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Abstract
Obtaining the traces and the characteristics of elongated structures is an important task
in computer vision pipelines. In biomedical applications, the analysis of traces of vascu-
lature, nerves or fibres of the extracellular matrix can help characterise processes like
angiogenesis or the effect of a certain treatment. This paper presents an objective com-
parison of six existing methodologies (Edge detection, CT Fire, Scale Space, Twombli,
U-Net and Graph Based) and one novel approach called Trace Ridges to trace biomedi-
cal images with fibre-like structures. Trace Ridges is a fully automatic and fast algorithm
that combines a series of image-processing algorithms including filtering, watershed
transform and edge detection to obtain an accurate delineation of the fibre-like struc-
tures in a rapid time. To compare the algorithms, four biomedical data sets with vastly
distinctive characteristics were selected. Ground truth was obtained by manual delin-
eation of the fibre-like structures. Three pre-processing filtering options were used as a
first step: no filtering, Gaussian low-pass and DnCnn, a deep-learning filtering. Three dis-
tance error metrics (total, average and maximum distance from the obtained traces to
the ground truth) and processing time were calculated. It was observed that no single
algorithm outperformed the others in all metrics. For the total distance error, which was
considered the most significative, Trace Ridges ranked first, followed by Graph Based,
U-Net, Twombli, Scale Space, CT Fire and Edge Detection. In terms of speed, Trace
Ridges ranked second, only slightly slower than Edge Detection. Code is freely available
at github.com/youssefarafat/Trace_Ridges.

Introduction
Themorphological features of cells and their surrounding environment have been stud-
ied with interest in cancer and other conditions [1]. However, it is now recognised that the
microenvironment that surrounds these cells has considerable influence [2]. The extracellu-
lar matrix (ECM) plays a key role in the development of cancer [3–6] and other diseases [7].
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The ECM provides essential structural support [8] to the cellular constituents of tissue. Every
organ has a different ECM structure that serves its purpose. The ECM constantly changes
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its shape and remodels by a process known as ECM proteinases [9,10]. Despite this, the
extracellular matrix (ECM) has received less attention [11] than other factors of the microen-
vironment like macrophages, soluble factors, or vasculature. This could be due to the compli-
cated 3D network of the ECM [12,13], which is formed by many elements such as enzymes,
glycoproteins, and collagen.

Whilst visual observation of the extracellular matrix structure can reveal interesting char-
acteristics, it is far too difficult to compare two populations by just observing images. Struc-
tural characteristics of the ECM such as the length, distribution, shapes and orientation of
the fibre-like structure of these glycoproteins could provide valuable information about the
microenvironment or treatments if these were to be objectively analysed. Quantification of
the fibres and their characteristics is required and for this purpose, a robust tracing algorithm
that identifies individual fibre-like structures is necessary.

There have been many manual, semi-automatic and automatic methodologies proposed to
delineate and trace elongated structures some of which are based on algorithms that can be
considered more general as they can be applied in a context other than tracing, for instance,
skeletonisation [14–16], watershed transform [17,18], medial axis transform [19–21], Scale
Space [22,23] and even Edge Detection [24]. However, many of these methodologies have
been proposed for tracing in specific applications, which may imply that these have been fine-
tuned to the characteristics of the datasets being analysed, e.g., neuron tracing [25–27], reti-
nal images [28–30], angiography [31–33], intravital vasculature observed with confocal, flu-
orescence or light microscopy [34–36], and extracellular matrix [37,38]. In addition, deep
learning architectures like the well-known U-Net [39] have been widely used in image anal-
ysis and provided excellent results without the need of hand-crafted features or algorithm.
Instead, a combination of pairs of data and labels can be used to train an architecture to per-
form a specific task, which for the purposes of this paper is the segmentation of fibre-like
structures.

In this paper an objective comparison of algorithms that perform tracing of fibre-like
structures is presented. Four types of datasets with vastly distinctive characteristics were
selected to provide a wide variety of conditions of noise and strength of the fibre structures.
The images were hand-delineated to create a ground truth for objective comparisons and to
provide training data for the deep learning architecture. Five existing algorithms that have
been previously used for similar applications were selected: Edge detection [24], CT Fire[40],
Scale Space [22,23], Twombli [38], and Graph Based [41,42]. A U-Net [39] architecture was
trained with pairs of patches of data and labels. In addition, a simple, yet quick and effective
image processing-based tracing algorithm called Trace Ridges is proposed and compared with
the other algorithms.

The main contributions of this work are the following:

• The objective comparison of seven fibre tracing methods. Each algorithm was tested
in four images with vastly different characteristics. To analyse the effect of noise, three
filtering approaches were applied as a pre-processing step for each of the algorithms.
Three error metrics and computational processing time were extracted from each of the
previous combinations.

• A new tracing pipeline called Trace Ridges was proposed. Trace ridges combines fil-
tering, Watershed transforms, Edge detection and mathematical morphology to trace
ridges in an image with fibre-like structures.
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Materials and methods
Data sets
Four biological data sets with vastly distinctive characteristics were selected to compare the
tracing algorithms (Fig 1). Three of the four data sets were selected as they had been used by
the previously published algorithms and were freely available. Details of the data sets have
been published previously, but a brief description for each will follow.

• Second Harmonic Generation (SHG) images of tumour bearing mouse mammary
glands were published with the CT Fire algorithm [40,43] (Fig 1a). To obtain the
images, in vivo acquisition was performed through a glass imaging window that was
placed at proximity to palpable tumours inside the mammary glands of live 8 weeks
old PyMT mice. The excitation wavelength of the SHG images was 890 nm while the

Fig 1. Illustration of the datasets that will be used to compare the tracing algorithms. (a) Second Harmonic
Generation Collagen (SHG). (b) Fluorescent Fibronectin (FF). (c) Breast Cancer Biopsy slide (BCB). (d) Disease
Mimicking Extra Cellular Matrix (DME). (e-h) Regions of interest (ROI) of the images in (a-d). (i-l) Manually
delineated ground truth (GT) for the ROIs of images in (e-h). White lines correspond to the GT and intensities are
displayed in a colormap with hot colours (black-red-orange-yellow-white).

https://doi.org/10.1371/journal.pone.0320006.g001
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emission filter was 445 nm with a 20nm bandwidth. The pulse length was roughly
100 fs. All the SHG images were verified using cellular autofluorescence from the coen-
zyme Flavin Adenine Dinucleotide, in slides they were verified by white light images of
H&E. Images from this data set are clean and fibres are distinguishable from each other.

