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Abstract

Shrinkage estimation is a statistical methodology that is used to improve parameter

estimation by reducing the Mean Square Error (MSE). This paper focuses on multiple

linear regression estimators since the standard ordinary least square estimator is of-

ten computationally instable, for which shrinkage is a remedy that optimally reduces

the estimation error. Penalised regression searches for models to reduce overfitting

though tuning parameters require cross validation that may reduce out-of-sample

performance; such penalised models rely on mechanical shrinkage through penali-

sation, which is different than our shrinkage procedures. Another shrinkage class

is the Stein-type shrinkage estimators that are designed to dominate the maximum

likelihood estimator; these are parametric models while ours are non-parametric,

but both aim to improve the overall MSE of the model’s parameters. We provide

seven non-parametric shrinkage estimators, and provide theoretical guarantees that

these new estimators have a lower MSE than the ordinary least square estimator; six

shrinkage estimators are designed for any degree of model sparsity, while one shrink-

age estimator is specific to situations in which extreme sparse models are sought, as

in latent factor modelling. We illustrate that the theoretical guarantees are reflected

in synthetic and real data, and we choose genetics, machine learning, and finance

applications.
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1 Introduction

Shrinkage is a statistical method that was propelled by Stein’s Paradox (Stein, 1956, 1960;

James and Stein, 1961), which showed that the high-dimensionalMaximum Likelihood Estimator

(MLE) or Ordinary Least Squares (OLS) is not the estimator with the lowest estimation error

whenever the data are drawn from Gaussian populations. Such a puzzling result surprised the

statistical community, but this paradox is explained by the fact that shrinkage introduces a

bias-variance tradeoff that improves estimation in a global sense. Stein’s shrinkage estimator

fundamentally changed the way statisticians could approach high-dimensional estimation, and

the main idea stems from introducing bias, which could improve the overall estimation accuracy,

and it has been influential in various areas such as applied mathematics, finance, machine

learning and statistics.

The original Stein’s result showed how to reduce the estimation error for a mean parameter

vector under Gaussian parametric assumptions. Specifically, Stein (1956) demonstrated that by

combining the information across all variables, one may reduce the Mean Squared Error (MSE),

which is the sum of the component-wise mean squared errors. Stein’s result was illustrated by

applying a multiplicative shrinkage (also known as contraction) to a standard estimator (e.g.,

MLE), and therefore, this method is known to shrink around zero, since the Stein’s estimator

is a weighted average of the standard estimator and zero-valued estimator known as the target

estimator. This Stein-type estimator can further be improved by choosing a more natural target

estimator than shrinking around 0, and such a method is known as linear shrinkage; e.g., see

(Lindley, 1962; Efron and Morris, 1972) that proposed shrinking around the grand mean. More

recent parametric multiplicative and linear shrinkage for the mean parameter vector appear

in (Chételat and Wells, 2012; Xie et al., 2016), while non-parametric shrinkage solutions are

provided by (Wang et al., 2014; Bodnar et al., 2019; Asimit et al., 2025a).

There is a wide range of applications for Stein’s shrinkage approach to improve multidimensional

estimation, and we take stock of these applications. First, statistical decision theory was the

first to use Stein’s method at large scale to improve the high-dimensional estimation (Fourdrinier

et al., 2018). Second, besides shrinkage solutions for mean vectors that have been discussed

above, parametric and non-parametric shrinkage estimators for covariance matrix have been
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discussed in the literature (Ledoit and Wolf, 2004; Bodnar et al., 2014; Ledoit and Wolf, 2018).

Third, high-dimensional parametric shrinkage estimation has been used in the finance literature

to stabilise the erratic behaviour of industry standard portfolios weights estimators (Kan and

Zhou, 2007; Tu and Zhou, 2011; Kan and Lassance, 2024; Lassance et al., 2024).

We should note that the second set of applications regarding shrinking the covariance matrix

is related to the setting in which a high-dimensional covariance with a conditional sparsity

structure is sought. Shrinkage estimators do not yield sparse solutions, which is a disadvantage

in latent factor modelling, but the statistical literature has provided such sparse solutions (Bickel

and Levina, 2008; Fan et al., 2008, 2013). Despite seemingly similar approaches, the two strands

of research require very different mathematical tools due to the sparsity structure constraint.

The aim of this paper is to provide multiplicative and linear shrinkage estimators for multivariate

linear regression parameters that are distribution-free so that the estimation error (measured

in terms of MSE) is reduced. We provide five multiplicative shrinkage estimators, one linear

shrinkage estimator and one non-standard shrinkage estimator suitable for sparse linear models.

Our estimators show good performance in simulated and real-data analyses.

Our main contributions are four-fold. First, we introduce seven shrinkage distribution-free

estimators and show their theoretical finite sample properties that are backed by numerous data

analyses. Their asymptotic properties are shown when the number of covariates is fixed, since

the general high dimensional case would require a different mathematical model that would

be beyond the scope of this paper. Here we aim to introduce these shrinkage estimators and

understand how useful they could be in various real-life applications. Second, we empirically

show that two of our shrinkage estimators significantly outperform the OLS estimator when

both the sample size and number of covariates are large, which is the high dimensional setting

considered in statistics. Third, all estimators proposed in this paper are implemented in our

new R package, savvySh∗. Fourth, we find that some shrinkage estimators are very effective in

reducing the notoriously high estimation error in Generalised Linear Modelling (GLM), though

such a conclusion is validated in a follow-up paper of (Asimit et al., 2025) via extensive simulated

and real-data analyses.

∗Available at: https://github.com/Ziwei-ChenChen/savvySh
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1.1 Literature Review

Penalised multivariate linear regression (MLR) is a widely studied technique in multivariate

analysis to produce accurate and/or parsimonious prediction models. That is, for a response

vector y ∈ ℜn, covariates matrix X ∈ ℜn×(p+1) corresponding to the p covariates/features and

penalty function g : ℜp → ℜ+, the problem is to understand the properties of the following

estimator:

β̂ := argmin
β∈ℜp+1

1

2
||y−Xβ||22 + g(β), (1.1)

where || · ||p is the usual p-norm on a real vector space. From the computational perspective,

(1.1) implies solving an (optimisation) instance that may or may not have a unique solution;

some of these optimal solutions may be boundary solutions of the feasibility set, which could be

problematic if boundary around infinity regions are attained. Such undesirable realisations are

controlled through appropriate penalty functions g that have been effective to deploy accurate

and/or parsimonious prediction models.

The trivial case with no penalisation, g(·) = 0 on ℜp+1, is the (OLS) estimator known as the

Best Linear Unbiased Estimator (BLUE), in the sense that there is no other linear and unbiased

estimator with lower MSE. One class of (convex) penalty functions is known as the Tikhonov

penalisation with g(β) = λ||Dβ||22 where λ ≥ 0 and D ∈ ℜq×(p+1) with q ≥ 1 (Tikhonov,

1963); D is known as the Tikhonov matrix and a special case is the identity matrix setting, i.e.,

D = Ip+1, which is known as Ridge Regression (RR) that was formalised in (Hoerl and Kennard,

1970). Another class of (convex) penalty functions is known as Least Absolute Shrinkage and

Selection Operator (LASSO) with g(β) = λ||β||1 where λ ≥ 0 and it was formalised in the

seminal paper of (Tibshirani, 1996) which is mathematically equivalent to the Basic pursuit

problem defined in (Chen and Donoho, 1994); an interesting generalisation, known asGeneralised

LASSO, is defined in (Tibshirani and Taylor, 2011) with a similar formulation discussed in (She,

2009), where g(β) = λ||Dβ||1 with λ ≥ 0 and D ∈ ℜq×(p+1) such that q ≥ 1. Such penalisation

methods are convex and thus, solving (1.1) would require convex optimisation algorithms that

are scalable and have nice convergence properties.

There are other penalised regressions beyond L1 and L2 formulations. Bridge regression is

defined in (Fu, 1998) g(β) = λ||Dβ||γγ where λ ≥ 0, γ > 0 and D = Ip+1. A wide class of

concave penalisation is introduced in (Fan and Li, 2001) that is shown to equally apply to MLR
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and its generalisation, GLM. Solving GLMs does not come without additional computational

drawbacks and a Newton-Raphson-like algorithm is provided which (in principle) makes the

parameters’ tuning even more challenging than the convex 1-norm and 2-norm penalisations

that are useful to achieve parsimonious and more accurate prediction models, respectively.

This paper aims to produce shrinkage MLR estimators with low estimation error (measured

through MSE) without requiring cross-validation. Note that variable selection considerations

are not included in our model. For this reason, Σ := XTX is assumed to have full rank, and

thus, the OLS and RR estimators β̂OLS = Σ−1XTy and β̂RR(λ) = (Σ+λIp)
−1XTy are uniquely

determined. Since β̂RR(0) = β̂OLS and β̂RR(∞) = 0, it is sometimes inferred that RR is a

shrinkage estimator around the origin, though RR is obtained via a mechanical shrinkage rather

than shrinkage in the Stein sense that aims to reduce the theoretical MSE of a transformed OLS

estimator. Similarly, all previously mentioned penalised MLR estimators achieve a mechanical

shrinkage through cross-validation to reduce the MSE estimate of the model’s parameters. We

aim not to rely on cross-validation, and the shrinkage estimators considered in this paper are as

follows

i) multiplicative shrinkage – β̂(D) = Dβ̂OLS , where D ∈ ℜ(p+1)×(p+1), and we say that

shrinkage is made around 0 since β̂(0) = 0;

ii) linear shrinkage – β̂(ρ) = (1− ρ)β̂OLS + ρβ̂target, where ρ is the shrinkage intensity, while

β̂target is a target estimator.

The optimal choices for D and ρ are made such that the theoretical MSE of β̂(D) and β̂(ρ) are

minimised. The choice of the target estimator is expected to be a simplified model; e.g., assume

a target estimator with uncorrelated covariates.

The paper is organised as follows: our main results are amassed in Section 2; a summary of

our numerical experiments are in Section 3, while the summary conclusions are gathered in

Section 4. All proofs and supporting information are provided in the Appendix A.

2 Main Results

We start by revisiting classical multiplicative shrinkage estimators in Section 2.1, followed by

providing our novel linear and slab shrinkage estimators in Section 2.2 and Section 2.3, respec-

tively. The main features of these estimators are compared in Section 2.4, where we also provide

another novel shrinkage estimator that is designed for cases in which the covariates space lies
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close to a low-dimensional subspace. Finally, empirical evidence is provided in Section 2.5 to un-

derstand the performance of our novel estimators when the sample size and number of covariates

are large.

The main set of assumptions used across all sections are given as Assumption 2.1.

Assumption 2.1. Let Σ := XTX with Σ ≻ 0. The linear model assumes that Yi = xTi β + ϵi

for all 1 ≤ i ≤ n, where xi is the ith column of XT and β is the “true” model parameter vector.

Further, the error is independent and identically distributed with zero mean and variance σ2.

We denote al(u) := uTΣ−lu for all l ∈ Z and u ∈ ℜp+1, where by definition, Σ−0 := Ip+1. Note

that al(u) > 0 for all u ∈ ℜp+1 \ {0} and l ∈ Z if Σ ≻ 0 as required by Assumption 2.1.

Before providing the shrinkage estimators, we should explain that shrinkage requires two main

steps. First, an oracle estimator is identified, which is the optimal shrinkage estimator in terms

of MSE; the “oracle” term suggests idealised estimators in the sense that its parameters depend

on population quantities (such as β and σ). Second, a bona fide estimator is obtained, which is

a non-parametric estimator of the oracle estimator, and if possible, we show that the oracle and

bona fide estimators are asymptotically close in terms of a given distance.

2.1 Revisiting Classical Multiplicative Shrinkage Estimators

The class of multiplicative shrinkage estimators – defined as β̂(D) = Dβ̂OLS , where D ∈

ℜ(p+1)×(p+1) – is discussed in (Hocking et al., 1976) where D is assumed to be a diagonal matrix

by assuming a simplifying assumption that data are in canonical form. Specifically, the authors

showed that the optimal oracle shrinkage estimator – in terms of MSE – could be found over the

following sets: i) D = aIp+1, where a ∈ ℜ (though a > 0 is desirable) which is first discussed in

(Stein, 1960) in a Bayesian setting, and ii) D = diag(b), where b ∈ ℜp+1. We could recover the

results in (Hocking et al., 1976) by removing the data assumption of being in canonical form,

but also a new result when the matrix D is no longer diagonal. These results are summarised

in Theorem 1.

Theorem 1. Let Assumption 2.1 hold, and multiplicative shrinkage is sought by solving

min
D∈D

MSE
(
Dβ̂OLS

)
. (2.1)

i) If (2.1) is solved over the feasible set D1 := {aIp+1 : a ∈ ℜ}, then its solution (known
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from now on as Stein (St) estimator) is unique and denoted as a∗β̂OLS, where

a∗ =
βTβ

βTβ +M∗
0

∈ [0, 1), M∗
1 := MSE

(
a∗β̂OLS

)
=

βTβM∗
0

βTβ +M∗
0

, (2.2)

where M∗
0 := MSE

(
β̂OLS

)
= σ2Tr

(
Σ−1

)
.

ii) If (2.1) is solved over the feasible set D2 := {diag(b) : b ∈ ℜp+1}, then its solution

(known from now on as Diagonal shrinkage (DSh) estimator) is unique and denoted as

diag(b∗)β̂OLS, where

b∗k =
β2
k

β2
k + σ2σk

∈ [0, 1), 0≤k≤p, M∗
2 := MSE

(
diag(b∗)β̂OLS

)
=

p∑
k=0

b∗kσ
2σk, (2.3)

where σk =
(
Σ−1

)
kk

> 0 for all 0 ≤ k ≤ p.

iii) If (2.1) is solved over the feasible set D3 :=
{
C ∈ ℜ(p+1)×(p+1)

}
, then its solution (known

from now on as Shrinkage (Sh) estimator) is unique and denoted as C∗β̂OLS, where C∗

is the unique solution of the Sylvester equation (in C) Σ−1C+CββT = ββT and

M∗
3 := MSE

(
C∗β̂OLS

)
= σ2Tr

(
(C∗)T Σ−1C∗

)
+ βT (C∗−Ip+1)

T (C∗−Ip+1)β. (2.4)

iv) It is also true that

M∗
3 ≤ M∗

2 ≤ M∗
1 < M∗

0 . (2.5)

The middle inequality becomes an identity if and only if
β2
k

σk
=

β2
0

σ0
for all 1 ≤ k ≤ p, while

the left-hand side inequality becomes an identity if and only if C∗ is diagonal.

In summary, the main contributions of this section are i) to provide optimal oracle shrinkage

estimators under very general assumptions, which is achieved in Theorem 1, and ii) to show

that the oracle estimators and their equivalent bona fide estimators are asymptotically close, for

which the details are given in Appendix A.7.

2.2 Linear Shrinkage

We now look at the linear shrinkage case which focuses on identifying the optimal linear shrinkage

estimator that is a weighted average between an OLS estimator and a target estimator β̂target.
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We have identified one possible choice for the target estimator, namely, β̂ind, by assuming that

data are standardised, i.e., the dependent variable and covariates have zero mean. Therefore, we

write the estimation problem in this case by excluding the intercept and looking for estimators

that go through the origin, i.e., yi = β1x1i + . . . βpxpi + ϵi for all 1 ≤ i ≤ n. This means that

Σ ∈ ℜp×p and we aim to choose the minimal MSE estimator from the following set of options

β̂ind(ρ) := (1− ρ)
̂̂
β

OLS

+ ρβ̂ind =
(
ρΣ̃−1Σ+ (1− ρ)Ip

) ̂̂
β

OLS

:= Σ(ρ)
̂̂
β

OLS

, (2.6)

where Σ̃ = diag(Σ) and
̂̂
β

OLS

is the OLS estimator through the origin, while ρ is called the

shrinkage intensity estimator. Note that such an optimal estimator has an MSE that is no

smaller than M∗
3 , but while the oracle Sh and its bona fide estimator are designed to be the

“best” multiplicative shrinkage estimator, the latter has its computational drawbacks since the

numerical solutions for solving a Sylvester equation for large p is very challenging and there is

no theoretical result to ensure that it is a consistent estimator. Thus, one may prefer using a

simpler optimal shrinkage estimator such as DSh or St, which (both or one of them) may have

a smaller or larger MSE than the optimal Linear shrinkage estimator discussed in Theorem 2.

Theorem 2. Let Assumption 2.1 hold, and linear shrinkage is sought by solving

min
ρ∈ℜ

MSE
(
β̂ind(ρ)

)
, (2.7)

where β̂ind = Σ̃−1XTy. Assume that the p covariates are standardised to have a zero mean.

The unique solution of (2.7) (known from now on as Linear Shrinkage (LSh) estimator) is

β̂ind(ρ∗) = Σ(ρ∗)
̂̂
β

OLS

, where Σ(·) on ℜ and
̂̂
β

OLS

are defined in (2.6), and

ρ∗ =
t2 − t1

t2 − t1 + t3
∈ [0, 1], M∗ind := MSE

(
β̂ind(ρ∗)

)
=

t2(t1 + t3)− t21
t2 − t1 + t3

, (2.8)

with

t1 := σ2Tr
(
Σ̃−1

)
, t2 := σ2Tr

(
Σ−1

)
, t3 := βT

(
Σ̃−1Σ− Ip

)2
β. (2.9)

In summary, the main contributions of this section are i) to provide a novel optimal oracle linear

shrinkage estimator, which is achieved in Theorem 2, and ii) to show that the oracle estimator

and its equivalent bona fide estimator are asymptotically close, for which the details are given
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in Appendix A.8.

2.3 Slab Regressions

We introduce two novel shrinkage estimators that are defined as penalised regressions with

slab constraints. Note that in Euclidean geometry, “slab” is a region between two parallel

hyperplanes, which explains the chosen name for such estimators. First, the (simple) Slab

Regression (SR) estimator is discussed for which one slab constraint penalisation is imposed.

Second, the Generalised Slab Regression (GSR) estimator is introduced where multiple slab

constraint penalisations are imposed. These two penalised regressions are built such that all

penalty parameters are optimally chosen such that the resulting oracle estimators are shrinkage

estimators that minimise the MSE, and not only mechanical shrinkage estimators (due to their

slab constraints). We show that the oracle SR and GSR are multiplicative shrinkage estimators

with interesting properties that are discussed in this section, one of which is that no cross-

validation is needed to tune the penalisation parameters.

The main contributions of this section are i) to provide novel optimal oracle SR and GSR

shrinkage estimators, which are achieved in Theorem 3 and 4, and ii) to show that the oracle

SR and GSR estimators and their equivalent bona fide estimators are asymptotically close, for

which the details are given in Appendix A.9.

We first introduce the SR estimator as follows:

β̂SR(µ;u) := argmin
β∈ℜp+1

1

2
||y−Xβ||22 + µ

(
uTβ)2 = argmin

β∈ℜp+1

βT
(
Σ+ µuuT

)
β − 2βTXTy, (2.10)

which is given as in (1.1) with g(β) := µ
(
uTβ)2, where µ ≥ 0 and u ∈ ℜp+1. Clearly, SR has

the following closed-form due to the well-known Sherman-Morrison identity

β̂SR(µ;u) =
(
Σ+ µuuT

)−1
XTy =

(
Σ−1 − µ

1 + µuTΣ−1u
Σ−1uuTΣ−1

)
XTy. (2.11)

Note that Σ ≻ 0 due to Assumption 2.1, and uuT ⪰ 0 is true for any u ∈ ℜp+1, which in turn

implies that Σ + µuuT ≻ 0, and thus, its inverse exists.

It is interesting to note that the SR is a special case of the Generalised LASSO estimator

introduced in (Tibshirani and Taylor, 2011), but SR is not aimed to rely on cross-validation and

is not designed to achieve a parsimonious model as the Generalised LASSO is primarily aiming

to. We are now ready to provide our first main result of this section, stated as Theorem 3, which

9



provides a mathematical characterisation of our novel oracle SR shrinkage estimator.

