := Σ−1u2u
T
2 Σ

−1 = λ−1
2 u2u

T
2 Σ

−1,

holds due to (I.23),

T2 :=

(
µ1λ

−1
1

1 + µ1λ
−1
1

)2

u1u
T
1 Σ

−1u2u
T
2 u1u

T
1 Σ

−1 = 0,

since uT
1 Σ

−1u2=λ−1
2 uT

1 u2 = 0 given that (λ−1
2 ,u2) is the paired eigenvalue-eigenvector for Σ−1,

T3 :=
µ1λ

−1
1

1 + µ1λ
−1
1

u1u
T
1 Σ

−1u2u
T
2 Σ

−1,

since uT
1 Σ

−1u2 = 0, and

T4 :=
µ1λ

−1
1

1 + µ1λ
−1
1

Σ−1u2u
T
2 u1u

T
1 Σ

−1,

since uT
2 u1 = 0. This concludes (I.25), and in turn, (I.24), (I.20) and (2.30) are justified.

It only remains to show (2.31) for Part i). Similar derivations to those used to show (2.22),

(I.20), the Spectral Decomposition Theorem for Σ−1 and the fact that ul’s are orthonormal

vectors would help to find that

MSE
(
β̂GSR(µ)

)
= σ2Tr(Σ−1) +

∑
l∈L

(
µlλ

−1
l

1 + µlλ
−1
l

)2 (
σ2λ−1

l +
(
uT
l β
)2)

−2
∑
l∈L

(
µlλ

−1
l

1 + µlλ
−1
l

)
σ2λ−1

l .
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The above is a separable function and is minimized when

µ∗
l λ

−1
l

1 + µ∗
l λ

−1
l

=
σ2λ−1

l

σ2λ−1
l +

(
uT
l β
)2 , i.e., µ∗

l = σ2/(uT
l β)

2 for all l ∈ L.

Consequently,

MSE
(
β̂GSR(µ∗)

)
= σ2

(
Tr(Σ−1)−

∑
l∈L

σ2λ−2
l

σ2λ−1
l +

(
uT
l β
)2
)

= σ2
∑
l /∈L

λ−1
l + σ2

∑
l∈L

λ−1
l

(
uT
l β
)2

σ2λ−1
l +

(
uT
l β
)2 ,

which concludes (2.31) and the proof for Part i).

Part ii) follows in a similar manner to the proof of Theorem 5 ii) in Appendix I.5, and thus, its

proof is then omitted. The proof is now complete.

I.8 Proof of Theorem 8

We first prove (2.34a). Note first that 1
nΣ → Σ0 implies

nlal(1) → ãl(1) := 1TΣ−l
0 1 as n → ∞ for all l ∈ Z. (I.26)

Since µ∗∗(1) < ∞ due to Theorem 6 ii) as 1 is not an eigenvector of Σ, one may get from (I.26)

that

µ∗∗(1)

1+µ∗∗(1)a1(1)
Σ−1 → σ2ã2(1)

σ2ã0(1)ã3(1) + ã3(1)
(
1Tβ

)2Σ−1
0 as n → ∞. (I.27)

Similarly, (I.4) and (I.26) imply that

µ̂∗∗(1)

1+µ̂∗∗(1)a1(1)
Σ−1 p→ σ2ã2(1)

σ2ã0(1)ã3(1) + ã3(1)
(
1Tβ

)2Σ−1
0 . (I.28)

Thus, (I.4), (I.27) and (I.28) yield (2.34a).

We now prove (2.34b). A key ingredient of this proof is to note that the eigenvalues of Σ converge

to the corresponding eigenvalues of Σ0, since the eigenvalues are the roots of a polynomial which

converge to the limit polynomial due to the Implicit Function Theorem. Thus, the eigenvalues
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of Σ0 are distinct as well. The same convergence property (up to a proportionality constant of

±1) holds for the eigenvectors due to the Davis-Kahan Theorem as the eigenvalues of Σ and Σ0

are distinct; e.g., see Theorem 1 of (Yu et al., 2015). This means that

1

n
λk → λ

(0)
k and

(
uT
k β
)2 → (u

(0)T
k β

)2
as n → ∞ for any 0 ≤ k ≤ p, (I.29)

where
(
λ
(0)
k ,u

(0)
k

)
is the kth paired eigenvalue-eigenvector of Σ0. Therefore,

σ2λ−1
k

σ2λ−1
k + (uT

k β
)2 → 0 as n → ∞ for any 0 ≤ k ≤ p.

The latter and (I.4) imply that

β̂GSR(µ∗)
p→ β (I.30)

Similarly, one may show that

β̂GSR(µ̂∗)
p→ β. (I.31)

Finally, (I.30) and (I.31) imply (2.34b). We now prove part i), and we only show (2.35), since

(2.36) can be proved in the same manner as its counterpart in Theorem 2, and thus, we skip the

details. Clearly, ∣∣∣∣∣ µ̂∗∗ (1)a1(1)

1 + µ̂∗∗ (1)a1(1)

∣∣∣∣∣ ≤ 1 a.s. and

∣∣∣∣ µ∗∗ (1) a1(1)

1 + µ∗∗ (1) a1(1)

∣∣∣∣ ≤ 1

and in turn,

(
µ̂∗∗ (1)

1 + µ̂∗∗ (1)a1(1)
− µ∗∗ (1)

1 + µ∗∗ (1) a1(1)

)
Σ−1 is uniformly bounded.

Similar to the proof of Theorem 2, the latter implies (2.36), which concludes part i).

We now prove part ii) for which we only give the main steps. It is not difficult to conclude that

∑
l∈L

µ̂∗
l λ

−1
l

1 + µ̂∗
l λ

−1
l

ulu
T
l and

∑
l∈L

µlλ
−1
l

1 + µlλ
−1
l

ulu
T
l

are uniformly bounded by keeping in mind that the eigenvectors are unitary vectors. The
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remaining steps for proving part ii) are exactly the same as those used in part ii), and we skip

the details. This concludes the proof of part ii), and the proof is now complete.

I.9 Proof of Proposition 1

We first derive the MSE of β̂SRR(ρ), where the SRR estimator defined in (2.41). As before,

MSE
(
β̂SRR(ρ)

)
= Tr

(
Cov

(
β̂SRR(ρ)

))
+
(
bias

(
β̂SRR(ρ)

))2
. (I.32)

One may find that

Tr
(
Cov

(
β̂SRR(ρ)

))
= σ2Tr

( p∑
k=0

1

(1−ρ)λk+ρv
uku

T
kX

T

)T p∑
k=0

1

(1−ρ)λk+ρv
uku

T
kX

T


= σ2

p∑
k=0

1(
1−ρ)λk+ρv

)2 Tr(Xuku
T
kX

T
)

(I.33)

= σ2
p∑

k=0

1(
1−ρ)λk+ρv

)2 Tr
(
uku

T
k

p+1∑
l=1

λlulu
T
l

)

= σ2
p∑

k=0

λk(
1−ρ)λk+ρv

)3
and similar derivations yield that

(
bias

(
β̂SRR(ρ)

))2
=
∣∣∣∣∣∣E[(β̂SRR(ρ)

]
− β

∣∣∣∣∣∣2
2

=

∣∣∣∣∣
∣∣∣∣∣

p∑
k=0

1

1−ρ)λk+ρv
uku

T
kX

TXβ − β

∣∣∣∣∣
∣∣∣∣∣
2

2

=

∣∣∣∣∣
∣∣∣∣∣

p∑
k=0

λk

(1−ρ)λk+ρv
uku

T
k β −

p∑
k=0

uku
T
k β

∣∣∣∣∣
∣∣∣∣∣
2

2

(I.34)

= βT

(
p∑

k=0

(
λk(

1−ρ)λk+ρv
−1

)
uku

T
k

)T p∑
k=0

(
λk(

1−ρ)λk+ρv
−1

)
uku

T
k β

=

p∑
k=0

ρ2(λk − v)2(
1−ρ)λk+ρv

)2 (uT
k β
)2
.

A bona fide estimator to MSE
(
β̂SRR(ρ)

)
requires an estimator for σ2 and

(
uT
k β
)2
. The plug-in
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estimator for
(
uT
k β
)2

is given by

(
yTX

(
XTX

)−1
uk

)2
=

(
p∑

l=0

yTXulu
T
l uk

(1−ρ)λl+ρv

)2

=

(
yTXuk

(1−ρ)λk+ρv

)2

=
vk(

(1−ρ)λk+ρv
)2 , (I.35)

where vk := yTXuk for all 0 ≤ k ≤ p. The plug-in estimator for σ2 could be similarly derived

as follows:

1

n−p−1

(
yTy− 2yTX

(
p∑

k=0

1

1−ρ)λk+ρv
uku

T
k

)
XTy+

yTX

(
p∑

k=0

1

1−ρ)λk+ρv
uku

T
k

)
p∑

k=0

λkuku
T
k

(
p∑

k=0

1

1−ρ)λk+ρv
uku

T
k

)
XTy

)
(I.36)

=
1

n−p−1

(
yTy− 2

p∑
k=0

vk
1−ρ)λk+ρv

+

p∑
k=0

λkvk(
(1−ρ)λk+ρv

)2
)

Putting together (I.32)–(I.36), we get that the final formula forMSE
(
β̂SRR(ρ)

)∧
claimed through

H(ρ) that is given in Proposition 1. The proof is now complete.

I.10 Ancillary Results

Lemma 1. Let u, v ∈ ℜm such that uk ≥ 0 and vk > 0 for all 1 ≤ k ≤ m. Then,

m∑
k=1

ukvk
uk + vk

≤
(
1Tu

)(
1Tv

)
1Tu+ 1Tv

, (I.37)

where the above becomes an identity if and only if u = Mv for a given M ≥ 0.