• Fluorescently labelled fibronectin images (Fig 1b). Fibronectin fibroblasts were culti-
vated on a gelatine coated surface bonded with glutaraldehyde, used to create the extra-
cellular matrix. Fluorescent images were captured to observe the fibronectin expression.
Fibres appear bright and have high intensity, background is darker with lower inten-
sity. Image is available at github.com/youssefarafat/Trace_Ridges/blob/main/Fluorescent_
Fibronectin.

• Breast Cancer Biopsy (BCB) images of collagen (Fig 1c) were published with the
Twombli algorithm [38]. The samples were stained with Picrosirius red. The slides were
deparaffinised and hydrated prior to the application of Picrosirius red mixture for 60
minutes, after which the samples were rinsed twice in acetic acid followed by alcohol
dehydration and mounting. Finally, slides are scanned using a Zeiss Axio Scan.Z1 at 10x
magnification. This dataset was chosen as the images are stained with Picrosirius red,
including variety to the previous monotone images. Fibres have a filamentous structure,
which makes it unique.

• Disease mimicking ECM (DME) (Fig 1d) images of fibroblasts were published with
the Graph based algorithm [42]. Normal resting fibroblasts were treated with TGF-B1
cytokine to activate the fibroblast in the tumour micro-environment. The Fibronectin
rich matrice was created by exposing recombinant cFn to the Fibronectin null mouse
embryo fibroblasts. The cultures finally are decellularised after 7 days. The resultant
matrices are viewed with a confocal microscope after they are fluorescently stained, at a
10x/0.45 magnification. Images from this data set are noisy. Brightness variation is low.

Ground truth
Fibres on (Fig 1a–1d) were manually delineated to create the ground truth to be later used in a
quantitative comparison.

Pre-processing of the data sets
Filtering data sets may reduce the levels of noise and thus improve subsequent steps in a
pipeline.

The four data sets present very different noise characteristics, and three different filter-
ing approaches were followed: No pre-processing filtering, low pass filtering with a Gaussian
filter and a deep learning de-noising filtering [44]. It should be noted that some method-
ologies (e.g., Scale Space) include pre-processing steps themselves, but for consistency and
ease of comparison all data sets were pre-processed in the same way before applying tracing
algorithms.

Gaussian filtering. A Gaussian filter removes noise and detail by combining the values of
neighbouring pixels weighted with a Gaussian kernel to replace the original value of a pixel.

A Gaussian filter with a kernel size of 3×3 and a standard deviation value 𝜎 = 1 was applied
to all the images before applying the tracing algorithms.

DnCnn. DnCnn [44] is a de-noising deep convolution neural network for noisy images.
The model adopts residual learning to separate noise from noisy observations. Batch normali-
sation and residual learning are adopted to improve the de-noising performance. The DnCnn
model can handle blind Gaussian de-noising with unknown noise level. The DnCnn model
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was trained using the images in (Fig 1). Each image was split into half, half was used for train-
ing and the other half was unseen. The images were converted to 2-D grayscale where needed
as the model only accepts 2-D grayscale images. The model was trained with a learning rate of
0.001 and a batch size of 32.

Tracing algorithms
The following seven tracing algorithm were compared: Edge Detection (ED) [24], CT Fire
(CTF) [40,43], Scale Space (SS) [22,23], Twombli (TW) [38], U-NET [39], Graph Based (GB)
[41,42] and the proposed Trace Ridges (TR). They vary in their complexity and methodology
with some leveraging filters as part of the pre-processing (GB with Gabor filters, CTF with
Curvelet transform for image enhancement). U-Net utilises deep learning techniques. Trace
Ridges employs Watershed [17] and Edge Detection for fibre tracing and uses morphological
features for image refinement.

Edge Detection. The Canny Edge Detection [24] extracts edges of objects in image by
identifying changes in pixel intensities. It employs Gaussian filtering to reduce noise then
applies non-maximum suppression to thin the edges. The thresholding process, also known as
hysteresis, is performed to exclude or include edges. In this study, the Canny Edge Detection
used a filter size of 2 × 2 to extract edges as proxies for the fibres. Subsequently, the edges were
labelled and their metrics extracted.

CT Fire. CT Fire [40,43] was developed to extract and quantify collagen fibres from SHG
images. It utilises a curvelet transform (CT) [45] de-noising filter, with Gaussian filtering to
remove noise. The curvelet filter represents the image as stacked elements following ridge
lines and wavelets, with a frequency wrapping based de-noising technique. Curvelets com-
monly follow the rule in (Eq 1). The fibre extraction algorithm processes the binary image,
with foreground pixels representing fibres. It computes a distance transform to determine the
proximity of the foreground pixels to the nearest background pixel, identifies maximal ridges
of the smoothed image, and generates nucleation points. After which fibres extend from each
nucleation point based on trajectory, followed by removal of short branches.

width = length2 (1)

Scale Space. Scale Space [22,23] blurs an image across multiple scales to reveal its char-
acteristics. Significant features emerge at lower scales, while finer details are visible at first
scales and are progressively smoothed out. Scale Space treats an image as a series of Gaussian
smoothed images, represented by the function f(x,y) and Gaussian g(x,y,t), where t denotes
the width of the Gaussian filter. First and second derivatives of x and y dimensions are repre-
sented as

(Lx,Lxx,Ly,Lyy),

forming a matrix, dictating intensity changes in the image. For Scale Space, the collection
of images is represented as L(x,y;t) and Gaussian kernel in (Eq 2). This method was imple-
mented as seen in [36].

