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 A B S T R A C T

What explains cross-sectional dispersion in stock valuation ratios? We find that 75% of dispersion in price–
earnings ratios is reflected in differences in future returns, while only 25% is reflected in differences in future 
earnings growth. This holds at both the portfolio-level and the firm-level. We reconcile these conclusions 
with previous literature which has found a strong relation between prices and future profitability. Our results 
support models in which the cross-section of price–earnings ratios is driven mainly by discount rates or 
mispricing rather than future earnings growth. Evaluating six models of the value premium, we find that most 
models struggle to match our results; however, models with long-lived differences in risk exposure or gradual 
learning about parameters perform the best. The lack of earnings growth differences at long horizons provides 
new evidence in favor of long-run return predictability. We also show a similar dominance of predicted returns 
for explaining the dispersion in return surprises.
1. Introduction

A central feature of the aggregate stock market is the dominance 
of future returns in explaining price movements (Cochrane, 2011). 
Using prices scaled by cash flows, Campbell and Shiller (1988a,b), 
Cochrane (1992, 2008) show that most variation in aggregate price 
ratios is related to future returns rather than future cash flow growth.1 
Subsequent work (Fama and French, 1995; Cohen et al., 2003) focuses 
on the cross-section of value and growth portfolios and argues that the 
cross-section is quite different from the aggregate time series. They find 
that cross-sectional differences in future returns only explain a small 
portion of cross-sectional differences in price–book ratios.2 This appar-
ent contrast between the cross-section and the aggregate time series has 

I Dimitris Papanikolaou was the editor for this article. We thank Fahiz Baba Yara, Pedro Barroso, Jules van Binsbergen, Martijn Boons, Stefano Cassella, 
Thummim Cho, Itamar Drechsler, Joao Gomes, Daniel Greenwald, David Hirshleifer, Jintao Huang, Chris Jones, Jens Kvaerner, Mete Kilic, Dmitry Kuvshinov, 
Lars Lochstoer, Martin Lettau, Jonathan Lewellen, Juhani Linnainmaa, Alejandro Lopez-Lira, Andreas Neuhierl, Paul Rintamaki, Nick Roussanov, Lukas Schmid, 
Rob Stambaugh, Luke Taylor, Paul Tetlock, Rüdiger Weber, Harold Zhang, and EAGLS, as well as seminar participants at the University of Warwick Finance 
Group, the Wharton School, Dartmouth College, Columbia University, Binghamton University, Copenhagen Business School, Chinese University of Hong Kong, 
Tilburg University, Berkeley Haas School of Business, Stanford GSB, University of Connecticut, MIT Sloan, NYU Stern, ITAM, the Texas A&M Young Scholars 
Finance Consortium, the ESADE Spring Workshop, the China International Conference in Finance, the Junior Valuation Workshop, the Chicago Booth Asset Pricing 
Conference, the AFA, the MFA, the WFA, the Midwest Macro meeting, the SFS Cavalcade, the Helsinki Finance Summit, the Utah Winter Finance Conference, 
and the NBER Asset Pricing Summer Institute. We are grateful to two anonymous referees for excellent suggestions during the revision process.
∗ Corresponding author.
E-mail address: semyers@wharton.upenn.edu (S. Myers).

1 While there is debate whether future cash flow growth plays a zero or non-zero role in explaining aggregate price ratios, its role is consistently smaller than 
the role of future returns (Koijen and Nieuwerburgh, 2011).

2 Vuolteenaho (2002) similarly provides evidence that cross-sectional differences in price–book ratios are more related to differences in future profitability 
than future returns.

3 See Samuelson (1998) and Jung and Shiller (2005).

supported a common view that stock markets are ‘‘micro-efficient but 
macro-inefficient’’.3

In this paper, we argue that the cross-section of prices is actually 
quite similar to the aggregate time series. Like the aggregate time 
series, differences in cross-sectional price–earnings ratios are primarily 
explained by differences in future returns, not future earnings growth. 
This observation holds both at the portfolio level, using value and 
growth portfolios, and at the individual firm level. These results in-
dicate that risk premia and/or mispricing explain most cross-sectional 
differences in price–earnings ratios, which has important implications 
for cross-sectional asset pricing models. Using accounting identities, 
we show that the previous findings on price–book ratio differences are 
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driven by the fact that scaling by book value introduces a large amount 
of additional dispersion that is not tied to future earnings growth or 
future returns. Once we account for this additional dispersion, we find 
that price–book ratios are largely explained by future returns rather 
than future earnings growth.

Our analysis covers all US common stocks listed on NYSE, AMEX, 
and NASDAQ from 1963–2020. We study dispersion in price–earnings 
ratios across individual firms as well as across the classic growth 
and value portfolios. For the portfolios, we estimate a variant of the 
Campbell–Shiller decomposition and find that differences in future 
returns explain over 75% of the cross-sectional differences in price–
earnings ratios, while differences in future earnings growth explain 
less than 25%. We then introduce a novel decomposition for price–
earnings ratios which can be applied at the firm level and show that the 
estimated results are similar to the portfolio-level estimates. In other 
words, stocks with high price–earnings ratios are largely characterized 
by lower future returns rather than higher future earnings growth.

How does this finding fit with cross-sectional asset pricing models? 
We find that many standard models of cross-sectional risk premia 
and mispricing struggle to quantitatively match our results, such as 
models of growth options (Berk et al., 1999), costly reversibility of 
capital (Zhang, 2005), duration risk (Lettau and Wachter, 2007), and 
extrapolation with overconfidence (Alti and Tetlock, 2014). While 
these models do generate a short-term value premium, differences in 
future returns account for less than 10% of the dispersion in price–
earnings ratios. Instead, these models predict that more than 90% of 
the dispersion in price–earnings ratios is explained by future earn-
ings growth. To better match our findings, models can incorporate 
long-lived differences in risk exposure, such as the investment-specific 
technology risk of Kogan and Papanikolaou (2014), or substantial 
mispricing that is slowly resolved over time, such as the learning about 
firm-specific mean earnings growth model of Lewellen and Shanken 
(2002). Overall, Lewellen and Shanken (2002) is the closest to our 
empirical findings, as agents’ incorrect beliefs about each firm’s mean 
earnings growth allow the model to have a strong relationship between 
price–earnings ratios and future returns, while having little to no 
relationship between price–earnings ratios and realized future earnings 
growth.4

Given the importance of these results for the cross-sectional asset 
pricing literature, we explicitly reconcile our conclusions with previ-
ous findings documenting a strong relationship between price–book 
ratios and future profitability. We show that future profitability is 
approximately equal to the sum of future earnings growth and the
current earnings-book ratio. Intuitively, in order to have high future 
profitability, a firm must either increase its earnings or already have 
high current earnings relative to book (i.e., high current profitability). 
We then demonstrate that the documented relationship between the 
price–book ratio and future profitability is driven almost entirely by 
the correlation between the current price–book ratio and the current 
earnings-book ratio. In other words, the price–book ratio is related 
to future profitability not because it is informative about the future 
earnings growth of a stock, but instead because it is related to current 
level of profitability.

Importantly, our results do not overturn the previous findings on 
price–book ratios and future profitability. Instead, our results highlight 
that these previous findings on the level of future cash flows should not 
be confused with the aggregate time series findings about the growth
of cash flows. Once we focus on earnings growth, there is a clear, 
consistent result that price–earnings ratios, price–book ratios, price–
sales ratios and a number of other price ratios all predict low future 

4 This is similar to the empirical results of Delao and Myers (2021) for the 
aggregate stock market, where investors appear to believe that stock price–
earnings ratios are related to future cash flow growth but mistakes in their 
expectations cause stock price ratios to be objectively related to future returns.
2

returns much more than they predict high future earnings growth. This 
is important for modeling, as many cross-sectional asset pricing models 
are built around the idea that price ratios are highly informative about 
future cash flow growth. Our paper reveals a new asset pricing puzzle 
analogous to the aggregate time series findings, namely that cross-
sectional variation in price ratios is dominated by discount rates and/or 
mispricing rather than future earnings growth.

Throughout the paper, we incorporate several extensions that
strengthen our conclusions. Our main price–earnings ratio decompo-
sition uses buy-and-hold earnings growth and returns over a span 
of fifteen years. To project these results into an infinite horizon, we 
employ a VAR model and estimate an infinite horizon decomposition 
that supports the dominance of returns at longer horizons. To confirm 
that our conclusions are not influenced by fluctuations in earnings in 
the denominator of the price–earnings ratio, we repeat our analysis 
normalizing prices with a three-year-smoothed measure of earnings, 
yielding similar outcomes. To ensure that our findings are not due 
to aggregating firms into portfolios, we provide a novel firm-level 
decomposition. Unlike the Campbell–Shiller decomposition, this new 
decomposition effectively handles negative firm-level earnings. The 
analysis confirms that firm-level earnings yields are largely explained 
by future returns rather than future earnings growth. Furthermore, we 
evaluate the evolution of return dominance over time via a rolling 
estimation approach. Despite the fluctuating nature of the return contri-
bution to price–earnings ratio dispersion over time, it has consistently 
dominated the contribution of earnings growth. Using a variant of 
the Pruitt (2025) decomposition, we show that incorporating net is-
suance into our measure of cash flows does not noticeably change the 
results, i.e., systematic differences in net issuance between high price–
earnings ratio firms and low price–earnings ratio firms only account for 
a small percent of differences in price–earnings ratios.

While our primary focus is explaining the level of price–earnings 
ratios, our results also have direct implications for return predictability. 
We perform three exercises that illustrate the tight relation between 
price–earnings ratio dispersion and expected returns. These three exer-
cises deal with cumulative long-term returns, non-cumulative long-term 
returns, and current return surprises. First, we test whether the price–
earning ratio or the price–book ratio is a stronger predictor of long-term 
cumulative results. While the price–book ratio is well established as 
the standard price ratio for predicting the cross-section of monthly 
returns (Fama and French, 1992), we find that it is dominated by the 
price–earnings ratio for predicting long-term returns. In multivariate 
regressions, the price–earnings ratio completely drives out the price–
book ratio for predicting returns at horizons of 1 to 10 years. This 
occurs because the price–book ratio not only reflects future returns 
and future earnings growth, but also reflects the current earnings-book 
ratio.5

Second, we study the predictability of non-cumulative long-term 
returns. Consistent with Keloharju et al. (2021)’s findings, we cannot 
reject the null that non-cumulative returns are unpredictable at hori-
zons beyond four years. However, in the spirit of Lewellen (2004) 
and Cochrane (2008), we show that imposing plausible bounds on the 
persistence of the price–earnings ratio substantially increases the signif-
icance of return predictability. So long as the price–earnings ratio has a 
persistence less than one, all mean-reversion in the price–earnings ratio 
must be reflected in non-cumulative returns or non-cumulative earnings 
growth. Because of this, the lack of predictable earnings growth pro-
vides strong evidence that returns are significantly predictable beyond 
four years.

Third, we decompose price–earnings ratio innovations and return 
surprises to measure the relative importance of changes in expected 

5 This is consistent with the findings of Ball et al. (2020) and Golubov and 
Konstantinidi (2019), who argue that the price–book ratio only predicts returns 
because it is a noisy proxy for the ratio of price to retained earnings or the 
ratio of price to fundamental value.
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returns and changes in expected earnings growth.6 Using a VAR model, 
we find that changes in expected future returns account for a substan-
tially larger share of the variation in price–earnings ratio innovations 
and return surprises than changes in expected future earnings growth. 
Importantly, we reconcile our findings with the results of Vuolteenaho 
(2002) and Lochstoer and Tetlock (2020), who find a large role for cash 
flow news in return surprises. We show that their measure of cash flow 
news is equivalent to changes in expected future earnings growth plus
the current earnings growth surprise. In line with the idea that earnings 
growth is volatile and difficult to predict, we find that current earnings 
growth surprises are volatile while changes in expected future earnings 
growth are not. Thus, almost all the variation in their measure of cash 
flow news comes from unexpected current earnings growth, rather than 
information about future earnings growth.

In summary, this paper contributes to a growing literature studying 
the cross-section of prices and price ratios. While there is a broad 
literature studying the cross-section of short-term returns,7 relatively 
less attention has been paid to prices or price ratios.8 Notable ex-
ceptions are Cohen et al. (2009), Chaves (2009), Cho et al. (2023, 
2025), van Binsbergen et al. (2023) and Cho and Polk (2024). In 
particular, our analysis builds on Cohen et al. (2003), who study cross-
sectional differences in price–book ratios and find that they are largely 
explained by future profitability. As mentioned above, we reconcile 
our findings with them by extending their decomposition of price–book 
ratios and demonstrating that the cross-section of price–book ratios is 
not strongly related to future cash flow growth. Similarly, we reconcile 
with Vuolteenaho (2002) and Lochstoer and Tetlock (2020) by showing 
that their measure of cash flow news is largely unrelated to future 
cash flow growth and instead reflects unexpected current earnings 
growth.9 Overall, our results indicate that cross-sectional variation in 
price ratios and aggregate time series variation in price ratios are 
similarly uninformative about cash flow growth, which runs counter to 
the idea that markets are micro-efficient and supports models in which 
a single mechanism drives both phenomena (Santos and Veronesi, 
2006; Papanikolaou, 2011).

The paper is organized as follows. Section 2 discusses the data 
used for our exercises. Section 3 derives and estimates the variance 
decomposition linking price–earnings ratios to future earnings growth 
and returns and reconciles our results with the previous literature 
on profitability. Section 4 provides a discussion of our main results. 
Section 5 extends our results by (i) presenting a rolling estimation 
of the role of future returns and the role of future earnings growth, 
(ii) proposing and estimating a novel firm-level decomposition for 
earnings yields, and (iii) calculating the role of share issuance and 
buybacks in accounting for price–earnings ratio differences. Section 6 
shows how our results compare to the predictions of six asset pricing 
models. Section 7 performs our three exercises on cumulative long-
term returns, non-cumulative long-term returns, and return surprises. 
Section 8 concludes.

2. Data

To understand the cross-section of stock prices, we study all US com-
mon stocks from 1963 to 2020. For the analysis involving portfolios, 

6 Just as the level of the price–earnings ratio is connected to the level of 
future returns and future earnings growth, innovations to the price–earnings 
ratio are related to changes in expected future returns and expected future 
earnings growth. Following Campbell (1991), return surprises (i.e., unexpected 
current returns) are also tightly connected to changes in expected future 
returns and expected future earnings growth.

7 See Nagel (2013) for a summary.
8 See Cochrane (2011) for a discussion, ‘‘When did our field stop being 

‘asset pricing’ and become ‘asset expected returning?’’’
9 Hereafter, we refer to Fama and French (1995), Vuolteenaho (2002), 

Cohen et al. (2003) as FF95, V02, and CPV.
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we focus on value and growth portfolios as this allows us to connect 
with the long literature on value versus growth stocks. Specifically, 
we sort stocks into portfolios based on their price–book ratios such 
that each portfolio has equal market value. We use five portfolios for 
our main analysis to reflect the classic value and growth portfolios, 
but we show in Appendix  F that our results are robust to using a 
larger number of portfolios.10 Further, we show in Section 5.2 that 
our results can be extended to individual firms and, in Appendix Table 
F.14, we show similar results for E/P-sorted portfolios. For the value 
and growth portfolios, we track buy-and-hold returns, earnings growth, 
profitability, the price–book ratio, and the price–earnings ratio. Below, 
we discuss the data construction in more detail.

The sample of stocks consists of all common stocks (share code 
10 and 11) listed on NYSE, AMEX, and NASDAQ. The firm-level ac-
counting variables are obtained from Compustat starting in 1963. We 
obtain monthly stock returns, prices, shares outstanding, dividends, 
and returns from the Center for Research in Security Price (CRSP). 
Detailed data definitions are as follows. The total price for a firm is the 
price per share multiplied by the shares outstanding. Following Davis 
et al. (2000) and CPV, we define book value as stockholders’ book 
equity, plus deferred taxes and investment tax credit if available, minus 
the book value of preferred stock. If stockholders’ book equity is not 
available at Compustat, we define it as the book value of common 
equity plus the par value of preferred stock, or the book value of 
assets minus total liabilities in that order. Depending on availability, 
we use redemption, liquidating, or par value for the book value of 
preferred stock. As in CPV, we drop firms where the ratio of price to 
book value is less than 0.01 or greater than 100 to remove likely data 
errors. We define earnings as Compustat net income (item NI) less any 
amounts recorded as extraordinary items and discontinued operations 
(item XIDO), special items (item SPI), or non-recurring income taxes 
(item NRTXT).11

With these variable definitions, we perform a portfolio-level de-
composition, as well as a firm-level decomposition. Specifically, in 
each year 𝑡, we sort stocks based on the lagged ratio of price to 
book, where price is from December of calendar year 𝑡 and book 
is from the fiscal year ending in calendar year 𝑡 − 1. Having sorted 
firms into portfolios, we track buy-and-hold returns, earnings growth, 
profitability, the price–book ratio, and the price–earnings ratio up to 
15 years without rebalancing based on value-weighted returns and 
portfolio-level earnings, book, and market value. For firms who delist 
during our buy-and-hold periods, we reinvest them one year before they 
exit.12 There is substantial variation across the portfolios in both log 
price–earnings ratios and log price–book ratios. The pooled standard 
deviation of price–earnings ratios (price–book ratios) is 0.50 (0.77). As 
one would expect, the log price–earnings ratios (𝑝𝑒𝑖,𝑡) are significantly 
correlated with the log price–book ratios (𝑝𝑏𝑖,𝑡), with a correlation of 
0.85∗∗∗.

3. Cross-section of price ratios

In this section, we use a variance decomposition to show that 
the cross-sectional dispersion in portfolio price–earnings ratios, 𝑝𝑒𝑖,𝑡, 
must be explained by future earnings growth or future returns. We 
then estimate the decompositions using long-term earnings growth 
and returns, as well a separate estimation using a VAR model, and 
consistently find that future returns explain over twice as much of 

10 These portfolios capture over 84% of the firm-level cross-sectional varia-
tion in price–book ratios. For our sample, the standard deviation across firms in 
the log price–book ratio is 0.92. For our five portfolios, the standard deviation 
of log price–book ratios is 0.77.
11 To account for possible data errors or extreme outliers, we winsorize 
earnings at the 1% level each fiscal year.
12 In Table  F.12 we show that our results still hold if we reinvest in the 
portfolios according to the delisting returns of exiting firms.
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the cross-sectional dispersion in 𝑝𝑒𝑖,𝑡 as differences in future earnings 
growth. Rephrased, 𝑝𝑒𝑖,𝑡 is largely informative about future returns 
rather than future earnings growth. Section 5.2 shows similar results 
at the firm level.

We then reconcile our results with prior research that argued the 
cross-section of price–book ratios, 𝑝𝑏𝑖,𝑡, is largely informative about 
future cash flows rather than future returns. This literature has focused 
on future profitability, rather than future earnings growth to measure 
future cash flows. We first present a new variance decomposition for 
𝑝𝑏𝑖,𝑡 that measures the importance of future earnings growth rela-
tive to future returns for explaining cross-sectional dispersion in 𝑝𝑏𝑖,𝑡. 
Analogous to our 𝑝𝑒𝑖,𝑡 results, we find that 𝑝𝑏𝑖,𝑡 dispersion is more 
informative about future returns than future earnings growth. We then 
connect this to the prior results on profitability by showing that future 
profitability can be decomposed into the current earnings-book ratio 
and future earnings growth, i.e., a current and a future component. We 
show that 𝑝𝑏𝑖,𝑡 is correlated with the current component and that this 
correlation is large enough to explain prior findings even though 𝑝𝑏𝑖,𝑡
is not informative about the future component.

3.1. Decomposing cross-sectional variance

Movements in the price–earnings ratio must reflect changes in 
future earnings growth or future returns. This is a variant of the stan-
dard Campbell and Shiller (1988a) decomposition. We start from the 
approximate log-linearized return, which states the one-period return 
in terms of earnings growth 𝛥𝑒𝑡+1 and the price–earnings ratio 𝑝𝑒𝑡, all 
in logs: 
𝑟𝑡+1 ≈ 𝜅 + 𝛥𝑒𝑡+1 + 𝜌𝑝𝑒𝑡+1 − 𝑝𝑒𝑡, (1)

where 𝜅 and 𝜌 < 1 are constants.13
To understand the cross-section of stock prices, let 𝑝𝑒𝑖,𝑡 be the 

cross-sectionally demeaned price–earnings ratio of portfolio 𝑖 and let 
𝛥𝑒𝑖,𝑡+1 and ̃𝑟𝑖,𝑡+1 be the cross-sectionally demeaned earnings growth and 
returns. Rearranging and iterating Eq. (1), we see that a higher than 
average price–earnings ratio must indicate higher than average future 
earnings growth, lower than average future returns, or a higher than 
average future price–earnings ratio, 

𝑝𝑒𝑖,𝑡 ≈
ℎ
∑

𝑗=1
𝜌𝑗−1𝛥𝑒𝑖,𝑡+𝑗 −

ℎ
∑

𝑗=1
𝜌𝑗−1𝑟𝑖,𝑡+𝑗 + 𝜌ℎ𝑝𝑒𝑖,𝑡+ℎ. (2)

Eq. (2) shows that movements in 𝑝𝑒𝑖,𝑡 must represent information 
about future earnings growth, future returns, or the future price–
earnings ratio. To measure the relative importance of these three 
components, we decompose the variance of 𝑝𝑒𝑖,𝑡 into its covariance with 
the three terms, 

1 ≈

𝐶𝑜𝑣

( ℎ
∑

𝑗=1
𝜌𝑗−1𝛥𝑒𝑖,𝑡+𝑗 , 𝑝𝑒𝑖,𝑡

)

𝑉 𝑎𝑟
(

𝑝𝑒𝑖,𝑡
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶𝐹𝐺ℎ

+

𝐶𝑜𝑣

(

−
ℎ
∑

𝑗=1
𝜌𝑗−1𝑟𝑖,𝑡+𝑗 , 𝑝𝑒𝑖,𝑡

)

𝑉 𝑎𝑟
(

𝑝𝑒𝑖,𝑡
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐷𝑅ℎ

+ 𝜌ℎ
𝐶𝑜𝑣

(

𝑝𝑒𝑖,𝑡+ℎ, 𝑝𝑒𝑖,𝑡
)

𝑉 𝑎𝑟
(

𝑝𝑒𝑖,𝑡
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐹𝑃𝐸ℎ

.