Proof. We first show that for any p,q ∈ ℜm such that pk ≥ 0 and qk > 0 for all 1 ≤ k ≤ m

with 1Tp = 1Tq = 1, the following holds

m∑
k=1

pkqk
apk + (1− a)qk

≤ 1 for any 0 < a < 1, (I.38)

and the above becomes an identity if and only if p = q. Note that

1−
m∑
k=1

pkqk
apk + (1− a)qk

:= Hϕa(p,q) =
m∑
k=1

qkϕa

(
pk
qk

)
, (I.39)

where ϕa(t) := − t
1−a+at + (t − 1)(1 − a) + 1 for all t ∈ ℜ+. By definition, Hϕa(p,q) is the
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ϕ−divergence between the probability distributions induced by p and q through the ϕa diver-

gence function. Then, if ϕa(·) is convex on ℜ+ and strictly convex in a neighborhood of 1 (which

both are true), then Hϕa(p,q) ≥ 0 for any p,q, and Hϕa(p,q) = 0 if and only if p = q; for

details, see (Pardo, 2005). This concludes (I.38). By taking pk = uk/1
Tu and qk = vk/1

Tv for

all 1 ≤ k ≤ m, and a = 1Tu/(1Tu + 1Tv) in (I.38), one may easily recover (I.37) whenever

1Tu > 0; the case when 1Tu = 0, which is equivalent to having u = 0, is trivial. This completes

the proof.

Lemma 2. Let A ≻ 0 be a symmetric matrix of size r. Then, Tr(A−1) ≥ Tr
((

diag(A)
)−1
)
.

Proof. Let λ1, . . . , λr be the eigenvalues of A and {ul, 1 ≤ l ≤ r} be its orthonormal eigenvec-

tors. Spectral decomposition tells us that

A =
r∑

k=1

λkuku
T
k and A−1 =

r∑
k=1

λ−1
k uku

T
k .

The latter implies that

Tr
((

diag(A)
)−1
)
=

r∑
k=1

(Akk)
−1 =

r∑
k=1

(
r∑

s=1

λsu
2
sk

)−1

≤
r∑

k=1

r∑
s=1

λ−1
s u2sk = Tr(A−1),

where the inequality is due to the Cauchy-Schwarz inequality and the last identity is true as the

eigenvectors are orthonormal vectors. This completes the proof.

II Simulation Study

A vast synthetic data analysis is provided in this section. We start with explaining DGP in

Section II.1, while the numerical experiments are provided in Section II.2 and further improved

in Section II.3 through cross-validation. We conclude this section by expanding the discussion

in Section 2.4 where we introduce the SRR estimator to improve the estimation error when the

covariates exhibit an ill-conditioned covariance matrix when even RR is a suitable estimator.

II.1 Data Generating Process

The DGP is now specified. First, covariates, {Xi}ni=1, are independent and identically distributed

(i.i.d.) random variates from the following three parent distributions:
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1. Multivariate Gaussian covariates with Toeplitz covariance matrix, N (µµµ,ΨΨΨ(ρ)), where

ΨΨΨst(ρ) = ρ|s−t| for all 1 ≤ s, t ≤ p. (II.1)

Here, µµµ = (µ1, µ2, . . . , µp)
T is the mean vector, ΨΨΨ(ρ) is the covariance matrix, and ρ

represents the correlation coefficient that controls the dependence between covariates.

2. Multivariate Gaussian dependence with Binomial covariates and Toeplitz covariance ma-

trix : that is, we first generate Zi ∼ N (0,Ψ(ρ)), and then, each marginal Zik is transformed

to be binomially distributed through the following transformation:

Xik = F−1(Φ(Zik)), for 1 ≤ k ≤ p, (II.2)

where Φ is the cumulative distribution function (CDF) of N(0, 1), and F−1 is the in-

verse CDF of the binomial distribution with parameters Nq = 2 number of trials and

q0 ∈ [0.01, 0.25] success probability. That is, Xi has the Gaussian copula extracted from

N (0,Ψ(ρ)) and Binomial(Nq, q0) marginals.

3. Latent Space Features: Covariates are generated from a low-rank structure, which is similar

to a setting from (Hastie et al., 2022). Specifically,

X = AZ+E, (II.3)

where A is an n × f matrix of factor loadings with entries drawn independently from

N (0, 1), and Z is an f × p matrix of latent factors with entries drawn independently from

N (0, 1). The random matrix E is an n × p matrix of independent Gaussian noise with

variance σ2 = 10−6, i.e., N (0, 10−6). Since f < p, the term AZ is a low-rank component

with at most rank f , and the small noise E ensures that X remains close to the low-rank

structure while also allowing an invertible covariance matrix even though is ill-conditioned.

Thus, the covariance structure of X conditioned on A is:

Cov
(
X | A

)
= ATA+ σ2Ip. (II.4)

Second, the dependent variable is generated according to two different sampling distributions:
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1. Gaussian

Y |X = x ∼ N
(
βT x̃, σ2

)
, (II.5)

where σ2 represents the variance of Y .

2. t-Distributed with ν degrees of freedom that controls the tail heaviness:

Y |X = x ∼ tν
(
βT x̃

)
. (II.6)

Third, the “true” regression parameters β are chosen in two ways:

1. Alternating Sign Specification

βk = (−1)k+1

⌈
k

2

⌉
, for 1 ≤ k ≤ p+ 1, where ⌈x⌉ is the ceiling function. (II.7)

2. Uniformly Distributed with zero intercept

β0 = 0, βk ∼ U(0.01, 0.3), for 1 ≤ k ≤ p. (II.8)

Binomially distributed covariates are common in genome-wide association studies (GWAS). In a

GWAS, each genetic variant is tested for association with a health-related trait via a regression

model that typically includes covariates such as age and gender. The genetic variant covariate

is a genotype score that takes on values 0, 1, and 2.

II.2 Data Analyses

We compare the following six estimators: i) OLS estimator β̂OLS by using the lm package in R,

ii) St estimator â∗β̂OLS as in (2.2), iii) DSh estimator ̂diag(b∗)β̂OLS as in (2.3); iv) Sh estimator

Ĉ∗β̂OLS as in (2.4); v) SR estimator β̂SR(µ̂∗∗(1);1, 0) as in (2.27), vi) GSR estimator β̂GSR(µ̂∗)

as in (2.30). Note that estimators ii)–vi) are proposed earlier in this paper and are implemented

in our new R package, savvySh†. This simulation study does not include results for LSh as it

performs similarly to OLS when using centered data. However, our package savvySh includes

LSh as well.
†Available at: https://github.com/Ziwei-ChenChen/savvySh
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We conduct the first simulation study with N = 250 replications to compare the performance

of OLS, St, DSh, Sh, SR, and GSR. The sample sizes are set to n = 500, 1, 000, and 2, 500,

with the number of covariates p varying with n except when p = 1. Specifically, the ratios of p

to n are chosen as 1, 5%, 10%, 25%, 50%, and 75%. The covariance matrix is as in (II.1) with

the mean fixed at µ = 0 and ρ = −0.75, −0.5, −0.25, 0, 0.25, 0.5, and 0.75. The dependent

variable is generated as in (II.5) with σ = 1 and σ = 5, and the corresponding results are

presented in Tables 3 and 4. Additionally, the dependent variable is generated as in (II.5) with

ν = 50/24 degrees of freedom so that the variance of the t-distribution matches that of the

normal distribution when σ = 5; the corresponding results are shown in Table 5. In all settings,

the “true” regression coefficients β are specified as in (II.7). Each estimator is assigned a count

of one in the tables if it achieves the minimum L2 distance, which measures the closeness of the

estimated coefficients to the “true” values. Smaller L2 values indicate better accuracy.

In the second simulation study, we compare five estimators: OLS, St, DSh, SR, and GSR, based

on insights from the first study but also to avoid the high computational cost for Sh estimation.

This study focuses on simulating N = 250 replications with sample sizes n = 1, 000, 2, 500, and

5, 000. The number of covariates is fixed at p = 1, 2, and 5, while the covariance matrix for

the covariates is as before. Covariates are generated using (II.2), which transforms multivariate

Gaussian random variates into multivariate binomial random variates with Nq = 2 trials. The

probability q0 varies across the 250 replications, starting from 0.01 and increasing incrementally

to 0.25, ensuring equal spacing between values. The dependent variable is generated as in (II.5)

with σ = 1 and σ = 5, while the “true” regression coefficients β are specified in (II.8). Similar

to the first simulation study, each estimator is assigned a count of one in Table 6 if it achieves

the minimum L2 distance.