L(x, y; t) = g(x, y; t)× f(x, y) = ( 1
2𝜋t)

e–
x2+y2

2t

× f(x, y) (2)

Twombli. Twombli [38] a FIJI macro tool for quantifying fibre-like patterns. It employs
existing techniques, including Ridge Detection [46] and AnaMorf [47]. Ridge Detection
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assesses first and second directional derivatives using Gaussian kernels to detect line points
and extract line width with sub-pixel accuracy. Bias is reduced by inverting the Scale Space
behaviour of the asymmetric line model. AnaMorf quantifies the structures identified.
Twombli also incorporates OrientationJ to obtain the global alignment metric, determining
the dominant direction of the fibrial structure. By analysing changes in intensity signal as a
function of nearby pixel distances, Twombli constructs segmentation masks using fibre edges.
U-Net.
Properties:

U-Net [39] is a deep fully convolutional network widely applied in biomedical image seg-
mentation. The architecture compromises of a contracting path for capturing fine details
through convolutions, and a symmetric expanding path for accurate localisation. The seg-
mentation map is generated via skip connections between contraction and expanding layers.
The network’s architecture is symmetrical to the letter ”U”. U-Net requires minimal training
data and can achieve high performance. The U-Net used in this comparative study (Fig 2) had
a depth of 3, consisting of 46 layers, including encoder, bridge, decoder, convolution, softmax
and segmentation layers, with skip connections linking the contracting and expanding paths.

U-Net Training: Initially, various training parameters were tested, including batch size (16
and 32), and learning rate (0.0001 and 0.001), to optimise training parameters and select the
best-performing network. Each image from (Fig 1a–1d) was split into halves for training and
testing. BCB Collagen image (Fig 1c) was complemented to highlight fibre features in white,
and background in black. To increase the number of images for training, augmentation was
employed. Augmentation techniques (Fig 3) included horizontal and vertical flipping, rota-
tion by 90 degrees and addition of Gaussian noise. A total of 8910 images of size 32x32 were
used for training. The U-Net was trained with a batch size of 16, learning rate of 0.0001 and
the ”adam” optimisation algorithm, for 15 epochs. Training duration was 15 minutes.

Fig 2. Illustration of the U-Net architecture used to segment the fibres.The architecture consists of three encoder levels and 3
decoder levels.

https://doi.org/10.1371/journal.pone.0320006.g002
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Fig 3. Illustration of the data augmentation approaches used to train the U-Net. (a) Original patch (b) Horizontally flipped (c) Vertically flipped (d) Rotation by 90
degrees (e) Gaussian blurred, with zero mean and a standard deviation of 0.05. (f–j) labels corresponding to augmented patches. It should be noted that (j) is the same as
(f) as the Gaussian blur does not affect the label.

https://doi.org/10.1371/journal.pone.0320006.g003

Graph based. The Graph-based algorithm [41,42] combines fast discrete curvelet trans-
form filters to detect curvilinear anisotropic objects, in combination with a fibre extraction
algorithm. The algorithm uses Gabor filters to enhance fibres that have been observed with
confocal microscopy. The algorithm offers flexibility by detecting various fibre elements at dif-
ferent frequencies and orientations, avoiding translation and rotation errors. The algorithm
associates graph networks with fibre morphological skeletons, followed by fibre pruning and
post-processing fibre re-connection. Two graph types are used to measure fibre properties:
one representing fibre crosslinks or ends, and the other simplifying the first graph into a skele-
ton. These representations were used to extract geometrical and topological properties from
the confocal images. Then, specific properties, e.g., orientation for Gabor and fibre length as
graph parameters were used to relate to the physical properties of the fibres.

Trace Ridges. In this paper, a methodology called Trace Ridges is proposed. The method-
ology combines Watershed transform and Edge detection. First, the Watershed is used to
delineate ridges. Themain ridges will correspond to the fibres to be traced, but in addition,
minor ridges, product of the well-known over segmentation of watersheds [48,49], will appear
as coming down from the main ridges. Then, the Edge detection process detects regions
where there are sudden changes of intensity, i.e., close to the ridges, ideally one on each side
of the centre line of the ridge. The intersection between the edges and watersheds is used to
break thoseminor ridges that run down from a main ridge through the sides of the basins,
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thus separating them from the major ridges. In this way, the well-known problem of over-
segmentation of Watershed is counteracted and the methodology prioritises longer ridges
along the brighter sections of an image for cleaner results. The combination of these two steps
of Trace Ridges is illustrated in (Fig 4a). The region contains three strong and bright ridges
with a small noisier region highlighted with a green rectangle. The results of Watershed and
Edge Detection are shown separately in (Fig 4b, 4c) and the overlap in (Fig 4d) where the
edges are shown in red, and the watershed is shown in yellow. The points where the two over-
lap are shown as white. These points are discarded thus breaking the small watersheds and
maintaining the main ridges. Next, the edges and small segments with a major axis length
smaller than a threshold (5 pixels) are removed. Segments that lie within darker regions are
also removed as it may be possible that there are watersheds in dark regions that are hardly
visible and not of interest.

In some cases, a thicker ridge may produce two parallel watersheds with a very small hole
in between. These cases are identified by their Euler characteristic [50]. Only very small holes
are filled in, and then the resulting object is thinned, this process leaves a trace that runs
through the position of that small hole.

Also, there are cases where Watershed will not detect a ridge, specifically when both sides
of the ridge feed to a single basin surrounding it. Those cases are detected by using only Edge
detection, filling in the space between the edges, and then thinning it to create a single line
where the ridge is located. In some cases, Edge Detection results in only one edge for a ridge,
these are discarded and treated as low level ridges or noise.

Fig 4. Illustration of the Trace Ridges methodology. (a) Region of interest of one SHG image that shows some
strong ridges and a region with some noise highlighted with a green rectangle. (b) Output of a Watershed transform,
which traces the strong ridges but also some smaller ones that are not of interest. (c) Edges detected with Canny’s
algorithm highlight the sides of the strong ridges. (d) The combination of Edge Detection (red lines) with Watershed
(yellow lines). White pixels correspond to the overlap of both techniques. The watershed will be broken by removing
these overlapping pixels.

https://doi.org/10.1371/journal.pone.0320006.g004
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Finally, Trace Ridges discards small and curved fibres and keeps longer and straighter lines.
In the case that Trace Ridges detects less than 100 fibres from the missed ridges. Trace Ridges
retains from those ridges only those that have a major axis length above 15 pixels and a minor
axis length less than 10 pixels. If the number of new fibres detected is higher, a stricter con-
dition is applied whereby the fibres must have a major axis length of at least 25 pixels and the
minor axis length must be less than 10 pixels.