(3)

Note that 𝑉 𝑎𝑟
(

𝑝𝑒𝑖,𝑡
) is the average squared cross-sectionally de-

meaned price–earnings ratio, which means it measures the average 
cross-sectional dispersion in price–earnings ratios. As a result, the three 
terms in Eq.  (3) tell us what portion of the cross-sectional dispersion 
in price ratios is explained by future earnings growth, future returns, 
and the future price–earnings ratio. We denote these three coefficients 

13 Note that this approximation still holds even for non-dividend paying 
firms. Appendix  A gives a full derivation of the log-linearization with both 
zero and positive dividends and discusses the role of the payout ratio.
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Table 1
Decomposition of differences in price–earnings ratios.
 Years ahead 𝐶𝐹𝐺ℎ 𝐷𝑅ℎ 𝐹𝑃𝐸ℎ 𝜂ℎ  
 1 0.100∗∗∗ 0.041 0.861∗∗∗ −0.002  
 s.e.(D-K) [0.024] [0.034] [0.026] [0.004] 
 s.e.(boot) [0.021] [0.027] [0.023] [0.002] 
 3 0.097∗∗ 0.174∗∗∗ 0.735∗∗∗ −0.006  
 [0.038] [0.070] [0.051] [0.010] 
 [0.038] [0.065] [0.049] [0.010] 
 5 0.124∗∗∗ 0.264∗∗∗ 0.619∗∗∗ −0.007  
 [0.037] [0.091] [0.071] [0.016] 
 [0.042] [0.093] [0.071] [0.017] 
 8 0.161∗∗∗ 0.384∗∗∗ 0.463∗∗∗ −0.009  
 [0.038] [0.091] [0.076] [0.022] 
 [0.038] [0.091] [0.075] [0.027] 
 10 0.186∗∗∗ 0.436∗∗∗ 0.389∗∗∗ −0.011  
 [0.035] [0.077] [0.069] [0.025] 
 [0.038] [0.082] [0.072] [0.033] 
 13 0.189∗∗∗ 0.492∗∗∗ 0.331∗∗∗ −0.013  
 [0.042] [0.067] [0.05] [0.030] 
 [0.045] [0.079] [0.058] [0.041] 
 15 0.202∗∗∗ 0.516∗∗∗ 0.295∗∗∗ −0.013  
 [0.039] [0.056] [0.043] [0.034] 
 [0.035] [0.070] [0.060] [0.046] 
 ∞ 0.236∗∗∗ 0.787∗∗∗ – −0.023  
 s.e.(boot) [0.078] [0.082] – [0.066] 
This table decomposes the cross-sectional dispersion of price–earnings ratios using 
equation (3). The first column describes the horizon ℎ at which the decomposition 
is evaluated. For each period, we form five value-weighted portfolios and track their 
buy-and-hold earnings growth (∑ℎ

𝑗=1 𝜌
𝑗−1𝛥𝑒𝑖,𝑡+𝑗 ), negative returns (−∑ℎ

𝑗=1 𝜌
𝑗−1𝑟𝑖,𝑡+𝑗 ), and 

price–earnings ratios (𝑝𝑒𝑖,𝑡+ℎ) for every horizon up to fifteen years. The components 
𝐶𝐹𝐺ℎ , 𝐷𝑅ℎ , and 𝐹𝑃𝐸ℎ are the coefficients from univariate regressions of earnings 
growth, negative returns and future price–earnings ratios on current price–earnings 
ratios. The final column shows the coefficient from regressing the approximation error 
𝑝𝑒𝑖,𝑡 −

(

∑ℎ
𝑗=1 𝜌

𝑗−1𝛥𝑒𝑖,𝑡+𝑗 −
∑ℎ

𝑗=1 𝜌
𝑗−1𝑟𝑖,𝑡+𝑗 + 𝜌ℎ𝑝𝑒𝑖,𝑡+ℎ

)

 on 𝑝𝑒𝑖,𝑡, which shows the portion of 
price–earnings ratio dispersion that is accounted for by the approximation error. All 
variables are cross-sectionally demeaned. Driscoll–Kraay standard errors and block-
bootstrap standard errors are calculated for each coefficient. The last row shows the 
components of the infinite horizon decomposition and their block-bootstrap standard 
errors. Superscripts indicate block-bootstrap significance at the 1% (∗∗∗), 5% (∗∗), and 
10% (∗) level. The sample period is 1963 to 2020.

as cash flow growth differences 𝐶𝐹𝐺ℎ, discount rate differences 𝐷𝑅ℎ, 
and future price–earnings ratio differences 𝐹𝑃𝐸ℎ. Each component 
of Eq.  (3) is simply the slope coefficient from a time fixed effects 
regression of future earnings growth, future returns, and the future 
price–earnings ratio on the current price–earnings ratio. Thus, these 
three terms quantify exactly how much a one unit increase in 𝑝𝑒𝑖,𝑡
predicts higher future earnings growth, lower future returns, or a higher 
future price–earnings ratio.

As shown in Table  1, we find that the approximation (2) holds 
quite tightly in the data, with 𝐶𝐹𝐺ℎ, 𝐷𝑅ℎ, and 𝐹𝑃𝐸ℎ accounting for 
100.2%–101.3% of price–earnings ratio differences for horizons of one 
to fifteen years. As discussed more in Appendix  A, we can incorporate 
additional details such as payout ratios into the decomposition to make 
the approximation even closer to 100%. However, these additional 
components play a fairly small role. In other words, we find that 
systematic differences in payout ratios across high 𝑝𝑒𝑖,𝑡 and low 𝑝𝑒𝑖,𝑡
stocks are fairly small.

Finally, by imposing a no-bubble condition, lim
ℎ→∞

𝜌ℎ𝑝𝑒𝑖,𝑡+ℎ = 0, the 
price–earnings ratio can be expressed solely in terms of future earnings 
growth and future returns, 

𝑝𝑒𝑖,𝑡 ≈
∞
∑

𝑗=1
𝜌𝑗−1𝛥𝑒𝑖,𝑡+𝑗 −

∞
∑

𝑗=1
𝜌𝑗−1𝑟𝑖,𝑡+𝑗 . (4)

Similarly, variation in the price–earnings ratio can be fully decomposed 
into cash flow growth differences and discount rate differences, 

1 ≈ 𝐶𝐹𝐺∞ +𝐷𝑅∞. (5)
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Fig. 1. Decomposition of differences in price–earnings ratios. This figure visualizes the results of Table  1 for cash flow growth differences (𝐶𝐹𝐺ℎ), discount rate differences 
(𝐷𝑅ℎ), and future price–earnings ratio differences (𝐹𝑃𝐸ℎ) at different horizons ℎ. The 𝑥-axis shows the horizon ℎ in years. The dots show the exact estimates from Table  1 based 
on earnings growth, negative returns, and price–earnings ratios ℎ years ahead. The dashed lines show the values implied by the estimated VAR model in Eq.  (6).
3.2. Empirical decomposition results

Table  1 and Fig.  1 show the estimated values for cash flow growth 
differences, discount rate differences, and future price–earnings ratio 
differences from Eq.  (3).14 A key benefit of Eq.  (3) is that it can be 
estimated separately at many different horizons ℎ. We estimate our 
results for horizons of one to fifteen years to align with CPV. Given that 
the longer horizon regressions involve overlapping observations, we 
report for every coefficient the Driscoll–Kraay standard errors, which 
account for very general forms of spatial and serial correlation, as well 
as the block-bootstrap standard errors.15 More importantly, rather than 
focusing on a single specific horizon, we emphasize broad patterns in 
cash flow growth differences and discount rate differences which hold 
across many horizons.

At every horizon, a higher price–earnings ratio predicts higher 
future earnings growth and lower future returns, and these estimates 
are highly significant at nearly every horizon. However, lower returns 
tend to play a larger role in explaining the cross-sectional dispersion 
in price–earnings ratios. In other words, high price–earnings ratios 
are primarily predicting lower future returns. At horizons of five, ten, 
and fifteen years, lower future returns account for 26.4%, 43.6%, 
and 51.6% of differences in price–earnings ratios while higher future 
earnings growth only accounts for 12.4%, 18.6%, 20.2% respectively. 
As shown in Fig.  1, for all horizons beyond three years, we consistently 
find that 𝐷𝑅ℎ is more than twice as large as 𝐶𝐹𝐺ℎ.

Note that, for both Driscoll–Kraay and block-bootstrap, the standard 
errors actually decrease slightly at very long horizons. This is because 
the persistence of the dependent variable (e.g., −

ℎ
∑

𝑗=1
𝜌𝑗−1𝑟𝑖,𝑡+𝑗) plateaus 

and the relationship between the dependent variable and 𝑝𝑒𝑖,𝑡 becomes 

14 Throughout the paper, we use 𝜌 = 0.9751, which is based on the average 
price–dividend ratio of the total stock market, as explained in Appendix  A.
15 The block-bootstrap procedure is a conservative approach for time-series 
dependencies in panel data. Following Martin and Wagner (2019), we generate 
1,000 bootstrap samples by randomly drawing blocks of ℎ years from the 
original data. We then estimate the decomposition for each sample and then 
compute the covariance matrix of the coefficients and its Wald statistics for 
hypothesis tests.
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empirically less noisy as the horizon increases. As a concrete example, 
if 𝑝𝑒𝑖,𝑡 is AR(1) with persistence 𝜙 and earnings growth differences are 

negligible, then −
ℎ
∑

𝑗=1
𝜌𝑗−1𝑟𝑖,𝑡+𝑗 equals 𝑝𝑒𝑖,𝑡−𝜌ℎ𝑝𝑒𝑖,𝑡+ℎ and has persistence 

𝜙 1+𝜌2ℎ−𝜌ℎ𝜙ℎ−𝜌ℎ𝜙ℎ−2

1+𝜌2ℎ−2𝜌ℎ𝜙ℎ  which asymptotes to 𝜙, rather than 1, as ℎ → ∞. 
More directly, as ℎ increases in this example, the relationship between 
future returns (i.e., 𝑝𝑒𝑖,𝑡−𝜌ℎ𝑝𝑒𝑖,𝑡+ℎ) and 𝑝𝑒𝑖,𝑡 becomes less noisy and more 
deterministic. Fig.  F.5 visualizes the confidence intervals from Table  1, 
where we find that the entire 95% CI for 𝐷𝑅ℎ is above the upper bound 
of the 𝐶𝐹𝐺ℎ 95% CI for all horizons beyond eight years.

To gauge how well the approximate identity holds, the final column 
of Table  1 shows the portion of dispersion in 𝑝𝑒𝑖,𝑡 attributed to the ap-
proximation error for each horizon
𝑝𝑒𝑖,𝑡 −

(

∑ℎ
𝑗=1 𝜌

𝑗−1𝛥𝑒𝑖,𝑡+𝑗 −
∑ℎ

𝑗=1 𝜌
𝑗−1 �̃�𝑖,𝑡+𝑗 + 𝜌ℎ𝑝𝑒𝑖,𝑡+ℎ

)

. This error reflects 
any differences in payout ratios or higher order terms that are ignored 
in the first-order log linearization. At every horizon, we find that 
the approximation holds quite well, with the approximation error 
accounting for at most 2.3% of 𝑝𝑒𝑖,𝑡 variation.

In Tables  3 and F.12, we show that other price ratios, such as 
price–book ratios, price–sales ratios, price–employee ratios, and price-
to-three-year-smoothed-earnings ratios, also predict future returns with 
substantially larger coefficients than their coefficients for predicting 
earnings growth. We also show in Tables  4 and F.11 that our results 
are robust to using different numbers of portfolios and even individual 
firms. These results all indicate that differences in price ratios primarily 
predict differences in future returns rather than differences in future 
earnings growth.

By itself, the fact that the price–earnings ratio predicts future returns 
is not surprising. It has been well-documented that price ratios can 
predict the cross-section of returns. The surprising element is that the 
price–earnings ratio predicts future returns much more than it predicts 
future earnings growth. This dominance of future returns indicates that 
the cross-section is actually quite consistent with the aggregate time 
series findings of Campbell and Shiller (1988a,b), Cochrane (2008, 
2011).

In order to calculate the infinite horizon decomposition, we estimate 
a VAR(1) model defined as 
𝑥 = 𝐴𝑥 + 𝜀 , (6)
𝑖,𝑡+1 𝑖,𝑡 𝑖,𝑡+1
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where 𝑥𝑖,𝑡 =
(

𝛥𝑒𝑖,𝑡,−𝑟𝑖,𝑡, 𝑝𝑒𝑖,𝑡, 𝑝𝑏𝑖,𝑡
)′ is a vector of the cross-sectionally 

demeaned earnings growth, return, price–earnings ratio, and price–
book ratio for each portfolio 𝑖 and 𝛴 is the covariance matrix of 
the shocks.16 Appendix  B provides the estimation details and the full 
derivation of infinite-horizon cash flow growth differences and discount 
rate differences of Eqs. (4) and (5) in terms of 𝐴 and 𝛴.

Fig.  1 and the final row of Table  1 show the results of the VAR 
model. The model estimates that cash flow growth differences account 
for only 23.6% of all price–earnings ratio variation, while discount rate 
differences account for 78.7% of all variation. This is consistent with 
our finding that discount rate differences are more than twice as large 
as cash flow growth differences at nearly every horizon. To understand 
how well this model matches the directly measured cash flow growth 
differences and discount rate differences, Fig.  1 compares the VAR 
implied cash flow growth differences, discount rate differences, and 
future price–earnings ratio differences (shown in dashed lines) with 
the directly measured values from Table  1 (shown with dots). Despite 
the simplicity of the VAR model, the model quite closely matches the 
dynamics of cash flow growth differences and discount rate differences 
at longer horizons.

3.3. Reconciliation

Here, we reconcile our results with CPV and FF95. These papers 
study price–book ratios, returns, and profitability and argue that the 
cross-section of stock prices is very different from the aggregate time 
series findings of Campbell and Shiller (1988a) and Cochrane (1992). 
Specifically, they find that returns only account for a minority of cross-
sectional variation in price–book ratios and that price–book ratios are 
strongly related to future profitability. We first reconcile with the 
finding about the role of returns in price–book ratio variation and then 
reconcile with the findings on profitability.

To start, we connect Eq. (4) to the price–book ratio by adding 
the earnings-book ratio, which is simply the difference between log 
earnings and log book. Specifically, the price–book ratio is 

𝑝𝑏𝑖,𝑡 ≈ 𝑒𝑏𝑖,𝑡 +
∞
∑

𝑗=1
𝜌𝑗−1𝛥𝑒𝑖,𝑡+𝑗 −

∞
∑

𝑗=1
𝜌𝑗−1𝑟𝑖,𝑡+𝑗 . (7)

We can then measure the relative importance of future earnings growth 
and future returns from 

1 ≈
𝐶𝑜𝑣

(

𝑒𝑏𝑖,𝑡, 𝑝𝑏𝑖,𝑡
)

𝑉 𝑎𝑟
(

𝑝𝑏𝑖,𝑡
) +

𝐶𝑜𝑣

( ∞
∑

𝑗=1
𝜌𝑗−1𝛥𝑒𝑖,𝑡+𝑗 , 𝑝𝑏𝑖,𝑡

)

𝑉 𝑎𝑟
(

𝑝𝑏𝑖,𝑡
)

+

𝐶𝑜𝑣

(

−
∞
∑

𝑗=1
𝜌𝑗−1𝑟𝑖,𝑡+𝑗 , 𝑝𝑏𝑖,𝑡

)

𝑉 𝑎𝑟
(

𝑝𝑏𝑖,𝑡
) .

(8)

The first term simply reflects correlation between the current earnings-
book ratio and the current price–book ratio. More importantly, the 
second and third terms represent how much a one unit increase in the 
price–book ratio signals higher future earnings growth or lower future 
returns and determine whether cross-sectional dispersion in price–
book ratios is more related to differences in future earnings growth or 
differences in future returns.

Table  2 shows the results of finite horizon estimates of the decompo-
sition in Eq.  (8). Similar to the results of Table  1, future returns are over 
twice as important as future earnings growth for accounting for cross-
sectional dispersion in price–book ratios. However, unlike in Table  1, 
future returns only account for a minority of the total dispersion in 

16 We include both the price–earnings ratio and the price–book ratio in the 
vector so that the VAR model can speak to both the variance decomposition 
of the price–earnings ratio and the variance decomposition of the price–book 
ratio presented in Section 3.3.
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price–book ratios. Why does this occur? It is because, as shown by the 
first term in Eq. (8), scaling prices by book value rather than cash flows 
introduces a substantial amount of additional variation to price–book 
ratios which is not tied to future earnings growth or future returns. This 
extra component, which reflects contemporaneous correlation between 
𝑒𝑏𝑖,𝑡 and 𝑝𝑏𝑖,𝑡 rather than prices predicting future outcomes, accounts 
for the majority of dispersion in price–book ratios (51.0%).

In other words, while returns account for a minority of cross-
sectional dispersion in price–book ratios, the importance of returns 
relative to earnings growth does not differ substantially from the ag-
gregate findings of Cochrane (1992). As shown in Table  1, when prices 
are not scaled by book, the cross-sectional findings are quite similar to 
the previous aggregate findings. Even when prices are scaled by book 
value, we still find that future returns play a much larger role than 
future earnings growth. In Section 4, we show that this continues to be 
true for many different scaling variables.

3.3.1. Connection to profitability
To fully reconcile with CPV and FF95, we analytically link the 

decomposition typically used for aggregate time series, which focuses 
on returns and cash flow growth, and the decomposition typically 
used in the cross-section, which focuses on returns and profitability. 
Profitability is 𝜋𝑡+1 ≡ log

(

1 + 𝐸𝑡+1
𝐵𝑡

)

 where 𝐵𝑡 is the book-value and 
𝐸𝑡+1 is the next-year level of earnings. Using the V02 identity, CPV show 
that cross-sectional differences in price–book ratios must predict cross-
sectional differences in future profitability or cross-sectional differences 
in future returns, 

𝑝𝑏𝑖,𝑡 ≈
∞
∑

𝑗=1
𝜌𝑗−1�̃�𝑖,𝑡+𝑗 −

∞
∑

𝑗=1
𝜌𝑗−1𝑟𝑖,𝑡+𝑗 . (9)

From Eq.  (9), one can decompose the variation in the price–book ratio 
into the covariance of the price–book ratio with future profitability and 
the covariance of the price–book ratio with future negative returns, 

1 ≈

𝐶𝑜𝑣

( ∞
∑

𝑗=1
𝜌𝑗−1�̃�𝑖,𝑡+𝑗 , 𝑝𝑏𝑖,𝑡

)

𝑉 𝑎𝑟
(

𝑝𝑏𝑖,𝑡
) +

𝐶𝑜𝑣

(

−
∞
∑

𝑗=1
𝜌𝑗−1𝑟𝑖,𝑡+𝑗 , 𝑝𝑏𝑖,𝑡

)

𝑉 𝑎𝑟
(

𝑝𝑏𝑖,𝑡
) . (10)

The first term in Eq.  (10) is estimated to be much larger than the 
second term, and we confirm in the Appendix Table  F.13 that our data 
replicates this finding.

Unlike the price–book ratio decomposition we developed in Eq. (7), 
which expresses how informative price–book ratios are about future 
differences in cash flow growth, this decomposition expresses how 
informative price–book ratios are about future differences in cash flow
levels, measured by profitability. To better understand how this exercise 
relates to our findings, we compare Eqs. (7) and (9), which conve-
niently are both derived from the same Campbell–Shiller identity, use 
the same 𝜌, the same returns, and same price–book ratio. Rearranging 
terms, we find a useful expression for future profitability, 
∞
∑

𝑗=1
𝜌𝑗−1�̃�𝑖,𝑡+𝑗 ≈ 𝑒𝑏𝑖,𝑡 +

∞
∑

𝑗=1
𝜌𝑗−1𝛥𝑒𝑖,𝑡+𝑗 . (11)

Eq. (11) shows that future profitability can be split into a current 
component and a future component: the current level of the earnings-
book ratio and future earnings growth. Intuitively, a stock can have 
high future profitability either because it starts with high earnings 
relative to book or because its earnings grow quickly. Similarly, the 
connection to the price–book ratio is 

𝐶𝑜𝑣

( ∞
∑

𝑗=1
𝜌𝑗−1�̃�𝑖,𝑡+𝑗 , 𝑝𝑏𝑖,𝑡

)

𝑉 𝑎𝑟
(

𝑝𝑏𝑖,𝑡
) ≈

𝐶𝑜𝑣
(

𝑒𝑏𝑖,𝑡, 𝑝𝑏𝑖,𝑡
)

𝑉 𝑎𝑟
(

𝑝𝑏𝑖,𝑡
)

+

𝐶𝑜𝑣

( ∞
∑

𝑗=1
𝜌𝑗−1𝛥𝑒𝑖,𝑡+𝑗 , 𝑝𝑏𝑖,𝑡

)

( ) .