II.3 Further improvement of St, DSh and GSR

We could improve some of the shrinkage estimators by better balancing the variance and bias of

some of the newly introduced shrinkage estimators, and we consider only St, DSh and GSR in

this section as only those three estimators managed to outperform OLS in Section II.2. That is,

let γ > 0 be the variance/bias balance parameter within the MSE of our shrinkage estimators,
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Table 3: Best performance regression model

Normal Distribution: σ = 1

Panel A: n = 500

p/n 1 5% 10%

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 1 1 3 2 8 16 14 25 29 32 33 40 35 30 25

St 8 5 7 16 4 10 24 36 42 45 32 34 38 33 23

DSh 11 3 7 10 20 25 39 50 43 66 67 82 74 66 45

Sh 0 3 0 0 0 1 0 0 32 10 7 1 3 1 1

SR 215 176 173 174 180 139 111 53 36 15 8 8 7 51 78

GSR 15 62 60 48 38 59 62 86 68 82 103 85 93 69 78

p/n 25% 50% 75%

ρ -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 2 8 7 9 10 13 14 29 21 20 18 14 16 28 6 3 7 9 7 10 14

St 4 10 8 7 10 18 35 37 29 20 20 29 21 21 8 13 9 9 7 16 34

DSh 6 14 16 19 36 58 75 22 30 53 49 43 48 56 7 8 23 23 53 38 63

Sh 4 0 0 0 2 2 1 15 7 7 2 3 6 2 3 6 5 1 2 1 6

SR 182 163 167 165 133 79 34 83 83 79 98 98 81 53 157 131 135 137 119 85 44

GSR 52 55 52 50 59 80 91 64 80 71 63 63 78 90 69 89 71 71 62 100 89

Panel B: n = 1,000

p/n 1 5% 10%

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 1 25 33 38 42 42 45 24 23 36 44 46 40 38 20

St 6 45 48 43 38 36 37 27 44 42 24 39 40 34 18

DSh 5 62 55 74 74 68 64 44 44 56 69 76 75 49 63

Sh 0 22 15 4 4 3 4 2 22 13 5 3 1 2 0

SR 225 25 4 0 0 0 11 71 34 17 6 3 7 48 78

GSR 13 71 95 91 92 101 89 82 83 86 102 83 87 79 71

p/n 25% 50% 75%

ρ -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 18 28 29 30 24 26 20 19 18 11 21 12 17 27 28 14 12 15 10 13 23

St 32 34 30 37 32 21 18 24 23 31 27 18 18 16 25 17 26 24 16 21 25

DSh 39 53 54 55 62 48 48 21 34 27 47 43 50 69 18 34 29 37 41 35 69

Sh 18 6 2 9 3 1 1 13 4 6 0 4 2 2 13 6 10 4 2 4 2

SR 83 42 38 36 62 87 76 91 94 88 98 102 96 58 78 81 88 98 86 79 35

GSR 60 87 97 83 67 67 87 82 77 87 57 71 67 78 88 98 85 72 95 98 96

Panel C: n = 2,500

p/n 1 5% 10%

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 0 2 6 3 4 7 8 12 30 36 35 37 27 30 25

St 6 8 4 4 1 7 14 31 39 41 34 39 45 37 16

DSh 3 4 5 10 19 15 48 76 52 56 78 73 79 57 42

Sh 0 2 2 0 0 0 0 1 14 11 1 0 3 0 2

SR 231 181 191 184 187 159 108 44 37 11 3 1 4 56 76

GSR 10 53 42 49 39 62 72 86 78 95 99 100 92 70 89

p/n 25% 50% 75%

ρ -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 3 6 4 6 13 11 13 18 20 12 16 18 12 17 7 3 4 9 10 12 6

St 9 7 6 3 10 17 20 19 23 21 20 15 12 17 10 10 6 10 12 9 10

DSh 19 21 17 29 30 42 73 37 30 43 40 44 42 53 13 16 15 30 32 40 80

Sh 3 2 0 3 0 1 1 4 8 12 2 2 1 1 4 2 3 0 1 2 1

SR 170 171 169 171 152 117 50 84 96 84 93 106 110 79 136 147 150 135 123 108 53

GSR 46 43 54 38 45 62 93 88 73 78 79 65 73 83 80 72 72 66 72 79 100

Notes: Performance comparisons across different estimators are shown for Gaussian dependent variable with
σ = 1 and Gaussian covariates as in (II.5) and (II.1), respectively. Estimators are ranked in L2 distance (from
the “true” regression parameters) across N = 250 replications, and the “best” estimator is highlighted in red for
various choices of n, p/n and ρ; ρ is not required for simple linear regression (p = 1).
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Table 4: Best performance regression model

Normal Distribution: σ = 5

Panel A: n = 500

p/n 1 5% 10%

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 1 0 1 1 9 18 17 29 2 32 45 62 51 56 32

St 26 0 13 21 17 24 50 61 32 80 54 56 59 56 47

DSh 4 0 4 21 23 33 41 39 1 28 47 54 63 55 45

Sh 1 0 3 1 1 1 0 0 19 28 11 7 2 4 1

SR 194 34 125 155 153 112 80 57 2 0 0 0 0 15 68

GSR 24 216 104 51 47 62 62 64 194 82 93 71 75 64 57

p/n 25% 50% 75%

ρ -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 0 12 8 12 16 16 15 27 40 35 41 34 24 39 7 9 12 15 13 16 21

St 12 21 15 17 22 33 56 78 62 67 48 52 32 35 25 24 19 24 23 45 67

DSh 0 4 12 16 44 49 59 1 16 27 33 29 47 42 9 0 12 20 44 28 23

Sh 7 5 4 0 2 3 1 26 20 17 8 6 7 3 4 8 7 1 6 1 6

SR 166 160 160 154 108 63 41 64 42 33 44 62 72 62 135 125 121 110 95 75 46

GSR 65 48 51 51 58 86 78 54 70 71 76 67 68 69 70 84 79 80 69 85 87

Panel B: n = 1,000

p/n 1 5% 10%

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 1 1 30 47 49 49 53 38 7 45 62 50 50 56 29

St 17 27 70 61 54 49 58 49 72 64 49 53 51 49 31

DSh 3 2 38 53 55 62 67 38 10 45 50 64 59 63 60

Sh 0 25 23 8 6 4 4 3 50 34 5 6 2 3 1

SR 204 0 0 0 0 0 0 52 2 0 0 0 0 5 68

GSR 25 195 89 81 86 86 68 70 109 62 84 77 88 74 61

p/n 25% 50% 75%

ρ -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 20 34 41 46 35 34 41 44 42 37 39 25 29 32 36 32 25 26 16 23 27

St 101 66 63 67 58 34 22 76 63 52 47 46 24 28 60 36 42 38 29 31 40

DSh 1 35 43 53 67 61 46 1 20 27 37 40 41 42 0 11 15 26 31 21 38

Sh 55 15 11 8 7 4 2 29 13 14 5 9 5 3 17 19 13 3 4 8 6

SR 13 3 0 0 0 41 69 44 36 22 45 65 91 69 87 83 75 82 85 84 55

GSR 60 97 92 76 83 76 70 56 76 98 77 65 60 76 50 69 80 75 85 83 84

Panel C: n = 2,500

p/n 1 5% 10%

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 0 0 8 4 5 10 11 16 36 41 45 50 41 45 39

St 13 10 9 7 4 13 25 40 83 60 46 43 54 59 27

DSh 2 4 8 16 27 28 62 67 23 50 67 59 71 72 43

Sh 1 2 0 0 0 1 0 1 59 23 2 5 2 0 2

SR 218 170 178 167 164 133 75 37 0 0 0 0 0 1 71

GSR 16 64 47 56 50 65 77 89 49 76 90 93 82 73 68

p/n 25% 50% 75%

ρ -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 6 5 6 9 17 14 16 57 32 31 42 34 22 22 15 8 6 11 12 14 12

St 17 10 3 11 13 22 36 68 53 33 38 28 27 24 22 13 13 11 17 11 30

DSh 7 19 27 25 38 54 74 10 31 52 55 48 46 38 3 16 15 27 32 48 56

Sh 7 4 1 3 0 3 2 22 23 13 6 4 5 3 6 8 4 1 1 2 1

SR 181 157 153 150 122 84 47 47 30 20 14 60 93 88 147 129 125 114 92 86 54

GSR 32 55 60 52 60 73 75 46 81 101 95 76 57 75 57 76 87 86 96 89 97

Notes: Notes: Performance comparisons across different estimators are shown for Gaussian dependent variable
with σ = 5 and Gaussian covariates as in (II.5) and (II.1), respectively. Estimators are ranked in L2 distance
(from the “true” regression parameters) across N = 250 replications, and the “best” estimator is highlighted in
red for various choices of n, p/n and ρ; ρ is not required for simple linear regression (p = 1).
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Table 5: Best performance regression model

t-distribution: v = 50/24

Panel A: n = 500

p/n 1 5% 10%

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 3 1 5 3 2 7 13 18 10 40 41 54 44 49 34

St 14 8 8 7 18 17 34 46 60 53 51 47 46 51 27

DSh 6 1 11 24 30 36 34 64 16 42 65 57 56 67 50

Sh 0 2 1 1 2 0 1 1 37 28 7 9 4 3 4

SR 203 104 154 153 158 136 100 44 10 0 0 0 1 19 63

GSR 24 134 71 62 40 54 68 77 117 87 86 83 99 61 72

p/n 25% 50% 75%

ρ -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 7 6 12 6 12 13 12 32 29 33 36 31 22 20 14 12 8 12 13 13 12

St 29 17 12 14 22 44 58 64 34 44 37 26 30 25 19 11 12 15 16 31 50

DSh 3 16 26 17 40 55 53 7 21 26 40 23 37 55 3 7 18 30 34 50 49

Sh 5 5 0 1 2 1 4 18 12 10 11 3 4 4 6 1 4 6 2 3 4

SR 151 163 157 153 112 71 39 73 81 68 51 89 81 63 144 142 135 120 98 83 47

GSR 55 43 43 59 62 66 84 56 73 69 75 78 76 83 64 77 73 67 87 70 88

Panel B: n = 1,000

p/n 1 5% 10%

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 1 13 27 36 41 49 48 27 27 49 42 45 44 38 29

St 13 65 50 39 51 47 47 23 74 48 44 36 37 46 33

DSh 4 21 56 53 74 71 62 57 26 62 64 72 75 76 51

Sh 0 35 27 3 2 5 5 2 45 12 11 2 3 2 3

SR 217 0 0 0 0 0 0 67 8 2 0 0 0 14 66

GSR 15 116 90 119 82 78 88 74 70 77 89 95 91 74 68

p/n 25% 50% 75%

ρ -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 34 40 56 37 39 32 25 29 26 30 25 20 24 23 25 31 27 21 32 22 20

St 72 56 43 39 46 35 29 60 38 29 26 30 26 30 57 29 29 28 24 31 22

DSh 23 42 57 46 66 48 45 12 35 44 50 44 47 49 5 14 37 32 41 41 40

Sh 35 20 9 10 4 7 6 28 11 11 9 8 4 4 20 6 3 5 3 6 3

SR 37 10 6 7 18 58 67 71 70 55 58 75 91 71 80 95 97 80 76 70 63

GSR 49 82 79 111 77 70 78 50 70 81 82 73 58 73 63 75 57 84 74 80 102

Panel C: n = 2,500

p/n 1 5% 10%

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 1 1 1 4 6 7 15 22 35 39 41 46 36 44 30