Once all the fibres are detected, Trace Ridges combines the ridges detected with the com-
bination of Watershed and Edge Detection as well as the missed ridges detected by Edge
Detection, prioritising longer and brighter fibres.

Many morphological metrics can be extracted from the traced lines for instance, orienta-
tion, length, width, count, eccentricity, and mean intensities. Furthermore, the gaps between
fibres can be calculated and from there, metrics such as gap area and largest gaps can be
extracted.

Finally, three dimensional datasets are projected to two dimensions with a maximum
intensity projection.

Quantitative comparison with distance metrics
Quantitative comparisons between the GT and results of the algorithms were calculated using
distance metrics as has been previously reported [36]. It is important to highlight that tra-
ditional pixel-wise metrics such as accuracy, true/false positive rate, sensitivity, and speci-
ficity are not suitable for comparing traces against a ground truth. This is illustrated in (Fig 5),
which shows three cases of lines that overlap in one single pixel and then extend from there in
very different conditions. Whilst the cases are quite different, pixel-wise metrics would iden-
tify the same number of true positives, one, in all cases. Similarly, the true negatives (black
pixels) could be similar and not useful to distinguish between cases. Pixel-wise metrics are
useful with larger structures such as nuclei and cells where the comparison is between areas
and not how far from each other the lines can be.

Calculation of the distance metrics has been previously described [36] but will be briefly
here for completeness and illustrated with a simple example in (Fig 6) and the Second Har-
monic Generation image in (Fig 7). First, a distance map from each of the set of traces to be
compared was calculated (Fig 6b, 6e) and (Fig 7b, 7e). Then the map of one set was multiplied
by the opposite set. Thus, the traces that are further away from the traces from the opposite
set will be in regions of higher distance and close to their opposites in regions of low distance
(Fig 6c, 6f) and (Fig 7c, 7f).

Fig 5. Illustration of three cases of two lines where the pixel-wise metrics of true positives, true negatives, false
positives, false negatives are identical, yet the distance between the lines is different.

https://doi.org/10.1371/journal.pone.0320006.g005

PLOS ONE https://doi.org/10.1371/journal.pone.0320006 April 10, 2025 9/ 25

https://doi.org/10.1371/journal.pone.0320006.g005
https://doi.org/10.1371/journal.pone.0320006


ID: pone.0320006 — 2025/4/10 — page 10 — #10

PLOS ONE Fibre tracing in biomedical images

Fig 6. Illustration of the distance error measurement between the two lines of (Fig 5c). (a, d) Two lines that over-
lap only at a single point. (b) Distance map computed from the red line in (a). Distances follow a hot colour map:
black-red-orange-yellow-white. (c) Product of the distance map shown in (e) with the line shown in (a). (e) Distance
map computed from the yellow line in (d). (f) Product of the distance map shown in (b) with the yellow line shown
in (d).

https://doi.org/10.1371/journal.pone.0320006.g006

Fig 7. Illustration of the calculation of the error distance maps on the Second Harmonic Generation image
shown in (Fig 1a). (a) One representative image with a variety of fibres. (b) Distance map calculated from the traces
calculated with Trace Ridges. (c) Product of the ground truth and the distance map of (b). (d) Comparison between
the results of Trace Ridges and the ground truth. White lines indicate pixels from GT and trace. Blue lines correspond
to Trace Ridges. Red lines are from the GT. (e) Distance map calculated from the ground truth. (f) Product of the
traces from Trace Ridges and the distance map of (e). It should be noticed how the cases where the lines overlap
(white) in (d) do not appear in any of the distance maps (c, f) whilst the lines that do not overlap (blue and red)
appear in the distance maps with increased brightness as they are further away from the lines generated by the
opposite method.

https://doi.org/10.1371/journal.pone.0320006.g007
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From those two maps many metrics can be calculated, for instance, the average distance
error per trace, maximum distance error per trace and total distance error.

Results and discussion
In this work, images of fibre-like structures were traced by seven different image process-
ing algorithms and were filtered by three different methods. To compare and observe which
method traces fibres better, four quantitative measurements were calculated: the total distance
error, average distance error and maximum distance error, as well as computational time. The
distance errors are measured by comparing how close the trace results of each algorithm were
compared to the manually delineated ground truth.

Quantitative comparison of the algorithms
Total distance error. The first analysis focuses on total distance errors, the accumula-

tion of the distance errors from GT to algorithm trace generated by the distance maps, as
explained. Qualitative results are summarised in Table 1, comparing algorithms with and
without filtering. Filtering notably improves Edge Detection, Scale Space, Twombli, Graph
Based, and Trace Ridges. DnCnn enhances Edge Detection, Scale Space, and Graph Based,
while Gaussian filtering benefits Twombli and Trace Ridges. However, filtering worsens Scale
Space with Gaussian and Twombli with DnCnn. U-Net and CT Fire exhibit increased errors
post-filtering, likely due to U-Net training on non-filtered images and CT Fire’s inherent fil-
tering. Notably, U-Net’s performance improved when DnCnn was used on the BCB and SHG
images, while U-Net with DnCnn yielded larger errors for the other images, impacting its

Table 1. Quantitative Comparison by total error distance in pixels of the following Tracing methods: Edge Detec-
tion (ED), CT Fire (CTF), Scale Space (SS), Twombli (TW), U-Net, Graph based (GB) and Trace Ridges (TR),
with three filtering options on the following images: Disease Mimicking ECM (DME), Second Harmonic (SHG),
Fluorescent Fibronectin (FF) and Breast Cancer Biopsy (BCB) images. In addition to the errors per image, aver-
age per filtering option, average of the methodology and rank are presented. Results are sorted by rank with the
worst results at the top (7) and best results at the bottom (1).
Method Image

