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Abstract—The rapid adoption of Internet of Things (IoT) devices 

in smart homes has introduced security vulnerabilities, with 

Distributed Denial of Service (DDoS) emerging as a critical threat. 

Exploiting the often-unsecured nature of these interconnected 

devices, such attacks overwhelm network resources, causing severe 

disruptions and privacy breaches. We present a novel anomaly 

detection system for early-stage DDoS attack identification in smart 

home IoT environments. Using NS-3 simulator, a realistic IoT 

network dataset was generated, capturing normal and malicious 

traffic. Key traffic features, e.g., packet size and inter-arrival times, 

were extracted to train two lightweight Machine Learning (ML) 

models: One-Class Support Vector Machine (OCSVM) and Isolation 

Forest (IF). OCSVM model achieved superior performance with 

accuracies from 96% to 99% for various attacks, while the IF model 

performed marginally worse. We offer a lightweight and scalable 

solution for real-time deployment in resource-constrained IoT 

environments, a significant step to enhance smart home security. 

Keywords - Anomaly detection, DDoS attacks, smart home 

security, Internet of Things (IoT), machine learning, NS-3 simulator 

I. INTRODUCTION 

The rapid proliferation of Internet of Things (IoT) devices 
has revolutionized modern homes, seamlessly integrating smart 
technologies such as cameras, thermostats, and appliances into 
daily life. According to recent projections, there will be 41 
billion connected IoT devices by 2030 [1]. While this enhances 
convenience, it also introduces significant cybersecurity 
challenges. Among these, Distributed Denial of Service (DDoS) 
attacks represent a critical threat. Exploiting the limited 
computational power and weak security of IoT devices, these 
attacks inundate networks with malicious traffic, rendering them 
inoperable and disrupting essential services [2] [3]. 

Despite their growing adoption, smart home environments 
are often designed with simplicity and ease of use, typically 
lacking adequate built-in security mechanisms. This makes them 
especially vulnerable to exploitation by attackers. DDoS attacks 
can disrupt communication, compromise device functionality, 
and breach household privacy. Existing security measures 
predominantly rely on traditional signature-based detection 
methods, which are ineffective against the dynamic and 
evolving nature of modern DDoS attacks [5]. This gap 
highlights the need for adaptive, scalable, and lightweight 
anomaly detection systems tailored specifically to the 
constraints of IoT devices in smart home networks [6]. Our 
research, as studies addressing security challenges in advanced 
networks, e.g., 5G Rogue Base Station (RBS) attacks [7], 

focuses on leveraging ML-based anomaly detection to mitigate 
DDoS attacks in IoT networks. As the simulation-based dataset 
generation proposed in [7], we develop realistic IoT traffic 
datasets to enhance model training for detecting anomalies. 

The main contributions of this paper are as follows: 

• Simulated IoT Network Dataset: A realistic smart home 
network is modelled using the Network Simulator-3 
(NS-3), generating diverse traffic patterns to train and 
evaluate the anomaly detection models. 

• Lightweight Machine Learning (ML) Models: 2 anomaly 
detection models, One-Class Support Vector Machine 
(OCSVM) and Isolation Forest (IF), are developed and 
optimized for resource-constrained IoT devices. 

• Comprehensive Performance Evaluation: The proposed 
models are rigorously evaluated using key metrics: 
accuracy, precision, recall, and F1-score. They achieve 
high detection rates with minimal false positives. 

• Open Dataset Contribution: The dataset generated in this 
study is made publicly available to support further IoT 
security research and innovation.  

The rest of the paper is organized as follows: Sect. II reviews 
related work on DDoS detection in IoT networks and anomaly 
detection techniques. Sect. III describes the proposed approach, 
including the simulation setup, data generation, and model 
development. Sect. IV presents the performance evaluation of 
the proposed models. Sect. V discusses the findings, provides 
conclusions, and highlights potential future research. 

II. RELATED WORK 

The unique challenges of securing IoT environments, 
particularly within smart homes, require advanced solutions 
beyond traditional network defenses. This section examines 
existing techniques for DDoS and anomaly detection in IoT 
systems, highlighting the gaps that underscore the need for the 
specialized approach proposed in this paper. 

