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ABSTRACT.

This investigation was initiated with the view of studying the stability 
of flows in symmetric curved walled channels, by essentially combining 
Fraenkel's small wall curvature theory, with the multiple scaling
(or WKB) method.

The overall scheme is designed so that the straight walled channel 
problem can be retrieved to any relevant order of accuracy. In this way 
the higher order and curvature effects can be described separately or 
together. We rewrite the Navier-Stokes equations for an incompressible 
fluid in terms of Fraenkel's generalized orthogonal coordinates (£,p), 
allowing for wall curvature. Then, by assuming a steady state slowly 
varying basic flow in the £ (downstream) direction, and posing an 
asymptotic expansion in powers of for the steady state stream
function Q (£, p), we ensure the leading term is characterised by the 
non-linear Jeffery-Hamel profiles. These non-linear profiles are 
linearized by perturbing about v (the parameter defining the profiles), 
and then solving the resulting set of linear differential equations. 
These equations, and the linear higher order equations necessary to make 
the asyiTptotic expansion plausible, are solved directly by using central 
difference formulae to express and solve the equations in matrix form.

We are now able to develop the stability analysis by superimposing an 
infinitesimal disturbance $(^,p,t) to the basic flow, and to obtain 
the linearized disturbance equation. The coefficients of this equation 
are slowly varying with £ and independent of the time t, so constant 

appropriate. An asymptotic expansion for $(£,T],t) in powers of £ ^ 
yields the well known Orr-Sommerfeld problem at lowest order. The 
coefficients here however, are functions of the slow variable oi = E?2£. 
By constructing an analytical approximation to the eigenrelation, a good 
initial guess is predicted by which a modified Newton Raphson is used to 
converge to the correct eigenvalue. The eigenfunction and higher order 
disturbance equations can now be solved using Runga-Kutta methods.

Spatially dependent growth rates are defined, and the "true" measure of 
the growth of the disturbance is taken to be the mean kinetic energy 
density of the disturbance relative to the mean kinetic energy density 
of the basic flow. Different flow quantities are found to have different 
growth rates, where the quasi-parallel prediction appears at lowest 
order, and is common to all flow quantities. By considering neutral 
stability curves of the relative energy growth rates, we are able to 
consider the separate effects of higher order corrections and curvature.

The higher order corrections to the straight walled channel do produce 
shifts in the stability curves, but these shifts are small. However, a 
constant positive curvature, produces a marked stabilizing effect, 
whereas a constant negative curvature produces a marked destabilizing 
effect, at a position in the channel where the angle of divergence is 
the same as the straight walled case.
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A related problem in which curvature is allowed to vary in sign is also 
considered. This particular channel exhibits a bottle-neck effect, and 
the flow becomes more like Pois euille far upstream and downstream. 
R-crits are found at different positions in the streamwise direction, 
and these R-crits decrease or increase according to whether the angle of 
divergence is increasinging or decreasing respectively. Thus, minimum 
R-crits can be found for different channels. This type of channel may be 
more suitable for experimentation than the previous idealised constant 
curvature channel. A further channel problem with varying curvature is 
suggested, which would also exibit Pois ueille flow far upstream and 
downstream.

Finally, the divergent straight walled channel is considered once more 
and a model of a wave maker producing an impulsive type disturbance at 
some suitable position is constructed. This isolated disturbance is 
shown to produce a wave packet type disturbance, which, according to 
quasi-parallel theory will grow or decay downstream, depending on 
whether R > R-crit or R < R-crit respectively. This idea is extended to 
the non-parallel case by superposing slowly varying, fixed frequency 
modes, which satisfy the linear disturbance equations. In this case, the 
isolated disturbance still produces a wave packet type disturbance, but 
any growth that appears is limited in the streamwise direction, and is 
restricted to sqme interval of time. All the cases considered show that 
the disturbance eventually decays downstream according to this 
linearized slowly varying approximation. Nevertheless, the results do 
suggest that when the dominant terms measuring the growth of the 
disturbance grow, (even if only for a very small range downstream, and a 
very small time interval)forsorre R> R-crit, then the disturbance might 
also be expected to grow forfhis R > R-crit.
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1.INTRODUCTION,

It is the intention that this chapter will provide a general 

picture of the important developements in Hydrodynamic Stability 

theory of parallel and non—parallel flows over the last century.

The steady state case will be considered first,followed by the 

stability of essentially steady-state, basic or mean flows. The 

case of Shen's (1961) unsteady mean flow will also be discussed 

as his findings are relevant to non-parallel flows. A section is 

devoted to the more recent developements in the past two decades 

of non-parallel flows. In the great majority of the 

investigations cited, an attempt has been made to give a resume 

of the problems and their relevance to other investigations. 

Some important issues will be reviewed at greater length, in 

particular, the cases which are relevant to this present work 

directly or indirectly.

The last section will be concerned with describing the overall 

layout, propositions, methods of solution, and a brief account 

of the results in the present thesis.

1.1 A HISTORICAL RESUME^OF SOME IMPORTANT INVESTIGATIONS

IN PARALLEL AND NON-PARALLEL FLOWS .

1.1.1 The Steady-State Problem.

Laminar flow of a viscous fluid in symmetric channels of 

slowly varying width was first studied by Blasius(l910). He 

proposed a theory for channels with walls given by
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y = + f(ex) (Blasius 1910 p226) where x and y are the usual 

cartesian coordinates and e is a small parameter independent of 

the Reynolds number.

In this theory Blasius considered a perturbation solution of the 

Navier Stokes equations and calculated the first two terms of 

his expansion with Pois euille flow at 0(1). His aim was to 

provide a solution valid at separation, that is , the position 

on the channel walls where the increase in pressure due to a 

decrease in the velocity of the fluid retards the already slowly 

moving fluid particles, such that they cease to continue moving 

forward against these combined viscous and pressure forces, 

consequently they separate from the wall and a dividing line of 

particles with zero velocity (originally along the wall) is 

visualised in which two regions of fluid motion exist. The 

region nearer the wall is one of reversed flow,and the other is 

forward flow. This explanation of separation was originally 

given by Prandtl (1904) and an account of it with simplified 

illustrations can also be found in Goldstein (1938 vol.1.p57). 

Blasius's theory does in fact provide a solution which exhibits 

the separation phenomenon.

Patterson ,(1934,1935) devised experiments and constructed 

Blasius's exponential channel to test the theory. A 

comprehensive summary of Blasius's work is given by Patterson 

(1935, pp676-677) which analyses the criterion for separation in 

more detail and shows that Blasius's numerical criterion was far 

too high. Nevertheless,Patterson's experiments do support

-17-



Blasius's work for a limited range of low Reynolds numbers and 

more important, demonstrated that two-dimensional velocity 

profiles with reversed flow at each wall could be achieved under 

laboratory conditions.

Direct extensions of Blasius's work was carried out some years 

later by Abramowitz (1949) who calculated an additional term to 

the Blasius solution. Though this did lead to a numerical 

criterion closer to the experimental one given by Patterson it 

was still too large.

A significant advance in the solution of two dimensional viscous 

flow between non-parallel plane walls came a few years after 

Blasius when Jeffery (1915), and then Hamel (1917) showed that 

the flow was purely radial. The physical parameters of this 

problem V (the kinematic viscosity) and Q (the total flux of the 

fluid outwards from the origin) are linearly related, where the 

coefficients in this relationship are expressed in terms of 

elliptic integrals.

Jeffery’s approach was to show that the streamlines of this 

motion were straight lines passing through the origin, while 

Hamel showed these streamlines were a special case of a more 

general flow in which the streamlines were equiangular spirals. 

Even though this solution was known since 1915, it was not till 

Rosenhead's (1940) paper that a general treatment of the 

Elliptic Integrals was given. This paper was in response to a 

statement made by Goldstein (1938 pp1O6-1O7) on the behaviour of 

the velocity distributions in convergent and divergent flows as 

the Reynolds number (R) was increased.

-18-



The usual definition of R ( 1 |Umax| /p , where 1 is a

representative length scale, V the kinematic viscosity and |Umax| 

the magnitude of the velocity in the flow) was inadequate for 

the flows to be considered in Rosenhead's paper, as it did not 

distinguish between the cases when |Umax.outwards| and 

lUmax.inwards| were equal. He chose to use Q/2 (here Q is still 

the flux, but more specifically it is the volume of fluid 

passing from the narrower end of the channel to the wider end, 

in unit time, between two planes which are at unit distance 

apart and are perpendicular to both walls, and which may be 

positive or negative) thus a positive value of R will now 

correspond to average outflow and a negative value of R to 

average inflow.

Rosenhead analysed the velocity profile by deriving a 

fundamental cubic equation from which the principal results 

could be deduced. (A more detailed account is found in Rosenhead 

1940 ch.4).

If 20? is the angle between the channel walls then for every 

v = a R an infinity of mathematical possibilities exist. We 

summarise them here as cases (i),(ii) and (iii).

CASE (i)

Symmetrical velocity profiles with pure outflow along the centre 

line, and as O' is increased the flow pattern becomes 

progressively structured with outflow always along the centre 

line.

-19-



CASE (ii)

Symmetrical velocity profiles with pure inflow along the centre 

line, and as a is increased, the flow pattern becomes 

progressively structured with inflow along the centre line.

CASE (iii)

Non-symmetrical velocity profiles where inflow always appears at 

one wall (either), and as d is increased, the flow pattern 

becomes progressively structured.

(illustrations of these cases can be found in Rosenhead (1940) 

pp44S-450).

Rosenhead clearly emphasizes that the mathematical analysis only 

predicts the types of possible flows but says nothing about 

which flow pattern will be adopted for a given R and a in a 

real fluid.

In a normal experiment the pressure conditions over the inlet 

and outlet ends are of paramount importance. In fact,imposed 

pressure conditions in experiment are closer'to those implied by 

pure outflow or pure inflow than those implied by the other more 

complicated types previously mentioned. Rosenhead thus felt 

justified in speculating that pure inflow/outflow are more 

likely to occur. He was led to conclude that stability 

considerations were necessary in order to determine which type 

of flow pattern the fluid will assume.

An important assumption was made by Rosenhead about the 

distribution of pressure in order to classify the sequences of 

changes that occur in pure inflow/outflow for a fixed channel 

with increasing R. We shall describe this as it will be relevant 

in later discussions, and it is fundamental in deducing the flow 

patterns.
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If we assume that the pressure distribution across the channel 

is not rigidly imposed, that is if it is loosely self 

adjusting" then the velocity profiles will be the simplest ones. 

Thus, by assuming this pressure condition and ignoring the 

non-symmetrical profiles (case (iii)), along with those having 

inflow at the centre together with regions of outflow 

(structured cases of (ii)), Rosenhead deduces that for inflow, 

an increase in R produces a flattening of the profile in the 

centre of the channel, and the drop in velocity to zero at the 

walls takes place over a narrower layer ( i.e. the classic 

boundary layer behaviour). On the other hand, in outflow, an 

increase in R concentrates the flow in the centre of the channel 

until regions of inflow appear at each wall. More regions of 

outflow and inflow appear with further increases in R.

Rosenhead finally considers a numerical example in which he 

discusses the transition from pure outflow, to outflow at the 

centre with regions of inflow near the walls, followed by 

progressively more regions of outflow and inflow. Rosenhead goes 

on to argue that since this transition occurs for a small 

increase in R, this is an indication of the instability in this 

type of flow.

This infinite set of mathematical possible profiles appears to 

be the first complete solution to a non-parallel flow problem.

Fraenkel (1962 I) was later able to show, that these profiles 

could be regarded, as providing the first term of a series 

solution for a family of symmetric channels with slightly curved 

walls.
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In the first part of the investigation Fraenkel, (1962 I) 

demonstrated that within the limitations of his theory, (if a 

wedge of semi-divergence angle O' and a curvature parameter e  

were sufficiently small) analytic separation and reattachment 

( a -CX-?') could occur even at high Reynolds number. These 

solutions were shown to be unique by limiting the channels and 

Reynolds numbers such that a <C¥j(R), where and are

the bounding curves in the RCY-plane. The Jeffery-Hamel profiles 

in this range are always symmetrical, and even in the extreme 

case, only exhibit one region of reversed flow at each wall. In 

Fraenkel's work & = Cl 2 corresponded to separation and CY = CY^ 

corresponded to a singularity.

The classic result of the singularity associated with separation 

was first shown mathematically by Goldstein (1948b), following 

the suggestion by Hartree (1939a). The validity of Goldstein's 

solution depended on inherent integral conditions which he could 

not satisfy at the time. The problem was not really resolved 

until Stewartson (1958) showed that by adding on logarithmic 

terms to the velocities already obtained, the integral 

conditions could be satisfied. Terrill (i960) extended 

Stewartson's work and also showed that logarithmic terms were 

necessary.

It is important to realise that Fraenkel's solution was not in 

disagreement with these results, when we consider the 

assumptions that were made for Goldstein's singularity to appear 

at separation. In fact the pressure distribution assumed by 

Goldstein, Stewartson, and Terrill do suggest the appearance of 

the singularity, but they do not claim that it must occur. Other 

writers have chosen pressure distributions which avoid the 

singularity.( Meksyn (1956), and Dean (1950)).
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Stewartson (1958) and later Brown & Stewartson (1969) suggested 

that two types of boundary-layer separation may exist in 

practice. The singularity type, which is appropriate to the 

"break-away" of the boundary layer from the surface, and the 

regular type, in which the boundary layer persists downstream 

with reversed flow past separation. Fraenkel speculated that 

Ctf~CtfjCould be likened to the singular type of separation and 

Ct~Q!2could be likened to the regular type. Fraenkel was thus 

able to modify Blasius's perturbation of Pois euille flow in the 

light of the Jeffery-Hamel profiles. (Fraenkel 1963 Il)«

More recently Lucas (1972) showed that if the Blasius 

perturbation expansion was taken to enough terms a very good 

degree of accuracy could be obtained for the Jeffery-Hamel 

profiles. In one case he computed thirteen terms to obtain good 

agreement. (Lucas 1972 p.47).

Fraenkel's generalized coordinate system considers a class of 

symmetric channels with small wall curvature. Thus, by fitting 

conformal coordinates to Patterson's (1934,1935) exponential 

channel he was able to make comparisons with experiments and the 

work of Blasius. He showed that the numerical criterion for 

separation using his theory ( y =e R) was equal to 4.7 and this 

compared more favourably with Patterson's experimental value, 

(somewhere between 3 and 4.3) than that found by Blasius which 

was as high as 8.75-
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A general practical difficulty when considering experimental 

verification of Fraenkel's theory is the enormity of the final 

throat width of the channel that can exist at and beyond 

separation, compared with the initial throat width. This is 

implied by the imposed limitations of the theory. It is possible 

however, to choose the parameters defining this ratio of the 

throat widths so that it is not enormous. Fraenkel suggested 

that his hyperbolic-tangent channel (Fraenkel 1 965 II p.4O9) 

could be tested experimentally. This suggestion does not appear 

to have been considered yet.

1.1.2 The Stability Problem.

The study of the transition from laminar flow to turbulent flow 

has been one of the major issues of hydrodynamics for the last 

century. It was generally accepted that’if the disturbance to 

the laminar flow ultimately decayed then the flow was stable, 

but if the disturbance was permanently growing then the flow was 

unstable. It does not follow that instability is sufficient for 

turbulent motion. However, the initial problem was to solve for 

stability of laminar flows to small disturbances.

The first mathematical investigation of two dimensional 

hydrodynamic instability seems to have been made by Helmholtz 

(1868). He considered two parallel streams at different 

velocities and proved the instability of wavy disturbances over 

the surface of discontinuity. Later, Lord Fayleigh (1880) 

extended this idea by considering velocity profiles approximated 

by broken straight lines for an inviscid fluid in a parallel 

channel. An important result from this study was that in 

unstable motion the velocity profile approximated by straight 

lines has a shape consistent with a point of inflexion, 

indicating that a point of inflexion is a necessary condition 

for instability in inviscid fluids.
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Osborne Reynolds (1883) showed experimentally that if water 

passed through a circular straight pipe, and the flow conditions 

were disturbed at entry, then this disturbance would eventually 

die downstream if the value of his now famous Reynolds number R, 

was small enough. If R was then increased, a critical value of R 

was reached (R-crit) such that if R > R-crit the flow in the 

pipe becomes turbulent. Reynolds also explained that viscosity 

played a dual role in this question of stability. In one way it 

had a damping effect, and at the same time a destabilizing 

effect, through the no-slip condition at the walls of the pipe.

In a later paper Reynolds (1895) suggested that the physical 

mechanism responsible for the transition of laminar flow to 

turbulent flow was the transfer of energy between the basic 

laminar flow and the superimposed disturbance. If the 

disturbance grows , it implies that energy is being absorbed 

from the basic flow faster than it is dissipated by viscosity. 

On the other hand , if the disturbance decays then viscosity is 

the dominant factor. This view was generally accepted and many 

early stability investigations were based on energy principles.

Some notable investigators of the time include Lorentz (1896b), 

Orr (1907), and Sommerfeld (1908). They considered the 

conditions under which the energy of a disturbance increased or 

decreased with time by assuming a convenient disturbance at some 

instance, and then finding out whether the energy associated 

with this disturbance increased or decreased immediately 

afterwards. The assumed disturbances were chosen to satisfy the 

boundary conditions but not the equations of motion, the 

R-crits found were not satisfactory. They were in fact much 

lower than those observed experimentally. ( see Lin (1955) p.59, 

Rosenhead (1963) pp516-518).
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A significant advance in the study of real fluids was made 

possible when Prandtl (1922) showed that the viscous forces 

induce a mocb.jne.4, Hyes; (Rey<wl4s which is absent in this jurwv m ike 

inviscid case. These Reynolds stresses were shown to be the 

physical mechanism for transferring the energy from the basic 

laminar flow to the disturbance. In this way the presence of 

viscosity could lead to instability.

One of the existing classical problems of hydrodynamic stability 

was that of plane Pois euille flow. The implications of this 

problem are extremely important in the development of 

non-parallel flows and in particular to this present 

investigation. We now consider some of these ideas and important 

investigations leading up to its solution.

Heis enberg (1924) was probably the initiator of modern .day 

stability theory. He formulated the mathematical problem by 

considering a given steady-state solution of the Navier-Stokes 

equations, and by adding to it a suitable disturbance function, 

derived the non-linear disturbance equations. Even though 

Heis enberg did not actually solve the complicated non-linear 
ISo ImC. Ofr- Son’ll Q. <Xr\cL

problem he did(conclude4that plane Pois euille flow was unstable 

for a sufficiently high Reynolds number.

The controversy that ensued as a consequence of Heis enberg's 

theory discouraged many investigators in pursuing the problem 

along his lines. Nevertheless, the general difficulties as a 

result of Heis enberg's work were taken up by Tietjens (1925), 

and then Tollmien (1929). They considered two dimensional
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infinitesimal wave like disturbances of the form

exp(i(kx-0t)). The x and y are the usual cartesian 

coordinates, and t is the time. The values k and p can both be 

complex in general, where the real part of k (k^. ) is the 

wave-number, and the real part of P (pg) is the frequency. The

imaginary parts k- and 

and time respectively. This assumed wave like disturbance was

substituted into the equations of motion this time, and by 
neglecting non-linear terms in (|) in the disturbance equation, 

they obtained the well known Orr-Sommerfeld problem (4-50)• This 

equation formed the basis of linearized stability theory.

Tietjens (1925) applied the theory to the velocity profiles 

consisting of broken lines in the manner of Rayleigh (1880), but 

now taking viscosity into account, and found instability in many 

cases. Tollmien (1929) applied the theory to the case of the 

boundary layer of constant thickness with Blasius’s velocity 

profile. The same problem was also considered by Schlichting 

(1933)- The R -crits found by Tollmien and Schlichting were found 

to be 420 and 475 respectively. This application of parallel 

flow theory to the boundary layer received some criticism by 

Taylor (1938), as it was well known that the boundary layer 

increased in thickness downstream no matter how thin it was. 

However, the parallel theory applied to the boundary layer seemed 

to have been completely vindicated by the experiments of 

Schubauer & Skramstad (1947).
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Tollmien (1955) extended Tietjens (1925) problem to continuous 

velocity profiles and proved the converse of Lord Rayleigh's 

theorem for viscous fluids. That is, a point of inflexion in the 

velocity profile is a sufficient condition for instability in 

flow between parallel walls or along a wall. This condition is 

not necessarily sufficient for other velocity profiles.

(see Lin 1945 II p.222).

The linearized theory with infinitesimal disturbances was not 

convincingly applied to the plane Pois euille case until Lin 

(1945 I) calculated an R-crit of 5,500. Other notable workers 

around the same time applied this theory essentially along the 

lines of Heis enberg and Tollmien, and found R-crits of similar 

magnitude. Among them, Meksyn (1946a) found 6,800, Shen (1954) 

calculated coordinates of the neutral stability curve by 

perturbing Lin's neutral curve and confirmed Lin's results. 

Thomas (1955) solved the Orr-Sommerfeld equation numerically on 

a high speed computer for both damped and amplified disturbances 

and found 5,780. This value could be regarded as the most 

accurate. Lock (1954) found 6,000 by improving the analytical 

method of solving the Orr-Sommerfeld equation. All these 

theoretical results were however substantially higher than the 

experimental results of Davies & White (1928), who found R-crit 

to be as low as 1000.

It was suggested by Meksyn & Stuart (1951), (see also Stuart 

(1951)) that considerations of finite disturbances including 

non-linear effects of the mean flow could resolve the 

discrepancy. They solved the Orr-Sommerfeld problem 

simultaneously with a non-linear mean flow and obtained after 

some approximations an R-crit as low as 5,000. Even though this 
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did not completely remedy the situation it did at least give 

support to this approach. This controversial state of affairs 

motivated many investigations into the non-linear aspects of 

plane Poisseuille flow.

An important contribution was made by later by Stuart (i960) and 

Watson (l960).They followed on from Landau (1946b) and others, 

by considering the evolution of disturbances of the form 

A(t) (|)(y) exp(i(kx-pt)), both for plane Pois euille flow and 

plane Couette flow. These disturbances with time dependent 

amplitudes were conveniently considered for real k and complex 0.

A non-linear theory was also developed by Watson (1962) on 
disturbances of the form A(x)<|)(y) exp(i(kx-pt)), with preal. 

These disturbances with spatially dependent amplitudes were felt 

to be more closely related to the disturbances investigated 

experimentally.

Gaster (1962) showed formally how the amplification rates and 

ky , for these "time-dependent" and "spatially-dependent" flows 

respectively,were related through the group velocity (dp^/dk^,). 

These relatonships hold only when the wave number k^, is common, 

and when the amplification rates are small. The same 

relationship was in fact used earlier by Schlichting (1953) to 

compute the spatial amplification rate (k ) from considerations 

of a "time-dependent" flow, but apparently without any formal 

justification.

It has since been demonstrated that linearized stability only 

provides a sufficiency condition for instability, but this 

condition is not a necessary one as non-linear considerations 

may imply instability at a lower R-crit (see Stewartson & Stuart 

(1971)).