Filter DME SHG FF BCB Average Rank avg/Method Rank
ED No Filt 947,550 35,905 754,120 224,120 490,424 21 429,173 7

Gaus Filt 834,660 36,248 714,530 208,090 448,382 20
DnCnn 620,970 32,591 612,600 128,690 348,713 19

CTF No Filt 311,580 13,594 232,140 83,653 160,242 16 171,529 6
Gaus Filt 342,290 22,687 269,290 79,694 178,490 18
DnCnn 330,190 29,437 266,950 76,848 175,856 17

SS No Filt 206,620 15,654 318,770 72,760 153,451 14 146,592 5
Gaus Filt 209,020 15,493 326,510 75,720 156,686 15
DnCnn 215,930 15,334 212,400 74,890 129,639 7

TW No Filt 218,870 14,160 286,120 60,969 145,030 11 141,988 4
Gaus Filt 186,810 14,328 280,020 49,700 132,715 8
DnCnn 248,420 14,087 280,280 50,091 148,220 12

UNET No Filt 180,610 12,938 129,040 47,940 92,632 1 129,457 3
Gaus Filt 268,560 12,119 248,620 45,840 143,785 9
DnCnn 292,440 12,220 260,070 43,090 151,955 13

GB No Filt 247,040 14,953 209,990 103,750 143,933 10 123,648 2
Gaus Filt 191,540 14,693 203,640 68,019 119,473 6
DnCnn 154,756 19,502 188,520 67,372 107,538 2

TR No Filt 208,580 9,141 168,170 70,320 114,053 5 112,120 1
Gaus Filt 198,810 9,537 166,690 63,520 109,639 3
DnCnn 195,270 13,727 162,760 78,910 112,667 4

https://doi.org/10.1371/journal.pone.0320006.t001
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overall performance. Considering filtering + algorithm pairs as separate methods, U-Net
without filtering performs best, followed by Graph Based with DnCnn, Trace Ridges with
Gaussian filtering, Trace Ridges with DnCnn and Trace Ridges with no filtering. However,
averaging total distance errors across all images regardless of filtering reveals Trace Ridges as
the top-performing method, followed by Graph Based, U-Net, Twombli, Scale Space, CT Fire
and Edge Detection.

Average distance error. This quantitative metric calculates total errors divided by the
number of traces to provide an average, as shown in Table 2. Filters enhance the performance
of various methods including Edge Detection, CT Fire, Scale Space, Twombli, Graph based
and Trace Ridges. However, filters do not improve U-Net’s values due to its training on non-
filtered images. Notably DnCnn improves U-Net’s performance for the DME and BCB images,
while Gaussian filtering benefits only the BCB image. Filtering yields consistent results for
Edge Detection, with DnCnn slightly improving it. Both Gaussian and DnCnn filters signif-
icantly enhance CT Fire. Gaussian filtering marginally improves Scale Space, while DnCnn
enhances it. Twombli’s results are improved by Gaussian filtering but worsened by DnCnn, in
agreement with the total distance error metric. Filtering improves the Graph based method,
with DnCnn yielding the best performance. Gaussian filtering improves Trace Ridges, but
DnCnn slightly increases the value, impacting performance. Filtering + algorithm pairs are
ranked, with Edge Detection + DnCnn performing best, followed by Edge Detection + no fil-
ter, Trace Ridges + Gaussian, Edge Detection + Gaussian and Twombli + Gaussian. Analysing
averages per method, Edge Detection ranks highest, followed closely by Trace Ridges and
Twombli. Edge Detection performs well due to the proximity of its traces to the GT, although
it detects unwanted edges as fibres. Conversely, Trace Ridges, while achieving the best total

Table 2. Quantitative Comparison by average error distance in pixels of the following Tracing algorithms; Edge
Detection (ED), CT Fire (CTF), Scale Space (SS), Twombli (TW), U-Net, Graph based (GB) and Trace Ridges
(TR) with three filtering options on Disease Mimicking ECM (DME), Second Harmonic (SHG), Fluorescent
Fibronectin (FF) and Breast Cancer Biopsy (BCB) images. In addition to errors per image, average per filtering
option, average of the methodology and rank are presented. Results are sorted by rank with the worst results at
the top (7) and best results at the bottom (1).
Method Image

Filter DME SHG FF BCB Average Rank avg/Method Rank
GB No Filt 19.3 15.0 17.7 10.5 15.6 21 12.0 7

Gaus Filt 15.3 4.1 17.3 6.6 10.8 18
DnCnn 11.0 7.4 13.0 7.0 9.6 13

UNET No Filt 10.7 12.9 10.7 8.2 10.6 16 11.0 6
Gaus Filt 11.8 13.6 14.4 7.5 11.8 20
DnCnn 12.7 9.7 14.3 6.1 10.7 17

CTF No Filt 8.6 15.7 14.3 8.4 11.7 19 9.6 5
Gaus Filt 11.4 3.8 11.4 7.9 8.6 11
DnCnn 9.5 6.4 10.1 7.5 8.4 9

SS No Filt 10.7 5.2 16.1 8.6 10.1 15 9.5 4
Gaus Filt 10.4 4.7 15.8 8.2 9.8 14
DnCnn 10.7 5.0 10.4 8.2 8.6 10

TW No Filt 10.0 5.0 10.6 6.9 8.1 8 8.2 3
Gaus Filt 9.7 4.7 10.3 5.7 7.6 5
DnCnn 14.5 5.5 10.3 5.4 8.9 12

TR No Filt 11.5 3.1 9.8 7.6 8.0 6 7.8 2
Gaus Filt 10.2 3.4 8.7 6.7 7.3 3
DnCnn 10.5 4.3 9.3 8.3 8.1 7