A. DDoS Attacks and IoT Vulnerabilities 

DDoS attacks are a critical concern in IoT environments due 
to the lack of standardized security practices and the 
heterogeneous nature of IoT devices. Many devices are 
resource-constrained making them vulnerable to attacks [8]. For 
instance, botnets such as Mirai have exploited these 
vulnerabilities, co-opting IoT devices into large-scale attacks 
without the users' knowledge [9]. This underscores the need for 



robust detection mechanisms that can identify malicious activity 
early and prevent devices from being compromised. However, 
many existing systems rely on reactive measures, detecting 
attacks after they have already begun, which limits their 
effectiveness in preventing DDoS attacks [10]. 

B. Machine Learning for Anomaly Detection 

Several studies have demonstrated the potential of ML for 
early detection of DDoS attacks in IoT environments. Kaur and 
Ayoade [11] highlight the importance of real-time anomaly 
detection mechanisms, especially given the limitations of 
traditional security tools that rely on pre-defined signatures and 
known attack patterns. Doshi et al. [12] propose using ML 
techniques on consumer routers to detect DDoS attacks 
launched by IoT devices by analysing network traffic flow. 
Similarly, Russell et al. [13] show the effectiveness of 
unsupervised learning techniques like the Local Outlier Factor 
(LOF) and  OCSVM in detecting anomalies in IoT networks. 

The challenge, however, is in the computational constraints 
of IoT devices in smart homes. Many detection systems, e.g., 
deep learning ones [14], require significant resources, making 
them unsuitable for real-time, on-device detection in 
environments with limited computational power. Jemal et al. 
[15] used convolutional neural networks to detect DDoS attacks, 
achieving high accuracy, but their method demands processing 
power beyond the ones of most smart home IoT devices. 

The study in [20] investigates a progressive fuzzy C-means 
clustering (FCM) algorithm for anomaly detection in DDoS 
scenarios. Their clustering-based approach groups similar traffic 
patterns to differentiate between normal and attack behaviors. 
The FCM algorithm achieved low error rates and strong 
detection accuracy, making it an effective tool for distinguishing 
complex attack patterns. However, clustering-based methods, 
e.g., FCM, often require significant computational resources, 
making them less suitable for resource-constrained IoT 
environments. This highlights the importance of exploring 
lightweight models, e.g., OCSVM, that prioritize efficiency and 
scalability in real-time anomaly detection. 

C. Real-Time Anomaly Detection for Smart Homes 

While various ML techniques were proposed for DDoS 
detection, a key limitation remains: most systems are designed 
for enterprise or data-centre environments, where computational 
resources are abundant. These methods do not account for the 
resource limitations of smart home IoT devices, which require 
lightweight, real-time detection mechanisms. The study by 
Mishra and Pandya [17] shows that unsupervised learning offers 
a promising solution for detecting anomalies in IoT networks, as 
it does not require extensive labelled datasets, which are often 
difficult to obtain for all possible attack scenarios. 

Hu and Tu [18] demonstrate the feasibility of using 
unsupervised clustering methods, specifically the fuzzy C-
means clustering (FCM) algorithm, for detecting DDoS 
anomalies in network traffic. By grouping traffic patterns into 
clusters, FCM effectively distinguishes between normal and 
attack behaviors without relying on labeled data. However, the 
algorithm’s computational overhead makes it less practical for 
real-time deployment in smart home environments with limited 
processing power. This study underscores the need for 
lightweight, scalable detection methods like the proposed 

OCSVM model, which is optimized for constrained 
environments while maintaining high accuracy. 

Additionally, [10] propose using unsupervised learning 
methods, such as autoencoders combined with k-nearest 
neighbours (KNN), to identify DDoS attacks without the need 
for labelled training data. Their approach is particularly effective 
in environments where abnormal data points are sparse, as in 
early-stage DDoS attacks in IoT networks. This aligns with our  
focus on using lightweight unsupervised learning models that 
can detect deviations in traffic patterns while operating within 
the resource constraints of smart home IoT devices. 