(12)
𝑉 𝑎𝑟 𝑝𝑏𝑖,𝑡
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Table 2
Decomposition of price–book ratio differences.
 Years ahead 𝑒𝑏𝑡

ℎ
∑

𝑗=1
𝜌𝑗−1𝛥𝑒𝑡+𝑗 −

ℎ
∑

𝑗=1
𝜌𝑗−1𝑟𝑡+𝑗 

 0 0.510∗∗∗  
 s.e.(D-K) [0.035]  
 s.e.(boot) [0.026]  
 1 0.042∗∗∗ 0.012  
 [0.014] [0.017]  
 [0.013] [0.013]  
 3 0.015 0.06*  
 [0.025] [0.039]  
 [0.026] [0.036]  
 5 0.024 0.104∗∗  
 [0.027] [0.052]  
 [0.024] [0.052]  
 8 0.039∗∗ 0.164**  
 [0.023] [0.062]  
 [0.015] [0.063]  
 10 0.052∗∗∗ 0.197∗∗∗  
 [0.024] [0.061]  
 [0.017] [0.069]  
 13 0.089∗∗∗ 0.238∗∗∗  
 [0.028] [0.058]  
 [0.02] [0.065]  
 15 0.093∗∗∗ 0.264∗∗∗  
 [0.029] [0.050]  
 [0.019] [0.058]  
 ∞ 0.103∗∗∗ 0.423∗∗∗  
 s.e. (boot) [0.041] [0.067]  
This table decomposes the variance of the price–book ratio using 
equation (8). The first column describes the horizon ℎ at which the de-
composition is evaluated. For each period, we form five value-weighted 
portfolios and track their buy-and-hold earnings growth (∑ℎ

𝑗=1 𝜌
𝑗−1𝛥𝑒𝑡+𝑗 ) 

and returns (∑ℎ
𝑗=1 𝜌

𝑗−1𝑟𝑡+𝑗 ) for every horizon up to ten years. Consistent 
with equation (8), we also calculate the current earnings-book ratio. 
The decomposition states that variation in the current price–book ratio 
must be accounted for by the covariance of the price–book ratio with 
(i) the current earnings-book ratio, (ii) future earnings growth, or 
(iii) negative future returns. The table reports the coefficients from 
univariate regressions of the current earnings-book ratio, future earnings 
growth and negative future returns on the current price–book ratio. All 
variables are cross-sectionally demeaned. Driscoll–Kraay standard errors 
and block-bootstrap standard errors are calculated for each coefficient. 
The last row shows the components of the infinite horizon decomposition 
and their block-bootstrap standard errors. Superscripts indicate block-
bootstrap significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level. The 
sample period is 1963 to 2020.

From Table  2, we know that the first RHS term in Eq.  (12) is 
large (0.510) while the second is small (0.093 to 0.103). Thus, the 
large estimated relationship between the price–book ratio and future 
profitability is not driven by price–book ratios predicting earnings 
growth but instead by correlation between the current price–book ratio 
and the current level of the earnings-book ratio. Current price–book 
ratios are naturally correlated with current earnings-book ratios as both 
variables use current book value as their denominators.

As a stylized example, consider two firms that have identical prices 
and identical current and future earnings, but firm L has a low book 
value and firm H has a high book value. The differences in book value 
could be due to differences in capital intensity. Firm L will have a 
high price–book ratio and firm H will have a low price–book ratio. 
The firms have identical earnings growth, so differences in price–
book ratios will not predict earnings growth. However, firm L will 
have high profitability because the denominator in log

(

1 + 𝐸𝐿,𝑡+1
𝐵𝐿,𝑡

)

 is 
small. This means that a regression would find that differences in 
price–book ratios are strongly associated with differences in future 
profitability, not because price–book ratios are informative about future 
cash flow growth but because price–book ratios are informative about 
current profitability. Our focus on how well price–book ratios predict 
earnings growth is similar in spirit to the price informativeness measure 
of Bai et al. (2016), who measure price informativeness as how well 
7

price–book ratios predict future profitability after controlling for current 
profitability.

4. Discussion and implications

4.1. Level versus growth

Importantly, FF95 and CPV are correct that differences in price–
book ratios are informative about the level of future cash flows relative 
to book value. However, our results emphasize that both price–book 
ratios and price–earnings ratios are fairly uninformative about the
growth of future cash flows. There is no sense in which either Eq. (8) 
or (10) is a ‘‘wrong’’ way to decompose price–book ratio dispersion. 
If one wants to decompose price–book ratios into future returns and a 
single cash flow term, then Eq. (10) is ideal. One just needs to keep in 
mind that this cash flow term is about the level of cash flows relative to 
book. If one wants to understand the importance of cash flow growth 
relative to returns then Eq. (8) is more appropriate, as it segments out 
the earnings growth component of future profitability.17 Like any set of 
tools, the question of which one is ‘‘best’’ depends on one’s objective.

We highlight this distinction between level and growth for two 
reasons. First, the key finding for the aggregate time series in Campbell 
and Shiller (1988a,b) and Cochrane (1992, 2008) is that aggregate 
price ratios predict future returns much more than they predict future 
cash flow growth. Thus, to determine if a similar result holds in the 
cross-section, one should focus on cash flow growth rather than cash 
flow levels. By highlighting this difference between predictable cash 
flow levels and predictable cash flow growth, we emphasize that the 
cross-section of stock prices actually appears to be quite similar to 
the aggregate time series. This points against the idea that markets 
are ‘‘micro-efficient but macro-inefficient’’ (Samuelson, 1998; Jung and 
Shiller, 2005).

Second, it seems quite plausible that growth rather than levels 
is what practitioners and researchers have in mind when studying 
differences in price ratios, given that high price ratio stocks are called 
‘‘growth stocks.’’ As we show in Section 6, many models of cross-
sectional stock prices imply that nearly all differences in price ratios 
are explained by future cash flow growth.

4.2. Does the result depend on how prices are scaled?

Tables  1 and 2 demonstrate that the dispersion in 𝑝𝑒𝑖,𝑡 and 𝑝𝑏𝑖,𝑡 is 
explained more by future returns than by future cash flow growth. A 
natural question arises: does the variable used to normalize the prices 
affect this conclusion? After all, the purpose of normalizing is simply 
to avoid non-stationarity in prices, which means one could normalize 
by many different variables. We want to make sure the conclusions are 
primarily driven by the dispersion in prices, not by the dispersion in 
the normalizing variable. Therefore, in this section, we address this 
more general possibility and show that using alternative variables to 
normalize prices does not change the dominance of returns relative to 
cash flow growth.

In principle, we could substitute 𝑒𝑖,𝑡 or 𝑏𝑖,𝑡 by any other variable 
𝑥𝑖,𝑡 such as sales or number of employees to scale prices. Replacing 𝑏𝑖,𝑡
with a new scaling variable 𝑥𝑖,𝑡, Eq. (8) shows how we can decompose 
variation in scaled prices into three pieces. The first piece, which 

17 Similarly, if we instead study price–sales ratios, then decomposition (10) 
would focus on a variant of future profit margins while decomposition (8) 
would still focus on future earnings growth and would replace 𝑒𝑏𝑖,𝑡 with the 
current earnings–sales ratio.
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Table 3
The effect of scaling variables on return dominance.
 Years Book Sales Employees Smooth earnings
 ahead Earnings Negative Earnings Negative Earnings Negative Earnings Negative 
 growth returns growth returns growth returns growth returns  
 1 0.042∗∗∗ 0.012 0.045∗∗ 0.033∗ 0.041∗∗ 0.043∗∗ 0.077∗∗∗ 0.041∗  
 s.e.(D-K) [0.014] [0.017] [0.022] [0.021] [0.025] [0.023] [0.024] [0.028]  
 s.e.(boot) [0.013] [0.013] [0.018] [0.017] [0.019] [0.019] [0.020] [0.024]  
 5 0.024 0.104∗∗ 0.011 0.181∗∗∗ 0.000 0.219∗∗∗ 0.056∗ 0.236∗∗∗  
 [0.027] [0.052] [0.035] [0.058] [0.036] [0.059] [0.035] [0.081]  
 [0.024] [0.052] [0.031] [0.056] [0.035] [0.058] [0.034] [0.082]  
 10 0.052∗∗∗ 0.197∗∗∗ 0.050∗∗ 0.281∗∗∗ 0.041∗ 0.324∗∗∗ 0.113∗∗∗ 0.385∗∗∗  
 [0.024] [0.061] [0.028] [0.060] [0.029] [0.056] [0.025] [0.073]  
 [0.017] [0.069] [0.023] [0.061] [0.022] [0.059] [0.022] [0.078]  
 15 0.093∗∗∗ 0.264∗∗∗ 0.086∗∗∗ 0.344∗∗∗ 0.074∗∗∗ 0.386∗∗∗ 0.15∗∗∗ 0.455∗∗∗  
 [0.029] [0.050] [0.036] [0.045] [0.038] [0.035] [0.038] [0.057]  
 [0.019] [0.058] [0.027] [0.054] [0.028] [0.042] [0.027] [0.068]  
This table considers alternative price ratios and shows how an increase in each price ratio predicts future earnings growth and future negative 
returns. Instead of using the main price–earnings ratio 𝑝𝑒𝑖,𝑡, the price is normalized by a different variable 𝑥𝑖,𝑡: book, sales, number of employees, 
and the three-year-smoothed-earnings. For each price ratio 𝑝𝑥𝑖,𝑡, the table reports the coefficients from univariate regressions of future earnings 
growth and negative future returns on the price ratio. All variables are cross-sectionally demeaned. Driscoll–Kraay standard errors and block-
bootstrap standard errors are calculated for each coefficient. Superscripts indicate block-bootstrap significance at the 1% (∗∗∗), 5% (∗∗), and 
10% (∗) level. The sample period is 1963 to 2020.
depends on 𝑒𝑥𝑖,𝑡, may be large or small depending on the choice of 𝑥𝑖,𝑡,18 
but this does not change the fact that we can still compare the relative 
importance of future cash flow growth and future returns.

In Table  3, we calculate the cash flow growth and return compo-
nents of the price ratio decomposition (8) using other variables besides 
book. These three alternative variables are sales, number of employees 
and 3-year smoothed earnings. Consistent with the results of Tables 
1 and 2, the results indicate that the return component explains a 
considerably larger share of the dispersion in price ratios 𝑝𝑥𝑖,𝑡 than the 
cash flow growth component, irrespective of the normalized variable 
used. Rephrased, at long horizons, there is a clear and consistent result 
that high price ratios predict low future returns much more than they 
predict high future earnings growth. For robustness, Table  F.15 shows 
that this pattern continues to hold if we attempt to predict dividend 
growth rather than earnings growth.

4.3. What about predicting growth in other variables?

Note that in Tables  2, 3, and F.15, we normalize the price ratios 
using an alternative variable, but we still covary the price ratios with 
future earnings growth (or dividend growth) and future returns. This 
is because we are still interested in cash flow growth differences and 
discount rate differences.

Alternatively, one could measure how 𝑝𝑥𝑖,𝑡 predicts growth in 𝑥𝑖,𝑡, 
i,.e., growth in book, sales, or employees.19 If one is interested in book 
growth differences, sales growth differences, or hiring differences, then 
these results may be relevant. However, such estimations should not 
be confused as cash flow growth differences. Owning a share of a 
company entitles you to a share of the company’s cashflows, e.g., the 
earnings from operating the business if you own the entire company or 
the dividends if you are a shareholder. If a company has a high price 
ratio and fails to grow its cash flows enough to repay its high initial 
valuation, then the return for a buy-and-hold investor will be low. 
Growth in book, sales, or employees are only relevant if they translate 
into higher cash flow growth.

18 For example, when scaling by book, the current earnings-book ratio 
accounts for roughly half of all dispersion in scaled prices. In contrast, as 
discussed more in Appendix  A, our choice to scale prices by earnings instead 
of dividends introduces a payout ratio term that is fortunately very small 
empirically (i.e., it has little covariance with scaled prices), to the point that 
we can drop it from the approximation and still account for 99% of scaled 
price dispersion.
19 Note that this test would no longer coincide with either the decomposition 
in (8) or (10), but is still a testable empirical question.
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More concretely, if we want to compare to the aggregate time series 
findings on cash flow growth, then we should focus on cross-sectional 
predictability in cash flow growth. Cross-sectional predictability in 
employee growth or book growth would not provide information as 
to whether the cross-section of stock prices differs from the aggregate 
time series findings.

5. Extending price ratio results

In this section, we provide three extensions of our price–earnings 
ratio decomposition. First, we perform a rolling estimation that shows 
how cash flow growth differences and discount rates differences have 
changed over time. Second, we propose and estimate a novel decom-
position for firm-level earnings yields. Third, we utilize a variant of the 
Pruitt (2025) decomposition to evaluate the role of cross-sectional dif-
ferences in share issuance and buybacks for explaining price–earnings 
ratio dispersion.

5.1. The dominance of returns over time

The previous section shows that, over the 1963–2020 sample, dis-
count rate differences play a much larger role than cash flow growth 
differences for explaining the dispersion in price–earnings ratios. In re-
cent years, several papers have documented a decline in one-month or 
one-year return differences between value and growth stocks (i.e., the 
value premium) (Fama and French, 2020; Eisfeldt et al., 2022). This 
raises the question of how much the cross-sectional dominance of 
returns has changed over time. To answer this question, we estimate 
a time-varying price–earnings ratio decomposition. While returns are 
dominant in explaining price dispersion for all points in time, the 
degree of dominance (i.e., the difference between 𝐷𝑅15 and 𝐶𝐹𝐺15) 
shows significant time-variation.

To show this, we estimate the fifteen-year components of Eq. (3) 
over time using a weighted, rolling regression. At each year, we include 
in the estimation all observations up to that year and weigh older 
observations with a geometric decay factor 𝛾 = 0.87. This decay rate 
implies a half-life of five years, which means that half of the weight in 
the regression is placed on the most recent five years.

Fig.  2 shows the estimated values for 𝐶𝐹𝐺15 and 𝐷𝑅15 over time 
for those portfolios formed between 1963 and 2005, as well as the 
95% confidence intervals based on the Driscoll–Kraay standard errors. 
Throughout the entire sample, the estimated 𝐷𝑅15 is large, but there is 
notable variation, with 𝐷𝑅15 ranging from 0.31 to 0.64. For example, 
𝐷𝑅  begins to decline in the early 1980’s, as growth stocks during 
15
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Fig. 2. Movement over time of 𝐶𝐹𝐺15 and 𝐷𝑅15. This figure shows rolling estimations of fifteen-year cash flow growth differences (𝐶𝐹𝐺15) and discount rate differences (𝐷𝑅15) 
from 1963–2020. At each year 𝜏, 𝐶𝐹𝐺15 shows the coefficient from a weighted regression of 

{

∑15
𝑗=1 𝜌

𝑗−1𝛥𝑒𝑖,𝑡+𝑗
}𝜏

𝑡=1963
 on {𝑝𝑒𝑖,𝑡}𝜏

𝑡=1963. The regression weights are 𝛾𝜏−𝑡, i.e., the weight 
geometrically decreases for older observations, where 𝛾 = 0.87 ensures that half of the weight is placed on the most recent five years. The value for 𝐷𝑅15 shows the coefficient 
from an analogous regression of negative fifteen-year returns on the price–earnings ratio. The 95% confidence intervals for 𝐶𝐹𝐺15 and 𝐷𝑅15 based on the Driscoll–Kraay standard 
errors are shown by the shaded regions.
this period went on to earn relatively high fifteen-year future returns 
(i.e., the dot-com bubble). However, this is followed by the dot-com 
bust, in which those growth stocks experienced much lower returns 
than value stocks, and we see 𝐷𝑅15 subsequently rises. Overall, we find 
that 𝐷𝑅15 is significantly larger than 𝐶𝐹𝐺15 in the majority of sample. 
Most importantly, we do not find any period in which 𝐶𝐹𝐺15 is larger 
than 𝐷𝑅15.

5.2. Firm-level decomposition

The previous sections focus on decompositions for the classic value 
and growth portfolios. In this section, we extend our analysis to the 
firm level and show that cross-sectional variation in earnings yields 
is not explained by differences in future earnings growth. Instead, 
differences in earnings yields are primarily explained by differences 
in future returns. Given that firm-level earnings may be negative, we 
cannot utilize the standard log-linearization in Eq. (2). To solve this 
issue, we propose a new decomposition for the level of the earnings 
yield which separates the role of earnings growth and returns.

To ensure that our decomposition captures returns, rather than just 
price growth, we consider the following strategy. Let 𝐸𝑖,𝑡 and 𝑃𝑖,𝑡 be 
the earnings per share and price per share of firm 𝑖 at time 𝑡. Consider 
a portfolio that only invests in firm 𝑖. Specifically, the portfolio holds 
one share of firm 𝑖 at time 𝑡 and reinvests any dividends it receives. The 
value of this portfolio at time 𝑡 + 𝑘 is simply 

𝑃𝑖,𝑡+𝑘 = 𝑃𝑖,𝑡

( 𝑘
∏

𝑗=1
𝑅𝑖,𝑡+𝑗

)

(13)

where 𝑅𝑖,𝑡+𝑗 is the return for firm 𝑖. The number of shares that the 
portfolio holds at time 𝑡+𝑘 is 𝑃𝑖,𝑡+𝑘∕𝑃𝑖,𝑡+𝑘 which means that the earnings 
of this portfolio are 

�̂�𝑖,𝑡+𝑘 = 𝐸𝑖,𝑡+𝑘
𝑃𝑖,𝑡+𝑘

𝑃𝑖,𝑡+𝑘
. (14)

Because this portfolio only invests in firm 𝑖, the earnings yield for 
this portfolio is identical to the earnings yield for the firm, 
�̂�𝑖,𝑡+𝑘 =

𝐸𝑖,𝑡+𝑘 . (15)
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𝑃𝑖,𝑡+𝑘 𝑃𝑖,𝑡+𝑘
Thus, decomposing the firm’s earnings yield is identical to decomposing 
this portfolio’s earnings yield, �̂�𝑖,𝑡∕𝑃𝑖,𝑡.20 In Section 5.2.1, we discuss the 
benefits of focusing on this portfolio rather than the firm, with the main 
benefit being that price growth 𝑃𝑖,𝑡+𝑘∕𝑃𝑖,𝑡 for this portfolio is equivalent 
to the return on the firm.

Intuitively, changes in the portfolio’s earnings yield must be due to 
changes either in the earnings �̂�𝑖,𝑡 or the price 𝑃𝑖,𝑡. Specifically, we have 
the following identity: 
�̂�𝑖,𝑡

𝑃𝑖,𝑡
= −𝛥(𝐸)

𝑖,𝑡+ℎ + 𝛥(𝑃 )
𝑖,𝑡+ℎ +

�̂�𝑖,𝑡+ℎ

𝑃𝑖,𝑡+ℎ
(16)

where

𝛥(𝐸)
𝑖,𝑡+ℎ =

[(

�̂�𝑖,𝑡+ℎ

𝑃𝑖,𝑡
−

�̂�𝑖,𝑡

𝑃𝑖,𝑡

)

+

(

�̂�𝑖,𝑡+ℎ

𝑃𝑖,𝑡+ℎ
−

�̂�𝑖,𝑡

𝑃𝑖,𝑡+ℎ

)]

∕2 (17)

𝛥(𝑃 )
𝑖,𝑡+ℎ =

[(

�̂�𝑖,𝑡

𝑃𝑖,𝑡
−

�̂�𝑖,𝑡

𝑃𝑖,𝑡+ℎ

)

+

(

�̂�𝑖,𝑡+ℎ

𝑃𝑖,𝑡
−

�̂�𝑖,𝑡+ℎ

𝑃𝑖,𝑡+ℎ

)]

∕2. (18)

The term 𝛥(𝐸)
𝑖,𝑡+ℎ measures the change in the earnings yield due to 

changes in earnings, holding the price fixed. Note that 𝛥(𝐸)
𝑖,𝑡+ℎ measures 

the effect when the price is fixed at 𝑃𝑖,𝑡 and when the price is fixed 
at 𝑃𝑖,𝑡+ℎ and then averages. This ensures that 𝛥(𝐸)

𝑖,𝑡+ℎ treats the prices 𝑃𝑖,𝑡
and 𝑃𝑖,𝑡+ℎ symmetrically and only distinguishes positive versus negative 
changes in earnings. Similarly, the term 𝛥(𝑃 )

𝑖,𝑡+ℎ measures the change 
in the earnings yield from changing the portfolio price and holding 
the portfolio earnings fixed. We choose the sign for 𝛥(𝐸)

𝑖,𝑡+ℎ such that, 
given positive values for 𝑃𝑖,𝑡 and 𝑃𝑖,𝑡+ℎ, positive 𝛥(𝐸)

𝑖,𝑡+ℎ indicates that 
earnings increased. Likewise, we choose the sign for 𝛥(𝑃 )

𝑖,𝑡+ℎ such that, 
given positive values for �̂�𝑖,𝑡 and �̂�𝑖,𝑡+ℎ, positive 𝛥(𝑃 )

𝑖,𝑡+ℎ indicates that 
the price increased.