This seems an appropriate point at which to leave the non-linear 

development of plane Pois euille flow and consider the 

implications of the linearized theory to essentially
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non-parallel flows.

1.1.3. Recent Developments in the Stability 

non-parallel flows .

The mean or basic flows above , have always naturally been 

assumed parallel and steady. When the basic flow is neither of 

these but is slowly varying with respect to the variable 

concerned it seems reasonable to assume that the stability at 

some point depends only on the local physical properties of the 

flow, such as the velocity profile and the Reynolds number.

In these flows the mean or basic flow is still taken to be 

steady and parallel but the growth rate is recognized to vary 

with space and/or time. This is in contrast to the parallel flow 

theory in which the growth rate is constant in space or time. 

This extension describes the "quasi-parallel" or "quasi-steady" 

theory. In the case of the boundary layer we have seen that the 

quasi-parallel approach was experimentally verified. (Schubauer 

& Skramstad (1947))•

Lanchon & Eckhaus (1964) have shown that by considering a formal 

local expansion of the slowly varying coefficients about some 

point downstream, and studying the asyiptotic behaviour at high 

Reynolds number, that the steady, quasi-parallel assumption is 

good as a first approximation to the boundary layer flows, but 

that in more rapidly varying flows such as jets, the 

non-parallel dependence has to be included in the solution of 

the Orr-Sommerfeld problem.
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The need to introduce a theory which took account of the change in the 

basic flow with time and/or space, was becoming increasingly apparent.

A general treatment for spatially-varying and time dependent flows was 

given by Benney <S Rosenblat (1964).They considered basic flows as

local approximations to true flows. Thus, if these basic flows were 

slowly varying with a particular variable (x,y,z,t), to then formally 

introduce slow variables (X =/lx; Y =^iy; Z = ptz; T =p.t), rather than 

assume complete independence of them, as in the quasi-parallel or the 

quasi- steady assumption. They suggested that the linearized

disturbance to the basic flow should also exhibit these slow

variations -with respect to the variable concerned, and that the

resulting equations should be solved by a WKB 

(Wentzel-Kramers-Brillouin) approximation. This approximation is 

applicable to situations in which the wave equation (in this case the 

Orr-Sommerfeld problem) can be separated into one or more total 

differential equations, each of which involves a single independent 

variable. The method is also known as the "ray" or "multiple scaling" 

method, and was used to approximate the solution to Schrodingers wave 

equation, (see Wentzel (1926), Kramers (1926), Brillouin (1926)). In 

fact the mathematical technique was even used earlier by Liouville 

(1837),Rayleigh (1912), and Jeffreys (1923).

This suggestion by Benney & Rosenblat (1 964) was not in fact 

considered until six years later when Rosenblat <S Herbert (1970), 

applied the method to thermal convection in which the temperature of 

one boundary was slowly oscillating with time.
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In the multiple-scaling method the quasi-parallel solution appears at 

the lowest order.

Prior to this , parallel and unsteady basic flow was already 

considered by Shen (1961). His aim was to extend the theoretical 

attempts (Karman & Lin (1955)) to explain vortex creation by 

deceleration. This phenomenon was demonstrated experimentally by Fales 

(1955), by gradually stopping a moving flat plate in a water tank. The 

slowing down of the boundary layer caused transverse vorticity to 

appear. Coles (1958), demonstrated vortex creation between coaxial 

circular cylinders. A start stop mechanism on the outer cylinder 

generated vortices with axes parallel to the cylinders.

Shen introduced the concept of "momentary stability" for unsteady 

basic flows. He argued that since the basic flow is changing, the 

growth or decay of a disturbance must be measured relative to the base 

flow. Since , if the disturbance is increasing but the basic flow is 

increasing at a faster rate, the disturbance relative to the basic 

flow would appear to decay at a later instant. The converse argument 

for decaying disturbances and decaying basic flows equally holds. Thus 

the disturbance may only be seen to decay or grow momentarily. If the 

flow sustains the "momentary instability" after a certain instant, it 

may be concluded that transition to turbulence must occur sooner or 

later.

Shen found that the quasi-parallel solution was only acceptable for 

small accelerations or decelerations, and that deceleration was found 

to have an "overwhelming" destabilizing influence irrespective of the 

velocity profile considered. Shen's suggestion then, was that the 

experiments of Fales (1955) and Coles (1953) could be explained on the 

basis of/a parallel but unsteady basic flow.
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At this stage the quasi-parallel/quasi - steady theory, the local 

expansion theory due to Lanchon & Eckhaus (1964), and the slowly 

varying theory suggested by Benney & Rosenblat (1964), formed a 

trilogy of theories from which many problems in hydrodynamic stability 

could be tackled.

Eagles (1966), considered the stability of the Jeffery-Hamel profiles 

in a straight walled channel of divergence 2 a. He adopted the usual 

quasi-parallel theory and solved the classic Orr-Sommerfeld problem 

for basic flows, which are characterized by the Jeffery-Hamel 

profiles, rather than the plane Poisseuille profiles. Here k is real 

and p is complex. The parameter Oi R (fin Eagles paper) defines the 

Jeffery-Hamel profile. The neutral stability curves ( Py =0) were 

obtained for various values of y up to 5«45,(the singularity in the 

velocity profile occurs at y = 5.46), where y= 0 corresponds to plane 

Poisseuille flow.

The Jeffery-Hamel profiles were shown to be drastically more unstable 

than the plane Poisseuille profiles. Thomas's (1953) calculations of 

R-crit, (5,780) becomes 3910 (based on R = Q/2f ) and Eagles's R-crit 

was about 215, for a channel whose semi-divergence angle was as small 

as 0.01.

Ling & Reynolds (1973) considered infinitesimal amplitude disturbances 

to a steady but non-parallel basic flow. This basic flow was assumed 

to be slowly varying with the downstream coordinate x, and an 

expansion of the parallel solution was posed about some point xQ , 

where the Orr-Sommerfeld appeared at lowest order. This approach was 

essentially along the lines of Lanchon & Eckhaus (1964). They applied 

this local expansion to the Blasius boundary layer and the two 

dimensional jet.
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In the former case they found that the neutral stability curve was 

virtually unchanged by their non-parallel correction. (R-crit was 

reduced by 0.1% at most). In the latter case .there was a distinct 

destabilizing effect due to the non-parallel correction, analogous to 

Shen's (1961) destabilizing effect due to the unsteady base flow 

correction. However, the small R-crits involved in such flows makes 

the expansion dubious, as the expansion is essentially in powers of 

1/R. These non-parallel effects become less significant at higher 

Reynolds number.

Around this time there had been experimental evidence

(Ross et al (1970), Mattingley & Criminale (1972), Scotti X Corcos 

(1972)), demonstrating the deficiencies of the quasi-parallel theory 

in a quantitative way. Even from a theoretical point of view, the 

quasi-parallel approach is questionable. It does recognize that the 

growth of the disturbance is a function of space, but it cannot 

determine this function in terms of the downstream coordinate, it can 

only predict whether a wave is growing or decaying at a point. In 

addition, it cannot predict the effect that the change in the basic 

flow will have on the disturbance.

The local expansion theory has also been shown to be incomplete. It 

does take into account the variation of the basic flow, and 

consequently its effect on the growth of the disturbance, but since 

the solutions take the form of a series in powers of (x-x ), it cannot 

be considered as a complete solution of the downstream variable x, but 

is only useful near xQ.

Local expansion solutions have only been developed for temporally 

growing disturbances and thus cannot compare with experiments 
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involving spatially growing modes, (see Saric & Nafeh (1975))» The 

zeroth-order approximation of the solution of Ling 5 Reynolds (l97y) 

for the two dimensional jet,(which is really the quasi-parallel 

solution) has teen shown by Joseph (1974) to be not uniformly valid. 

Thus for these experimental and theoretical reasons, other 

investigators have chosen to adopt the multiple-scaling (WKB) approach 

for non-parallel flows. In particular, Bouthier (1972,1975) applied 

this method to the Blasius boundary layer and achieved very good 

agreement with the experimental data of Ross et al (1970). 

Unfortunately he was not specific about whether the local kinetic 

energy he used to obtain the corrected neutral stability curve, was 

the same as that observed in experiment.

In a detailed description of the three theories mentioned, Bouthier 

showed that the local expansion was really a Taylor series expansion 

of the multiple scaling solution about xQ. In addition he showed the 

surprising result that different flow quantities (streamfunction, 

energy, velocity, etc) have different neutral curves. Thus, 

comparisons of theoretical and experimental results have to be carried 

out with definite flow quantities in mind.

Gaste-r (1974) comments on Bouthiers expansion, and in particular, 

discusses an important theoretical point concerning the ordering of 

the terms in the expansion. The small parameter ( e say), used in the 

scaling of the coordinates and in the formal expansion procedure is 

O(1/R). There is in fact a formal relationship between E and R in the 

basic flow problem. This relationship was ignored in the disturbance 

equation, and e and R were treated as independent parameters. Ling & 

Reynolds (1975) adopted a similar approach. This means that the 

viscous term (1/R is retained at lowest order, even though it is
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formally smaller than the other terms. Gaster argues that artificially 

separating these parameters does not take into account the vertical 

structure of the Orr-Sommerfeld solutions in ordering the terms of the 

expansion. He recognizes however, that this is necessary to do this if 

one wants to avoid a singular perturbation problem, where the 

expansion procedure has to be carried out separately in the various 

layers (i.e. regions where viscous terms dominate, and regions where 

non-viscous terms dominate). Eagles & Weissman (1975) argue that as 

1 /R multiplies the highest derivative, the term (1/R)V’4/ will be 

important somewhere in the flow field. Thus, numerical techniques to 

solve for the vertical structure (which are appropriate here since R 

is large), require the viscous term to be kept at lowest order. The 

formal relationship between £ and R is returned to when

numerical values are required for sand R. In fact by treating £ and R 

as independent parameters, one obtains a more general solution at 

lowest order than necessary. If this relationship between £ and R is 

retained throughout, a singular perturbation problem is obtained where 

matched inner and outer solutions can be found. This has recently been 

considered by Smith (1979), who applied the problem to the lower 

branch of the neutral curve for the boundary layer, and obtained good 

agreement with Bouthier and Gaster. Gaster in fact uses a different 

formalism to Bouthier, so as to account for the vertical structure in 

ordering the terms of the expansion. His theoretical results did not 

compare as well as Bouthier's, but this was probably due to the way he 

defined the flow quantity to obtain the neutral stability curves.
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Another contribution to this general theory was made by Nayfeh, Nook, 

& Saric (1974), who also considered the stability of the boundary 

layer. Eagles & Weissman (1975), have commented that the solutions of 

Nafeh et al did not include the downstream dependence of the 

eigenfunction, (a solution of the Orr-Sommerfeld problem) in their 

expressions for the corrected growth rate and wave number.(see 

equations (27) & (38) in Eagles & Weissman (1 975)). However, as Najfeh 

et al obtain very good agreement with the experiment of Schubauer & 

Skramstad (1947), and Ross et al (1970), it may be that the downstream 

dependence of the eigenfunction is insignificant for large Reynolds 

numbers in the case of the boundary layer.

The investigation of Eagles & Weissman (1975),( on which this thesis 

is partly based) could be considered as forming the second part of the 

investigation by Eagles (1966), and receives an extended summary here.

In the usual way, the linearized disturbance equation based on an 

assumed basic state flow, (in this case the steady two-dimensional 

symmetric Jeffery-Hamel profiles) was found. The coefficients of this 

disturbance are independent of time, and slowly varying with 

5 , (?=(l/<^ ) ln(ctr),CY is the semi-divergence angle and r is the

polar displacement) hence constant frequency (p) solutions are 

appropriate.

The fundamental difference between quasi-parallel theory and the 

multiple scaling method (WKB) is exemplified here. The latter method 

recognizes that the eigenfunction and wavenumber are slowly varying 

with , whereas the quasi-parallel theory would now completely ignore 

this variation. Thus the disturbance takes the form

(r| ,x) exp(i (O( )-pt)) + c.c, where c.c represents the complex

conjugate of the preceding terms. The modified polar angle T] = ’t’/cv, and 

X =ce^is the slow variable. The phase function ©(^), describes the 
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fast variation of the wave, while the wave number K(X) - dO/d^

(Kf, the real part of K, is no longer the physical wavenumber) is 

slowly varying. For spatially growing waves, K is complex, and P is 

real.

The trial disturbance was substituted into the disturbance equations 

in the usual way, and by expanding 'P in powers of Of, a sequence of 

problems was obtained at different orders of CV. As already explained,CY 

and R were considered as independent parameters in the disturbance 

equations, and their formal relationship ( y =Of R in this case) is 

returned to in the final analysis.

The lowest order equation obtained was the Orr-Sommerfeld problem. The 

difference here being, that where the physical frequency and the 

physical wavenumber normally appear, we see the slowly varying 

functions pexp(2X) and K(X) respectively. This partial differential 

eigenvalue problem, becomes amenable to solution since X appears 

parametrically. Thus a solution of the form A(X) f(q;X) can be found. 

Here, A(X) is a complex amplitude function, and it can be interpreted 

as the amplitude of the streamfunction along the centre of the 

channel. The function f (-q;X) is a solution of the Orr-Sommerfeld 

equation for fixed X.

Drazin (1974), considered the two-dimensional jet flow problem using 

the multiple scaling method, but did not include the amplitude 

function in any equivalent form, and consequently could not obtain 

higher order corrections to the growth of the disturbance. He did show 

however that the quasi-parallel flow is invalid in practical terms 

even as a first order approximation for long waves.

The amplitude function A(X) above, was solved for,by finding the 

equation satisfied by the next order stream function. The resulting 

inhomogeneous equation has a solution only if a certain solvability 

condition is satisfied. This condition yields the equation for A(X) at 

-53-



this order, and this process is necessarily repeated to obtain higher 

order amplitude functions.

As already shown by Bouthier (1972,1973) not all flow quantities have 

the same growth rate. The choice of the flow quantity usually depends 

on the one chosen in experiment to define the neutral stability curve. 

In the absence of experimental data, Eagles & Weissman chose to use a 

mean kinetic energy density averaged over time and integrated across 

the channel. This defined the absolute energy E. Shen's (1961 ) 

arguments on the growth or decay of the basic flow were adapted here 

for spatially growing waves. A relative kinetic energy density was 

also defined (E), such that E = E/Eq where E is the kinetic energy 

density of the base flow.

In comparing the growth rates of different flow quantities, Eagles & 

Weissman found a consistently destabilizing effect. (Recall Shen's 

(1961) result for unsteady mean flows). The quasi-parallel growth rate 

part of K(X)) appears at first order, and as the 

is of 0(tt ), the quasi-parallel solution can only be 
providing a good first approximation, if |k -| is much 

numerically. It was suggested that a useful parameter 

-K • (imaginary 

corrected term 

thought of as 

larger than Of

could be a/1K• | , and. that if it was small, the variation of the basic 

state on the growth could be ignored.

No experimental evidence existed in which to compare their theoretical 

results, and Eagles & Weissman acknowledged that their assumed 

steady-state solution may not actually exist in experiment. They 

referred to the results of Irig.s (1964) and Gaster (1965), who both 

considered an initial value problem where the wave maker is suddenly 

turned on. These investigators found that in parallel flows, if the 

real part of the group velocity is positive for unstable modes, then a 

transient disturbance would propagate downstream,leaving a 

steady-state wave behind. It seemed reasonable to assume that the same 

criterion would hold for unstable slowly varying flows, as the 

solutions investigated by Eagles & Weissman showed that the real part 

of the group velocity was positive for all frequencies.
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Waves of all frequencies were found eventuallybdecay downstream, 

and in the unstable regions, the waves did not grow very much before 

they started to decay.

The stability of the above analysis was based on a linearized theory 

for infinitesimal disturbances. It may be argued that the amplitude of 

the wave may become large enough for non-linear terms to become 

important. The paper of Eagles (1973) considered this problem for the 

Jeffery-Hamel profiles, and applied the non-linear theory of Stuart 

(i960) and Watson (i960). The downstream variation of the disturbance 

was ignored here (as in the quasi—parallel approach), and the 

calculations were for temporally growing disturbances, not for 

spatially growing ones. Eagles found that the non-linear effects were 

stabilizing. The same stabilizing effect might be expected for slowly 

varying spatial disturbances, but of course this is purely speculative 

as this analysis does nqt appear to have been attempted in full. On 

this basis then, we might expect small and finite amplitude waves to 

pass through regions of growth, but to eventually decay as they 

travelled downstream.

The investigations discussed so far have flows characterized by large 

Reynolds numbers. Di Prima & Stuart (1972) applied a multiple scales 

method to flows between eccentric rotating cylinders, with flows 

characterized by 0(1) Reynolds number. They found that the effects of 

the non-parallel flow, increased the critical Taylor number predicted 

by quasi-parallel theory.

The multiple scaling method can equally be applied to basic flows 

which change slowly with time rather than space. Hall & Parker (1976) 

have applied the method to the linear stability of laminar flow in a 

suddenly blocked channel. They found that the quasi-steady 

approximation, was only uniformly valid if the Reynolds number was 

large.

Eagles, (1977) has also applied the theory to the linear stability of 

slowly varying flows between concentric cylinders. Here, Eagles 

considered the outer cylinder fixed, and the speed of the inner 

-40-



cylinder, slowly increasing with time. The Taylor number T, was now
*• * 

considered as a function of the slow variable in time, t, where t =£7 

By varying the Taylor number close to T , (the critical Taylor number 

of steady flow) he was able to examine this effect on the 

instantaneous Taylor number, at which vortices first appear. 

Axisymmetric disturbances, to the axisymmetric basic flow were 

considered. They were in fact the typical WKB modifications of the 

quasi-steady disturbances, and the expansions posed for the basic and 

disturbed flow, yielded the steady state eigenvalue problem at lowest 

order with the eigenvalue now dependent on t. The growth of the 

disturbance was based on Shen's (1961 ) relative growth rate, and 

Eagles found that the inclusion of higher order corrections, predicted 

a somewhat surprising stabilizing effect. The critical Taylor number 

was found to increase by as much as 24!? in one case.

More recent applications of the multiple scaling method to 

non-parallel flows, have been made by Zollars 5 Krantz, (19S0) as an 

extension to their steady state solution. (Zollars & Krantz (1976)). 

The sequel paper considered non-parallel effects to the stability of 

film flows down a right circular cone. This investigation was carried 

out because of the same deficiencies already discussed in quasi-

parallel theory. Zollars's & Krantz's findings bear a strong • 

resemblance to those of Eagles & Weissman. They found that all 

disturbances eventually decay far enough from the apex of the cone, 

but disturbances can become amplified locally near the apex, both in 

an absolute and relative sense, (i.e. relative to the base flow).

By considering expressions for their spatially growing amplitude 

factors, both for absolute and relative growth,(4.2 and 4.4 

respectively in their paper) they were able to compare the sizes 
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of terms characterizing (i) frequency of the disturbance, (ii) the 

dynamics of the flow, and (iii) the physical properties of the fluid, 

as functions of the axial distance. They found that the principle 

stabilizing effects in these non-parallel flows were the viscous 

forces. These forces became more dominant with the progressive 

thinning of the film (i.e. far from the apex). This was in contrast to 

the parallel case in which the principal stabilizing effect was the 

increase in surface tension, (associated with increases in frequency) 

and this accounted for the stability of high frequency disturbances. 

In fact an increase in surface tension has a destabilizing effect in 

non-parallel film flows.

In an attempt to construct a model which might test the multiple 

scaling method for steady, non-parallel flows experimentally, 

Eagles & Smith, (1980) recently considered symmetric two-dimensional 

channels with slowly varying widths. They used cartesian coordinates 

(x,y) where the channel walls were given by y = ± H(x); X =Ex, £ is a 

small parameter, thus X is the slow variable. The particular channel 

they considered for experimental testing was H(x) = 1 + tanhX / 2 so 

that as X—>±OoPois euille flow is expected.

The channel walls were chosen to vary slowly, and the degree of this 

slow variation was achieved by considering axial length scales of 

0(R). This implied that the slope of the walls were of O(1/R). the 

small parameter was then necessarily of 0(1/R). In fact Re = X, whereX 

is a constant of 0(1). This choice yielded the classic boundary layer 

equations for the slowly varying flow. The pressure was not assumed in 

this problem and thus separation, if it occured would be regular, in 

the manner of Fraenkel's (1962 I) analysis, and not like the singular 

type suggested by Goldstein's (1948b), Stewartson,s (1958), and 

Terrill's (1960) investigations.
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The problem was theoretically tested for the special case when 

H(X) = X, and the steady state flow then becomes the Jeffery-Hamel one 

which is independent of X. The stability problem they considered was 

for fixed frequency distributions to the basic flow, in the manner of 

Eagles & Weissman (1975)• In the expansion that followed, the 

Orr-Sommerfeld problem appeared at lowest order. One important 

difference was that the downstream dependence was not just in the 

frequency term, and the local wave number, but also in the basic flow. 

The general scheme that followed has already been described earlier in 

some detail, for the investigation of Eagles & Weissman (1975)-

The basic flow varies with X, and different neutral stability curves 

can be obtained for each X as well as for each X . In the straight 

walled case, neutral curves were plotted for intrinsic frequency
Pj =pexp(2X) vs. R. If R > some R-crit, growing disturbances could be 

expected at all X stations, since random disturbances of the steady 

state flow would contain components of the fixed frequency waves 

considered. In this curved walled case however, neutral curves need to 

be plotted for w (w a p here) against R for each X and for each X . 

From these three-dimensional neutral stability boundaries, plots of 

R vs. X can be extracted for each X . This would show that if

R > some R-crit, disturbances grow for a limited range of X, and this 

would only be possible for a corresponding range of frequencies.

Both the problems of Eagles & Weissman (1975) and Eagles <S Smith 

(1980), have been considered by Allmen (1980). He tackled them by a 

direct numerical approach on the partial differential equations 

governing the motions. The close agreement between Allmen and both the 

above investigations , serve to support the theoretical ideas 

discussed in the expansion procedure.
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1.2 The Present Thesis.

The general dimensional Navier-Stokes equations for two-dimensional, 

incompressible flow will be rewritten in terms of Fraenkel's 

generalized non-dimensionalized coordinate system (2.16). This 

equation, which governs the total stream function , will be 

considered by superimposing infinitesimal disturbances (<|>(^,q,t)) to 

the basic flow q)). The non-linear equation for the steady state

basic flow will be considered first, and the disturbance equation for 

# (?,q ,t) will be determined by neglecting the non-linear terms.

The class of symmetric channels will be generated by choosing a slowly 

varying complex function Oi( T ), which we will show behaves like the 

slope of the channel walls. This function will be used to determine 

the physical coordinates of the channel. This can be done numerically 

or analytically in the first case given by (3.7). We will express the 

coordinates of the channel walls in ascending powers of a small 
parameter e^, (which is a measure of the divergence angle) and we will 

see that the modified polar coordinates used by Eagles & Weissman 

(1975), emerge as a special case of Fraenkel's generalized 
cordinates, in the limit asE^-»0.