III. PROPOSED APPROACH 

While much of the existing research has focused on ML 
techniques for DDoS detection in traditional networks, fewer 
studies have addressed the specific challenges of smart home 
IoT environments. The heterogeneity of devices, each with 
different communication protocols and computational 
capacities, complicates the implementation of uniform security 
measures. Our approach builds upon the existing work by 
developing an ML-based anomaly detection system optimised 
for the limited resources of smart home devices. We propose 
using lightweight algorithms, e.g., OCSVM, to detect early signs 
of DDoS based on deviations from normal traffic behaviour. 
Unlike more resource-intensive approaches, our system is 
designed to operate efficiently within the constrained 
environments of smart homes, providing early detection without 
overwhelming the device or network infrastructure. 

A. Proposed Attack Model 

We evaluate the anomaly detection system within a 
simulated smart home IoT environment by employing four 
common DDoS attack types: HTTP Flood, UDP Flood, SYN 
Flood, and Slowloris. Each attack targets distinct network 
vulnerabilities, enabling a comprehensive assessment of the 
model's ability to detect diverse anomalous traffic patterns. 

An HTTP Flood is a volumetric attack that overwhelms a 
web server by sending excessive HTTP GET or POST requests, 
depleting its resources and causing service disruptions. It 
exploits real-world IoT vulnerabilities, particularly for devices 
that rely heavily on cloud-based services for functionality e.g., 
smart TVs. The simulation frequency was 500 requests per sec, 
average packet size 800 bytes, and durations ranged from short 
bursts (30 sec) to sustained traffic (5 min). The attack represents 
a high-bandwidth event, where malicious requests overshadow 
legitimate IoT traffic, causing severe service interruptions. 

The UDP Flood sends a high volume of UDP packets to 
random ports on a target device, forcing search for listening 
applications and exhausting processing power. This attack is 
particularly disruptive for devices like smart speakers and 
thermostats, which are optimized for lightweight operations. In 
the simulation, packet sizes ranged from 500 to 1200 bytes to 
mimic real-world, with a frequency of 800 packets per sec. The 
attack durations varied from transient bursts of 1 min to 
prolonged stress tests of up to 5 min. This attack stressed both 
bandwidth and computational resources, providing a 
challenging test for the anomaly detection model's ability to 
handle high-volume and irregular traffic. 

A SYN Flood exploits the TCP handshake process by 



initiating numerous incomplete connections, leaving them half-
open. This prevents legitimate traffic from being processed, 
creating delays, or blocking access entirely. For IoT devices 
with limited networking capacity, such as smart thermostats, this 
attack can significantly disrupt operations. The simulation 
parameters included 300 connection attempts per sec, with 
durations of 1 min for transient tests and up to 3 min for 
sustained loads. The incomplete connections were designed to 
simulate resource exhaustion, replicating the real-world impact 
of such attacks on constrained IoT devices. 

The Slowloris attack employs a "low-and-slow" approach, 
sending partial HTTP requests over extended periods to keep 
server connections open. Unlike high-bandwidth attacks, 
Slowloris gradually drains server resources without causing 
obvious traffic spikes, making it challenging to detect. The 
simulation settings included packet sizes of 200 to 400 bytes, 
with a frequency of 1 packet every 10 sec. The attack durations 
ranged up to 10 min, maintaining persistent connections. This 
scenario tested the anomaly detection system’s sensitivity to 
subtle, low-volume anomalies that could otherwise evade 
traditional detection mechanisms. 

Together, these 4 attack types represent a diverse set of 
challenges for IoT anomaly detection systems, capturing both 
high-bandwidth and subtle, low-rate attack scenarios. To 
evaluate the detection system's robustness, these attack 
scenarios were simulated in a smart home environment using the 
NS-3 simulator, featuring common IoT devices. The network 
supported internal and external communications, enabling 
realistic interaction scenarios. Metrics such as packet size, inter-
arrival times, and flow duration were recorded to differentiate 
normal and attack traffic, with specific devices targeted to assess 
bandwidth and computational impacts. These parameters 
provide valuable insights into the system’s ability to adapt to 
varied real-world attack patterns and improve IoT security. 

B. Data Generation and Traffic Simulation 

To simulate a realistic smart home IoT environment, the NS-
3 network simulator was configured with several assumptions to 
reflect typical residential setups. The simulated devices – smart 
thermostats, security cameras, speakers etc. – were designed to 
accurately represent real-world IoT traffic patterns, including 
packet generation rates, communication protocols, and usage 
behaviors. These configurations were based on known usage 
patterns from established studies [19]. The network was 
assumed to have limited security mechanisms, consistent with 
the relatively low-security standards of consumer IoT devices, 
to realistically model their vulnerability to DDoS attacks. While 
NS-3 cannot fully replicate all real-world conditions, it 
effectively captures key behaviors such as traffic flow, and 
response delays, enabling the generation of realistic attack and 
normal traffic for this study. 