20 Because firm-level earnings can be negative, we focus on the earnings 
yield rather than the price–earnings ratio to ensure the denominator is always 
strictly positive. For the log decomposition used in the previous sections, the 
decomposition of log earnings yields (𝑒𝑝𝑖,𝑡) is identical to the decomposition of 
log price–earnings ratios (𝑝𝑒𝑖,𝑡) but simply reverses the signs on the coefficients 
since 𝑒𝑝𝑖,𝑡 = −𝑝𝑒𝑖,𝑡. Specifically, the log decomposition for the earnings yield 
would be 𝑒𝑝𝑖,𝑡 ≈ −

∑ℎ
𝑗=1 𝜌

𝑗−1𝛥𝑒𝑖,𝑡+𝑗 +
∑ℎ

𝑗=1 𝜌
𝑗−1𝑟𝑖,𝑡+𝑗 + 𝜌ℎ𝑒𝑝𝑖,𝑡+ℎ. To remove likely 

data errors we exclude firms where the earnings yield is less than -1.



Journal of Financial Economics 169 (2025) 104059R. Delao et al.
Table 4
Decomposition of firm-level differences in earnings yields.
Years ahead −𝛥(𝐸)

𝑖,𝑡+ℎ 𝛥(𝑃 )
𝑖,𝑡+ℎ �̂�𝑖,𝑡+ℎ∕𝑃𝑖,𝑡+ℎ

1 0.199*** 0.073** 0.715***
s.e.(D-K) [0.045] [0.030] [0.034]
s.e.(boot) [0.027] [0.032] [0.035]

3 0.243*** 0.234*** 0.509***
[0.077] [0.058] [0.048]
[0.068] [0.05] [0.04]

5 0.174 0.378*** 0.438***
[0.113] [0.087] [0.064]
[0.114] [0.082] [0.053]

8 0.099 0.531*** 0.356***
[0.117] [0.098] [0.065]
[0.141] [0.111] [0.047]

10 -0.01 0.664*** 0.326***
[0.141] [0.121] [0.066]
[0.18] [0.141] [0.037]

13 -0.075 0.801*** 0.242***
[0.158] [0.133] [0.055]
[0.199] [0.17] [0.025]

15 -0.184 0.936*** 0.209***
[0.185] [0.161] [0.044]
[0.215] [0.192] [0.017]

This table decomposes the variance of earnings yields using equation 
(19) for firm-level observations. The first column describes the horizon 
ℎ at which the decomposition is evaluated. The three components 
are the coefficients from univariate regressions of negative earnings 
changes −𝛥(𝐸)

𝑖,𝑡+ℎ, price changes 𝛥(𝑃 )
𝑖,𝑡+ℎ, and future earnings yields on current 

earnings yields. All variables are cross-sectionally demeaned. Driscoll–
Kraay standard errors and block-bootstrap standard errors are calculated 
for each coefficient. Superscripts indicate block-bootstrap significance at 
the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level. The sample period is 1963 to 
2020.

For legibility, let 𝜃𝑖,𝑡 ≡ �̂�𝑖,𝑡
𝑃𝑖,𝑡
. A variance decomposition of Eq.  (16) 

tells us that 

1 =
𝐶𝑜𝑣

(

−𝛥(𝐸)
𝑖,𝑡+ℎ, 𝜃𝑖,𝑡

)

𝑉 𝑎𝑟
(

𝜃𝑖,𝑡
) +

𝐶𝑜𝑣
(

𝛥(𝑃 )
𝑖,𝑡+ℎ, 𝜃𝑖,𝑡

)

𝑉 𝑎𝑟
(

𝜃𝑖,𝑡
) +

𝐶𝑜𝑣
(

𝜃𝑖,𝑡+ℎ, 𝜃𝑖,𝑡
)

𝑉 𝑎𝑟
(

𝜃𝑖,𝑡
) (19)

where tildes denote cross-sectionally demeaned values. Intuitively, dis-
persion in earnings yields must be explained by high earnings yields 
predicting low future 𝛥(𝐸)

𝑖,𝑡+ℎ, high future 𝛥
(𝑃 )
𝑖,𝑡+ℎ, or a high future earnings 

yield. This closely mirrors Eq. (3), where a high earnings yield (−𝑝𝑒𝑖,𝑡) 
must be explained by low earnings growth, high returns, or a high 
future earnings yield.

One potential concern in the estimation of Eq.  (19) is that some 
firms exit the sample. In other words, for some 𝑖, we may not observe 
𝛥(𝐸)
𝑖,𝑡+ℎ, 𝛥

(𝑃 )
𝑖,𝑡+ℎ, 𝜃𝑖,𝑡+ℎ.21 Given that our goal is to show that 𝛥(𝑃 )

𝑖,𝑡+ℎ accounts 
for more dispersion in earnings yields than 𝛥(𝐸)

𝑖,𝑡+ℎ, we consider a worst-
case scenario in which we attribute all of the missing variation to 𝛥(𝐸)

𝑖,𝑡+ℎ. 
Specifically, if 𝛥(𝐸)

𝑖,𝑡+ℎ, 𝛥
(𝑃 )
𝑖,𝑡+ℎ, 𝜃𝑖,𝑡+ℎ are not observable, then we assume 

𝛥(𝐸)
𝑖,𝑡+ℎ = 𝜃𝑖,𝑡 and 𝛥(𝑃 )

𝑖,𝑡+ℎ, 𝜃𝑖,𝑡+ℎ = 0. In other words, we assume that any 
deviation from the cross-sectional mean in the current earnings yield 
(𝜃𝑖,𝑡) is entirely explained by changes in future earnings (𝛥(𝐸)

𝑖,𝑡+ℎ). This 
pushes the first coefficient in Eq.  (19) towards 1 and pushes the second 
and third coefficients towards 0, meaning that our estimates are an 
upper bound on the role of earnings changes and a lower bound on 
the role of price changes.

Table  4 shows the results of the firm-level decomposition. We use 
weighted regressions based on market size to assign more importance 

21 Fortunately, on average, more than 90% of the market value remains 
listed after five years, more than 80% remains after ten years, and more than 
70% remains after fifteen years, so we can directly observe the vast majority 
of 𝛥(𝐸) , 𝛥(𝑃 ) , 𝜃 .
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𝑖,𝑡+ℎ 𝑖,𝑡+ℎ 𝑖,𝑡+ℎ
to larger firms. In line with the findings of Table  1, we find that 
differences in earnings yields are largely unexplained by changes in 
future earnings. At the fifteen-year horizon, changes in earnings explain 
a statistically insignificant −18.4% of differences in earnings yields.

Interestingly, comparing Tables  1 and 4, we find that the earnings 
component gradually increases with longer horizons in the decomposi-
tion of Table  1, but gradually decreases with longer horizons in Table  4. 
This means that high earnings yields predict slightly lower long horizon 
earnings growth (Table  1) but slightly higher long horizon earnings 
changes (�̂�𝑖,𝑡+ℎ − �̂�𝑖,𝑡

)

. Intuitively, for high earnings yield stocks, even a 
small percentage growth in earnings can create a large earnings change 
�̂�𝑖,𝑡+ℎ − �̂�𝑖,𝑡.

5.2.1. Strengths and limitations of the firm-level decomposition
The broad purpose of Table  4 is to demonstrate that our results for 

value and growth portfolios continue to apply even if we focus on firm-
level differences in earnings yields. However, given that this is a new 
decomposition, it is useful to discuss some of its benefits as well as 
highlight an important limitation.

First, as mentioned above, because we focus on a portfolio that 
holds a single firm and reinvests all dividends, the price growth for 
this portfolio will be equivalent to the cumulative return for the firm. 
Thus, studying the effect of changes in price, 𝛥(𝑃 )

𝑖,𝑡+ℎ, captures how future 
returns impact the earnings yield, holding earnings fixed. Second, 
because dividends are reinvested, this decomposition is not affected 
by a firm’s decision to use buybacks versus dividends. In either case, 
the portfolio strategy is always effectively reinvesting any payouts, 
either by not selling shares when the firm engages in buybacks or by 
reinvesting any dividends paid by the firm.22

One important limitation of this new decomposition is that negative 
earnings complicate the interpretation of 𝛥(𝑃 )

𝑖,𝑡+ℎ. When earnings are 
positive, an increase in the price decreases the earnings yield. However, 
when earnings are negative, an increase in the price increases the earn-
ings yield. Thus, while 𝛥(𝑃 )

𝑖,𝑡+ℎ does correctly measure the effect of price 
changes (i.e., firm returns) on earnings yields, we cannot summarize 
the covariance between 𝛥(𝑃 )

𝑖,𝑡+ℎ and earnings yields as measuring how 
much high earnings yields predict high returns.

Fortunately, negative earnings do not complicate the interpretation 
of 𝛥(𝐸)

𝑖,𝑡+ℎ. Because prices are always positive, an increase in earnings will 
always increase the earnings yield, even if earnings are negative. This 
means that the first RHS term in Eq. (19) does measure the portion 
of earnings yield variation that is explained by high earnings yields 
predicting earnings decreases.

To summarize, while the interpretation of the 𝛥(𝑃 )
𝑖,𝑡+ℎ term in Eq.  (19) 

may be more complicated than the interpretation of the return term 
in Eq.  (3), our new firm-level decomposition does clearly establish two 
facts. First, as shown in the last column of Table  4, for horizons of 
10 to 15 years, future earnings yields only explain a small amount of 
current earnings yield differences. In other words, on average, earnings 
yields largely converge over time. Second, this convergence in earnings 
yields is not due to changes in earnings, i.e., high (low) earnings yields 
predicting decreases (increases) in earnings. This is shown in the first 
column of Table  4. Instead, this convergence in earnings yields is 
largely due to changes in prices.

22 If a firm engages in buybacks, it reduces the number of shares, meaning 
that the one share held in the portfolio represents a larger fraction of the total 
firm. If the firm pays dividends, the portfolio uses those dividends to purchase 
additional shares, meaning that the portfolio represents a larger fraction of the 
total firm.
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5.3. Incorporating share issuance

A natural question is whether price–earnings ratios predict future 
share issuance or share buybacks. For an investor that participates 
in buybacks and new issuance, these act as a form of cash flows, as 
they represent payments from the company to investors or vice versa. 
Pruitt (2025) demonstrates that while the aggregate price–dividend 
ratio only slightly predicts future dividend growth, it does significantly 
predict future share issuance and also significantly predicts future share 
buybacks. Ultimately, the results are still consistent with Cochrane 
(2008) in the sense that returns account for nearly 100% of variation 
in the aggregate price–dividend ratio. The reason for this is that a high 
price–dividend ratio predicts higher future share issuance and higher 
future share buybacks, and the two effects largely negate one another. 
Appendix  D provides a more detailed discussion of the results in Pruitt 
(2025).

In this subsection, we apply the Pruitt (2025) decomposition to 
cross-sectional variation in price–earnings ratios. The full details for 
this decomposition are provided in Appendix  D, including the vari-
able definitions and the derivation of the approximate identity. This 
new decomposition incorporates two terms that capture the role of 
share issuance and share buybacks. The first is 𝜄𝑖,𝑡 which is the log 
value of proceeds from share issuance minus log earnings. The sec-
ond is 𝛽𝑖,𝑡 which is the log value of buybacks minus log earnings. 
Similar to the decomposition (3), the portion of cross-sectional vari-
ation in price–earnings ratios that is explained by future 𝜄𝑖,𝑡+𝑗 and 

future 𝛽𝑖,𝑡+𝑗 is measured as −𝜌𝜄𝐶𝑜𝑣

( ℎ
∑

𝑗=1
𝜌𝑗−1𝛿 �̃�𝑖,𝑡+𝑗 , 𝑝𝑒𝑖,𝑡

)

∕𝑉 𝑎𝑟
(

𝑝𝑒𝑖,𝑡
) and 

𝜌𝛽𝐶𝑜𝑣

( ℎ
∑

𝑗=1
𝜌𝑗−1𝛿 𝛽𝑖,𝑡+𝑗 , 𝑝𝑒𝑖,𝑡

)

∕𝑉 𝑎𝑟
(

𝑝𝑒𝑖,𝑡
)

, where 𝜌𝛿 , 𝜌𝜄, 𝜌𝛽 are all positive 
log-linearization constants.

Intuitively, differences in price–earnings ratios can be explained by 
high price–earnings ratio stocks having lower future issuance relative 
to earnings and/or higher future buybacks relative to earnings. Both 
options would represent more money flowing from the company to 
investors. Table  5 shows the estimates for these two components for 
horizons of one to fifteen years. Overall, we find that their contribution 
is relatively small.

At short horizons, a higher price–earnings ratio predicts slightly 
higher future issuance relative to earnings, which negatively con-
tributes to explaining price–earnings ratio differences. This reverses at 
longer horizons, with fifteen-year future 𝜄𝑖,𝑡+𝑗 accounting for 3.8% of 
price–earnings ratio differences. However, this is offset by the fact that 
a higher price–earnings ratio weakly predicts lower future buybacks 
relative to earnings. Ultimately, these two effects partly offset one 
another, meaning fifteen-year future 𝜄𝑖,𝑡+𝑗 and 𝛽𝑖,𝑡+𝑗 combined only 
account for 2.7% of price–earnings ratio variation.23

6. Evaluating asset pricing models

How do our empirical results compare to asset pricing models? As 
shown in Table  1, we find that cross-sectional differences in price–
earnings ratios are largely explained by differences in future returns 
rather than differences in future earnings growth. This means that the 
cross-section of price–earnings ratios must be largely explained by risk 
premia or mispricing.

To test how well existing models can match our findings, we sim-
ulate six cross-sectional asset pricing models: four in which prices are 
affected by heterogeneous exposure to priced risks and two in which 

23 These results, which suggest that price–earnings ratios do not substantially 
predict future net issuances, can still be consistent with the findings of Pontiff 
and Woodgate (2008) and Greenwood and Hanson (2012) which show that
past net issuances predict future returns.
11
Table 5
The effect of issuances and buybacks.
Years ahead Negative issuances Buybacks

1 -0.013*** -0.004**
s.e.(D-K) [0.002] [0.003]
s.e.(boot) [0.002] [0.002]

3 -0.025*** -0.012*
[0.006] [0.007]
[0.006] [0.006]

5 -0.027*** -0.013
[0.01] [0.01]
[0.01] [0.011]

8 -0.015 -0.015
[0.014] [0.013]
[0.015] [0.015]

10 -0.001 -0.014
[0.016] [0.014]
[0.016] [0.017]

13 0.022 -0.012
[0.017] [0.016]
[0.015] [0.02]

15 0.038*** -0.011
[0.016] [0.017]
[0.012] [0.023]

This table estimates the role of stock issuances and stock buybacks in 
explaining the cross-section of price–earnings ratio according to the 
Pruitt (2025) decomposition. The terms capturing the role of issuance 
and buybacks are 𝜄𝑖,𝑡 ≡ log

(

∑

𝑛∈𝑁𝑖

[

(𝑆𝑛,𝑡+1 − 𝑆𝑛,𝑡)𝑃𝑛,𝑡+1
]+ ∕𝐸𝑖,𝑡+1

)

, and 
𝛽𝑖,𝑡 ≡ log

(

∑

𝑛∈𝑁𝑖

[

(𝑆𝑛,𝑡 − 𝑆𝑛,𝑡+1)𝑃𝑛,𝑡+1
]+ ∕𝐸𝑖,𝑡+1

)

, where 𝑆𝑛,𝑡 is the num-
ber of shares for firm 𝑛 at time 𝑡 and 𝑁𝑖 is the set of firms in portfolio 
𝑖. For each period, we form five value-weighted portfolios and track 
their cumulative negative issuances and buybacks for every horizon 
up to fifteen years as defined in Appendix D. The two columns show 
the coefficients from univariate regressions of the cumulative negative 
issuances and buybacks on current price–earnings ratios. All variables 
are cross-sectionally demeaned. Driscoll–Kraay standard errors and 
block-bootstrap standard errors are calculated for each coefficient. 
Superscripts indicate block-bootstrap significance at the 1% (∗∗∗), 5% 
(∗∗), and 10% (∗) level. The sample period is 1963 to 2020.

prices are affected by mispricing due to behavioral biases or learning. 
The four risk premia models are the growth options model of Berk et al. 
(1999), the costly reversibility of capital model of Zhang (2005), the 
duration risk model of Lettau and Wachter (2007), and the investment-
specific technology risk model of Kogan and Papanikolaou (2014). The 
two mispricing models are the Bayesian learning model of Lewellen and 
Shanken (2002) and the behavioral model of Alti and Tetlock (2014), 
which incorporates both extrapolation and overconfidence. Appendix 
C contains the details of the simulations, including how we sort firms 
into portfolios.

6.1. Broad results

Table  6 shows the decomposition results for each model. Before 
discussing the details of each model, we first highlight some broad 
takeaways. First, many models imply that virtually all dispersion in 
price–earnings ratios is due to differences in future earnings growth. 
The first three risk premia models and the last mispricing model of 
Table  6 imply that full-horizon discount rate differences 𝐷𝑅∞ are close 
to 0, ranging from −0.04 to 0.07, while full-horizon cash flow growth 
differences 𝐶𝐹𝐺∞ are close to 1. Even though these models are able to 
match the one-month or one-year value anomaly, they do not generate 
large differences in longer horizon returns and the overall difference in 
returns is small compared to the dispersion in price–earnings ratios.

In other words, simply matching the value anomaly is not sufficient 
to explain our decomposition results. This highlights the difference 
between explaining short-term fluctuations in prices and explaining the 
level of prices. Even if we focus on the finite-horizon decompositions, 
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Table 6
Variance decomposition in different asset pricing models.
 𝐷𝑅1 𝐷𝑅15 𝐷𝑅∞ 𝐶𝐹𝐺1 𝐶𝐹𝐺15 𝐶𝐹𝐺∞ 
 Data 0.04 0.52 0.79 0.10 0.20 0.24  
 [0.03] [0.07] [0.08] [0.02] [0.04] [0.08]  
 Growth Options 0.01 0.03 0.03 0.28 0.95 0.95  
 [0.06] [0.18] [0.18] [0.06] [0.17] [0.17]  
 Costly Reversibility −0.02 −0.03 −0.03 −0.31 1.06 1.06  
 Risk Premia of Capital [0.01] [0.03] [0.03] [0.09] [0.04] [0.04]  
 Duration Risk 0.01 0.02 −0.04 0.03 1.35 1.04  
 [0.01] [0.03] [0.03] [0.01] [0.05] [0.03]  
 Investment-Specific 0.05 0.27 0.28 0.01 0.68 0.72  
 Technology Risk [0.03] [0.11] [0.12] [0.01] [0.10] [0.10]  
 Learning 0.11 0.83 0.93 0.01 0.05 0.06  
 Mispricing [0.01] [0.04] [0.04] [0.01] [0.03] [0.04]  
 Extrapolation and 0.01 0.07 0.07 0.15 0.93 0.93  
 Overconfidence [0.01] [0.03] [0.03] [0.02] [0.02] [0.02]  
This table calculates the variance decomposition for the price–earnings ratio from Eq.  (3) in different asset pricing models and reports the implied 
one-year, fifteen-year year and full horizon discount rate differences (𝐷𝑅1 , 𝐷𝑅15 , 𝐷𝑅∞) and cash flow growth differences (𝐶𝐹𝐺1 , 𝐶𝐹𝐺15 , 𝐶𝐹𝐺∞). 
The first row shows the values measured in the data. The second, third, fourth, and fifth rows show the results for models of risk premia. These 
four models are the model of growth options in Berk, Green, and Naik (1999), the model of costly reversibility of capital in Zhang (2005), 
the model of duration risk in Lettau and Wachter (2007), and the model of IST risk of Kogan and Papanikolaou (2014). The sixth and seventh 
rows show the results for the model of learning about mean cash flow growth in Lewellen and Shanken (2002) and the model of extrapolation 
and overconfidence of Alti and Tetlock (2014). All models are solved and estimated using the original author calibrations and simulated over 
a 50-year sample.
these four models all imply that we should observe only small differ-
ences in 15-year returns (𝐷𝑅15 ≤ 0.07) and very large differences in 
15-year earnings growth (𝐶𝐹𝐺15 ≥ 0.93), both of which are clearly 
rejected in the data.