Theorem 3. Let µ ≥ 0 and u ∈ ℜp+1 \ {0} such that Assumption 2.1 is in force.

i) The instance in (2.10) has a unique solution as in (2.11) that is an interior point of its

feasibility set ℜp+1. Further,

MSE
(
β̂SR(µ;u)

)
= σ2Tr

((
Ip+1 −

µ

1 + µδ
A

)T

Σ−1

(
Ip+1 −

µ

1 + µδ
A

))
(2.12)

+

(
µ

1 + µδ

)2

βTATAβ

where δ := uTΣ−1u and A := Σ−1uuTwith δ > 0.

ii) For any µ̃ ≥ 0

min
β∈ℜp+1

1

2
||y−Xβ||22 s.t. − µ̃ ≤ uTβ ≤ µ̃, (2.13)

has a unique solution that is bounded away from neighbourhoods of infinity, and strong

duality holds in (2.13). There exists µ∗ ≥ 0 such that the unique solution of (2.13)

coincides with the optimal solution in (2.10) with µ = µ∗.

The second main result illustrates how to optimally find the penalty parameter µ, which is given

as Theorem 4. A further MSE reduction is possible by looking within the class of SR estimators

with u that have equal entries, i.e., u = v1 with v > 0.

Theorem 4. Let µ ≥ 0 and Assumption 2.1 holds.

i) Assume u ∈ ℜp+1 \ {0}. There exists µ∗∗(u) ∈ (0,∞] such that MSE
(
β̂SR(·;u)

)
attains

its global minimum on ℜ+ at µ∗∗(u), where

µ∗∗(u) =


σ2a2(u)
∆(u) , if ∆(u) > 0,

∞, if ∆(u) ≤ 0,
(2.14)

and ∆(u) := σ2
(
a0(u)a3(u)− a1(u)a2(u)

)
+ a3(u)

(
βTu

)2
. Then,

MSE
(
β̂SR(µ∗∗(u);u)

)
< MSE

(
β̂OLS

)
(2.15)
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and there exists µ∗∗(u) ≤ µ∗∗
U (u) such that

MSE
(
β̂SR(µ∗∗(u);u)

)
<MSE

(
β̂SR(µ;u)

)
<MSE

(
β̂OLS

)
for all 0<µ <µ∗∗

U (u), (2.16)

where µ∗∗
U (u) < ∞ if and only if µ∗∗(u) < ∞. Further,

β̂SR(µ∗∗ (v1); v1)= β̂SR(µ∗∗(1);1)=

(
Ip+1−

µ∗∗(1)

1+µ∗∗(1)a1(1)
Σ−1Jp+1

)
β̂OLS (2.17)

for all v ∈ (0,∞), where Jp+1 an p+ 1 dimensional square matrix of ones.

ii) Assume that u ∈ ℜp+1
+ \ {0}. Then, µ∗∗(u) < ∞ if and only if

u is not an eigenvector of Σ or βTu ̸= 0. (2.18)

The main advantage of our estimator is the existence of an optimal tuning parameter µ – see

(2.14) – that has a guaranteed lower MSE than the OLS estimator for any possible u ̸= 0. The

next question is how to choose u and the most obvious choice would be 1 due to its simplicity

and the MSE invariance property in (2.17). Recall that our SR estimators – either the one in

(2.17) or it is equivalent with a general vector u, i.e., β̂SR
(
µ∗∗(u);u

)
– are shown to have lower

MSE than M∗
0 (MSE of the OLS estimator), but we are not able to conclude whether the SR

estimators have always a lower or higher MSE than M∗
1 or M∗

2 . By design, our SR estimator

has no lower MSE than M∗
3 . The simulation study in Section 3 shows the performance of these

estimators.

SR estimator could be MSE optimal in many ways depending on the slab constraint βTu, and

for implementation purposes, β̂SR(µ∗∗(u);u) is chosen for a simple choice u = 1 as in (2.17).

This simple SR estimator could be extended to multiple slab constraints, and we call this new

estimator as Generalised Slab Regression (GSR) estimator and is defined as follows:

β̂GSR(µ) := argmin
β∈ℜp+1

1

2
||y−Xβ||22 +

∑
l∈L

µl

(
uT
l β
)2

(2.19)

= argmin
β∈ℜp+1

βT

(
Σ+

∑
l∈L

µlulu
T
l

)
β − 2βTXTy,

where ul are some eigenvectors of Σ indexed through l ∈ L ⊆ {0, . . . , p}. Other slab constraint

choices would be possible; e.g., by taking the standard basis in ℜp+1, i.e. by choosing L =
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{0, . . . , p}, ulk = 1 if 0 ≤ l = k ≤ p and ulk = 0 otherwise, then (2.19) becomes the so called

Generalised RR discussed in (Hoerl and Kennard, 1970) that has the disadvantage of requiring

cross-validation which is not ideal. The next main result, stated as Theorem 5, provides a

mathematical characterisation of our novel oracle GSR shrinkage estimator.

Theorem 5. Let µ ≥ 0 such that Assumption 2.1 is in force. Further, {λl, 0 ≤ l ≤ p} and

{ul, 0 ≤ l ≤ p} are the paired eigenvalues and corresponding orthonormal eigenvectors of Σ

meaning that ul is the corresponding unit eigenvector of λl for any 0 ≤ l ≤ p. Let L ⊆ {0, . . . , p}

be an index set.

i) The instance in (2.19) has a unique solution as in (2.20) that is an interior point of its

feasibility set ℜp+1.

β̂GSR(µ) =

(
Ip+1 −

∑
l∈L

µlλ
−1
l

1 + µlλ
−1
l

ulu
T
l

)
β̂OLS . (2.20)

Further, the minimal MSE GSR is unique, it is attained at µ∗
l = σ2/(uT

l β)
2 for all l ∈ L,

and its MSE is given by

MSE
(
β̂GSR(µ∗)

)
=
∑
l /∈L

σ2λ−1
l +

∑
l∈L

σ2λ−1
l

(
uT
l β
)2

σ2λ−1
l +

(
uT
l β
)2 . (2.21)

ii) For any µ̃l ≥ 0 with l ∈ L

min
β∈ℜp+1

1

2
||y−Xβ||22 s.t. − µ̃l ≤ uT

l β ≤ µ̃l, (2.22)

has a unique solution that is bounded away from neighbourhoods of infinity, and strong

duality holds in (2.22). Further, there exists µ̃∗
l ≥ 0 with l ∈ L such that the unique

solution of (2.22) coincides with the optimal solution in (2.10) with µ = µ∗.

Theorem 5 provides a rich set of MSE optimal GSR estimators that depend upon the selection

of eigenvalues that are adjusted in a certain way; for details, see Section 2.4. We get from (2.20)

that GSR estimators share some properties with the MSE optimal SR estimators (β̂SR(µ∗∗(u);u)

in (2.16) with u ∈ ℜp+1\{0}) as defined in Theorem 4 with MSE no lower than M∗
3 , but both are

shrinkage estimators. Besides that, the two sets are quite different and we defer this discussion

to Section 2.4. We could see from (2.21) that it is optimal to adjust all eigenvalues and choose

the largest index set L = {0, . . . , p}.
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2.4 Comparative Description of All Estimators

This section provides a comparative description of the estimators introduced in Sections 2.1 –

2.3. We can achieve that by looking at how the eigenvalues and eigenvectors of the covariates

covariance matrix are changed by various shrinkage. All estimators end up becoming multiplica-

tive shrinkage estimators, β̂∗ = Dβ̂OLS with D ∈ ℜ(p+1)×(p+1). If D has an inverse which is

guaranteed for all estimators except Sh, i.e., St, DSh, LSh, SR, and GSR, then

β̂∗ = Dβ̂OLS = DΣ−1XTy = (Σ∗)−1XTy, with Σ∗ := ΣD−1. (2.23)

This means that each of the five estimators replaces Σ with an estimator Σ∗ that is a multiplica-

tive shrinkage estimator; this differs from the linear covariance shrinkage approach proposed in

the seminal paper (Ledoit and Wolf, 2004) where one looks for covariance shrinkage estimators

Σ∗ = ρT + (1 − ρ)Σ with T being a shrinkage target matrix. Recall that we aim to shrink β

and not Σ, which is indirectly done by our shrinkage estimators.

We now analyse the eigenvalues and eigenvectors of Σ∗ and compare them with the set of

paired eigenvalue-eigenvector’s of Σ, {(λk,uk) : 0 ≤ k ≤ p}. It is not difficult to see that the

eigenvectors of Σ∗ for DSh, LSh, and SR are different than those of Σ, while St and GSR preserve

the eigenvectors; the eigenvalues of Σ∗ for St and GSR are

λ∗St
k = λk +

M∗
0(

βTβ
)2 and λ∗GSR

k = λkI{k/∈L} +

(
λk +

σ2(
uT
k β
)2
)
I{k∈L}, respectively, (2.24)

where I{A} is the indicator of set A that takes the value of 1 is A is true and 0, otherwise. We

explain in Appendix C how important the eigenvalues (of the covariates’ covariance matrix) are

in MLR estimation, where we provide an ample discussion about their impact over the OLS and

some shrinkage estimators. It is found in Section 2.5 that St and GSR consistently outperform

OLS when both n and p become large, and we believe that (2.24) plays an important role in

justifying that empirical finding.

Any linear regression models requires a “good” estimator for the precision matrix and it is

well-known that the inverse of the sample covariance matrix is an unbiased estimator (up to

a multiplicative correction factor) of the inverse of the population covariance matrix if the

multivariate Gaussian assumption is imposed, but no other equivalent result is known. The

conjecture in (Ledoit and Wolf, 2004) suggests that a “good” estimator for Σ−1 would reduce

13



(and increase) the large (and low) eigenvalues given Result 7 i). There are two practical solutions

to rectify the precision matrix and one way is to adjust large and small eigenvalues of Σ, but

the low eigenvalues (especially those close to 0) are the most influential eigenvalues in the

estimation of Σ−1, while the large eigenvalues are of lower importance in this case; the other

way is to adjust all eigenvalues by keeping their sum (Tr(Σ)) unchanged and reduce MSE of the

shrinkage covariance estimator, which (Ledoit and Wolf, 2004) had indirectly proposed.

Note that the RR estimator, β̂RR(λ) = (Σ∗)−1XTy with Σ∗ = Σ + λIp+1, preserves the eigen-

vectors and λ∗RR
k = λk + λ for all 0 ≤ k ≤ p. Therefore, RR inflates all eigenvalues by the same

value λ, which is unknown and there is no optimal way to estimate it. On the contrary, St and

GSR regressions inflate the eigenvalues of Σ, while preserving its eigenvectors, which is similar

to RR, though the advantage of St and GSR is that such estimators are optimally estimated

without relying on cross-validation, while RR does need cross-validation, which is expected to

be sub-optimal.

We now provide a new shrinkage estimator that we name as Shrinkage Ridge Regression (SRR),

where Σ is replaced by its linear shrinkage estimator that shrinks around a diagonal matrix with

equal entries, i.e., v := 1
p+1 Tr(Σ), which is similar to (Ledoit and Wolf, 2004). This means that

β̂SRR(ρ) =
(
Σ∗(ρ)

)−1
XTy with Σ∗(ρ) = (1− ρ)Σ + ρvIp+1, (2.25)

and the optimal ρ∗ is chosen so that MSE
(
β̂SRR(ρ)

)
is minimised rather than minimising

MSE
(
Σ∗(ρ)

)
as in (Ledoit and Wolf, 2004). The main SRR result is given as Theorem 6.

Theorem 6. Let Assumption 2.1 hold. The shrinkage estimator in (2.25) is sought by solving

min
0≤ρ≤1

MSE
(
β̂SRR(ρ)

)∧
. (2.26)

The optimal solution in (2.26) is the SRR estimator

β̂SRR(ρ∗) :=

p∑
k=0

v
1/2
k

(1−ρ∗)λk+ρ∗v
uk with ρ∗ := argmin

0≤ρ≤1
H(ρ), (2.27)

where vk :=
(
yTXuk

)2
for all 0 ≤ k ≤ p and

H(ρ) :=
1

n−p−1

(
yTy−2

p∑
l=0

vl
(1−ρ)λl+ρv

+

p∑
l=0

λlvl(
(1−ρ)λl+ρv

)2
)

p∑
k=0

λk(
(1−ρ)λk+ρv

)2
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+ρ2
p∑

k=0

(
λk−v)2vk(

(1−ρ)λk+ρv
)3 .

Note that SRR relies on Σ∗(ρ∗) which preserves the eigenvectors, while the eigenvalues are

λ∗SRR
k = (1 − ρ∗)λk + ρ∗v for all 0 ≤ k ≤ p, which is another rotation-equivariant covariance

matrix estimator that is often considered in linear and non-linear shrinkage estimation when the

purpose is to find MSE optimal shrinkage covariance estimators (Donoho et al., 2018; Ledoit and

Wolf, 2021, 2022). Since ρ∗ is not available in closed-form, we cannot provide asymptotic results

to the SRR estimator, but we can numerically compare SRR to OLS and RR. We conduct a

simulation study where the data generating process (DGP) is described in Appendix B.1 – for

details, see the Latent Space Features setting – which consists of an overparametrized regime;

that is, we generate covariates to lie close to a low-dimensional subspace (of dimension f with

f < p) and Gaussian response variable with standard deviation σ = 1 and 5. Different scenar-

ios are created by varying the ratios p/n and f/p so that we understand how effective SRR

(when compared to OLS and RR) is in handling an unstable sample covariance matrix estima-

tor induced by a low-dimensional subspace factor structure. We also include POET (Principal

Orthogonal Complement Thresholding) proposed by Fan et al. (2013) in our comparison because

it is a standard benchmark for high-dimensional sparse covariance estimation and our Latent

Space Features DGP has that structure. Note that POET approximates high-dimensional co-

variance matrices through factor models and a sparse noise matrix. When deploying POET,

we consider two choices for the number of factors K as required in the POET package in R: i)

K = f to match the true number of latent factors, which is denoted as POETf , and ii) K such

that the top K eigenvalues explain 99% of the total variance, which is denoted as POET99%.

Our numerical results are summarised in Table 1 where we report how many times each estima-

tor achieves the smallest L2-distance (from the “true” regression parameters) across N = 250

replications under various settings. When the noise level is low (σ = 1), OLS performs best in

scenarios with moderate to high p/n ratios (p/n ≥ 25%); in contrast, SRR achieves the lowest

L2 error more frequently when p/n is small. When the noise level is high (σ = 5), SRR becomes

the best-performing method across all settings.

We also report the average L2-error ratios relative to SRR across all N = 250 replications in

Table 2. For each estimator (OLS, RR, POET99%, and POETf ), we define the L2-error ratio

in a single replication by comparing its estimation error to that of SRR. Let β̂method be the

estimated parameter vector from a given method, and let θ be the “true” parameter vector; the
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Table 1: Counts of models achieving the minimum L2 error

Normal Distribution: σ = 1

Model
p/n 5% 10% 25%

f/p 25% 50% 75% 25% 50% 75% 25% 50% 75%

OLS 0 0 1 28 45 76 250 250 250
RR 52 44 78 31 49 37 0 0 0
SRR 198 205 171 191 156 137 0 0 0

POET99% 0 1 0 0 0 0 0 0 0
POETf 0 0 0 0 0 0 0 0 0

Model
p/n 50% 75% 95%

f/p 25% 50% 75% 25% 50% 75% 25% 50% 75%

OLS 250 250 250 250 250 250 250 250 250
RR 0 0 0 0 0 0 0 0 0
SRR 0 0 0 0 0 0 0 0 0

POET99% 0 0 0 0 0 0 0 0 0
POETf 0 0 0 0 0 0 0 0 0

Normal Distribution: σ = 5

Model
p/n 5% 10% 25%

f/p 25% 50% 75% 25% 50% 75% 25% 50% 75%

OLS 0 0 0 0 0 0 0 0 0
RR 54 45 80 43 60 48 0 0 0
SRR 196 204 170 207 190 202 250 250 250

POET99% 0 1 0 0 0 0 0 0 0
POETf 0 0 0 0 0 0 0 0 0

Model
p/n 50% 75% 95%

f/p 25% 50% 75% 25% 50% 75% 25% 50% 75%

OLS 0 0 0 0 0 0 0 0 0
RR 0 0 0 0 0 0 0 0 0
SRR 250 250 250 250 250 250 250 250 250

POET99% 0 0 0 0 0 0 0 0 0
POETf 0 0 0 0 0 0 0 0 0

Note: We tabulate counts of how many times each estimator (OLS, RR, POET99%, POETf and SRR) achieves
the lowest L2-distance (from the “true” regression parameters) across N = 250 replications of samples of size
n = 1, 000 for various choices of p/n and f/p under σ = 1, 5; the best-performing method is highlighted in red.

L2-error ratio for one replication is computed by:

L2-error ratio(β̂method) :=
∥β̂method − β∥2
∥β̂SRR − θ∥2

.

The above L2-error ratios are averaged across all replications, and the results are gathered in

Table 2, which complement Table 1. As before, SRR performs very well as most of the error

ratios are greater than one. However, when σ = 1 and p/n ≥ 25%, OLS consistently achieves

lower L2 error than SRR, and POETf also performs better than SRR in one setting.
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Table 2: Mean L2 error ratios of estimators relative to SRR

Normal Distribution: σ = 1

Model
p/n 5% 10% 25%

f/p 25% 50% 75% 25% 50% 75% 25% 50% 75%

OLS 2.114 2.114 2.198 1.128 1.127 1.136 0.498 0.500 0.499
RR 1.027 1.027 1.032 1.015 1.016 1.026 1.052 1.086 1.149

POET99% 2.830 2.830 5.282 6.249 6.782 5.724 15.915 6.771 5.763
POETf 2.830 2.830 8.846 1.534 2.415 5.203 0.916 1.541 3.670

Model
p/n 50% 75% 95%

f/p 25% 50% 75% 25% 50% 75% 25% 50% 75%

OLS 0.310 0.306 0.309 0.290 0.291 0.294 0.521 0.522 0.518
RR 1.253 1.519 1.638 1.550 1.655 1.710 1.569 1.669 1.739

POET99% 11.979 6.582 5.750 11.703 6.267 5.671 11.386 6.188 5.708
POETf 0.980 1.603 3.607 1.177 1.861 4.057 1.337 2.175 4.754

Normal Distribution: σ = 5

Model
p/n 5% 10% 25%

f/p 25% 50% 75% 25% 50% 75% 25% 50% 75%

OLS 10.561 10.409 10.974 5.635 5.629 5.670 2.490 2.500 2.492
RR 1.026 1.033 1.031 1.014 1.014 1.024 1.051 1.085 1.147

POET99% 13.954 7.987 5.273 10.586 6.775 5.715 15.902 6.765 5.754
POETf 13.954 20.225 41.857 7.251 10.903 21.696 3.064 4.753 9.967

Model
p/n 50% 75% 95%

f/p 25% 50% 75% 25% 50% 75% 25% 50% 75%

OLS 1.551 1.531 1.544 1.450 1.453 1.467 2.604 2.609 2.592
RR 1.253 1.518 1.637 1.550 1.655 1.709 1.569 1.668 1.738

POET99% 11.975 6.579 5.746 11.701 6.265 5.668 11.385 6.188 5.707
POETf 1.807 2.928 6.461 1.581 2.591 5.908 1.594 2.680 6.314

Note: We report the mean L2 error ratios of each estimator (OLS, RR, POET99%, POET99%) relative to SRR
across N = 250 simulations with sample size n = 1, 000, and σ = {1, 5}. A ratio greater/lower than 1 indi-
cates “worse”/“better” performance than SRR. Instances highlighted in red indicate cases where the comparator
achieves a lower average error than SRR (i.e., those with ratio below 1).

2.5 How Large is Large?

The asymptotic behaviour of our shrinkage estimators has been discussed so far under the setting

of fixed p and large n. A key element in our proofs is the uniform integrability of β̂OLS that

allows us to show the equivalence between the oracle shrinkage estimators and their bona fide

estimators. Note that the Kolmogorov setting where p/n → k ∈ (0, 1) as n → ∞ requires a very

different setting and technical tools which is beyond the scope of this paper. We are actively

thinking about how to perform MLR shrinkage in this setting, but a natural question is how

our estimators would behave under the Kolmogorov setting which is the purpose of this section.

Some recent research outputs have shown that the OLS estimator has a non-zero asymptotic
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MSE under the Kolmogorov setting, which is shown via probabilistic heuristics in (El Karoui

et al., 2013), though more rigorous arguments are available in (El Karoui, 2013; Donoho and

Montanari, 2016). These papers assumed covariates as random, which is different than the

classical fixed p setting that we have considered in this paper.

Appendix C amasses a series of interesting findings. First, we illustrate in Appendices C.1 and

C.2 some patterns about the empirical eigenvalues that would give some evidence about the

covariance matrix empirical estimator; such empirical evidence is relevant as the eigenvalues

play an important role in shrinkage estimation as explained in Section 2.4. These findings are

summarised as Result 7.