Several additional assumptions were made to create a 
simulation environment that reflected realistic conditions 
commonly found in residential smart homes: 

1) Internet Speed: The simulated network operated with a 

typical residential broadband speed for home internet in 

developed regions: 100 Mbps download and 20 Mbps upload. 

This bandwidth supports multiple devices simultaneously 

without overwhelming capacity, enabling realistic usage 

scenarios such as streaming and device updates. This ensured 

DDoS traffic patterns stood out against regular network usage. 

2) Device Usage Patterns: Each IoT device’s behavior was 

programmed to mimic standard usage patterns based on real-

world studies, ensuring that the simulated data closely mirrored 

realistic traffic patterns observed in residential settings. For 

instance, the smart camera was configured to activate motion 

detection at regular intervals, generating high-bandwidth video 

streams during motion events; te smart thermostat sent periodic 

temperature updates every 30 sec to replicate routine 

functionality; the smart TV was set to stream video content 

during typical usage hours, emulating the high bandwidth 

demands of media consumption; etc. These realistic patterns 

provided a diverse dataset, accurately capturing the range of 

traffic behaviors expected in modern IoT environments. 

3) Wi-Fi Signal Quality: For simplicity, Wi-Fi signal 

quality was assumed to remain stable throughout the 

simulation, with no significant drops or interference. This ideal 

condition allowed for cleaner analysis by ensuring that detected 

network anomalies were solely due to traffic patterns rather 

than external factors like signal degradation or packet loss. This 

approach also simplified result interpretation by isolating the 

effects of DDoS attacks from unrelated connectivity issues. 

4) External Server Reliability: External servers, e.g., 

streaming platforms, were assumed to be consistently available 

without outages or latency spikes. This idealization ensured that 

any detected anomalies could be attributed to malicious traffic 

or irregularities within the smart home network, rather than 

disruptions caused by external factors. This assumption 

provided a controlled environment, focusing solely on IoT 

device behavior under normal and attack conditions. 
Given these assumptions, the simulation environment was 

made suitable for evaluating the anomaly detection system. It 
captured the complexities of modern IoT usage while 
maintaining controlled conditions to isolate the impact of DDoS 
attacks. These parameters ensured reproducibility and 
strengthened the practical relevance of the study, offering 
insights into the challenges and solutions for securing resource-
constrained IoT networks. 

C. Traffic Simulation Setup 

The network traffic simulation was conducted in an Ubuntu 
20.04.6 environment, chosen for its stability and compatibility 
with NS-3 [8]. This setup ensured efficient handling of 
simulated IoT traffic and provided a robust platform for accurate 
results. The smart home network topology included four 
common IoT devices: a smart speaker, smart TV, smart camera, 
and smart thermostat, reflecting real-world usage [9]. A Wi-Fi 
network was configured, mirroring typical smart home 
environments [10], and was set up to enable both internal and 
external communications to capture realistic data (Fig. 1). 

NS-3's logging and packet tracing features were utilized to 
monitor all traffic flows. Key traffic metrics, e.g., packet size, 
inter-packet intervals, were recorded, as critical indicators of 
anomalous behavior, particularly in DDoS attacks [11]. 

1) Normal Traffic Collection The smart home environment 

was set up to simulate regular traffic patterns. Each device 



performed standard tasks: e.g., the smart camera streamed 

video during motion events, the smart thermostat periodically 

sent sensor data via the MQTT protocol [16], etc. The diverse 

dataset is representative of normal smart home activities. The 

traffic was collected over a 10-min period, using  PCAP files. 

 
Fig. 1.  Network Topology of Simulated Smart Home Environment 

2) DDoS Attack Simulation. To generate attack traffic, 3 

IoT devices (smart speaker, camera, and TV) were 

compromised to simulate various DDoS attacks, including 

HTTP Flood and SYN Flood attacks. These attacks aimed to 

overwhelm an Apache server simulated on an external node, 

reflecting real-world attack scenarios (Fig. 2) [6]. The traffic 

was captured in PCAP files for training and testing the models. 