Second, the models which generate a non-trivial 𝐷𝑅∞ feature long-
lived differences in risk exposure or mispricing. The fourth and fifth 
models of Table  6 imply full-horizon discount rate differences of 0.28 
and 0.93, respectively. A portion of this comes from one-year returns, 
as shown by 𝐷𝑅1, but the majority of the discount rate differences 
come from longer horizon returns beyond one-year. For the risk premia 
model of Kogan and Papanikolaou (2014), this comes from long-lived 
differences in each firm’s exposure to aggregate shocks. In the learning 
model of Lewellen and Shanken (2002), this comes from the fact 
that agents are solving a difficult learning problem and mispricing is 
only gradually resolved over time. In contrast to the models studied 
in Keloharju et al. (2021), this demonstrates that there are models 
in which firms have long-lived differences in average future returns 
and that incorporating these long-lived differences is important for 
realistically matching cross-sectional dispersion in price ratios.

As a final note, while the decomposition is based on an approxi-
mation, we find that this approximation holds quite tightly in all six 
models. In other words, a one unit increase in the price–earnings ratio 
is associated with almost exactly a one unit increase in ∑∞

𝑗=1 𝛥𝑒𝑖,𝑡+𝑗 −
∑∞

𝑗=1 𝑟𝑖,𝑡+𝑗 . Using the values in Table  6 for 𝐶𝐹𝐺∞ +𝐷𝑅∞, we find that 
future earnings growth and future returns account for 98% to 103% 
of differences in price–earnings ratios, while the approximation error 
accounts for only -3% to 2%.

6.2. Risk premia models

Below we discuss the key source of risk in each model and provide 
intuition for the decomposition results.

6.2.1. Growth options
In the model of Berk et al. (1999), each firm has some existing 

projects which generate cash flows. Each period, the firm draws a 
new potential project, which it can pay a fixed cost to undertake. The 
value of the firm comes from its existing projects as well as the option 
to undertake future projects (‘‘growth options’’). As the term ‘‘growth 
options’’ implies, future earnings growth plays a key role in this model. 
The ratio of the firm’s price to its current earnings reflects how much 
of the firm’s value comes from existing projects versus growth options. 
12
Firms with high price–earnings ratios derive most of their value from 
their expected future projects rather than existing projects, and future 
earnings growth accounts for most dispersion in price–earnings ratios 
(𝐶𝐹𝐺15 = 0.95).

The key risk in the model is shocks to the risk-free rate. Compared to 
existing projects, the value of growth options is less sensitive to changes 
in the risk-free rate, as the firm can endogenously change its decision 
to exercise the option (i.e., it only undertakes the potential project if 
the risk-free rate is low). Because of this, the agent requires a lower 
risk premium for firms whose value largely comes from growth options 
rather than existing projects, which are firms with high price–earnings 
ratios. Quantitatively, the difference in risk premia is only a small part 
of the dispersion in price–earnings ratios (𝐷𝑅15 = 0.03).

Importantly, these differences in risk exposure are fairly short-lived. 
A firm can only be a ‘‘growth’’ firm (i.e., high price–earnings ratio) for 
a short amount of time. As soon as it begins to add new projects, its 
exposure to changes in the risk-free rate increases and the unusually 
low risk premium for the firm disappears.

6.2.2. Costly reversibility of capital
In the model of Zhang (2005), firms produce goods using capital 

and face adjustment costs for changing their capital. Each period, firms 
observe aggregate productivity as well their idiosyncratic productivity 
and then choose their optimal future capital subject to adjustment costs. 
Differences across firms are due to differences in their sequence of 
idiosyncratic productivity. Because idiosyncratic productivity is AR(1), 
future earnings growth is partly predictable and dispersion in price–
earnings ratios largely predicts differences in future earnings growth 
(𝐶𝐹𝐺15 = 1.06).

The single priced risk in this model is shocks to aggregate produc-
tivity, which appear directly in the stochastic discount factor. Because 
of the adjustment costs to capital, firms with large amounts of capital 
are more exposed to negative aggregate shocks. Therefore, the agent 
requires a higher risk premium for firms with high capital relative 
to total firm value. Quantitatively, these differences in risk premia 
are small relative to the dispersion in price–earnings ratios (𝐷𝑅10 =
−0.03).24

24 In the model, high price–earnings ratio firms have low price-capital ratios. 
A 1% increase in idiosyncratic productivity does not change the current 
capital, increases the current earnings by 1%, and increases the current price 
by less than 1% since the increase in productivity is persistent but not 
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Like Berk et al. (1999), differences in risk exposure are short-lived 
due to the optimal behavior of firms. A firm with a high price relative 
to its capital will optimally choose to increase capital. As this firm 
increases its capital, it increases its exposure to the aggregate shock 
and loses its low risk premium.

6.2.3. Duration risk
In the model of Lettau and Wachter (2007), each firm receives some 

share 𝑠𝑖,𝑡 of the aggregate earnings. The value of 𝑠𝑖,𝑡 goes through a fixed 
cycle, increasing from 𝑠 to a peak value of �̄� and then decreasing back to 
𝑠. The cross-section of firms is populated with firms at different points 
in this share cycle.

The key priced risk is the shock to aggregate earnings. These aggre-
gate earnings shocks are partly reversed over time, which means that 
long horizon earnings are less exposed to these aggregate shocks than 
short-horizon earnings. Because of this, firms with high price–earnings 
ratios (i.e., firms with a low current share 𝑠𝑖,𝑡) initially have lower risk 
premia (𝐷𝑅1 = 0.01). However, the overall contribution of discount 
rates to the price–earnings ratio is relatively small (𝐷𝑅15 = 0.02) as the 
firms that initially have low shares eventually become the firms with 
high shares and the relationship reverses.

The quantitatively larger component is that high price–earnings 
ratio firms experience higher earnings growth as their share increases. 
In fact, after 15 years, the firms with low initial shares have not only 
increased their shares back to a neutral value but have actually become 
the firms with moderately high share values. Because of this, 15-year 
cash flow growth accounts for more than 100% of the initial dispersion 
in price–earnings ratios (𝐶𝐹𝐺15 = 1.34).

Admittedly, the persistence of the share growth process in Lettau 
and Wachter (2007) is somewhat ad hoc and could be adjusted to gen-
erate more long-lived differences in returns. However, their calibration 
already uses a 50-year share cycle process, i.e., firms completely reverse 
their position in the cycle after 25 years and return to their initial 
position in the cycle after 50 years. Given the low values for 𝐷𝑅ℎ from 
this calibration, even extending the length of the share cycle process 
to a generous upper bound of 500 years still falls noticeably short of 
the 𝐷𝑅15 and 𝐷𝑅∞ that we estimate in the data. In this sense, the 
limitation for this model is not that differences in risk exposure are 
short-lived, but that they are oscillating. Agents know that differences 
in risk exposure in one direction are eventually offset by opposite 
differences in risk exposure once firms have switched places in the 
cycle, meaning that the total impact of differences in risk exposure 
on prices is limited. Delao et al. (2025) show that Lettau and Wachter 
(2007) duration risk (i.e., having aggregate shocks to earnings that are 
partly reversed) does meaningfully impact prices in an environment 
where agents are learning about firm-specific earnings growth.

6.2.4. Investment-specific technology risk
In the IST model of Kogan and Papanikolaou (2014), firms have 

existing projects which generate cash flows. New projects exogenously 
arrive to each firm and the firm chooses the optimal amount to invest 
in each project. Importantly, there are long-lived differences between 
firms in the arrival rate of new projects. The arrival rate for each 
firm depends on a permanent firm-specific parameter as well as a 
slow-moving idiosyncratic Markov process.

The key shock in the model is an aggregate shock to the cost of 
capital for new projects, which directly impacts the stochastic discount 
factor. A decrease in this cost does not change the value of existing 
projects but does increase the value of growth options (i.e., the value 

permanent. Thus, an increase in idiosyncratic productivity raises the price-
capital ratio and lowers the price–earnings ratio. This is why 𝐷𝑅ℎ is slightly 
negative, as the model predicts that high price-capital ratio firms will have 
lower future returns, which means that high price–earnings ratio firms will 
have higher future returns.
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of the option to undertake new projects). Given that a decrease in this 
cost raises the stochastic discount factor, the agent requires a lower 
risk premium for firms whose value mainly comes from growth options 
rather than existing projects. Because of this, firms with high prices 
relative to current earnings have lower discount rates than their peers 
(𝐷𝑅15 = 0.27) and higher future earnings growth (𝐶𝐹𝐺15 = 0.68).

An important element that distinguishes this model from Berk et al. 
(1999) and Zhang (2005) is that the differences in risk premia persist 
even after firms make their capital choices and invest in new projects. 
Firms differ in the arrival rate of new projects and this does not change 
when a firm invests in new projects. This helps to generate persistent 
differences in exposure to the aggregate shock.

6.3. Mispricing models

Below we discuss the key source of mispricing in each model and 
the main intuition.

6.3.1. Lewellen and Shanken 2002
We focus on their quantitative model with renewing parameter 

uncertainty. Each firm’s earnings growth is normally distributed with 
an unknown firm-specific mean. Bayesian investors learn each firm’s 
mean from past earnings growth. To ensure investors never completely 
learn the true parameters, the mean for each firm is redrawn every 𝐾
years.25

The agent prices the firm based on her best guess of mean earnings 
growth and a constant discount rate. Because realized earnings growth 
is quite noisy, investors’ guesses for each firm’s mean earnings growth 
are often inaccurate and the connection between the price–earnings 
ratio and future earnings growth is small (𝐶𝐹𝐺15 = 0.05). Ex post, 
price–earnings ratios largely comove with future returns (𝐷𝑅15 = 0.83).

Importantly, agents’ beliefs about mean earnings growth adjust 
slowly over time. Because of this, mispricing is slowly resolved. While 
this model does have a higher 𝐷𝑅1 than the other models, it is still 
the case that most discount rate differences come from longer horizon 
returns, 𝐷𝑅1 = 0.11 compared to 𝐷𝑅15 = 0.83.

6.3.2. Alti and Tetlock 2014
In this model, firms’ cash flows depend on their capital as well as 

their idiosyncratic productivity. Each firm’s idiosyncratic productivity 
is equal to an unobservable latent AR(1) process plus noise. The agent 
infers the latent component of productivity from an imperfect exoge-
nous signal and observed cash flows. The agent’s beliefs are impacted 
by two biases: (i) she overextrapolates, meaning that she believes the 
latent process has a higher persistence than it actually does and (ii) 
she is overconfident, meaning that she believes the exogenous signal is 
more precise than it actually is.

Given these biases, the agent prices each firm based on its capital, 
which is observable, and her inferred guess for the latent component 
of idiosyncratic productivity. These biases lead to mispricing, which 
accounts for some of the cross-sectional dispersion in price–earnings 
ratios (𝐷𝑅15 = 0.07). However, the majority of dispersion in price–
earnings ratios is explained by future earnings growth (𝐶𝐹𝐺15 =
0.93).

What explains the differences in 𝐷𝑅ℎ between the two mispricing 
models? The key element is that the agent in Alti and Tetlock (2014) 
has much more information about the firm. In Lewellen and Shanken 
(2002), the agent sets the price–earnings ratio for each firm based 
entirely on her guess for the underlying mean growth parameter, and 
this guess is based solely on realized cash flows. In Alti and Tetlock 
(2014), the agent sets the price–earnings ratio for each firm based her 

25 To emphasize that 𝐶𝐹𝐺ℎ remains small even when agents have a non-
trivial amount of time to observe the noisy process, we use 𝐾 = 38, as this is 
the maximum value considered in the paper.
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guess for latent idiosyncratic productivity as well as the firm’s capital. 
Because capital is observable, mistakes about latent productivity only 
comprise a portion of price–earnings ratio dispersion. Additionally, the 
agent knows the exogenous signal as well as the realized cash flows 
when forming her guess for latent productivity.

7. Return predictability and return surprises

Tables  1 and 2 show the quantitative importance of differences 
in future returns for explaining price ratio dispersion through the 
decompositions (4) and (7). The other side of the coin for these de-
compositions is that if we are interested in understanding return pre-
dictability, then dispersion in price ratios should be crucial. This section 
carries out three exercises to illustrate how our findings relate to return 
predictability and return surprises.

First, given the distinction between the price–earnings ratio decom-
position and the price–book ratio decomposition, we focus on long-term 
cumulative returns and test whether price–earnings ratios or price–
book ratios are a stronger predictor. While both variables significantly 
predict long-term cumulative returns in separate regressions, we show 
that the price–earnings ratio completely drives out the price–book ratio 
in joint regressions. Second, motivated by the recent findings of Kelo-
harju et al. (2021), we evaluate the predictability of non-cumulative 
return differences at long horizons. As long as price–earnings ratios 
are mean-reverting, we demonstrate that the lack of earnings growth 
predictability provides substantial evidence of return predictability. 
Third, given our findings on the level of price–earnings ratios, we 
measure the importance of revisions in expected future returns and 
expected future earnings growth for explaining price–earnings ratio 
innovations and return surprises, similar to V02. Consistent with the 
previous sections, we find a larger role for information about future 
returns than information about future earnings growth.

7.1. Long-term cumulative returns

Eqs. (4) and (7) show that all dispersion in price–earnings ratios 
that is not related to future earnings growth must be related to future 
returns, whereas this is not true for dispersion in price–book ratios. This 
naturally raises the question whether the price–earnings ratio is a better 
predictor of returns than the price–book ratio. For cumulative returns, 
we first show that the price–earnings ratio predicts future returns with 
larger magnitude coefficients and higher 𝑅2’s than the price–book ratio. 
Next, we show that the price–earnings ratio drives out the price–book 
ratio when returns are regressed on both variables. Finally, we connect 
our results to the profitability anomaly by looking at the ability of the 
earnings-book ratio to predict returns.

Table  7 shows the results for the price–earnings ratio and the price–
book ratio. Panel A shows separate univariate regressions of future 
returns on the price–earnings ratio and the price–book ratio. At every 
horizon, we see find that the price–earnings ratio predicts future returns 
with a larger magnitude coefficient and a higher 𝑅2 than the price–book 
ratio. As shown in the final column of Panel A, nearly half (47.6%) of 
all variation in ten-year returns is explained by the price–earnings ratio.

Importantly, Panel B shows the results when future returns are 
regressed on both price ratios together. At every horizon, the price–
earnings ratio almost completely drives out the price–book ratio. The 
coefficients for the price–book ratio in Panel B are all small and in-
significant. In comparison, the coefficients for the price–earnings ratio 
are large and significant, particularly for longer horizons. Further, the 
𝑅2’s and regression coefficients for the price–earnings ratio in Panel 
B are all almost identical to the values in the univariate regression of 
returns on the price–earnings ratio in Panel A. Rephrased, including the 
price–book ratio in the regression has almost no impact on the ability of 
the price–earnings ratio to explain future returns and provides almost 
no increase in the 𝑅2. At the ten-year horizon, including the price–book 
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ratio in the regression only marginally improves the 𝑅2 from 47.56% 
to 47.58%, even reducing its adjusted 𝑅2.

The results of Panel B are consistent with the price–earnings ratio 
being a less noisy predictor of future returns than the price–book ratio. 
This can naturally lead to a profitability anomaly if the price–book 
ratio, rather than the price–earnings ratio, is being used to predict 
returns. Cohen et al. (2003) and Fama and French (2006) show that 
current profitability, i.e., a measure of current earnings relative to book 
value, is an additional factor on top of the Fama and French (1993) 
three factors that positively predicts future returns. The price–book ra-
tio equals the price–earnings ratio plus the earnings-book ratio. Because 
the price–book ratio is a noisier predictor of future returns than the 
price–earnings ratio, including the difference between the two ratios as 
a separate regressor will improve the 𝑅2. In other words, if the price–
book ratio is being used as a factor, then the earnings-book ratio will be 
an additional factor that helps to predict returns. To demonstrate this, 
Panel C shows that when returns are regressed on both the price–book 
ratio and the earnings-book ratio, the earnings-book ratio positively 
and significantly predicts future returns. Comparing the 𝑅2’s of Panel 
A and Panel C, we see that including the earnings-book ratio improves 
the 𝑅2’s relative to only using the price–book ratio and that the 𝑅2’s of 
Panel C are similar to the 𝑅2’s of the univariate regressions in Panel A 
using the price–earnings ratio.

7.2. Non-cumulative returns

The results of Section 3 imply that high price ratio stocks have sig-
nificantly lower cumulative returns than low price ratio stocks even at 
long horizons. However, recent findings of Keloharju et al. (2021) show 
that non-cumulative return differences across stocks are insignificant 
after only a few years. These two findings are not inconsistent with each 
other. Our decomposition results show that differences in price ratios 
are reflected in future returns at some point before horizon ℎ, even if 
we cannot tell at which exact horizon those returns are reflected.

Further, our decomposition can still illustrate some useful impli-
cations for non-cumulative return predictability. Consider a three-
equation regression framework,

−𝑟𝑖,𝑡+ℎ = 𝛽𝑟ℎ𝑝𝑒𝑖,𝑡 + 𝜀𝑟𝑖,𝑡+ℎ (20)

𝛥𝑒𝑖,𝑡+ℎ = 𝛽𝑒ℎ𝑝𝑒𝑖,𝑡 + 𝜀𝑒𝑖,𝑡+ℎ (21)

𝑝𝑒𝑖,𝑡+ℎ−1 − 𝜌𝑝𝑒𝑖,𝑡+ℎ = 𝜙ℎ−1 (1 − 𝜌𝜙) 𝑝𝑒𝑖,𝑡 + 𝜀𝑝𝑒𝑖,𝑡+ℎ. (22)

Note that constants have been dropped from the regressions as all 
variables are cross-sectionally demeaned. The coefficients 𝛽𝑟ℎ and 𝛽𝑒ℎ
capture how much an increase in the current price–earnings ratio 
is associated with lower year-ℎ returns and higher year-ℎ earnings 
growth. The coefficient 𝜙 is simply the persistence of the price–earnings 
ratio.

Table  8 shows the results of regressions (20)–(22) for horizons of 
two to ten years.26 The second rows of Panels A and B show the 
significance of the null hypotheses 𝛽𝑟ℎ = 0 and 𝛽𝑒ℎ = 0, respectively. 
We first note that the return coefficient is significant at the 5% level 
for horizons of two and three years, but it is generally not significant 
at horizons beyond four years. In comparison, the earnings growth 
coefficient is insignificant at all horizons. For Panel C, we report the 
persistence 𝜙 implied at each horizon from the regression (22). The 
second row of Panel C shows the significance of the null hypothesis 
𝜙 > 1∕𝜌, which we can reject at nearly all horizons.