Before considering the asymptotic development of the equation governing 

Q(^,q)and 4>(^,q,t), we shall introduce a slow streamwise variable
= e^2 , jn Fraenkel's (1963 II) asymptotic development of the steady-

state solution, the original slow variable a = e £ was used. The 

variable cj 1 is seen to be necessary when we consider the disturbance
2 A equation, and in particular the unboundedness of the term h in

1/2
(2.19a). This term is not bounded in the limit E m->0, o fixed, but it is 

l/2
for E =—0, affixed.

We shall initially develop the asymptotic analysis for Q(£,q) in 
terms of a. (fi = Q0(a,q) + E^Q^a.q) + cQ^o.q) ♦ ...). (^represents a 

set of Jeffery-Hamel solutions for some fixed a .
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In order to avoid the problem of unboundedness in the disturbance 

equation, we shall develop a further asymptotic expansion of 
f!0, and^in terms of Gg, Gj , G2, Fg , Fj , and Hg, f or £ /2—0, o^f ixed. 

This really corresponds to a Taylor series expansion of Qg.fij, and Q2 

about o=0. This way we shall have a consistent asymptotic analysis 
for bothfi(£,q) and $ (£, q , t). (i.e. £1/?—0, Op q fixed ).

The two essential conditions necessary to apply Fraenkel's small wall 

curvature theory, are given by (3«3) and (3.4). This implies a 
relationship between R and e  /2 (4.3). It also ensures that the 

non-linear, streamwise independent, Jeffery-Hamel profiles appear at 

0(l), thus providing the required first approximation for channels 

with slightly curved walls. The simplest ones will be considered, that 

is, the symmetric ones with at most one region of reversed flow at 

each wall.

We will consider three convincing checks on the validity of this 

double expansion. The first will be obtained through the curvature 

parameter m, in (3»7). The equations governing the staight walled case
1/2are conveniently retrieved by setting m = 0, and then lettings —-0.

We shall see that the term ommited by Eagles & Weissman (1975) 

(see equations (2) and (3) of their paper) is equivalent to EdHg/dq in 

this analysis. The second check will be obtained through a direct 
expansion of fi(£,q) in terms of functions of Oj . The resulting 

ordered set of partial differential equations are shown to be 

satisfied by the corresponding ordered functions in the former double 

expansion. The third check takes the double expansion to the next 

order, (0(e z )) and we will show that when dealing with the numerical 

results, the solution of the basic flow up to and including the 

0(£ ) terms is sufficiently accurate for the purposes of this 

investigation.
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We will begin the asymptotic development of the disturbance stream 

function $ by considering (2.19a). The coefficients of this equation 

are independent of time, but slowly varying with . The most 

appropriate form of <£> will be the usual WKB modification of the quasi-

We shall forego any detailed discussion on the artificial separating
1/2

of the relationship between R and E £in the disturbance equation here, 

and refer this to previous arguments.

The important problem in the unboundedness of h, will be clearly seen 

now in (4.26), where the need for c^as the slow variable (as opposed 

to a ) is necessary. The usefulness of Fraenkel's generating function 

is seen in (4.27), where Of (a) represents the semi-divergence of the 

channel walls. ( q = ± 1).

. 1/2
The asymptotic expansion of O’ (o^T]) in ascending powers of £ 

1/2
( 0 = 0Q+ E z0^+ £ *** yields a sequence of problems with the

Orr-Sommerfeld problem at lowest order, where now, the coefficients 

and the eigenvalue (k) are functions of the slow variable Oj. This 

eigenvalue problem will be solved by means of an approximation to the 

eigenrelation, defined by the essential characteristic equation 

(4-56), which ensures non-trivial solutions to (4.46). We will then 

utilize the theory of homogeneous linear differential equations, to 

solve for 0^and 0^. We look for solutions in the form

= AJ‘a|)f(/oi’1l)’ and = + A/°pfQ'a1’Tl^ where Aoand Aj

are interpreted as the amplitudes of 0Q, 0^ respectively along the 

centre of the channel. Thus f0 , f*, which satisfy (4.29a) and (4.32a) 

respectively for fixed Op can be normalized arbitrarily. The equations 

for Aq , and Aj,are found by appealing to solvability conditions for

solve (4.37a) for fixed o^as a further check on Aj, but we wont solve 

for A(a).
2 1
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In establishing higher order expressions for the growth rates of 

various flow quantities, we shall use the "yardstick" 

suggested by Shen (1961) as a measure of the growth or the decay of a 

disturbance. That is, the relative mean kinetic energy density, 

averaged over time , and integrated across the channel. These 

expressions will show that all growth rates are the same at lowest 

order, (as predicted by the quasi-parallel theory) but they will be 

different however for different flow quantities with the higher order 

corrections. They are given in convenient forms suitable for computing 

purposes, aswell as comparing with the corresponding expressions for 

the straight walled case of Eagles <S Weissman (1975)«

The theoretical scheme briefly described above, is first applied to a
i k s 1 y*v

channel whose curvature is constant/^ but may be positive or negative. 

This channel can theoretically be extended to + oo , but we must 

imagine our channel for analysis, to be representative of some portion 

of the theoretical infinite channel (see FIG-1). In the second instant 

it will be applied to the case of a more realistic channel given by 

(7.1). This channel is called a Fraenkel-type channel as it satisfies 

the conditions required by Fraenkel (1963 II p4O5). Here we will 

introduce a facility to enable commencement of the stability analysis 

anywhere in the given channel. We will thus be able to give a complete 

picture of the flow as we travel upstream or downstream. This facility 

is not really necessary in the constanti^curvature channel, even though 

we-will follow the growth or decay of a disturbance downstream for a 

limited range of Op

The equations obtained describing the steady state functions, will at 

first appear different from the former constant curvature case, but a 

transformation will be considered which makes the two problems 

equivalent,with the exception of some additional terms. These 

additional terms, which appear in the Fraenkel-tvpe channel analysis, 

can be shown to stem directly from the fact that the curvature is 

varying « move aenerat,
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The problems associated with choosing parameters in order to avoid the 

difficulty of a large final and initial throat width ratio, will be 

discussed analytically, and a reference will be made to a particular 

channel for experimental purposes.

Finally, the straight walled channel is recalled once more in order to 

consider a more general disturbance to the base flow. This general 

disturbance will be constructed by adding slowly varying fixed frequency 

modes of the form exp(i (O(£)-/3t)) • Boundary conditions will be

defined in order to make this general disturbance a 3-type function in 

t, at Oj = 0. This impulsive disturbance will be shown to produce a wave 

packet type disturbance. The object will be to consider whether this 

resulting disturbance develops into a growing or decaying packet 

downstream, and whether this is dependent on R > R-crit or R < R-crit 

respectively.
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2. The Governing Equations.

Consider the dimensionalized, non — linear, incompressible,

two-dimensional Navier-Stokes equations in vector form.

dU U*W=- V/p+lU 2t_gVxW ,
(2.1 )dT ~ ~ I f

v-u = o ,/■*»» ’ (2.2)

where w=v*u . (2.3)

The continuity equation (2.2), implies the existence of a stream 

function 'P , which is defined here in terms of general orthogonal 

coordinates, (a1,a2), and the velocity components are

Ua = isj , 
h2daj

(2.4)

Ua, --- I at ■
h,3a2 

Here, hjand h2 are the scale factors.

(2.5)

Using (2.2), (2.4), (2.5) and the general orthogonal coordinates the 

third component of (2.1), yields the required equation in terras of'F. 

(Goldstein (1939) p114 Vol.1)

2My 40 + _l  - <4 a(v $)
dT hjhJ-^a2 ciaj daj da2 (2.6)
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The coordinate system to be used here is due to Fraenkel (1963 Il)« 

This system is recalled and amplified.

Let (X,Y) denote the dimensional cartesian coordinates. The following 

conformal transformation is used.

Z = Z(£) where Z = X + iY and C = ? + i1"!*

Also we define H and $ by

JZ. = H (^,T] )exp(i ))
d

.(2.7)

an arc length dS^ in 

in the £ plane, 

line elements

Here, H is a dimensional scaling factor, (i.e

the Z plane is H times the corresponding arc length 
|dZ | = h | d^ | );$is the angle between corresponding 

(arg(dZ) - arg(d^) =$).

Let
dC/

,(2.8)

Using (2.7) and (2.8), the Cauchy-Riemann equations yield

K - 1 dH
H d?

=
dq

,(2.9)

X = 1 dH_
H dr|

= _ dtf ,(2.10)

where K/H and X/H are the curvatures in the Z-plane of the coordinate

lines corresponding to constant, and

closer examination will be given in Ch.3

f| = constant respectively. A 

dealing with a particular

5
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curved walled channel. The walls will be defined by q = + 1 , and 

symmetry will be imposed about q = 0.

Now that the coordinate system to be used has been introduced, the 

form of Navier-Stokes equations can be derived in terms of Fraenkel's 

coordinates using (2.4), (2.5), (2.6), and noting that the scaling 

factors are now given by hj= h2= H, hence equation (2.6) becomes

ai a - a^a \ - H2a_(6, d*\ = o 
>ana? a? an/ aw ) ,(2.11 )

where .(2.12)

Equation (2.11 ) can now be non-dimensionalized by setting

2
, H = bh, T = b t/M yielding

Jad 2- /a^a_- aia_\ - h2a_(/ ±d 2a \ - o
I r \ana? a? an) at h2 )

,(2.13)

where the Reynolds number R has been defined by R = M/P.

We note that R is defined in this way , so that it will not vary from 

station to station in a curved walled channel, and that M is defined 

to be half the volumetric flow rate per unit thickness.

(Rosenhead (1940))
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It can be shown that 2H, is approximately the width of the channel for 

some constant £ line, (Fraenkel 1965 II p.408) and at the throat of 

the channel (?=0) the width is approximately given by b.

The boundary conditions to (2.15) are

= ± 1 at T] = ± 1 ,(2.U)

= ± 1 at n = ± 1 .(2.15)

Equation (2.14) follows from the definition of and M, and (2.15) is 

the no-slip condition at the wall for a viscous fluid. Note that even 

though (2.14) and (2.15) do not assume a symmetric velocity profile, 

they are consistent with that assumption.

A more convenient form of (2.13) is one which separates h^from
2 21/h (D'P'). This is done by using (2.9) and (2.10) when operating on
2 2 2

1/11 (D ^). A term appears in the analysis which is of the form D h, 

and it is quite straight forward to show with the use of the
2 2 2Cauchy-Riemann equations, ((2.9) and (2.10)) that D h = h( K + X). 

Hence (2.15) becomes

I»(“■ 4j/<d + Xd (+4ik 2+X2|\-h2a_-/aSk3 - d'Pd-2/<dxI' + 2Xd''lA 
i a? aql 1 y at \anas as an an as/

D^=0.( 2.16)

It will be assumed that , the total stream function is given by

U.’7>

where 0(£, q) is called the steady state stream function, and 

4>(^,q,t) is called the time-dependent stfeam function. In fact fi and $ 

will later be chosen to be odd and even respectively. Their equations 

will form the basis in solving for .
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2.1 The Steady State and Time-dependent Equations.

The equation satisfied by Q can be stated now, using (2.16). The
term h^3/3t disappears, and 'I' is replaced by Q , yielding

'dad__- 9Qa_-2KaQ+2xao\ dq  = o 
,3t ]3? 3? 3n di dy

(2.18a)

= ±1 at n = ± 1 .

5
3f2 = 0 at r| = ± 1 
dn

(2.18b)

Note that this equation is non-linear.

The equation for $ (£,r|>t) can be found by using (2.16) and replacing 'I' 

by + $ . We are going to consider infinitesimal disturbances to the

base flow, so we assume non-linear terms are small enough to be 

neglected. Therefore, upon substituting and linearizing we obtain

(d<$>d - 3<t>3 -2*34* + 2X3JAd 2Q = 0 /2.19a)
^3?353ri 3n dt,)

<J> = ± 1 at n - i 1 • 3$ = o at T] - ± 1 .(2.19b)
’ 3n

The equation for Q needs to be solved before can be considered.
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3. A Symmetric Curved Walled Channel-

The notation used in (2.7) and (2.8), is recalled here for the purpose 

of establishing the channel walls. The non-dimensional form of (2.7) 

remains the same (Z = bz; H=bh). Thus we use (2.7) and (2.8) as 

dimensionless forms.

The details of how /l(^) was to be approximately equal to the

semi-divergence angle of the walls were originally given by Fraenkel 

(1963 II pp4O7-4O8). He introduced a small constant € such that

and posed

£$=<7; r=a+Ein ,(3-1 )

/i(^) = cv(r)

This ensured that [l varied slowly with and was nearly real. The 

choice of Qi(t ) depends crucially on conditions imposed on other 

parameters, namely R and £ . The details of these conditions, and why 

they were necessary were discussed by Fraenkel (1963 II pp410-411). 

They will simply be stated here.

Fraenkel's asymptotic development of the solution to (2.18a) depends 

on the constant £ . It is in fact based on £ — 0 with a (not f, ) and T] 

fixed. He justified this development very clearly and posed an 

asymptotic expansion in powers of E for the steady state case with 

the Jeffery-Hamel profile as leading term. An alternative method which 

he used for computing the problem was in terms of a double series 

expansion in powers of 1/R_ and 6 where 6 = Re . In each case

°<(t ^ •' sldbdlu - uurj iH.fi ccAvipkx L, L -fa wv 15 Uke, tkc locc4.
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however, two essential conditions had to be satisfied, namely

R a = 0(1 ) (3.3)

and R € < 0(1 ) .(3-4)

In the present analysis for the solution to (2.19a), the conditions 

(3-3) and (3.4) will be satisfied in the following way

and

a = o (e^)

R = 0(1/^)

,(3-5)

.(3.6)

The first channel chosen for consideration is given by

a (7) .(3.7)

The curvature parameter m gives an additional degree of freedom, to 

study a family of channels with a common initial angle of divergence 

at a = 0. A positi-ve value of m corresponds to positive curvature, and 

a negative one, to negative curvature. It is worth noting that (3-7) 

does satisfy the conditions given by (3-3) and (3-4), but it does not 

satisfy the conditions described by Fraenkel (1963 II p408), thus Cf is 

not real as a —♦ + oo , but it is real on r| = 0. Weshallnofbe attempting 

to analyse the flow in this channel far upstream or far downstream, 

but imagine we are considering a portion of the channel between two 

finite, positive, and con/enient values of o , ijnor-e. Some- ^>rot>Ums

ci cottoL bou.r't’Utu <m£ ■
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1/2
The special case m = 0, yields a straight walled channel. The constant £ 

corresponds to the real constant Ci as defined in Eagles & Weissman 

(1975).

With this choice of CV(t ) it was found necessary to introduce another 

slow variable like a . The main reason for this being, that under the 

asymptotic development £—0, o fixed, problems of unboundedness were 

encountered in the time-dependent anlysis. In fact h, the scaling 

factor which appears in (2.19a) was unbounded under this limit for 

this particular channel. The slow variable necessary to ensure the 

boundeness of h was

,(3.8)

1/2
hence ° = E .(5.9)

The variable o. will be used in evaluating the channel given by (3.7),
1/2and the asymptotic development will now be based one — 0, with and T] 

fixed.

The channel walls can be found from (2.8), and on using (5.1),(5-2),

and (3-7) we get

r / , \-i 1/2 3/2 r
d In f dz\ = £ + e m£

w
dz = Cj expU^ + E^m £ )

z = C1 J' exp(f^ + £ 2m £ ).d^ + C2 .(3.10)

Here, Cj and C2 are real constants of integration, they correspond to 

different z scales and different origins respectively. The shape of 
1/,

the channel as £ .0, with fixed, depends on the choice of Cj and C2. 
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The evaluation of (3-10) is rather lengthy, and it will suffice to 

describe the method and state the final results.

A reduction formula was found for the integral and after applying the 

formula repeatedly, the following general result was obtained.

e °

T2
1z

Oo 2s (s+t) t t+ V ^^(-l)1 (2s)

^it=i inrr-
00 a/ n
£2 m (2s) ! e 2 
s = l

,(5-11 )

2s s!

and with the conditions

= 0 dz and z = 1 , C. and C 
?/2

1

become

C1
oo

^mS . (2 s) ! (5-12)

On substituting (5-12) back into (5.11) and rewriting (5-11 ) in-

modulus, argument
0,r = e 1

&

form
E^2 (m

we obtain
2 t+ mo1 )

”T”
E(3m2- 5m2eal-5m2a1 + 5m2o2

2~

2 3-m Oj
2

2 4\ + m Oj )
_ 8

,(5.15)

.(5.14)

z 1 +

+

1 ’ C2
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Consider now the behaviour of (3.13) and (3.14) under the limit
I/?E —*0, Qj , T] , m fixed, then

I z I ~ JL1; ars(z) —
e V2

These in fact are the modified polar coordinates of Eagles (1966) and 
(1973), Eagles & Weissman (1975), where ^corresponds to , e'^to Cl'. 

We can see how (3.14) demonstrates the usefulness of <x(z) since 6 is 

approximately O'(a)n. The channel walls are defined by H = i 1, and
1/2 

symmetry is imposed about T] = 0. Note also that irrespective of m and E 

if Oi= 0
11. / az =_1_; arg(z) = E n-1 1 ,1/2

The curved walled channel has the same angle of divergence at 0,
l/2

as the straight walled channel defined by E .A plot is given for the
1/2curved walled channel, for the particular case m = 1.0, and € = 0.4,

using (3.13) and (3.14) to compute the coordinates (see Fig-1 ). In 

physical space the initial throat width is approximately 2b, and the 

walls are defined by r| ~ ± 1 •
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4. The Asymptotic Development.

This chapter will be solely concerned with establishing the equations 

to be solved in the form derived from the asymptotic development.

In the steady state case the development is essentially that of 

Fraenkel; ... " Since the Jeffery-Hamel solutions are exact for

channels with straight walls, they should provide a first 

approximation for channels with slightly curved walls"... (Fraenkel 

1962 I pp121-122). The difference in the present analysis, for reasons 

already given in Ch.3 (p56), is that now — 0, with Oj and r| fixed, 

where the Jeffery-Hamel profile appears as the 0(1) term. A reference 

is also made to an alternative approach as a check on the resulting 

equa tions.

The time-dependent equations are established following a similar 

asymptotic development with a modification to the WKB or "ray” method 

(Eagles & Weissman (1975), Eagles A Smith (1980)).

A small section is devoted to a method for obtaining starting values 

for solving the Orr-Sommmerfeld problem. The numerical solution to 

this eigenvalue problem depends crucially on these starting values, 

and this aspect of it will be also dealt with in Ch.5.

The growth rates of the various physical quantities such as velocity, 

stream function, absolute and relative kinetic energies will form the 

basis of the stability study.

In all cases the equations are established up to and including the 

0(a) term. This corresponds to going one stage further in the 

asymptotic analysis of Eagles & Weissman (1975) - This, coupled with 

Fraenkel's generalized orthogonal coordinates, and the inclusion of 

curvature, makes the algebra extremely complicated. More so in the 
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unsteady case, and in particular, equation (4.37), which is necessary 

in order to check the amplitude function Aj.

An attempt has been made to represent the equations in such a way, so 

as to see the extra effects resulting from curvature, the 0(e ) terms, 

and to be easily comparable with those of Eagles & Weissman (1975)-

4.1 The Steady State Equations.

In recalling the vorticity equation (2.18a), it is necessary to find 
\ 1/2expressions for K , A in terms of £ . This is easily done by using

(2.8) and comparing real and imaginary parts. This yields exact 
relationships for K and X in the case of Qf(T) = £^m 7, namely

K = £^2+ me^2o , (4.1)

x 3A
X = - £ m q .(4.2)

The condition on R, a. given in (3-3) defines a parameter v in the

following way

R =_v_ .(4.3)
£^

1/2 , .
This ensures that the term R£ = v will appear in the 0(1) equation 

for the steady state case.

The asymptotic expansion of Q (^ , q ) is assumed to be of the form 

(following Fraenkel for our special case)

Q(^,q;v,m) = fijo.qiv.m) + q; v, m) + e  Q^o.q; v,m) + ... .(4.4) 
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The variable o is not introduced yet, therefore on substituting (4.1 ),
(4.2), (4.3), and (4.4) into (2.18a), with -^-= ^-( f rom (3-1)) it is 

dt, da

possible to obtain the equations for , Qj, Q2, by comparing 

coefficients of powers of eWe obtain

0(1 )
2v(l+mg)frflo^ , (4.5a)0

and f2_(cr,±1 ) = ±1 ; ^Q(o ,±1) = 0 , (4.5b)
0 Tn°

0(e 1/2)

+ 2v (1+mo)& 
W bnjcjrbn j 

>fea - w 3sA
, (4.6a)

0 , (4.6b)and Q^o. + I ) = 0 ^(^, + 1 ) =
bn1

-2( 1 + mo)
bn

and Q2(a, + 1) = 0 ; bQ(cr, 11) = o
bn

, (4.7a)

,(4.7b)
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Even though Qois no^ ^he £ independent Jeffery-Hamel profile for a 

wedge, (4>5a) still describes Jeffery-Hamel profiles for fixed values 

of a, and given values of v and m.

At this stage the variable oj is introduced, and 0^, Op Q2, are 

expanded in a Taylor series about 0=0, in the form

Qq (o ,t |) = 0 > n) +o ^Qq(q  >n ) + o^ &Qq ( 0 >n) + ••• .(4.8)
<5 O’ 2! (5a2

It can be seen that o = 0 coverts (4.5a) into the wedge flow problem.

The scheme exemplified by (4.8) would correspond to perturbing the 

steady state solution about the wedge flow problem, thus providing the 

required Jeffery-Hamel profile as a first approximation for channels 

with slightly curved walls.

Equation (4.8) and the corresponding ones for Qjand 

in more appropriate forms using (5-9).

02can be written

2
e c?! G 2 (T); V, m)Q0(o,T|;v,m) = G0(q;v) 1/2/ xE a1G1(r];v,m) + (4.9)

0j(o,q;v,m) = F0(r|;v) £ (rpv.m) +
2

EOjF 2( T]; v, m) (4.10)

0^o»r|;v,m) = Hq (t |;v )
2

€O1H2(r|; v»m)

+

+

+

»

+ ... ,

+ • •

The equations (4.9), (4.10), and (4,11) are substituted into (4.5a), 
1/2

(4.6a), and (4.7a) respectively, and coefficients of powers of £ are 

compared.
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It is only necessary to obtain the equations for Gq .G*, G2, FQ, Fj , 
and Hq , since the other functions correspond to at least 0(e^2) terms. 