 
Fig. 2. DDoS attack scenario in a smart home IoT network 

D. Detection Models 

Two unsupervised ML models were used: One-Class 
Support Vector Machine (OCSVM) and Isolation Forest (IF). 
These models were chosen due to their ability to detect 
anomalies without requiring labeled attack data, which is often 
unavailable in IoT environments [9]. 

OCSVM: The ML model is suitable for scenarios where only 
normal data is available for training. The model employed 
Radial Basis Function (RBF) kernel, which is effective in 
capturing non-linear separations in network traffic anomalies. 
This configuration enabled the model to identify subtle 
deviations indicative of DDoS attacks. The key parameter ν, 
representing the proportion of data points treated as anomalies, 
was optimized at 0.05 after extensive testing to achieve a 
balance between minimizing false positives and detecting true 
anomalies. This lightweight design makes OCSVM particularly 
suitable for resource-constrained IoT environments. 

IF: The ML model was chosen for its ability to isolate 
observations in a randomly partitioned feature space, effectively 
detecting anomalous behavior. Key parameters included n 
estimators, which defines the number of trees in the ensemble 
and was set to 100 to balance detection accuracy and 
computational efficiency, and the contamination rate, 
representing the expected proportion of anomalies in the dataset, 
which was set to 10%. These settings ensured reliable anomaly 
detection at a low computational overhead, making IF a feasible 
option for IoT devices with limited processing power. 

E. Testing and Validation 

The testing and validation process was designed to evaluate 
the performance of both models using a comprehensive dataset 
generated from simulated IoT devices under various DDoS 
attack scenarios (see Sec. III.A). Performance metrics accuracy, 
precision, recall, and F1-score were used to assess each model’s 
effectiveness. AUC-ROC curves were generated to visually 
represent model performance across different threshold levels. 

IV. RESULTS 

A. Simulation Results and Data Generation 

1) Data Generated: 
Over 4.1 GB of data was collected during a 1-hour 

simulation, with traffic split between normal operations and 
DDoS attack scenarios. Normal traffic, generated by regular IoT 
device operations, constituted the largest portion – 1.8 GB. 
Attack traffic, generated by various DDoS methods, accounted 
for the rest. HTTP flood traffic – 0.8 GB; SYN and UDP floods 
each – 0.6 GB. Slowloris attacks generated 0.3 GB, reflecting its 
low-volume nature. This dataset effectively captured both high-
intensity and low-rate attack patterns, providing a robust 
foundation for training and evaluation of the anomaly detection 
models. The dataset ensures the models' ability to distinguish 
between typical IoT behavior and anomalous activity of DDoS. 

2) Traffic Patterns:  
Number of Packets Generated: A total of 6.1 million 

packets were captured during the simulation: 2.5 million packets 
correspond to normal traffic, and 3.6 million packets classified 
as DDoS attack traffic. The HTTP Flood attack generated the 
highest number of packets – 2.1 million, reflecting its high-
intensity nature. In contrast, the Slowloris attack produced the 
fewest packets - 100,000, consistent with its low-rate, persistent 
strategy. Both UDP Flood and SYN Flood attack produced 
700,000 packets. This distribution shows the significant 
variation in traffic volume between normal operations and 
different attacks, highlighting the diverse patterns utilized for 
model training and evaluation. 

Packet Size Distribution: Normal traffic demonstrates a 
heterogeneous distribution of packet sizes and arrival times, 
reflecting typical IoT usage patterns such as sensor updates and 
media streaming. Conversely, DDoS attack traffic, particularly 
HTTP Flood and UDP Flood, exhibits sustained high-volume 
packet transmissions with uniform sizes, indicative of malicious 
intent. These variations in traffic patterns form the basis for 
anomaly detection in our model. The distribution of packet sizes 
revealed distinct patterns between normal and DDoS attack 
traffic. Normal traffic exhibited varied packet sizes, ranging 
from 400 to 800 bytes, reflecting the diverse nature of routine 



IoT device communications such as video streaming, sensor 
updates, and command responses. In contrast, DDoS attack 
traffic clustered around larger, fixed packet sizes, primarily 
between 800 and 1600 bytes. This packet size is a hallmark of 
volumetric DDoS attacks, designed to overwhelm network 
resources with high-bandwidth traffic. The difference in packet 
size distributions between normal and attack traffic (Fig. 3) 
provides a critical feature for distinguishing anomalous behavior 
during model training and evaluation. 