26 The one-year results for 𝛽𝑟1, 𝛽𝑒1 , 𝜙 are simply 𝐷𝑅1, 𝐶𝐹𝐺1, and 𝐹𝑃𝐸1∕𝜌
from Table  1. Note that summing the estimates for 𝛽𝑟ℎ across horizons differs 
slightly from the cumulative return results in Table  7. This is because each 𝛽𝑟ℎ
is estimated over the maximum possible sample, which depends on horizon ℎ. 
For example, 𝛽𝑟2 and 𝛽𝑟3 are estimated using portfolios formed in 1963–2018, 
and 1963–2017 respectively, whereas the regression of cumulative 3-year 
returns in Table  7 uses only portfolios formed in 1963–2017.
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Table 7
Long-term return predictability.
Years ahead 1 2 3 4 5 6 7 8 9 10
Panel A: Individual regressions on price ratios
𝑝𝑒 -0.04 -0.12** -0.18*** -0.23*** -0.28*** -0.31*** -0.37*** -0.41*** -0.45*** -0.48***

[0.03] [0.05] [0.06] [0.08] [0.1] [0.1] [0.09] [0.09] [0.08] [0.08]

𝑅2 0.03 0.11 0.17 0.22 0.26 0.29 0.36 0.39 0.43 0.48

𝑝𝑏 -0.01 -0.04 -0.06* -0.09* -0.11** -0.13** -0.15** -0.18** -0.2*** -0.21***
[0.01] [0.03] [0.03] [0.04] [0.05] [0.06] [0.07] [0.07] [0.07] [0.07]

𝑅2 0.01 0.05 0.08 0.12 0.16 0.18 0.23 0.26 0.3 0.35

Panel B: Joint regression on price ratios
𝑝𝑒 -0.08* -0.18*** -0.27*** -0.31*** -0.35*** -0.39*** -0.46*** -0.48*** -0.49*** -0.49***

[0.04] [0.07] [0.09] [0.09] [0.1] [0.09] [0.09] [0.1] [0.1] [0.1]

𝑝𝑏 0.02 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.02 0.01
[0.02] [0.03] [0.04] [0.04] [0.04] [0.05] [0.05] [0.08] [0.09] [0.1]

𝑅2 0.04 0.12 0.19 0.23 0.26 0.3 0.37 0.4 0.43 0.48

Panel C: Joint regression on earnings-book ratio and price–book ratio
𝑒𝑏 0.08* 0.18*** 0.27*** 0.31*** 0.35*** 0.39*** 0.46*** 0.48*** 0.49*** 0.49***

[0.04] [0.07] [0.09] [0.1] [0.09] [0.09] [0.09] [0.09] [0.1] [0.1]

𝑝𝑏 -0.06* -0.14*** -0.21*** -0.26*** -0.3*** -0.35*** -0.41*** -0.44*** -0.46*** -0.48***
[0.03] [0.05] [0.07] [0.08] [0.09] [0.09] [0.08] [0.07] [0.07] [0.04]

𝑅2 0.04 0.12 0.19 0.23 0.26 0.3 0.37 0.4 0.43 0.48

This table shows the predictability of cumulative returns ∑ℎ
𝑗=1 𝑟𝑖,𝑡+𝑗 from one to ten years. The columns show the horizon ℎ in years for the 

cumulative returns. Panel A show the coefficients from separate univariate regressions of cumulative stock returns on the price–earnings 
ratio (𝑝𝑒𝑖,𝑡) and the price–book ratio (𝑝𝑏𝑖,𝑡). Panel B show the coefficients of a joint linear regression of cumulative stock returns on both 
the price–earnings ratio (𝑝𝑒𝑖,𝑡) and the price–book ratio (𝑝𝑏𝑖,𝑡). Panel C show the coefficients of a joint linear regression of cumulative 
stock returns on both the earnings-book ratio (𝑒𝑏𝑖,𝑡) and the price–book ratio (𝑝𝑏𝑖,𝑡). All variables are cross-sectionally demeaned. For space 
limitation, only block-bootstrap standard errors are shown but we find virtually identical results using Driscoll–Kraay standard errors. 
Superscripts indicate block-bootstrap significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level. The sample period is 1963 to 2020.
Table 8
Non-cumulative returns, earnings growth, and price–earnings ratio mean reversion.
 Years ahead 2 3 4 5 6 7 8 9 10  
 Panel A: Returns
 𝛽𝑟ℎ 0.060∗∗ 0.047∗∗ 0.041∗ 0.039∗ 0.031 0.046∗∗ 0.033∗ 0.026 0.017  
 𝑝 ∶ 𝛽𝑟ℎ = 0 (0.033) (0.036) (0.060) (0.070) (0.133) (0.010) (0.050) (0.158) (0.366) 
 𝑝 ∶ 𝛽𝑟ℎ

𝜙ℎ−1 (1−𝜌𝜙)
= 0 (0.000) (0.001) (0.003) (0.001) (0.025) (0.000) (0.021) (0.086) (0.326) 

 Panel B: Earnings Growth
 𝛽𝑒ℎ 0.002 0.004 0.017 0.016 0.019 0.020 0.017 0.020 0.013  
 𝑝 ∶ 𝛽𝑒ℎ = 0 (0.919) (0.806) (0.243) (0.183) (0.165) (0.149) (0.271) (0.243) (0.506) 
 𝑝 ∶ 𝛽𝑒ℎ

𝜙ℎ−1 (1−𝜌𝜙)
= 0 (0.919) (0.799) (0.203) (0.172) (0.181) (0.147) (0.236) (0.201) (0.472) 

 Panel C: Persistence
 𝜙 0.961∗∗∗ 0.972∗∗∗ 0.959∗∗∗ 0.960∗∗∗ 0.966∗∗∗ 0.891∗∗∗ 0.956∗∗∗ 0.965∗∗∗ 0.993∗∗∗ 
 𝑝 ∶ 𝜙 ≥ 1

𝜌
(0.002) (0.010) (0.009) (0.028) (0.039) (0.000) (0.020) (0.032) (0.124) 

This table shows the parameter estimates of Eqs. (20)-(22) from two to ten years and specific significance tests. The columns show the horizon ℎ in years at 
which the estimation is performed. Panel A shows the coefficient from regressing negative non-cumulative returns −𝑟𝑖,𝑡+ℎ on 𝑝𝑒𝑖,𝑡 and the p-values of the null 
hypotheses 𝛽𝑟ℎ = 0 and 𝛽𝑟ℎ∕

[

𝜙ℎ−1 (1 − 𝜌𝜙)
]

= 0. Note that 𝜙ℎ−1 (1 − 𝜌𝜙) is positive if 0 < 𝜙 < 1∕𝜌. Panel B shows the coefficient from regressing non-cumulative 
earnings growth 𝛥𝑒𝑖,𝑡+ℎ on 𝑝𝑒𝑖,𝑡 and the p-values of the null hypotheses 𝛽𝑒ℎ = 0 and 𝛽𝑒ℎ∕

[

𝜙ℎ−1 (1 − 𝜌𝜙)
]

= 0. Panel C shows the inferred value of the persistence 𝜙
from regressing the price–earnings ratio mean reversion 𝑝𝑒𝑡+ℎ−1 − 𝜌𝑝𝑒𝑡+ℎ on 𝑝𝑒𝑖,𝑡 and the 𝑝-value of the null hypothesis 𝜙 ≥ 1∕𝜌. All variables are cross-sectionally 
demeaned. Bootstrap standard errors are calculated for each coefficient. Superscripts indicate the coefficient is significantly different from 0 at the 1% (∗∗∗), 5% 
(∗∗), and 10% (∗) level. The sample period is 1963 to 2020.
Because of the identity (1), so long as we assume that price–earnings 
ratios are mean-reverting, then we can construct more powerful tests 
for return predictability. Similar to Lewellen (2004) and Cochrane 
(2008), we show two methods for doing this. First, we exploit the 
positive correlation between 𝜀𝑟𝑖,𝑡+ℎ and 𝜀

𝑝𝑒
𝑖,𝑡+ℎ. Observations in which the 

price–earnings ratio quickly mean-reverts tend to also be observations 
in which price–earnings ratios strongly predict future returns and, 
conversely, observations with relatively little mean-reversion tend to be 
observations in which return predictability is weaker. Thus, while the 
𝑝-value for 𝛽𝑟ℎ may be insignificant for longer horizons, the third row 
of Panel A shows that 𝛽𝑟∕ [𝜙ℎ−1 1 − 𝜌𝜙

] is significant at much longer 
15

ℎ ( )
horizons. Rephrased, we can confidently say that 𝛽𝑟ℎ is positive so long 
as 𝜙 < 1∕𝜌 (i.e., price–earnings ratios do not explode).

Second, by placing plausible bounds on the persistence of the price–
earnings ratio, we can show that the lack of earnings growth pre-
dictability provides evidence against the null hypothesis that returns 
are unpredictable. The return identity (1) implies that at every horizon 
ℎ, we have 
𝛽𝑟ℎ + 𝛽𝑒ℎ ≈ 𝜙ℎ−1 (1 − 𝜌𝜙) . (23)

Intuitively, this condition says that all mean-reversion in the price–
earnings ratio must be due to a high price–earnings ratio predicting 
higher earnings growth (𝛽𝑒) or lower returns (𝛽𝑟 ). Since Table  8 shows 
ℎ ℎ
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Fig. 3. Testing the predictability of non-cumulative returns. This figure visualizes the probabilities of observing the results of Table  8 under the absence of return predictability. 
For 1,000 wild bootstrap simulations, the red line shows for every horizon the share of simulated 𝛽𝑟ℎ t-statistics greater than the observed t-statistic in the data. The blue line 
shows for every horizon the share of simulated 𝛽𝑒ℎ t-statistics smaller than the observed t-statistic in the data.
that we can reject 𝜙 > 1∕𝜌 at almost all horizons, we can conclude 
that the sum 𝛽𝑟ℎ + 𝛽𝑒ℎ is significant even though 𝛽𝑟ℎ and 𝛽𝑒ℎ may not be 
individually significant at horizons beyond three years (i.e., they cannot 
both be zero). Under the null hypothesis that 𝛽𝑟ℎ = 0, all mean-reversion 
must be due to the price–earnings ratio predicting earnings growth 
(𝛽𝑒ℎ ≈ 𝜙ℎ−1 (1 − 𝜌𝜙)). We test this null hypothesis using a persistence 
for the price–earnings ratio taken from the data as well as an upper 
bound on the persistence of nearly 1 (0.999).27

Specifically, we utilize a wild bootstrap procedure to simulate earn-
ings growth, returns and prices under the null conditions that 𝛽𝑟ℎ = 0
and price–earnings ratios have persistence 𝜙. The wild bootstrap proce-
dure not only allows each simulation to preserve general forms of con-
ditional heteroskedasticity in Eqs. (20)–(22), but it also captures any 
contemporaneous correlation structure between price–earnings ratios, 
lagged returns, and lagged earnings growth. For our main simulation, 
we set 𝜙 = 0.953 based on the average value of 𝜙 across all horizons 
after adjusting for Stambaugh (1999) small-sample bias. We run 1,000 
simulations and, for each one of them, we estimate the parameters 
𝛽𝑟ℎ, 𝛽

𝑒
ℎ and their respective t-statistics.28
Fig.  3 shows for each of the ten horizons how the simulated t-

statistics under the null hypothesis compare to the observed t-statistics. 
The red line shows the probability that one would spuriously estimate 
a t-statistic for returns with a magnitude greater than or equal to the 
t-statistic we observe for 𝛽𝑟ℎ in the data. Consistent with the p-values in 
Table  8, the probability is small, but larger than 5% after the first three 
years. On the other hand, the blue line shows the probability that one 
would estimate a t-statistic with a magnitude less than or equal to the 
observed t-statistic of 𝛽𝑒ℎ in Table  8. For all horizons after the first year, 
that probability is less than 1%. While the red line by itself does not 
reject the null hypothesis, the blue line is strong evidence for rejecting 
it at all horizons ℎ ≥ 2. Rephrased, the lack of clear earnings growth 
predictability is strong evidence against the null hypothesis. Intuitively, 
if price–earnings ratios mean-revert and returns are unpredictable, then 
we should observe highly predictable earnings growth. Appendix  E 
shows that these results continue to hold for the entire range of values 

27 To account for any approximation error in Eq.  (23), we repeat our exercise 
using observed returns, observed price–earnings ratios, and the earnings 
growth implied by the identity (1). This ensures that Eq.  (23) holds exactly. 
We find that the results are almost identical to our results using the observed 
earnings growth.
28 Appendix  E contains a detailed description of this procedure.
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estimated through Eq. (22), which spans the interval 𝜙 = (0.888, 0.993)
after adjusting for Stambaugh (1999) small-sample bias, as well as an 
upper bound of 0.999.29

7.3. Innovations and return surprises

While the main focus on our paper is on the level of price ratios, we 
can extend our results to changes in price ratios and current returns. 
This is similar to the analysis of V02. Consistent with the previous 
sections, we find a larger role for information about future returns than 
information about future earnings growth.

Applying conditional expectations to Eq.  (4) and taking the differ-
ence from 𝑡 − 1 to 𝑡, we see that innovations to the price–earnings 
ratio must represent revisions in expected future earnings growth or 
revisions in expected future returns. Specifically, 
𝑝𝑒𝑡 − 𝐸𝑡−1

[

𝑝𝑒𝑡
]

≈ 𝑅𝑒𝑣𝑒𝑡 − 𝑅𝑒𝑣𝑟𝑡 (24)

where

𝑅𝑒𝑣𝑒𝑡 =
(

𝐸𝑡 − 𝐸𝑡−1
)

∞
∑

𝑗=1
𝜌𝑗−1𝛥𝑒𝑡+𝑗 (25)

𝑅𝑒𝑣𝑟𝑡 =
(

𝐸𝑡 − 𝐸𝑡−1
)

∞
∑

𝑗=1
𝜌𝑗−1𝑟𝑡+𝑗 . (26)

We can decompose the cross-sectional dispersion in innovations to the 
price–earnings ratio into: 

𝑉 𝑎𝑟
(

𝑝𝑒𝑡 − 𝐸𝑡−1
[

𝑝𝑒𝑡
])

≈ 𝑉 𝑎𝑟
(

𝑅𝑒𝑣𝑒𝑡
)

+ 𝑉 𝑎𝑟
(

𝑅𝑒𝑣𝑟𝑡
)

− 2𝐶𝑜𝑣
(

𝑅𝑒𝑣𝑒𝑡 , 𝑅𝑒𝑣
𝑟
𝑡
)

.

(27)

Table  9 shows the results of the decomposition using the VAR model 
of Section 3.2. First, we see that the dispersion in future return revisions 
is almost twice as large as the dispersion in future earnings growth 
revisions (0.15 compared to 0.08). This is similar to the results of 
Section 3, in which future returns accounted for more than twice as 
much of the dispersion in the level of the price–earnings ratio as future 
earnings growth.

Our decomposition of price–earnings ratio innovations is closely 
related to the literature on return surprises. For example, V02 finds 

29 The lower bound of 0.888 comes from the persistence at the one-year 
horizon of 𝐹𝑃𝐸 ∕𝜌.
1
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Table 9
Decomposition of price–earnings ratio and return surprises.
 Panel A: Price–earnings surprise decomposition
 𝑉 𝑎𝑟

(

𝑝𝑒𝑡 − 𝐸𝑡−1
[

𝑝𝑒𝑡
])

𝑉 𝑎𝑟
(

𝑅𝑒𝑣𝑒𝑡
)

𝑉 𝑎𝑟
(

𝑅𝑒𝑣𝑟𝑡
)

−2𝐶𝑜𝑣
(

𝑅𝑒𝑣𝑒𝑡 , 𝑅𝑒𝑣
𝑟
𝑡

)  
 0.44 0.08 0.15 0.21  
 Panel B. Return surprise decomposition
 𝑉 𝑎𝑟

(

𝑟𝑡 − 𝐸𝑡−1
[

𝑟𝑡
])

𝑉 𝑎𝑟
(

𝑆𝑢𝑟𝑝𝑒𝑡 + 𝜌𝑅𝑒𝑣𝑒𝑡
)

𝜌2𝑉 𝑎𝑟
(

𝑅𝑒𝑣𝑟𝑡
)

−2𝐶𝑜𝑣
(

𝑆𝑢𝑟𝑝𝑒𝑡 + 𝜌𝑅𝑒𝑣𝑒𝑡 , 𝜌𝑅𝑒𝑣
𝑟
𝑡

) 
 0.57 0.36 0.14 0.06  
This table estimates the surprise decompositions in Eqs. (27) and (29). Using the VAR model 
of Section 3, the return revisions and earnings growth revisions are defined as 𝑅𝑒𝑣𝑟𝑡 =
(

𝐸𝑡 − 𝐸𝑡−1
)
∑∞

𝑗=1 𝜌
𝑗 �̃�𝑡+𝑗 and 𝑅𝑒𝑣𝑒𝑡 =

(

𝐸𝑡 − 𝐸𝑡−1
)
∑∞

𝑗=1 𝜌
𝑗𝛥𝑒𝑡+𝑗 . The earnings growth surprise is defined 

as 𝑆𝑢𝑟𝑝𝑒𝑡 = 𝛥𝑒𝑡 −𝐸𝑡−1
[

𝛥𝑒𝑡
]

. All numbers are scaled by 100. Appendix B gives the full equations for 
measuring the revisions and surprises from the estimated VAR model.
ngs 
that return surprises are largely driven by news about cash flows. To 
understand the difference in these results, we use Eq. (1), which shows 
that return surprises simply add an additional term relative to Eq.  (24) 
which is the current earnings growth surprise, 
𝑟𝑡 − 𝐸𝑡−1

[

𝑟𝑡
]

≈
(

𝛥𝑒𝑡 − 𝐸𝑡−1
[

𝛥𝑒𝑡
])

+ 𝜌𝑅𝑒𝑣𝑒𝑡 − 𝜌𝑅𝑒𝑣𝑟𝑡 . (28)

Return surprises represent news about cash flows – both the current 
earnings growth surprise and any revisions in expected future earnings 
growth – and news about future returns. Table  9 Panel B shows the 
results of the return surprise decomposition,
𝑉 𝑎𝑟

(

𝑟𝑡 − 𝐸𝑡−1
[

𝑟𝑡
])

≈ 𝑉 𝑎𝑟
(

𝛥𝑒𝑡 − 𝐸𝑡−1
[

𝛥𝑒𝑡
]

+ 𝜌𝑅𝑒𝑣𝑒𝑡
)

+ 𝜌2𝑉 𝑎𝑟
(

𝑅𝑒𝑣𝑟𝑡
)

(29)
− 2𝐶𝑜𝑣

(

𝛥𝑒𝑡 − 𝐸𝑡−1
[

𝛥𝑒𝑡
]

+ 𝜌𝑅𝑒𝑣𝑒𝑡 , 𝜌𝑅𝑒𝑣
𝑟
𝑡

)

.

Consistent with V02, we find that the dispersion of 𝛥𝑒𝑡 − 𝐸𝑡−1
[

𝛥𝑒𝑡
]

+
𝜌𝑅𝑒𝑣𝑒𝑡  is quite large and is more than double the dispersion in future 
return revisions. Thus, it is correct to say that news about cash flows 
play a large role in return surprises. However, this does not indicate 
that revisions in future earnings growth play a large role in return 
surprises. From Panel A, we already know that the dispersion of future 
earnings growth revisions is relatively small, which means that the 
large dispersion for 𝛥𝑒𝑡−𝐸𝑡−1

[

𝛥𝑒𝑡
]

+𝜌𝑅𝑒𝑣𝑒𝑡  comes from the inclusion of 
the current earnings growth surprise. Intuitively, if earnings growth is 
volatile and difficult to predict, then current earnings growth surprises 
will be volatile while revisions for future earnings growth will be 
small. Thus, we find that return surprises are mainly explained by 
the current earnings growth surprise and future return revisions, while 
future earnings growth revisions play only a minor role. This is similar 
to the results of Section 3.3, which show that variation in price–book 
ratios is explained by a current cash flow variable (the earnings-book 
ratio) and future returns, while future earnings growth plays only a 
small role.

8. Conclusion

A key question in understanding the cross-section of stock prices 
is whether price ratios are more related to future cash flow growth 
or future returns. This determines if stocks should be modeled as 
being primarily heterogeneous in their future growth or if differences 
in risk exposure and/or mispricing are the primary factors driving 
price differences. Our results support the latter interpretation. We find 
that price ratios primarily predict future returns rather than future 
earnings growth. Using variance decompositions, we estimate that 
cross-sectional differences in future returns are over twice as important 
as cross-sectional differences in future earnings growth for explaining 
the cross-section of price ratios scaled by several variables like earnings, 
smoothed earnings, book or sales.

Our results indicate that the cross-section of stock price ratios is 
broadly consistent with the time-series of aggregate price ratios, in 
the sense that both the cross-section and the aggregate time-series 
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are primarily related to future returns rather than future cash flow 
growth. This raises the prospect that a single mechanism may be 
driving both the cross-sectional and aggregate variation in price ratios. 
Given the importance of this conclusion, we reconcile our findings 
with previous work which argues that the cross-section is distinct from 
aggregate time-series variation due to a strong relationship between 
price–book ratios and future profitability. Using accounting identities, 
we demonstrate that future profitability can be split into the current 
earnings-book ratio and future earnings growth. We then document that 
the relationship between price–book ratios and future profitability is 
driven by correlation between price–book ratios and current earnings-
book ratios rather than price–book ratios being informative about 
future cash flow growth.

Alternative decompositions focusing on return surprises and inno-
vations to price–earnings ratios, rather than the level of price–earnings 
ratios, similarly show that future returns play a larger role than future 
earnings growth. These results imply large amounts of long-term return 
predictability, particularly for the price–earnings ratio, and we docu-
ment that price–earnings ratios explain nearly half of all dispersion in 
future ten-year returns. While the price–book ratio is well-established 
as the standard price ratio for predicting monthly returns, we find that 
the price–earnings ratio completely drives out the price–book ratio for 
predicting returns at longer horizons of 1–10 years.
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Appendix A. Connecting returns, earnings growth, and price–earni
ratios

First, we discuss the case where dividends are zero. In this case, the 
return is simply equal to the price growth which means we have an 
exact relationship 

𝑟 = 𝛥𝑒 − 𝑝𝑒 + 𝑝𝑒 . (A.1)
𝑡+1 𝑡+1 𝑡 𝑡+1
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In other words, by focusing on earnings growth rather than dividend 
growth, we ensure that our relationships hold even for firms that do 
not pay dividends. A high price–earnings ratio 𝑝𝑒𝑡 must be followed by 
low future returns 𝑟𝑡+1, high future earnings growth 𝛥𝑒𝑡+1, or a high 
future price–earnings ratio 𝑝𝑒𝑡+1.