ED No Filt 8.4 4.8 9.4 6.4 7.3 2 7.2 1
Gaus Filt 8.5 4.9 9.1 6.6 7.3 4
DnCnn 8.3 5.1 8.8 5.7 7.0 1

https://doi.org/10.1371/journal.pone.0320006.t002
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Table 3. Quantitative Comparison by maximum error distance in pixels of the following Tracing algorithms;
Edge Detection (ED), CT Fire (CTF), Scale Space (SS), Twombli (TW), U-Net, Graph based (GB) and Trace
Ridges (TR) with three filtering options on Disease Mimicking ECM (DME), Second Harmonic (SHG), Fluo-
rescent Fibronectin (FF) and Breast Cancer Biopsy (BCB) images. In addition to errors per image, average per
filtering option, average of the methodology and rank are presented. Results are sorted by rank with the worst
results at the top (7) and the best results at the bottom (1).
Method Image

Filter DME SHG FF BCB Average Rank avg/Method Rank
SS No Filt 65.2 50.4 69.6 202.4 96.9 21 94.9 7

Gaus Filt 63.6 55.6 66.4 191.8 94.4 20
DnCnn 61.4 57.4 59.2 195.5 93.4 19

CTF No Filt 68.9 89.0 81.0 73.6 78.1 16 77.5 6
Gaus Filt 57.5 98.5 75.5 82.7 78.5 17
DnCnn 58.4 96.5 75.7 73.1 75.9 15

TR No Filt 68.5 55.0 95.2 102.1 80.2 18 76.1 5
Gaus Filt 84.3 50.4 91.9 70.4 74.3 14
DnCnn 76.3 48.8 88.2 81.7 73.7 13

TW No Filt 62.4 65.8 57.8 68.7 63.7 8 66.3 4
Gaus Filt 69.8 66.9 60.5 60.5 64.4 9
DnCnn 79.2 89.0 62.7 51.8 70.7 12

ED No Filt 45.4 59.4 52.3 119.7 69.2 10 66.3 3
Gaus Filt 46.1 59.4 52.3 119.7 69.4 11
DnCnn 50.3 86.0 58.3 46.1 60.2 4

GB No Filt 58.9 72.1 65.8 56.2 63.2 7 60.7 2
Gaus Filt 59.6 53.8 62.9 47.8 56.0 1
DnCnn 71.6 55.8 70.6 53.2 62.8 6

UNET No Filt 58.8 63.4 66.4 50.9 59.9 3 59.8 1
Gaus Filt 56.1 63.4 57.6 50.4 56.9 2
DnCnn 57.2 89.0 56.0 47.8 62.5 5

https://doi.org/10.1371/journal.pone.0320006.t003

distance error and the second-best average, is considered a more robust and accurate tracing
method.

Maximum distance error. This metric examines the maximum singular error in each
image, as shown in Table 3. Filtering enhances the performance of Edge Detection, CT Fire,
Scale Space, U-Net, Graph Based and Trace Ridges. Filtering hinders Twombli. Gaussian fil-
tering produces comparable results to no filtering for Edge Detection, while DnCnn enhances
results. CT Fire shows slight improvement with Gaussian and more significant improve-
ment with DnCnn, both Gaussian and DnCnn improve Scale Space, with DnCnn yielding
the lowest maximum error. Interestingly, Gaussian filtering improves U-Net but worsens
with DnCnn filtering, DnCnn hinders the performance of U-Net on the SHG image, heav-
ily impacting the average. For Graph based, DnCnn’s impact resembles that of no filtering,
whereas Gaussian improves results, both Gaussian and DnCnn improve Trace Ridges, with
Gaussian having a similar effect to DnCnn but slightly lesser. Among filtering + algorithm
pairs, Graph based + Gaussian performs the best, followed by U-Net + Gaussian, U-Net + no
filtering, Edge Detection + DnCnn and U-Net + DnCnn. Observing averages per method, U-
Net achieves the best results, followed by Graph Based and Edge Detection. However, Trace
Ridges does not perform as well in this metric due to its preference for brighter and longer
fibres, resulting in higher singular maximum errors. While this metric provides insights, total
and average distance errors are better indicators of algorithm robustness and accuracy.

Time. The processing time for each trace of every algorithm with various filter combina-
tions on each image was recorded and is presented in Table 4. Surprisingly, filtering improved
the speed of every algorithm, with DnCnn consistently achieving the fastest results across all
algorithms and filters. However, Edge Detection exhibited consistent speed with Gaussian
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Table 4. Quantitative Comparison by time taken in seconds of the following Tracing algorithms; Edge Detection
(ED), CT Fire (CTF), Scale Space (SS), Twombli (TW), U-Net, Graph based (GB) and Trace Ridges (TR) with
three filtering options on Disease Mimicking ECM (DME), Second Harmonic (SHG), Fluorescent Fibronectin
(FF) and Breast Cancer Biopsy (BCB) images. In addition to time taken per image, average per filtering option,
average of the methodology and rank are presented. Results are sorted by rank with the worst results at the top
(7) and the best results at the bottom (1).
Method Image

Filter DME SHG FF BCB Average Rank avg/Method Rank
GB No Filt 1387.0 88.0 550.0 146.0 542.75 21 433.08 7

Gaus Filt 836.0 55.0 664.0 153.0 427.00 20
DnCnn 527.0 84.0 573.0 134.0 329.50 16

TW No Filt 383.0 211.0 777.0 306.0 419.25 19 385.92 6
Gaus Filt 681.0 340.0 438.0 152.0 402.75 18
DnCnn 520.0 303.0 380.0 140.0 335.75 17

CTF No Filt 180.0 60.0 145.0 77.0 115.50 15 102.42 5
Gaus Filt 167.0 57.0 110.0 71.0 101.25 14
DnCnn 135.0 49.0 113.0 65.0 90.50 13

SS No Filt 98.6 4.8 72.7 45.4 55.40 11 55.78 4
Gaus Filt 86.0 5.2 71.8 82.5 61.36 12
DnCnn 87.0 5.1 68.0 42.2 50.57 10

UNET No Filt 23.0 5.2 21.1 20.1 17.33 9 12.23 3
Gaus Filt 20.1 5.0 18.9 23.7 16.92 8
DnCnn 2.5 2.2 2.4 2.6 2.44 5