The solution for q;v,m) the total steady state stream function

takes the form

Q(£,q;v,m) = G 0 + e^f 0+ c^j ) + e (Hq + o^j + ofG2) +*-* .(4.12)

The equations for GQ .Gj ,G2 ,Fq  ,Fj ,Hoare stated here mainly for the 

purpose of deriving the equations describing the stream function for a 

wedge, up to and including 0(e ) terms. The equations are as follows

d4GQ + 2v dG0d2GQ= 0

dq4 dT| dq2

Go = + 1 ; dGfl = 0 at q = ±1

dT]

, (4.13a)

,(4.13b)

d4G1 + 2v d d Gq dGj =
2

-2vm dGQd Gq

dq4 dq dq dq. dq dq2

G1 = 0 ; dGj = 0 at q = ±1

dq

d4G2 + 2v d dGodG2
2

-2v dGjd Gj-
dq4 dq dq dq. dq dq2

g 2 = 0 ; dG2 = 0 at q = ±1

dq

, (4.14a)

, (4.14b)

2 2
2vm dGp d Gj- 2vm dGjd GQ ,(4.15a) 

dr| dq2 dq dq2

, (4.15b)
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d4Ft

dq4

+ 2v d dG„dF„ Q Q 
dq|_dn dq.

, (4.16a)

F r0 0 ; dFQ = 0 at q = +1
dq“

, (4.16b)

+ 2v

dn4
d rdGpdFj' 
dq|_dTl dq.

dGnd2G2

dq dq2

+ dG1d2G1- G1d3G1 -

dq dr| 2 dq3

262d3GQ

dq3

2 dFod2G1

dq dq2

dG1d2FQ- 2m dG0d2F

dq dq2 dq dq2

,(4.17a)

F1 0 ; dFx = 0 at 
dq~

q = ±1 . (4.17b)

4
d H0 
dT] 4

+ 2v d RGq  dH0' 

dq [_dTl dT) _

V + dFpd2G1 - G1d3FQ 

dq dq2 d q 3

H0 0 ; 0 at

This scheme can

Fld3G0

dq 3

n = ±1

readily describe

Thus we can see

2

the

assigning m = 0

(4.15a), (4.16a), (4,17a) respectively,

given by (4.13a) and

Gr

- 4 d2G0

dq 2

,(4.18a)

.(4.18b)

simply bywedge-flow problem,

G 2~ Fq = Fj = 0, satisfy (4.14a),

The resulting equations are

d4H0

dq4

,(4.19a)

Ho = 0 ; dH0 = 0 at q= +1
drf

,(4.19b)
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Hence EdH^/dr] can be thought 

profile, and it represents 

Weissman (1975).

of as the 0(e ) correction to the velocity
2

the 0(d ) term not included by Eagles &

4.2 An Alternative Approach.

The final form of (4-12) suggests that as opposed to the asymptotic 

scheme given by (4.4) and (4.9) to (4.11), 

expand Q(£,r,;v,m), the total steady state 

in the following way.

it should be possible to 

stream function initially

o(^,T];v,m) = x^CTj.rjjv) + e^x/0! ,n; v»ra) + ,T];v,m) +.. .(4.20)

We can now substitute (4.20) into (2.18a) as before, but with a slight 
modification to (4.1 ), (i.e.K = £^2+ mEOj, and ) thus by

1A
comparing the coefficients of powers of E the following equations are

obtained.

0(1 )

^o+ 2v
bn4

, (4.21a)

= ±1 ; ^o= 0 
bn

at n = t1 , (4.21b)
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Ofc'4)

bq bnlbn bn

,(4.22a)

^1=0; b2(l= 0 at 7] = ±1
bn

, (4.22b)

X2= 0 ; bX2= 0 at >? =■= +1
b*7

,(4.23b)
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The two schemes defined by (4.12) and (4.20), are obviously not 

identical when comparing corresponding order terms, but the value of Q 

for prescribed , v, m with fixed and 7) should be the same. The 

additional non-linear terms in (4.21a) clearly makes this latter 

scheme less appealing from a numerical point of view. It can be shown 

that Gg , (Fq  + OjG^),and (h q  + OjFj +0 G2) satisfy (4.21a), (4.22a), and 

(4.23a) respectively. On the basis of this check, the steady state 

stream function Q was computed using the original scheme (4.13a) to 

(4.18a).

Rosenhead, (1940) showed that for a given v (i.e. for every pair of e ^2 

and R) there exists an infinity of solutions for GQ. These solutions 

become progressively more complex with increasing R for the case of 

"outflow" in a divergent channel. Some of the well known mathematical 

characteristics with increasing R for this case, are progressively 

more regions of "outflow" bounded by regions of "inflow"., This has 

clearly been shown by Patterson's (1934,1935) experiments.

We take Gq to be the simplest of the possible Jeffery-Hamel profiles 

in such a way that for fixed c^and 77 , Gq is a continuous function of v 

such that Gq  ,with v=0,reduces to the Poisseuille flow case. Fraenkel's 

theory shows that we can obtain separation and reattachment without 

singularities when our v is just greater or just less than 4.7 

respectively. The theory is restricted in fact to certain combinations 
1/2

ofc and R which exibit the simpler symmetric velocity profiles, with 

at most one region of reversed flow near the walls. For this reason 

our values of v do not extend far beyond 4.7 (Fraenkel 1962 I p133) •

4.3 The Time-dependent Equations.

Assuming the solution for Q is known, (2.19a) is recalled and the 

asymptotic development can commence.
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1£
In the steady state case a certain condition was imposed on R and £ 

(4-3). This condition is relaxed for the time-dependent analysis,
1,2

where R and e are treated as independent parameters in the asymptotic 

development, but (4.3) is returned to in the final analysis of the 

results. This technique has already been used extensively by other 

authors, (Eagles & Weissman (1975), Caster (1974), Bouthier 

(1972,1973), Ling <S Reynolds (1973)» Lanchon & Eckhaus (1964), Eagles 

<4 Smith (1980)) where substantial arguments are given in its support.

2,
D 9P, appear to be smaller than the

Formally, the viscous terms in (2.19a) which are given by
ji Td2- 4(K£_+X^_) + 4(K2 + X2)
R L

1/,
inertia terms. However these terms which are O(1/R J (Lin 1955) over 

some of the flow field, may be dominant enough to be retained in the 

0(l) terms. We formally allow these viscous terms to appear in the 
l/2

0(l) terms by artificially separating R and £ . A more accurate

representation of the exact solution to (2.19a) is thus contained in 

the 0(l) solution on returning to the relationship (4.3).

The coefficients of (2.19a) are independent of time and slowly varying 

with therefore the stream function of the disturbance for constant 

frequencies is chosen to be of the form

<J>(?»T?,t) = £t>( or^)exp(i(0(5) - pt)) + c.c. ,(4.24)

where c.c. represents the complex conjugate of the preceeding term, 

and where R is chosen to be real.

-69-



The slow variation of the coefficients in the direction, is allowed 

for by the complex wave number k(o1),which is defined in terms of the 

complex phase function©(jp by

d© = k( c^) .(4.25)

A negative imaginary part of © , hence a negative imaginary part of k 

(kt) will correspond to "growth" of the disturbance function. This 

growth may or may not persist downstream. If kj assumes a negative 

value, it will not necessarily follow that the flow is unstable, but 

it will be termed " locally unstable " if the disturbance ultimately 

decays (i.e. if k[ resumes a positive value ). This idea of "growth" 

will be dealt with in more detail in a later subsection, and also in 

Ch.6 when analysing the results.

The values of h, and $can be determined for this particular channel 

using (2.7), (2.8), and dz/d^ = 1, when £ = 0. Even though $is never 

used directly in the expansion, it can still be used to describe the 

local semi-divergence angle of the channel, which in this case is

exact.

h = expToj , (4.26)

$ = V + cmOj) =r?o?(a) .(4.27)

When - +1 , I? is the local angle of the channel walls with the 

x-axis.
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The aim is to obtain a solution to (2.19a) in terms of an ascending 
l/o

series in powers of e , and we therefore take

Now (4.24) to (4.28) are substituted into (2.19a) and powers of £ are 

compared. Even though the equation for <t>2 extremely long, it is 

quoted here so that the contributions from curvature and extra terms 

(0(E)) can be seen. A particular integral to the equation for c^will 

eventually be found. We obtain 

0(1 )

L%= 0 ,(4.29a)

0Q( or±l) =0 ; ^(Opil) = 0
bv

,(4.29b)

where

,(4.50)

. (4-"51 )

and

In place of the frequency and wavenumber, (4.30) contains functions of 

the slow variable, but (4.29a) is still the well known Orr-Sommerfeld 

problem, and is called the intrinsic frequency. For a given p(real) 

(4.29a) is an eigenvalue problem in k.
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Further equations are

0(^1

where

Lct,l= LM+
OGj

^(op ±1 ) =

Lj s -4ik(Dj -k2 )

R

L2 s -2£(^-3k2 )

d^L24>0 + <L3 + L4)%

dOi

90 Oj.il) = 0

2kPj + dG0 (D|-3k2 )

ay
3 

d_G0 
di)3

, (4.32a)

(4.32b)

(4.33)

Pl - 3kdG0

d*7

(4.34)

R

9

+

+

2

»

>

L3
2 2

4ik(Drk )
2 2 ;

2dGQ + PjimOji^Dj-k ) - 2d2GnDj , (4.35 )
d7?2R

2

L4 ik OjdGjTDi-k2 ) - 3 3 —
dFo + - ik d Fo + Ojd Gi

d^J
_d7? d?}3.

•(4.36)

It is worth noting so far, that the system defined by (4.29a) to 

(4.30), and (4.32a) to (4.36), can easily be compared with the Eagles 

& Weissman case for a straight walled channel. The equations (4,29a) 

to (4.30) are identical in form to those given by Eagles <S Weissman at 

0(1), but equations (4.32a) to (4.36) differ in the operators L3 and L4. 

The additional term p^irno^ in Lj and the introduction of I>4 are both a 

direct consequence of the curvature of the channel, and would 

disappear on setting m = 0 .
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Continuing we obtain

0(e )
L <t>2= + dk L20>1 + (L3 + L4)^

^°1 7^

+ (M1 + M2)M>0+ dk (M 3 + M4)<t>0+ dk Mgb <t>0
77 ^7. 5^id<^ do1

The first

additional

daf R
_0
di]1

+ 5|dk

R Ldo-]

2\
ro

-iL b2<t>0

Sy
02( O],±1) = 0 ; b02(aj, + 1) = 0

>

»

(4.37a)

(4.37b)

line of (4.37a) is identical in form to (4.32a), the

terms , M

and the

m4, M5, M6, m7,
curvature,

including 0(e ). Some of these 

m = 0, and others will vanish

2 ’ ^3 ’
fact that the steady state

Moare a consequence of o
case was taken up to and

great deal upon setting

the straight walled channel.

reference

M1 — 4(D?-3k2 ) -

R

M2 = dF0
di]

m3. -12k

R

will simplify a

completely, thus reducing to the case of

These new operators are defined for

Uik.dGg- 2[}jkmc^( 

( dr] ’

,(4.38)

2 ,.2c^dGJ (D1 -3k ) -
di]

1
4- ,(4.39)

i 2dG0 + ipjma^

di]

+ °1—1
di]

di]3 d7J3

,(4.40)

,(4.41 )
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M5? 12k + 3idG0

R dT)

,(4.42)

(4.43)

LV<^1 

dr? di}_

(4.44)

(4.45)

The terms M , M4, 

disappear since H^

My disappear when m = 0. However, Mg does not 

is the 0(e ) correction to the steady state case.

4.4 The Orr-Sommerfeld Problem.

In the expanded form (4.29a) becomes

1 ^q' + kX - £% ik^, - ik3<t>’

R dT?

0 ,(4.46)
d?]3

and the boundary conditions are given by (4.29b).

form

a solution may be found of the

ai’r?) = Ao( ai) f0(G1 ,(4.47)

The amplitude function Aq will be considered later. Here, fQ is a 

solution to (4.46) for some fixed a.] . It is normalised arbitrarily.
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The function $q is assumed to be even inT] , as this yields the most 

unstable eigenvalue k (see Lin (1945 I), Lin (1955), and Thomas 

(1955).

The solution to (4.46) will be based on a "marching scheme", and the 

details will be considered in Ch.5 when dealing with the numerical 

techniques.

Defining a real frequency p and fixed a^, (4.46) is an eigenvalue in k. 

It is well known from the theory of homogeneous equations, that a 

certain characteristic equation must hold for the existence of a 

non-trivial solution to (4.46). This equation defines an 

eigen-relation (k(c^) = F(Pj,R,v)). There is no known analytic form of 

this relation, and an approximation is made in which this relation 

appears as a quartic in k. The roots of this quartic will be found, 

and the root with the positive real part, (i.e. corresponding to a 

physical wavenumber) will be chosen as a starting value to solve 

(4.46) numerically.

Since f^ is an even function in T| , it follows from the general 

properties of even functions that the boundary conditions of (4.29a) 

could be .replaced by more convenient conditions for all o-j .

M = ° ; A ■0 at n = 0 , (4,48a)
011 9t ]3

f0 - o ; ^0 = 0 at T = 1 .(4.48b)
Sil

For the numerical solution of fQ , let U1 (U) and u2(t | ) be solutions to

(4.46) for fixed , thus

f0(ov7]) - A u1 + B u2

where A,B, are arbitrary constants for fixed .

,(4.49)
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We define the following boundary conditions for u1

u1(0) - 0 u2(O) = 1 ,(4.50a)

dU1 (0) » 0 du2(0) = 0 ,(4.50b)

dT]

d2^ (0) = 1 d2u2(O) = 0 ,(4.50c)

dT]2 dT]2

d3U](0) = 0

dT)3

d3u2(O) = 0

dT]3

.(4.50d)

The above conditions ensure that ,u^,satisfy the 

at the centre of the channel. We now expand u^Y]),

boundary conditions 

and U2(l)) about T] = 0.

u (t ]) - u1 (0) + du^(0)T| + d2u^(O) 7]2 + d3u^(O)^3 + dSj^O) t |4 + . .. ,(4.51a)

d T| 1! dyj 2 2! dy|3 31 d ttj J 41

2 3 4
u ^(t ]) = u2(0) + du2 (0)t | + du2(O)y]2 + d u 2(O)t |3 + d u2(0)t /*+ • • • .(4.51b)

dT] 1! dT]2 2! dr]3 3! dT]4 4!

By substituting u-j and U2 into (4.46), the fourth derivatives 
d4u,(O) and dS^CO) can be determined by evaluating (4.46) at T] = 0 and 

dT]4 dr)4

using (4.50a), (4.50b), (4.50c), and (4-50d). Thus

djj/O) = ikRdGQ(O) - iRe?CT1 0 + 2k2

dT]4 dT] 

,(4.52)

d4u2(O) = ik2Re2a1 0 - ikRd3GQ(O) - ik3RdGQ (0) - k4 .(4.53)

dT]^ dT}3 dT]
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Hence substituting (4.52), (4.55), into (4.51a) and (4.51b)

respectively, we obtain

+u/n)
2

"ikRdGQ (0) - iRpe?a1 + ak^K2

J24

,(4.54)+ ...

di]

u2(i]) -f24 L

ik2Rpe?a1 - ikRd3Gc(O) - ik3RdGc(O) - k*’ 

dT|3 dT]

*... .(4.55)1 +

Now, on substituting the boundary conditions given by (4.48a) and 

(4.48b) into (4.49) we obtain for fixed

f'0(o1 ,1 ) = A U](1 ) + B u2( 1 ) = 0

df0(a1 ,1 ) = A dUl (1 ) + B du2(l ) - 0 

ST] dT| dT]

and for non-trivial values for A and B

- u?(l) du1 (1 ) = 0 

di]

.(4.56)

Equation (4-56) is the characteristic equation defining the 

eigen-relation. The approximation is made now when (4.54) and (4.55) 

are used in (4.56). The method may be criticised fundamentally, since T] = 1 

in (4.56), and the original expansions of u 1 (t | ) and u 2 (t |) were about i) = 0. 

Nevertheless, on proceeding, the following quartic in k is obtained.

k;+ iRdG^k3+jl - iRpj )k?+ iRpd3G0(O) + dG0(O)-]k + 1 - iRp; =0 .(4.57)

24 2^ dT| (5 24) 6 |_4dT)3 dT| J 6
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There is some justification in not expecting (4*57) to be of any 

practical use, as the approximation is rather severe. It was found 

however, that the four complex roots predicted by (4.57), gave a 

rather interesting consistency. In every case considered, there were 

always three roots with a negative real part, and one root with a 

positive real part. We were thus able to dismiss the three physically 

unrealistic roots. In addition, the agreement between the real part of 

k, (kr ) predicted by the approximation, and correct values of kr 

(Eagles 1978) were very good. Many cases were considered and compared 

before it was felt justified in using this approximation to predict a 

starting value. The imaginary part of k, (kL) was not in as good 

agreement with known values, as kr, but it appeared that the agreement 

between the real parts was sufficient to give convergence to the 

correct eigenvalue. Other methods were in fact tried to estimate a 

starting value, but often took more iterations and sometimes even 

converged to the wrong eigenvalue. Graphs of kr vs. q -, and kL vs. 

will be discussed in Ch.5, and they will illustrate the agreement 

between the predicted krvalue, by this approximation, and the correct 

k r.

4.5 The Amplitude Functions.

The amplitude function Aq has already been introduced, and in the 

context of(4.47), it can be interpreted as the amplitude of the stream 

function along the centre of the channel. To solve for Aq it is 
necessary to go to the 0(e^ ) disturbance equation, and use a 

solvability condition on . From the theory of homogeneous linear 

differential equations a solution for the inhomogeneous stream 

functions and <t>may be put in the form
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,(4.58)=f1(CTl,-q) +A1(a1) f0(a1>T|)

^(Oj , T] ) = fp (a.) »T) ) + A?(ct 1 ) fo (°1 »T] ) . (4.59)

(Ince 1956 pp114-115)

To solve for A-j it is necessary to got to the 0(e ) disturbance 

equation, and use a solvability condition on <t>2> anc* 30 on* The 

convenient normalisation chosen for 0 was

0(apO) = 1 ,(4.60)

and this can be equivalently expressed by

%(^,0) c 1 ? ,0) = 0 ; 02(oifO) = 0 .(4.61)

If it is desired to interpret A-j , k?, as being the amplitudes of , <$>-, 

along the centre of the channel, the normalisations on fq, and are 

obvious. Different normalisations on fp, f^ , and fj , merely correspond 

to different Ap , A-| , and k? respectively, but with all physical 

quantities such as "growth rates", (to be defined later) unaffected by 

this normalisation (Eagles 1977).

Thus to solve for Aq (4.47) is substituted into (4.52a) yielding

L0q - ApLjQfQ + dAg(L^fp) + Apdk(Lpfg) + Ap (L + L^)fg .(4.62)

di) dT| dp]
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To solve (4»52a), it is necessary to consider the adjoint system. 

Let L be the adjoint operator to L, and let fg be the adjoint 

eigenfunction to fp . Then it follows that

dGpk/(D2-k2) - 2ikd2GQD1

dl) ' dt|2

,(4.65)

and , (4.64a)

f0 = d f0 = 0 on T ’ ±1

(c.f.Ince 1956 pp210-214)

.(4.64b)

It can be 

by fp and

shown that, on multiplying

integrating, the following differential equation in A

(4.62)

0 is
obtained

dA0 + H(aj) Ao = 0 

da-.

A0(O) = 1

,(4.65a)

.(4.65b)

From the normalisation (4.61 ), (4 .65b) follows directly from choosing

f0(G1 ,0) = 1 . The equation for H(o-| ) is given by

H(a1) = (C2 + + 04 + C 5 ) ,(4.66)

c

where Ci(ai ) =
*

,(4.67a)

C2(al) = J ,(4.67b)
-1 31]
'•I

C3(a1 ) = dk
dcj Wodli ,(4.67c)
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C4(^ ) =

c5(a1) =

f 0L 3f0 dT| ,(4.67d)

.(4.67e)

Thus, (4.65a) can be integrated provided that does not vanish, 

which is the case under consideration.

(c.f. Eagles & Weissman 1975)

In the same fashion, can ,be found by insisting on a similar

solvability condition, i.e. If.LctLdT = 0. The form of (4.37a) 

naturally yields a number of further CL’s . By choosing f^ (0^ ,0) = 0, 

then A^ (0) = 0. its equation is given by

d^ + H(<J1) At = f (ct 1 ) 

da

A 7 ( 0 ) = 0

,(4.68a)

, (4.68b)

where
id2AQC25 - dAQ(C1Q + Cn + C16 - 2iC24) 

d^2 dCTj

- Aq (C12 + C13 + + c15 + c17 + c1fl + c19

+ C2q + C21 + C22 - iC2^)

■ (C6 + C7 + Cg + C9) / Cq ,(4.69)

and c6(a,)

C7(<T1>

,(4.70)

, (4.70b)
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■1
C8(ai ) =

C9<°1 ) = dT]

)

)

C12(°1 )

c13(01 )

CU(<J1 )

ao,
’ “ |?0M3f0d1’ 

dQ J-1

<^1 )

dcrJ-i

.1
C17«7, )

C18(CT1 )

C19^° 1 )

dk fc^sfQdY] 

dqj-!

JjoW’ 

faw1!

C20(O1 )

Ca(<7i )

CZ2((J1 )

ca(<7

,(4.7Oc)

,(4.70d)

, (4.70e)

,(4.70f)

,(4.70g)

,(4.70h)

,(4.701)

,(4.70j)

, (4.70k)

,(4.701)

, (4.70m)

,(4.70n)

,(4.70o)

,(4.70p)

,(4.70q)

,(4.70r)

1
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C2t(°1 ’ ’

C2S(ff1 > ‘

, (4.70s)

, (4.70t)

obtained in the same wayThe equation for A2((T^ ) can be 
however, would involve going to the 0(e?^) equation and

the solvability

necessary to do

J^fq  L tp^d-q ~ 0. Fortunately,
condition

this to obtain the 0(e) correction to

. To do this 

insisting on 

it is not 

the "growth

rates", which is the next subsection to be dealt with.

4.6 The Growth Rates.

A discussion on the deficiencies of the quasi-parallel approach in 

determining the "growth-rates" is given by Eagles & Weissman (1975). 

Quasi-parallel theory only determines whether a wave can grow or decay 

at a particular point, and not as a function of the downstream 

variable. Also, it does not deal with the effect that the change in 

the steady state has on the local "growth". Shen, (1961) gives an 

intuitive argument as to what "yardstick" could be used to measure the 

growth or decay of a disturbance. A disturbance which appears to be 

increasing, might well be decaying, if it is measured relative to a 

steady state flow which is increasing at a faster rate and vice-versa, 

(see also Lin (1951)). This intuitive argument suggests, that in the 

case of measuring the growth of a wave based on a mean kinetic energy 

density E, a more appropriate measurement, would be based on a 

relative mean kinetic energy density E = E/Eq , where E^ is the
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mean kinetic energy density of the steady state flow.

According to quasi-parallel theory, the imaginary part of k (kL) is 
1/2 

small in the unstable region, and may therefore be comparable to £ or 

even e, hence the need to take into account higher order terms.