Now, we consider the case where dividends are non-zero. For all 
portfolios studied in this paper, portfolio-level dividends are always 
positive. This makes the non-zero dividend case the relevant scenario 
for our analysis. We start with the one-year return identity

𝑅𝑡+1 =
𝑃𝑡+1 +𝐷𝑡+1

𝑃𝑡
=

(

𝑃𝑡+1
𝐷𝑡+1

+ 1
)

𝐷𝑡+1
𝐷𝑡

𝑃𝑡
𝐷𝑡

,

where 𝑃𝑡 and 𝐷𝑡 represent the current price and dividends. Log-
linearizing around the point 𝑝𝑑, we can state the price–dividend ratio 
𝑝𝑑𝑡 in terms of future dividend growth, 𝛥𝑑𝑡+1, future returns, 𝑟𝑡+1, and 
the future price–dividend ratio, 𝑝𝑑𝑡+1, all in logs: 

𝑟𝑡+1 ≈ 𝜅𝑑 + 𝛥𝑑𝑡+1 − 𝑝𝑑𝑡 + 𝜌𝑝𝑑𝑡+1, (A.2)

where 𝜅𝑑 is a constant, 𝜌 = 𝑒𝑝𝑑∕
(

1 + 𝑒𝑝𝑑
)

< 1. Note that 𝑝𝑑 does 
not need to be the mean price–dividend ratio of this specific stock 
or portfolio, so we can study cross-sectional variation without us-
ing portfolio-specific approximation parameters. Following Cochrane 
(2011), we use the average price–dividend ratio of the market for 𝑝𝑑. 
Using the log payout ratio 𝑑𝑒𝑡, we then insert the identity 𝑝𝑒𝑡 = 𝑝𝑑𝑡+𝑑𝑒𝑡
into (A.2) to obtain 

𝑟𝑡+1 ≈ 𝜅 + 𝛥𝑒𝑡+1 − 𝑝𝑒𝑡 + 𝜌𝑝𝑒𝑡+1. (A.3)

where we approximate (1 − 𝜌) 𝑑𝑒𝑡+1 as constant.30
While it is true that Eq.  (A.3) is only an approximation, empirically 

this approximation (A.3) holds quite tightly. For all horizons of 1 to 
15 years, Table  1 shows that a one unit increase in 𝑝𝑒𝑡 is associated with 
almost exactly a one unit increase in ∑ℎ

𝑗=1 𝜌
𝑗−1𝛥𝑒𝑡+𝑗 −

∑ℎ
𝑗=1 𝜌

𝑗−1𝑟𝑡+𝑗 +
𝜌ℎ𝑝𝑒𝑡+ℎ. Further, the final column of Table  1 shows the portion of price–
earnings ratio dispersion that is accounted for by the approximation 
error. We find that the approximation error from ignoring payout ratio 
movements and using a single value for 𝜌 accounts for only 1.3% of 
all price–earnings ratio dispersion for horizons of 1 to 15 years. For 
example, we could include payout ratio terms into the decomposition to 
push the total explained dispersion even closer to 100%, but this would 
not change the fact that nearly all price–earnings ratio dispersion is 
explained by future earnings growth, future returns, and future price–
earnings ratios. Systematic differences in payout ratios between high 
and low price–earnings ratio firms play only a minor role in explaining 
price–earnings ratio differences.

When implementing the decomposition (3), we find similar results 
using growth in total firm earnings or growth in earnings per share. 
Note that the distinction between per share values and total firm 
values has no effect on ratios such as 𝑝𝑒𝑡 or 𝑒𝑏𝑡 where both variables 
are measured at the same time. For earnings growth, the growth in 
earnings per share is equal to growth in total firm earnings minus 
growth in the number of shares 𝛥𝑛𝑖,𝑡. Empirically, we find that share 
growth only differs slightly between high and low price–earnings ratio 
firms. Specifically, we find that 𝑝𝑒𝑖,𝑡 predicts earnings-weighted (value-
weighted) share growth 𝛥�̃�𝑖,𝑡+1 with a coefficient of only 0.003 (0.001). 
For ease of exposition, we use total firm values for our main tables. 
Appendix  D provides an extended decomposition that accounts for 
share issuance and buybacks which confirms that differences in these 
variables across high and low price–earnings ratio firms are fairly small.

30 The zero dividend relationship in Eq.  (A.1) is simply a special case of Eq. 
(A.3) as 𝑝𝑑 goes to infinity.
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Appendix B. VAR model

The key elements of the VAR model are the matrices 𝐴 and 𝛴, where

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝜀𝑡+1, (B.1)

𝑥𝑡 =
(

𝛥𝑒𝑡,−𝑟𝑡, 𝑝𝑒𝑡, 𝑝𝑏𝑡
)′, and 𝛴 is the covariance matrix of shocks. Using 

the estimated model, shown in Table  B.10, we can derive the variance 
decomposition in Eq.  (3).

Let 𝑒1, 𝑒2, 𝑒3, 𝑒4 be defined such that 𝑒𝑗 is a vector where the 𝑗th 
element is 1 and all other elements are 0. Additionally, let the matrix 
𝑊  be 
𝑊 = 𝐴 (𝐼 − 𝜌𝐴)−1 . (B.2)

The matrices 𝐴 and 𝛴 determine the covariance matrix 𝛤  of 𝑥𝑡. 
Specifically, we have 

vec (𝛤 ) = (𝐼 − 𝐴⊗𝐴)−1 vec (𝛴) (B.3)

where ⊗ is the Kronecker product. Given this covariance matrix, cash 
flow growth differences and discount rate differences at finite horizons 
are

𝐶𝐹𝐺ℎ =
𝑒′1

[

𝐴
(

𝐼 − 𝜌ℎ𝐴ℎ) (𝐼 − 𝜌𝐴)−1
]

𝛤𝑒3
𝑒′3𝛤𝑒3

(B.4)

𝐷𝑅ℎ =
𝑒′2

[

𝐴
(

𝐼 − 𝜌ℎ𝐴ℎ) (𝐼 − 𝜌𝐴)−1
]

𝛤𝑒3
𝑒′3𝛤𝑒3

(B.5)

where 𝑒′3𝛤𝑒3 is 𝑉 𝑎𝑟
(

𝑝𝑒𝑡
) and 𝑒′1

[

𝐴
(

𝐼 − 𝜌ℎ𝐴ℎ) (𝐼 − 𝜌𝐴)−1
]

𝛤𝑒3 and
𝑒′2

[

𝐴
(

𝐼 − 𝜌ℎ𝐴ℎ) (𝐼 − 𝜌𝐴)−1
]

𝛤𝑒3 represent the covariance of the price–
earnings ratio with future earnings growth and negative future returns. 
At the infinite horizon, this simplifies to

𝐶𝐹∞ =
𝑒′1𝑊𝛤𝑒3
𝑒′3𝛤𝑒3

(B.6)

𝐷𝑅∞ =
𝑒′2𝑊𝛤𝑒3
𝑒′3𝛤𝑒3

. (B.7)

Similarly, to obtain the infinite-horizon estimates for the price–book 
ratio in Table  2 we have that

𝐶𝑜𝑣

( ∞
∑

𝑗=1
𝜌𝑗−1𝛥𝑒𝑡+𝑗 , 𝑝𝑏𝑡

)

𝑉 𝑎𝑟
(

𝑝𝑏𝑡
) =

𝑒′1𝑊𝛤𝑒4
𝑒′4𝛤𝑒4

(B.8)

𝐶𝑜𝑣

(

−
∞
∑

𝑗=1
𝜌𝑗−1𝑟𝑡+𝑗 , 𝑝𝑏𝑡

)

𝑉 𝑎𝑟
(

𝑝𝑏𝑡
) =

𝑒′2𝑊𝛤𝑒4
𝑒′4𝛤𝑒4

. (B.9)

Table B.10
Estimated transition matrix.
 Panel A: Transition matrix 𝐴
 𝛥𝑒𝑡 −𝑟𝑡 𝑝𝑒𝑡 𝑝𝑏𝑡  
 𝛥𝑒𝑡+1 −0.033 −0.131 0.058 −0.020  
 −𝑟𝑡+1 0.073 0.081 0.071 −0.008  
 𝑝𝑒𝑡+1 −0.035 0.057 0.869 0.044  
 𝑝𝑏𝑡+1 −0.092 0.059 −0.043 0.966  
 Panel B. Error covariance matrix 𝛴
 𝛥𝑒𝑡 −𝑟𝑡 𝑝𝑒𝑡 𝑝𝑏𝑡  
 𝛥𝑒𝑡+1 0.005 −0.002 −0.002 0.002  
 −𝑟𝑡+1 −0.002 0.005 −0.003 −0.005  
 𝑝𝑒𝑡+1 −0.002 −0.003 0.006 0.003  
 𝑝𝑏𝑡+1 0.002 −0.005 0.003 0.008  
This table shows the estimated transition matrix and shock covariance matrix. 
The VAR model 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝜀𝑡+1 where 𝑥𝑡 = (

𝛥𝑒𝑡 ,−𝑟𝑡 , ̃𝑝𝑒𝑡 , 𝑝𝑏𝑡
)′ is estimated to 

evaluate the infinite-horizon decomposition in equation (5).
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Finally, the revisions in expected future earnings growth and returns 
observed in Table  9 are defined as 𝑒′1𝑊 𝜀𝑡 and −𝑒′2𝑊 𝜀𝑡, which means 
that

𝑉 𝑎𝑟
(

𝑅𝑒𝑣𝑒𝑡
)

= 𝑒′1𝑊𝛴𝑊 ′𝑒1 (B.10)

𝑉 𝑎𝑟
(

𝑅𝑒𝑣𝑟𝑡
)

= 𝑒′2𝑊𝛴𝑊 ′𝑒2. (B.11)

Appendix C. Model simulations

For each model, we simulate the cross-section of firms. We set 
the number of firms based on the original calculations in each paper. 
Specifically, we use 50, 2,500, 5,000, 200, 1,000, and 2,500 firms 
for Berk et al. (1999), Lewellen and Shanken (2002), Zhang (2005), 
Lettau and Wachter (2007), Alti and Tetlock (2014), and Kogan and 
Papanikolaou (2014) respectively. We set every sample to a length 
of 50 years to align with our empirical exercise and we run 1,000 
simulations for each model. All parameter values are taken from the 
original papers.

For Lewellen and Shanken (2002) and Lettau and Wachter (2007), 
the only firm variables are prices and dividends, so we treat dividends 
as our measure of earnings and sort firms into five portfolios based 
on their price–dividend ratios. For the two models based on firms 
exogenously receiving new projects (Berk et al., 1999; Kogan and 
Papanikolaou, 2014), we treat cash flows from existing projects as 
our measure of earnings and sort firms into five portfolios based on 
their price–book ratios. For the two models based on firms producing 
with capital subject to adjustment costs (Zhang, 2005; Alti and Tetlock, 
2014), we measure earnings as profits from existing capital minus any 
costs to maintain or adjust capital, and we sort firms into portfolios 
based on their price–book ratios. We then estimate the finite-horizon 
decomposition in Eq.  (3) as well as the full horizon decomposition 
in Eq.  (5) for each model.

C.1. Details for Lewellen and Shanken 2002

We focus on their quantitative model with renewing parameter 
uncertainty. For each firm, earnings growth is objectively
𝛥𝑒𝑖,𝑡 = 𝑔𝑖 + 𝜀𝑖,𝑡

where 𝑔𝑖 is an unknown parameter to the agent. To ensure the agent 
does not fully learn the parameters, the values for 𝑔𝑖 are redrawn every 
𝐾 periods. After 𝑡 periods in the current regime, her best guess of the 
mean growth is

𝑚𝑖,𝑡 =
ℎ

𝑡 + ℎ
𝑔∗ + 𝑡

𝑡 + ℎ
�̄�𝑖,𝑡

where �̄�𝑖,𝑡 is the average realized earnings growth over the last 𝑡 periods, 
𝑔∗ is the unconditional mean of the distribution from which 𝑔𝑖 is drawn, 
and ℎ is a parameter controlling the strength of the agent’s prior.

The paper considers multiple values for 𝐾 and ℎ, as well as 𝑠 which 
controls the distribution from which 𝑔𝑖 is drawn. We use ℎ = 𝑠 = 25
for our simulations, as this is the middle of the distribution of ℎ and 𝑠
values considered in the paper. To emphasize that 𝐶𝐹𝐺ℎ remains small 
even when agents have a non-trivial amount of time to observe the 
noisy process, we use 𝐾 = 38, as this is the maximum value considered 
in the paper.

C.2. Details for models with adjustment costs

In the model of Zhang (2005), firm earnings are
𝐸𝑖,𝑡 = 𝑒𝑥𝑡+𝑧𝑖,𝑡+𝑝𝑡𝑘𝛼𝑖,𝑡 − 𝑓 − 𝑖𝑖,𝑡 − ℎ

(

𝑖𝑖,𝑡, 𝑘𝑖,𝑡
)

where 𝑥𝑡 is aggregate productivity, 𝑧𝑖,𝑡 is idiosyncratic productivity, 𝑝𝑡
is the aggregate price level, 𝑘  is firm-level capital, 𝑓 is a fixed cost, 
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𝑖,𝑡
𝑖𝑖,𝑡 is investment in capital, and ℎ
(

𝑖𝑖,𝑡, 𝑘𝑖,𝑡
) is an adjustment cost. In the 

model of Alti and Tetlock (2014), firm earnings are
𝐸𝑖,𝑡𝑑𝑡 =

(

𝑓𝑖,𝑡𝑑𝑡 + 𝜎ℎ𝑑𝜔
ℎ
𝑖,𝑡

)

𝑚1−𝛼
𝑡 𝐾𝛼

𝑖,𝑡 − 𝐼𝑖,𝑡𝑑𝑡 − 𝛹
(

𝐼𝑖,𝑡, 𝐾𝑖,𝑡
)

𝑑𝑡

where 𝑓𝑖,𝑡 is idiosyncratic productivity, 𝑑𝜔ℎ
𝑖,𝑡 is a white noise shock, 𝑚𝑡

is aggregate productivity, 𝐾𝑖,𝑡 is firm-level capital, 𝐼𝑖,𝑡 is investment in 
capital, and 𝛹 (

𝐼𝑖,𝑡, 𝐾𝑖,𝑡
) is an adjustment cost.

In order to calculate 𝐶𝐹𝐺ℎ and 𝐷𝑅ℎ for these two models, we have 
to address the issue that model earnings are sometimes negative, even 
at the portfolio level, due to the quadratic adjustment costs. In these 
models, this can be thought of as the firm raising additional funds. 
These negative cash flows (i.e., raising new funds) are not compatible 
with the Campbell–Shiller log-linearized decomposition. To use the 
decomposition, we want to think about an investor that makes a one-
time payment to buy a claim to the company, never pays anything more 
in the future, and receives some cash flows in the future.

Thus, we will think of an investor that holds some share 𝜒𝑖,𝑡 of the 
company. When the company has positive cash flows, the investor does 
not change her share in the company and receives these cash flows. 
When the company has negative cash flows, we assume the investor 
sells a part of her stake in the company to cover this. Specifically, 
this investor receives cash flows �̂�𝑖,𝑡 ≡ 𝜒𝑖,𝑡 max

{

𝐸𝑖,𝑡, 0
}

, where 𝜒𝑖,𝑡 =
𝜒𝑖,𝑡−1

(

1 + min
{

𝐸𝑖,𝑡, 0
}

∕𝑃𝑖,𝑡
) and 𝑃𝑖,𝑡 is the market value of the firm. 

Intuitively, rather than receiving a negative cash flow, this investor 
dilutes her claim to the future (on average positive) cash flows. This 
investor receives the same return as someone who owned the entire 
firm and received the negative cash flows, 𝜒𝑖,𝑡𝑃𝑖,𝑡+�̂�𝑖,𝑡

𝜒𝑖,𝑡−1𝑃𝑖,𝑡−1
≡ 𝑃𝑖,𝑡+𝐸𝑖,𝑡

𝑃𝑖,𝑡−1
. There-

fore, this adjustment has no effect on the return differences between 
value and growth stocks and simply acts to smooth out the earnings 
differences.

Appendix D. Estimating the role of share issuance and buybacks

Pruitt (2025) provides a novel decomposition for the aggregate 
price–dividend ratio which incorporates share issuance and share buy-
backs. By focusing on total dividends paid out by the firm and the total 
value of the firm, rather than the dividends per share and the price per 
share, one can approximate the price–dividend ratio as 
𝑝𝑑𝑡 ≈ 𝜅 + 𝛥𝑑𝑡+1 − 𝑟𝑡+1 + 𝜌𝛿𝑝𝑑𝑡+1 − 𝜌𝜄𝜄𝑡+1 + 𝜌𝛽𝛽𝑡+1, (D.1)

where 𝑆𝑛,𝑡 is the number of shares for firm 𝑛 at time 𝑡, 

𝜄𝑡+1 ≡ log

(

∑

𝑛
[(

𝑆𝑛,𝑡+1 − 𝑆𝑛,𝑡
)

𝑃𝑛,𝑡+1
]+

𝐷𝑡+1

)

(D.2)

captures money flowing from investors to the firm in the form of share 
issuance and 

𝛽𝑡+1 ≡ log

(

∑

𝑛
[(

𝑆𝑛,𝑡 − 𝑆𝑛,𝑡+1
)

𝑃𝑛,𝑡+1
]+

𝐷𝑡+1

)

(D.3)

captures money flowing from the firm to investors in the form of 
buybacks. The log-linearization constants are

𝜌𝛿 ≡ 𝑒𝑝𝑑

1 + 𝑒𝑝𝑑 − 𝑒𝜄 + 𝑒𝛽

𝜌𝜄 ≡
𝑒𝜄

1 + 𝑒𝑝𝑑 − 𝑒𝜄 + 𝑒𝛽

𝜌𝛽 ≡ 𝑒𝛽

1 + 𝑒𝑝𝑑 − 𝑒𝜄 + 𝑒𝛽
.

Using Pruitt (2025)’s estimates of 𝑝𝑑, ̄𝜄, 𝛽, this translates to 𝜌𝛿 , 𝜌𝜄, 𝜌𝛽 of 
roughly 0.988, 0.022, and 0.005, respectively.

Using his benchmark estimates for the aggregate time series in Table 
2 Panel A, the role of returns is 𝜙𝑙𝑟

𝑟 = 1.08, the role of dividend growth is 
𝜙𝑙𝑟
𝑑 = 0.023, the role of issuance is 𝜙𝑙𝑟

𝜄 = −0.38, and the role of buybacks 
is 𝜙𝑙𝑟

𝛽 = 0.17. Thus, it is still the case that future returns account for 
roughly 100% of the variation in the aggregate price–dividend ratio 
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(108%). However, the inclusion of issuance and buybacks shows that 
the aggregate price–dividend ratio is also informative about future 
cash flows. While dividend growth plays almost no role, a high price–
dividend ratio predicts higher future 𝜄 and higher future 𝛽. These effects 
partly cancel out, meaning that combined future 𝜄 and future 𝛽 account 
for -21% of variation in the aggregate price–dividend ratio.

If we take the absolute value of all coefficients then we have that 
|
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|
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 is 0.65 and 
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|
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𝜙𝑙𝑟𝜄
|

|

|

+||
|

𝜙𝑙𝑟𝛽
|

|

|

 is 0.35. In this sense, 

the absolute value of all of the cash flow related components (||
|

𝜙𝑙𝑟
𝑑
|

|

|

+
|

|

𝜙𝑙𝑟
𝜄
|

|

+ |

|

|

𝜙𝑙𝑟
𝛽
|

|

|

) is comparable in size to the absolute value of the return 
component (|

|

𝜙𝑙𝑟
𝑟
|

|

).
To apply this decomposition to cross-sectional variation in price–

earnings ratios, we consider the variant

𝑝𝑒𝑖,𝑡 ≈
ℎ
∑

𝑗=1
𝜌𝑗−1𝛿 𝛥𝑒𝑖,𝑡+𝑗 −

ℎ
∑

𝑗=1
𝜌𝑗−1𝛿 𝑟𝑖,𝑡+𝑗 + 𝜌ℎ𝛿 𝑝𝑒𝑖,𝑡+1

− 𝜌𝜄
ℎ
∑

𝑗=1
𝜌𝑗−1𝛿 �̃�𝑖,𝑡+𝑗 + 𝜌𝛽

ℎ
∑

𝑗=1
𝜌𝑗−1𝛿 𝛽𝑖,𝑡+𝑗 , (D.4)

where 

𝜄𝑖,𝑡+1 ≡ log
⎛

⎜

⎜

⎝

∑

𝑛∈𝑁𝑖

[(

𝑆𝑛,𝑡+1 − 𝑆𝑛,𝑡
)

𝑃𝑛,𝑡+1
]+

𝐸𝑖,𝑡+1

⎞

⎟

⎟

⎠

(D.5)

𝛽𝑖,𝑡+1 ≡ log
⎛

⎜

⎜

⎝

∑

𝑛∈𝑁𝑖

[(

𝑆𝑛,𝑡 − 𝑆𝑛,𝑡+1
)

𝑃𝑛,𝑡+1
]+

𝐸𝑖,𝑡+1

⎞

⎟

⎟

⎠

(D.6)

and 𝑁𝑖 is the set of firms in portfolio 𝑖. Similar to our main derivation 
in Appendix  A, Eq. (D.4) can be derived from the original (D.1) by 
starting with price–dividend ratios, inserting the identity 𝑝𝑒𝑡 = 𝑝𝑑𝑡 +
𝑑𝑒𝑡, and treating the 

(

1 − 𝜌𝛿 + 𝜌𝜄 − 𝜌𝛽
)

𝑑𝑒𝑡+1 term as approximately 
constant. Other than the slight distinction between 𝜌 ≡ 𝑒𝑝𝑑

1+𝑒𝑝𝑑
 and 

𝜌𝛿 ≡ 𝑒𝑝𝑑

1+𝑒𝑝𝑑−𝑒𝜄+𝑒𝛽
, the first three terms in Eq.  (D.4) are identical to 

the three terms in Eq.  (2). To estimate the role of the two additional 
terms in Eq.  (D.4), Table  5 shows our cross-sectional estimates for 𝐶𝑜𝑣
(

−𝜌𝜄
∑ℎ

𝑗=1 𝜌
𝑗−1
𝛿 �̃�𝑖,𝑡+𝑗 , 𝑝𝑒𝑖,𝑡

)

∕𝑉 𝑎𝑟
(

𝑝𝑒𝑖,𝑡
) and 𝐶𝑜𝑣

(

𝜌𝛽
∑ℎ

𝑗=1 𝜌
𝑗−1
𝛿 𝛽𝑖,𝑡+𝑗 , 𝑝𝑒𝑖,𝑡

)

∕𝑉 𝑎𝑟
(

𝑝𝑒𝑖,𝑡
) for horizons of one to fifteen years.