TR No Filt 8.0 0.5 4.0 2.7 3.81 7 3.00 2
Gaus Filt 4.5 0.8 3.1 3.0 2.87 6
DnCnn 4.0 0.6 2.9 1.8 2.32 4

ED No Filt 1.2 0.1 0.5 0.5 0.58 2 0.53 1
Gaus Filt 0.7 0.5 0.5 0.6 0.58 3
DnCnn 0.8 0.1 0.4 0.4 0.43 1

https://doi.org/10.1371/journal.pone.0320006.t004

and no filtering, and Gaussian filtering slowed down Scale Space. Each subsequent algorithm
and filter pair in Table 4 generally performed better and faster, except for Graph Based with
DnCnn, which outperformed Twombli. U-Net with DnCnn was faster than Trace Ridges with
Gaussian or no filtering. Edge Detection was the fastest algorithm overall, followed closely by
Trace Ridges, which is known for its efficiency. U-Net was ×3 slower than Trace Ridges, fol-
lowed by Scale Space and CT Fire. Speed variations were significantly and heavily influenced
by image noise levels, with noisier images (FF and DME) taking longer to process than less
noisy images.

Visual assessment of the algorithms
A comparison between the results and the GT is presented in (Fig 8), (Fig 9), (Fig 10),
(Fig 11), (Fig 12), (Fig 13), (Fig 14) and (Fig 15) with the GT in red, the results in blue. White
lines correspond to pixels where the result of the algorithm and GT overlap, i.e., correct
traces. It should be noted that in some cases a purple colour may be perceived, but this is an
artefact when a blue line is remarkably close to a red line.

Second harmonic generation. The SHG is a clear image, detected and missed fibres
are easily identifiable. Edge Detection (Fig 8) consistently produces duplicate lines for each
fibre. From (Fig 12), DnCnn application improves the tracing, increasing white regions com-
pared to the original. CT Fire algorithm has demonstrated notable success on the original
image (Fig 8) but struggles with filtered images, evidenced by decreased number of white lines
regions (Fig 12), suggesting hindrance by filtering. Scale Space remains unaffected by filter-
ing, showing consistent results (Fig 12). Scale Space does not perform well. Twombli exhibits
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Fig 8. Comparison of tracing algorithms on SHG image (full view) [40]. Image was applied to algorithms with
three different filters: Original/no filtering, Gaussian and DnCnn. Data corresponds to the tracing images; GT is the
manually delineated ground truth. For the evaluation of Tracing Algorithms, the GT fibres are represented in red,
algorithm tracing is depicted in blue and areas where they overlap is white.

https://doi.org/10.1371/journal.pone.0320006.g008

sporadic traces and misses major fibres (Fig 8). Application of DnCnn appears to worsen
Twombli’s performance (Fig 12). U-Net performs well, with significant white line regions
(Fig 8). Filtering does not visibly affect U-Net’s segmentation. The Graph based method
misses several fibres shown in red. It also detects spurious objects with DnCnn application
(Fig 8). Trace Ridges shows the best visual performance, with the highest number of cor-
rect fibre regions (Fig 8). However, visually, Trace Ridges with DnCnn performs the worst
amongst filter methods (Fig 12).

Fluorescent fibronectin. For the Fluorescent Fibronectin image (Fig 9), several notable
findings emerge. Despite the increased noise on the image as compared to the previous
example (SHG), similar trends persist, that is, both CT Fire and Edge Detection generate
a large number of traces, more than there are actual fibres. Filtering enhances Edge Detec-
tion (Fig 13), but degrades the results CT Fire. Scale Space and Trace Ridges yield fewer
traces, with Scale Space detecting darker fibres and Trace Ridges favouring the bright ones.
Trace Ridges exhibits fewer spurious lines (blue) and more white regions, indicative of its
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Fig 9. Comparison of tracing algorithms on FF image (full view). Image was applied to algorithms with three dif-
ferent filters: Original/no filtering, Gaussian and DnCnn. Data corresponds to the images traced; GT is the manually
delineated ground truth. For the evaluation of Tracing Algorithms, the GT fibres are represented in red, algorithm
tracing is depicted in blue and areas where they overlap is white.

https://doi.org/10.1371/journal.pone.0320006.g009

strict nature (Fig 13), showing improvement with image filtering. Graph based method and
Twombli exhibit over-segmentation, visible as blue regions (Fig 9) and (Fig 13). Pre-filtering
notably improves their performance. Conversely, U-Net’s results with filtered images are inac-
curate, as it was trained on non-filtered images, yielding optimal results with the original
image as is visible in (Figs 9 and 13).

Breast cancer biopsy. For the BCB image, similar trends persist, with Edge Detection
over-segmenting and producing inaccuracies, as seen in (Fig 10) and (Fig 14). However,
pre-filtering results in cleaner images and reduces inaccuracies. CT Fire misses major fibres
while detecting noise as spurious objects, evident in (Fig 10) and (Fig 14). Filtering enhances
the algorithm’s performance, as observed in (Fig 14). Scale Space shows inaccuracies, detect-
ing noise and spurious objects, contrary to its usual strict behaviour, as shown in (Fig 14).
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Fig 10. Comparison of tracing algorithms on Picrosirius red Breast Cancer Biopsy image (full view) [38]. Image
was applied to algorithms with three different filters: Original/no filtering, Gaussian and DnCnn. Data corresponds
to the images traced; GT is the manually delineated ground truth. For the evaluation of Tracing Algorithms, the GT
fibres are represented in red, algorithm tracing is depicted in blue and areas where they overlap is white.

https://doi.org/10.1371/journal.pone.0320006.g010

Filter application does not alter the results. Twombli shows notable performance, especially in
detecting fibres at the top right corner in (Fig 14). Gaussian filtering improves Twombli, while
DnCnn hinders its performance, causing loss of white lines. U-Net’s results are intriguing,
with many white regions indicating accurate delineation (Fig 10). Filtering improves U-Net’s
performance, reducing spurious objects, contrary to its behaviour on other images. Trace
Ridges maintains strictness, yielding cleaner delineations (Fig 14), albeit missing some key
fibres. Graph based algorithm performs similarly with Trace Ridges, with filtering reducing
spurious elements (Fig 14).