Result 7. Assume first that the number of covariates p is fixed. Then,

i) The largest and lowest empirical eigenvalues are overestimated and underestimated, respec-

tively; e.g., see Figure C.1;

ii) The overall estimation error in empirical eigenvalues is reduced when the strength of de-

pendence becomes more extreme (either positive or negative); e.g., see Figure C.1;

iii) The eigenvalues’ bias does not uniformly decrease from the largest to the lowest empirical

eigenvalue, especially when the population eigenvalues are clustered; e.g., see Figure C.2;

iv) If the population eigenvalues are preserved, the empirical eigenvalues for independent and

dependent Gaussian covariates are estimated with the same error; e.g., see Figure C.3b

and C.3d, and Figure C.4b and C.4d.

Assume the Kolmogorov setting with large n and p such that p/n is fixed. Then, (iv) is also

true; no visualisations are provided, but are available upon request.

Second, we found in Appendix C.2 that the MLR estimators with independent covariates yield

a lower estimation error than the ones with dependent covariates as long as the eigenvalues are

preserved. This property is true for the fixed p and large n case, but also under the Kolmogorov

setting. Third, we also empirically found in Appendix C.2 that St and GSR shrinkage estima-

tors outperform OLS in the Kolmogorov setting (though GSR outperforms St), which gives us

confidence to validate the motivation of this section hoping that some of our novel shrinkage

estimators may be more effective than OLS in the Kolmogorov setting for which we have not

established theoretical results. These findings are summarised as Result 8.
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Result 8. Assume that the population eigenvalues are preserved, and the Kolmogorov setting

(with large n and p such that p/n is fixed) is in place. If the dependent variable and covariates

are Gaussian, the following are true:

i) The estimation error of OLS, St, DSh and GSR estimators are lower for independent

Gaussian covariates as compared to their corresponding dependent Gaussian covariates;

e.g., see Figures C.5–C.8;

ii) The St and GSR estimators consistently outperform OLS estimator. Further, St and GSR

perform similarly in estimation error for small p/n though St shows a slight advantage

in such settings, while GSR clearly outperforms St for big choices of p/n; e.g., see Fig-

ure C.9 for independent covariates though similar visualisations for dependent covariates

are available upon request.

3 Numerical Experiments

The theoretical properties of multiple shrinkage estimators have been investigated in the previous

section and we now evaluate their performance through synthetic data (see Section 3.1) and three

real datasets. We choose three applications from very different fields. The first application is

given in Section 3.2 and examines how helpful our shrinkage estimators are to improve statistical

fine-mapping; these methods aim to identify causal variants underlying genetic associations with

a trait (response variable). The second application is given in Section 3.3 where we show that

our shrinkage estimators could reduce the prediction error in GLM modelling; we chose a cyber-

sickness dataset to make our point to predict motion sickness which is a research question raised

in the virtual reality field. The implications of our findings go well beyond the small application

in Section 3.3, and in parallel to this paper, we have finished another paper (Asimit et al., 2025)

that provides ample evidence that the estimation error could be massively reduced by using our

shrinkage estimators. The third application is discussed in Section 3.4 where shrinkage estimators

are shown to be very effective in enhancing investors’ decisions under uncertainty, which is in

accordance with the fast-growing finance literature focusing on shrinkage methodologies.

Note that the RR and SRR estimators are included only in Section 3.4, which is the only case

where covariates may exhibit an ill-conditioned covariance matrix. These two estimators have

performed much worse than OLS in most simulation scenarios considered in Section 3.1, which

explains why we have discarded RR and SRR.
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3.1 Simulation Results Analysis

Two sets of simulation studies are considered in this section, one is for continuous data and

another one for counting data. We compare the performance of i) OLS estimator, ii) St estimator

as in (2.2), iii) DSh estimator as in (2.3), iv) Sh estimator as in (2.4), v) SR estimator as in

(2.17), and vi) GSR estimator as in (2.20). Note that the LSh estimator is not included, as it

behaves similarly to OLS when applied to centred data. The simulation settings are described

in Appendix B.1, with results being summarised in Appendix B.2 as Tables B.1 – B.4.

The first simulation study examines continuous dependent Gaussian covariates and all results

are presented in Tables B.1 – B.3. This study compares performance across different dependent

variable’s distributions, distinguishing between lighter-tailed cases (see Tables B.1 and B.2) and

heavier-tailed cases (see Table B.3). The overall conclusions are that SR and GSR consistently

outperform OLS and the other three shrinkage estimators in most scenarios. A further improve-

ment of the St, DSh and GSR estimators is investigated in Appendix B.3 where cross-validation

is introduced to provide different weights between bias and variance when selecting the optimal

shrinkage estimator; we find that GSR may benefit from such adjustment, but a neutral effect

is observed on St and DSh estimators.

The second simulation study considers counting covariates with Gaussian dependence, with

results being summarised in Table B.4. This setting is common in genetics applications, where

covariates are genotype scores at genetic variants. The genotype score counts the number of

effect alleles at a variant and follows a binomial distribution with Nq = 2 number of trials and

q0 = EAF success probability, where EAF is the effect allele frequency. The picture is a tad

different than what we have found for continuous covariates, and we note that OLS behaves very

well only for cases with small variability and small sample size, while DSh and GSR outperform

all estimators in the remaining settings. On the contrary, St is by far the best estimator when

a larger variability in the response variable is observed.

3.2 Application to Statistical Fine-mapping in Genetics

Based on the results from our second simulation study in Section 3.1, where DSh, GSR, and St

performed better in handling discrete correlated Gaussian covariates, we use these three estima-

tors for this realistic simulation study and compare them with the standard OLS estimator. The

Sh and SR estimators are not included because they showed weaker performance in the simu-

lations. This choice ensures that the selected methods are suitable for statistical fine-mapping
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in genetics, where genetic variants are often highly correlated, and accurate effect estimation is

important.

There is potential for our new regression effect estimates to improve current genetic analysis

approaches, such as fine-mapping. In genome-wide association studies (GWAS), genetic vari-

ants are each tested for association with a quantitative (e.g., cholesterol level) or binary trait

(presence/absence of coronary artery disease) using a linear model. As many genetic variants

are highly correlated, GWAS report the genetic variants with the lowest genome-wide signifi-

cant (P < 5× 10−8) p-value among correlated variants. However, the variant with the smallest

p-value (lead variant) is not necessarily causal and may be detected because of correlation (i.e.

linkage-disequilibrium (LD)) with the causal variant(s). The identification of causal variants

that underlie genetic associations is key to facilitating translation into new therapeutic targets

or elucidating new biological insights. Statistical fine-mapping is therefore needed to refine sets

of potential causal variants within a region constructed around a lead variant (Hutchinson et al.,

2020). Fine-mapping prioritisation of likely causal variants (i.e., those with a high Marginal Pos-

terior Probability (MPP) of causality) may be improved through joint analyses of multiple traits,

as biologically related traits often share causal variants.

Bayesian methods are common in fine-mapping – e.g. JAM (Newcombe et al., 2016), FINEMAP

(Benner et al., 2016) – and a Bayes’ factor (BF) is used to summarise the evidence of association

for each combination of variants (SNPs) compared to the null model of no causal variants. The

Joint Analysis of Marginal summary statistics (JAM) fine-mapping approach uses a sparse

Bayesian regression framework and infers joint LD-adjusted multi-SNP models, highlighting

the best multi-SNP models (high posterior probability) considering a thinned subset of SNPs

that are not in high correlation (Newcombe et al., 2016). JAM (and many other fine-mapping

methods) uses the GWAS effect estimates from the thinned subset of SNPs to fit the multi-

SNP models. JAM was expanded to account for all thinned out SNPs by considering all the

possible models formed by all the combinations of SNPs in the JAM model, replacing SNPs

in the model with highly correlated SNPs that were previously thinned out. The expanded

version of JAM has been integrated into flashfm (flexible and shared information fine-mapping)

multi-trait fine-mapping, where multi-trait model priors are upweighted when causal variant(s)

are shared among traits (Hernández et al., 2021).

Both JAM and flashfm make use of GWAS summary statistics, in particular the genetic effect

estimates at each genetic variant. In the case where a study consists of unrelated individuals,
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these effect estimates are calculated using ordinary least squares. Here, we modify JAM (ex-

panded version) and flashfm such that the effect estimates for single-SNP and multi-SNP models

are calculated using GSR, St, and DSh. In simulations within the region harbouring the gene

IL2RA, we show that estimates based on DSh have the potential to outperform those from OLS

and that multi-trait fine-mapping gives further power improvements over each of the single-trait

approaches.

Table 3: Power and FDR (false discovery rate) comparison for single and multi-trait
fine-mapping based on four different estimators.

Power FDR

Method Trait 1 Trait 2 Trait 1 Trait 2

single-OLS 0.76 0.7 0.01 0.01
multi-OLS 0.835 0.815 0.01 0.005
single-St 0.78 0.65 0.005 0.035
multi-St 0.855 0.77 0.005 0.03

single-DSh 0.815 0.68 0.063 0.063
multi-DSh 0.865 0.785 0.063 0.058
single-GSR 0.78 0.645 0.005 0.025
multi-GSR 0.855 0.77 0.005 0.02

In our IL2RA simulations of 100 replications, we set plausible causal variants that have been ex-

tensively explored in previous studies Appendix D and set uniform random effect sizes (between

0.15 and 0.4). Power is evaluated by using an MPP threshold of 0.9; all results are displayed in

Table 3. Among the four single-trait versions of JAM (expanded), the highest power of 0.815 is

attained by DSh estimation, which is an increase of 0.055 over that from OLS (power = 0.760).

A further increase of 0.05 is achieved by DSh estimation within the flashfm multi-trait approach

(power = 0.865), which is an increase of 0.03 over OLS estimation within flashfm (power =

0.835). For trait 2, the power attained by OLS and DSh are similar for single-trait fine-mapping

(single-OLS power = 0.70; single-DSh power = 0.68) and multi-trait fine-mapping gives a further

increase of more than 0.10 for each (multi-OLS power = 0.815; single-DSh power = 0.785).

The observed improvement with DSh is consistent with our previous simulation results, where

DSh gave the best-performing regression model in the setting of two causal variants and low

trait variability (see Table B.4 when σ = 1).

3.3 Real Data Analysis – GLM Modelling for Cyber-sickness Data

GLM is a generalisation of MLR by including a non-Gaussian response variable assumption and

the standard implementation is through the Iteratively Reweighted Least Squares (IRLS) method
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that iteratively solves OLS instances – in fact, Weighted Least Squares (WLS) instances with

known weights – which explains its computational efficiency (Nelder and Wedderburn, 1972;

McCullagh et al., 1989; Wood, 2017); for details, also see Appendix G. We show in this section

that one may replace deploying IRLS with OLS by one of our five shrinkage methods – we choose

SR, GSR, St, DSh, and Sh in this real data analysis – so that the estimation error is improved.

Our small data analysis compares an OLS solver to solvers based on the five shrinkage methods

when solving Logistic and Poisson GLMs. We conclude that improvement is i) very limited

for Logistic regression (see Tables E.1 and E.2) and ii) 3% to 7% improvement when using St

shrinkage for Poisson regression (see Table E.3). The latter conclusion may look as an obsolete

result and we further extend this analysis in a follow-up paper (Asimit et al., 2025) where we

found that St, DSh, SR and GSR consistently outperform OLS in IRLS implementations for

Poisson and Gamma GLMs via extensive simulated and real-data analyses.

The real data analyses in this section rely on a cyber-sickness dataset† used in the machine

learning literature. Cyber-sickness is similar to motion sickness, but it happens while using

electronic screens rather than through actual movement. It refers to a set of symptoms that fall

into three categories: nausea, oculomotor issues (such as eye strain and fatigue), and general dis-

orientation. People may experience cyber-sickness when using virtual reality (VR) systems but

also through using everyday electronic devices. Automatic real-time detection of cyber-sickness

may help get a better understanding of the phenomenon and develop effective countermeasures,

which in turn could reduce visual discomfort and improve the user’s experience.

This physiological dataset includes recordings from 23 participants who were immersed in a VR

roller coaster simulation. The data are labelled with cyber-sickness severity scores on a scale

from 0 (no cyber-sickness) to 10 (high cyber-sickness), which is the target/response variable, but

a more detailed data description is available in Appendix E. Two types of models are formulated

to evaluate the effectiveness of our proposed estimators. First, a binary classification problem

is performed, which is a Logistic GLM with a logit link function, where the Fast Motion Scale

(FMS) scores are reduced to binary outcomes for specific pairs of classes. Second, a Poisson

GLM with a log link function is performed to mimic a multi-class classification by dividing the

cyber-sickness severity into four ordinal levels, grouping the FMS scores into distinct categories.

Details of these models and their formulations are provided in Appendices E.1 and E.2.

Logistic GLM with a logit link function and Poisson GLM with a log link function are deployed

†Available at https://github.com/shovonis/CyberSicknessClassification
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for two feature sets from the physiological dataset to represent different levels of multicollinearity

within the feature space i) a smaller set with 13 features and ii) a larger set with 130 features,

which exhibits a more pronounced multicollinearity effect. Our analyses include the features

in both raw and standardised forms in order to understand whether the estimation error is

influenced by this choice of data. The comparative performance among different models (mea-

sured by the estimated MSE) shows some positive and neutral benefits of using our proposed

shrinkage estimators in solving GLMs through IRLS. First, solving Logistic GLMs with St, Sh,

SR or GSR would lead to similar performance as compared to the baseline OLS solver, while

the DSh estimator performed poorly in comparison to all the other methods; for details, see

Tables E.1 and E.2. Second, solving Poisson GLMs with St clearly improves the estimation

error as compared to the benchmark OLS solver when features are standardised (see Table E.3).

3.4 Real Data Analysis – Portfolio Investment

As mentioned in Section 1, there is growing finance literature that adopts shrinkage methods

to enhance investors’ decisions under uncertainty, and portfolio theory has benefited the most

from adopting shrinkage methodologies. Since L2 linear regressions and investment decisions

where investors orders their decisions (measure risk) via variance preferences are mathematically

equivalent, we now compare OLS and our shrinkage estimators (St, DSh, Sh, SR, GSR, and

SRR) to construct risk-minimising portfolios. Factor models have been massively explored in

the finance literature, where it is argued that asset returns can be represented by a smaller set of

observable or engineered covariates. Thus, we include the RR, SRR, and POET99% estimators

in our analysis, which are discussed in Section 2.4. We do not include POETf in this real-data

analysis because it requires knowledge of the unknowable true number of latent factors f .

Investment decisions with variance preferences mean constructing Global Minimum Variance

(GMV) portfolios as defined in (F.1) and discussed in Appendix F.1. Unlike the mean-variance

portfolio introduced by Markowitz (1952), which makes investment decisions by balancing risk

(measured by variance) and reward (measured by realised expected return), the GMV portfolio

focuses only on minimising the risk. The mean-variance approach requires estimates of both the

mean and covariance matrix of asset returns, but mean return estimates often have large errors,

making portfolios unstable and leading to poor out-of-sample performance (Merton, 1980). In

contrast, the GMV portfolio relies only on covariance matrix estimates, reducing sensitivity to

errors in mean estimates and achieving better out-of-sample performance; GMV remains affected
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by covariance estimation errors, for which robust methods have been proposed to improve its

out-of-sample performance (DeMiguel and Nogales, 2009).

In this analysis, we construct GMV portfolios to S&P500 (Standard & Poor’s 500) data, which

is an index of 500 large U.S. firms widely used to measure the US market performance. Our

dataset – that denoted as DA441 – contains daily asset returns about 441 firms that had been

S&P500 constituents for at least one time during the observation period (January 1, 2000 to

December 31, 2023); note that these 441 firms are selected among the 1,070 S&P500 constituents

that had been during the observation period, and the 441 selected firms are those that had

been listed on the US stock exchanges without interruption. Additional details on the dataset

are in Appendix F.1 and (Asimit et al., 2025), while details about the portfolio construction

are also given in Appendix F.1. Numerical experiments are made across periods with various

market conditions in Appendix F.2. The out-of-sample performance is investigated by applying

a rolling-window scheme with five-year and ten-year training periods, each followed by a three-

month testing window.

The main conclusions of our portfolio investment analyses are three-fold. First, eigenvalue-

driven methods (RR, GSR and SRR) are useful to stabilise the risk, but are not effective in

terms of reward (low expected returns) and risk-adjusted performance (low Sharpe ratios, which

are calculated as expected return per unit of risk). Second, POET99%, St, DSh and Sh show

very good performance in terms of reward and risk-adjusted performances with St being the

“best” option. Third, OLS shows very poor performance irrespective of the market conditions.

4 Conclusions

A wide range of distribution-free shrinkage estimators have been discussed within the topic of

multivariate linear regression. Our theory is focused on the setting with a fixed number of

covariates, but we empirically show that some of our shrinkage estimators outperform OLS by

large margins when both the sample size and number of covariates get large. The advantage of

using our novel estimators has been illustrated through three very different applications, where

we also find that our shrinkage estimators are very effective in significantly reducing the high

estimation errors in GLM modelling.
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A Proofs

A.1 St, DSh and Sh Oracle Multiplicative Shrinkage – Proof of Theorem 1

We first prove Part i) for which we need to minimise in a ∈ ℜ

MSE
(
aβ̂OLS

)
= a2σ2Tr

(
Σ−1

)
+ (a− 1)2βTβ = a2M∗

0 + (a− 1)2βTβ,

which is strictly convex, and thus, it has a unique solution a∗ ∈ [0, 1). This concludes (2.2) and

thus, Part i) is fully justified.

Part ii) is now argued, where we minimise in b ∈ ℜp+1

MSE
(
diag(b)β̂OLS

)
= σ2Tr

(
diag(b)Σ−1 diag(b)

)
+ βT (diag(b)−Ip+1)

T (diag(b)−Ip+1)β

= σ2Tr
(
Σ−1 diag

(
b2
))

+ βT diag
(
b− 1)2β (A.1)

=

p∑
k=0

(
σ2σkb

2
k + (bk − 1)2β2

k

)
,

where squaring a vector is made component-wise. The above is a sum of separable (with respect

to each bk) strictly convex quadratic functions since σk > 0 for all 0 ≤ k ≤ p. The latter is true

since there exists an orthogonal matrix Q, i.e., QQT = Ip+1, and a diagonal matrix D = diag(d)

with d > 0 (since Σ−1 ≻ 0) such that Σ−1 = QDQT , and in turn, we have that

(
Σ−1

)
kk

=

p∑
k′=0

(
QT
)
kk′

(
D
)
k′k′

(
Q
)
k′k

=

p∑
k′=0

dk′q
2
k′k ≥ 0.

The inequality becomes an identity if and only if q2k′k = 0 for all 0 ≤ k′ ≤ p, but this can not

be true since 1 =
∑p

k′=0 q
2
k′k for all 0 ≤ k ≤ p as QQT = Ip+1, and thus, the above holds with

strict inequality and in turn, σk > 0 for all 0 ≤ k ≤ p. The strict convexity of (A.1) and some

simple algebraic manipulations conclude Part ii).

We now prove Part iii) for which we need to minimise in C ∈ ℜ(p+1)×(p+1)

MSE
(
Cβ̂OLS

)
= σ2Tr

(
CTΣ−1C

)
+ βT (C − Ip+1)

T (C − Ip+1)β. (A.2)

Note that the above is convex in C and its global minimum is unique if Σ−1 and −βTβ have
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no common eigenvalues, which coincides with the well-known result regarding the Sylvester

equation. Specifically, one may find that by first using (A.2) to get that

∂MSE
(
Cβ̂OLS

)
∂C

= σ2∂ Tr
(
CTΣ−1C

)
∂C

− ∂βTCβ

∂C
− ∂βTCTβ

∂C
+

∂βTCTCβ

∂C
(A.3)

= 2Σ−1C − 2ββT + 2CββT

and in turn, any optimal solution in (2.4) is the solution of the Sylvester equation (in C)

Σ−1C + C
(
ββT

)
= ββT . The latter equation has a unique solution if and only if Σ−1 and

−βTβ have no common eigenvalues, which is true since all eigenvalues of Σ−1 are positive (as

Σ−1 ≻ 0) and all eigenvalues of −βTβ are non-positive (as βTβ ⪰ 0). This concludes the proof

of Part iii).