Appendix E. Wild bootstrap procedure

This section describes the wild bootstrap procedure underlying the 
empirical p-values in Section 7.2. The resampling process is based 
20
on Cavaliere et al. (2012) and Huang et al. (2015) and it is adapted 
to a multi-horizon framework.

The main persistence value of �̂� = 0.953 is calculated by taking 
the average of the implied persistences estimated in Eq. (22) across all 
horizons after adjustment for Stambaugh (1999) small-sample bias. The 
reduced-bias estimate is obtained by adjusting the OLS estimate with 
the analytical expression for its small-sample bias following Amihud 
et al. (2009). For each portfolio 𝑖 and for each horizon ℎ, we construct 
the estimated residuals under the null hypothesis as:

𝜀𝑒𝑖,𝑡+ℎ = 𝛥𝑒𝑖,𝑡+ℎ − �̂�ℎ−1 (1 − 𝜌�̂�
)

𝑝𝑒𝑖,𝑡

𝜀𝑟𝑖,𝑡+ℎ = −�̃�𝑖,𝑡+ℎ

𝜀𝑝𝑒𝑖,𝑡+ℎ =
(

𝑝𝑒𝑖,𝑡+ℎ−1 − 𝜌𝑝𝑒𝑖,𝑡+ℎ
)

− �̂�ℎ−1 (1 − 𝜌�̂�
)

𝑝𝑒𝑖,𝑡

where the null hypothesis is imposed in 𝛽𝑒ℎ = �̂�ℎ−1 (1 − 𝜌�̂�
) and 𝛽𝑟ℎ = 0.

Based on this estimate, for each simulation we draw an i.i.d. se-
quence 𝑤𝑖,𝑡 from the two-point Rademacher distribution:

𝑤𝑖,𝑡 =

{

−1 with probability 1∕2
1 with probability 1∕2

We then construct a pseudosample of prices

𝑝𝑒𝑖,𝑡+1 = �̂�𝑝𝑒𝑖,𝑡 + 𝜀𝑝𝑒𝑖,𝑡+1 ⋅𝑤𝑖,𝑡+1

and a pseudosample of earnings growth and returns

𝛥𝑒𝑖,𝑡+ℎ = 𝛽𝑒ℎ𝑝𝑒𝑖,𝑡 + 𝜀𝑒𝑖,𝑡+ℎ ⋅𝑤𝑖,𝑡+ℎ

−𝑟𝑖,𝑡+ℎ = 𝜀𝑟𝑖,𝑡+ℎ ⋅𝑤𝑖,𝑡+ℎ

Note that, on each simulation, we multiply the fitted residuals with 
the same component 𝑤𝑖,𝑡 used to generate the price–earnings ratios. 
This way, the methodology not only captures general forms of condi-
tional heteroskedasticity, but it also preserves any correlation structure 
between the endogenous predictor, the price–earnings ratio, and the 
lagged returns and earnings growth. After the pseudosample is con-
structed, we estimate the regressions (20)–(22) and their corresponding 
t-statistics. We repeat this process 1000 times. The empirical 𝑝-value 
shown in Fig.  3 is the proportion of the bootstrapped t-statistics greater 
(less) than the t-statistic for the original sample.

We test whether the conclusion of this inference changes using 
different values for the persistence �̂�. Fig.  E.4 shows the results of the 
simulation using three different values of �̂� ∶ the two extreme values 
of the interval 𝜙 = (0.888, 0.993), which covers all estimated values 
of Eq.  (22) after adjusting for Stambaugh small-sample bias, as well 
as an extreme upper bound value of �̂� = 0.999.
Fig. E.4. Predictability of non-cumulative returns and earnings growth. This figure visualizes the probabilities of observing the results of Table  8 in the absence of return 
predictability under different persistences of the price–earnings ratio. For 1000 wild bootstrap simulations, the red line shows for every horizon the share of simulated 𝛽𝑟ℎ t-statistics 
greater than the observed t-statistic in the data. The blue line shows for every horizon the share of simulated 𝛽𝑒ℎ t-statistics smaller than the observed t-statistic in the data.
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Appendix F. Robustness tests

See Fig.  F.5 and Tables  F.11–F.15.
21
Fig. F.5. 𝐷𝑅ℎ and 𝐶𝐹𝐺ℎ with confidence intervals at all horizons. This figure compares cash flow growth differences (𝐶𝐹𝐺ℎ) and discount rate differences (𝐷𝑅ℎ) at different 
horizons ℎ. The 𝑥-axis shows the horizon ℎ in years. The dots show the exact estimates from Table  1 based on earnings growth, negative returns, and price–earnings ratios ℎ years 
ahead. The confidence intervals at the 95% level are calculated using Driscoll–Kraay standard errors.
Table F.11
Decomposition of differences in price–earnings ratios: Different number of portfolios.
 Num. port Panel A: Panel B: Panel C:
 Cash flow growth 𝐶𝐹𝐺ℎ Discount rates 𝐷𝑅ℎ Future P/E 𝐹𝑃𝐸ℎ

 10 20 30 10 20 30 10 20 30  
 ℎ = 1 0.081∗∗∗ 0.064∗∗∗ 0.059∗∗∗ 0.045∗∗ 0.046∗∗∗ 0.043∗∗ 0.871∗∗∗ 0.880∗∗∗ 0.886∗∗∗ 
 s.e. (D-K) [0.015] [0.012] [0.012] [0.026] [0.020] [0.019] [0.022] [0.021] [0.02]  
 s.e. (boot) [0.011] [0.008] [0.008] [0.022] [0.017] [0.017] [0.019] [0.018] [0.018]  
 ℎ = 3 0.084∗∗∗ 0.056∗∗∗ 0.059∗∗∗ 0.172∗∗∗ 0.147∗∗∗ 0.134∗∗∗ 0.737∗∗∗ 0.769∗∗∗ 0.772∗∗∗ 
 [0.023] [0.018] [0.018] [0.058] [0.046] [0.044] [0.044] [0.039] [0.039]  
 [0.023] [0.018] [0.017] [0.055] [0.044] [0.041] [0.042] [0.037] [0.036]  
 ℎ = 5 0.090∗∗∗ 0.054∗∗ 0.053∗∗ 0.252∗∗∗ 0.213∗∗∗ 0.196∗∗∗ 0.644∗∗∗ 0.686∗∗∗ 0.691∗∗∗ 
 [0.031] [0.024] [0.025] [0.077] [0.06] [0.057] [0.055] [0.051] [0.044]  
 [0.032] [0.026] [0.026] [0.078] [0.062] [0.056] [0.053] [0.051] [0.045]  
 ℎ = 8 0.105∗∗∗ 0.057∗ 0.061∗ 0.349∗∗∗ 0.298∗∗∗ 0.287∗∗∗ 0.520∗∗∗ 0.568∗∗∗ 0.56∗∗∗  
 [0.03] [0.028] [0.027] [0.08] [0.059] [0.058] [0.062] [0.053] [0.049]  
 [0.037] [0.036] [0.034] [0.083] [0.059] [0.056] [0.061] [0.052] [0.047]  
 ℎ = 10 0.115∗∗∗ 0.062 0.067∗ 0.395∗∗∗ 0.345∗∗∗ 0.331∗∗∗ 0.458∗∗∗ 0.500∗∗∗ 0.491∗∗∗ 
 [0.033] [0.03] [0.029] [0.071] [0.055] [0.051] [0.054] [0.048] [0.044]  
 [0.04] [0.04] [0.039] [0.076] [0.056] [0.053] [0.054] [0.05] [0.045]  
 ℎ = 13 0.131∗∗∗ 0.069 0.054 0.445∗∗∗ 0.397∗∗∗ 0.388∗∗∗ 0.383∗∗∗ 0.421∗∗∗ 0.425∗∗∗ 
 [0.036] [0.03] [0.031] [0.065] [0.054] [0.05] [0.047] [0.044] [0.034]  
 [0.047] [0.045] [0.044] [0.076] [0.057] [0.054] [0.053] [0.047] [0.036]  
 ℎ = 15 0.146∗∗∗ 0.078∗ 0.063 0.476∗∗∗ 0.427∗∗∗ 0.426∗∗∗ 0.331∗∗∗ 0.369∗∗∗ 0.364∗∗∗ 
 [0.033] [0.027] [0.027] [0.057] [0.05] [0.043] [0.044] [0.043] [0.038]  
 [0.046] [0.041] [0.044] [0.067] [0.049] [0.051] [0.050] [0.040] [0.039]  
This table decomposes the variance of price–earnings ratios using equation (3) for different numbers of portfolios. The first column describes the horizon ℎ in 
years at which the decomposition is evaluated. For each period, we form value-weighted portfolios and track their buy-and-hold earnings growth (∑ℎ

𝑗=1 𝜌
𝑗−1𝛥𝑒𝑡+𝑗 ), 

negative returns (−∑ℎ
𝑗=1 𝜌

𝑗−1𝑟𝑡+𝑗 ), and price–earnings ratios (𝑝𝑒𝑡+ℎ) for every horizon up to fifteen years. The components 𝐶𝐹𝐺ℎ , 𝐷𝑅ℎ , and 𝐹𝑃𝐸ℎ are the coefficients 
from univariate regressions of earnings growth, negative returns and future price–earnings ratios on current price–earnings ratios. Within each panel, we show 
the results using 10, 20, and 30 portfolios. All variables are cross-sectionally demeaned. Driscoll–Kraay standard errors and block-bootstrap standard errors are 
calculated for each coefficient. Superscripts indicate block-bootstrap significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level. The sample period is 1963 to 2020.
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Table F.12
Decomposition of differences in price–earnings ratios: Alternative specifications.
 Price-to-smoothed earnings Delisting returns
 𝐶𝐹𝐺ℎ 𝐷𝑅ℎ 𝐹𝑃𝐸ℎ 𝐶𝐹𝐺ℎ 𝐷𝑅ℎ 𝐹𝑃𝐸ℎ  
 1 0.121∗∗∗ 0.041∗ 0.839∗∗∗ 0.100∗∗∗ 0.043 0.859∗∗∗ 
 s.e. (D-K) [0.019] [0.028] [0.026] [0.024] [0.034] [0.026]  
 s.e. (boot) [0.014] [0.024] [0.021] [0.021] [0.029] [0.022]  
 3 0.206∗∗∗ 0.155∗∗ 0.644∗∗∗ 0.092∗∗ 0.181∗∗∗ 0.733∗∗∗ 
 [0.036] [0.062] [0.043] [0.039] [0.07] [0.051]  
 [0.035] [0.057] [0.039] [0.041] [0.067] [0.047]  
 5 0.201∗∗∗ 0.236∗∗∗ 0.568∗∗∗ 0.115∗∗∗ 0.275∗∗∗ 0.617∗∗∗ 
 [0.037] [0.081] [0.056] [0.038] [0.091] [0.07]  
 [0.037] [0.081] [0.054] [0.04] [0.091] [0.07]  
 8 0.229∗∗∗ 0.341∗∗∗ 0.437∗∗∗ 0.146∗∗∗ 0.402∗∗∗ 0.461∗∗∗ 
 [0.037] [0.083] [0.061] [0.04] [0.091] [0.076]  
 [0.037] [0.083] [0.058] [0.042] [0.091] [0.078]  
 10 0.252∗∗∗ 0.385∗∗∗ 0.37∗∗∗ 0.167∗∗∗ 0.457∗∗∗ 0.387∗∗∗ 
 [0.035] [0.073] [0.057] [0.038] [0.077] [0.069]  
 [0.038] [0.081] [0.055] [0.042] [0.078] [0.066]  
 13 0.281∗∗∗ 0.431∗∗∗ 0.298∗∗∗ 0.164∗∗∗ 0.518∗∗∗ 0.329∗∗∗ 
 [0.044] [0.067] [0.048] [0.044] [0.068] [0.05]  
 [0.05] [0.074] [0.05] [0.049] [0.081] [0.059]  
 15 0.283∗∗∗ 0.455∗∗∗ 0.272∗∗∗ 0.173∗∗∗ 0.545∗∗∗ 0.294∗∗∗ 
 [0.045] [0.057] [0.040] [0.040] [0.057] [0.043]  
 [0.045] [0.068] [0.048] [0.042] [0.073] [0.057]  
This table decomposes the variance of price–earnings ratios under two alternative specifications. The first specification 
estimates equation (3) using three-year smoothed earnings instead of annual earnings to form the valuation ratio. 
Let 𝑠𝑡 be the three-year smoothed average of earnings. Compared to Table  3, this specification shows the results for 
predicting growth in three-year smoothed earnings 𝛥𝑠𝑡+𝑗 rather than growth in annual earnings. For each period, we 
form value-weighted portfolios and track their buy-and-hold smoothed earnings growth (∑ℎ

𝑗=1 𝜌
𝑗−1𝛥�̃�𝑡+𝑗 ), negative 

returns (−∑ℎ
𝑗=1 𝜌

𝑗−1 �̃�𝑡+𝑗 ), and price-to-smoothed-earnings ratio (𝑝𝑠𝑡+ℎ) for every horizon up to fifteen years. The 
columns show the coefficients from univariate regressions of earnings growth, negative returns and future price-to-
smoothed-earnings ratios on current price-to-smoothed-earnings ratios. The second specification reinvests the delisting 
returns of exiting firms in the corresponding portfolio. All variables are cross-sectionally demeaned. Driscoll–Kraay 
standard errors and block-bootstrap standard errors are calculated for each coefficient. Superscripts indicate block-
bootstrap significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level. The sample period is 1963 to 2020.
22
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Table F.13
Decomposition of the price–book ratio into future profitability and 
return differences.

𝐶𝑜𝑣(𝑝𝑏𝑡 ,⋅)
𝑉 𝑎𝑟(𝑝𝑏𝑡 )

∑∞
𝑗=1 𝜌

𝑗−1�̃�𝑡+𝑗 −
∑∞

𝑗=1 𝜌
𝑗−1𝑟𝑡+𝑗 𝜌𝑗𝑝𝑏𝑡+𝑗

ℎ = 1 0.068*** 0.012 0.89***
s.e. (D-K) [0.006] [0.017] [0.019]
s.e. (boot) [0.004] [0.013] [0.015]

ℎ = 3 0.168*** 0.06* 0.731***
[0.018] [0.039] [0.034]
[0.015] [0.035] [0.029]

ℎ = 5 0.233*** 0.104** 0.617***
[0.026] [0.052] [0.038]
[0.024] [0.050] [0.033]

ℎ = 8 0.302*** 0.164** 0.507***
[0.032] [0.062] [0.039]
[0.03] [0.066] [0.033]

ℎ = 10 0.337*** 0.197*** 0.45***
[0.032] [0.061] [0.036]
[0.025] [0.066] [0.028]

ℎ = 13 0.381*** 0.238*** 0.379***
[0.031] [0.058] [0.032]
[0.024] [0.061] [0.024]

ℎ = 15 0.409*** 0.264*** 0.349***
[0.031] [0.050] [0.027]
[0.022] [0.059] [0.025]

This table decomposes the variance of price–book ratios using the finite 
version of Eq.  (10) (Vuolteenaho, 2002). The first column describes 
the horizon ℎ in years at which the decomposition is evaluated. For 
each period, we form value-weighted portfolios and track their buy-
and-hold profitability (∑ℎ

𝑗=1 𝜌
𝑗−1�̃�𝑡+𝑗 ), negative returns (−∑ℎ

𝑗=1 𝜌
𝑗−1𝑟𝑡+𝑗 ), 

and price–book ratio (𝑝𝑏𝑡+ℎ) for every horizon up to fifteen years. 
The table reports the coefficients from univariate regressions of the 
future profitability, future negative returns, and the future price–book 
ratio on the current price–book ratio. All variables are cross-sectionally 
demeaned. Driscoll–Kraay standard errors and block-bootstrap standard 
errors are calculated for each coefficient. Superscripts indicate block-
bootstrap significance at the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level. The 
sample period is 1963 to 2020.
23
Table F.14
Decomposition of differences in earnings yields for E/P-sorted portfolios.

−𝛥(𝐸)
𝑖,𝑡+ℎ 𝛥(𝑃 )

𝑖,𝑡+ℎ �̂�𝑖,𝑡+ℎ∕𝑃𝑖,𝑡+ℎ

ℎ = 1 0.195*** 0.076** 0.72***
s.e. (D-K) [0.032] [0.029] [0.029]
s.e. (boot) [0.021] [0.034] [0.036]

ℎ = 3 0.263*** 0.231*** 0.497***
[0.055] [0.053] [0.038]
[0.05] [0.05] [0.038]

ℎ = 5 0.199** 0.37*** 0.425***
[0.087] [0.075] [0.05]
[0.09] [0.074] [0.056]

ℎ = 8 0.125 0.526*** 0.346***
[0.09] [0.082] [0.053]
[0.109] [0.09] [0.056]

ℎ = 10 0.029 0.655*** 0.311***
[0.108] [0.099] [0.054]
[0.144] [0.119] [0.051]

ℎ = 13 -0.013 0.779*** 0.226***
[0.12] [0.106] [0.044]
[0.165] [0.145] [0.028]

ℎ = 15 -0.113 0.91*** 0.195***
[0.147] [0.133] [0.033]
[0.203] [0.183] [0.021]

This table decomposes the variance of earnings yields for E/P-sorted 
portfolios. To most closely align with the exercise in CPV, we sort all 
firms into 40 equal value portfolios based on their earnings yields. 
Given that earnings for these portfolios can be negative, we utilize 
the exact identity in Eq.  (19) which allows for negative earnings. 
For any firms that exit, we assume a worst-case scenario, which is 
that all dispersion in earnings yields associated with missing firms 
is attributed entirely to changes in earnings (𝛥(𝐸)

𝑖,𝑡+ℎ). All portfolio-
level variables are the value-weighted average of the firm-level values 
(𝜃𝑖,𝑡 , 𝛥

(𝐸)
𝑖,𝑡+ℎ , 𝛥

(𝑃 )
𝑖,𝑡+ℎ , 𝜃𝑖,𝑡+ℎ). The columns show the coefficients from uni-

variate regressions of the change in earnings yield due to changes in 
earnings (𝛥(𝐸)

𝑖,𝑡+ℎ), the change in earnings yield due to changes in price 
(𝛥(𝑃 )

𝑖,𝑡+ℎ), and the future earnings yield (𝜃𝑖,𝑡+ℎ) on the current earnings 
yield (𝜃𝑖,𝑡). All variables are cross-sectionally demeaned. Driscoll–Kraay 
standard errors and block-bootstrap standard errors are calculated for 
each coefficient. Superscripts indicate block-bootstrap significance at 
the 1% (∗∗∗), 5% (∗∗), and 10% (∗) level. The sample period is 1963 
to 2020.
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Table F.15
Future dividend growth.

Price ratios (Scaling variable)
Earnings Book Sales Employees Smooth earnings

ℎ = 1 0.000 0.029** 0.001 0.000 0.001
s.e. (D-K) [0.008] [0.013] [0.008] [0.009] [0.008]
s.e. (boot) [0.009] [0.012] [0.009] [0.009] [0.009]

ℎ = 3 -0.003 0.073*** -0.003 -0.004 -0.003
[0.020] [0.028] [0.021] [0.023] [0.021]
[0.019] [0.026] [0.021] [0.023] [0.019]

ℎ = 5 -0.019 0.089 -0.018 -0.02 -0.021
[0.032] [0.054] [0.034] [0.04] [0.034]
[0.035] [0.055] [0.038] [0.04] [0.036]

ℎ = 8 -0.052 0.058 -0.049 -0.052 -0.053
[0.037] [0.052] [0.04] [0.043] [0.04]
[0.045] [0.054] [0.05] [0.055] [0.05]

ℎ = 10 -0.077 0.057 -0.071 -0.075 -0.079
[0.042] [0.054] [0.044] [0.05] [0.044]
[0.055] [0.059] [0.061] [0.07] [0.061]

ℎ = 13 -0.122* 0.017 -0.118 -0.122 -0.127*
[0.049] [0.056] [0.052] [0.058] [0.051]
[0.070] [0.053] [0.078] [0.09] [0.074]

ℎ = 15 -0.15* 0.023 -0.149 -0.152 -0.158*
[0.056] [0.060] [0.059] [0.066] [0.06]
[0.088] [0.060] [0.094] [0.104] [0.095]

This table tests whether cross-sectional differences in price ratios are informative about 
future dividend growth. The first column describes the horizon ℎ in years at which the 
regression is run. The second-to-fifth columns show the coefficient from a regression of 
future dividend growth ∑ℎ

𝑗=1 𝛥𝑑𝑖,𝑡+𝑗 on the logarithm of current price ratios. For each 
column, the price is scaled by a different variable: earnings, book, sales, number of 
employees, and three-year-smoothed earnings. All variables are cross-sectionally demeaned. 
Driscoll–Kraay standard errors and block-bootstrap standard errors are calculated for each 
coefficient. Superscripts indicate block-bootstrap significance at the 1% (∗∗∗), 5% (∗∗), and 
10% (∗) level. The sample period is 1963 to 2020.
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Data availability

Replication code for ‘‘The Return of Return Dominance: Decomposing
the Cross-Section of Prices’’ (Original data) (Mendeley Data)
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