St 19 5 5 10 11 11 23 37 57 56 48 38 45 46 21

DSh 5 9 9 13 18 32 44 58 46 47 61 70 66 64 55

Sh 0 3 1 0 0 0 0 0 44 19 8 2 3 4 4

SR 205 174 189 175 164 142 93 38 2 0 0 0 0 5 70

GSR 20 58 45 48 51 58 75 95 66 89 92 94 100 87 70

p/n 25% 50% 75%

ρ -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 8 6 9 6 9 10 13 34 26 25 21 26 29 15 7 10 7 11 7 10 14

St 15 12 7 17 7 21 37 50 47 30 37 27 15 14 15 11 11 14 15 21 29

DSh 7 15 21 25 39 52 64 26 50 50 59 51 37 48 9 14 22 35 36 54 57

Sh 7 3 0 4 1 4 2 12 10 9 8 7 2 3 7 4 5 2 4 4 2

SR 160 162 164 146 137 95 40 57 47 53 49 74 99 82 142 143 132 125 107 71 53

GSR 53 52 49 52 57 68 94 71 70 83 76 65 68 88 70 68 73 63 81 90 95

Notes: Notes: Performance comparisons across different estimators are shown for t-distribution dependent vari-
able with v = 50/24 and Gaussian covariates as in (II.6) and (II.1), respectively. Estimators are ranked in
L2 distance (from the “true” regression parameters) across N = 250 replications, and the “best” estimator is
highlighted in red for various choices of n, p/n and ρ; ρ is not required for simple linear regression (p = 1).
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Table 6: Best performance regression model

σ = 1

Panel A: n = 1,000

p 1 2 5

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 113 81 81 78 77 74 74 60 46 47 51 45 44 42 32

St 22 34 29 31 50 30 19 27 57 61 59 79 69 59 45

DSh 47 62 56 56 48 63 55 57 51 39 44 48 49 33 25

SR 56 37 37 39 28 25 14 12 16 27 24 18 12 5 8

GSR 14 36 47 46 47 58 88 94 80 76 72 60 74 111 140

Panel B: n = 2,500

p 1 2 5

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 95 89 79 71 76 74 64 63 67 62 68 53 48 64 31

St 21 25 27 25 32 20 15 11 45 42 46 63 47 48 42

DSh 80 65 66 68 70 73 72 69 49 54 57 60 60 39 26

SR 35 26 35 28 19 19 13 5 14 21 20 10 11 4 4

GSR 19 45 43 58 53 64 86 102 75 71 59 64 84 95 147

Panel C: n = 5,000

p 1 2 5

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 90 81 75 69 63 66 58 61 65 64 62 60 65 39 46

St 25 20 29 26 21 20 13 13 37 43 38 37 36 41 46

DSh 93 90 92 83 82 86 78 66 62 70 74 66 58 60 46

SR 28 16 13 18 12 11 8 3 5 9 7 3 1 2 0

GSR 14 43 41 54 72 67 93 107 81 64 69 84 90 108 112

σ = 5

Panel A: n = 1,000

p 1 2 5

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 29 19 16 13 18 13 17 18 4 2 2 1 3 0 0

St 110 125 139 130 135 122 122 139 202 199 195 204 195 206 199

DSh 40 34 37 41 38 35 49 41 10 17 15 14 18 11 13

SR 47 24 25 23 26 21 10 6 0 4 4 0 2 0 0

GSR 24 48 33 43 33 59 52 46 34 28 34 31 32 33 38

Panel B: n = 2,500

p 1 2 5

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 58 36 30 29 33 35 27 21 7 13 9 7 7 11 2

St 68 83 93 106 87 86 84 92 167 149 147 159 155 154 159

DSh 49 52 39 36 58 45 54 53 22 35 33 31 27 22 12

SR 48 31 33 26 23 25 20 11 6 5 10 2 4 0 0

GSR 27 48 55 53 49 59 65 73 48 48 51 51 57 63 77

Panel C: n = 5,000

p 1 2 5

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 59 51 53 50 34 56 51 35 22 28 24 22 28 12 6

St 61 68 64 62 74 67 57 64 111 109 108 121 114 118 103

DSh 45 42 50 56 47 54 53 52 30 30 31 41 33 22 20

SR 53 39 27 30 21 28 20 12 13 21 22 4 10 3 3

GSR 32 50 56 52 74 45 69 87 74 62 65 62 65 95 118

Notes: Performance comparisons across different estimators are shown for Gaussian dependent variable with
σ = {1, 5} and multivariate binomial covariates as in (II.5) and (II.2), respectively. Estimators are ranked in
L2 distance (from the “true” regression parameters) across N = 250 replications, and the “best” estimator is
highlighted in red for various choices of n, p/n and ρ; ρ is not required for simple linear regression (p = 1).
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and define the slightly modified St and DSh bona fide estimators in (2.7) as follows:

â∗(γ)β̂OLS and diag(b̂∗(γ))β̂OLS , where

â∗(γ) :=
γ
(
β̂OLS

)T
β̂OLS

γ
(
β̂OLS

)T
β̂OLS + M̂∗

0

and b̂∗k(γ) =
γ
(
β̂OLS
k

)2
γ
(
β̂OLS
k

)2
+ σ̂2σk

with 0≤k≤p.

Similarly, the slightly changed GSR bona fide estimator in (2.33b) is as follows:

β̂GSR
(
µ̂∗(γ)

)
=

(
Ip+1 −

∑
l∈L

µ̂∗
l (γ)λ

−1
l

1 + µ̂∗
l (γ)λ

−1
l

ulu
T
l

)
β̂OLS , where (II.9a)

µ̂∗
l (γ) =

σ̂2

γ
(
uT
l β̂

OLS
)2 for all 0 ≤ l ≤ p. (II.9b)

The previous asymptotic theory clearly holds for any given γ > 0, and γ = 1 reverts to the

previously defined St, DSh and GSR estimators. The parameter γ creates an uneven contribution

to MSE, meaning that the bias is now weighted through γ, which may be beneficial in finite

sample estimation to adjust our shrinkage estimators by performing cross-validation on γ. Our

numerical experiments – not shown here but available upon request – show that GSR may

benefit from such an adjustment, which has had a neutral effect on St and DSh.

II.4 Further Comparative Analysis between RR and SRR

Recall that we outlined the superior performance of SRR over RR and OLS at the end of

Section 2.4, and we now provide more granular evidence in that respect by using synthetic data

generated as explained in Section 2.4. Table 1 illustrates that the L2-based estimation error of

SRR is uniformly lower than that of RR and OLS, but we do not know by how much. In fact,

the differences are very large between OLS and SRR, and significancy different when comparing

RR to SRR; the pictorial representations in Figure 1 visually support these findings by plotting

the L2 errors of RR against those of SRR for two representative lower-dimensional cases though

all other examples exhibit a similar pattern: i) p/n = 5%, f/p = 75% and ii) p/n = 10%,

f/p = 50%. These plots show how effective SRR is as compared to RR since many points are

below the bisection line, which reinforces our findings in Table 1.

Further, we visualize in Figure 2 coefficient-specific errors using boxplots of L1 error. Note that

∥x∥p decreases as p increases, and thus, the L1 error would capture any eventual outliers more
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effectively than the L2 errors. The dashed black horizontal line in Figure 2 indicates the lowest

median L1 error observed among all estimated coefficients from both RR and SRR, providing a

clear benchmark point for comparing the RR and SRR performance. These boxplots illustrate

that SRR consistently produces smaller median errors and exhibits less variability in estimation

errors as compared to RR. In a nutshell, SRR is extremely effective in low-dimensional covariance

subspace cases.
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Figure 1: Scatter plots of L2-distance (from the “true” regression parameters) for RR and SRR are provided
by plotting N = 250 replications of samples of size n = 1, 000 for two representative choices of p/n and f/p
considered in Table 1. The red dashed line is a bisection indicating that SRR has a lower/higher L2 error than
RR for points below/above this line.

III Discussion about Eigenvalues and Kolmogorov Setting

This section provides extended information about the conclusions summarized in Section 2.5 as

Results 9 and 10. First, we provide numerical evidence to support some interesting empirical

evidence about the empirical eigenvalues. Such evidence would explain the behavior of MLR

shrinkage estimators that directly or indirectly rely on the covariates’ eigenvalues. Specifically,

Section III.1 contains a series of pictorial representations confirming the statements in Result 9.

Second, we illustrate at the beginning of Section III.2 how crucial the eigenvalues are in MLR

estimation. Third, the second part of Section III.2 provides empirical evidence that St and GSR

significantly improve the estimation error of OLS under the Kolmogorov setting. The last two

sets of conclusions have been stated as Result 10.

The DGP in this section has two variants. One variant is as in Section II.1 where covariates

are N (000,ΨΨΨ(ρ)) distributed with a Toeplitz covariance matrix as in (II.1) and Gaussian depen-
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Figure 2: Boxplots of L1 errors for the estimated coefficients of RR and SRR with p = 5, n = 1,000, and
N = 250. The first-row plot shows results for f = 2, and the second-row plot for f = 4. The left panels show the
distribution of L1 errors for RR, and the right panels show the distribution for SRR. The dashed black horizontal
line indicates the lowest median L1 error among all coefficients for RR and SRR, which serves as a reference for
comparison.

dent variable distributed as in (II.5). While this DGP controls the strength of dependence,

we introduce a second DGP that is designed to control the eigenvalues of the “true” covari-

ance matrix corresponding to the covariates. That is, Gaussian covariates are generated from

X ∼ N (0,Qdiag(λ)QT
)
, while the response is Gaussian as in (II.5). Two data generating

processes are considered for the covariance matrix, but both use the same “true” eigenvalues

λ = (λ1, . . . , λp) with λi ∼ U(0, λmax) for i = 1, . . . , p. First, independent covariates are con-
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sidered, i.e., Q = Ip. Second, dependent covariates are considered by preserving the eigenvalues

λ and randomly generated eigenvectors, i.e. Q is a random orthogonal matrix. The latter is

possible by taking Ã = 1
2

(
A+AT

)
, where A is a random square matrix , e.g., entries are i.i.d.