Part iv) is now justified. The non-strict variant of (2.5), namely, M∗
3 ≤ M∗

2 ≤ M∗
1 ≤ M∗

0 , is

clear since the feasibility set obtaining M∗
s is a subset of the feasibility set obtaining M∗

s+1 for

all s ∈ {0, 1, 2}. Clearly, M∗
1 < M∗

0 since M∗
0 = σ2

∑p
k=0 σk > 0 as σk > 0 is proved in Part ii).

It is not difficult to show that M∗
3 < M∗

2 if and only if C∗ is diagonal.

It only remains to find the necessary and sufficient conditions under which M∗
2 < M∗

1 is true.

By taking uk = β2
k and vk = σ2σk for all 0 ≤ k ≤ p in Lemma A.1, one may get that

M∗
2 =

p∑
k=0

β2
kσ

2σk
β2
k + σ2σk

≤
(∑p

k=0 β
2
k

) (∑p
k=0 σ

2σk
)∑p

k=0 β
2
k +

∑p
k=0 σ

2σk
= M∗

1 ,

since M∗
0 = σ2Tr

(
Σ−1

)
= σ2

∑p
k=0 σk; note that σk > 0 for all 0 ≤ k ≤ p is proved in Part ii).

The above inequality becomes an identity if and only if
β2
k

σk
=

β2
0

σ0
for all 1 ≤ k ≤ p, which is a

direct consequence of Lemma A.1. The proof is now complete.

A.2 LSh Oracle Linear Shrinkage – Proof of Theorem 2

Similar to the proof in Appendix A.1 and by keeping (2.6) in mind, one may find that

MSE
(
β̂ind(ρ)

)
= MSE

(
Σ(ρ)β̂OLS

)
= σ2

(
ρ2Tr(ΣΣ̃−2) + 2ρ(1− ρ) Tr(Σ̃−1) + (1− ρ)2Tr(Σ−1)

)
(A.4)

+ρ2βT (Σ̃−1Σ− Ip)
2β
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= t1(2ρ− ρ2) + t2(1− ρ)2 + t3ρ
2,

since Tr
(
Σ̃−1

)
= Tr

(
ΣΣ̃−2

)
=
∑p

k=1(Σkk)
−1 given that Σ̃ = diag(Σ), which in turn justifies

(2.8) via some algebraic manipulations that we skip in this proof. Note that by Lemma A.2, one

find that t2 ≥ t1, which in turn we have that ρ∗ ∈ [0, 1] as t3 ≥ 0. The proof is now complete.

A.3 SR Oracle Slab Shrinkage Regression – Proof of Theorem 3

We first prove Part i). The interior point claim follows from the fact that

lim
||β||∞→∞

1
2 ||y−Xβ||22 + µ

(
uTβ)2

||β||2∞
> 0,

since Σ + µuuT ≻ 0 and in turn the diagonal elements of Σ + µuuT are positive, where ||β||∞

is the max norm. Clearly, δ > 0 since Σ−1 ≻ 0 and u ̸= 0. Now, (2.11) yields that

β̂SR(µ;u) =

(
Ip+1 −

µ

1 + µδ
A

)
Σ−1XTy =

(
Ip+1 −

µ

1 + µδ
A

)
β̂OLS (A.5)

for any feasible µ and u, and in turn, we have that

MSE
(
β̂SR(µ;u)

)
= Tr

(
Cov

(
β̂SR(µ;u)

))
+
(
bias

(
β̂SR(µ;u)

))2
. (A.6)

Equation (A.5) together with some algebraic manipulations and well-known standard properties

of the OLS estimator imply that

Tr
(
Cov

(
β̂SR(µ;u)

))
= Tr

((
Ip+1 −

µ

1+µδ
A

)T

Cov
(
β̂OLS

)(
Ip+1 −

µ

1+µδ
A

))
(A.7)

= σ2Tr

((
Ip+1 −

µ

1+µδ
A

)T

Σ−1

(
Ip+1 −

µ

1+µδ
A

))

and

(
bias

(
β̂SR(µ;u)

))2
=

∣∣∣∣∣∣E[(β̂SR(µ;u)
]
− β

∣∣∣∣∣∣2
2

=
∣∣∣∣∣∣ (Ip+1 −

µ

1 + µδ
A

)
β − β

∣∣∣∣∣∣2
2

(A.8)
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=

(
µ

1 + µδ

)2

βTATAβ.

Putting together (A.6)–(A.8), we get (2.12), which concludes the proof of part i).

Part ii) is a clear implication of the Karush-Kuhn-Tucker conditions, the fact that the objective

function in (2.13) is strictly convex and strong duality holds which is a consequence of the fact

that the Slater’s condition holds in (2.13) as those constraints are linear. The proof is now

complete.

A.4 SR Oracle Slab Shrinkage Regression – Proof of Theorem 4

We first prove part i). Theorem 3 i) and the fact that A and Σ−1 are symmetric matrices, one

may use some basic matrix trace properties to get that

∂ Tr
(
Cov

(
β̂SR(µ;u)

))
∂µ

(A.9)

= σ2 ∂

∂µ
Tr

((
Ip+1 −

µ

1+µa1(u)
Σ−1uuT

)T

Σ−1

(
Ip+1 −

µ

1+µa1(u)
Σ−1uuT

))

= σ2 ∂

∂µ
Tr

((
− 2µ

1+µa1(u)
Σ−2uuT +

(
µ

1+µa1(u)

)2

uuTΣ−3uuT

))

=
2σ2

(1+µa1(u))2

(
−Tr

(
Σ−2uuT

)
+

µ

1 + µa1(u)
Tr
(
uuTΣ−3uuT

))

and

∂
(
bias

(
β̂SR(µ;u)

))2
∂µ

=
∂

∂µ

(
µ

1 + µa1(u)

)2

βT
(
Σ−1uuT

)T (
Σ−1uuT

)
β

=
2µ

(1 + µa1(u))3
βT
(
Σ−1uuT

)T (
Σ−1uuT

)
β (A.10)

=
2µ

(1 + µa1(u))3
a3(u)

(
βTu

)2
.

Now,

Tr
(
uuTΣ−3uuT

)
= a0(u)a3(u) > 0 and Tr

(
Σ−2uuT

)
= a2(u) > 0. (A.11)
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Thus, (A.6) and (A.9)–(A.11) imply that

∂MSE
(
β̂SR(µ;u)

)
∂µ

=
2

(1 + µa1(u))2

(
− σ2a2(u)+

µ

1 + µa1(u)

(
∆(u)+σ2a1(u)a2(u)

))
. (A.12)

Since ∆(u)+σ2a1(u)a2(u) > 0, (A.11) and (A.12) imply (2.14)–(2.16).

Note that µ∗∗(v1) = v−2µ∗∗(1) for all v ∈ (0,∞), and together with (2.12), one may conclude

(2.17). This concludes the proof for part i).

We now argue part ii) for which u ∈ ℜp+1
+ \ {0} is assumed. It is first shown that

a1(u)

a0(u)
≤ a3(u)

a2(u)
for any u ∈ ℜp+1

+ \ {0}. (A.13)

Proposition 1 in (Coppersmith et al., 1997) tells us that

uTZu

uTu
≤ uTZ3u

uTZ2u
for any u ∈ ℜp+1

+ \ {0} and Z ⪰ 0 such that Zu ̸= 0. (A.14)

By taking Z = Σ−1 in (A.14), and noting that Zu ̸= 0 since otherwise uTZu = 0, which would be

impossible as Σ−1 ≻ 0 and u ̸= 0, and in turn, (A.13) holds. Consequently, a3(u)
(
βTu

)2 ≤ ∆(u)

with equality if and only if (A.13) becomes a strict inequality or βTu = 0. By applying

Proposition 1 in (Coppersmith et al., 1997), one may find that (A.13) becomes an equality if

and only if u is an eigenvector of Σ−1, which is equivalent to u being an eigenvector of Σ(0).

This concludes that ∆(u) > 0 if and if and only (2.18) holds, and thus, µ∗∗(u) < ∞ if and if

and only (2.18) holds. The proof is now complete.

A.5 GSR Oracle Slab Shrinkage Regression – Proof of Theorem 5

We first prove Part i). The interior point claim can be proved as in the proof of Theorem 3

in Appendix A.3 since Σ +
∑

l∈L µlulu
T
l ≻ 0 is clearly true since the Spectral Decomposition

Theorem implies that Σ =
∑p

k=0 λlulu
T
l and Σ−1 =

∑p
k=0 λ

−1
l ulu

T
l . Now, (2.20) follows from

β̂GSR(µ) =

(
Σ+

∑
l∈L

µlulu
T
l

)−1

XTy

=

(
Σ+

∑
l∈L

µlulu
T
l

)−1

Σβ̂OLS (A.15)
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=

(
Ip+1 −

∑
l∈L

µlλ
−1
l

1 + µlλ
−1
l

ulu
T
l

)
β̂OLS ,

where the latter is an implication of the Sherman-Morrison identity that could be proved by

induction. We prove this result by considering the cases in which L = {1} and L = {1, 2}, since

the general case follows the same idea. First, the Sherman-Morrison identity yields the case

L = {1} as follows

(
Σ+ µ1u1u

T
1

)−1
= Σ−1 − µ1Σ

−1u1u
T
1 Σ

−1

1 + µ1uT
1 Σ

−1u1
= Σ−1 − µ1λ

−1
1

1 + µ1λ
−1
1

u1u
T
1 Σ

−1, (A.16)

where the latter is a consequence of the fact that ul’s are orthonormal vectors; specifically,

uT
1 Σ

−1u1 =

p∑
k=0

λ−1
k uT

1 uku
T
k u1 = λ−1

1 uT
1 u1u

T
1 u1 = λ−1

1 (A.17)

and

Σ−1u1u
T
1 =

p∑
k=0

λ−1
k uku

T
k u1u

T
1 = λ−1

1 u1u
T
1 u1u

T
1 = λ−1

1 u1u
T
1 . (A.18)

Second, the Sherman-Morrison identity yields the case L = {1, 2} as follows

(
Σ+µ1u1u

T
1 + µ1u2u

T
2

)−1
=
(
Σ+µ1u1u

T
1

)−1 −
µ2

(
Σ+µ1u1u

T
1

)−1
u2u

T
2

(
Σ+µ1u1u

T
1

)−1

1+µ2uT
2

(
Σ+µ1u1uT

1

)−1
u2

= Σ−1 − µ1λ
−1
1

1 + µ1λ
−1
1

u1u
T
1 Σ

−1 − µ2λ
−1
2

1 + µ2λ
−1
2

u2u
T
2 Σ

−1, (A.19)

which are consequences of the fact that ul’s are orthonormal vectors and (A.16). Specifically,

uT
2

(
Σ+µ1u1u

T
1

)−1
u2 = uT

2

(
Σ−1 − µ1λ

−1
1

1 + µ1λ
−1
1

u1u
T
1 Σ

−1

)
u2

= uT
2 Σ

−1u2 −
µ1λ

−1
1

1 + µ1λ
−1
1

uT
2 u1u

T
1 Σ

−1u2,

= λ−1
2 + 0

8



which is due to (A.16) and (A.17); further,

(
Σ+µ1u1u

T
1

)−1
u2u

T
2

(
Σ+µ1u1u

T
1

)−1

=

(
Σ−1 − µ1λ

−1
1

1 + µ1λ
−1
1

u1u
T
1 Σ

−1

)
u2u

T
2

(
Σ−1 − µ1λ

−1
1

1 + µ1λ
−1
1

u1u
T
1 Σ

−1

)
, (A.20)

:= T1 + T2 − T3 − T4

= λ−1
2 u2u

T
2 Σ

−1 + 0− 0− 0,

which is due to (A.16), where

T1 := Σ−1u2u
T
2 Σ

−1 = λ−1
2 u2u

T
2 Σ

−1,

holds due to (A.18),

T2 :=

(
µ1λ

−1
1

1 + µ1λ
−1
1

)2

u1u
T
1 Σ

−1u2u
T
2 u1u

T
1 Σ

−1 = 0,

since uT
1 Σ

−1u2=λ−1
2 uT

1 u2 = 0 given that (λ−1
2 ,u2) is the paired eigenvalue-eigenvector for Σ−1,

T3 :=
µ1λ

−1
1

1 + µ1λ
−1
1

u1u
T
1 Σ

−1u2u
T
2 Σ

−1,

since uT
1 Σ

−1u2 = 0, and

T4 :=
µ1λ

−1
1

1 + µ1λ
−1
1

Σ−1u2u
T
2 u1u

T
1 Σ

−1,

since uT
2 u1 = 0. This concludes (A.20), and in turn, (A.19), (A.15) and (2.20) are justified.

It only remains to show (2.21) for Part i). Similar derivations to those used to show (2.12),

(A.15), the Spectral Decomposition Theorem for Σ−1 and the fact that ul’s are orthonormal

vectors would help to find that

MSE
(
β̂GSR(µ)

)
= σ2Tr(Σ−1) +

∑
l∈L

(
µlλ

−1
l

1 + µlλ
−1
l

)2 (
σ2λ−1

l +
(
uT
l β
)2)

−2
∑
l∈L

(
µlλ

−1
l

1 + µlλ
−1
l

)
σ2λ−1

l .

9



The above is a separable function and is minimised when

µ∗
l λ

−1
l

1 + µ∗
l λ

−1
l

=
σ2λ−1

l

σ2λ−1
l +

(
uT
l β
)2 , i.e., µ∗

l = σ2/(uT
l β)

2 for all l ∈ L.

Consequently,

MSE
(
β̂GSR(µ∗)

)
= σ2

(
Tr(Σ−1)−

∑
l∈L

σ2λ−2
l

σ2λ−1
l +

(
uT
l β
)2
)

= σ2
∑
l /∈L

λ−1
l + σ2

∑
l∈L

λ−1
l

(
uT
l β
)2

σ2λ−1
l +

(
uT
l β
)2 ,

which concludes (2.21) and the proof for Part i).

Part ii) follows in a similar manner to the proof of Theorem 3 ii) in Appendix A.3, and thus, its

proof is then omitted. The proof is now complete.

A.6 SRR Oracle and Bona Fide Shrinkage – Proof of Theorem 6

We first derive the MSE of β̂SRR(ρ), where the SRR estimator defined in (2.25). As before,

MSE
(
β̂SRR(ρ)

)
= Tr

(
Cov

(
β̂SRR(ρ)

))
+
(
bias

(
β̂SRR(ρ)

))2
. (A.21)

One may find that

Tr
(
Cov

(
β̂SRR(ρ)

))
= σ2Tr

( p∑
k=0

1

(1−ρ)λk+ρv
uku

T
kX

T

)T p∑
k=0

1

(1−ρ)λk+ρv
uku

T
kX

T


= σ2

p∑
k=0

1(
1−ρ)λk+ρv

)2 Tr(Xuku
T
kX

T
)

(A.22)

= σ2
p∑

k=0

1(
1−ρ)λk+ρv

)2 Tr
(
uku

T
k

p+1∑
l=1

λlulu
T
l

)

= σ2
p∑

k=0

λk(
1−ρ)λk+ρv

)3
and similar derivations yield that

(
bias

(
β̂SRR(ρ)

))2
=
∣∣∣∣∣∣E[(β̂SRR(ρ)

]
− β

∣∣∣∣∣∣2
2

10



=

∣∣∣∣∣
∣∣∣∣∣

p∑
k=0

1

1−ρ)λk+ρv
uku

T
kX

TXβ − β

∣∣∣∣∣
∣∣∣∣∣
2

2

=

∣∣∣∣∣
∣∣∣∣∣

p∑
k=0

λk

(1−ρ)λk+ρv
uku

T
k β −

p∑
k=0

uku
T
k β

∣∣∣∣∣
∣∣∣∣∣
2

2

(A.23)

= βT

(
p∑

k=0

(
λk(

1−ρ)λk+ρv
−1

)
uku

T
k

)T p∑
k=0

(
λk(

1−ρ)λk+ρv
−1

)
uku

T
k β

=

p∑
k=0

ρ2(λk − v)2(
1−ρ)λk+ρv

)2 (uT
k β
)2
.

A bona fide estimator to MSE
(
β̂SRR(ρ)

)
requires an estimator for σ2 and

(
uT
k β
)2
. The plug-in

estimator for
(
uT
k β
)2

is given by

(
yTX

(
XTX

)−1
uk

)2
=

(
p∑

l=0

yTXulu
T
l uk

(1−ρ)λl+ρv

)2

=

(
yTXuk

(1−ρ)λk+ρv

)2

=
vk(

(1−ρ)λk+ρv
)2 , (A.24)

where vk := yTXuk for all 0 ≤ k ≤ p. The plug-in estimator for σ2 could be similarly derived

as follows:

1

n−p−1

(
yTy− 2yTX

(
p∑

k=0

1

1−ρ)λk+ρv
uku

T
k

)
XTy+

yTX

(
p∑

k=0

1

1−ρ)λk+ρv
uku

T
k

)
p∑

k=0

λkuku
T
k

(
p∑

k=0

1

1−ρ)λk+ρv
uku

T
k

)
XTy

)
(A.25)

=
1

n−p−1

(
yTy− 2

p∑
k=0

vk
1−ρ)λk+ρv

+

p∑
k=0

λkvk(
(1−ρ)λk+ρv

)2
)

Putting together (A.21)–(A.25), we get that the final formula for MSE
(
β̂SRR(ρ)

)∧
claimed

through H(ρ) that is given in Proposition 6. The proof is now complete.

A.7 Asymptotics for St and DSh Bona Fide Multiplicative Shrinkage

Theorem 1 establishes the optimal shrinkage estimators for three search sets (solving (2.1) over

D1, D2 and D3), but a∗β̂OLS , diag(b∗)β̂OLS and C∗β̂OLS are oracle estimators as all depend

upon the unknown population β and σ2. We could replace β and σ2 by their unbiased estimators

β̂ = β̂OLS and σ̂2 =
1

n− p− 1
||y−Xβ̂OLS ||22 (A.26)
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and define the corresponding plug-in bona fide estimators as follows:

â∗β̂OLS , diag(b̂∗)β̂OLS and Ĉ∗β̂OLS , where (A.27)

â∗ :=

(
β̂OLS

)T
β̂OLS(

β̂OLS
)T

β̂OLS + M̂∗
0

, b̂∗k =

(
β̂OLS
k

)2
(
β̂OLS
k

)2
+ σ̂2σk

with 0≤k≤p,

M̂∗
0 := σ̂2Tr

(
Σ−1

)
and Ĉ∗ is the unique solution of the Sylvester equation (in C)

Σ−1C+Cβ̂OLS
(
β̂OLS

)T
= β̂OLS

(
β̂OLS

)T
. (A.28)

Note that so far, n has been assumed to be fixed and the asymptotic properties of our estimators

would require adding the index n to each quantity to signify the fact that the observed sample

is based on the first n observations, but we refrain from further complicating our notations.

For example, Theorem A.1 requires 1
nΣ → Σ0 as n → ∞, which means that the (non-random)

covariates lead to a sequence of real-valued matrices 1
nX

TX that converges to an unknown real-

valued matrix Σ0, though we remove the index n. Theorem A.1 shows the consistency of our

St and DSh bona fide estimators, and unfortunately, we could not show the same property for

the Sh bona fide estimator.