Inter-Arrival Times: Normal traffic exhibited dispersed 
inter-arrival times, with many packets arriving at intervals 
greater than 1 sec, reflecting the typical asynchronous nature of 
IoT device communications. In contrast, DDoS attack traffic 
displayed consistently shorter inter-arrival times, often 
approaching 0 sec, indicative of the high-intensity flooding 
behaviour characteristic of volumetric attacks. Fig 4. shows 
stark difference in inter-arrival times between normal and attack 
traffic: a critical feature used for distinguishing anomalous 
patterns during model training and evaluation. 

 
Fig. 3. Packet size distribution for normal versus DDoS traffic  

 
Fig.  4. Packet inter-arrival times for normal and DDoS traffic 

B. Model Performance Evaluation 

The OCSVM and IF models were trained on the dataset 
predominantly composed of normal traffic. Both models were 
evaluated on their ability to detect anomalies across various 
attack traffic types. 

For clarity, we define key evaluation metrics used in 
assessing model performance: False Positive (FP) - incorrectly 
identifying benign traffic as an attack; False Negative (FN) - 

failing to detect an actual attack; Accuracy: the proportion of 
correct classifications among the total number of cases: TP +TF 
/ (TP+FP+TN+FN); Precision - the proportion of correctly 
identified attacks relative to total identified attacks:  TP / (TP + 
FP); Recall - the proportion of actual attacks correctly identified: 
TP / (TP + FN); F1-Score - the harmonic means of precision and 
recall, offering a balanced measure of model performance. 

The performance of the OCSVM (referred to as “O”) versus  
IF model for detecting different attack types is given in Table I. 
The OCSVM model consistently outperformed the IF one across 
all attack types and key metrics. It performs better in detecting 
both high-volume DDoS attacks and subtle application-layer 
attacks like Slowloris. 

The Receiver Operating Characteristic (ROC) curves show 
the performance of the OCSVM (Fig. 5) and IF (Fig. 6) models 
for detecting different types of attacks. The Area Under the 
Curve (AUC) values for each attack type highlight the 
classification effectiveness, and the evaluation metrics are 
provided for additional context. 

TABLE I.  OCSVM (O) VS IF MODEL PERFORMANCE  

ATTACK 

TYPES  

ACCURACY PRECISION RECALL F1-SCORE  

O IF O IF O IF O IF 

HTTP 

FLOOD  
0.99 0.96 0.99 0.96 0.99 0.95 0.99 0.96 

UDP 

FLOOD  
0.98 0.95 0.98 0.94 0.97 0.95 0.98 0.95 

SYN 

FLOOD  
0.99 0.97 0.99 0.96 0.99 0.96 0.99 0.97 

SLOWLO

RIS  
0.96 0.94 0.95 0.93 0.96 0.94 0.96 0.94 

 

 
Fig. 5. ROC curves depicting the performance of the OCSVM model. 

V. DISCUSSION AND CONCLUSIONS 

We have simulated a smart home IoT network, generated 
diverse traffic data, and developed an effective anomaly 
detection system for early-stage DDoS attack detection. The NS-
3 simulator replicated realistic traffic patterns from IoT devices, 
e.g., smart cameras, thermostats etc, producing a dataset of 4.1 
GB. The anomaly detection models, particularly the One-Class 



Support Vector Machine (OCSVM), demonstrated excellent 
performance across all tested DDoS attack types (HTTP Flood, 
SYN Flood, UDP Flood, and Slowloris). 

 
Fig. 6. ROC curves depicting the performance of the IF model. 

The superior performance of the OCSVM model 
underscores its ability to detect anomalies effectively while 
maintaining computational efficiency. Its ability to distinguish 
between normal and anomalous traffic with minimal FP makes 
it a strong candidate for real-time anomaly detection in IoT 
networks. This makes it well-suited for deployment in resource-
constrained IoT environments, such as smart homes. 