N(0, 1); further, define
≈
A = ÃÃT and its QR decomposition

≈
A = QR gives Q as the required

orthonormal matrix.

III.1 Bias of Empirical Eigenvalues

We generate multivariate Gaussian random samples and summarize our results from this section

in Figures 3 and 4. The main conclusions are stated as Result 9, which complements the existing

literature about the empirical eigenvalues’ behavior. Result 9 i) is not new, but Result 9 ii) is

slightly surprising, though something related has appeared in (Muirhead, 1987) – see p.278 – in

the context of the Wishart random matrix. A somehow related mathematical argument is that

Ip = argmax
Q:QQT=QTQ=Ip

1TQdiag(λ)QT1 for any fixed λ > 0,

which one may obtain via the Rayleigh quotient result or use similar arguments to those used

in the proof of Principal Component Analysis. Result 9 iii) is not surprising since the sum of

the empirical eigenvalues is an unbiased estimator of the sum of the “true” eigenvalues due to

the fact that the sample covariance is an unbiased estimator of the “true” covariance matrix.

III.2 Heuristics About Covariates’ Dependence and Kolmogorov Setting

It has been noted in (El Karoui et al., 2013; El Karoui, 2013; Donoho and Montanari, 2016) that

the OLS estimator has a non-zero asymptotic MSE under the Kolmogorov setting when both

p and n get large. Under the assumptions that the covariates are Gaussian distributed with

X ∼ N
(
000,ΣΣΣ

)
and the error terms ϵ are i.i.d. with zero mean and variance σ2, which is different

than our setting given in Assumption 2.1, the OLS estimator – denoted as β̂OLS(β,Σ) satisfies

β̂OLS(β,Σ)− β
d
=
∣∣∣∣∣∣β̂OLS

(
β, Ip

)
− β

∣∣∣∣∣∣
2
Σ−1/2U, (III.1)

where β ∈ ℜp is the “true” parameter vector,
d
= means equal in distribution and U is an p-

dimensional uniformly (on sphere of radius 1) distributed random vector that is independent of

β̂OLS
(
β, Ip

)
. Note that this setting assumes a zero intercept which simplifies the exposition. It
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Figure 3: Boxplots of the empirical eigenvalues from sample covariance matrices computed from data generated
as X ∼ N

(
000,ΨΨΨ(ρ)

)
, where ΨΨΨ(ρ) is a Toeplitz covariance matrix as in (II.1); results are based on N = 250 replicates

of samples with sample size of n = 250. Each row shows results for a fixed correlation ρ of -0.5, 0 and 0.5 at
the top, middle and bottom, respectively, and each column compares two settings when p = 5 (left) and p = 10
(right). The red horizontal segments indicate the “true” eigenvalues of ΨΨΨ(ρ).
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Figure 4: Boxplots of the empirical eigenvalues from sample covariance matrices computed from data generated
as X ∼ N

(
0,Qdiag(λ)QT

)
, where Q = Ip (top) and Q is a p × p randomly generated orthogonal matrix

(bottom); results are based on N = 250 replicates of samples with sample size of n = 250. The red horizontal
segments indicate the “true” eigenvalues, which are 1 and 1/2; specifically, the first ⌈p/2⌉ eigenvalues are equal
to 1 and the remaining p− ⌈p/2⌉ eigenvalues are set to 1/2.

is not difficult to find that

E[UTΣ−1U] =
1

p
Tr
(
Σ−1

)
. (III.2)

It is argued in (El Karoui et al., 2013; El Karoui, 2013; Donoho and Montanari, 2016) that

∣∣∣∣∣∣β̂OLS
(
β, Ip

)
− β

∣∣∣∣∣∣
2
→ κ

1− κ
σ2 as n → ∞, where p/n → κ ∈ (0, 1) as n → ∞. (III.3)

Putting (III.1)–(III.3) together, one may expect the asymptotic MSE of β̂OLS(β,Σ) and asymp-

totic MSE of β̂OLS
(
β,diag(λ)

)
to be equivalent if Σ has eigenvalues given by λ. Thus, one would

58



expect that the OLS estimator L2 errors might be similar when comparing the dependence and

independence cases.

The above possible conjecture is not exactly what we have found in Figures 5 and 6, where

the population eigenvalues are identical in the dependence and independence cases, a property

that is preserved by the empirical eigenvalues (see Figures 5 and 6, subplots (b) and (d)). This

invariance empirical property is not present for the OLS estimator where L1 errors are dissimilar

(dependence vs. independence) with ratios smaller than 1, meaning that the independence case

is closer to the ground truth. Similar to Figure 2, we choose to display the L1 ratios instead of

L2 ratios as the L1 distance is more sensitive to outliers.

We also check the OLS L1 equivalence between the dependence and independence cases when

the “true” eigenvalues are preserved, but for the Kolmogorov setting, i.e., when both n and p

get large so that p/n ≈ κ ∈ (0, 1). Our conclusion is stated as Result 10 i) where the pattern for

small samples (n = 250) obtained in Figures 5 and 6 is observed for larger samples and various

p/n ratios as it can be seen in Figure 7. Note that the invariance property for the empirical

eigenvalues is preserved for large sample sizes as we have noted in Figures 5 and 6.

We further analyze if the St, DSh and GSR estimators exhibit the same property as OLS

when comparing the possible L1 equivalence between the dependence and independence cases

when the “true” eigenvalues are preserved for the Kolmogorov setting. As in the OLS case,

we show in Figures 8 – 10 that the estimation error of St/DSh/GSR is lower for independent

Gaussian covariates as compared to the dependent Gaussian covariates case, which is stated as

Result 10 ii). In fact, we found that the ratios for OLS and DSh are similar (with ratios less

than 1), while St and GSR exhibit a similar pattern that is different than OLS, i.e., St and GSR

ratios are closer to 1 than OLS’ ratios.

We now compare the estimation error of three shrinkage estimators (St, DSh and GSR) to OLS

under the Kolmogorov setting, and as before, we choose L1 errors to make such comparisons. For

simplicity, we assumed independent standard Gaussian covariates given the previous empirical

evidence. We found in Figure 11 that OLS clearly outperforms DSh for the high-dimensional

settings that we considered here, but St outperforms OLS in all possible settings. Further, GSR

outperforms OLS in almost all settings, and when it does not, the differences are within 1% on

average median; for large ratios (such as p/n ∈ {90%, 95%}), the average median is improved by

7% to 23%. Furthermore, GSR outperforms St in almost all settings, and when it does not, the
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Figure 5: Boxplots of the L1 error ratios – independent covariates (with Q = Ip) divided by dependent covariates
(with Q being a random orthogonal matrix) – for OLS estimates (left) and empirical eigenvalues (right) for various
p/n. A ratio < 1 indicates that the model fitted with independent covariates yields a lower L1 error than that
with dependent covariates. Each L1 error ratio is based on two samples of size n = 250 drawn from populations
with independent and dependent Gaussian covariates; both covariance matrices have the same eigenvalues λ that
are randomly generated from U(0, λmax) with λmax = 10 (top) and λmax = 1 (bottom). Each boxplot is based on
N = 250 replications and in all cases, the “true” regression coefficients are set as β = (1,−1, 1, . . .), i.e., all are
equal to 1 but with alternate signs.

differences are within 2% to 3% on average median; for large ratios (such as p/n ∈ {90%, 95%}),

the average median is improved by 8% to 13%. We summarize this pattern as Result 10 iii).
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Figure 6: Boxplots of the L1 error ratios – independent covariates (with Q = Ip) divided by dependent covariates
(with Q being a random orthogonal matrix) – for OLS estimates (left) and empirical eigenvalues (right) for various
p/n. A ratio < 1 indicates that the model fitted with independent covariates yields a lower L1 error than that
with dependent covariates. Each L1 error ratio is based on two samples of size n = 250 drawn from populations
with independent and dependent Gaussian covariates; both covariance matrices have the same eigenvalues λ that
are randomly generated from U(0, λmax) with λmax = 10 (top) and λmax = 1 (bottom). Each boxplot is based on
N = 250 replications and in all cases, the “true” regression coefficients are all equal to 1.
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Figure 7: Boxplots of the L1 error ratios – independent covariates (with Q = Ip) divided by dependent
covariates (with Q being a random orthogonal matrix) – for OLS estimates based on samples of sizes n = 1, 000
and n = 10, 000 for various p/n. A ratio < 1 indicates that the OLS model fitted with independent covariates
yields a lower L1 error than the OLS model with dependent covariates. Each L1 error ratio is based on samples
drawn from populations with independent and dependent Gaussian covariates; both covariance matrices have the
same eigenvalues λ that are randomly generated from U(0, 1). Each boxplot is based on N = 250 replications
and in all cases, the “true” regression coefficients are all equal to 1.
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Figure 8: Boxplots of the L1 error ratios – independent covariates (with Q = Ip) divided by dependent covariates
(with Q being a random orthogonal matrix) – for St estimates based on samples of sizes n = 1, 000 and n = 10, 000
for various p/n. A ratio < 1 indicates that the St model fitted with independent covariates yields a lower L1 error
than the St model with dependent covariates. Each L1 error ratio is based on samples drawn from populations
with independent and dependent Gaussian covariates; both covariance matrices have the same eigenvalues λ that
are randomly generated from U(0, 1). Each boxplot is based on N = 250 replications and in all cases, the “true”
regression coefficients are all equal to 1.
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Figure 9: Boxplots of the L1 error ratios – independent covariates (with Q = Ip) divided by dependent
covariates (with Q being a random orthogonal matrix) – for DSh estimates based on samples of sizes n = 1, 000
and n = 10, 000 for various p/n. A ratio < 1 indicates that the DSh model fitted with independent covariates
yields a lower L1 error than the DSh model with dependent covariates. Each L1 error ratio is based on samples
drawn from populations with independent and dependent Gaussian covariates; both covariance matrices have the
same eigenvalues λ that are randomly generated from U(0, 1). Each boxplot is based on N = 250 replications
and in all cases, and the “true” regression coefficients are all equal to 1.
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Figure 10: Boxplots of the L1 error ratios – independent covariates (with Q = Ip) divided by dependent
covariates (with Q being a random orthogonal matrix) – for GSR estimates based on samples of sizes n = 1, 000
and n = 10, 000 for various p/n. A ratio < 1 indicates that the GSR model fitted with independent covariates
yields a lower L1 error than the GSR model with dependent covariates. Each L1 error ratio is based on samples
drawn from populations with independent and dependent Gaussian covariates; both covariance matrices have the
same eigenvalues λ that are randomly generated from U(0, 1). Each boxplot is based on N = 250 replications
and in all cases, and the “true” regression coefficients are all equal to 1.
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Figure 11: Boxplots of the L1 error ratios of St vs. OLS (top), DSh vs. OLS (middle) and GSR vs. OLS (bottom)
for various p/n; only independent covariates (with Q = Ip) are considered with samples of sizes n = 1, 000 and
n = 10, 000. A ratio < 1 indicates that the shrinkage model yields a lower L1 error than the OLS model. Each
L1 error ratio is based on samples drawn from populations with independent and dependent Gaussian covariates;
both covariance matrices have the same eigenvalues λ that are randomly generated from U(0, 1). Each boxplot
is based on N = 250 replications and in all cases, the “true” regression coefficients are all equal to 1.
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IV Statistical Fine-Mapping Application