Theorem A.1. If Assumption 2.1 holds and 1
nΣ → Σ0 as n → ∞ with Σ0 ≻ 0 for a fixed p,

then

â∗β̂OLS − a∗β̂OLS p→ 0, (A.29a)

diag(b̂∗)β̂OLS − diag(b∗)β̂OLS p→ 0, (A.29b)

â∗ − a∗
L2→ 0 and b̂∗ − b∗

L2→ 0. (A.29c)

The two bona fide estimators (â∗β̂OLS and diag(b̂∗)β̂OLS) are consistent estimators of their

equivalent oracle estimators (a∗βOLS and diag(b∗)βOLS), i.e., the St and DSh estimators have

the following properties

∣∣∣∣∣∣â∗β̂OLS − a∗β̂OLS
∣∣∣∣∣∣2
2

L2→ 0 and
∣∣∣∣∣∣ diag(b̂∗)β̂OLS − diag(b∗)β̂OLS

∣∣∣∣∣∣2
2

L2→ 0; (A.30)
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furthermore, the two pairs of estimators have the same asymptotic expected loss, i.e., â∗β̂OLS and

diag(b̂∗)β̂OLS have the same asymptotic expected loss as a∗βOLS and diag(b∗)βOLS, respectively

since

E
∣∣∣∣∣∣â∗β̂OLS − β

∣∣∣∣∣∣2
2
− E

∣∣∣∣∣∣a∗β̂OLS − β
∣∣∣∣∣∣2
2
→ 0, (A.31a)

E
∣∣∣∣∣∣ diag(b̂∗)β̂OLS − β

∣∣∣∣∣∣2
2
− E

∣∣∣∣∣∣ diag(b∗)β̂OLS − β
∣∣∣∣∣∣2
2
→ 0. (A.31b)

Proof. It is first noted that due to Assumption 2.1, we have that

β̂OLS p→ β and σ̂2 p→ σ2. (A.32)

In addition, the fact that 1
nΣ → Σ0 and

(
1
nΣ
)−1

= nΣ−1, we get that

Σ−1 = o(n)Jp+1 and Tr(Σ−1) = o(n), (A.33)

where Jp+1 an p + 1 dimensional square matrix of ones. Note that we have used in the latter

that if the convergence of a sequence of matrices, An → A, implies the convergence of their

inverse (assuming that inverses exist), i.e. A−1
n → A−1; this is ensured by the fact that A−1

n =

adj(An)/ det(An) and A−1 = adj(A)/ det(A), where adj(An)(and adj(A)) is the adjugate of

An(and A), and the obvious convergences adj(An) → adj(A) and det(An) → det(A). Therefore,

the continuous mapping property of the convergence in probability, (A.32) and (A.33) imply

that â∗
p→ 1 and a∗

p→ 1 (though the latter convergence is a deterministic convergence), and in

turn, (A.29a) yields due to the continuous mapping property of the convergence in probability

and (A.32). The proof of (A.29b) is quite similar, and one can find that b̂∗k
p→ 1 and b∗k

p→ 1 for

all 0 ≤ k ≤ p by recalling that 0 < σk < Tr(Σ−1) = o(n), which implies that σk = o(n) for all

0 ≤ k ≤ p.

The proof of the first claim in (A.29c) follows from (A.29a) and the uniform integrability of

â∗ − a∗ which is implied by the fact that â∗ − a∗ is uniformly bounded as |â∗| ≤ 1 and |a∗| ≤ 1

are true. Finally, the second claim in (A.29c) can be shown in a similar manner.

The first claim in (A.30) holds due to the uniformly integrability of β̂OLS and the fact that

â∗ − a∗ is uniformly bounded. The uniform integrability of β̂OLS is discussed in (Afendras
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and Markatou, 2016) that relies on the same conditions as our Assumption 2.1 and asymptotic

covariance condition

1

n
Σ → Σ0 as n → ∞ with Σ0 ≻ 0 for a fixed p, (A.34)

but one may use a much simple proof and use Theorem 4.5.9 in (Bogachev, 2007) with G(t) = t2

and find that there exists M > 0 such that E
[(
β̂OLS
k

)2]
< M for n sufficiency large; for any

ϵ > 0, there exists n0 ≥ 1 such that the latter claim is concluded as follows:

E
[(
β̂OLS
k

)2]
= β2

k + V
(
β̂OLS
k

)
≤ β2

k +Tr
(
V
(
β̂OLS
k

))
(A.35)

= β2
k + σ2Tr

(
Σ−1

)
≤ β2

k + σ2

(
1

n
Tr
(
Σ−1
0

)
+ ϵ

)
,

which is true for any n > n0, where the latter inequality is a consequence of (A.34). The second

claim in (A.30) follows through similar arguments.

It remained to show (A.31a) and (A.31b), and as before, we have shown only the first one. Note

that

E
∣∣∣∣∣∣∣∣∣∣â∗β̂OLS − β

∣∣∣∣∣∣2
2
−
∣∣∣∣∣∣a∗β̂OLS − β

∣∣∣∣∣∣2
2

∣∣∣∣ (A.36)

≤
√

E
∣∣∣∣∣∣â∗β̂OLS − a∗β̂OLS

∣∣∣∣∣∣2
2

√
E
∣∣∣∣∣∣â∗β̂OLS + a∗β̂OLS − 2β

∣∣∣∣∣∣2
2
,

which is a consequence of the Cauchy-Schwarz inequality. Now, the first term in the right-hand

side of (A.36) convergences to 0 due to (A.30), and second term in the right-hand side of (A.36)

is bounded as E
∣∣∣∣∣∣â∗β̂OLS − β

∣∣∣∣∣∣2
2
and E

∣∣∣∣∣∣a∗β̂OLS − β
∣∣∣∣∣∣2
2
are bounded, and in turn, the left-hand

side of (A.36) convergences to 0. The proof is now complete.

A.8 Asymptotics for LSh Bona Fide Linear Shrinkage

Theorem 2 identifies the optimal oracle LSh estimator as it depends upon the unknown popu-

lation β and σ2. As before, we replace these unknown parameters by their unbiased estimators
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in (A.26) and define the corresponding plug-in bona fide estimator as follows:

β̂ind(ρ̂∗) where ρ̂∗ =
t̂2 − t̂1

t̂2 − t̂1 + t̂3
, (A.37)

t̂1 := σ̂2Tr
(
Σ̃−1

)
, t̂2 := σ̂2Tr

(
Σ−1

)
, t̂3 :=

( ̂̂
β

OLS)T (
Σ̃−1Σ− Ip

)2 ̂̂
β

OLS

.

The asymptotic properties of LSh are given as Theorem A.2 which is a replica of Theorem A.1.

Theorem A.2. Let Assumption 2.1 hold for a fixed p such that 1
nΣ → Σ0 as n → ∞ with

Σ0 ≻ 0. If βT
(
Σ̃−1
0 Σ0 − Ip

)2
β ̸= 0 with Σ̃0 := diag(Σ0), then

β̂ind(ρ̂∗)− β̂ind(ρ∗)
p→ 0 and ρ̂∗ − ρ∗

L2→ 0. (A.38)

The bona fide LSh estimator, β̂ind(ρ̂∗), is a consistent estimator of its equivalent oracle estima-

tor, β̂ind(ρ∗), i.e.

∣∣∣∣∣∣β̂ind(ρ̂∗)− β̂ind(ρ∗)
∣∣∣∣∣∣2
2

L2→ 0; (A.39)

furthermore, the bona fide and oracle LSh estimators have the same asymptotic expected loss,

i.e.,

E
∣∣∣∣∣∣β̂ind(ρ̂∗)− β

∣∣∣∣∣∣2
2
− E

∣∣∣∣∣∣β̂ind(ρ∗)− β
∣∣∣∣∣∣2
2
→ 0. (A.40)

Note that Theorem A.2 assumes βT
(
Σ̃−1
0 Σ0 − Ip

)2
β ̸= 0, which is a mild assumption as

βT
(
Σ̃−1
0 Σ0 − Ip

)2
β ≥ 0 is always true.

Proof. Similar to the proof of Theorem A.1, we only need to show that ρ̂∗
p→ 0 and ρ∗ → 0

due to the linearity of our estimator in order to justify (A.38). The latter is ensured by keeping

the equivalent of (A.32) for
̂̂
β

OLS

and (A.33) in mind, which implies that Σ̃−1 = o(n)Jp and

Tr(Σ̃−1) = o(n), but also the fact that βT
(
Σ̃−1
0 Σ0−Ip

)2
β ̸= 0. This justifies our claim in (A.38).

The remaining claims, namely (A.39) and (A.40), could be shown in the same manner as their

counterparts in Theorem A.1, and thus, we skip the details. We should note that the uniform

integrability of
̂̂
β

OLS

can be concluded in the same manner as (A.35). The proof is now complete.
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A.9 Asymptotics for SR and GSR Bona Fide Slab Shrinkage Regressions

Theorem 4 and 5 provide oracles estimators, and as before, we replace β and σ2 by their unbiased

estimators in (A.26) and define the corresponding plug-in bona fide estimator for (2.17) and

(2.21) with L = {0, . . . , p} (as it is optimal to adjust all eigenvalues):

β̂SR
(
µ̂∗∗(1);1

)
=

(
Ip+1−

µ̂∗∗(1)

1+µ̂∗∗(1)a1(1)
Σ−1J

)
β̂OLS , (A.41a)

β̂GSR
(
µ̂∗
)
=

(
Ip+1 −

∑
l∈L

µ̂∗
l λ

−1
l

1 + µ̂∗
l λ

−1
l

ulu
T
l

)
β̂OLS , where (A.41b)

µ̂∗∗ (1) =
σ̂2a2(1)

σ̂2
(
a0(1)a3(1)− a1(1)a2(1)

)
+ a3(1)

(
1T β̂OLS

)2 and (A.41c)

µ̂∗
l = σ̂2/

(
uT
l β̂

OLS
)2

for all 0 ≤ l ≤ p. (A.41d)

Note that we assume a mild condition by imposing 1 to not be an eigenvector of Σ which

guarantees µ∗∗(1) < ∞ in (A.41c); for details, see (2.18). In addition, µ̂∗∗(1) and µ̂∗
l are plug-in

estimator by using (2.14) and Theorem 5 i).

The asymptotic properties of our SR and GSR estimators are given as Theorem A.3 and is a

replica of Theorem A.1 and A.2.

Theorem A.3. Let Assumption 2.1 hold for a fixed p such that 1
nΣ → Σ0 as n → ∞ with

Σ0 ≻ 0. For any index set L ⊆ {0, . . . , p}, we have that

β̂SR
(
µ̂∗∗(1);1

)
− β̂SR (µ∗∗(1);1)

p→ 0 if 1 is not an eigenvector of Σ, (A.42a)

β̂GSR
(
µ̂∗
)
− β̂GSR (µ∗)

p→ 0, if Σ have distinct eigenvalues. (A.42b)

Moreover, the following hold.

i) If 1 is not an eigenvector of Σ, and there exists a universal (that does not depend on n)

positive constant M such that 1
a1(1)

∣∣∣∣Σ∣∣∣∣
F

≤ M , where ||A||F :=
√
Tr(ATA) represents

the Frobenius norm of matrix A, then the SR bona fide estimator, β̂SR
(
µ̂∗∗(1);1

)
, is a

16



consistent estimator of its oracle estimator, β̂SR (µ∗∗(1);1), i.e.,

∣∣∣∣∣∣β̂SR
(
µ̂∗∗(1);1

)
− β̂SR (µ∗∗(1);1)

∣∣∣∣∣∣2
2

L2→ 0; (A.43)

furthermore, the two estimators have the same asymptotic expected loss, i.e.,

E
∣∣∣∣∣∣β̂SR

(
µ̂∗∗(1);1

)
− β

∣∣∣∣∣∣2
2
− E

∣∣∣∣∣∣β̂SR (µ∗∗(1);1)− β
∣∣∣∣∣∣2
2
→ 0. (A.44)

ii) If Σ has distinct eigenvalues, then the GSR bona fide estimator, β̂GSR
(
µ̂∗
)
, is a consistent

estimator of its oracle estimator, β̂GSR(µ∗), i.e.,

∣∣∣∣∣∣β̂GSR
(
µ̂∗
)
− β̂GSR (µ∗)

∣∣∣∣∣∣2
2

L2→ 0; (A.45)

furthermore, the two estimators have the same asymptotic expected loss, i.e.,

E
∣∣∣∣∣∣β̂GSR

(
µ̂∗
)
− β

∣∣∣∣∣∣2
2
− E

∣∣∣∣∣∣β̂GSR (µ∗)− β
∣∣∣∣∣∣2
2
→ 0. (A.46)

Proof. We first prove (A.42a). Note first that 1
nΣ → Σ0 implies

nlal(1) → ãl(1) := 1TΣ−l
0 1 as n → ∞ for all l ∈ Z. (A.47)

Since µ∗∗(1) < ∞ due to Theorem 4 ii) as 1 is not an eigenvector of Σ, one may get from (A.47)

that

µ∗∗(1)

1+µ∗∗(1)a1(1)
Σ−1 → σ2ã2(1)

σ2ã0(1)ã3(1) + ã3(1)
(
1Tβ

)2Σ−1
0 as n → ∞. (A.48)

Similarly, (A.32) and (A.47) imply that

µ̂∗∗(1)

1+µ̂∗∗(1)a1(1)
Σ−1 p→ σ2ã2(1)

σ2ã0(1)ã3(1) + ã3(1)
(
1Tβ

)2Σ−1
0 . (A.49)

Thus, (A.32), (A.48) and (A.49) yield (A.42a).

We now prove (A.42b). A key ingredient of this proof is to note that the eigenvalues of Σ converge
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to the corresponding eigenvalues of Σ0, since the eigenvalues are the roots of a polynomial which

converge to the limit polynomial due to the Implicit Function Theorem. Thus, the eigenvalues

of Σ0 are distinct as well. The same convergence property (up to a proportionality constant of

±1) holds for the eigenvectors due to the Davis-Kahan Theorem as the eigenvalues of Σ and Σ0

are distinct; e.g., see Theorem 1 of (Yu et al., 2015). This means that

1

n
λk → λ

(0)
k and

(
uT
k β
)2 → (u

(0)T
k β

)2
as n → ∞ for any 0 ≤ k ≤ p, (A.50)

where
(
λ
(0)
k ,u

(0)
k

)
is the kth paired eigenvalue-eigenvector of Σ0. Therefore,

σ2λ−1
k

σ2λ−1
k + (uT

k β
)2 → 0 as n → ∞ for any 0 ≤ k ≤ p.

The latter and (A.32) imply that

β̂GSR(µ∗)
p→ β (A.51)

Similarly, one may show that

β̂GSR(µ̂∗)
p→ β. (A.52)

Finally, (A.51) and (A.52) imply (A.42b). We now prove part i), and we only show (A.43), since

(A.44) can be proved in the same manner as its counterpart in Theorem A.1, and thus, we skip

the details. Clearly,

∣∣∣∣∣ µ̂∗∗ (1)a1(1)

1 + µ̂∗∗ (1)a1(1)

∣∣∣∣∣ ≤ 1 a.s. and

∣∣∣∣ µ∗∗ (1) a1(1)

1 + µ∗∗ (1) a1(1)

∣∣∣∣ ≤ 1

and in turn,

(
µ̂∗∗ (1)

1 + µ̂∗∗ (1)a1(1)
− µ∗∗ (1)

1 + µ∗∗ (1) a1(1)

)
Σ−1 is uniformly bounded.

Similar to the proof of Theorem A.1, the latter implies (A.44), which concludes part i).
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We now prove part ii) for which we only give the main steps. It is not difficult to conclude that

∑
l∈L

µ̂∗
l λ

−1
l

1 + µ̂∗
l λ

−1
l

ulu
T
l and

∑
l∈L

µlλ
−1
l

1 + µlλ
−1
l

ulu
T
l

are uniformly bounded by keeping in mind that the eigenvectors are unitary vectors. The

remaining steps for proving part ii) are exactly the same as those used in part ii), and we skip

the details. This concludes the proof of part ii), and the proof is now complete.

A.10 Ancillary Results

Lemma A.1. Let u, v ∈ ℜm such that uk ≥ 0 and vk > 0 for all 1 ≤ k ≤ m. Then,

m∑
k=1

ukvk
uk + vk

≤
(
1Tu

)(
1Tv

)
1Tu+ 1Tv

, (A.53)

where the above becomes an identity if and only if u = Mv for a given M ≥ 0.

Proof. We first show that for any p,q ∈ ℜm such that pk ≥ 0 and qk > 0 for all 1 ≤ k ≤ m

with 1Tp = 1Tq = 1, the following holds

m∑
k=1

pkqk
apk + (1− a)qk

≤ 1 for any 0 < a < 1, (A.54)

and the above becomes an identity if and only if p = q. Note that

1−
m∑
k=1

pkqk
apk + (1− a)qk

:= Hϕa(p,q) =
m∑
k=1

qkϕa

(
pk
qk

)
, (A.55)

where ϕa(t) := − t
1−a+at + (t − 1)(1 − a) + 1 for all t ∈ ℜ+. By definition, Hϕa(p,q) is the

ϕ−divergence between the probability distributions induced by p and q through the ϕa diver-

gence function. Then, if ϕa(·) is convex on ℜ+ and strictly convex in a neighbourhood of 1

(which both are true), then Hϕa(p,q) ≥ 0 for any p,q, and Hϕa(p,q) = 0 if and only if p = q;

for details, see (Pardo, 2005). This concludes (A.54). By taking pk = uk/1
Tu and qk = vk/1

Tv

for all 1 ≤ k ≤ m, and a = 1Tu/(1Tu+1Tv) in (A.54), one may easily recover (A.53) whenever

1Tu > 0; the case when 1Tu = 0, which is equivalent to having u = 0, is trivial. This completes

the proof.
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Lemma A.2. Let A ≻ 0 be a symmetric matrix of size r. Then, Tr(A−1) ≥ Tr
((

diag(A)
)−1
)
.

Proof. Let λ1, . . . , λr be the eigenvalues of A and {ul, 1 ≤ l ≤ r} be its orthonormal eigenvec-

tors. Spectral decomposition tells us that

A =
r∑

k=1

λkuku
T
k and A−1 =

r∑
k=1

λ−1
k uku

T
k .

The latter implies that

Tr
((

diag(A)
)−1
)
=

r∑
k=1

(Akk)
−1 =

r∑
k=1

(
r∑

s=1

λsu
2
sk

)−1

≤
r∑

k=1

r∑
s=1

λ−1
s u2sk = Tr(A−1),

where the inequality is due to the Cauchy-Schwarz inequality and the last identity is true as the

eigenvectors are orthonormal vectors. This completes the proof.

B Simulation Study

A vast synthetic data analysis is provided in this section. We start with explaining DGP in

Appendix B.1, while the numerical experiments are provided in Appendix B.2 and further im-

proved in Appendix B.3 through cross-validation. We conclude this section by expanding the

discussion in Section 2.4 where we introduce the SRR estimator to improve the estimation error

when the covariates exhibit an ill-conditioned covariance matrix even when RR is a suitable

estimator.

B.1 Data Generating Process

The DGP is now specified. First, covariates, {Xi}ni=1, are independent and identically distributed

(i.i.d.) random variates from the following three parent distributions:

1. Multivariate Gaussian covariates with Toeplitz covariance matrix, N (µµµ,ΨΨΨ(ρ)), where

ΨΨΨst(ρ) = ρ|s−t| for all 1 ≤ s, t ≤ p. (B.1)

Here, µµµ = (µ1, µ2, . . . , µp)
T is the mean vector, ΨΨΨ(ρ) is the covariance matrix, and ρ

represents the correlation parameter that controls the dependence between covariates.
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2. Multivariate Gaussian dependence with Binomial covariates and Toeplitz covariance ma-

trix : that is, we first generate Zi ∼ N (0,Ψ(ρ)), and then, each marginal Zik is transformed

to be binomially distributed through the following transformation:

Xik = F−1(Φ(Zik)), for 1 ≤ k ≤ p, (B.2)

where Φ is the cumulative distribution function (CDF) of N(0, 1), and F−1 is the in-

verse CDF of the binomial distribution with parameters Nq = 2 number of trials and

q0 ∈ [0.01, 0.25] success probability. That is, Xi has the Gaussian copula extracted from

N (0,Ψ(ρ)) and Binomial(Nq, q0) marginals.

3. Latent Space Features: Covariates are generated from a low-rank structure, which is similar

to a setting from (Hastie et al., 2022). Specifically,

X = AZ+E, (B.3)

where A is an n × f matrix of factor loadings with entries drawn independently from

N (0, 1), and Z is an f × p matrix of latent factors with entries drawn independently from

N (0, 1). The random matrix E is an n × p matrix of independent Gaussian noise with

variance σ2 = 10−6, i.e., N (0, 10−6). Since f < p, the term AZ is a low-rank component

with at most rank f , and the small noise E ensures that X remains close to the low-rank

structure while also allowing an invertible covariance matrix even though is ill-conditioned.

Thus, the covariance structure of X conditioned on A is:

Cov
(
X | A

)
= ATA+ σ2Ip. (B.4)

Second, the dependent variable is generated according to two different sampling distributions:

1. Gaussian

Y |X = x ∼ N
(
βT x̃, σ2

)
, (B.5)

where σ2 represents the variance of Y .
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2. t-Distributed with ν degrees of freedom that controls the tail heaviness:

Y |X = x ∼ tν
(
βT x̃

)
. (B.6)

Third, the “true” regression parameters β are chosen in two ways:

1. Alternating Sign Specification

βk = (−1)k+1

⌈
k

2

⌉
, for 1 ≤ k ≤ p+ 1, where ⌈x⌉ is the ceiling function. (B.7)

2. Uniformly Distributed with zero intercept

β0 = 0, βk ∼ U(0.01, 0.3), for 1 ≤ k ≤ p. (B.8)

Binomially distributed covariates are common in genome-wide association studies (GWAS). In a

GWAS, each genetic variant is tested for association with a health-related trait via a regression

model that typically includes covariates such as age and gender. The genetic variant covariate

is a genotype score that takes on values 0, 1, and 2.