Disease mimicking ECM. A visual examination of the disease mimicking ECM (DME)
image (Fig 11) reveals notable insights. By looking at the data image, both Gaussian and
DnCnn filtering visibly enhance image clarity. Edge Detection does not perform well.
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Fig 11. Comparison of tracing algorithms on DME image (full view) [42]. Image was applied to algorithms with
three different filters: Original/no filtering, Gaussian and DnCnn. Data corresponds to images traced; GT is the
manually delineated ground truth. For the evaluation of Tracing Algorithms, the GT fibres are represented in red,
algorithm tracing is depicted in blue and areas where they overlap is white.

https://doi.org/10.1371/journal.pone.0320006.g011

Themain drawback of Edge Detection is that there are two lines for each fibre. The results
show many blue lines, where many fibres were detected that are not there. Filtering notably
enhances Edge Detection’s performance, particularly evident in the ROI (Fig 15), where
DnCnn offers the most significant improvement. CT Fire performed better than Edge
Detection, it also presented spurious objects. Gaussian and DnCnn filtering resulted in more
non-present traces; this is easily viewed in the ROI (Fig 15). Scale Space displays fewer traces,
benefiting from its multi resolution capabilities, but may merge separate fibres occasionally.
Gaussian and DnCnn filtering have increased the number of fibres, but the latter has resulted
in the long fibres separating. Twombli yields mediocre results, segmenting non-existent fibres,
yet outperforming certain algorithms. Filtering enhances Twombli’s delineation, with Gaus-
sian filtering notably improving the algorithms performance, this is evident in the number of
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Fig 12. Comparison of tracing algorithms on SHG image (region of interest) [40]. Image was applied to algo-
rithms with three different filters: Original/no filtering, Gaussian and DnCnn. Data corresponds to the images traced;
GT is the manually delineated ground truth. For the evaluation of Tracing Algorithms, the GT fibres are represented
in red, algorithm tracing is depicted in blue and areas where they overlap is white.

https://doi.org/10.1371/journal.pone.0320006.g012

white lines in (Fig 15). However, DnCnn leads to spurious lines. U-Net performs well, espe-
cially on the original image, but shows degraded performance on filtered images due to train-
ing on non-filtered data. The Graph based algorithm demonstrates robust performance, fur-
ther improved with filtering, as seen in (Fig 15), where DnCnn enhances accuracy and cleanli-
ness. Trace Ridges, akin to Scale Space, exhibits fewer traces, deliberately separating intersect-
ing fibres for improved accuracy. Filtering enhances Trace Ridges’ performance, particularly
evident in (Fig 15).

Conclusions
In this paper we introduced Trace Ridges, a novel method for tracing fibre-like structures,
compared against six existing methods (Edge Detection, CT Fire, Scale Space, Twombli,
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Fig 13. Comparison of tracing algorithms on FF image (region of interest). Image was applied to algorithms with
three different filters: Original/no filtering, Gaussian and DnCnn. Data corresponds to images traced; GT is the
manually delineated ground truth. For the evaluation of Tracing Algorithms, the GT fibres are represented in red,
algorithm tracing is depicted in blue and areas where they overlap is white.

https://doi.org/10.1371/journal.pone.0320006.g013

U-Net and Graph based) with three filtering options (no filtering, Gaussian filtering and
DnCnn). Gaussian filtering is a traditional filtering technique that uses Gaussian kernels while
DnCnn is a deep neural network. Images representing SHG of tumor bearing mouse mam-
mary glands images, fluorescently labelled fibronectin images, Picrosirius red breast can-
cer collagen fibres images and disease mimicking ECM images. These images were used for
evaluation, compromising both noisy and clean samples.

Manual ground truth delineations were created for each image and distance maps were
used to quantify distance errors between the ground truth and algorithmic traces.

Trace Ridges exhibited the lowest total distance error, followed by Graph based and U-Net.
Edge Detection achieved the lowest average distance error, attributed to its tendency to over-
segment, thus its traces are always close to a fibre from the ground truth. Edge Detection was
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Fig 14. Comparison of tracing algorithms on Picrosirius red Breast Cancer Biopsy image (region of interest) [38].
Image was applied to algorithms with three different filters: Original/no filtering, Gaussian and DnCnn. Data corre-
sponds to images traced; GT is the manually delineated ground truth. For the evaluation of Tracing Algorithms, the
GT fibres are represented in red, algorithm tracing is depicted in blue and areas where they overlap is white.

https://doi.org/10.1371/journal.pone.0320006.g014

followed by Trace Ridges and Twombli. U-Net attained the lowest maximum distance error
followed by Graph based and Edge Detection. Trace Ridges did not perform well in this met-
ric as it favours brighter and longer fibres, so it is prone to have a higher singular maximum
error.

Interestingly, filtering improved results for all algorithms except U-Net, which was trained
on non-filtered patches. However, filtering enhanced U-Net’s performance specifically with
the Breast Cancer Biopsy image.

Edge Detection was the fastest on average, followed by Trace Ridges and U-Net. Filtering
generally expedited algorithms except for U-Net, although it improved processing time with
the Breast Cancer Biopsy image.
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Fig 15. Comparison of tracing algorithms on DME image (region of interest) [42]. Image was applied to algorithms
with three different filters: Original/no filtering, Gaussian and DnCnn. Data corresponds to images traced; GT is the
manually delineated ground truth. For the evaluation of Tracing Algorithms, the GT fibres are represented in red,
algorithm tracing is depicted in blue and areas where they overlap is white.

https://doi.org/10.1371/journal.pone.0320006.g015

Overall, Trace Ridges demonstrated superior performance, achieving the lowest total dis-
tance error, second-lowest average distance error, and second-fastest processing time. It offers
rapid, automated tracing and extracts essential topological and morphological information,
including fibre length, fibre count, orientation, circularity, and gap characteristics. Thus, Trace
Ridges emerges as the preferred algorithm for tracing various fibre-like structures, including
extracellular matrix and collagen fibres.
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