IV.1 Fine-mapping algorithm modification

We integrated our new estimation methods within single and multi-trait fine-mapping methods

JAM (expanded) and flashfm at several stages. First, within the genetic region of interest, we

calculated GWAS summary statistics by fitting a single-SNP regression model at each genetic

variant in the region, using one of OLS, GSR, St, and DSh. The resulting effect estimates

(β̂) at each variant were input into the JAM algorithm, together with the SNP correlation

matrix (thinned so that no variants had squared correlation greater than 0.99) to identify initial

multi-SNP models (multiple regression models) of potential causal variants. Within the JAM

(expanded) algorithm, we used the selected estimation method (one of OLS, GSR, St, and DSh)

to re-fit all multi-SNP models (initial multi-SNP models and tag multi-SNP models, where

each variant in the initial model is replaced by variants with correlation at least 0.99 with the

initial variant Hernández et al. (2021)). Finally, we substituted the multi-SNP effect estimates

based on the selected method into previously derived estimates of the log approximate Bayes’

factor (ABF) for single trait models and the joint log(ABF) for multiple traits, as derived in

flashfm (Hernández et al., 2021). An R script‡ with functions for our new implementation is

also available for download.

IV.2 Data Generation

The data generation has been carried out under a realistic scenario that mimics the MAF and

genetic variant correlation structure in a region containing the IL2RA gene (345 SNPs in chro-

mosome 10p-6030000-6220000 (genomic build GRCh37/hg19)), which has genetic associations

with autoimmune diseases such as multiple sclerosis (MS). This region has been previously

shown to exhibit a tagging behaviour for causal variants making it more difficult to fine-map

genetic associations at these variants; when there are two causal variants (C1=rs61839660 and

C2=rs62626317), sometimes a different variant (D1=rs2104286), that is correlated with both

causal variants, is detected as a single causal variant (Asimit et al., 2019); in this region this

tagging behaviour was also observed for two causal variants, C1=rs61839660 and C3=rs11594656,

jointly tagged by D2=rs706779.

‡Available at: https://github.com/jennasimit/flashfm-savvySh
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For the IL2RA region, we generated a population of 10,000 individuals based on the CEU 1000

Genomes Phase 3 data (Consortium et al., 2015) using HapGen2 (Su et al., 2011). Each variant

has a genotype score that takes on values 0, 1, and 2 and is the count of one of the two alleles

at the variant. Under Hardy-Weinberg Equilibrium, the genotype score at each variant follows

a binomial distribution with Nq = 2 number of trials and q0 success probability, where q0 is the

frequency of the allele that is counted in the score, the effect allele frequency. The minor allele

frequency (MAF) is the frequency of the allele that occurs with lower frequency (i.e, < 0.5). Only

variants with MAF > 0.005 were included in our simulations. This aligns with our previous

simulations involving counting covariates with Gaussian dependence.

For each of the 100 replications, a random sample of 5,000 individuals was selected from the

population of 10,000. Quantitative traits were simulated to each have two causal variants, of

which one (C1) was shared between the traits; trait 1 had causal variants C1 and C2 and trait 2

had causal variants C1 and C3. Within each replication, the SNP effects for the causal variants

were random uniformly generated to be between 0.15 and 0.4. Then for our two traits, the

measurement for trait k of individual j, ykj , is obtained from ykj =
∑mk

i=1 βikxij + εkj , where

xij is the number of effect alleles of variant i for individual j (i.e. genotype score), βik is the

effect of causal variant i for trait k, mk is the number of causal variants for trait k (here,

mk = 2, k = 1, 2), and εkj is the kth element of the jth multivariate Normal distributed error

variable with mean zero and covariance Σ, which is the covariance matrix of the traits. We set

the variance of each trait to 0.20 and their correlation to 0.40.

For fine-mapping, the power of a method is estimated by the mean proportion of causal variants

that are prioritized using a particular threshold for the MPP of causality (e.g., MPP > 0.9).

V Improve GLM Prediction – Cyber-sickness Data Example

This section provides further details of the summary of our cyber-sickness data analysis summa-

rized in Section 3.3. We first provide a data description and an exploratory data analysis that

would prepare the reader for the two GLM models we deploy here, namely, Logistic GLM (see

SI Appendix V.1) and Poisson GLM (SI Appendix V.2).

We consider a physiological dataset with recordings from 23 participants while immersed in a

VR roller coaster simulation, which can be found at GitHub repository and consists of 23 folders,
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each containing the raw recordings of the 23 participants in the VR experiment. There are four

groups of features in this dataset: heart-rate (HR), breath-rate (BR), galvanic skin response

(GaSR), and heart-rate variability (HRV). In addition to the sensors’ measurements, each of

the four group of features includes the percentage of change from the resting baseline (PC),

minimum inside the 3s rolling window (MIN), and maximum value of the 3s rolling window

(MAX); note that “s” refers to seconds in this dataset. The data are sampled at a time step of

1s, while the length of the recordings for all participants vary between 567s and 1745s.

At each measurement time t, we rely on 13 features X(t) that include HR and three sub-

features (PC, MIN, MAX) for each group of features (BR, GaSR, HRV) as in (Kundu et al.,

2022). The dependent/target variable at t is denoted as Y (t), which is the cyber-sickness FMS

score, provided as verbal feedback during VR simulation. Thus, the original dataset is labeled

on a scale from 0 (no cyber-sickness) to 10 (high cyber-sickness), using self-reported sickness

feedback from the participants in the experiment; the sample distribution of the FMS scores is

displayed in Figure 12 (left). The latter figure shows the skewed distribution of the raw labels

that would lead to poor classifiers, and therefore, (Kundu et al., 2022) suggested to regroup the

FMS scores into four different severity classes: i) “class 0” of no cyber-sickness when FMS = 0,

ii) “class 1” of low cyber-sickness when FMS = {1, 2, 3}, iii) “class 2” of moderate cyber-sickness

when FMS = {4, 5, 6}, and iv) “class 3” of acute cyber-sickness when FMS = {7, 8, 9}.
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Figure 12: The distribution of the labels: original labels (left) and its regrouping in four classes
(right)

Using a modified version of the provided Python process data.py script, the data were sampled

at 1s intervals and concatenated into a single file, raw data.csv which contains 25, 893 rows

and 15 columns. The first column (“Feedback”) represents the FMS score, the last column
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(“Individual”) is the id (0 − 22) of the participants, while the columns (2 to 14) are the 13

features described before.

Note that there are 67 and 74 examples in the dataset recording FMS = 2.5 and FMS = 3.5,

respectively, which deviate from the general scoring (integers from 0 to 10), and thus, we rounded

down these scores to 2 and 3, respectively. We further process the data to feed into our prediction

models by considering the X (t−M) , . . . ,X (t− 1) feature space, where M is the number of

prior time steps used for prediction. The choice of M would affect the prediction error and

therefore, our prediction models are deployed for M = 1 (with 13 features X(t − 1) and for

M = 10 (with 130 features for X(t− 10), . . . ,X(t− 1)) to predict Y (t), denoted as Ŷ (t). The

features are used in two forms: i) raw data and ii) standardized form with zero mean and unit

variance.

The upper correlation heatmap in Figure 13 indicates significant blocks of high correlations

among the features for M = 1, which is not surprising given how some of them were generated

(e.g., HR measurements, but the same happens for the HRV and GaSR blocks). The level of

multicollinearity within the feature space increases even more for M = 10 because there is not

much change in the physiological data when measured at a time step of 1s. The fact that the

features for M = 10 have more high correlations compared to M = 1 case can be observed

in Figure 13 (b), where for a better readability, we displayed only the correlations between

X (t− 3) ,X (t− 2) and X (t− 1).