B.2 Data Analyses

We compare the following six estimators: i) OLS estimator β̂OLS by using the lm package in

R, ii) St estimator â∗β̂OLS as in (2.2), iii) DSh estimator ̂diag(b∗)β̂OLS as in (2.3); iv) Sh

estimator Ĉ∗β̂OLS as in (2.4); v) SR estimator β̂SR(µ̂∗∗(1);1, 0) as in (2.17), vi) GSR estimator

β̂GSR(µ̂∗) as in (2.20). Note that estimators ii)–vi) are proposed earlier in this paper and are

implemented in our new R package, savvyShB.1. This simulation study does not include results

for LSh as it performs similarly to OLS when using centred data. However, our package savvySh

includes LSh as well.

We conduct the first simulation study with N = 250 replications to compare the performance

of OLS, St, DSh, Sh, SR, and GSR. The sample sizes are set to n = 500, 1, 000, and 2, 500,

with the number of covariates p varying with n except when p = 1. Specifically, the ratios of p

B.1Available at: https://github.com/Ziwei-ChenChen/savvySh
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to n are chosen as 1, 5%, 10%, 25%, 50%, and 75%. The covariance matrix is as in (B.1) with

the mean fixed at µ = 0 and ρ = −0.75, −0.5, −0.25, 0, 0.25, 0.5, and 0.75. The dependent

variable is generated as in (B.5) with σ = 1 and σ = 5, and the corresponding results are

presented in Tables B.1 and B.2. Additionally, the dependent variable is generated as in (B.5)

with ν = 50/24 degrees of freedom so that the variance of the t-distribution matches that of

the normal distribution when σ = 5; the corresponding results are shown in Table B.3. In all

settings, the “true” regression parameters β are specified as in (B.7). Each estimator is assigned

a count of one in the tables if it achieves the minimum L2 distance, which measures the closeness

of the estimated parameters to the “true” values. Smaller L2 values indicate better accuracy.

In the second simulation study, we compare five estimators: OLS, St, DSh, SR, and GSR, based

on insights from the first study but also to avoid the high computational cost for Sh estimation.

This study focuses on simulating N = 250 replications with sample sizes n = 1, 000, 2, 500, and

5, 000. The number of covariates is fixed at p = 1, 2, and 5, while the covariance matrix for

the covariates is as before. Covariates are generated using (B.2), which transforms multivariate

Gaussian random variates into multivariate binomial random variates with Nq = 2 trials. The

probability q0 varies across the 250 replications, starting from 0.01 and increasing incrementally

to 0.25, ensuring equal spacing between values. The dependent variable is generated as in (B.5)

with σ = 1 and σ = 5, while the “true” regression parameters β are specified in (B.8). Similar

to the first simulation study, each estimator is assigned a count of one in Table B.4 if it achieves

the minimum L2 distance.

B.3 Further improvement of St, DSh and GSR

We could improve some of the shrinkage estimators by better balancing the variance and bias of

some of the newly introduced shrinkage estimators, and we consider only St, DSh and GSR in

this section as only those three estimators managed to outperform OLS in Appendix B.2. That

is, let γ > 0 be the variance/bias balance parameter within the MSE of our shrinkage estimators,

and define the slightly modified St and DSh bona fide estimators in (A.27) as follows:

â∗(γ)β̂OLS and diag(b̂∗(γ))β̂OLS , where
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Table B.1: Best performance regression model

Normal Distribution: σ = 1

Panel A: n = 500

p/n 1 5% 10%

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 1 1 3 2 8 16 14 25 29 32 33 40 35 30 25

St 8 5 7 16 4 10 24 36 42 45 32 34 38 33 23

DSh 11 3 7 10 20 25 39 50 43 66 67 82 74 66 45

Sh 0 3 0 0 0 1 0 0 32 10 7 1 3 1 1

SR 215 176 173 174 180 139 111 53 36 15 8 8 7 51 78

GSR 15 62 60 48 38 59 62 86 68 82 103 85 93 69 78

p/n 25% 50% 75%

ρ -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 2 8 7 9 10 13 14 29 21 20 18 14 16 28 6 3 7 9 7 10 14

St 4 10 8 7 10 18 35 37 29 20 20 29 21 21 8 13 9 9 7 16 34

DSh 6 14 16 19 36 58 75 22 30 53 49 43 48 56 7 8 23 23 53 38 63

Sh 4 0 0 0 2 2 1 15 7 7 2 3 6 2 3 6 5 1 2 1 6

SR 182 163 167 165 133 79 34 83 83 79 98 98 81 53 157 131 135 137 119 85 44

GSR 52 55 52 50 59 80 91 64 80 71 63 63 78 90 69 89 71 71 62 100 89

Panel B: n = 1,000

p/n 1 5% 10%

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 1 25 33 38 42 42 45 24 23 36 44 46 40 38 20

St 6 45 48 43 38 36 37 27 44 42 24 39 40 34 18

DSh 5 62 55 74 74 68 64 44 44 56 69 76 75 49 63

Sh 0 22 15 4 4 3 4 2 22 13 5 3 1 2 0

SR 225 25 4 0 0 0 11 71 34 17 6 3 7 48 78

GSR 13 71 95 91 92 101 89 82 83 86 102 83 87 79 71

p/n 25% 50% 75%

ρ -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 18 28 29 30 24 26 20 19 18 11 21 12 17 27 28 14 12 15 10 13 23

St 32 34 30 37 32 21 18 24 23 31 27 18 18 16 25 17 26 24 16 21 25

DSh 39 53 54 55 62 48 48 21 34 27 47 43 50 69 18 34 29 37 41 35 69

Sh 18 6 2 9 3 1 1 13 4 6 0 4 2 2 13 6 10 4 2 4 2

SR 83 42 38 36 62 87 76 91 94 88 98 102 96 58 78 81 88 98 86 79 35

GSR 60 87 97 83 67 67 87 82 77 87 57 71 67 78 88 98 85 72 95 98 96

Panel C: n = 2,500

p/n 1 5% 10%

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 0 2 6 3 4 7 8 12 30 36 35 37 27 30 25

St 6 8 4 4 1 7 14 31 39 41 34 39 45 37 16

DSh 3 4 5 10 19 15 48 76 52 56 78 73 79 57 42

Sh 0 2 2 0 0 0 0 1 14 11 1 0 3 0 2

SR 231 181 191 184 187 159 108 44 37 11 3 1 4 56 76

GSR 10 53 42 49 39 62 72 86 78 95 99 100 92 70 89

p/n 25% 50% 75%

ρ -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 3 6 4 6 13 11 13 18 20 12 16 18 12 17 7 3 4 9 10 12 6

St 9 7 6 3 10 17 20 19 23 21 20 15 12 17 10 10 6 10 12 9 10

DSh 19 21 17 29 30 42 73 37 30 43 40 44 42 53 13 16 15 30 32 40 80

Sh 3 2 0 3 0 1 1 4 8 12 2 2 1 1 4 2 3 0 1 2 1

SR 170 171 169 171 152 117 50 84 96 84 93 106 110 79 136 147 150 135 123 108 53

GSR 46 43 54 38 45 62 93 88 73 78 79 65 73 83 80 72 72 66 72 79 100

Notes: Performance comparisons across different estimators are shown for Gaussian dependent variable with
σ = 1 and Gaussian covariates as in (B.5) and (B.1), respectively. Estimators are ranked in L2 distance (from
the “true” regression parameters) across N = 250 replications, and the “best” estimator is highlighted in red for
various choices of n, p/n and ρ; ρ is not required for simple linear regression (p = 1).
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Table B.2: Best performance regression model

Normal Distribution: σ = 5

Panel A: n = 500

p/n 1 5% 10%

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 1 0 1 1 9 18 17 29 2 32 45 62 51 56 32

St 26 0 13 21 17 24 50 61 32 80 54 56 59 56 47

DSh 4 0 4 21 23 33 41 39 1 28 47 54 63 55 45

Sh 1 0 3 1 1 1 0 0 19 28 11 7 2 4 1

SR 194 34 125 155 153 112 80 57 2 0 0 0 0 15 68

GSR 24 216 104 51 47 62 62 64 194 82 93 71 75 64 57

p/n 25% 50% 75%

ρ -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 0 12 8 12 16 16 15 27 40 35 41 34 24 39 7 9 12 15 13 16 21

St 12 21 15 17 22 33 56 78 62 67 48 52 32 35 25 24 19 24 23 45 67

DSh 0 4 12 16 44 49 59 1 16 27 33 29 47 42 9 0 12 20 44 28 23

Sh 7 5 4 0 2 3 1 26 20 17 8 6 7 3 4 8 7 1 6 1 6

SR 166 160 160 154 108 63 41 64 42 33 44 62 72 62 135 125 121 110 95 75 46

GSR 65 48 51 51 58 86 78 54 70 71 76 67 68 69 70 84 79 80 69 85 87

Panel B: n = 1,000

p/n 1 5% 10%

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 1 1 30 47 49 49 53 38 7 45 62 50 50 56 29

St 17 27 70 61 54 49 58 49 72 64 49 53 51 49 31

DSh 3 2 38 53 55 62 67 38 10 45 50 64 59 63 60

Sh 0 25 23 8 6 4 4 3 50 34 5 6 2 3 1

SR 204 0 0 0 0 0 0 52 2 0 0 0 0 5 68

GSR 25 195 89 81 86 86 68 70 109 62 84 77 88 74 61

p/n 25% 50% 75%

ρ -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 20 34 41 46 35 34 41 44 42 37 39 25 29 32 36 32 25 26 16 23 27

St 101 66 63 67 58 34 22 76 63 52 47 46 24 28 60 36 42 38 29 31 40

DSh 1 35 43 53 67 61 46 1 20 27 37 40 41 42 0 11 15 26 31 21 38

Sh 55 15 11 8 7 4 2 29 13 14 5 9 5 3 17 19 13 3 4 8 6

SR 13 3 0 0 0 41 69 44 36 22 45 65 91 69 87 83 75 82 85 84 55

GSR 60 97 92 76 83 76 70 56 76 98 77 65 60 76 50 69 80 75 85 83 84

Panel C: n = 2,500

p/n 1 5% 10%

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 0 0 8 4 5 10 11 16 36 41 45 50 41 45 39

St 13 10 9 7 4 13 25 40 83 60 46 43 54 59 27

DSh 2 4 8 16 27 28 62 67 23 50 67 59 71 72 43

Sh 1 2 0 0 0 1 0 1 59 23 2 5 2 0 2

SR 218 170 178 167 164 133 75 37 0 0 0 0 0 1 71

GSR 16 64 47 56 50 65 77 89 49 76 90 93 82 73 68

p/n 25% 50% 75%

ρ -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 6 5 6 9 17 14 16 57 32 31 42 34 22 22 15 8 6 11 12 14 12

St 17 10 3 11 13 22 36 68 53 33 38 28 27 24 22 13 13 11 17 11 30

DSh 7 19 27 25 38 54 74 10 31 52 55 48 46 38 3 16 15 27 32 48 56

Sh 7 4 1 3 0 3 2 22 23 13 6 4 5 3 6 8 4 1 1 2 1

SR 181 157 153 150 122 84 47 47 30 20 14 60 93 88 147 129 125 114 92 86 54

GSR 32 55 60 52 60 73 75 46 81 101 95 76 57 75 57 76 87 86 96 89 97

Notes: Notes: Performance comparisons across different estimators are shown for Gaussian dependent variable
with σ = 5 and Gaussian covariates as in (B.5) and (B.1), respectively. Estimators are ranked in L2 distance
(from the “true” regression parameters) across N = 250 replications, and the “best” estimator is highlighted in
red for various choices of n, p/n and ρ; ρ is not required for simple linear regression (p = 1).
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Table B.3: Best performance regression model

t-distribution: v = 50/24

Panel A: n = 500

p/n 1 5% 10%

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 3 1 5 3 2 7 13 18 10 40 41 54 44 49 34

St 14 8 8 7 18 17 34 46 60 53 51 47 46 51 27

DSh 6 1 11 24 30 36 34 64 16 42 65 57 56 67 50

Sh 0 2 1 1 2 0 1 1 37 28 7 9 4 3 4

SR 203 104 154 153 158 136 100 44 10 0 0 0 1 19 63

GSR 24 134 71 62 40 54 68 77 117 87 86 83 99 61 72

p/n 25% 50% 75%

ρ -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 7 6 12 6 12 13 12 32 29 33 36 31 22 20 14 12 8 12 13 13 12

St 29 17 12 14 22 44 58 64 34 44 37 26 30 25 19 11 12 15 16 31 50

DSh 3 16 26 17 40 55 53 7 21 26 40 23 37 55 3 7 18 30 34 50 49

Sh 5 5 0 1 2 1 4 18 12 10 11 3 4 4 6 1 4 6 2 3 4

SR 151 163 157 153 112 71 39 73 81 68 51 89 81 63 144 142 135 120 98 83 47

GSR 55 43 43 59 62 66 84 56 73 69 75 78 76 83 64 77 73 67 87 70 88

Panel B: n = 1,000

p/n 1 5% 10%

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 1 13 27 36 41 49 48 27 27 49 42 45 44 38 29

St 13 65 50 39 51 47 47 23 74 48 44 36 37 46 33

DSh 4 21 56 53 74 71 62 57 26 62 64 72 75 76 51

Sh 0 35 27 3 2 5 5 2 45 12 11 2 3 2 3

SR 217 0 0 0 0 0 0 67 8 2 0 0 0 14 66

GSR 15 116 90 119 82 78 88 74 70 77 89 95 91 74 68

p/n 25% 50% 75%

ρ -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 34 40 56 37 39 32 25 29 26 30 25 20 24 23 25 31 27 21 32 22 20

St 72 56 43 39 46 35 29 60 38 29 26 30 26 30 57 29 29 28 24 31 22

DSh 23 42 57 46 66 48 45 12 35 44 50 44 47 49 5 14 37 32 41 41 40

Sh 35 20 9 10 4 7 6 28 11 11 9 8 4 4 20 6 3 5 3 6 3

SR 37 10 6 7 18 58 67 71 70 55 58 75 91 71 80 95 97 80 76 70 63

GSR 49 82 79 111 77 70 78 50 70 81 82 73 58 73 63 75 57 84 74 80 102

Panel C: n = 2,500

p/n 1 5% 10%

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 1 1 1 4 6 7 15 22 35 39 41 46 36 44 30

St 19 5 5 10 11 11 23 37 57 56 48 38 45 46 21

DSh 5 9 9 13 18 32 44 58 46 47 61 70 66 64 55

Sh 0 3 1 0 0 0 0 0 44 19 8 2 3 4 4

SR 205 174 189 175 164 142 93 38 2 0 0 0 0 5 70

GSR 20 58 45 48 51 58 75 95 66 89 92 94 100 87 70

p/n 25% 50% 75%

ρ -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 8 6 9 6 9 10 13 34 26 25 21 26 29 15 7 10 7 11 7 10 14

St 15 12 7 17 7 21 37 50 47 30 37 27 15 14 15 11 11 14 15 21 29

DSh 7 15 21 25 39 52 64 26 50 50 59 51 37 48 9 14 22 35 36 54 57

Sh 7 3 0 4 1 4 2 12 10 9 8 7 2 3 7 4 5 2 4 4 2

SR 160 162 164 146 137 95 40 57 47 53 49 74 99 82 142 143 132 125 107 71 53

GSR 53 52 49 52 57 68 94 71 70 83 76 65 68 88 70 68 73 63 81 90 95

Notes: Notes: Performance comparisons across different estimators are shown for t-distribution dependent vari-
able with v = 50/24 and Gaussian covariates as in (B.6) and (B.1), respectively. Estimators are ranked in
L2 distance (from the “true” regression parameters) across N = 250 replications, and the “best” estimator is
highlighted in red for various choices of n, p/n and ρ; ρ is not required for simple linear regression (p = 1).
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Table B.4: Best performance regression model

σ = 1

Panel A: n = 1,000

p 1 2 5

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 113 81 81 78 77 74 74 60 46 47 51 45 44 42 32

St 22 34 29 31 50 30 19 27 57 61 59 79 69 59 45

DSh 47 62 56 56 48 63 55 57 51 39 44 48 49 33 25

SR 56 37 37 39 28 25 14 12 16 27 24 18 12 5 8

GSR 14 36 47 46 47 58 88 94 80 76 72 60 74 111 140

Panel B: n = 2,500

p 1 2 5

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 95 89 79 71 76 74 64 63 67 62 68 53 48 64 31

St 21 25 27 25 32 20 15 11 45 42 46 63 47 48 42

DSh 80 65 66 68 70 73 72 69 49 54 57 60 60 39 26

SR 35 26 35 28 19 19 13 5 14 21 20 10 11 4 4

GSR 19 45 43 58 53 64 86 102 75 71 59 64 84 95 147

Panel C: n = 5,000

p 1 2 5

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 90 81 75 69 63 66 58 61 65 64 62 60 65 39 46

St 25 20 29 26 21 20 13 13 37 43 38 37 36 41 46

DSh 93 90 92 83 82 86 78 66 62 70 74 66 58 60 46

SR 28 16 13 18 12 11 8 3 5 9 7 3 1 2 0

GSR 14 43 41 54 72 67 93 107 81 64 69 84 90 108 112

σ = 5

Panel A: n = 1,000

p 1 2 5

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 29 19 16 13 18 13 17 18 4 2 2 1 3 0 0

St 110 125 139 130 135 122 122 139 202 199 195 204 195 206 199

DSh 40 34 37 41 38 35 49 41 10 17 15 14 18 11 13

SR 47 24 25 23 26 21 10 6 0 4 4 0 2 0 0

GSR 24 48 33 43 33 59 52 46 34 28 34 31 32 33 38

Panel B: n = 2,500

p 1 2 5

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 58 36 30 29 33 35 27 21 7 13 9 7 7 11 2

St 68 83 93 106 87 86 84 92 167 149 147 159 155 154 159

DSh 49 52 39 36 58 45 54 53 22 35 33 31 27 22 12

SR 48 31 33 26 23 25 20 11 6 5 10 2 4 0 0

GSR 27 48 55 53 49 59 65 73 48 48 51 51 57 63 77

Panel C: n = 5,000

p 1 2 5

ρ NA -0.75 -0.5 -0.25 0 0.25 0.5 0.75 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

OLS 59 51 53 50 34 56 51 35 22 28 24 22 28 12 6

St 61 68 64 62 74 67 57 64 111 109 108 121 114 118 103

DSh 45 42 50 56 47 54 53 52 30 30 31 41 33 22 20

SR 53 39 27 30 21 28 20 12 13 21 22 4 10 3 3

GSR 32 50 56 52 74 45 69 87 74 62 65 62 65 95 118

Notes: Performance comparisons across different estimators are shown for Gaussian dependent variable with
σ = {1, 5} and multivariate binomial covariates as in (B.5) and (B.2), respectively. Estimators are ranked in
L2 distance (from the “true” regression parameters) across N = 250 replications, and the “best” estimator is
highlighted in red for various choices of n, p/n and ρ; ρ is not required for simple linear regression (p = 1).
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â∗(γ) :=
γ
(
β̂OLS

)T
β̂OLS

γ
(
β̂OLS

)T
β̂OLS + M̂∗

0

and b̂∗k(γ) =
γ
(
β̂OLS
k

)2
γ
(
β̂OLS
k

)2
+ σ̂2σk

with 0≤k≤p.

Similarly, the slightly changed GSR bona fide estimator in (A.41b) is as follows:

β̂GSR
(
µ̂∗(γ)

)
=

(
Ip+1 −

∑
l∈L

µ̂∗
l (γ)λ

−1
l

1 + µ̂∗
l (γ)λ

−1
l

ulu
T
l

)
β̂OLS , where (B.9a)

µ̂∗
l (γ) =

σ̂2

γ
(
uT
l β̂

OLS
)2 for all 0 ≤ l ≤ p. (B.9b)

The previous asymptotic theory clearly holds for any given γ > 0, and γ = 1 reverts to the

previously defined St, DSh and GSR estimators. The parameter γ creates an uneven contribution

to MSE, meaning that the bias is now weighted through γ, which may be beneficial in finite

sample estimation to adjust our shrinkage estimators by performing cross-validation on γ. Our

numerical experiments – not shown here but available upon request – show that GSR may

benefit from such an adjustment, which has had a neutral effect on St and DSh.