These terms show how the "growth-rates" also depend on the transverse 

variable 1] . They also show that different flow quantities have 

different flow rates, and the effect of curvature is only realised in 

higher order terms.

The total physical amplitude of the wave is in terms of the total 

time-dependent stream function $ . It can be shown to be

amp <£= 2|<t>exp(i(© - pt)) ,(4.71)

where ©Lis the imaginary part of ©.

Following Eagles & Weissman, a "growth-rate" based on^in the ^-space

is given by

-1
GR (<J>) = (amp<£) Q (amp<J>) 

s a^
, (4.72)

and this becomes

.(4.73)GRk (<S>) = -kL + (|0|)
5 8O|

|<t>|

It is possible to rewrite (4.73) explicitly in powers of E1/2, 

putting 4> in modulus argument form, (0= peL$ ) and using—('0|) = 
9aj 

|4>| 
where Re(X)isthe real part of X, and this yields
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The total streamwise and transverse disturbance velocities u 

defined by (2.4) and (2.5) respectively, Here they become

.(4.74)

J’ u,, are

u5 1 ,(4.75a)

h

un -1

h sT
.(4.75b)

Using (4.26) as h, the velocities u^, u
+...y^(e-PWu^= e°i + • • •

can be expressed 
r 0(^5)+ C.c

^/2
in powers of £

, (4.75c)

u =-e’°i / 1 -mE/2(j2+m2E (T4 +... \ 3<t>l+ c. c

X 2 8 /
d(y J

+ O(E3/2).(4.75d)

The physical amplitudes of these functions can be found, and 

(4.72) to define the growth rates

using

GR^(u^) =

GR^(u^) ~ -kL + e^/2

-k- + e1/2L

324>

>

>

(4.76a)

(4.76b)

(4.76a)

*0

explicit forms 

the

Note that

since cP =

purpose of

and (4.76b) are not strictly in ascending powers of E^2 

+ E M-'i + E *+>2 +.. .It is not necessary to quote the 

here. These explicit forms have been established with 

comparing with Eagles and Weissman, and in order to see

the extra terms introduced by higher order effects and curvature. It 

is sufficient and somewhat easier to use (4.76a) and (4.76b) to

compute GR^(u^) and GR^(u^) respectively
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We can see that the effect of curvature is implicitly contained in the 
0(e1/2) terms by virtue of the fact that all the time-dependent flow 

quantities for the curved walled case, are different than those for 

the straight walled case. Comparisons of energy growth rates have also 

been made, but only the forms derived for computational purposes will 

be given here.

Following Eagles & Weissman a mean kinetic energy density averaged 

over time and integrated across the channel is used as a measure for 

the growth of a wave.

It is necessary to determine the mean square velocities in'the
2 2streamwise directions, u^ and u^ respectively. We can show from the 

expressions (4.75c) and (4«75d) that

(1 -mE/2O^ +m2EO^

2 
(l-mEl/2O]2+m2£(71Z*

2

, (4.77a)

,(4.77b)

thus the mean kinetic energy density (mean kinetic energy density per 

unit width in the streamwise sense) is given by

.(4.78)

To enable comparison with other growth rates GR„(E) is defined by

GR^(E) = 1 E1 dE

2

.(4.79)
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From (4«78) we obtain

(l-me/2(J2 bAh] ) S1

2 8

,(4-80)

where

thus

,(4-81)

gr c (e ) =
§

2S,

.(4.82)

1/?
Since S] contains terms of 0(e 2) (4.82) is not strictly in ascending 

1/2powers of E .

The relative energy is defined by

E = E/Eo ,(4.83)

h St ]

where E^ is the kinetic energy of the steady state.

r1
+ v2) dpiE0 = 1 h(v2 

£
.(4.84)

2 . -1
Here

V = 1 30 , (4.85a)

and

v7] = "1 ’ (4.85b)

h

where vr and v are the total steady state streamwise and transverse 
£ 1)

velocities respectively.

to 0(e  ) we obtain

,(4.86)
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where

,(4.87)

*—

hence E = r e 20 <• S1

We now define

GR^(E) = 1 E dE

2 d^

.(4.88)

.(4.89)

The expression for GRp(E) can be written as

,(4.90)

where
f 1

dl^ dGg dG,) di]
d^ " J^di] dt]

,(4.91a)

and .(4.91b)
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5. Numerical Techniques and Checks.

The inclusion of higher order terms and curvature in the asymptotic 

development, made most of the programming lengthy and laborious. 

Nevertheless, in the main it was fairly straight forward. Some 

difficulties were encountered in the cases of :

(i) The non-linear Jeffery-Hamel equation (4.13a), where an independent 

numerical solution was attempted.

(ii) The eigenvalue problem, where a routine was written to compute the 

roots to (4.57), and the appropriate one was chosen as a starting 

value, to solve the Orr-Sommerfeld problem (4.46).

The techniques and checks carried out, will be discussed in the order 

they were carried out, so as to give a general picture of the methods 

employed. Attention will only be given to detail when it is felt 

necessary.

The following subsections are devoted to the main program and the 

important subroutines.

5.1. The Main Program.

The main program (CHANNEL) was used to compute the steady state flow 

quantities G^,G^ ,G^,F^,F^ ,H^ and hence the total steady state stream 

function C>(£ ,-q).

An overall programming check was carried out periodically by including a 

subroutine PINT 2. This merely served to check the amplitude function A^ 

directly, and consequently other results involving A. .

-89-



PINT 2 was a lengthy and time consuming program, it was not felt 

necessary to include it all the time.

Since the stream function Q(^ ) was assumed to be an odd function about

TJ = 0f it was only necessary to solve (4.13a), and all subsequent 

computations for 0 tj 1 .

The independent scheme used to determine was to expand G^ as a Taylor 

series in powers of v.

Gq ('T1) = W0(T|) + W1^)V + w2^^v2 + ”* »(5.1)

2!

etc were called the perturbation functions.

(4.13a) canbe rewritten as

Gq (0) = 0 ; GQ(l) = 1

.(5.2)

d2GQ(O) = 0 ; dG0(O) = 0 

dY|2 dT)

Substituting (5.1 ) into (4.13a) and comparing powers of v, the following 

formula was obtained for each perturbation function wr

A 'y —
d w X T r! dw d w . r - >______________ s___ r-s -1 
dT]^__ 2—-/l(r-s-1 ) Is! dT) dT)2

s=0

,(5.3)

which describes a finite set of linear equations . They were expressed 
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in matrix form using central difference formulae of 0(1^) for each 

perturbation function.

(0 C m < r) ,(5*4)

The construction of the constant band structured matrix A, presented 

some initial difficulties. These difficulties were typically near, or on 

the boundary. In expressing the fourth derivatives of various wr's near, 

or on the boundary, three extra points are introduced because of the 

central finite difference formulae. Backward differences may be used as 

an alternative, but it was found the perturbation scheme defined by 

(5.1), did not converge when this was done. The extra points could 

however be expressed in terms of points on or inside the boundary. A way

central difference formulae of different orders of accuracy near, or on

of doing this is to introduce some additional known conditions on the

boundary, namely

dwm = 0 ; d\ = 0 ; . 0 .(5.5)

di] di]4 di]5

The dilemma of (5*5) was that, if difference formulae of OCh^) were

used, a fourth point was introduced. In fact it is possible to use

the boundary, so long as they are derived from the same polynomial 

(Croll 1978). This was in fact done, and by using a standard Harwell
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subroutine (MA07BD) for solving systems of linear equations , the 

perturbation functions Wjp were computed. They were found to agree to 

four significant figures with a number of correct results computed by 

Eagles (1978) in the range of v used. Part of a table is reproduced in 

TABLE 1 below, of some exact results using Elliptic functions, (Fraenkel 

1963 II ) against this present scheme for a modest range of v. They 

represent the Jeffery-Hamel profiles evaluated at the centre of the 

channel (Tj’O). Although other methods are available, this was found

convenient to use, and in fact can be extended to solve other flow

quantities

channel.

and curved walled

V Elliptic Perturbation

3.15 1 .810 1 .808

3.572 1 .856 1.856

3.904 1 .926 1 .926

4.093 1 .973 1 .973

4.295 2.031 2.031

4.712 2.188 2.188

5.102 2.429 2.429

Jeffery-Hamel profiles atl]=O, by Elliptic functions, 

and the present perturbation scheme, for various v.

TABLE 1.

In order to solve for Gi,G2,Fq ,Fi ,Hq it was necessary to construct a new 

L.H.S involving known derivatives of Gq , and applying the same technique 

at the boundary as before. The same matrix routine was utilised to solve 

the new set of equations. Thus the steady state stream function Q(c,^) 

was computed.
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5.2 The Eigenvalue Problem.

In order to solve the Orr-Sommerfeld problem it was necessary to solve 

(4«57). This quartic in k with complex coefficients yielded four complex 

roots. Three of these always had a negative kr and one always had a 

positive kr . The quartic was reduced to a quadratic in two stages. At 

each stage a Newton-Raphson technique applied to polynomials with 

complex coefficients was used (Ralston 1965). The initial guess to 

start the Newton-Raphson technique was the same in all cases. The root 

chosen to act as an initial guess in the Orr-Sommerfeld problem however, 

was that root with positive kp.

The agreement between this latter root and a known eigenvalue became 

closer further in the streamwise direction. The graphs in FIGS-2a,2b 

show how close this was for a particular case. In fact the scheme to 

solve the Orr-Sommerfeld problem was started off at a value of O^ 

corresponding to decay. This value of O, was always predetermined from 

the parameters v and p , which define the Jeffery-Hamel profile and 

frequency respectively.

With this initial guess for some fixed Op it was possible to consider a 

"marching scheme" in which u^, u^, defined by (4.49) were computed. Tb/s 

"marching scheme" was really a Runga-Kutta method of order four.

The initial conditions for u^, U?, were defined explicitly by (4.50a) to 

(4.50d), and these were consistent with (4.48a). The final values at 

T) = 1 , of fg and f were invariant to changes in (4.50a) and (4.50c) as 

long as (4-50b) and (4.50d) were not violated.
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With each set of 's and u^'s computed, a modified Newton-Raphson 

method (Ralston (1965), see also Muller (1956), Ostrowski (i960), Traub 

(1964)) requiring three initial eigenvalues was used in order to 

predict a more accurate eigenvalue.When this iterative scheme gave the 

correct eigenvalue, the u^'s and Uj'a were recorded.

Using (4.49), the normalisation on fp (imposed by (4.60) and the initial 

condition (4.50a)) was defined as follows

f0(^ ,0) = = Au^ (0) + Bu2(0) ,(5.6a)1

hence B = 1 ■, (5.6b)

for all . 

The boundary condition on f0 at the wall defines A, namely

ro(oi',) 0 AU](1) + Bu 2(1) ,(5.6c)

hence A = -u ,(1)1 '

u/1)

(5.6d)

Different values were tried 

characteristic equation (4.56) 

eigenvalue. Backward difference
STLq were both zero at 71 =1 . The adjoint eigenfunction was always computed 
St  
by assuming the same eigenvalue for fp . As a check,

for (4.50a) and (4-50c) as a check, and the

was always satisfied for the recorded 
A f formulae were used to ensure that _ .'o- , 

..............  ... . st
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the adjoint problem, ((4.46a),(4.46b)) was solved first, and the 

resulting eigenvalue used as an alternative method for computing fp . 

These two schemes always agreed for the cases considered. All these 

checks and comparisons so far were made with numerous correct results 

supplied by Eagles (1978), and this validated the work.

5.3 The Amplitude Function Ag.

To determine the amplitude function Ap , the CL's defined by (4.67a) to 

(4.67e) were computed. The assumed symmetric properties of fp(i]), made 

it possible for the integration to be carried out from T| =0 to 7) =1 

using a marching Simpson’s rule.

From (4.65a) it is possible to write Ap(a^ ) as an exact integral.

.(5.7)

Since appears in the limit, it was not possible to use Simpson’s rule 

immediately until Ap (Oj ) was defined for at least two values of a-|(o-|=0 

and a1 =h, where h is the step). As we already know Ap(O) from (4.65b), 

it remains to determine Ap(h). A formula was used in terms of H(s), 

namely

Ap(h) = exp rh- H(s) ds = exp -h /9H(O) + 19H(1 )-5H(2)+H(3)\

_ 0 _ 24^ ' .

For subsequent values of , Simpsonb rule was used, and the results 

were checked against Eagles's (1978) results for the straight walled 

channel. They were found to agree to at least four significant figures.
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Following Eagles <S Weissman (1975), an alternative method was used to 

compute tC^t and by taking the derivative of the equation Lf^=O. 

It is possible to show

L idkL f - idp,(D2-k2)f

it follows that

was computed using (5.10) and

C1 (a1) =

0 •= idk

and by using the solvability condition

Hence using
dalJ_!

(4.67a) and (4-31)

2Pi fo(D;-kx)fodp
J-1

,(5.9)

.(5.10)

Thus C-] (ct^ ) 

(4.67a).

C 1 (o-|) given by

On taking the total derivative of (5-9) 
2 

solvability condition I f L 3fQdT]= 0, it

w.r.t , and using the

is possible to show after a

f1'■'•u
.1

f0(D1 2-k2)5f0di1-2kdk fQ dyj

1little manipulation oof

<-1 SCTj dO]<-|



Thus + C^(ct ^) were computed using (5.11) and were checked against

(4.67b) and (4.67c). The results obtained using (5•10) and (5.11) agreed

with the previous set, and hence A^was identical by both schemes. This 

provided another useful check on the work so far.

5.4 The Particular Integral f^

Having now solved for Aq and fg it was possible to rewrite (4.52a), by

substituting <t*g = Agfg * resu-'-^^nS equation has already been given

in abbreviated form by (4»-62).

An identical Runga-Kutta scheme already used in the eigenvalue problem 

was employed, and this inhomogeneous system was solved by formulating 

the problem in the following way.

It is possible to write the solution for f^, with fixed Oj , as

f^CpTl) = A U^(f|) + B u2Gq) + u 3(t ]) ,(5.12)

(Ince 1956 pp114-1 15) where Uj , U2» are the solutions to the homogeneous 

problem (4.46) as before, and u 3 is a particular integral to (4.62). The 

conditions on the wall of the channel for f^ yield

f^.l) = 0 = A Ui(1) + BZ u 2(1) + u3(l) , (5.15a)

, (5.15b)

91] dT] dl|

and a unique solution for A , B only exist if and only if

u^D du2(l) - u?(l) du^(l) * 0.
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On the other hand, to ensure a non-trivial solution for f p, (4.56) was a 

necessary condition. Therefore (5.15a) and (5«15b) are not independent. 

In fact an infinity of solutions exists. To find a particular solution, 

B was chosen to be zero and therefore

du3(l)
A/ = -u 3(1 ) = - di] , (5.14)

(1 ) dU](l)

dll

which is an essential condition. If (5-14) is satisfied, it does provide 

not only a check on f^ , but moreover it ensures that Aq is correct.

In using the Runga-Kutta scheme to find f^ , similar conditions were 

imposed on u and u^, as those given by (4.50a) to (4«50d). The scheme 

had to be modified for this inhomogeneous system, but on the whole the 

subroutine PINT 1 was written along the same lines as that routine 

(EIGEN) which solved fp and fp .

At this stage it was felt necessary to thoroughly test PINT 1 . There are 

no known values of f^ to compare with, as Eagles & Weissman (1975) did 

not compute f^ for their straight walled problem.

Extensive variations in the parameters were tested to ensure (5.14) was 

always satisfied. Checks were also carried out to ensure that 

3f| ’ 0 at T| = 1 for various values of c-j . These tests proved to be
conclusive in validating the work so far.
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5.5 The Amplitude Function

The scheme

defined by

F(a1 ) (see

to compute

(4.70a) to

(4.68a). It

A1 was identical to that of Aq . The numerous CL's 

(4.70t), were computed first in order to define 

can be shown that (4.68a) yields

/•1
A1(^ ) ' Aq (ct 1) F(s)ds .(5.15)

%Ao(s)

This simple exact form made the computation 

forward, once F((J^ ) was computed and stored.

of A^ (CJj ) fairly straight

One possible way of checking A] is to recall our original interpretation 

of it. It was thought of as the amplitude of along the centre of the 

channel. We assume fg((J^ ,0) = 1, (i.e. the arbitrary normalisation for 

fp) and note that from (4.58) and (4.61)

0 = f1 (^ ,0) + A1 (er.] ) .(5.16)

The explicit dependence of A^ on f^ appears here and also in the 

equation of A-, . We can see that different normalisations of f^ (c^ ,0) 

would correspond to a different f (CpT| ) and hence a different A^(CT^).

Since this normalisation (previously f -] (CT| , 0) = 0, hence Ai(O)=0)is also 

arbitrary, one check on A^ (cr^ ) would be to compare 4>-|'s for different 

normalisations on f^((jpO). Another independent check and just as 

conclusive, would be to compute f? and satisfy the essential condition
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at the wall (similar to that defined by (5-14)). The latter check was in 

fact the one undertaken, and it is briefly described below.

5.6 The Particular Integral f?

The equation of f? in abbreviated form, is given by (4.37a). The 

explicit form which was used to compute ^2 was obtained by substituting 

<t>g = Agf q and f^ + A^ fg . Its length prohibits its inclusion here.

The experience of computing f-j, and the difficulties encountered made 

it easier to formulate the computing problem for f^ .

The essential condition required to validate f 2 , and moreover , is 

obtained as before, namely

-ujl) = -du4(l)

________ dp~ ,(5.17) 

-u1 (1 ) du^ (1 )

dV

where u^(qq) is a particular integral to the equation satisfied by fp . 

Once again, extensive variations to the parameters were tested to ensure 

(5.17) was always satisfied

The number of p values that fj was computed for here, were half those

computed for fg and f-j In order to compute for the same number of p

values, it would have been necessary to interpolate the values of a great 

number of functions at their midpoints, whereas it was simpler to halve 

the steps in the Runga-Kutta routine for the case of f 2 • We do not need 

f2 for the growth rates.
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The checks carried out , (characterised by (5-17)) proved conclusive in 

all cases, and once more, backward difference formulae were used to 

check further that the condition Qf2 = 0 at T] = 1, was satisfied.
61]

5*7 The Growth Rates.

The growth rate terms computed, include GR^(c[>), GR^(E), and two measures 

of GR^(E). One measure was that already given by (4-89), and the other 

excluded the effect of 0(e ), but included curvature implicitly.

It can be shown that (4.90) reduces to 

,(5.18)

where

Here (5.18)

+

compares directly with Eagles & Weissman (1975 p255), but

includes the effect of curvature from which the straight walled case 

can easily be retrieved.

In order to compute GR^(<J>) and GR^(E) using (4.75) and (4.82), it was 

necessary to define and store 0. Thus, once had been computed it was 

an easy task to compute GR^(<J>), GR^(E), and GR^(E). All these were 

compared with -kL, the quasi-parallel prediction for the growth rates.

All integrals were determined by using Simpsons rule.
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5.8 Parametric Studies for the Steady State Problem,

This part of the work was initiated with a view to answering the 

following questions :

(i) How accurate is the perturbation analysis given by equation (5-1) 

which solves for Gq ? In particular, how many perturbation functions 

(wr) were necessary for convergence ? How many tq  steps were necessary to 

ensure convergence for the functions G^Gj, Fq  , F^ , Hq ?

(ii) How far can we go in the streamwise direction so that that the 

asymptotic development given by (4.12) can be applied with confidence ?

The answers to case (i) were obtained by using four significant figures 

as a criterion for convergence. Some results have already been compared 

to four significant figures in TABLE 1.

We took v = 5 in case (i), fixed the number of 7] steps, and varied the 

number of perturbation functions to be computed. We can consider the 

results given in TABLE 2 to be the worst possible cases, and reference 

to it shows convergence to four significant at 64 perturbation terms for 

Gq (.5) and Gq (.5), but not for G^(.5) or Gq (.5). The criterion of 

convergence was not too difficult to satisfy near the centre, or near 

the walls of the channel for a smaller number of perturbation terms. 

Thus 7] - 0.5 was chosen for evaluation. Note that Gq does not depend on 

curvature, also the no slip condition is satisfied everywhere.
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v = 5.0 80 steps 
of T)

Perturbation

Terms Go(-5)
a'(.5) II. X

%(-5>
III. ,

a0(.5)

8 0.856785 0.892198 -3.505546 4.112094 0.0

16 0.873550 0.859079 -3.664425 5.208263 0.0

32 0.878250 0.849729 -3-707526 5.510530 0.0

40 0.876610 0.849011 -3-710787 5.533522 0.0

48 0.878742 0.848749 -3.711974 5.541906 0.0

56 0.878792 0.848648 -3.712430 5.545129 0.0

64 0.878813 0.848607 -3.712612 5-546515 0.0

Results of Gq and some derivatives atT|=.5, Gg at the wall, 

showing convergence to 4 sig.fig. for 64 perturbation terms 

and for 80 T] steps, with v=5.0, in a straight walled channel.

TABLE 2.

In fact 64 perturbation terms were chosen, and this number was used to 

determine the optimum number of T| steps required for convergence.

The case of Gq is given for various I) steps in TABLE J-? where clearly 40r] 

steps are sufficient for convergence. Nevertheless, the other functions 

G^ ,G2>T'q ,F^ ,Hq required progressivly more T| steps to achieve 

convergence. The no-slip condition was also becoming more difficult to 

satisfy with each function. The worst case is given in TABLE 4. Where Hg 

converges for 70 tj  steps. It was covenient to consider i]=.6. All the 

subsequent work was run on the basis of 64 perturbation terms and 80 

steps. Thus, once Gg , G^ , G 2, Fg , F-], and Hq were computed, it was possible, 

and sufficient to store the values of these functions and their 

derivatives for just half the number of 7] steps in the rest of the 

program, using each alternate value.
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v = 5-0, 64 perturbation terms

Number of

T| steps G q (•6) GZ0(.6) a"(.6) ^(.6)

20 0.946175 0.509933 -3-030069 7.844196 -0.000012

30 0.946156 0.509661 -3.029546 7-848162 0.0

40 0.946152 0.509614 -3.029455 7.848649 0.0

50 0.946151 0.509602 -3.029430 7.848763 0.0

60 0.946151 0.509597 -3.029421 7.848800 0.0

70 0.946151 0.509595 -3.029417 7.848815 0.0

80 0.946151 0.509594 -3.029415 7.848822 0.0

Results of Gq and some derivatives atT| = .6, Gg at the wall,

showing convergence to 5 sig.fig. for 80 T] steps and 64 

perturbation terms, with v=5, for a straight walled channel.