For each M , the data are randomly split into 70% training and 30% testing sets, which is re-

peated N = 50 replications. Logistic and Poisson GLMs are fitted via IRLS – for details, see SI

Appendix VII – which is a for-loop operation that solves a multiple linear regression model at

each loop, and rely on six estimators, namely, OLS, SR, GSR, St, DSh, and Sh. Note that the

standard statistical packages implement IRLS via OLS, and thus, we have modified the R func-

tion glm.fit2 from the glm2 package§ to incorporate our shrinkage regression estimators into

the classical IRLS implementation. To compare the performance of six models, the estimated

MSE is evaluated and we report their average value for N = 50 replications in Tables 7 - 9;

for each replication, the estimated MSE = 1
T

∑T
t=1

(
Y (t) − Ŷ (t)

)2
, where T is the size of the

dataset; note that T = 25, 870 for M = 1 and T = 25, 663 for M = 10.

The next two sections contain the two GLMs (Logistic and Poisson) that are deployed to the

§The glm2 package is available at https://cran.r-project.org/web/packages/glm2/index.html.
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Figure 13: Correlation heatmaps for the feature space with M = 1 (upper) 39 and M = 10
(lower).
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cyber-sickness data. Logistic GLM is considered in SI Appendix V.1 with its canonical link

function (logit link function) for various pairs of classes defined by the raw FMS scores. Further,

we employ a Poisson GLM in SI Appendix V.2 with its canonical link function (log link function)

to incorporate the ordinal structure of the cyber-sickness severity levels for the data grouped in

the four classes (“class 0” to “class 3”) explained before; this mimics the purpose of a multi-

classification model and we check its effectiveness. Note that the link function defines the

response variable GLM estimator and its choice is crucial on deploying GLM models; for details

about the link function, see (VII.2), though SI Appendix VII provides a more thorough discussion

on GLM modeling.

V.1 Logistic GLM with logit Link Function

Logistic GLM is commonly known as the logistic regression and it is a special GLM case when

the response variable is binomially distributed. Logistic GLM is useful in binary and multi-class

classification problems, and the GLM methodology could be deployed as the binomial belongs

to the exponential family defined in (VII.1). The GLM estimator is as in (VII.2) with the

(canonical) logit link function given with h(η) = eη

1+eη , where η = x⊤β. Binary classifications

are considered for different pairs of FMS scores as follows: i) FMS = 0 vs. FMS = 1, ii)

FMS = 0 vs. FMS = 2, iii) FMS = 0 vs. FMS = 3, and iv) FMS = 0 vs. FMS = 6.

Note that FMS = 0 is the dominant label, while the other four labels (FMS = {1, 2, 3, 6})

have more than 1, 000 examples which avoids having extremely unbalanced binary classification

exercises; for details, see Figure 12 (left).

Table 7: Estimated MSE for binary classifications with raw input data

FMS = 0 vs. FMS = 1 FMS = 0 vs. FMS = 2 FMS = 0 vs. FMS = 3 FMS = 0 vs. FMS = 6

Model
M = 1 M = 10 M = 1 M = 10 M = 1 M = 10 M = 1 M = 10

OLS 0.1261 0.1224 0.1399 0.1342 0.1270 0.1292 0.0839 0.0773

St 0.1261 0.1224 0.1404 0.1342 0.1270 0.1292 0.0840 0.0773

DSh 0.1318 0.4513 0.1536 0.1892 0.1637 0.3052 0.1141 0.1013

Sh 0.1261 0.1224 0.1399 0.1342 0.1270 0.1292 0.0839 0.0773

SR 0.1262 0.1224 0.1398 0.1342 0.1270 0.1292 0.0841 0.0774

GSR 0.1264 0.1228 0.1401 0.1329 0.1271 0.1275 0.0851 0.0790

Tables 7 and 8 summarize the results in this section and we draw two null conclusions. First,

feature standardization does not significantly improve the model performance, and second, some

shrinkage regressions (SR, GSR, and Sh) are no worse than OLS, but the performance differences
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Table 8: Estimated MSE for binary classifications with standardized input data

FMS = 0 vs. FMS = 1 FMS = 0 vs. FMS = 2 FMS = 0 vs. FMS = 3 FMS = 0 vs. FMS = 6

Model
M = 1 M = 10 M = 1 M = 10 M = 1 M = 10 M = 1 M = 10

OLS 0.1266 0.1216 0.1406 0.1339 0.1271 0.1280 0.0842 0.0763

St 0.1278 0.1225 0.1436 0.1401 0.1278 0.1283 0.0878 0.0822

DSh 0.1355 0.3810 0.1523 0.3938 0.1408 0.3546 0.0870 0.3734

Sh 0.1266 0.1217 0.1406 0.1338 0.1271 0.1280 0.0842 0.0763

SR 0.1266 0.1216 0.1406 0.1339 0.1271 0.1280 0.0842 0.0763

GSR 0.1265 0.1219 0.1413 0.1321 0.1273 0.1260 0.0844 0.0766

are not significant. These imply that using shrinkage regressions in logistic regression would

not significantly outperform the classical IRLS deployment that relies on OLS. While this is

a disappointing result, the next section shows a very different picture where some shrinkage

regressions are very effective for Poisson GLM deployments.

V.2 Poisson GLM with log Link Function

Poisson GLMs are deployed in this section by exploiting the ordinal type of FMS scores observed

in Figure 12 (left), and we relabel the data as shown in Figure 12 (right) which keeps the

ordinality trend. The sampling distribution is assumed to be Poisson, which is a member of the

exponential family defined in (VII.1), and thus, the GLM machinery could be deployed. The

GLM estimator in (VII.2) is with the Poisson canonical link function, known as log link function,

and is given with h(η) = eη, where η = x⊤β.

Table 9: Estimated MSE for Poisson GLM with raw and standardized input data

Raw Data Standardized Data

Model
M = 1 M = 10 M = 1 M = 10

OLS 0.9174 0.8898 0.9233 0.8913

St 0.9172 0.8896 0.8940 0.8270

DSh 1.1498 3.0269 0.9604 1.9795

Sh 0.9175 0.8898 0.9232 0.8909

SR 0.9197 0.8898 0.9233 0.8913

GSR 0.9161 0.8871 0.9231 0.8896

Table 9 summarizes the Poisson GLM results and we draw some interesting conclusions. First,

feature standardization improves the model performance for some GLM implementations. Sec-

ond, St estimators significantly improve OLS implementations by approximately 3% and 7% for

M = 1 and M = 10, respectively, while other shrinkage estimators (SR, GSR, and Sh) perform
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at the same level as OLS.

We conclude this small data analysis by inferring that when deploying GLM estimation through

IRLS, one may need to consider replacing OLS with shrinkage estimators in order to enhance the

model performance. Even though the empirical evidence is limited, this conclusion is validated

by a recent work of (Asimit et al., 2025a) that provides ample evidence in that respect via ex-

tensive simulated and real-data analyses. This is a viable, effective and computationally efficient

method – since OLS and our shrinkage estimators, except for Sh which become computationally

expensive in large-scale problems, are computationally equivalent – for reducing the notoriously

high estimation error in GLM estimation.

VI Portfolio Investment Application

This section provides the additional pieces of information about the finance application briefly

discussed in Section 3.4. A brief data description and technical details about the portfolio

construction are given in SI Appendix VI.1. Numerical experiments are made across various

market conditions in SI Appendix VI.2.

VI.1 Data Description and Methodology

The S&P500 is a stock market index that includes the 500 large-cap U.S. companies across

various industries – e.g., technology, healthcare, finance, consumer goods, and industrials – and

represents a market benchmark, meaning that investors and fund managers compare their portfo-

lio performance against S&P500. The index is weighted by market capitalization, which implies

that companies with larger market values have a bigger influence on the S&P500 movements.

We had collected the S&P500 daily returns of 1,070 companies that were part of the S&P500 at

least once within the observation period that starts on January 1, 2000 and ends on December

31, 2023. The index’s constituents change every three months, though firms could exit S&P500

due to mergers and acquisitions, poor financial results or failure to meet the eligibility criteria.

Among the 1,070 firms, we have selected the 441 companies that remained listed on the US

stock exchanges without interruption; we call this dataset as DA441 for which we have data

about 6,037 trading days per company.

The portfolio strategies considered in this section are risk minimization GMV portfolios, and

72



their very definition is as follows:

w∗ =
Σ−11

1TΣ−11
= argmin

w: 1Tw=1

wTΣw, (VI.1)

where Σ is the covariance matrix of asset returns and w is the portfolio weight vector (the

proportion of each asset in the entire portfolio). Note that the optimal solution in (VI.1) is the

fully invested portfolio (since 1Tw = 1); if the risk-free asset is included in the portfolio, then

we have a non-fully invested portfolio and the equality constrain (1Tw = 1) is removed, and in

turn, the optimal solution in (VI.1) becomes w∗ = Σ−11. These explain why one could recast

the unconstrained variant of (VI.1) as a standard regression problem. Specific to our very own

setting – see also Section 3.1 of Fan et al. (2012) – we solve

min
w,b

(
y −wTX− b1

)T(
y −wTX− b1

)
,

where y = R441 represents the return of the “target” asset (i.e., the last company in our DA441

dataset) and X = R441 − Rj for j = 1, . . . , 440. Any regression model can now be used to

estimate for the regression coefficients w∗ = (w1, . . . , w440)
T and intercept b; the weight for the

remaining asset is then calculated as w∗
441 = 1−

∑440
j=1w

∗
j , so that the portfolio is fully invested.

We perform the previous estimations by using all eight regression methods, and a rolling window

approach is employed to construct and evaluate portfolios over time. For each window, we use

a fixed historical period (five or ten years) of daily returns for training and a subsequent three-

month period (assuming 21 trading days a month, 252 days a year) for testing; after each three-

month test, the window advances by three months. This design mimics a dynamic rebalanced

portfolio, where investors regularly update the portfolio weights.