C Discussion about Eigenvalues and Kolmogorov Setting

This section provides extended information about the conclusions summarised in Section 2.5 as

Results 7 and 8. First, we provide numerical evidence to support some interesting empirical

evidence about the empirical eigenvalues. Such evidence would explain the behaviour of MLR

shrinkage estimators that directly or indirectly rely on the covariates’ eigenvalues. Specifically,

Appendix C.1 and the beginning of Appendix C.2 contain a series of pictorial representations

confirming the statements in Result 7. Second, we illustrate at the beginning of Appendix C.2

how crucial the eigenvalues are in MLR estimation, which confirms Result 8 i). Third, the second

part of Appendix C.2 provides empirical evidence that St and GSR significantly improve the

estimation error of OLS under the Kolmogorov setting. The last two sets of conclusions have

been stated as Result 8.

The DGP in this section has three variants for generating covariates, and whenever is needed,

the dependent variable is Gaussian generated as in (B.5). The first covariates DGP is as in

Appendix B.1 and are generated fromN (000,ΨΨΨ(ρ)), where the covariance matrix ΨΨΨ(ρ) is a Toeplitz
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matrix as in (B.1). While this DGP controls the strength of dependence through ρ, the next two

DGP’s are designed to control the eigenvalues of the covariates’ population covariance matrix.

That is, Gaussian covariates are generated from N (0,Q diag(λ)QT
)
, where Q is a random

orthogonal matrix that randomly generates the population eigenvectors, while the population

eigenvalues λ = (λ1, . . . , λp) are chosen in two different ways. The second covariates DGP

considers uniform random eigenvalues with λi ∼ U(0, λmax) for i = 1, . . . , p, while the third

covariates DGP considers deterministic eigenvalues. As a final note, a random orthogonal matrix

is generated by taking Ã = 1
2

(
A+AT

)
, where A is a random square matrix, e.g., entries are

i.i.d. N(0, 1); further, define
≈
A = ÃÃT and its QR decomposition

≈
A = QR gives Q as the

required orthonormal matrix.

C.1 Bias of Empirical Eigenvalues

We generate multivariate Gaussian random samples and summarise our results from this section

in Figures C.1 and C.2. The main conclusions are stated as Result 7 i)–iii), which complements

the existing literature about the empirical eigenvalues’ behaviour. Result 7 i) is not new, but

Result 7 ii) is slightly surprising, though something related has appeared in (Muirhead, 1987)

– see p.278 – in the context of the Wishart random matrix. A somehow related mathematical

argument is that

Ip = argmax
Q:QQT=QTQ=Ip

1TQdiag(λ)QT1 for any fixed λ > 0,

which one may obtain via the Rayleigh quotient result or use similar arguments to those used

in the proof of Principal Component Analysis. Result 7 iii) is not surprising since the sum of

the empirical eigenvalues is an unbiased estimator of the sum of the population eigenvalues due

to the fact that the sample covariance is an unbiased estimator of the population covariance

matrix.

C.2 Heuristics About Covariates’ Dependence and Kolmogorov Setting

It has been noted in (El Karoui et al., 2013; El Karoui, 2013; Donoho and Montanari, 2016)

that the OLS estimator has a non-zero asymptotic MSE under the Kolmogorov setting when
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Figure C.1: Boxplots of the empirical eigenvalues from sample covariance matrices computed from data gener-
ated as X ∼ N

(
000,ΨΨΨ(ρ)

)
, where ΨΨΨ(ρ) is a Toeplitz covariance matrix as in (B.1); results are based on N = 250

replicates of samples with sample size of n = 250. Each row shows results for a fixed correlation ρ of -0.5, 0 and
0.5 at the top, middle and bottom, respectively, and each column compares two settings when p = 5 (left) and
p = 10 (right). The red horizontal segments indicate the population eigenvalues of ΨΨΨ(ρ).
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(c) p = 5, dependent covariates
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Figure C.2: Boxplots of the empirical eigenvalues from sample covariance matrices computed from data gener-
ated as X ∼ N

(
0,Qdiag(λ)QT

)
, where Q = Ip (top) and Q is a p × p randomly generated orthogonal matrix

(bottom); results are based on N = 250 replicates of samples with sample size of n = 250. The red horizontal
segments indicate the population eigenvalues, which are 1 and 1/2; specifically, the first ⌈p/2⌉ eigenvalues are
equal to 1 and the remaining p− ⌈p/2⌉ eigenvalues are set to 1/2.

both p and n get large. Under the assumption that the covariates are Gaussian distributed with

X ∼ N
(
000,ΣΣΣ

)
such that Σ ≻ 0, and the error terms ϵ are i.i.d. with zero mean and variance σ2 –

which is a stronger assumption than our setting given in Assumption 2.1 – the OLS estimator,

denoted as β̂OLS(β,Σ), satisfies

β̂OLS(β,Σ)− β
d
=
∣∣∣∣∣∣β̂OLS

(
β, Ip

)
− β

∣∣∣∣∣∣
2
Σ−1/2U, (C.1)

where β ∈ ℜp is the “true” parameter vector,
d
= means equal in distribution and U is an p-

dimensional uniformly (on sphere of radius 1) distributed random vector that is independent of
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β̂OLS
(
β, Ip

)
. Note that this setting assumes a zero intercept which simplifies the exposition. It

is not difficult to find that

E[UTΣ−1U] =
1

p
Tr
(
Σ−1

)
. (C.2)

It is argued in (El Karoui et al., 2013; El Karoui, 2013; Donoho and Montanari, 2016) that

∣∣∣∣∣∣β̂OLS
(
β, Ip

)
− β

∣∣∣∣∣∣
2
→ κ

1− κ
σ2 as n → ∞, where p/n → κ ∈ (0, 1) as n → ∞. (C.3)

Putting (C.1)–(C.3) together, one may expect the asymptotic MSE of β̂OLS(β,Σ) and asymp-

totic MSE of β̂OLS
(
β,diag(λ)

)
to be equivalent if Σ has eigenvalues given by λ. Thus, one would

expect that the OLS estimator L2 errors might be similar when comparing the dependence and

independence cases.

The above possible conjecture is not exactly what we have found in Figures C.3 and C.4, where

the population eigenvalues are identical in the dependence and independence cases, a property

that is preserved by the empirical eigenvalues (see Figure C.3b and C.3d, and Figure C.4b

and C.4d, which explain Result 7 iv)). This invariance empirical property is not present for the

OLS estimator where L1 errors are dissimilar (dependence vs. independence) with ratios smaller

than one, meaning that the independence case is closer to the ground truth.

We also check the OLS estimator L1 equivalence between the dependence and independence

cases when the population eigenvalues are preserved, but for the Kolmogorov setting, i.e., when

both n and p get large so that p/n ≈ κ ∈ (0, 1). Our conclusion is stated in Result 8 i) where

the pattern is observed for large samples and various p/n ratios as it can be seen in Figure C.5.

Note that the invariance property for the empirical eigenvalues is preserved for large sample

sizes, and such results are available upon request.

We further analyse if the St, DSh and GSR estimators exhibit the same property as OLS when

comparing the possible L1 equivalence between the dependence and independence cases when

the population eigenvalues are preserved for the Kolmogorov setting. As in the OLS case, we

show in Figures C.6 – C.8 that the estimation error of St/DSh/GSR is lower for independent

Gaussian covariates as compared to the dependent Gaussian covariates case, which is stated in

Result 8 i). In fact, we found that the ratios for OLS and DSh are similar (with ratios less than
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(c) β = (1,−1, 1 . . . ), λi ∼ U(0, 1)
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(d) β = (1,−1, 1 . . . ), λi ∼ U(0, 1)

Figure C.3: Boxplots of the L1 error ratios – independent covariates (with Q = Ip) divided by dependent
covariates (with Q being a random orthogonal matrix) – for OLS estimates (left) and empirical eigenvalues
(right) for various p/n. A ratio < 1 indicates that the model fitted with independent covariates yields a lower
L1 error than that with dependent covariates. Each L1 error ratio is based on two samples of size n = 250
drawn from populations with independent and dependent Gaussian covariates; both covariance matrices have the
same eigenvalues λ that are randomly generated from U(0, λmax) with λmax = 10 (top) and λmax = 1 (bottom).
Each boxplot is based on N = 250 replications and in all cases, the “true” regression parameters are set as
β = (1,−1, 1, . . .), i.e., all are equal to 1 but with alternate signs.

one), while St and GSR exhibit a similar pattern that is different than OLS, i.e., St and GSR

ratios are closer to one than OLS’ ratios.

We now compare the estimation error of St, DSh and GSR to OLS under the Kolmogorov

setting, and as before, we choose L1 errors to make such comparisons. For simplicity, we

assumed independent standard Gaussian covariates given the previous empirical evidence. We

found in Figure C.9 that OLS clearly outperforms DSh for the high-dimensional settings that we

considered here, but St outperforms OLS in all possible settings. Further, GSR outperforms OLS
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(c) β = (1, 1, . . . , 1), λi ∼ U(0, 1)
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Figure C.4: Boxplots of the L1 error ratios – independent covariates (with Q = Ip) divided by dependent
covariates (with Q being a random orthogonal matrix) – for OLS estimates (left) and empirical eigenvalues
(right) for various p/n. A ratio < 1 indicates that the model fitted with independent covariates yields a lower L1

error than that with dependent covariates. Each L1 error ratio is based on two samples of size n = 250 drawn
from populations with independent and dependent Gaussian covariates; both covariance matrices have the same
eigenvalues λ that are randomly generated from U(0, λmax) with λmax = 10 (top) and λmax = 1 (bottom). Each
boxplot is based on N = 250 replications and in all cases, the “true” regression parameters are all equal to 1.

in almost all settings, and when it does not, the differences are within 1% on average median;

for large ratios (such as p/n ∈ {90%, 95%}), the average median is improved by 7% to 23%.

Furthermore, GSR outperforms St in almost all settings, and when it does not, the differences

are within 2% to 3% on average median; for large ratios (such as p/n ∈ {90%, 95%}), the average

median is improved by 8% to 13%. We summarise this pattern as Result 8 ii). Note that we

assume i.i.d. covariates in Figure C.9, but the same pattern is observed for dependent and

independent covariates with unequal variances; such visualisations are available upon request.
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Figure C.5: Boxplots of the L1 error ratios – independent covariates (with Q = Ip) divided by dependent
covariates (with Q being a random orthogonal matrix) – for OLS estimates based on samples of sizes n = 1, 000
and n = 10, 000 for various p/n. A ratio < 1 indicates that the OLS model fitted with independent covariates
yields a lower L1 error than the OLS model with dependent covariates. Each L1 error ratio is based on samples
drawn from populations with independent and dependent Gaussian covariates; both covariance matrices have the
same eigenvalues λ that are randomly generated from U(0, 1). Each boxplot is based on N = 250 replications
and in all cases, the “true” regression parameters are all equal to 1.
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Figure C.6: Boxplots of the L1 error ratios – independent covariates (with Q = Ip) divided by dependent
covariates (with Q being a random orthogonal matrix) – for St estimates based on samples of sizes n = 1, 000 and
n = 10, 000 for various p/n. A ratio < 1 indicates that the St model fitted with independent covariates yields
a lower L1 error than the St model with dependent covariates. Each L1 error ratio is based on samples drawn
from populations with independent and dependent Gaussian covariates; both covariance matrices have the same
eigenvalues λ that are randomly generated from U(0, 1). Each boxplot is based on N = 250 replications and in
all cases, the “true” regression parameters are all equal to 1.
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Figure C.7: Boxplots of the L1 error ratios – independent covariates (with Q = Ip) divided by dependent
covariates (with Q being a random orthogonal matrix) – for DSh estimates based on samples of sizes n = 1, 000
and n = 10, 000 for various p/n. A ratio < 1 indicates that the DSh model fitted with independent covariates
yields a lower L1 error than the DSh model with dependent covariates. Each L1 error ratio is based on samples
drawn from populations with independent and dependent Gaussian covariates; both covariance matrices have the
same eigenvalues λ that are randomly generated from U(0, 1). Each boxplot is based on N = 250 replications
and in all cases, and the “true” regression parameters are all equal to 1.
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Figure C.8: Boxplots of the L1 error ratios – independent covariates (with Q = Ip) divided by dependent
covariates (with Q being a random orthogonal matrix) – for GSR estimates based on samples of sizes n = 1, 000
and n = 10, 000 for various p/n. A ratio < 1 indicates that the GSR model fitted with independent covariates
yields a lower L1 error than the GSR model with dependent covariates. Each L1 error ratio is based on samples
drawn from populations with independent and dependent Gaussian covariates; both covariance matrices have the
same eigenvalues λ that are randomly generated from U(0, 1). Each boxplot is based on N = 250 replications
and in all cases, and the “true” regression parameters are all equal to 1.
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Figure C.9: Boxplots of the L1 error ratios of St vs. OLS (top), DSh vs. OLS (middle) and GSR vs. OLS
(bottom) for various p/n; only independent covariates (withQ = Ip) are considered with samples of sizes n = 1, 000
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37



D Statistical Fine-Mapping Application

D.1 Fine-mapping algorithm modification

We integrated our new estimation methods within single and multi-trait fine-mapping methods

JAM (expanded) and flashfm at several stages. First, within the genetic region of interest, we

calculated GWAS summary statistics by fitting a single-SNP regression model at each genetic

variant in the region, using one of OLS, GSR, St, and DSh. The resulting effect estimates

(β̂) at each variant were input into the JAM algorithm, together with the SNP correlation

matrix (thinned so that no variants had squared correlation greater than 0.99) to identify initial

multi-SNP models (multiple regression models) of potential causal variants. Within the JAM

(expanded) algorithm, we used the selected estimation method (one of OLS, GSR, St, and DSh)

to re-fit all multi-SNP models (initial multi-SNP models and tag multi-SNP models, where each

variant in the initial model is replaced by variants with correlation at least 0.99 with the initial

variant Hernández et al. (2021)). Finally, we substituted the multi-SNP effect estimates based

on the selected method into previously derived estimates of the log approximate Bayes’ factor

(ABF) for single trait models and the joint log(ABF) for multiple traits, as derived in flashfm

(Hernández et al., 2021). An R scriptD.1 with functions for our new implementation is also

available for download.

D.2 Data Generation

The data generation has been carried out under a realistic scenario that mimics the MAF and

genetic variant correlation structure in a region containing the IL2RA gene (345 SNPs in chro-

mosome 10p-6030000-6220000 (genomic build GRCh37/hg19)), which has genetic associations

with autoimmune diseases such as multiple sclerosis (MS). This region has been previously

shown to exhibit a tagging behaviour for causal variants making it more difficult to fine-map

genetic associations at these variants; when there are two causal variants (C1=rs61839660 and

C2=rs62626317), sometimes a different variant (D1=rs2104286), that is correlated with both

causal variants, is detected as a single causal variant (Asimit et al., 2019); in this region this

tagging behaviour was also observed for two causal variants, C1=rs61839660 and C3=rs11594656,

D.1Available at: https://github.com/jennasimit/flashfm-savvySh
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jointly tagged by D2=rs706779.

For the IL2RA region, we generated a population of 10,000 individuals based on the CEU 1000

Genomes Phase 3 data (Consortium et al., 2015) using HapGen2 (Su et al., 2011). Each variant

has a genotype score that takes on values 0, 1, and 2 and is the count of one of the two alleles

at the variant. Under Hardy-Weinberg Equilibrium, the genotype score at each variant follows

a binomial distribution with Nq = 2 number of trials and q0 success probability, where q0 is the

frequency of the allele that is counted in the score, the effect allele frequency. The minor allele

frequency (MAF) is the frequency of the allele that occurs with lower frequency (i.e, < 0.5). Only

variants with MAF > 0.005 were included in our simulations. This aligns with our previous

simulations involving counting covariates with Gaussian dependence.

For each of the 100 replications, a random sample of 5,000 individuals was selected from the

population of 10,000. Quantitative traits were simulated to each have two causal variants, of

which one (C1) was shared between the traits; trait 1 had causal variants C1 and C2 and trait 2

had causal variants C1 and C3. Within each replication, the SNP effects for the causal variants

were random and uniformly generated to be between 0.15 and 0.4. Then for our two traits,

the measurement for trait k of individual j, ykj , is obtained from ykj =
∑mk

i=1 βikxij + εkj ,

where xij is the number of effect alleles of variant i for individual j (i.e. genotype score), βik is

the effect of causal variant i for trait k, mk is the number of causal variants for trait k (here,

mk = 2, k = 1, 2), and εkj is the kth element of the jth multivariate Normal distributed error

variable with mean zero and covariance Σ, which is the covariance matrix of the traits. We set

the variance of each trait to 0.20 and their correlation to 0.40.

For fine-mapping, the power of a method is estimated by the mean proportion of causal variants

that are prioritised using a particular threshold for the MPP of causality (e.g., MPP > 0.9).

E Improve GLM Prediction – Cyber-sickness Data Example

This section provides further details of the summary of our cyber-sickness data analysis sum-

marised in Section 3.3. We first provide a data description and an exploratory data analysis

that would prepare the reader for the two GLM models we deploy here, namely, Logistic GLM

(see Appendix E.1) and Poisson GLM (Appendix E.2).
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We consider a physiological dataset with recordings from 23 participants while immersed in a

VR roller coaster simulation, which can be found at GitHub repository and consists of 23 folders,

each containing the raw recordings of the 23 participants in the VR experiment. There are four

groups of features in this dataset: heart-rate (HR), breath-rate (BR), galvanic skin response

(GaSR), and heart-rate variability (HRV). In addition to the sensors’ measurements, each of

the four group of features includes the percentage of change from the resting baseline (PC),

minimum inside the 3s rolling window (MIN), and maximum value of the 3s rolling window

(MAX); note that “s” refers to seconds in this dataset. The data are sampled at a time step of

1s, while the length of the recordings for all participants vary between 567s and 1745s.

At each measurement time t, we rely on 13 features X(t) that include HR and three sub-

features (PC, MIN, MAX) for each group of features (BR, GaSR, HRV) as in (Kundu et al.,

2022). The dependent/target variable at t is denoted as Y (t), which is the cyber-sickness FMS

score, provided as verbal feedback during VR simulation. Thus, the original dataset is labelled

on a scale from 0 (no cyber-sickness) to 10 (high cyber-sickness), using self-reported sickness

feedback from the participants in the experiment; the sample distribution of the FMS scores is

displayed in Figure E.1 (left). The latter figure shows the skewed distribution of the raw labels

that would lead to poor classifiers, and therefore, (Kundu et al., 2022) suggested to regroup the

FMS scores into four different severity classes: i) “class 0” of no cyber-sickness when FMS = 0,

ii) “class 1” of low cyber-sickness when FMS = {1, 2, 3}, iii) “class 2” of moderate cyber-sickness

when FMS = {4, 5, 6}, and iv) “class 3” of acute cyber-sickness when FMS = {7, 8, 9}.
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Figure E.1: The distribution of the labels: original labels (left) and its regrouping in four classes
(right)
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Using a modified version of the provided Python process data.py script, the data were sampled

at 1s intervals and concatenated into a single file, raw data.csv which contains 25, 893 rows

and 15 columns. The first column (“Feedback”) represents the FMS score, the last column

(“Individual”) is the id (0 − 22) of the participants, while the columns (2 to 14) are the 13

features described before.

Note that there are 67 and 74 examples in the dataset recording FMS = 2.5 and FMS = 3.5,

respectively, which deviate from the general scoring (integers from 0 to 10), and thus, we rounded

down these scores to 2 and 3, respectively. We further process the data to feed into our prediction

models by considering the X (t−M) , . . . ,X (t− 1) feature space, where M is the number of

prior time steps used for prediction. The choice of M would affect the prediction error and

therefore, our prediction models are deployed for M = 1 (with 13 features X(t − 1) and for

M = 10 (with 130 features for X(t− 10), . . . ,X(t− 1)) to predict Y (t), denoted as Ŷ (t). The

features are used in two forms: i) raw data and ii) standardised form with zero mean and unit

variance.

The upper correlation heatmap in Figure E.2 indicates significant blocks of high correlations

among the features for M = 1, which is not surprising given how some of them were generated

(e.g., HR measurements, but the same happens for the HRV and GaSR blocks). The level of

multicollinearity within the feature space increases even more for M = 10 because there is not

much change in the physiological data when measured at a time step of 1s. The fact that the

features for M = 10 have more high correlations compared to M = 1 case can be observed

in Figure E.2 (b), where for a better readability, we displayed only the correlations between

X (t− 3) ,X (t− 2) and X (t− 1).