TABLE 3.

v = 5.0, 64 perturbation terms 

ra = 1 .0

Number of

T| steps Ho(.6) <(•«) h '0(D

20 3.041040 -9.745376 -16.160815 212.483875 0.015304

30 3.011692 -9.642115 -16.079510 209.804742 0.002996

40 3.006590 -9-624146 -16.065167 209.333534 0.000946

50 3-005175 -9.619519 -16.061159 209.202239 0.000387

60 3.004662 -9.617354 -16.059703 209.154608 0.000187

70 3.004442 -9.616576 -16.059074 209-134069 0.000101

80 3.004334 -9-616197 -16.058766 209.124049 0.000059

Results of Hq and some derivatives atp=.6, Hq at the wall, 

showing convergence to 4 sig.fig. for 80 i) steps and 64 

perturbation terms, with v=5, for a curved walled channel.

TABLE 4.
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We now come to the case (ii). Here an attempt is made to estimate the 
magnitude of the ommited O(e^) term in the steady state case. The most 

direct way to do this is to obtain the equation for Q(o,-q;v,m), where

.(5.20)

Recalling the original scheme, we substitute (5.20) into (2.18a) and 
1/?

compare coefficients of powers ofe . We obtain

o/. ^a/aoaoA
V
t h] ctx'3; 2 8718087] 2 

_ a^Q. ao^Q] 
ao a-q3 ?o ?i]3

3i] 8087] 2

80" 8p3

\oT] dr] 2 3t ] 3t )2 1 I

8t ]2 + 4(l+mo)—°?och)2

, (5.21a)

and Q (o ,±1) = 0= 1*3(0-,±1) 
j a 7]

•(5.21b)

Continuing, 

and C?2 as

and are written in a more suitable

before, and fig and given by

form with Q

fi0(o,i] ; v,m) 1/2 2= G (i];v) + e o.^ (l);v,m) + E Oj G^Tpv.m)

3/? 3+ E ZO'1 G3(7];v,m) +... ,(5.22)

and Q3(o, 7] ;v,m) = E (i];v,m) +... ,(5.25)
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thus the total steady state stream functionQ (p ,t | ; v, m) becomes

Q(;; ,-q; v,m) = G0+e /2(F0+o G.] ) + e (Hq+•’•O^G?)

^3'2(E00*°1Hr°?F2*OiG3H"- •(5-24’

The equations for G-j.F-.H.., and E are obtained as before, and their J L I OO
equations are given here for reference.

d4G3 + 2vd /dGodG3' 

df]4 dT] \dT) dT) .

d^F2 + 2vd £Gq  dF^ 

dT]4 dT\fr] dT) )

= -2vdG) d2G2 - 2vdG2d2G)

dT) dT] 2 dT) dT]2

-2vmdGgd 2Gp - 2vmdG-| d2G^ - 2vmdG2d2GQ ,(5.25a)

dT) dT)2 dT] dT]2 dT) dT] 2

G 3 = 0 ; dG^ = 0 at T) = ±1 •(5.25b)

dT]

= v^3dG0d2G3 + 2dG| d2G2 + dG2d2G1

\ dT] dT)2 dT] dT]2 dT] dT]2

-3G3d3GQ - 2G2d3G1 - G1 d3G? - 2dG1d2F)- 2d2G1 dF1 

dT)3 dT|3 dT)3 dT| di)2 dT]2 dT]

-2dG2d2FQ- 2d2G2dFQ- 2mdGodzF1 - 2md2GQdF1

dT] dT)2 dT)2 dT] dT) dTj^~ dT]2 dT]

-2mdG] d2FQ - 

dT) dT]2
, (5.26a)

F2 = 0 ; dF2 = 0 at T] = ±1 

dT]

,(5.26b)
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d4^

dT] 4

+ 2vd

dh

'dGQdHA

.dT] dT] /

= v/2dGQd2F2 + dG^2^ + 2dFQd2G2 + dF1 d2G?

\ d-q dp 2 dy] dp 2 dj) drj 2 dp dp 2

- 2G2d3FQ - G^3^ - 2F2d3GQ - ^d^

dT]3 dp3 dT)3 dT|3

- 2dG1d2HQ - 2d2G1dHQ - 2dFQd2F1 - 2dF1 d2FQ

dT) dT]2 dT)2 dT] dT) dp2 di] d-q 2

- 2mdG()d2H()- 2md2GQdH0 - 2mdFod2FQ\
dT| dT]2 dT]2 dp dp dp2 /

- 4d2G1 - 8md2G0 ,(5-27)

dp 2 dT] 2

H1 = 0 ; dH1 = 0 at p =±1 , (5-27b)

dT]

d4E00 + 2vd /dGQdE00\ = v/dGgd2^ + dFQd2F1 + dHQd2G1 - G] d2HQ - F]d2F0 

diA dx]\d-q dp / \dp dp2 dp dp2 dT] dp2 dp2 dT]2

- »i - 2^sdA - 2iv\)
dp3 dp dT]2 dr]dp2 }

+ 4d2FQ + 4d2G1 - mpd3G^ , (5.28a)

dp2 dp2 dT]3

Eoo = 0 ; !!oo = 0 at n =±1
dT]

. (5.28b)

In anticipation of the problem of satisfying the no-slip condition for 

the previous functions Gq to , it was found necessary to increase the 

number of p steps. Consequently 120 p steps were used to compute these 

additional functions. After computing these functions it was possible 
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to determine the total steady state stream function Q up to and 
including the 0 (e 3'2) term, and hence a measure of the magnitude of this 

term.

We would like to know how far in the streamwise direction we can go 
before the 0(e ^2) terms become large enough to be included in the 

analysis. A plot is given in FIG-3 which clearly justifies the original 

asymptotic development. Even up to o-j = 2.0, the maximum observed 

differences amount to

The OCe 3'2) terms increase with larger values of v and the worst possible 

case of v = 4.71 is given in FIG-4a and FIG-4b. The maximum observed 

differences amount to approximately 4$ and 7? at o-j = 0.0 and a-j = 1.6 

respectively.

The work on the whole verified the asymptotic analysis and justified the 
exclusion of the O(E3'2) terms, since the range of v was always < 4.71 and 

that the distance gone in the streamwise direction was invariably 

characterised by o-j < 1.6.
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6 The Results,

Ve now come to the numerical results and interpretations. Firstly, the 

present work (with m=0) represents an extension and check on the work of 

Eagles & Weissman (1975), (henceforth E&W),to the next order term. Such 

an extension is important, because kL is numerically small and it is not 
certain that the series for the growth rates to O(t^) (as in E&W) is 

sufficiently accurate. It turned out that the next order terms made 

comparitively little difference to the stability properties, but it must 

be emphasized that this result was uncertain before the calculation was 

complete, and it is in fact fairly surprising when one considers the 
comparitively high values of used (up to E^ = 0.46 see TABLE 6). The 

results of this comparison are presented in FIGS-16 to 18, and together 

with the results of Allmen (1980) contribute a convincing check on the 

results of E&W.

Next we come to the effects of curvature, which is characterised by m. 

When interpreting and using the results of the present curved walled 

calculations, we must try to imagine the physical situation, where our 

curved walled channel is part of a longer channel, and whereas the angle 

of divergence varies from point to point, the curvature is in fact
, in,

constantAin this first case. The general theory of such channels is 

described by Fraenkel (1965 II ), and in particular we will consider a 

channe 1 with onrucvtnrt uJ) • I •

By the present analysis, our results, in a larger context, are 

essentially local results, but they do take account of the local 

curvature through the "m" parameter. These results are much more 

realistic than those predicted by a purely local quasi-parallel theory. 

The overall stability of flow in a curved walled channel would be 
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determined by finding the critical Reynolds number at each local point, 

and using the minimum of these as the overall R-crit. By the local 

R-crit we mean that the local growth of disturbances in the streamwise 

direction can occur for some values of p when R > R-crit, local, but no 

growth can occur for any p when R < R-crit, local.

If the channel is straight walled this R-crit is the same at all 

stations, and has been found as a function of RQf by E&W. It is very 

strongly influenced by the nature of the steady state (Jeffery-Hamel) 

flow appropriate to the wedge. A question we can ask then is, if the 

curved walled has the same local angle of divergence as a wedge, is the 

flow locally more or less stable than the wedge flow ? Is the wedge 

approximation reasonable for a curved walled channel ? These questions 

can be answered by choosing v and taking = 0 in our curved walled 

channel. We consider the growth rates at cr-j = 0. We emphasize that these 

results are influenced both by the modification of the steady state 

flow, by the curvature, and by the ■»_ terms appearing in (2.19a).
□ O']

We may also follow the growth and decay of a fixed frequency disturbance 

in the curved walled channel in a streamwise direction, but this is of 

less physical interest because other frequencies will probably occur as 

the most unstable ones as we progress further down a divergent curved 

walled channel. Nevertheless, some such results are included for 

completeness.

6.1 The Effect of Higher-order Terms 

in the Straight Walled Channel.

6.1.1 The Steady State Case.

The asymptotic development of the general equation defining (2.18a) 

the steady state stream function, gave us the equ a tions f or G^,G^,G,F ,F^ 
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and Hq . These equations reduce to the straight walled case on setting 
m = 0. This simlified system has already been briefly described (Ch.4.1). 

In fact

Q(^»T|»v ) = Gq + E Hq +... , (6.1 )

and the equations for Gq , and Hq are given by (4.13a), and (4.19a) 

respectively.

The effect of including the higher order term e Hq , is probably best 

described with reference to the changes suffered by the velocity profile 

dQ .

dT)

The results in TABLE 5 clearly shows the effect for typical cases. The 

pattern of increased velocity at the centre and decreased velocity at 

the walls was common to all cases considered, and the worst case of 

v = 4«71, and R = 10.5 is given in FIG-5. For any fixed v, increasing R 

merely defines a smaller and hence the effect of adding on higher 

order terms is less noticable, even though it persists in the way 

described above.
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v = 3-572 ; R = 30 v = 4.093 ; R = 25 v = 4.71 ; R = 10.5

dG0 dG+ e  dH
0 o

dG0 dG+edH0 0 dG0 dG+tdH0 0
1) dT] dT] dT) dT] dT] dT) dll dT] dT]

0.0 1 .856 1 .860 1 -973 1-985 2.187 2.339

0.1 1 .813 1 .817 1.920 1.931 2.113 2.251

0.2 1.691 1 .694 1 .768 1.777 1 .906 2.005

0.3 1 .504 1 -505 1 .542 1 .546 1 .604 1 .650

0.4 1 .273 1 .273 1 .269 1 .269 1 .256 1 .248

0.5 1.021 1 .019 0.9815 0.9777 0.9069 0.8555

0.6 0.7682 0.7657 0.7057 0.6993 0.5934 0.5143

0.7 0.5309 0.5279 0.4604 0.4530 0.3375 0.2494

0.8 0.3200 0.3172 0.2576 0.2508 0.1509 0.0729

0.9 0.1420 0.1402 0.1033 0.0990 0.0379 -0.0106

1 .0 0.0 0.0 0.0 0.0 0.0 0.0

The steady state velocity profile with and without the 0(e ) 

correction for different straight walled channels

TABLE-5.

6.1.2 The Stability Problem.

Let us first consider the behaviour of k, fg , Aq , and f-j . An examination 

of the equations (4.46), (4.65a) and (4.52a) clearly shows that these

functions are not in themselves dependent on higher order terms.

Nevertheless, collectively they all contribute to the 0(e ) correction to 

the growth rates. A brief discussion is given on their behaviour.

In the case of the eigenvalue k, it is uniquely defined by specifying v, 

R and p along with the condition (4.56), defining the eigenrelation. Its 

general behaviour is clear from FIGS-6a,6b and FIG-7. In FIGS-6a,and 6b, 

v=3«572, p =0.2, where kL and kr are plotted against p- for two values 

of R. From FIG-6 we can see that in the case of R = 57, kL becomes 

negative for some Pj . Plotting k against p, gives us the freedom of
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fixing o.| and thus finding a range of frequencies pthat might cause 

growth for E (GR^(E) > 0) through the relationship (4.51 )• This type of 

analysis is possible in the straight walled channel, since p and 

never appear independently but always in the form (4.51 ).

When kL is never negative (R=50), such a prediction cannot be made. At 

O-j = 0 for example, with R = 57, E, E, , u^ , and u^ might all be 

expected to grow for p = 1.5, at least at 0(1).

From FIG-6a it can be seen for fixed , the range of frequences 

yielding negative values of widens with increasing R. The phenomenon 

of negative kL appears at a lower R when considering larger values of v 

(see FIG-7).

The changes in the eigenfunction fg for some eigenvalue k are modest 

when considering different combinations of v,R and Pj . Two typical 

graphs are given in FIGS-8a,& 8b, where the non-parallel effects are 

seen to be more dominant in changing fg than R for some fixed v.

Two typical cases of the function Ag are compared in FIGS-9a, 9b,& 9c. 

Here, R = 50 and p = 0.2, and the effect of varying v is observed to 

make little difference to Aq . In fact, the range of values of v, R,p 

considered, only produced small changes in Aq , and the observed 

differences in FIGS-9a,9b,& 9c were typical of many cases.

Some graphs are given of f^ to simply show a dominant non-parallel 

dependence as in the case of fg. Many cases were considered, and we give 

a case in FIG-lOa which shows values of fq at c^= 0 and o.|=0.96, and 

FIG-10b which shows values of f| for two values of R with fixed v and p.
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We now consider the function A-j . We can see that this function unlike 

the others, does depend on higher order terms. In fact this dependence 

only appears in Mg (4.45) and consequently in C2Q (4.70 ). Neverthless, 

we can expect some change in the growth rates by including the 0(e ) 

correction. It is an easy task to compute A-j with and without higher 

order terms. This comparison is given in FIGS-11 a,11b,and 11c.

The relative energy growth rate GR^(E) is plotted against <Xj including 

the 0(e) correction, and this is compared with E&W in FIG-12 and FIG-13 

for particular frequencies. The observed differences are comparitively 
1/2small even in FIG-13 where E = 0.24. The 0(e  ) correction is more 

dominant for higher values of v. An extreme case is given in FIG-14 

where v = 4.71 and R = 10.5, here 0.45.

It is clear that in the case given by FIG-12, the addition of the 0(e ) 

term tends to "stabilize" the GR^(E). This is in contrast to FIG-13 in 

which the addition of the 0(e ) term tends to "destabilize" the GR^(E).

We can analyse the GR^(E) for different frequencies by plotting GR^(E) 

against Pj . This is seen in FIG-15 for the case v = 3-572. Clearly, for

R = 30, no Pi exists for which the GRk (E) > 0, hence no frequency or 

value of O-| exists for which the GR^(E) > 0. On the other hand when

R = 50, "critical points" A and B define a range of pj (and a

range of ) for which the GR?;(E) > 0. In particular if Oj = 0.4, then 

the range of P is 0.44 < P < 1.12, and if p =0.2 then the range of 

is 0.79 < □•] 4 1 .26.

The lowest Reynolds number about which growth may just be expected, is 

characterised by that curve which just touches the PjaxismFIG-15. In the 

straight walled channel this value (R-crit) is constant for all values 

of o, .
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By fixing v, we can establish different "critical" points for different 

R. These "critical" points contribute to form "neutral" curves of 

pjvs. R. The "neutral" curves based on GR^(E) for v = 3-572, 4-093, and 

4-71 are given in FIGS-16,17,8 18 respectively. Note A and B on FIG-15

and FIG-16.

and

of

As we have already seen in Ch.4, GR^($), GR^(u^), GR^(u^), GR^(E), 

GRv-(E), only have the same value (-kL) at 0(1). Thus we expect all 

them to have different "neutral" curves even with just the 0(e z ) 

correction. These "neutral" curves define regions of growth and decay.

We establish R-crit from them. In fact the lowest R-crit from all 

"neutral" curves is the one based on GR^(E). Based on these "neutral" 

curves for GR^(E), we can see by referring to FIG-16 that as we move on 

the line R = 50 we will pass from a stable region to an unstable region 

(between A and B) and back to a stable region. The "neutral" curve in 

FIG-16 can be used to evaluate regions of growth in the streamwise 

direction for fixed frequency disturbances. Some values of R-crit are 

tabulated in TABLE 6 for various v, where the E&W case is compared with 

the present analysis.

V R-crit;

E&W

R-crit;

0(e ) correction

3-572 38.6 40.5

3-8 32.3 33-4

4.093 25-4 25-5

4.5 16.6 15.2

4-71 12.6 10.2

Values of R-crit, for a range of v in a straight walled 

channel (m=0), with and without 0(£ ) correction

TABLE 6.
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The feature of the higher order terms exemplified in TABLE 6 or FIG-19, 

could have been anticipated when we consider FIG-12 and FIG-13* These 

results suggest that some critical v exists (v-crit) about which the 

addition of higher order terms stabilizes the flow (v < v-crit) or 

destabilizes the flow (v > v-crit).

Allmen’s (1980) direct numerical attack on the straight walled channel 

is briefly considered here. In fact Allmen did not provide a graph of 

R vs. v, but such a graph could be plotted from his results, and it 

would suggest the same feature of higher order corrections as the 

present ones, but to a lesser extent. This feature is not really 
noticable when R is plotted against E^.

6.2 The Effect of Curvature in the Stability Problem.

6.2.1 The Steady State Case.

We now consider the effects of curvature through the m term. We shall 

first look at the effects on O and subsequently on the stability 

problem. A comparison of the curved walled channel (for various m) and 

the straight walled channel (m=0) is made at a position where the local

angle is the same. In our analysis this was chosen to be at Ct. = 0. Both 

problems are taken up to and including the 0(e ) term.

When we compare m=0 with the case m=1 , 'we find that at = 

decreased at the centre of the channel and increased near the walls.

This state of affairs reverses as we travel downstream. The velocity at 

the centre increases with and decreases near the walls. Two graphs 

are given which illustrate this in FIGS-20 & 21, for v = 4.093, and

v = 4.71 respectively. We can see that in the case of v = 4.71 reversed 

flow is observed at = 1.2, in contrast with m=0, in which the

velocity is constant in the streamwise direction.

In an attempt to explain why the velocity at the centre is smaller at 

o^= 0, we can reason that if m>0, the angle of divergence for > 0 is 

larger than the corresponding straight walled angle. Similarly if m>0,
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then the angle of divergence for o- < 0 is smaller than the corresponding 

straight walled angle. The steady state velocity profile might then be 

expected to be smaller at the centre of the channel for a-j < 0, and 

because of the upstream influence this may persist to = 0. If this 

was the case, then we might expect the reverse to happen at o^= 0 for a 

value of m < 0. A graph is given in FIG-22 for m=-1 to substantiate 
this. Other cases were also considered and as Im ' increased the effects 

illustrated in FIGS-20,21 , & 22 were more pronounced, and the

dependence was more noticable.

6.2.2 The Stability Problem.

We will offer a brief discussion on the combined curvature and 

non-parallel effects to the functions k, f, A^ , , and f^ . This

discussion will show comparisons of these functions with the equivalent 

m=0 cases and will shed light on what we might expect to happen to the 

growth of the disturbances as we move downstream.

On examining'the equations of the above functions it is clear that only 

Aq , Ap anf f^ are directly dependent on curvature.

The introduction of positive curvature (m=1) tends to decrease and

jA-Jnear a-j = 0, and in many cases considered, this decrease persisted 

well into the streamwise direction (= 1«0). Comparisons with m=0 are 

made in FIGS-23a,25b,& 23c for the case of Aq and in FIGS 24a,24b,& 24c 

for the case A^ .

The behaviour of | f-j | however does not exhibit a decrease near o, = 0 but 

an increase. This is clear from FIG-25a, where f| compared with the
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straight walled case at c, = 0, and FIG-255,where fis plotted against O 

for m=1 and m=0.

So far, we have seen that for the case m=1 , Q , Agl and AJ are smaller 

at the centre of the channel near or at Oj * 0, than for the case m=0. 

We might expect that these contributions to the G^(E) are more dominant 

than the contribution from j f| | , thus a similar feature could be 

expected for GR^(E). The graphs of FIGS-26,27, & 28 show this clearly. 

All these graphs suggest that in the case of m=1 , the GR^(E) is smaller 

than the case of m=0 at G-j = 0.

To obtain a measure of which of the two cases (m=0,m=l) is more stable 

at O-j = 0, we compare R-crits. However, in the curved walled channel the 

non-parallel dependence is not just in Pj , since p and cn appear 

independently ((4.35), (4.38), (4.40), (4.43)). Thus we can only obtain 

R-crit for each emplane.

If we plot p vs. GR^(E) (FIG-29a) for fixed R, and R vs. GR^(E) 

(FIG-29b) for fixed p at a, = 0 the behaviour becomes clear. We require 

the combination of R and p which yields GR^(E) = 0. Thus, using 

FIGS-16,17,18, & 19 we can obtain estimates of R-crit, (and p-crit) for 

the curved walled case.

Starting off with R-crit and three consecutive values of P (centred on 

P-crit) the corresponding GR^(E)'s can be computed for fixed v. A 

routine which interpolates a p giving the minimum GR^(E) is obtained 

(see FIG-19a). With this new p-crit, three consecutive values of R 

(centred on R-crit) are chosen and the corresponding GR^(E) computed. 

Another routine is used which interpolates (or extrapolates) an R 

yielding GR^(E) = 0 (see FIG-29b). Thus a new set of R-crit, and p-crit 

are obtained from which the whole process can be repeated. Convergence 

was fairly easily achieved. This method is essentially that also used by 

Eagles & Smith (1980).
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The values of v considered are given in TABLE 7 where the two cases of 

m=0 and m=1 are compared. It is clear that in the case of m=1 the curved 

walled channel appears to be more stable at = 0 than the straight 

walled channel of the same angle.

V R-crit;

m=0

R-crit;

m=1

3-572 40.5 44.6

3.8 33.4 38.8

4.093 25.5 33-8

4.5 15-2 30.4

4.71 10.2 30.3

Values of R-crit for a range of v in a straight walled (m=0) and

a curved walled channel (m=1, i.e. positive curvature) at o.= 0.

TABLE 7.

The above scheme was checked by a method identical to that used in the 

straight walled case, but instead of plotting GR^(E) vs . Pj to establish 

the "critical" points, GR^(E) was plotted against P in the plane O’, = 0. 

These "critical" points contribute to the neutral curves. Two of these 

are given in FIGS-30 & 31, where m=0 and m=1 are compared at O', = 0.

As expected the case 

and | f .J j than the

m=-1 had in general an opposite effect on A^:, lA 'I 01 I 11 
case m=1 . This, coupled with the effect on Q

represented by FIG-22, made the disturbance more unstable at = 0. The 

value of R-crit at 0^=0 was also found for the cases m=-1, and m=2 

where v=3«572, and the results are represented in FIG-32.

We have used the R-crits for m=0 as starting values to obtain correct 

values of R-crit for the case m=1, but the final results for m=l show 

appreciable differences at = 0, and we conclude that the wedge cannot 

really be used as a good approximation to the curved walled channel.
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It is interesting to see what, if anything, predominantly accounts for 

the shifts in R-crit represented by FIGS-5O & 51 • In the case of m=0, a 

smaller velocity profile along the centre of the channel is clearly 

associated with a higher R-crit. We could ask "since the velocity 

profile at O-] = 0 for the case m=1 is smaller than for the case m=0, does 

this account for most of the increase in R-crit at = 0? To answer this 

question we could examine what would happen to R-crit in a straight 

walled channel if the Q based on m=1 replaced the Q in m=0, keeping 

everything else the same. This was done for the cases available and 

typically, for the case v=5«572, the shift went from R-crit = 40.5 to 

R-crit = 45«5. this is close to 44.6 and we conclude that the shift is 

strongly dominated by the particular change in Q .