Once we obtain the portfolio weights based on the training data, we evaluate its future perfor-

mance over the three-month testing period by using the R function Return.portfolio that is

implemented without rebalancing. For each day in the testing period, the R function tracks

the portfolio’s value and we compute the following performance measures: i) average the daily

returns and annualize them under the assumption of 252 trading days per year, ii) standard

deviation of these daily returns and annualized equivalent values, and iii) Sharpe ratio that is

the ratio between i) and ii).
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VI.2 Out-of-Sample Performance

The most important test for a prediction model dealing with time series data are to evaluate

its out-of-sample performance for which we employ a rolling window approach. After running

all eight regression methods for each rolling window, we summarize the performance through

three key metrics. First, the mean annual return is found by averaging the annualized returns

from each window, which evaluates the overall profit of the eight investment strategies. Second,

the mean annualized volatility is calculated by averaging each window’s standard deviation of

annualized returns, which evaluates the overall risk of the eight investment strategies. Third,

we average the Sharpe ratios across all windows to evaluate overall risk-adjusted performance

that measures the profit per unit of risk. Note that investors and fund managers are looking

for high annualized returns and high Sharpe ratios. Besides such three overall performance

measurements, we count the number of windows in which each method achieves the highest

performance and convert this counting measure to the frequency of success.

Table 10 summarizes various performance measures under different rolling window settings. OLS

shows very poor performance irrespective of the market conditions. Moreover, the shrinkage

estimators have very good performance with St being the overall best estimator among all

possible choices, but Sh also performs very well in risk-adjusted performance. Furthermore,

eigenvalue-driven methods (RR, GSR and SRR) are useful to stabilize the risk, but are not

effective from the point of view of investors that give their low expected returns and low Sharpe

ratios.

To further analyze how our shrinkage estimators perform in adverse market conditions, we

provide Table 11. Two time periods affected by extreme market conditions are chosen for this

analysis; the first period is vastly influenced by the Financial Crisis (July 10, 2008 – March 8,

2011) and the second period coincides with the COVID-19 Pandemic (March 1, 2020 – January

14, 2022). Performance metrics include annual returns and annual Sharpe ratios computed over

five-year and ten-year training windows. Given our three-month rolling window design, the

Financial Crisis period includes eleven testing windows, while the COVID-19 Pandemic period

includes eight testing windows, and thus, the counting and frequency of success are not computed

for this analysis. The overall picture in Table 11 is not very different than what we have found

in Table 10, and we conclude that some of our shrinkage estimators (namely, St, DSh, and Sh)

are suitable for constructing portfolios during turbulent market periods.
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Table 10: Portfolio Performance Metrics Across All Rolling Windows

Panel A: 5-years Training over 75 Rolling Windows

Return Standard Deviation Sharpe Ratio

Models
Mean Counts Freq (%) Mean Counts Freq (%) Mean Counts Freq (%)

OLS 12.02% 3 4.00% 11.10% 4 5.33% 1.456 3 4.00%

RR 11.57% 1 1.33% 9.95% 33 44.00% 1.654 8 10.67%

St 15.64% 24 32.00% 13.04% 0 0.00% 1.590 15 20.00%

DSh 14.17% 10 13.33% 11.99% 2 2.67% 1.536 9 12.00%

Sh 12.61% 20 26.67% 12.11% 15 20.00% 1.669 21 28.00%

SR 12.02% 6 8.00% 11.10% 3 4.00% 1.456 6 8.00%

GSR 12.04% 1 1.33% 10.57% 10 13.33% 1.569 1 1.33%

SRR 10.48% 10 13.33% 10.33% 8 10.67% 1.489 12 16.00%

Panel B: 10-years Training over 55 Rolling Windows

Return Standard Deviation Sharpe Ratio

Models
Mean Counts Freq (%) Mean Counts Freq (%) Mean Counts Freq (%)

OLS 14.87% 3 5.45% 10.79% 4 7.27% 1.794 3 5.45%

RR 14.79% 2 3.64% 10.28% 16 29.09% 1.894 4 7.27%

St 17.60% 17 30.91% 11.38% 4 7.27% 1.994 15 27.27%

DSh 16.71% 7 12.73% 11.03% 6 10.91% 1.973 8 14.55%

Sh 15.32% 16 29.09% 11.11% 12 21.82% 1.899 17 30.91%

SR 14.87% 3 5.45% 10.79% 1 1.82% 1.794 3 5.45%

GSR 15.13% 1 1.82% 10.61% 2 3.64% 1.854 1 1.82%

SRR 14.31% 6 10.91% 10.39% 10 18.18% 1.778 4 7.27%

Notes: Three performance measures (mean, risk measured via standard deviation, and Sharpe ratio) are computed
for every rolling window and its summary results are tabulated. The “Mean” columns report the average of this
annualized metric across all windows; the “Counts” columns indicate the number of windows in which a method
achieves the highest performance for that metric among all methods, while the “Freq (%)” columns provide the
corresponding percentage. Panel A assumes a 5-year training period that results in 75 rolling windows over the
observation period, while Panel B assumes a 10-year training period over 55 rolling windows. Values highlighted
in red denote the “best” performance for that metric within each panel.

VII Generalized Linear Model and its IRLS Implementation

A GLM assumes that the response variable Y , defined on Y ⊆ ℜ, is related to covariates X

defined on X ⊆ ℜd, where d = p+1 in this paper. The conditional distribution of Y belongs to

the exponential dispersion family, with the following probability density or mass function

fY (y; θ, ϕ) = exp

{
θy − b(θ)

a(ϕ)
+ c(y, ϕ)

}
. (VII.1)

Here, θ is the canonical parameter, ϕ is the dispersion parameter, and a, b, and c are known

functions. The function b(θ) determines the mean-variance relationship of the response variable.
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Table 11: Portfolio Performance Metrics under Extreme Market Conditions

Financial Crisis Pandemic

5-year training 10-year training 5-year training 10-year training

Model
Return Sharpe Ratio Return Sharpe Ratio Return Sharpe Ratio Return Sharpe Ratio

OLS 2.93% 0.798 16.37% 1.9366 17.23% 1.908 14.87% 1.878

RR 8.77% 1.471 18.21% 2.2240 10.28% 1.578 13.50% 1.707

St 18.33% 1.535 20.91% 2.1902 22.98% 2.174 19.13% 2.124

DSh 14.42% 1.501 18.78% 1.9865 24.69% 2.248 19.66% 2.162

Sh 16.69% 1.833 22.24% 2.4382 11.32% 1.433 13.51% 1.389

SR 2.93% 0.798 16.37% 1.9367 17.23% 1.908 14.87% 1.878

GSR 6.06% 1.147 17.40% 2.0668 14.44% 1.782 15.08% 1.881

SRR 6.23% 1.183 17.16% 2.0803 7.10% 1.188 12.53% 1.418

Notes: Two performance measures (mean and Sharpe ratio) are computed for every rolling window during two
major economic downturns: Financial Crisis (July 10, 2008 - March 8, 2011) and COVID-19 Pandemic (March
1, 2020 - January 14, 2022); these results are averaged and tabulated. Because the DA441 dataset has a starting
date on January 3, 2000, the Financial Crisis period has eleven valid windows for the 5-year training and only
six windows for the 10-year training, as the earliest 10-year window’s testing phase starts on January 3, 2010.
The Pandemic period yields eight rolling windows for both training lengths. Values highlighted in red denote the
“best” performance for that metric within each panel.

The mean of Y is linked to a linear predictor ηi = x⊤
i β through a link function g, so that

E[Yi|Xi = xi] = h(x⊤
i β), (VII.2)

where h = g−1 is the inverse of the link function. The most natural choice (if this is possible) is

the canonical link function where h(·) = b′(·) on ℜ.

The MLE estimator of β is chosen for GLM modeling, and the log-likelihood function for an

independent sample of size n is

ℓ(β) =
n∑

i=1

θiyi − b(θi)

a(ϕ)
+ c(yi, ϕ), where θi =

(
b′
)−1 ◦ h

(
x⊤
i β
)
,

where ◦ is the composition operator. Maximizing the above is equivalent to minimizing the

following objective function

C(β) = −
n∑

i=1

(
θiyi − b(θi)

)
. (VII.3)

Taking the derivative of C(β) with respect to β and setting it to zero yields the normal equations

n∑
i=1

(yi − µi)

V (µi)

∂µi

∂βj
= 0 ∀j, (VII.4)
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where µi = h(x⊤
i β) is the conditional mean, and V (µi) is the variance function determined by

the exponential dispersion model.

The IRLS algorithm is used to solve the non-linear system of equations in (VII.4) by approxi-

mating (VII.3) as a WLS instance. This equivalence arises because solving (VII.4) is equivalent

to minimizing the following WLS instance

n∑
i=1

(yi − µi)
2

V (µi)
. (VII.5)

Since µi depends non-linearly on β, the above is iteratively linearized using a Taylor expansion

around the current parameter estimate β̂(t) at each iteration t. Specifically,

β̂(t+1) := argmin
β

(
z(t) −Xβ

)⊤
W(t)

(
z(t) −Xβ

)
, (VII.6)

where W(t) is the weight matrix and z(t) is the pseudo-response, updated at each iteration as

W(t) = diag


(
h′
(
η
(t)
i

))2
V
(
µ
(t)
i

)
 , z

(t)
i = η

(t)
i +

yi − µ
(t)
i

h′
(
η
(t)
i

) ,
with µ

(t)
i = h(η

(t)
i ) and η

(t)
i = x⊤

i β̂
(t). The weight matrix W(t) reflects the curvature of the ob-

jective function at the current parameter estimates, while the pseudo-response z(t) incorporates

the linearized adjustments based on residuals.

In summary, (VII.6) is repeatedly solved until convergence is achieved within a specified thresh-

old for the change in the objective function – from (VII.3) – between two consecutive iterations

though a maximal number of iterations may be imposed but the scale of GLM implementations

in this paper do not require such imposition. Note that the IRLS algorithm effectively links the

WLS formulation in (VII.5) with the iterative updates in (VII.6), reducing the GLM estimation

problem to solving a sequence of multiple linear regression problems.
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