For each M , the data are randomly split into 70% training and 30% testing sets, which is

repeated N = 50 replications. Logistic and Poisson GLMs are fitted via IRLS – for details,

see Appendix G – which is a for-loop operation that solves a multiple linear regression model

at each loop, and rely on six estimators, namely, OLS, SR, GSR, St, DSh, and Sh. Note

that the standard statistical packages implement IRLS via OLS, and thus, we have modified

the R function glm.fit2 from the glm2 packageE.1 to incorporate our shrinkage regression

estimators into the classical IRLS implementation. To compare the performance of six models,

E.1The glm2 package is available at https://cran.r-project.org/web/packages/glm2/index.html.
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Figure E.2: Correlation heatmaps for the feature space with M = 1 (upper) 39 and M = 10
(lower).
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the estimated MSE is evaluated and we report their average value for N = 50 replications in

Tables E.1 - E.3; for each replication, the estimated MSE = 1
T

∑T
t=1

(
Y (t) − Ŷ (t)

)2
, where T

is the size of the dataset; note that T = 25, 870 for M = 1 and T = 25, 663 for M = 10.

The next two sections contain the two GLMs (Logistic and Poisson) that are deployed to the

cyber-sickness data. Logistic GLM is considered in Appendix E.1 with its canonical link function

(logit link function) for various pairs of classes defined by the raw FMS scores. Further, we

employ a Poisson GLM in Appendix E.2 with its canonical link function (log link function) to

incorporate the ordinal structure of the cyber-sickness severity levels for the data grouped in

the four classes (“class 0” to “class 3”) explained before; this mimics the purpose of a multi-

classification model and we check its effectiveness. Note that the link function defines the

response variable GLM estimator and its choice is crucial on deploying GLM models; for details

about the link function, see (G.2), though Appendix G provides a more thorough discussion on

GLM modelling.

E.1 Logistic GLM with logit Link Function

Logistic GLM is commonly known as the logistic regression and it is a special GLM case when

the response variable is binomially distributed. Logistic GLM is useful in binary and multi-class

classification problems, and the GLM methodology could be deployed as the binomial belongs to

the exponential family defined in (G.1). The GLM estimator is as in (G.2) with the (canonical)

logit link function given with h(η) = eη

1+eη , where η = x⊤β. Binary classifications are considered

for different pairs of FMS scores as follows: i) FMS = 0 vs. FMS = 1, ii) FMS = 0 vs.

FMS = 2, iii) FMS = 0 vs. FMS = 3, and iv) FMS = 0 vs. FMS = 6. Note that FMS = 0

is the dominant label, while the other four labels (FMS = {1, 2, 3, 6}) have more than 1, 000

examples which avoids having extremely unbalanced binary classification exercises; for details,

see Figure E.1 (left).

Tables E.1 and E.2 summarise the results in this section and we draw two null conclusions. First,

feature standardisation does not significantly improve the model performance, and second, some

shrinkage regressions (SR, GSR, and Sh) are no worse than OLS, but the performance differences

are not significant. These imply that using shrinkage regressions in logistic regression would

not significantly outperform the classical IRLS deployment that relies on OLS. While this is
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Table E.1: Estimated MSE for binary classifications with raw input data

FMS = 0 vs. FMS = 1 FMS = 0 vs. FMS = 2 FMS = 0 vs. FMS = 3 FMS = 0 vs. FMS = 6

Model
M = 1 M = 10 M = 1 M = 10 M = 1 M = 10 M = 1 M = 10

OLS 0.1261 0.1224 0.1399 0.1342 0.1270 0.1292 0.0839 0.0773

St 0.1261 0.1224 0.1404 0.1342 0.1270 0.1292 0.0840 0.0773

DSh 0.1318 0.4513 0.1536 0.1892 0.1637 0.3052 0.1141 0.1013

Sh 0.1261 0.1224 0.1399 0.1342 0.1270 0.1292 0.0839 0.0773

SR 0.1262 0.1224 0.1398 0.1342 0.1270 0.1292 0.0841 0.0774

GSR 0.1264 0.1228 0.1401 0.1329 0.1271 0.1275 0.0851 0.0790

Table E.2: Estimated MSE for binary classifications with standardised input data

FMS = 0 vs. FMS = 1 FMS = 0 vs. FMS = 2 FMS = 0 vs. FMS = 3 FMS = 0 vs. FMS = 6

Model
M = 1 M = 10 M = 1 M = 10 M = 1 M = 10 M = 1 M = 10

OLS 0.1266 0.1216 0.1406 0.1339 0.1271 0.1280 0.0842 0.0763

St 0.1278 0.1225 0.1436 0.1401 0.1278 0.1283 0.0878 0.0822

DSh 0.1355 0.3810 0.1523 0.3938 0.1408 0.3546 0.0870 0.3734

Sh 0.1266 0.1217 0.1406 0.1338 0.1271 0.1280 0.0842 0.0763

SR 0.1266 0.1216 0.1406 0.1339 0.1271 0.1280 0.0842 0.0763

GSR 0.1265 0.1219 0.1413 0.1321 0.1273 0.1260 0.0844 0.0766

a disappointing result, the next section shows a very different picture where some shrinkage

regressions are very effective for Poisson GLM deployments.

E.2 Poisson GLM with log Link Function

Poisson GLMs are deployed in this section by exploiting the ordinal type of FMS scores observed

in Figure E.1 (left), and we relabel the data as shown in Figure E.1 (right) which keeps the

ordinality trend. The sampling distribution is assumed to be Poisson, which is a member of

the exponential family defined in (G.1), and thus, the GLM machinery could be deployed. The

GLM estimator in (G.2) is with the Poisson canonical link function, known as log link function,

and is given with h(η) = eη, where η = x⊤β.

Table E.3 summarises the Poisson GLM results and we draw some interesting conclusions. First,

feature standardisation improves the model performance for some GLM implementations. Sec-

ond, St estimators significantly improve OLS implementations by approximately 3% and 7% for

M = 1 and M = 10, respectively, while other shrinkage estimators (SR, GSR, and Sh) perform

at the same level as OLS.
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Table E.3: Estimated MSE for Poisson GLM with raw and standardised input data

Raw Data Standardised Data

Model
M = 1 M = 10 M = 1 M = 10

OLS 0.9174 0.8898 0.9233 0.8913

St 0.9172 0.8896 0.8940 0.8270

DSh 1.1498 3.0269 0.9604 1.9795

Sh 0.9175 0.8898 0.9232 0.8909

SR 0.9197 0.8898 0.9233 0.8913

GSR 0.9161 0.8871 0.9231 0.8896

We conclude this small data analysis by inferring that when deploying GLM estimation through

IRLS, one may need to consider replacing OLS with shrinkage estimators in order to enhance the

model performance. Even though the empirical evidence is limited, this conclusion is validated

by a recent work of (Asimit et al., 2025) that provides ample evidence in that respect via exten-

sive simulated and real-data analyses. This is a viable, effective and computationally efficient

method – since OLS and our shrinkage estimators, except for Sh which become computationally

expensive in large-scale problems, are computationally equivalent – for reducing the notoriously

high estimation error in GLM estimation.

F Portfolio Investment Application

This section provides the additional pieces of information about the finance application briefly

discussed in Section 3.4. A brief data description and technical details about the portfolio

construction are given in Appendix F.1. Numerical experiments are made across various market

conditions in Appendix F.2.

F.1 Data Description and Methodology

The S&P500 is a stock market index that includes the 500 large-cap U.S. companies across

various industries – e.g., technology, healthcare, finance, consumer goods, and industrials – and

represents a market benchmark, meaning that investors and fund managers compare their port-

folio performance against S&P500. The index is weighted by market capitalisation, which implies

that companies with larger market values have a bigger influence on the S&P500 movements.

We had collected the S&P500 daily returns of 1,070 companies that were part of the S&P500 at
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least once within the observation period that starts on January 1, 2000 and ends on December

31, 2023. The index’s constituents change every three months, though firms could exit S&P500

due to mergers and acquisitions, poor financial results or failure to meet the eligibility criteria.

Among the 1,070 firms, we have selected the 441 companies that remained listed on the US

stock exchanges without interruption; we call this dataset as DA441 for which we have data

about 6,037 trading days per company.

The portfolio strategies considered in this section are risk minimisation GMV portfolios, and

their very definition is as follows:

w∗ =
Σ−11

1TΣ−11
= argmin

w: 1Tw=1

wTΣw, (F.1)

where Σ is the covariance matrix of asset returns and w is the portfolio weight vector (the

proportion of each asset in the entire portfolio). Note that the optimal solution in (F.1) is the

fully invested portfolio (since 1Tw = 1); if the risk-free asset is included in the portfolio, then

we have a non-fully invested portfolio and the equality constrain (1Tw = 1) is removed, and in

turn, the optimal solution in (F.1) becomes w∗ = Σ−11. These explain why one could recast

the unconstrained variant of (F.1) as a standard regression problem. Specific to our very own

setting – see also Section 3.1 of Fan et al. (2012) – we solve

min
w,b

(
y −wTX− b1

)T(
y −wTX− b1

)
,

where y = R441 represents the return of the “target” asset (i.e., the last company in our DA441

dataset) and X = R441 − Rj for j = 1, . . . , 440. Any regression model can now be used to

estimate for the regression parameters w∗ = (w1, . . . , w440)
T and intercept b; the weight for the

remaining asset is then calculated as w∗
441 = 1−

∑440
j=1w

∗
j , so that the portfolio is fully invested.

We perform the previous estimations by using all eight regression methods, and a rolling window

approach is employed to construct and evaluate portfolios over time. For each window, we use

a fixed historical period (five or ten years) of daily returns for training and a subsequent three-

month period (assuming 21 trading days a month, 252 days a year) for testing; after each three-

month test, the window advances by three months. This design mimics a dynamic rebalanced

portfolio, where investors regularly update the portfolio weights.

46



Once we obtain the portfolio weights based on the training data, we evaluate its future perfor-

mance over the three-month testing period by using the R function Return.portfolio that is

implemented without rebalancing. For each day in the testing period, the R function tracks

the portfolio’s value and we compute the following performance measures: i) average the daily

returns and annualise them under the assumption of 252 trading days per year, ii) standard

deviation of these daily returns and annualised equivalent values, and iii) Sharpe ratio that is

the ratio between i) and ii).

F.2 Out-of-Sample Performance

The most important test for a prediction model dealing with time series data is to evaluate its

out-of-sample performance for which we employ a rolling window approach. In each window,

the models are trained on past data (five or ten years, which are known as training data) and

evaluated on future data (always of three months, which are known as testing data) to measure

how well the models perform in a forward-looking investment setting. A rolling window with a

step of three months is employed, meaning that after estimating all models in one window, the

training and testing data are shifted forward by three months so that the estimation models are

deployed on the new data.

After running all eight regression methods for each rolling window, we summarise the perfor-

mance through three key metrics. First, the mean annual return is found by averaging the

annualised returns from each window, which evaluates the overall profit of the eight investment

strategies. Second, the mean annualised volatility is calculated by averaging each window’s stan-

dard deviation of annualised returns, which evaluates the overall risk of the eight investment

strategies. Third, we average the Sharpe ratios across all windows to evaluate overall risk-

adjusted performance that measures the profit per unit of risk. Note that investors and fund

managers are looking for high annualised returns and high Sharpe ratios. Besides such three

overall performance measurements, we count the number of windows in which each method

achieves the highest performance and convert this counting measure to the frequency of success.

Table F.1 summarises various performance measures under different rolling window settings.

OLS shows very poor performance irrespective of the market conditions. Moreover, the shrink-

age estimators have very good performance with St being the overall “best” method amongst
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all possible choices, but Sh also performs very well in risk-adjusted performance. The method

POET99% achieves high return outcomes, making it a competitive option. Furthermore, eigenvalue-

driven methods (RR, GSR and SRR) are useful to stabilise the risk, but are not effective from

the point of view of investors due to low expected returns and low Sharpe ratios.

Table F.1: Portfolio Performance Metrics Across All Rolling Windows

Panel A: 5-years Training over 75 Rolling Windows

Return Standard Deviation Sharpe Ratio

Model
Mean Counts Freq (%) Mean Counts Freq (%) Mean Counts Freq (%)

OLS 11.28% 1 1.33% 11.10% 4 5.33% 1.398 1 1.33%

RR 10.95% 1 1.33% 9.95% 33 44.00% 1.603 8 10.67%

POET99% 15.54% 23 30.67% 17.05% 0 0.00% 1.133 10 13.33%

St 14.43% 19 25.33% 13.04% 0 0.00% 1.519 14 18.67%

DSh 13.18% 7 9.33% 11.99% 2 2.67% 1.472 9 12.00%

Sh 11.61% 16 21.33% 12.11% 15 20.00% 1.607 21 28.00%

SR 11.28% 1 1.33% 11.10% 3 4.00% 1.398 2 2.67%

GSR 11.36% 1 1.33% 10.57% 10 13.33% 1.514 1 1.33%

SRR 9.84% 6 8.00% 10.33% 8 10.67% 1.436 9 12.00%

Panel B: 10-years Training over 55 Rolling Windows

Return Standard Deviation Sharpe Ratio

Model
Mean Counts Freq (%) Mean Counts Freq (%) Mean Counts Freq (%)

OLS 14.14% 1 1.82% 10.79% 4 7.27% 1.736 1 1.82%

RR 14.10% 2 3.64% 10.28% 16 29.09% 1.839 4 7.27%

POET99% 12.29% 11 20.00% 13.12% 0 0.00% 1.209 5 9.09%

St 16.75% 11 20.00% 11.38% 4 7.27% 1.932 11 20.00%

DSh 15.92% 5 9.09% 11.03% 6 10.91% 1.913 8 14.55%

Sh 14.48% 16 29.09% 11.11% 12 21.82% 1.839 17 30.91%

SR 14.14% 3 5.45% 10.79% 1 1.82% 1.736 3 5.45%

GSR 14.41% 1 1.82% 10.61% 2 3.64% 1.797 1 1.82%

SRR 13.59% 5 9.09% 10.39% 10 18.18% 1.721 5 9.09%

Notes: Three performance measures (mean, risk measured via standard deviation, and Sharpe ratio) are computed
for every rolling window and its summary results are tabulated. The “Mean” columns report the average of this
annualised metric across all windows; the “Counts” columns indicate the number of windows in which a method
achieves the highest performance for that metric among all methods, while the “Freq (%)” columns provide the
corresponding percentage. Panel A assumes a 5-year training period that results in 75 rolling windows over the
observation period, while Panel B assumes a 10-year training period over 55 rolling windows. Values highlighted
in red denote the “best” performance for that metric within each panel.

We next analyse how our shrinkage estimators perform in adverse market conditions, and the

results are gathered in Table F.2. Two time periods governed by extreme market conditions are

considered in this analysis; the first period is vastly influenced by the Financial Crisis (October 6,

2008 – August 3, 2011) and the second period coincides with the COVID-19 Pandemic (January
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Table F.2: Portfolio Performance Metrics under Extreme Market Conditions

Financial Crisis Pandemic

5-year training 10-year training 5-year training 10-year training

Model
Return Sharpe Ratio Return Sharpe Ratio Return Sharpe Ratio Return Sharpe Ratio

OLS 2.08% 0.740 15.92% 1.887 15.37% 1.821 13.22% 1.799

RR 7.91% 1.413 17.76% 2.175 8.78% 1.508 11.82% 1.630

POET99% 2.16% 0.303 15.07% 1.611 24.22% 1.526 8.17% 1.053

St 15.78% 1.437 20.30% 2.131 20.49% 2.078 17.12% 2.039

DSh 12.76% 1.423 18.22% 1.930 22.37% 2.152 17.75% 2.078

Sh 14.67% 1.752 21.61% 2.379 9.47% 1.357 11.42% 1.307

SR 2.08% 0.740 15.92% 1.887 15.37% 1.821 13.22% 1.799

GSR 5.17% 1.088 16.95% 2.017 12.75% 1.702 13.41% 1.803

SRR 5.37% 1.125 16.73% 2.031 5.59% 1.117 10.73% 1.339

Notes: Two performance measures (mean and Sharpe ratio) are computed for every rolling window during two
major economic downturns: Financial Crisis (October 6, 2008 – August 3, 2011) and COVID-19 Pandemic
(January 2, 2020 – January 14, 2022). The DA441 dataset has a starting date on January 3, 2000, and thus,
the Financial Crisis period has eleven valid windows for the 5-year training and only six windows for the 10-year
training, as the earliest 10-year rolling window starts on January 3, 2010. The Pandemic period yields eight
rolling windows for both training lengths. The values highlighted in red highlight the “best” performance for that
metric within each panel.

2, 2020 – January 14, 2022). Performance metrics include annual returns and annual Sharpe

ratios computed over five-year and ten-year training windows. Given our three-month rolling

window design, the Financial Crisis period includes eleven rolling windows, while the COVID-19

Pandemic period includes eight rolling windows, and thus, the counting and frequency of success

are not computed for this analysis. The overall picture in Table F.2 is not very different than

what we have found in Table F.1, and we conclude that some of our shrinkage estimators (namely,

St, DSh, and Sh) are suitable for constructing portfolios during turbulent market periods.

G Generalised Linear Model and its IRLS Implementation

A GLM assumes that the response variable Y , defined on Y ⊆ ℜ, is related to covariates X

defined on X ⊆ ℜd, where d = p+1 in this paper. The conditional distribution of Y belongs to

the exponential dispersion family, with the following probability density or mass function

fY (y; θ, ϕ) = exp

{
θy − b(θ)

a(ϕ)
+ c(y, ϕ)

}
. (G.1)
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Here, θ is the canonical parameter, ϕ is the dispersion parameter, and a, b, and c are known

functions. The function b(θ) determines the mean-variance relationship of the response variable.

The mean of Y is linked to a linear predictor ηi = x⊤
i β through a link function g, so that

E[Yi|Xi = xi] = h(x⊤
i β), (G.2)

where h = g−1 is the inverse of the link function. The most natural choice (if this is possible) is

the canonical link function where h(·) = b′(·) on ℜ.

The MLE estimator of β is chosen for GLM modelling, and the log-likelihood function for an

independent sample of size n is

ℓ(β) =

n∑
i=1

θiyi − b(θi)

a(ϕ)
+ c(yi, ϕ), where θi =

(
b′
)−1 ◦ h

(
x⊤
i β
)
,

where ◦ is the composition operator. Maximising the above is equivalent to minimising the

following objective function

C(β) = −
n∑

i=1

(
θiyi − b(θi)

)
. (G.3)

Taking the derivative of C(β) with respect to β and setting it to zero yields the normal equations

n∑
i=1

(yi − µi)

V (µi)

∂µi

∂βj
= 0 ∀j, (G.4)

where µi = h(x⊤
i β) is the conditional mean, and V (µi) is the variance function determined by

the exponential dispersion model.

The IRLS algorithm is used to solve the non-linear system of equations in (G.4) by approxi-

mating (G.3) as a WLS instance. This equivalence arises because solving (G.4) is equivalent to

minimising the following WLS instance

n∑
i=1

(yi − µi)
2

V (µi)
. (G.5)

Since µi depends non-linearly on β, the above is iteratively linearised using a Taylor expansion
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around the current parameter estimate β̂(t) at each iteration t. Specifically,

β̂(t+1) := argmin
β

(
z(t) −Xβ

)⊤
W(t)

(
z(t) −Xβ

)
, (G.6)

where W(t) is the weight matrix and z(t) is the pseudo-response, updated at each iteration as

W(t) = diag


(
h′
(
η
(t)
i

))2
V
(
µ
(t)
i

)
 , z

(t)
i = η

(t)
i +

yi − µ
(t)
i

h′
(
η
(t)
i

) ,
with µ

(t)
i = h(η

(t)
i ) and η

(t)
i = x⊤

i β̂
(t). The weight matrix W(t) reflects the curvature of the ob-

jective function at the current parameter estimates, while the pseudo-response z(t) incorporates

the linearised adjustments based on residuals.

In summary, (G.6) is repeatedly solved until convergence is achieved within a specified threshold

for the change in the objective function – from (G.3) – between two consecutive iterations though

a maximal number of iterations may be imposed but the scale of GLM implementations in this

paper do not require such imposition. Note that the IRLS algorithm effectively links the WLS

formulation in (G.5) with the iterative updates in (G.6), reducing the GLM estimation problem

to solving a sequence of multiple linear regression problems.
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