A. Model Strengths and Limitations 

The OCSVM model demonstrated exceptional accuracy and 
recall, proving effective in detecting early-stage DDoS attacks. 
Early detection is critical in real-world scenarios to mitigate the 
impact of attacks before they cause widespread disruption. By 
leveraging both packet-level features (e.g., packet size) and 
flow-level features (e.g., flow duration), the model achieved 
high efficiency while remaining computationally lightweight. 
This makes it particularly suitable for deployment on resource-
constrained platforms, such as smart home gateways, where 
processing power and memory are limited. However, some 
legitimate traffic was still flagged as anomalous, particularly 
during periods of high network activity. In real-world 
deployments, such FPs could contribute to alert fatigue, 
potentially diverting attention from genuine threats. 

The simulation evaluated the model’s performance against a 
subset of DDoS attacks. While the results are promising, the 
model’s effectiveness against other attack vectors, such as ICMP 
Flood or application-layer attacks, remains untested. This 
limitation impacts its generalizability to a broader range of 
DDoS scenarios. However, the unsupervised nature of OCSVM 
and its ability to identify deviations from normal traffic patterns 
may allow it to detect previously unseen or novel attack types. 

B. Recommendations for Future Work 

We plan to enhance the anomaly detection system to address 
zero-day attacks, which pose a significant challenge due to their 
evolving attack vectors. Incorporating adaptive learning 
techniques offers a promising solution to this issue: Federated 
Learning – the model can leverage distributed training across 
multiple IoT devices without sharing raw data, ensuring privacy 

and scalability. This approach enables continuous model 
updates as new traffic patterns emerge across different 
environments; and Transfer Learning – these techniques adapt 
pre-trained models to new, unseen attack patterns, reducing the 
time and resources required to train models on diverse datasets. 

Additionally, expanding the scope of attack scenarios to 
include application-layer and perception-layer DDoS attacks 
would help evaluate the model’s robustness against complex 
threats. For instance, application-layer attacks, such as HTTP 
Slow Post, exploit server resources in subtle ways, while 
perception-layer attacks target the physical devices themselves, 
disrupting sensor functionality. Testing the model’s 
performance in real-world smart home environments, where 
traffic patterns are more dynamic and unpredictable, would also 
provide valuable insights into its practical deployment. 

To further improve the dataset's diversity and model 
generalizability, collecting real-world traffic over an extended 
period, or extending the simulation, could capture a broader 
range of IoT behaviours and anomalies. This would enhance the 
system’s ability to generalize across varying conditions. 

Exploring hybrid detection models presents another 
promising direction. They can combine the strengths of 
OCSVM and other techniques, e.g., Deep Learning Approaches 
- Autoencoders or Graph Neural Networks (GNNs), and can 
detect complex relationships in traffic, identifying novel attack 
patterns, while Graph-Based Anomaly Detection can effectively 
model network interactions to detect relational anomalies. 

Also, real-time deployment and integration with automated 
mitigation strategies would be critical steps toward 
operationalizing this system in real-world IoT networks. Such 
strategies might include Traffic Throttling to limit traffic from 
suspicious sources to minimize service disruption, or IP 
Blacklisting to block IP ranges that consistently demonstrate 
malicious behaviour. 

Finally, incorporating threat intelligence feeds and adaptive 
thresholds would improve resilience against previously unseen 
attack strategies, enabling a more proactive IoT security. 

C. Dataset Justification and Availability 

While the dataset was synthetically generated using the NS-
3 simulator, it closely mimics real-world IoT traffic patterns 
through carefully designed simulation parameters. Each device's 
behavior was modeled based on empirical data from real 
deployments, ensuring realistic traffic flows, latencies, and 
attack characteristics. Synthetic data generation is particularly 
advantageous in cybersecurity research, as it allows controlled 
experimentation and reproducibility, which are often 
challenging with real-world datasets due to privacy concerns 
and data availability. Previous studies have demonstrated the 
reliability of NS-3 for simulating IoT environments, further 
supporting its applicability in this study. 

To support reproducibility and promote further research, a 
dataset subset, along with the code for the anomaly detection 
models, has been made available here. These resources enable 
researchers to replicate, validate, or adapt the models for similar 
IoT anomaly detection scenarios. The data generator, dataset 
and code repository can be accessed on request. 

https://cityuni-my.sharepoint.com/:f:/r/personal/roland_lamptey_city_ac_uk/Documents/Anomaly%20detection?csf=1&web=1&e=pXnFfI
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