6.5 Development Downstream of Fixed Frequency

Waves in the Curved Walled Channel.

Even though we have established that in the case of m=1, the curved 

walled channel is more stable than the straight walled channel at = 0, 

the situation changes as we follow the disturbance downstream for fixed 

frequencies.

Values of R-crit have also been established for various in the case of 

m=1 , for a range of v. These are given in TABLE 8 for O'-] = 0.4 with 

those already established at O'-] = 0. They are also represented 

graphically in FIG-55. It became increasingly difficult to establish 

R-crit downstream for all values of v considered in TABLE 8. At = 0.8 

for instance, a study of the steady state profile shows it to be 

excessive in reversed flow for higher values of v. This makes the scheme 

of finding R-crit untrustworthy for such cases.
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V R-crit;

0

R-crit;

Op 0-4

5.572 44.6 40.6

3-8 58.8 34.4

4.095 55.8 28.2

4.5 30.4 21 .0

4.71 30.3 17.9

Values of R-crit for a range of v at 0^=O.O and o^=0.4 for the 

curved walled channel (m=1, i.e positive curvature).

TABLE 8.

Referring to FIG-55 we can see that in the case of v = 4.0 and R = 52 

(A) we cannot find frequencies which correspond to the disturbance 

growing at O-] = 0. However, frequencies, exist in which the disturbance 

grows at o-| = 0.4.
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7. A Fraenkel-Type Channel.

We have already considered a particular curved walled channel, and have 

attempted to describe the stability of flows whose first approximations 

are the Jeffery-Hamel ones. The channel chosen also enabled us to make 

direct comparisons with the straight walled channel of E&W.

This current analysis was undertaken in an attempt to study a more 

realistic channel using Fraenkel's coordinate system. One

difficulty in using Fraenkel's coordinate system is the dimensions of 

the channel implied by the small wall curvature assumption (Fraenkel 

1963 II p41l). The ratio of the final and initial throat width contains 
a factor of exp(tanha/e^) (see (7.43)), where cr is defined by (7.7) and 

1/7is the downstream coordinate. For small typical values of E z (say 0.1 ), 

such that the theory is applied with confidence, the ratio becomes 

enormous' for saycj- 1.0. This problem makes it difficult to construct a 

channel which might be tested experimentally. Nevertheless, we have used 

Fraenkel's coordinate system to obtain quantitative results of the 

stability of disturbances to the steady state flow.

We chose a channel characterised by

Q'(T) = E^m.| sech^T , (7.1)

and here we have the facility of choosing any position in which to 

perturb the steady state flow with our new definition of O (7.7). We 

have considered fixed frequency disturbances and established R-crits 

based on E as before.
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We note that the channels defined by (7.1) satisfy the conditions 

required by Fraenkel (1963 II p.4O3). That is Qj(z) — real constant 

values as O — ± co and Ct(T) is real on q] = 0. We refer to this channel 

as a Fraenkel-type channel.

All the equations and results have been taken up to and including the 

0(e ) terms. We have finally compared R-crits predicted by including the 
0(e ) terms with those predicted by including only the 0(E^?) terms.

For the sake of simplicity, we have used the same notation as before, 

but we bear in mind that the functions are not the same.

7. The Steady State Equations.

We use (2.18a) as before and substitute (4.4) into it. This form of Q'(7") 

gives us

K =£1/2m1sech?a (1 + 0(e ?)) ,(7.2)

and X = £^2m^ sech^o tanho(l + 0(e ?)) ,(7.3)

The resulting equations for Qq , fi^and Q?are as follows :

0(1 )

0 1 (7.4)

v ♦ (7.5)
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0(e)

till* . v/ao0a^)»
3t )4 Stivt ] 3t ) / \9t | door]? 3i) 9t )3 3a 3rp

_ 9Q1 33Qq _ 2ni1Sech?a 9Q1
do STIS 3t | 3y ]2 /

- 4m?sech^a d^Qp .(7.6)
3l]2

The boundary conditions are identical to (4.5b)-(4.7b).

The similarity here with (4.5a)-(4.7a) is not surprising when one 

considers that the terms previously containing (1+ma) now contain 
sech^o.These terms arise directly from theCt(v) chosen.

The steady state equations are valid for all o. We introduce two new 

parameters now, Og and o-j , defined by

° = o0+E1/2ai ,(7.7)

where is a constant and we emphasize that the slow variable o. is 

not the same as the previous Op here it is defined explicitly by (7.7). 

From our previous work we know it was necessary to introduce the other 

slow variable in order to ensure boundedness of h in the time

perturbation analysis. With this new definition we shall be expanding 

Q, Q-t and Q? about o = oAand not about O = 0. There was no virtue in
0 0 1/0 

doing this for the previous constantly/curvature channel, as changing ez 

effectively achieved the same thing, that is, increasing or decreasing 

the angle of divergence at O'-j = 0. Here however, the "bottle-neck" 

characteristic of this Fraenkel-type channel (FIG-34) makes it ideal 
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for this approach. We can choose any starting position in which to 

perturb the steady state flow.

One important result from (7.7) is that

a = e1/2JL , (7.8
8o]

which is the same as before.

Using a Taylor series expansion of Q , andfi^ about o = Oq , and 
expanding sech^a in powers of E^2 we can obtain equations for the 

functions G^,G^ ,G?,F,F^ , and Hq as before (i.e. (4.9) — (4• 11 )) - All the 

boundary conditions are the same and we quote these equations for the 

purpose of comparing with the previous analysis. They are

d4GQ + 2vm-]Sech^OQ dGgd 2Gq  

dT]4 dT] dT]2
= 0 ,(7.9)

d4G1 

dT]4

d^G? +

dT]4

= v4m-| sech^OgTanhOg/dGgd^Gg , (7.10)

dT] dq2

2 2= -2vm„sechcs • dG. d G„
1 0 __ 1___ 1

dT) dT|2

+ v4m-| sech2Og Tanho^dGgd 2Gj

dT, dT| 2

2 2+ v4m^sech Oq  TanhOgdG^ d Gg

dT] dp] 2

- 2vm]Sech^OQ (3Tanh^Og-1 )dGg d^Gg , (7.11) 

dT] dr]2
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+ 2vm^ sech2o0d 1(dGgdFgX - 7dGo d2(5i -G, dM ,(7.12)

dT)4 <dT] dr) / \dT) dT) 2 dp3/

d^F] + 2vm^ sech^qd /^GgdFA = v/2dGgd2G2 + dG1 d2Gj - G-|d3G|

dT]4 dn \dT] dT) / I di) dT)2 dT] dl]2 dT)3

- 2G2<i^GQ - 2msech2Og dFg d

dT)3 di) dr]2

2 2- 2mgsech OgdGgd Fg

dT) dT)2

+ 4m^ sech^Og TanhdgdGgd 2Fq

dT| di) 2

+ 4m1 aech^og TanhOgdFp d“Gg\ , (7.15)

dT) dl) 2 /

d‘H0 + 2vm^ sech^Ogd ZiGgdHgV = v/dGgd2F1 + dFgd2G| - Gg d3Fg

dT] 4 wn dT) / \dT] di)2 dT) dm 2 dT) 3

- Fgd3Gg - 2mi sech^Og dFg d" Fq\

dT|3 dT] dT) 2 /

4 2
- 4m1sechOgd Gg .(7.14)

di) 2

An interesting consistency can be observed between (7-9)-(7.14) and the 

equations (4•13a)-(4•18a). The equation for G2 contains an additional 

term -2vm1sechzOg(3tanhzOg-1)dGgdzGg, this extra term can be shown to 

dT] dT)2

come from the fact that the curvature is varying/jiere, and in this case

directly from the 0(e ) term in the expansion of sechzo in ascending 
1/7powers of E . This consistency is explicitly realized when (3.7) is

modified to

a(r) m7 .(7.15)
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The parameter 1 was always taken to be unity in the previous analysis.

Here, it can be used as a transformation parameter.From an algebraic and 

hence computational point of view, the choice of

2
1 = m-jSechCTg , (7-16)

and m = -2m. sech^cr.. tanh c. , (7.17)

makes the two systems equivalent with the exeption of the additional 

term arising from curvature in Gp •

7.2 The Time-dependent Equations.

The overall scheme is the same as before, but the resulting form of h 

(7«38) makes it necessary to define $ in a slightly different way. The 
term d (D^<i>)in (2.19a) will now only be bounded if we chose $ in the

Bl
following way, 

4X >t) .(7.18)

The factor 

variable t'

exp(-2m^tanhCTq /e ^) can be removed by introducing a 

(which is different for each ) where

new time

and is the dimensionless time, scaled on the channel half width at 

Thus p in (7.18) is a "locally non-dimensionalized" frequency.



Proceeding as before we obtain

0(1 )

L<t>0= 0 ,(7.19)

L = 1(d / -k2

R

,(7.20)

where

0(e /?)

Pl = P exp(2m^C5'^ sech2OR) .(7.21)

where

L1

L3

L4

0(E)

3R dO]

L4)% ,(7.22)

•4ik(D2 -k2) + 2kpz + d^(D2 -3k2) - d3G0

R dR dT] 3

/ 2 2S
2i(D1-3k ) + Pj - 3kdG0

R dT]

1 sech2q>j4ik(D2-k2 )- Zd^-Zi^tanhCfc (D2

L dR dT, 2

,(7.23)

,(7.24)

dR

, 2 2. f 3
a1dGJ(D1-k ) - ik d FQ +

dT] ,

.(7.26)
dtp

L02= 1^9^
So-|

dkL201 + (L3 +
dCR

L?

m
R

+

3 °i A'
df]3 (

-1L2^0
3o?

,(7.27)
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where
777 7 r~ “

Mp 4m1 sech qJ(D1-3k )-4m] sechzOg ikdGg + Pjkc^anhOg 
L dT] •] ,(7.28)

M2" dPg +0,^1 
dT] dT] J

|(D12-3k2)-rd3F0 +old3G1-
___0 "1

_dp3 dp3_

,(7.29)

2 rM^= -m^sech o 12k + 2idGQ+ 2 o2tanh ojj pj 
dT] J

(7.30)

M-y =

-3k I"dFg + o1 dG1

_dp dT] _

12k + 3idG0

R dT]

2 r 2 ”12 2
4m1 sechcr crdG^ tanho^ - m^ sechOg- 2o1 tanho^ik (D^-k ).2 ,2

(7.31)

(7.32)

iPj m1 [^(Wtan^CTg) 
L 3 2

4m-| O] sechOptanhOpd GgD^

R R J
+ 2m^o[ tanh^sech\jJ| (D^-k2 )

(7.33)

dT]2

1 0 1 1 
dT) di)

* g^IdJ-r 2)

M

+

R

3„ . a

R

2

»

Ldiq

»

,(7.34)D14- u JQ nu uQl
dp dT) 1

.(7.35)V ik
r 2 t
dHQ + CJjdF] + O^Gp

2 2(D^-k ) -ik
r 3 3 2 3 -1
d Hq  + O1 d + o1 d G 2

dT] dT) dT] dt]3 dr)3 di]3

If the previous time-dependent analysis was carried out using the 

modified form of CC(t ), (7.15), then the transformations given by (7.16) 

and (7.17) make the equations (4.38)-(4.45) equivalent to (7.28)-(7.35), 

with the exception of the additional term in that is

—iPl m-] (2o-|( 1 +2tanhOg ))(D^-k“) which naturally arises from the extra 

term already discused in G2 (7.11).
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Thus the two transformations (7.16) and (7.17) made it convenient to 

modify the existing computer program from the previous analysis, to 

study the stability of this Fraenkel-type channel.

7.3 The Channel.

We can obtain semi-analytic expressions for the coordinates of the 

channel by recalling (2.8) and using (7-1) for (X('T’). On integrating 

(2.8) and using (2.7) we obtain

h = K.] exp(m.j tanho/^2) (1+0(e ^2) ) ,(7.36)

.(7.57)

The interpretation of h and $ have already been discussed in an earlier 

chapter. The necessary asymptotic expansion of h in ascending powers of 

can be obtained by expanding tanho in terms of Oq and . It is quoted 

here as it determines the form of $ already given in (7.18).

h - K-] exp(m1 tanh Oq /e ^) exp(m1 o1 sech^Qg) 1-e^m^^ 2
tanhug sech c Tq

□ 7 7 L 7 L. n
*£pn1o1 (1+2tanh CTg ) + m1 (tanh^sech a ) • .(7.38)

Continuing and integrating (2.8) once more we obtain the expression 

for z,

z (m-| tanhsA1^) ds •(7.39)
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The constants K-j and K 2 are real and again correspond to different z 

scales and choice of origin respectively.

We can reduce (7.59) to an integral of a complex function along a real 

path and show that, if we choose some starting position S(c Iq ,O) along 

the centre of the channel, and if P(a ,0) and Q(c5p,T]) are two points 

corresponding to (xp,O) and (x q »Yq ) then

= K1 exp(m1 tanhOp/f?2)

,(7.40)

where

a(crp)
sin(a(op)p) (1+O(^/2) ,(7-41 )

.(7.42)

The difficulty mentioned earlier in using Fraenkel's coordinate system 

is exemplified by (7.41). If the initial throat width Wj is at (Oq , 1 ) 

and the final throat width Wp is at (<J, 1 ), then the ratio of Wp to Wj is 

given by

Wp = exp(m-| (tanhtJ - tanhC^)/^) sin(£^m-| sech^Jg)sech^Cg ,(7.45)

Wj sin(  ̂m-| sech2Og)sech^Jg

and we can see that it is independent of . For very large values

of , Oq O’ and (7,45) is close to the value 1 , in fact we are in a 

region where the walls are nearly parallel, and this is to be expected.

However, for a choice of 0.1, m1 = 1 , Oq =-0.2 and 0 = 1.08, a case

in which more interesting phenomena (such as separation) is more likely 
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to occur, since we pass through the region where the angle of divergence 

assumes its maximum value at Cq = 0, this ratio is of the order of 

20,000.

I0(o0’o) ' 0

yoto0.°) - oand

,(7.44a)

,(7.44b)

we obtain

,(7.45)

and without loss of generality if we define Wj by

then

,(7.46)

K1= 1 .(7.47)

The physical coordinates of a variety of such channels were computed 

using Simpsons rule applied to integrals along complex paths. The 

results were checked using the approximate expressions (7-40)-(7.42).

For a particular choice of parameters, £1^=0.4 and m-j =1, this 

Fraenkel-type channel is given in FIG-54.

7.4 The Results.

The overall scheme here was to consider fixed values of v and establish 

the R-crits based on GRr(E) at various CT stations. From these results
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a minimum R-crit is obtainable for each v

The role of m here (now called

instructive in that it gives us an

the transformation parameter) is 

insight as to what we might expect to

happen to the R-crits in moving downstream for fixed v and m^.

Previously we saw how a decrease or increase in the velocity of the

steady state stream function along the centre of the channel, strongly

influenced the increase and decrease respectively of R-crit at a

particular a station

Fraenkel-type channel 

to expect the R-crit

(Ch.6.2.2). As we move downstream
AO, increases then decreases, it may 
31)
to decrease then increase. This is

for this

be reasonable

in fact what

happens. For each v we are able to interpolate 

R-crit (R-crit) at some O station.

an overall minimum

These R-crits can be established for Git (E) up to and including the 0(e) 

terms (henceforth the 0(e) solution), and up to and including the 0(e ^) 

terms (henceforth the 0(e '^) solution). A table of these results is given 

in TABLES 9a, 9b and 10 for comparison.

It is important to realize the problems associated with steady state 

flows characterized by v > 4-7. We have mentioned already that for the 

Jeffery-Hamel profiles to be the simpler symmetric types with at most 

one region of reversed flow at each wall, we must limit ourselves to 

values which are not much bigger than 4.7. Eagles (1966), showed that 

when we have regions of reversed flow negative wave velocities are more 

likely to occur, and the neutral stability curve goes below the R axis 

when R is plotted against p . Thus it may not be possible to achieve 

critical points on the lower branch for positive values of p no mst.fpr 

how small p is chosen. The results of the growth rates for v > 4.7 may 

be questionable here, and these results may influence the results 

further downstream. Nevertheless we have produced some consistent 

results in these cases, where the reversed flow is not too severe 

(Eagles & Smith (1980) p1O).
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V 0(^2) 0(e) CT

R-crit P R-crit P
5-0 99.12 1 .48 101.67 1 .46 -0.4

71 .24 1 .64 75.85 1 .60 -0.2

62.92 1 .68 65-42 1 .65 0.0

69-50 1 .65 71 .97 1 .62 0.2

95.99 1.50 98.57 1 .48 0.4

5-5 65.59 1.67 68.51 1.65 -0.4

46.95 1 .78 49-51 1.72 -0.2

40.76 1 .80 42.78 1 .74 0.0

44.52 1 .79 46.52 1.75 0.2

60.87 1.67 65.20 1.66 0.4

4.0 46.81 1 .78 49-58 1 .72 -0.4

55.06 1 .79 54.88 1.75 -0.2

27.52 1 .75 28.49 1.69 0.0

28.58 1 .76 29.85 1.70 0.2

40.15 1 .80 41 .67 1.75 0.4

V 0(^/2) 0(e) CT

R-crit P R-crit P
4.5 55.94 1 .81 58.15 1.74 -0.4

24.68 1 .69 25-89 1 .66 -0.2

17.21 1 .57 17.46 1 .48 0.0

15-91 1 .25 14.77 1 .44 0.2

25.70 1 .71 25.56 1.64 0.4

4.7 55.12 1 .80 55-16 1 .74 -0.4

22.16 1 .64 25.52 1 .61 -0.2

12.80 0.98 15-24 1 .44 0.0

20.55 1 .54 18.58 1 .49 0.4

40.06 1 .80 41.15 1 .75 0.6

4.8 52.01 1 .79 55-95 1 .75 -0.4

22.05 1 .61 22.65 1.59 -0.2

9-62 0.82 11.12 1 .48 0.0

17.50 1 .54 15.65 1 .41 0.4

57.00 1 .83 57.76 1 .72 0.6

R-crits for a range of v, at various q planes 

including and excluding the 0(e ) correction

TABLE 9b.TABLE 9a.

V o(e1/2) 0(e ) 0
R-crit P R-crit P

5.0 62.88 1 .68 65-59 1 .65 0.015

5.5 40.67 1 .80 42.67 1 .74 0.050

4.0 27.02 1 .74 28.08 1 .68 0.065

4.5 15.10 1 .25 14.16 1 .45 0.140

4.7 10.58 0.96 9.01 1 .41 0.160

4.8 7.42 0.85 6.56 1 .59 0.178

The overall R-crit (R-crit) for a range of v, 

including and excluding the 0(e ) correction

TABLE 10 
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We include the results for v = 4.8 in TABLES 9a,9b and 10, and note that 

at o = 0.2 the R-crit was not achieved for both v = 4.7 and 4.8 by the 

scheme already described (Eagles & Smith 1980). Reverse flow is observed 

at a ~ 0.0 for both these values, and the downstream influence was 

apparently too severe to achieve an R-crit no matter how small p was 

chosen. The values in TABLE 10 were interpolated from TABLE 9- The 

behaviour of R-crit vs. CT for the 0(e ) solution is given in FIG-35a for 
the various v's considered. A graphical representation of the 0(e '/^) and 

the 0(e ) solut ions is given in FIG-35b. The inclusion of the 0(e  ) terms 

stabilizes the disturbance to the steady state flow at all CT stations 

for certain values of v. On the other hand a v exists above which the 
0(E) solution is more unstable than the 0(^'2) solution. A similar result 

has already been discussed in Ch.6.1.1 and was illustrated by FIG-19-

Finally, a plot of R-crit vs. v (FIG-56), which goes across ct planes can 

be used to answer the following question, "what is the overall R-crit 

for a particular channel ?"

To define an infinite channel uniquely, we can see by (7.40) and (7.41) 
that E^, and m1 do this for Tj =±1 . We can imagine this channel with some 

fixed £ z, and mp and by gradually increasing R, we see that a point 

(R,v) in FIG-36 would move along one of the typical straight lines 

(dotted). In the particular case of £ - 0.4 (corresponding to FIG-34) we
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see that when R just reaches R-crit (=13), the growth of the 

disturbances characterised by GR^(E), just become positive at o = 0.15 

for some critical frequency p = 1.42. As R continues to increase beyond 

R-crit, then the disturbances grows for a range of o , and this will be 

possible for a band of frequencies. Both the range of CT and the band of 

frequencies widen with further increases in R. Thus it may be possible 

to choose an appropriate set of parameters ) to define a channel

which is not "enormous" (FIG-34), and by gradually increasing R, the 

results may be compared with those illustrated by FIG-36.

Our general results here can be compared in a qualitative way with those 

of Eagles & Smith (1980). In addition Allmen's more accurate solution of 

their problem exhibits a similar feature as our 0(e ) solution. The 

higher order solutions appear to stabilize the flow for values of v up 

to a critical v (about 4.2 in this case) at all O stations, but 

destabilizes the flow in only some CT planes for values of v greater than 

this critical value (see FIG-35b, also Allmen 1980).

7.5 A Further Channel Problem.

In the light of the previous problems we can see how Fraenkel's small 

wall curvature theory may be applied to any class of such channels. In 

fact the whole scheme of the solution both theoretical and numerical 

could be generalised to include any appropriate (X (T) . As a further 

example, lets consider a channel characterised by

a(7) = E1/2m2T ,(7.48)

1 + T2
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where is a curvature parameter like m1.

the conditions Ct(7") — real constant values

This channel also satisfies 

as a —>+00,0(7) is real on

I] = 0, where o is still defined by (7.7). We can obtain expressions for

h and $ in the usual way, and we can show that 

m2

h = P^l + o2) (1+0(e )) ,(7.49)

and i? =pa(a) (i+o (e2)) .(7.50)

Continuing by integrating (2.8) once more we obtain

z = P1

T
(1 +s2

a0

ds + P2 ,(7.51 )

r

where P-j and P2 represent real constants of integration corresponding to

different z scales and choice of origin respectively. The appropriate 

disturbance function would be given by 

to ensure that the term

= 0(cr,p ;aQ)

(2.19a) is bounded.

, (7.52)

A schematic

$(^,T| ,t)

representation is given of this channel in FIG-37.

The stability problem could be considered in the same manner as before 

by obtaining the corresponding transformations ((7.16) and (7.17)).
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8. Superposition of Fixed Frequency Modes 

in the Straight Walled Channel.

We return to the case of the straight walled channel of E&W here in an 

attempt to consider a more generalized disturbance to the basic flow. 

This work is based on analytical results obtained by Eagles (1979) using 

the quasi-parallel assumption. It will be shown that a more general 

disturbance to the basic flow can be constructed by summing up suitable 

fixed frequency modes of the Orr-Sommerfeld equation (8.2). This general 

disturbance is chosen in such a way that at some convenient position in 

the straight walled channel, it can be made to correspond to a 

(5-function in t. This impulsive disturbance produces a wave packet type 

disturbance which travels downstream and which is shown to grow if 

R > R-crit. However, it is by no means an easy task to extend these 

ideas analytically to the more general slowly-varying approximation, but 

it seems reasonable to assume at least in principle, that fixed 

frequency modes of the E&W type (8.8) could be used to construct an 

impulsive type of disturbance, which would develop into a wave packet 

type disturbance. The object here is then to see whether this isolated 

disturbance produces a wave packet which is unstable in any sense as it 

travels downstream.

8.1 The Theory According to the Quasi-parallel Assumption.

In the usual notation, a disturbance stream function \^(x,y,t) to the 

parallel steady state velocity profile w(y) is taken to be of the form

l/^(x,y,t) = f(y) exp(iax - i0t) .(8.1 )
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Here, x and y are the usual cartesian coordinates, t is the time, Pis 

specified as the real frequency, and f(y) is the symmetric eigenvector 

normalized by

f(0) = 1 ,(8.2)

and satisfying the Orr-Sommerfeld equation

(D^-CL2) f = iGLpJ w(y)-pTD2-CL2)f - w/Z(y)f)J
,(8.3)

( L CL _J z )

f (1 ) = fZ(1 ) =0 ,(8.3a)

and Ao) = f/z/(o) = 0 ,(8.3b)

d/dy.

The problem is to specify p (real) and search for the complex eigenvaluea. 

such that is just negative for the minimum value of R (R-crit). In 

fact , as far as quasi-parallel theory is concerned the same R-crit is 

found by specifying real CL and searching for the eigenvalue psuch that p 

is just positive (see Allmen (1980) pp22-24)• The former procedure is 

more- convenient to use for non-parallel flows than the latter. In 

principle however, CL and p could both be complex in (8.3) and their real 

parts CLr and pr would then correspond to the wavenumber and frequency 

respectively, while their imaginary parts CLL and PL would correspond to 

the "spatial" and "temporal" growth rates respectively.
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Neutral curves for "spatially growing” and "temporally growing" waves 

are illustrated in FIGS-38a,38b. In this analysis we are particularly 

interested in the mapping of a=a.(p), which can be extrapolated from 

FIGS-38a,38b. In fact by taking the complex conjugate of (8.3) we can 

show that Gt(-p) = -cx(p) (where the bar indicates the complex conjugate), 

and hence the mapping ofCL=a(p) can be drawn over the whole complex 

domain of p(see FIG-38c). The mapping of p=p(d) can be extrapolated in 

the same way.

Suppose now, P is specified as real,and a (complex) is that eigenvalue 

giving the greatest growth in the x-direction (for the solution 

exp(iax-ipt)f(y) of the Navier-Stokes equations). In order to obtain the 

behaviour of a more general type of disturbance than (8.1), we may 

consider

exp(ia(p)x- ipt)f(y;a(p),p) Q(P)dp ,(8.4)

to be another solution to the disturbance equations, provided the 

integral converges for real p . The function Q(p) is real and by 

specifying it we can construct a suitable disturbance at x=O,y=O as a 

function of time. By using the normalisation given by (8.2), we can 

formally show using Fourier transforms (Lighthill (1959)), that if 

0g(t)=A -1<t<1; and l/' (t)=0 t>l, with A—Ooas 1—0 and Al=1 ) Q(p) has 

to be a constant. Without loss of generality we take Q(p) as unity. It 

is worth noting that whereas the choice of Q(p) reduces (8.4) to a 

(5-function in t at x=0,y=0, it is not a 6-function in x at t=0, y=0.
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Neutral stability curves for
'spatially growing'

‘temporally growing' and 
waves respectively.

FIG-38a FIG-38b

The complex mapping of a (the wavenumber) with 
p (the frequency).

ax 
i

FIG-38c
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Thus with the above assumptions the integral (8.4) can be conveniently- 

rewritten as

l^g(x,O,t) =

J

/•OO

exp(ia(p)x-ipt) dp

-00

.(8.5)

considers three approximations to (8.5) by generally

He first shows that for fixed x and

Eagles (1979) 

assuming that CL , and p are complex

the integrand in (8.5) has a saddle 

p = P when d Re(ia(p)x-ipt) =0 ,

dpL J
CL = CL* in FIG-38c, and since a (-p)

-CLr . His first approximation < 

integrand about p=p where he neglects the terms 0((p~p ) 

With

t,

at

at
. a =

this he goes on

with respect to x at

Thus

point

and that it lies on the line LM

= -a( P) th ere is another along 

considers an expansion of the

) and higher 

l/'g | has a maximumto show that as x/t increases,

(where F lies on CL^ =0 in FIG-38c). 
with "group velocity" given, by 1/ = 

show that by assuming an inverse 

locity" is

x/t = 1
3ctr

I r I L? PrJ F
|^|(max over x) moves forward

The Cauchy-Riemann equations would 

relationship P=B(cl ) this "group ve^x^ x- —
oarJF 

the more usual definition. The second approximation 

includes the 0((p-p ) ) term ( but not higher order terms), 

R-crit

, which 

to (8.

9dr
9PrJf:

is perhaps

.5) now

and if R >

CF is also

of x such

sh ows that 1Z*9
OVier x)

but not much greater, CLf is small and negative at C and 

Hence
- I

^g|(max over x) can be approximated by values 

. By then expanding R*about P , Eagles 
.cade L ,

represents a wave packet type disturbance, where now jV'l'Cma:

small

x/t is close to
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. He also shows that this 
C ■ 1/1/

|V/|(.max over

The third and

occurs when x/t 

estimate of the previous result (that 
x/t = I ), when a; is small at C.

LSctrJF L
to (8.5) comes from the method of steepest descent 

result is a good 

x) occurs when 

best approximation 

(Jeffries & Jeffries

(1950) pp 501-505, Morse & Feshback (1953)), where the approximation is 

based on the point C. Here a((3*) is complex (ctfc +iaLC represents a at C) 

and p* is real (Pc)• Thus (8.5) can be approximately written as

.(8.6)

Here, 411 and £,?are real functions dependent ona,p, x and t. The second

to be a wave packet type disturbance. Thus if R > R-crit, the wave 

packet will grow downstream (since d L[ <0), if R = R-crit, the wave 

packet will travel with a constant height downstream (since dLc=0), and 

if R < R-crit then the wave packet will decay downstream (since >0).

It is not easy to generalize, or be as precise analytically when 

applying the ideas already discussed to the case of fixed frequency 

disturbances of the type considered by E&W (also Ch.4 of this thesis). 

Nevertheless, if we assume the ideas extend to this case, then in the 

present notation, we can generalize a fixed frequency disturbance which 

is given by

0(o1,T|) exp(i(O(^ )-pt)) ,(8.7)
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to become

oo

exp(i(O(£ ;p)-pt)) 0(<j.) ,-q;p) Q(p) dp .(8.8)

-oo
We recall that 0 could be written in the form

0(^,7]) = A0(cr1)fQ(o1 ,7]) + ^(^ (^ ,7] )+A1 (o1 )f0(cr1 ,T]))

+ £ (f2(o1 ,7] )+A2(o , )f 0(a1 ,Tj)) .. .(8.9)

Also, since we shall be analysing the disturbance at the centre of the 

channel (r| =0), then we need to recall the normalisations of fg(0'1,0), 

^(c^.O) and f2(cTi ,0), implied by (4,61 ). Hence

0(^,0) = A0(o1 ) + E?/2A} (o-j ) + E A2((J-|) +... .(8.10)

In the original stability problem the amplitude function A2 was never 

computed as it was not required in the stability analysis. It would 
have also meant going to the 0(^'2) di sturbance equation. It is not even 

1/2
felt that the term e will make much contribution to this analysis in 

the light of earlier work on the straight walled channel, but we includeit 

for completeness. The more general disturbance given by (8.8) was not in 

fact considered for separate contributions of the different orders. We 

recall that

and

Aq (0) = 1

A^O) -= 0

,(6.11 a)

,(8.11b)

for consistency with (4.61) Hence by choosing Q(P) = 1 again,and posing
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©(0) = 0 ,(8.12)

then (8.8) reduces to

r OO

0(o,o,t) exp(-pt) dp
J -oo

,(8.15)

which is a (5-function in t at = 0. At this stage we can rewrite the 

integral (8.8) as

0g(o1 ,0,t) =

. OO

exp i(©(^;p)-pt)

-oo

(Aq ( ;Q)+ e1/2Al (^ ;p))dp •(8.14)

This integral will be evaluated numerically, though some discussion on 

its analytical approximation will be given later.

8.2 Numerical Techniques and Checks.

The approximation of (8.5) by the method of steepest descent, can be 

shown to be real, if the contribution from the other saddle point

(along a = -0.*) is included. We can show that (8.5) aswell as (8.14) can 

be rewritten in a more convenient form for numerical evaluation. In fact

(8.14) can be expressed by

need only consider positive values of p .

The first problem then was to compute ©(f) for some fixed p . We can 

recall (4.25) which originally defined the phase function © .
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In terms of ct ^(4-25) becomes

0(oi ) = I k(s) ds (8.16)?2J 0

The integration was carried out using Simpson’s rule after defining 

0(0) = 0, and evaluating 0(1) using an extrapolation formula already- 

used for A^(cr^ ) and (cr^ ) (see (5*8)). The values of ®(cr^ ) were 

checked by evaluating dO using fourth order central difference 
d?

formulae. These checked with known values of k (0^ ) to 5 significant 

figures.

In all previous numerical work, the disturbance stream function </> was 

considered for a single, real, fixed frequency (3 . Now however, we need 

to compute several of these disturbances (for each f ) and store them. 

For this purpose, we need an automatic scheme to solve the eigenvalue 

problem for every value of p considered. The original routine 

(see Ch.4 pp74-77) which gave a starting value to the eigenvalue 

problem, worked well for values of (3 up to about 1.4. The scheme did 

not work for values of (3 > 1.4, but converged to the wrong eigenvalue. 

This problem was overcome by using the original routine for (3 < 1 , and 

then switching over for (3 > 1 using starting values given by the 

previous correct k's ( p= 1). From the numerous test cases, this worked 

if the p increments (<5p) were small enough (i.e 0.05). It was

found necessary to have a combination of these two schemes, to be 

assured of correct eigenvalues for small and large values of p .

We must bear in mind that (8.14) need only be evaluated for a relatively 

small range of p . Referring to FIG-39, (the neutral curve based on 

GR^(</>) at the centre of the channel) we can see that for

R = 60 > R-crit, we would expect (/) to grow at the centre of the channel
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for a given value 

of p being at = 

frequencies which we

and a range of p between A and B. The widest range

0. As we move in the direction, the band of 

would expect growth in 0 narrows because of the 

exponential factor in Pj.

The major contribution to the integral (8.14) for some fixed 0^, comes 

from the p range implied by the pj values between A and B. The 

contribution outside this range can be neglected. A study of any such 

neutral curve would indicate the finite range necessary to obtain a good 

approximation to (8.14). In all the cases considered ( a range of v 

given by 3.572 4 v < 4.71 ) the range of p was taken to be 0 to 2.5. 

This finite range of |3 however, will now imply (8.14) only approximates 

to a (5-type disturbance at = 0.0.

The integral (8.14) was evaluated for a range of 0-j’ s (0 4 Ct, 4 1.56) 

using Simpsons rule at every 3] value. Numerical instabilities always 

appeared the further we travelled downstream. It took several computer 

runs before these were pinpointed and reasonably eliminated. We should 

also note that summing over P using finite 6p makes the results of 

(8.14) periodic with period 27T/3P (through the term exp(j.(5Pt)). An 

increase in the number of p steps will naturally increase this period, 
where the (5-type disturbance will appear again at CT-]= 0.0 for t = 2n7T/(5p 

(where n is a positive integer).

The numerical instabilities always became more Qcute with larger values 

of the parameters R,p, and and the function H(c^ ) was the first to be 

seen to grow dramatically at some 0] station (see (4.66a). This dramatic 

growth gradually manifested itself in Ag(oj) aswell. These large values 

were not always noticable in the final evaluation of (8.14) because the 

term exp (-© [) had a damping effect in these regions of .
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It is worth pointing out that initially, it was not clear whether this 

dramatic growth was due to numerical instabilities, or whether the 

disturbance was truly growing. It was unfortunate that the R value about 

which this dramatic growth was observed, roughly coincided with the 

R-crit for this curve (R-crit54.8 in FIG-39)* It was not until a 

detailed study of the values C1 (cr-j ), C 2 (cf -, ), (cr^ ), and C^cp) defining

H(d^ ) (C$(o^)=O for the straight walled channel), revealed that more 

steps were required to accurately evaluate the integrals defining these 

C's ((4*67a)-(4*67d)). In fact, this only partially removed the 

numerical errors, and it was not until a much greater number of p steps 

were taken aswell, that all the instabilities disappeared. This is 

illustrated by FIGS-40a & 40b. The case of O corresponding to 50 psteps 

took roughly 92 CDC(7600) units, and the case of 100 p steps took 191 

CDC(7600) units.

Our original aim was to construct an impulsive type disturbance and see 

whether it grew or decayed as it travelled downstream. The illustration 

in FIG-41 demonstrates the behaviour of a typical wave packet (for 100 p 

steps) at different values of t. This graph tends to indicate that the 

wave packet decays, even though R = 70 > R-crit. We shall look at this 

graph again in more detail when discussing the results.

Even when all these problems of numerical instability have been ironed 

out, there was another and possibly more crucial problem inherent in 

integrals of the type

J(z) = I exp(zf(t)) dt ,(8.17)

A
where |z[-oo. In these integrals, large values of z will usually
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The behaviour of the generalized disturbance downstream 
at time t=0 evaluated with different incremental steps 
of the frequency p , where v = 3 572 and R = 70,
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result in some rapid fluctuation of the value of the integrand. The 

imaginary part of z(f(t)) will increase as |z ' increases, consequently 

the factor exp(i Im(z(f(t)))) will make the integrand oscillate rapidly. 

The existence of these oscillations makes it difficult to evaluate the 

integral numerically, and in many cases large positive values are almost 

completely cancelled by large negative values. We might require a 

forbiddingly accurate evaluation of the integral at every point (Morse & 

Feshback (1955) pp437-44O).

The behaviour of the integrand in (8.14) falls into this category as a 

factor exp(iOr) appears in the integrand and ©r becomes very large 

downstream. It is also in these regions downstream in which we are 

particularly interested. We want to determine whether the disturbance 

grows in these regions of rapid fluctuations of the integrand. For this 
reason <5p may not be small enough for an accurate evaluation of (8.14). 

To check this convincingly, it was felt necessary to evaluate (8.14) for 

a very large number of p steps. This was done by considering five 

separate and equal intervals of p from 0 to 2.5. The p ranges that went 

from 0 to 0.5, 0.5 to 1.0, and 1.0 to 1.5 (where rapid fluctuations of 

the integrand occur) were evaluated using 250 p steps for each case. The 

ranges that went from 1.5 to 2.0, and 2.0 to 2.5 were evaluated using 

100 p steps in each case, as there is rapid fluctuation here. The 

integral was found to agree to 5 significant figures with previous 

results, which only used 100 P steps for the whole range. With this 

convincing check on the evaluation of (8.14), all subsequent runs were 

carried out using 100 p steps. In all cases the results were normalised 

on the basis of Re(0g) = 1 at = 0, and t = 0.

The form of (8.14) is in fact ideal for the method of steepest descent, 

where the path of integration may be chosen so as to avoid the rapid 

fluctuations of the integrand. To do this convincingly however, would 

require the behaviour of © with complex p in the manner illustrated by 

FIG-38c. In the case of the quasi-parallel theory, the mapping of a with p 

was extrapolated from the neutral curves (FIGS-38a, <5 58b). Here, the 

mapping would be required at every O| plane because of the downstream 

dependence of 0 , but this theoretical problem was not attempted.
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8.3 The Results.

If we refer back to FIG-41, we see what appears to be a decaying wave 

packet type disturbance, even though R > R-crit here. However, if the 

disturbance (Re(0g)) was plotted for the time interval given by 

0 < t < 2, we would in fact see some growth, but this growth is small 

and only extends into a small ct] range (0 < c^< 0.08). To illustrate 

these results clearly we have considered more extreme cases, by taking 

v = 4.093 and v = 4.71. These results are shown in FIGS-41 & 42 

respectively. The growth is more visible here and the pattern suggested 

by these results is that an increase in v is associated with the wave 

packet travelling with a larger "head" extending into wider regions 

downstream, and prevailing for larger time intervals. Nevertheless, if 

we go far enough downstream, the wavepacket eventually decays 

irrespective of whether R > R-crit or R < R-crit.

With hindsight one may even argue that this behaviour of the wave packet 

was to be expected since we were summing different fixed frequency modes 

which all eventually decayed. This reasoning of course is not completely 

clear in regions where collections of these fixed frequency modes are 

growing.

The results presented here do not agree with the quasi-parallel 

prediction (that when R > R-crit the wave packet will grow indefinately 

in the streamwise direction), but they are in agreement with the former 

analysis (fixed frequency disturbance) where the disturbance to the 

steady flow was seen to grow for limited regions downstream at some 

ins tant.

For the cases illustrated, the value of R is appreciably larger than 

the R-crit. Many other cases were also considered in which R was not as 

large (but still > R-crit), and time intervals were always found in 

which the wave packet grew, but for typically smaller downstream 

regions.
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8.4 Discussion.

We may ask whether the time scales and length scales exhibiting 

growth,as shown in FIGS-42 & 45, are within experimental limits and 

whether they are measurable. Patterson's (1954,1955) experimental 

channel may be used as a model to help us appreciate the physical 

dimensions of the space and time variables implied by and t. We 

emphasize however that we are not attempting to compare our theoretical 

results with Patterson's, as the two channels are intrinsically 

different (Patterson's experiment was on Blasius's exponential channel) 

also, his was not a stability study.

Patterson used air as a medium ( V = 0.15 cm /sec at 20 C, Goldstein 

(1958) p7),because at very slow velocities air can be likened to a 

viscous incompressible fluid.

Let us recall the dimensionalised form of r (the polar distance) and T 

(the time). A convenient way of expressing these are

and

,(8.18)

’ ■ (/) .(8.19)

The physical dimensions of our channel could be likened to Patterson's 

by choosing b (approximately half the channel throat width at 0. = 0, and 

here equivalent to Patterson's w/2) to be 0.25 cm. If we then consider 

the results of the extreme case in FIG-45 and take as an example that 

growth occurs in the downstream region for 0 < CT^< 0.7 and for a time
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interval 0 < t < 10, the parameters then imply that r is about 8 cm. and 

the time T about 0.1 secs. These do not seem very large on the face of 

it, but the length of our channel under analysis (0 < 1-56) would

correspond to about 18 cm.. The initial throat width is 0.5 cm. and the 

final throat width in this CTregion would be about 2.4 cm.. In fact the 

results of this extreme case (and others) extend further into the 

streamwise direction and for larger time intervals than the ones 

illustrated. Such lengths, time scales, and parameters seem within 

Patterson's experimental observations and so should be measurable 

(Patterson (1934) pp77O-773).
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CONCLUSION

If we consider the steady state problem for the straight walled 

divergent channel we find that the higher order corrections are directly 

responsible for the increase in the steady state velocity at the centre 

of the channel, and the decrease near the walls. This effect is small in 

general but in some extreme cases (for larger v) can cause reversed flow 

near the walls (see FIG-5).

In the stability problem, the higher order corrections do produce shifts 

in the neutral stability curves, but once again these are small even for 
1/7comparitively large values of E z(see FIG-19). They nevertheless exhibit 

a distinct stabilizing effect for values of v up to some critical value 

(say 4.15 in this case), and a destabilizing effect for values of v 

larger than this critical v. This destabilizing effect for larger v is 

consistent with the reversed flow effect (and hence more unstable flow) 

described above.

The comparison of flows in curved walled channels (positive or negative 

curvature), with divergent straight walled channels at positions where 

the angle of divergence is the same (at = 0), shows that positive 

curvature has an appreciable stabilizing effect, and negative curvature 

an appreciable destabilizing effect. As we move further downstream, we 

find perhaps the more natural result, that the channel with positive 

curvature is more unstable , and the one with negative curvature more 

stable. The major contributor to these effects has been shown to be the 

change in Q associated with curvature, rather than general non-parallel 

and curvature terms in the disturbance equation. Physically speaking, we 

can argue that for this comparison at 0, the channel with positive

curvature has a greater angle of divergence for > 0, and a smaller 

angle of divergence for < 0 than the divergent straight walled 

channel. Thus, if CT^< 0 we expect the overall flow properties to produce 

a more stable flow, and because of the upstream influences, this 

persists till 0^ = 0. Subsequently, we expect the flow to become more 

unstable as the angle of divergence increases. A similar argument is 

consistent with the results for a channel with negative curvature.
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The Fraenkel-type channel which might be constructed for experimentation 

is shown to be naturally more stable far upstream and downstream than 

near the viscinity of o = 0, where the angle of divergence is maximum. 

The most unstable region being 0.0 < cr < 0.2.
A comparison of the "0(e?^) solution" and the "0(e ) solution" in the case 

of the Fraenkel-type channel (FIG-56), validates the asymptotic 

development, and the effect of including higher order terms here is 

consistent with the straight walled divergent case (FIG-19). The value 

of the critical v for this Fraenkel-type channel is about 4.2.

The construction of an impulsive type disturbance for the straight 

walled channel (based on the superposition of slowly varying fixed 

frequency modes), was shown to produce a wave packet type disturbance. 

The results can be illustrated clearly when R is appreciably larger than 

R-crit (FIGS-41 & 42). Even though these results do not support the 

quasi-parallel prediction (that the wave packet will grow indefinately 

in the streamwise direction if R > R-crit), they exhibit they same type 

of behaviour as the former case for fixed frequency modes, where the 

disturbance grew in a limited region downstream for some instant in 

time.

Fraenkel's pioneering work on symmetric curved walled channels paved the 

way for studying the stability of the Jeffery-Hamel profiles. His 

orthogonal coordinates and the fact that the non-linear profiles enter 

the algebra appear to have discouraged most investigators from applying 

Fraenkel's theory explicitly. In this respect this present investigation 

is a positive contribution to the theory of stability of two dimensional 

channels with small wall curvature. It could be extended to deal (both 

theoretically and numerically) with a general class of symmetric 

channels which have physically interesting features (FIGS-54 & 57).

There is an overwhelming need for experimentation in this field in order 

to test the theory realistically. The problem of setting up the 

Jeffery-Hamel profiles should be easier with channels similar to those 

illustrated by FIGS-54 & 57 where the flow is initially like plane 

Pois euille flow.
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